ML20210F512
ML20210F512 | |
Person / Time | |
---|---|
Site: | Haddam Neck File:Connecticut Yankee Atomic Power Co icon.png |
Issue date: | 07/28/1999 |
From: | Burns B, Hollenbeck P CONNECTICUT YANKEE ATOMIC POWER CO. |
To: | |
Shared Package | |
ML20210F510 | List: |
References | |
CY-HP-0031, NUDOCS 9907300218 | |
Download: ML20210F512 (233) | |
Text
- _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - .
RPM 1.1-3 Rev. 7 CONNECTICUT YANKEE ATOMIC POWER COMPANY TECIINICAL SUPPORT DOCUMENT Haddam Neck Plant Health Physics Department Technical Support Document Document Number: CY-HP-0031 Revision #: 0
Subject:
Bounding Dose Assessment for Offsite Radioactive Materials Date:
, o e U L Performed By: B. n IP H Jlenbeck Date: 1 ti N r Reviewed By: - - M,/ Date: 7,/M,!97 ._
Approved By -
y ,M -
Date: 7,/2F,/99 TM7 288s" 338n312 W PDR L, .
CY-HP-0031 Revision #: 0 i Page 2 of 233 Executive Summary in the 1970's and 1980's workers from the Connecticut Yankee (CY) Haddam Neck Plant were ,
allowed to take personal ownership of certain plant materials that were no longer needed at CY.
These materials included used office furniture, lumber, fill. and concrete ble .ks. Some of this material may not have been adequately surveyed for potential radioactive contamination prior to being released from the site and lacked appropriate documentation of the surveys. As such, all of this material at the identified residential properties has been surveyed for radioactive contamination. The most significant source of contamination at these properties is from solid rectangular concrete blocks measuring approximately 4"X8"X16". These blocks were used at CY to form an enclosure around an area where radioactive materials were handled and processed du,ing the 197Js. During 1975, this enclosure was distnantled and the concrete blocks were allowed to be taken by plant workers for personal use.
These blocks were used at the residential properties in a variety of configurations that included:
waik-ways, flower garden borders, vegetable garden borders, foundation walls, structural supports, and patios. With such varied applications, the potential radiation exposure pathways become complex. As a baseline comparison, the most significantly contaminated site is examined in this analysis.
This analysis examines the maximum annual exposure that may have resulted from these contaminated concrete blocks while at this reference residential site. The exposure analysis considers three exposure periods:
e dcse to individuals while handling and installing the blocks for trr < nd-use, e dose to individuals from installed blocks, and, e dose in subsequent years from farming activities where the underlying and surrounding soil may have become contaminated from leaching of the material from the blocks.
This analysis is very conservative in many regards and may represent a dose many times that of any actual dose. However, this provides an upper bound of the potential dose and allows for a comparison to the radiation exposure limit provided in 10CFR20 for individual membe:s of the public of 100 mrem per year. These conservative assumptions are summarized in this analysis.
The maximum dose from handling and direct exposure to the contaminated blocks is calculated as appmximately 62 mrom. This includes contribution from both direct exposure and from ingestion of radioactive material. Corrections are applied to account for short-lived radionuclides as well as for the presence of long-lived transuranic radionuclides.
The maximum dose from farming in contaminated soil as a result of the materialleached from the contaminated blocks is 38 mrem. This also corrects for the short lived radionuclides as well as the transuranics. This analysis assumes several farming pathways including livestock, fishing, well water, and produce where a 50% sustenance is from the residential farm. This dose is not added to the handling dose since these exposures would have occurred in different years. Even with the very conservative assumptions applied in this analysis, these doses are well below the applicable regulatory limit for members of the public.
CY-HP-0031 Revision #: 0 Page 3 of 233 Table of Contents SECTlON............................................................................................................................................PAGE Exe cu tive S u m m a ry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Ta b le O f C o n te n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List Of Atta c h me nts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
- 1. I ntrod u ct10n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .............................................5
- 2. B a ck g ro u nd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .............................5
- 3. Dose Assessment Methodologies ...... ..... .... .. .. ............ ... ........ .. .............6 3.1 G EN ERAL CON S I D ERATIO N S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
- 3. 2 EX PO S U RE PATHWAYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...6 .............
3.3 B LOC K D O S E ASS ESSM ENT PROC ESS.. .. . ... . . . ...... . . . ... .. . . . . . . .. .. .. .. . . .. . . . . . . . . . . . . . . . . . 7 3.3.1 Block Dose Activity Calculations.... ........... . ... .... . . ...... ..... ... .... . ...7
- 3. 3. 2 Block Do se Calcula tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4 INGESTION DOSE FROM HANDLING CONTAMINATED BLOCKS...... .... ...... . . . ...........16 3.5 SKIN DOSE FROM HANDLING CONTAMINATED BLOCKS ... ......................... .. ...........19 3.6 DOSE FROM THE RESIDENTIAL FARMING PATHWAY ..... .. ......... .... ........ . .. . ........19
- 4. Dose Assessments For The Limiting Site........ ............ .... ............................ ... 20 4.1 S ITE D ESC RI PTI O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 SOURCE TERM ... . .. . ...... . . .... ..............................................................23 3 4.2.1 Total Soil Activity For Site #9632....... . ......... .. .... ... ....... .... ... . . ..... .... 24 4.2.2 Surface Activity For The Blocks Recovered From Site #9632. . .. .. .. . . 2 7 4.2.3 Radiological Conditions At Site #9632 For The Initial Period..... .. .... ...... 30 4.3 MATERIAL CONFIGURATIONS AND OCCUPANCIES..... ..... ................ ...... ...... . ...... 31 4.4 D O S E ASSESSM ENT RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.4.1 Direct Exposure To Contaminated Blocks... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 33 4.4.2 Ingestion Dose And TEDE... .. ............................................37 4.4.3 Skin Dose Contribution to TEDE.... . . . . . . . . . . . . . . . . . . . . ..............38 4.4.4 Assessment For Transuranic Radionuclides .. ........... ...... ..... ... .......... 39 4.4.5 Results For Residential Farming . ... ........ ....... . ....... . ... .. . 41 :
1
- 5. C o n clu sions . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . ................................................46
- 6. R e fe re n ce s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...........48
\
i i
l I
l
CY-HP-001 Revision #: O Page 4 of 233 List of Attachments : Microshield Cases For Determining The Deep Dose Equivalent Rate Per Unit Dpm/100 Cm2 From Direct Handling Of The Blocks.. .. ................ .......... ........... 49 : Microshield Cases For Determining The Deep Dose Equivalent Rate Per Unit Dpm/100 cm2 For Area Sources...... .. ............. ...... . . .................. ..... .. . 58 : Soil Characterization Data For Site 96 3 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 : Block Tsc Measurements Data For Site 96 3 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 7 : Copies Of References Pertaining To The High Levels Of Activated Corrosion Products in Materials Stored in The Area Shielded By The Concrete Blocks
......................................................................................................................130 l : R E S RA D O ut p u ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6 : Lab Analysis Results Showing Trace Amount Of Americium And Curium OnABlock.................................................................................................209 : Nuclide Composition For End-Of-Cycle PWR Fuel ... . . .......... ........ 211 : Analysis Results For Samples Of The Concrete Pad Enclosed By The Blocks.................................................................................................214
CY-HP-0031 Revision #: 0 Page 5 of 233
- 1. Introduction The purpose of this document is to summarize the assessment of radiation doses that persons may have received as a result of the inadvertent removal and subsequent residential utilization of contaminated building materials and other items from the Connecticut Yankee Atomic Power Plant (Haddam Neck Plant). This assessment was conducted in the form of a bounding approach, where conservative assurnptions were used throughout the process to insure that the results obtained bounded the potential radiation dose received by any individual. It should be noted that all results provided herein are only intended to bound the potential doses received. No effort has been made to accurately assign doses to specific individuals, as the bounding assessment showed such an effort to be unwarranted.
2. Background
Contaminated materials originating from the Connecticut Yankee (CY) Haddarn Neck Plant have been found at various offsite residentiallocatbns. These materials were removeo during the 1970's and 1980's by plant workers for private use. Some materials were not appropriately surveyed for radioactive contamination prior to their removal. The materials, which have since been recovered from the residential sites, were predominantly solid concrete blocks whose surfaces were potentially contaminated with CY radioactivity. The concrete blocks originally measured approximately 4" by 8" by 16" (some have subsequently been broken or degraded) and were previously used as a temporary shield wall at the CY plant. Other materials (e.g.,
tools, office furniture previously used at the plant) have also been found at the residences of current or former plant workers.
To evaluate the potential radiation doses that the plant workers, their families or other mernbers of the public could have received as a result of the CY materials, a radiation dose assessment has been performed. This document provides this assessment in the form of a bounding evaluation, where conservative assumptions have been applied throughout the process to insure that the results are conservative and that the actual dose potentially received by any individualis liK' ely lower. The results of this assessment for the offsite reside.ntial area provide bounding estimates of the Total Effective Dose Equivalent (TEDE) received by an arbitrary resident during the first year of exposure to the materials for a limiting (worst case) site. Conservative estimates of occupancy (i.e., the average number of hours per day an individual would be present in a given location) were chosen based on interviews with the residents and how and where the materials were utilized at the residence.
l
l CY-HP-0031 Revision #: 0 Page 6 of 233 The following sections present the methods and parameters used to conservatively bound radiation doses to individuals at a selected residential site during the first year CY materials were present. Dose to individuals from potentially contaminated items other than concrete blocks is not explicitly addressed, since the total activity detected on these items is substantially less than that of the blocks. Items found at residences in addition to concrete blocks include hand tools, cabinets, scaffolding, lumber, barrels, pallets, sheds, fencing, wire mesh, l-beams, lead bricks, etc.
- 3. Dose Assessment Methodologies 3.1 General Considerations The bounding assessment was conducted by first establishing the potential exposure pathways for the affected individuals. Next, one specific residential site was chosen that was considered to represent the limiting case in terms of the total radionuclide activity found during characterization and remediation activities. An initial source term was conservatively re-constructed for this location based on the many radiological
. measurements made in the course of characterization and remediation. Plant records concerning radionuclide mixtures for common waste streams in the era prior to the removal of the materials from the site were consulted to address radionuclides that might have been present on the materials when they were initially removed, but would have decayed to non-measurable levels over the years. In addition, results of samples of concrete from the pad that was surrounded by the shield wall (Bus-10) have been obtained S
and reviewed. Conservative selections of activity ratios for58Co (relative to Co) and "dCs (relative to "7Cs) were made so that other short-lived radionuclides were indirectly included in the assessment. Once the source term was established, doses were calculated for each exposure pathway for assumed material configurations and occupancies.
3.2 Exposure Pathways The exposure pathways considered in the dose assessment for the contaminated concrete blocks removed from CY and subsequently utilized at a residence were:
. External dose from the initial handling of contaminated blocks External dose from the subsequent handling of contaminated blocks External dose from blocks installed at the residential site
. Ingestion dose from the handling of contaminated blocks
. Skin dose from the handling of contaminated blocks e
, internal and external dose from residential farming
CY-HP-0031 Revision #: 0 Page 7 of 233 With the exception of the residential farming pathway, all of the pathways defined above were addressed with the goal of providing bounding-level dose estimations for the first year that the contaminated materials were located at the residence. Except for the residential farming pathway, only the first year is considered because this is the limiting case in terms of iMividual doses and because the regulatory limit for dose to a member of the public in an uncontrolled area is expressed as an annuallimit. Limits for the integrated dose over a number of years are not (explicitly) given. Dose for the residential farming pathway was assessed for the year in which soil radionuclide concentrations reached their maximum. This farming pathway assumes that the land was used for all possible farming activities including raising of livestock, vegetation, and fish. This pathway also assumed firect and indirect consumption of contaminated water. This combination of activities was not observed in any single property and is therefore considered very conservative.
3.3 Block Dose Assessment Pmcess Doses from the blocks were calculated by utilizing measured data on the blocks and in the soil. These data were back-decayed to calculate the activity for the site when the blocks were first brought to the residence. Although only "Co and ' 7Cs have been identified, other radionuclides were then scaled to the measured radionuclides to establish the total activity. Dose calculations include the initial handling of blocks (as they were removed from CY and delivered to the residence), subsequent handling of blocks (as they were installed at the residence) and subsequent exposure once the blocks were installed. No additional handling was assumed in subsequent years since this would have resulted in a lower dose due to radioactive decay and weathering of the contamination. All of these assessments were computed in terms of deep dose equivalent (DDE) for the exposed individual. The same individual is assumed for exposure to all of the pathways.
3.3.1 Block Dose Activity Calculations For each survey unit, the mean Total Surface Contamination (TSC) data obtained for the exposed and unexposed surfaces of the blocks are converted to activity by multiplying by the exposed and unexposed areas, respectively, and converting units.
Note that there is a significant conservatism invoked here in that the TSC measurements are applied as if the entire block was contaminated at that level, when in reality the measured TSC value is the maximum found on the block. The activities associated with the exposed and unexposed surfaces for each survey unit are then summed to get the total activity measured for the block surfaces. This total is then divided by the total surface area for all of the blocks identified for the site of interest to 2
obtain an average TSC in dpm/100 cm . A weighted mean was also computed for the exposed and unexposed block surfaces based on the total surface activities for the
CY-HP-0031 Revision #: 0 Page 8 of 233 blocks in each survey unit. Both the average and weighted mean TSC values computed are for informational purposes only.
The soil activity concentration data (pCi/g) for each survey unit and radionuclide are converted to total activity by multiplying by the product of the soil volume and density.
Once computed, the activities of each survey unit are summed to represent the total for each radionuclide. Weighted means were also computed for each radionuclide based on the activity in each of the survey units. As with the TSC data, these weighted means are provided for information only.
Once the activities associated with contaminated blocks and soil are computed for each survey unit, they are summed to get the total activity for each unit. Normalized fractions (i.e., the fraction of the total activity contained in each survey unit) are also computed.
These fractions are used to partition the source term among the blocks associated with each unit. Once the original activity is determined for the time the material was first introduced at the site, the other radionuclides are then included based on the appropriate radionuclide ratios.
After the total activities associated with the blocks and the soil are computed, they are decay-corrected back to the date when the materials were first brought to the residence. In the case of the total surface contamination (TSC) data for the blocks, the
- Co fraction is estimated, with the rest of the activity being 7Cs. This is not performed for the soil data since isotopic analysis results were obtained. The activities are decayed back using the elapsed time the blocks were at the residence and half-lives of 5.271 years and 30.17 years for
- Co and 7Cs, respectively. Once the
- Co and '37Cs activities are back-decayed, corresponding activities for5'Co and 'S'Cs are computed using estimated fractions based upon historical data. The total activities for 58Co,
- Co,
'3dCs and 7Cs for the blocks and the soil are then summed to get the totals for these radionuclides for the site as a whole at the time the blocks were first introduced.
Once the total activities for 58Co,
- Co, ' 'Cs and ' 7Cs are established for the slte, they are divided by the total surface area for the blocks to obtain en average TSC (in dpm/100 cm 2) as if all of the activity was evenly distributed across all of the blocks.
This value is subsequently used to compute doses from handling of the blocks. Since the handling doses are computed uring a constant handling time for each block, use of an average is appropriate. This average is not used to compute doses from direct exposure from the blocks once they have been installed. Instead, the total activity for the site is correctly apportioned among the blocks associated with each survey unit so that different occupancy times may be used for different areas of the residence.
i l
CY-HP-0031 Revision #: 0 Page 9 of 233 3.3.2 Block Dose Calculations
- a. Calculations of Dose from the Handling of Contaminated Blocks The deep dose equivalent (DDE) was computed to an individual for both initial and subsequent handling of the blocks. As described in the previous section, this calculation assumes that all of the activity associated with a site is uniformly distributed over the total number of blocks. An exposure time (in hours per block) for both the initial and subsequent handling was chosen. Different handling times are considered for the two cases. The calculated deep dose equivalents for the initial and subsequent handling are summed, reflecting an assumption that the same person moved all of the blocks both when they were initially loaded at CY and unloaded at the residence and when they were subsequently installed.
The deep dose equivalent from the handling of the blocks is computed as the product of the Average TSC, the radionuclide-specific conversion factor (discussed below) and the total exposure time. The conversion factor for each radionuclide is the dose rate at 30 cm determined for a block uniformly contaminated at 1 dpm/100 cm2 . The factor therefore has dimensions of mrem /hr per dpm/100 cm2 . The total exposure time is the product of the exposure time per block and the total number of blocks.
The conversion factors for each radionuclide were computed using version 4.10 of the MicroShield point-kernel shielding program. The conversion factors are the sum of the deep dose equivalent rates computed for two geometries: a 1238.7 cm2 (192 square inch) area with a 30 cm air shield and the same geometry with a shield consisting of 10.16 cm (4 inches) of concrete and 30 cm of air. The 192 square inch area represents the sum of the areas of the 8 inch by 16 inch and the 4 inch by 16 inch faces of a block that would face the individual while handling. The other two faces are 2
also 192 in but are shielded by the body of the block. This representation assumes that the contribution from the two " ends" are an insignificant contributor to dose. For the shielded component, a shield thickness of 4 inches was chosen since this is the thickness of a block. The density used for the concrete was 2.35 g/cm'. Table 3-1 gives the conversion factors for the four radionuclides considered.
l
CY-HP-0031 Revision #: 0 Page 10 of 233 Table 3-1 Conversion Factors (mremIhr per dpm/100 cm a) Used To Calculate The Deep Dose Equivalent From The Handling Of Contaminated Blocks DDE Rates at 30 cm unshielded shielded Total Nuclide (mrem /hr) (mrem /hr) (mrem /hr)
Co-60 6.488E-08 2.212E-08 8.700E-08 Cs-137 1.643E-08 4.979E-09 2.141 E-08 Co-58 2.804E-08 8.787E-09 3.683E-08 Cs-134 4.609E-08 1.434E-08 6.043E-08 contains the MicroShield cases used to establish the conversion factors for computing the DDE from handling the blocks.
- b. Calculations of Dose from Blocks Installed at a Residential Site The deep dose equivalent from direct exposure to the installed blocks is computed based on the dose rates at one meter from area sources, where the areas used are equivalent to the exposed and unexposed block areas for each survey unit. Unlike the calculations for direct handling of the blocks, where the total activity is assumed uniformly distributed across all blocks, doses from direct exposure are calculated based on the relative fraction of the total activity associated with the survey unit of interest. ;
This is computed by applying the Relative Fractions to partition the total activity associated with the site of interest among its constituent survey units. The unit-specific TSC value is obtained by dividing the total surface area for the number of blocks into the total activity for each survey unit. The dose rate associated with the unit-specific ,
TSC value is then a function of the exposed or unexposed surface area and the relative '
proportions of the activities of the four radionuclides considered. This allows for differences in dose rates for the blocks associated with different survey units. The j relative proportions of the activities of the four radionuclides are given by the Activity Fraction. Note that these Activity Fractions differ from the Normalized Fraction. The Normalized Fractions are used to partition the total activity for a site among its survey units, whereas the Activity Fractions are used to partition the activity for a given unit among the four radionuclides.
Th9 annual deep dose equivalent to an individual exposed to contaminated blocks installed at their residence is determined by individually computing the dose associated with the exposed and unexposed surface areas of the blocks within each survey unit.
For each survey unit, a decay-weighted deep dose equivalent rate at a one meter distance is computed based on the exposed or unexposed area as described below.
This dose rate is then multiplied by the occupancy given for the survey unit (in hours per year) to get the annual dose. The annual doses for each survey unit and surface area are then summed to get the total annual dose.
i l
CY-HP-0031 Revision #: 0 Page 11 of 233 Decay-weighted dose rates are used so that radioactive decay over the course of the exposure period is correctly accounted. Otherwise, the computed annual dose equivalents would be substantially biased given the short half-life of5 8Co. The decay-weighted deep dose equivalent rate itself (for a given survey unit) is the product of the unit-specific TSC value (in dpm/100 cm2 ) and the decay-weighted deep dose equivalent i rate per unit TSC computed based on the exposed or unexposed surface area.
To compute the decay-weighted deep dose equivalent rate per unit TSC, the initial dose rates per unit TSC for the given surface area and configuration (i.e., exposed or unexposed) for each of the four radionuclides used was computed. This was done using expressions giving dose rate per unit TSC as a function of surface area that were developed for each configuration for each radionuclide. These expressions were developed by using the MicroShield program to compute dose rates at one meter from square area sources having a uniform activity distribution of 1 dpm/100 cm2 . For each j radionuclide and configuration, dose rates were computed for areas of 3,9,25,49,81, i 144,225 and 400 square feet. For the unexposed configuration,10.16 cm (four inches) of concrete shielding (density = 2.35 g/cm8) was placed between the area source and the receiver. The computed dose rates were then fit to equations describing the dose rate as a function of area for each configuration (i.e., exposed or unexposed) and radionuclide.
Figures 3-1 and 3-2 depict the dose rates her unit TSC for the four radionuclides for the ,
exposed and unexposed configurations, respectively.
i i
l
CY-HP-0031 Revision #: 0 Page 12 of 233 Figure 3-1 DDE Rate Per Unit TSC (mrem /hr per dpm/100cm2 ) As A Function Of Surface Area For Exposed Block Surfaces SMG
.m. __
400CEW
's
!g ameame . _ . _ _ _
I +2m l
~
2 50 tem _ _ - - - _
\ ~ w1u ,
h tmG ---
! 1 m, _ . _ _ _ . _
E 1m, _.
500CEa -
Om@
0 50 100 150 200 Et KO F ()0 450 Area (ni Figure 3-2 DDE Rate Per Unit TSC (mrem /hr per dpm/100cm2 ) As A Function Of Surface Area For Unexposed Block Surfaces 1000E 07 1400E& _ - .
1200EW __ - - - . _ . . - - - - - - - - - - -
1, .
1 _ _ _ _ _ _
pam i s 000E-08 .
l j u =
L-m-
! .oooE. _- ._ _
. =
.ma __ . _ _ _ . _ . - _ _ . . _ _ _ .
2 000E.08 _ _ - - -2 - - - - - - _ _ - -- _ --
0 50 100 150 200 250 300 350 400 450 Area (ft')
CY-HP-0031 j Revision #: 0 Page 13 of 233 {
l l
(
The data in Figures 3-1 and 3-2 above were fit to second order polynomial expressions l l that were tempered with an exponential growth term This mathematical formulation i does not represent physical phenomena and is only used to predict dose rates for areas between the discrete values used in the evaluation. These expressions were of the form:
2 b,sc(A) = (aA +bA +cfl-e*') 3-1 .
where b7sc(A)} = DDE rate per unit TSC as a function of area A for radionuc2de i (mrem /hr per dpm/100 cm2 ),
A = area in square feet (3 s A s 400), and '
a, b, c, d, and f = constant coefficients.
Table 3-2 gives the coefficients determined for each radionuclide and configuration.
Table 3-2 Coefficients Used in Equation 3-1 To Compute DDE As A Function Of TSC For Each Radionuclide For The Exposed And Unexposed Configurations Fit Data for Co Data for *Cs Data for Co nata for *Cs Ccefficients exposed unexposed exposed unexposed exposed unexposed exposed unexposed a -8.812E-13 -1.534E-12 -1.845E-13 -1.853E-13 -4.633E-13 -3.231 E-13 -5.830E-13 -8.179E-13 b 4.550E-09 2.239E-09 1.138E-09 4.459E-10 2.057E-09 7.912E-10 3.207E-09 1.430E-09 c 1.673E-09 6.835E-10 4 665E-10 5.795E-10 4.564E-10 5.842E-10 1.268E-09 5.456E-10 d -1.672E+01 1.828E+01 -1.799E+01 -3.534E+01 -1.439E+01 -3.534E+01 -1.731E+01 -2.283E+01 f -6.620E-01 -7.295E-01 -6.742E-01 -8.755E-01 -6.428E-01 -8.669E-01 -6.670E-01 -7.996E-01 Table 3-3 shows a comparison between the MicroShield results and the fit results for each radionuclide and configuration. As seen, the fit data agree very well with the MicroShield results. One minor exception is the agreement for the 3 ft2 area for ' 7Cs in the unexposed (shielded) configuration. However, the bias here is positive, and it only affects survey units for which the unexposed block surface area is small.
CY-HP-0031 Revision #: 0 Page 14 of 233 Table 3-3 Comparison Between DDE Per Unit TSC Values (mremIhr per dpm/100 2
cm ) As A Function Of Surface Area Between Microshield And Equation 3-1 For Each Radionuclide And Configuration "Co Exposed Surfaces "7 Cs - Exposed Surfaces 2
Area (ft ) MicroShield Fit Difference MicroShield Fit Difference 3 1.531E-08 1.531E-08 0.0% 3.878E-09 3.878E-09 0.0%
9 4.239E-08 4.169E-08 1.6% 1.074E-08 1.051E-08 -2.1 %
25 9.910E-08 9.909E-08 0.0% 2.511E-08 2.511 E-08 0.0%
49 1.601 E-07 1.601 E-07 0.0% 4.057E-08 4.065E-08 0.2%
81 2.184E-07 2.180E-07 -0.2% 5.535E-08 5.535E-08 00%
144 2.966E-07 2.960E-07 -0.2% 7.516E-08 7.509E-08 -0.1 %
225 3.638E-07 3.638E-07 0.0% 9.220E-08 9.221E-08 0.0%
400 4.562E-07 4.562E-07 0.0% 1.157E-07 1.157E-07 0.0%
"Co Exposed Surfaces *Cs - Exposed Surfaces 2
Area (ft ) MicroShield . Fit Difference MicroShield Fit Difference 3 6.617E-09 6.617E-09 0.0% 1.088E-08 1.088E-08 0.0%
9 1.832E-08 1.836E-08 0.2% 3.013E-08 2.953E-08 -2.0%
25 4 284E-08 4.321E-08 0.9% 7.044E-08 7.034E-08 -0.1%
49 6.923E-08 6.934E-08 0.2% 1.138E-07 1.138E-07 0.0%
81 9.444E-08 9.418E-08 -0.3% 1.553E-07 1.550E-07 -0.2%
144 1.282E-07 1.279E-07 -0.2% 2.108E-07 2.105E-07 -0.1 %
225 1.573E-07 1.573E-07 0.0% 2.586E-07 2.587E-07 -0.0%
400 1.973E-07 1.974E-07 0.0% 3.244E-07 3.245E-07 00%
"Co Unexposed Surfaces "'Cs Unexposed Surft.ces 2
Area (ft ) MicroShield Fit Difference MicroShield Fit Difference 3 7.384E-09 7.384 E-09 00% 1.680E-09 1.915E-09 14.0 %
9 2.020E-08 2.019E-08 -0.1% 4.551E-09 4 551E-09 0.0%
25 4.560E-CS 4.598E-08 0.8% 1.005E-08 1.020E-08 1.5%
49 7.004E-08 7.005E-08 0.0% 1.503E-08 1.517E-08 0.9%
81 8 996E-08 8.996E-08 0.0% 1.879E-08 1.879E-08 0.0%
144 1.109E-07 1.122E-07 1.2% 2.232E-08 2.231 E-08 -0.1% j 225 1.236E-07 1.265E 07 2.3% 2.416E-08 2.428E-08 05%
400 1.342E-07 1.342E-07 0.0% 2.538E-08 2.538E-08 0.0%
"Co - Unexposed Surfaces *Cs Unexposed Surfaces Area (ft') 'WilcroShield Fit Difference MicroShield Fit Difference 3 2.955E-09 2.955E-09 0.0% 4.827E-09 4.827E-09 0.0%
9 8.028E-09 7.639E-09 -4.8% 1.310E-08 1.309E-08 -0.1%
25 1.785E-08 1.786E-08 0.1% 2.909E-08 2.950E-08 1.4%
49 2.693E-08 2.708E-08 0.6% 4.381E-08 4.380E-08 0.0%
81 3.397E-08 3.397E-08 0.0% 5.515E-08 5 476E-Oe -0.7%
144 4.082E-08 4.n81 E-08 0.0% 6.612E-08 6.612E-08 0.0%
225 4.457E-08 4.479E-08 0.5% 7.205E-08 7.287E-08 1.1%
400 4.727E-08 4.727E-08 0.0% 7.627E-08 7.627E-08 0.0%
Decay-weighted dose rates are then calculated. For each radionuclide, the decay-weighted deep dose equivalent rate per unit TSC is obtained by first computing the integral dose per unit TSC (in mrem per dpm/100cm2) for a period of one year (8760 hours0.101 days <br />2.433 hours <br />0.0145 weeks <br />0.00333 months <br />) based on the initial dose rate. The initial dose rate is given by the Equation 3-1. ;
The integral deep dose equivalent for one year is therefore given by l l
(Dy.(A)). = (1 - e-" ) 3-2 i
l
)
CY-HP-0031 Revision #: 0
{"
Page 15 cf 233 1
where (D,y.(A)1 = integral deep dose equivalent for one year for radionuclide i as a function of area (mrem per dpm/100 cm2),
8760 = hours in one year, and 2, = radioactive decay constant for radionuclide i(hours').
For each radionuclide, the integral dose is then divided by 8760 hours0.101 days <br />2.433 hours <br />0.0145 weeks <br />0.00333 months <br /> to compute the decay-weighted dose rate per unit TSC for a one year period (denoted b,,7y.(A) ).
This weighting is deemed appropriate since the occupancy assumptions being used reflect averages over a one year exposure duration.
One should note that the impact of the decay-weighting of the deep dose equivalent rates per unit TSC is minor for all of the radionuclides considered other than 58Co. This is illustrated in Table 3-4, which compares the initial and decay-weighted DDE rate per unit TSC values for the exposed block surfaces for a 3 ft2 area. (The differences would be the same for any area or configuration, as they are strictly a function of the decay constant for a given radionuclide.)
Table 3-4 Comparison Between The initial And Decay-Weighted DDE Rates Per Unit TSC For A 3 ft Area in The Exposed Configuration initial Dose Rate per unit Decay-Weighted Dose TSC Rate per unit TSC %
Radionuclide (mrem /hr per dpm/100 cm 2) (mrem /hr per dpm/100 cm') Change
- Co 1.531 E-08 1.435E-08 -6.3%
'7 Cs 3.878E-09 3.834E-09 -1.1 %
58Co 6.617E-09 1.799E-09 -72.8%
Cs 1.088E-08 9.240E-09 -15.1 %
The final step in computing the decay-weighted DDE rate per unit TSC is to sum the values for each radionuclide based on their relative proportions. This is done by multiplying the decay-weighted DDE rate per unit TSC for each radionuclide by its associv* 3d activity fraction, i.e.,
b,,,y.(A),,,= b,, n,. (A) xf; 3-3 l
where f, is the activity fraction for radionuclide i.
For each survey unit and exposure configuration (i.e., exposed or unexposed),
Equation 3-3 is used to compute a DDE rate per unit TSC based on the exposed or unexposed block surface area, as appropriate. This value is then multiplied by the TSC
CY-HP-0031 Revision #: 0 Page 16 of 233 value to obtain a total decay-weighted DDE rate. For each survey unit and configuration, the annual DDE is the product of the total decay-weighted DDE rate and the given occupancy.
Attachment 2 contains the MicroShield cases used to establish DDE rates as a function of exposed and unexposed surface area for the blocks.
3.4 Ingestion Dose imm Handling Contaminated Blocks Ingestion dose resulting from handling contaminated blocks was determined by conservatively computing the fraction of the block TSC data established for a given site that could have been ingested by the individual handling the blocks. This was accomplished by establishing four parameters needed to address the various transfer mechanisms that could result in activity transferred from the surface of a block to the skin of an individual and subsequently ingested. It was assumed that the same individual handled ali of the blocks associated with a given site without wearing any gloves, and subsequently engaged in activities that could have resulted in ingestion of contamination present on the skin (e.g., eating, drinking, smoking, etc.) without credit taken for washing or other removal mechanisms prior to the ingestion taking place.
The four parameters needed to compute the fraction of the block TSC potantially ingested were a removable fraction, a transfer fraction, an area fraction and an ingestion fraction. These parameters are defined as follows:
o removable fraction = fraction of the TSC that is removable, i.e., that is not fixed to the surface e transfer fraction a fraction of the removable activity that is transferred to the skin during handling l
e area fraction a fraction of the total surface area of a block that came into contact with the bare skin of the handler e ingestion fraction a fraction of the activity transferred to the skin that is subsequentlyingested The product of these four parameters is used to compute the radionuclide fractions of l the TSC data established for a given site that are ingested by the handler. Ingestion !
dose conversion factors from Federal Guidance Report (FGR) No.11 (EPA 1988) are then used to compute the committed effective dose equivalent (CEDE) for each radionuclide. Though it is not included among the four radionuclides considered in the external dose evaluation "Sr and the applicable transuranic radionuclides are
)
l I
CY-HP-0031 Revision #: 0 Page 17 of 233 addressed in the bounding calculations performed for the ingestion pathway. (See section 4.4.2 and 4.4.4 for details)
The removable fraction was determined based on radiological measurements made on a block found at an offsite location. This particular block was notable for the fact it had been utilized beneath a deck and thus was somewhat sheltered from the environment.
It was also notable in that, unlike most of the blocks recovered, it had a significant amount of removable activity. The data taken from this block (direct frisk result and smear results) were used to establish a removable fraction to be applied to the TSC data esta'olished for a given site. (A distinction is drawn between " direct frisk" and a TSC measurement simply to distinguish the specific measurement made for the block and general TSC measurements made for any blocks at a given site. The two methods are equivalent, i.e., TSC is assigned based on the maximum direct frisk reading obtained from a given block.)
The removable fraction for the block was computed using the following information:
. The smear removal efficiency is the fraction of the removable contamination on a surface that is transferred to the smear. A value of 10% is typical for surfaces such as concrete, though values as high as 30% can be observed for smooth surfaces such as stainless steel (Klein et al.1992). Ten percent was chosen as the smear removal efficiency.
- The direct frisk efficiency chosen was also 10%.
The removable fraction f, is then:
' smear result (dpm)'
< removalefficiency j
' direct frisk result (cpm)'
( probe efficiency ,
where the smear area and direct frisk area correspond to the same physical location on the block as verified through discussions with survey personnel.
Substituting the data obtained from the block gives a value for the removable fraction of 0.15.
The transfer fraction fi. was chosen to be the same as a typical smear removal efficiency of 10%. This is considered conservative where the smear removal efficiency would be expected to be higher than the transfer fraction from handling the blocks.
The area fraction fa represents the fraction of the total surface area of a block that comes into direct contact with the skin of the person handling it. The total surface area
7-.
CY-HP-0031
, Revision #: 0 Page 18 of 233 2
of a block is 3.11 ft , or 447.84 in2. Given that the surface area covered by placing one's hand flat on a surface would nominally be 25 in 2, a conservative selection of 0.25 was made for the area fraction. This selection is felt to be appropriate given the significant conservatism associated with the fact that blocks are treated as if their entire surface area was contaminated at the maximum measured TSC value.
The ingestion fraction f, represents the fraction of the ac.tivity transferred to the skin of the person handling the blocks that is subsequently ingested through activities such as eating, drinking, smoking, etc. It was assumed that no washing or other loss mechanisms acted to reduce the amount of contamination on the skin prior to the ingestion taking place. A c hoice of 0.10 was made for the value of f, on the basis that the removal mechanisms from the skin would be similar to those for smears.
To apply the four factors discussed above, the TSC data for a given survey unit (in 2
dpm/100 cm ) are converted to activity in Becquerels (Bq) by multiplying by the total surface area of a block and converting units. The product of this activity and the four factors then gives a value of ingested activity from which a corresponding CEDE can be computed using the appropriate dose conversion factors (DCFs) from FGR 11. The ingestion DCFs from FGR 11 for the four radionuclides considered plus "Sr are given in Table 3-5. In cases where different DCFs are'provided to account for different chemical forms for a particular radionuclide, the more conservative species was assumed. in all cases, the DCFs given are for the CEDE, since the non-stochastic dose limits do not apply for members of the public. The TEDE is determined as the sum of the CEDE and the DDE which is compared against the applicable dose limits for individual members of {
the public. The factors below are in Sleverts per Becquerel (Sv/Bq), where 1 Sv = 100 l rem.
Table 3-5 FGR 11 Dose Conversion Factors Used For Computing Ingestion I Doses Radionuclide Ingestion Dose Conversion Factor (CEDE, SvlBq)
"Co (f, = 0.3) 7.28E-09
'7 Cs 1.35E-08 "Co (f, = 0.3) 9.68E-10
Cs 1.98E-08 "Sr (f, = 0.3) 3.85E-08
CY-HP-0031 i Revision #: 0 Page 19 of 233 1-3.5 Skin Dose from Handling Contaminated Blocks 10 CFli 20 does not provide a skin dose limit for members of the public since the radiological risks associated with this tissue are non-stochastic and therefore are not relevant to low exposures. However, ICRP Report 60 provides a skin dose weighting factor of.01 for the skin. This factor can be applied to the calculated skin dose resulting in the skin dose contribution to the TEDE. This assessment includes an examination of the potential skin dose (and its associated TEDE) that an individual handling the blocks may have received. This assessment was performed by establishing skin dose conversion factors for each of the four radionuclides considered and for "Sr/Y. These factors were taken from an open literature reference (Kocher and Eckerman 1987), and provided in Table 3-6 for distributed contamination. These factors were compared to the VARSKIN2 computer code and determined to be conservative in all cases.
Table 3-6 Skin Dose Conversion Factors Used To Screen Skin Dose From Handling Contaminated Blocks Skin Dose Radionuclide Conversion Factor (mradthr per dpm/100 cm 2)
"Co 1.88E-05
'87 Cs 3.04E-05 "Co 5.33E-06
- Cs 2.28E-05 "SrIY 7.04E-05 3.6 Dose from the ResidentialFarming Pathway The methodologies discussed above provide for the dose contribution from direct handling of the contaminated concrete blocks at the time of initial transfer from CY.
Additional radiation exposure may have occurred in later years as a result of radioactivity that may have leached from the blocks into the underlying and surrounding soils. This potentially contaminated soil could have supported farming activities leading to additionalingestion of radioactivity. This evaluation provides a conservative method to estimate the maximum soil concentration from the leaching process. This information is then used to calculate the maximum annual exposure assuming that several concurrent-farming activities occurred in this contaminated soil.
i l
4
CY-HP-0031 Revision #: 0 Page 20 of 233 Version 5.82 of the RESRAD computer code was used to screen dose to persons who engaged in residential farming activities. The RESRAD code was developed by the Environmental Assessment Division of the Argonne National Laboratory as a means for deriving site-specific guidelines for residual radioactivity in soil following cleanup activities. RESRAD evaluates user-provided soil radionuclide concentrations in terms of the annual average dose to individuals engaged in residential farming activities.
Residential farming is used as the basis for these assessments as this is the limiting case in terms of dose to individuals for a given land use. The RESRAD model assumes that the individuals living on the site raise both crops and livestock for family consumption. Radiation dose can be assessed for up to nine pathways. These are e
direct irradiation from contaminated soil e inhalation of resuspended dust e inhalation of radon and radon progeny
. consumption of food (crops) grown in contaminated soil e consumption of milk from livestock raised in the contaminated area e consumption of meat from livestock raised in the contaminated area e
consumption of fish raised in a nearby pond contaminated from percolation of water through the contaminated zone e
consumption of well water contaminated from percolation of water through the contaminated zone e ingestion of contaminated soil For the purpose of bounding the dose to individuals exposed to soil that became contaminated due to the presence of CY blocks, all of the above pathways were considered with the exception of the inhalation of radon and radon progeny. This pathway was omitted since there were no appreciable quantities of uranium or transuranic nuclides associated with the CY materials. The only other change made from the default RESRAD scenario was the size of the contamination zone was changed from its default value of 10,000 m2 (2.5 acres) to 2,400 m2 (0.6 acres). This smaller size was more representative of the sizes of the affected properties.
- 4. Dose Assessments for the Limiting Site Using the methodologies described above, a residential site representing the most limiting case was selected to calculate the largest dose to any member of the public from CY contaminated material. This site was selected as representing the site with the highest total activity and the most contamineted blocks. The site selected for these assessments was Site 9632.
I A. .
CY-HP-0031 Revision #: 0 Page 21 of 233 4.1 Site Description Site 9632 was a residential location having 435 blocks from the CY plant. The blocks had been used primarily as borders around gardens and flower beds. They had also been used as a driveway border and a support structure underneath the fumace in the basement of the home. Site 9632 was chosen as the location to be used for the bounding calculations because of the large number of CY blocks present and the soil contamination at this site was higher activity than for other sites. Compared with those recovered from other sites, a larger fraction of the blocks removed from Site 9632 showed measurable activity. For these reasons, Site 9632 is considered to be the limiting site in terms of the total activity that was brought there in the form of contaminated concrete blocks from the CY plant.
The characterization and remediation actions for Site 9632 were completed over two separate efforts. The first took place in November of 1997 and the second began in June of 1998, being completed in July of that year. Addressing the cleanup of a site in two separate efforts was not a normal practice. Site 9632 was handled in this manner because it was one of the sites originally assessed when the potential for offsite contamination was first identified. The initial characterization and remediation effort for Site 9632 and two other sites led to the conclusion that offsite contamination resulting from the removal of materials from the CY site was an issue, and that a formal process for the identification, characterization and remediation of these sites was in order. The subsequent, more thorough characterization and remediation effort for Site 9632 took place under the formal program for addressing offsite contamination resulting from materials removed from the CY site. This program, known as the Offsite Material Recovery Plan, was put into place following the initial characterizations performed in the Fall of 1997 (CYAPCo 1998).
The initial characterization and remediation effort made for Site 9632 resulted in the removal of blocks and soil that had the highest activity. This effort took place in November of 1997 and resulted in the removal of 59 blocks and two 55 gallon drums of soil. This effort was completed over just a few days, and thus no effort was made to define survey units or other subdivisions of the site. The subsequent, more thorough effort then resulted in the removal /remediation of the remaining blocks and soil that were contaminated above minimum detectable levels.
The subsequent characterization and remediation effort for Site 9632 began in June of 1998. In this effort, the site was divided into eight affected survey units. These survey units, designated alphabetically as A through H, were defined by logically subdividing the site based on common uses/ configurations of the blocks. Survey Units A and B contained the blocks used to border the driveway. Survey Unit C contained blocks used as a landscaping border on the west side of the front yard. Survey Unit D
_ _ I
CY-HP-0031 Revision #: 0 Page 22 of 233 contained blocks used as borders on the west side of the back yard. Survey Unit E was defined for the east side of the back yard, and contained a pile of approximately 60 blocks. Survey Unit E is notable for the fact it includes the location where the blocks were stored for a while after originally being brought to the property from CY. All of the blocks were originally placed in a large pile whsre they stayed for several months before being utilized around the property. Thus, there was soil contamination found within Survey Unit E that avas not associated with any blocks there at the time. Survey Unit F contained blocks used as flower bed borders in the rear of the property, adjacent to the house. Survey Unit G was defined for the basement of the home, as two blocks had been used there to support the furnace. There were no blocks associated with Survey Unit H. This unit was defined for the storm drain that collected runoff from the property, from Survey Units A and B in particular. The characterizations for Survey Unit H were limited to sampling the sediments in the drain.
Site 9632 also had two survey units, designated I and J, defining the unaffected outdoor and indoor areas, respectively. Table 4-1 shows the number of blocks 6ssociated with each affected survey unit. The unit designated " Initial" refers to the initial characterization and remediation effort performed in November of 1997.
Table 4-1 Number Of Blocks Removed From Site 9632 During The Two Remediation Efforts Number of Survey Unit Blocks Removed initial 59 A 94 B 25 C 33 D 94 E 59 F 69 G 2 TOTAL 435 All of the blocks removed from each survey unit were surveyed for surface contamination. Additional measurements were made for those showing measurable activity to establish the maximum count rates on both the exposed and unexposed surfaces. Note that only total activity can be established from these measurements, as no isotopic information was collected. For characterization of the soil, samples were l collected in Marinelli beakers and counted on a gamma spectroscopy system for isotopic analysis. Soil was removed until"Co could no longer be detected, using half of the minimum detectable activity (MDA) or twice its standard deviation as a criteria.
r CY-HP-0031 Revision #: 0 Page 23 of 233
- Co was used as the indicator since it is not affected by background (unlike the ' 7Cs, which is impacted by fallout from stmospheric nuclear weapons tests) and because it penetrates deeper into the soil (Velasco et al.1993, Ohnuki and Tanaka 1989).
Figure 4-1 is a map of Site 9632 showing the location of the survey units. Both the affectad (deits A through H) and unaffected (units I and J) areas are indicated.
Figure 4-1 Layout Of Site 9632 Showing Locations Of The Survey Units
.w a'.- *%"
w> ** Qh
' \ E '" k. ,^4. .;' "
,/
i D
i .- .
- C25 $C G }' J f R}
=
g, -
f' pe ~ LC~m'%
.,2 C '%
.A ~b B -
4.2 Source Term The development of a source term in support of the calculations for Site 9632 applied 1 many measurements of soil activity concentration and block surface activity. These meawrements were made during the two characterization and remediation efforts which resulted in a conservative estimate of the total 7Cs and
- Co activity removed from the site, in the case of the soil sample data, average soil concentrations for ' 7Cs and
- Co were established for each survey unit and multiplied by the corresponding mass of soil removed to obtain the total activity contained therein. Only data from characterization samples were included in these averages. No confirmatory or post- l remediation data were included to insure that the averages used reflected the activity concentrations in removed soil. In addition, no corrections were made for fallout ' 7Cs included in the soil sample results, even though this is a significant contributor to the total in many cases. Further, the average ' 7Cs concentrations were applied to the total mass of soil removed from each survey unit, even though most of the soil was removed because of its
- Co content. (As discussed above, the ' 7Cs soil contamination was typically bound at shallow depths.)
l
I CY-HP-0031 Revision #: 0 Page 24 of 233 For the block surface activity measurements, the TSC measurements made during the second characterization effort were used to establish the mean TSC for the exposed and unexposed surfaces of those blocks indicating measurable surface activity. This is described in detail in sub-section 4.2.2. For conservatism, those blocks for which no surface activity was measured were treated as if they all had surface contamination equivalent to the MDA for the TSC measurements. A weighted average was then used to establish a mean TSC value that could be applied to all of the blocks for a given survey unit. Separate averages were established for the exposed and unexposed surfaces. Note that there is significant conservatism associated with the approach taken for establishing the average TSC values used in the bounding calculations. The TSC measurement represents the maximum value for the surface of interest which is applied as an average value across the entire exposed or unexposed surface area of the block.
I TSC measurements were not made for the blocks removed during the original I characterization and remediation effort for Site 9632. Instead, smears were taken and '
counted to determine the surface contamination averaged over an area. The area .
smeared was assumed to be 100 cm2 , though in reality it was likely larger. This !
treatment is therefore conservative. For the purpose of asserting an average TSC for the blocks removed during the initial remediation effort, the maximum smear result out the 59 blocks was applied to all of the blocks. This is another source of conservatism, as the maximum, local activity is being applied over the entire surface area.
The sub-sections that follow summarize the development of the source term for Site 9632 in detail, and provide the bases for all of the input data used in the analysis.
4.2.1 Total Soil Activity for Site #9632 l
The first step in establishing the total activity contained in the soil removed from Site l 9632 was to determine the total mass of the removed soil. The total mass is estimated !
from the product of the volume of soil removed and the nominal soil density. The i volume removed was established through review of the logbook kept by the cognizant individual responsible for the characterization and cleanup of the site. Table 4-2 provides a summary of all of the soil removed from Site 9632. " Percent of Capacity" refers to the nominal soil depth compared to the container capacity. The column titled
" Theoretical Volume Removed" represents the total volume of soil of each container type prior to any correction for packing fraction. The two 55 gallon drums of soil were removed during the initial remediation performed in November of 1997. The remainder of the soil was removed during the subsequent effort completed during June and July of 1998.
CY-HP-0031 Revision #: 0 Page 25 of 233 Table 4-2 Estimated Volume Of Soil Removed From Site 9632 Estimated Number of Container Percent of Volume Container Description Containers Capacity (yd 3
) Capacity Removed (yd 3) 55 gallon drum 2 0.3 100 % 0.5
" Bonanza Box" 22 1 100 % 22 Large Rollback Dumpster 1 30 67% 20 Small Rollback Dumpster 1 20 100 % 20 Small "LSA" Box 2 3.3 75% 4.9 Small "LSA" Box 1 3.3 100 % 3.3 TOTAL 70.7 The packing fraction (defined here as the ratio between the actual and theoretical weight of a container fnr some assumed density) for the soil containers taken from Site 9632 was determined based on a measurement made to determine the weight of a
" Bonanza Box". The theoretical weight of a " Bonanza Box"(capacity = 1 yard3 ) filled with soil at a density of 1.63 g/cm is 2747.5 pounds. (The density value reflects that determined by the Yankee Environmental Laboratory for use when assaying samples from the affected residential sites.) A " Bonanza Box" weighed for the purpose of assessing compliance with vehicle loading restrictions upon return from a cleanup site was found to weigh 2,000 pounds. Dividing the actual weight by the theoretical weight then gives a packing fraction of 0.73.
1 Table 4-3 shows the breakdown of the soil removed from Site 9632 by survey unit. The l
packing fraction has been applied to the mass (in grams) and the volume in cubic feet.
Table 4-3 Breakdown Of The Soil Removed From Site 9632 By Survey Unit yd 8of soll cm8of soil mass of soll ft8 of soil removed removed mmoved (g)* removed' A 7.4 5.695E+06 6.758E+06 146.4 8 7.4 5.695E+06 6.758E+06 146.4 C 0.3 1.911E+05 2.268E+05 4.9 D 26.0 1.988E+07 2.359E+07 511.1 E 14.5 1.110E+07 1.317E+07 285.3 F 14.5 1.109E+07 1.316E+07 285.0 55 gal. Drums 0.5 4.164E+05 4.941 E+05 10.7 !
- corrected for packing fraction l
Once the total mass of soil removed from each survey unit for site 9632 had been established, the average activity concentration for each unit was determined using the results from the soil characterization measurements taken throughout the two remediation efforts. As stated previously, only sample results associated with soil actually removed were used in establishing these averages. Confirmatory and final status results were not included.
CY-HP-0031 Revision #: 0 Page 26 of 233 Soil activity results are given in terms of pCi per gram of soil for "Co and ' 7Cs.
(Results for primordial radionuclides, such as
- K,208TI,2 'Bi, etc. are also provided, but are not of interest.) The average concentration for each of these two radionuclides for each survey unit was established by summing the products of the concentration and the sample size for each result. These total activities were then divided by the total mass of the samples to establish the weighted mean for each survey unit. This is also referred to as the composite concentration. Note that this approach has little impact on the mean concentration that is ccmputed, as most of the samples collected were of the same size. This is true for both the initial and the subsequent characterizations, though the samples for the initial characterization were sent off for analysis while those for th<
subsequent characterization were counted using a field spectroscopy system. Thus, the results for the initial characterization are in terms of dry mass while those for the subsequent effort are in terms of wet mass. (In the field, most of the samples were assigned a mass of 1.6 kg, which is the product of the 1000 ml (1 liter) sample size and the assumed 1.6 g/cm density.) In either case, there is little variability in the sample size, and the composite means thus differ little from the arithmetic means. Note that the composite concentrations are multiplied by the wet soil mass (i.e., the mass determined on the basis of the wet soil density) regardless of whether they are based on wet or dry concentration data.
Table 4-4 shows the composite soil concentration data and total activities (product of composite concentration and mass removed) for Site 9632. The table includes the number of measurements used to establish the composite concentration for each survey Unit Note that the 'S7Cs data are presented as gross activity, as no corrections were made for contributions from fallout.
Table 4-4 Composite Activity Concentrations And Total Activities For"Co And
'27 Cs For Site 9632 co-60 Data cs-137 Data Number of Total Mass Total Mass Total pCI Composite Total Activity Total pCI Composite Total Activity for Survey Unit Measurements Sampled (g) Removed (g) Sampled pCLIg for SU (pCl) Sampled pCilg SU (gross pCl)
A 13 2 080E+04 6 758E+06 2.301 E +03 1 106E-O l 7 470E-01 1.4 95E +05 7.188 E +00 4 858E+01
$ B 6 9 958E+03 6 758E+06 4 488E+02 4 506E42 3 046E-01 3 070E+04 3 082E+00 2 083E+01 C 1 1262E+03 2.268E +05 4 825E+01 3 823E 02 8 671E-03 4 396E+02 3 483E-01 7 900E 02 0 53 7.962E+04 2.359E+07 4 869E+03 6115E 02 1443E+00 1501E+05 1886E+00 4 448E+01 E 27 4 320E+04 1317E+07 3 439E+03 7.960E 02 1048E+00 7 652E+04 1771E+00 2 332E+01 F 14 2.229E+04 1316E+07 9 212E+02 4132E-02 5 436E 01 2 653E+04 1 190E+00 1.565E +01 InRal 15 8.786E+03 4 941E+05 3 611E+03 4110E 01 2 031E-01 5 958E +05 6 781E+01 3 351E+01 The characterization soil sample data used to establish the resu!ts in Table 4-4 are provided in Attachment 3.
l l
I I
e CY-HP-0031 Revision #: 0 Page 27 of 233 4.2.2 Surface Activity for the Blocks Recovered from Site #9632 As discussed previously, each block removed from a site was surveyed prior to removal. If a block showed measurable activity above background, then TSC measurements were made for both the exposed and unexposed surfaces. These l measurements were made using a 15.5 cm2 pancake GM detector and a data-logging count rate meter to record the maximum gross count rate (in counts per minute) detected on the exposed and unexposed surfaces. Table 4-5 gives the parameters of interest for the TSC measurements.
Tablo 4-5 Parameters Associated With The Block TSC Measurements Probe efficiency (HP-360) = 0.068 2
Probe Area (cm ) = 15.5 Area coirection factor (for 100 cm') = 0.155 Block background (cpm) = 39 95% conf. MDA (dpm/100 cm2 ) = 3.012E+03 The area correction inctor is the ratio between the area of the probe (15.5 cm 2) and the area of interest (100 cm2 ), The MDA is computed as 2.71+4.65 3/ background 2 4-1 (probe efficiency x area correction factor) dpm/100 cm l
where the background is in counts per minute (cpm).
Table 4-6 provides a summary of all of the TSC measurements performed at Site 9632 during the second characterization and remediation effort. The TSC measurements l made in the field were given the designations " shielded" and " unshielded",
corresponding to the unexposed and exposed surfaces of the blocks, respectively. The data in Table 4-6 do not apply to blocks removed during the initial effort, as TSC ,
measurements were not made at that time. The net TSC data are computed as follows (gr ss count rate-background) 2 r y 4-2 TSC , = (probe efficiency x area correction factor) dpm/100 cm where the count rates are agein in cpm.
r CY-HP-0031 .
Revision #: 0 Page 28 of 233 Table 4-6 Summary Of TSC Measurements Made At Site 9632 During The Second Characterization And Remediation Fraction Of Total Blocks With Mean Net TSC Minimum Maxirrum No. of Number of Measureable Survey Unit (dpm/100 cm 2) C.V. Net TSC Net TSC Measurements Blocks Activity A Shielded 2.33E+04 138 % 3.61E+03 1.41E+05 18 94 19.1 %
A- Unshielded 1.84E+04 93 % 6.64E+03 5 52E+04 7 B Shielded 1.30E+05 94 % 3.01E+04 3.07E+05 5 25 20.0 %
B - Unshielded 1.44E+05 N/A 1.10E+04 2.76E+05 2 C - shielded 3.63E+04 N/A 3.17E+04 4.10E+04 2 33 6.1%
C Unshielded 1.72E+04 N/A N/A N/A 1 D Shielded 3.94E+04 98 % 6.74ti+03 1.33E+05 9 94 9.6%
D - Unshielded 1.40E+04 78 % 1.14E+03 2.81E+04 8 E Shielded 6.49E+04 N/A N/A N/A 1 59 5.1%
E Unshielded 3 94E+04 N/A 8 63E+03 9.40E+04 3 F - Shielded 2.20E+04 61 % 4.66E+03 4.51E+04 9 69 13.0 %
F - Unshielded 2.10E+04 N/A 1.42E+03 4.07E+04 4 G* N/A N/A N/A N/A 0 2 0.0%
- No TSC measurements were made for survey Unit G 376 in the table above, "C.V."is the coefficient of variation, which is the standard deviation of the data points divided by their mean. The coefficient of variations were not computed for cases where there were fewer than 5 measurements made. The data used to establish the mean net TSC values in the table above are provided in Attachrr,ent 4.
The TSC data from Table 4-6 were used to establish TSC values that could be applied to all of the blocks in a given survey unit by using the weighted average of the mean measured TSC values and the MDA. The TSC values were weighted by the number of f blocks, with separate averages being established for the exposed and unexposed j surfaces. Averaging the TSC data in this manner reflects the very conservative
{
assumption that all of the blocks for which TSC measurements were not made were uniformly contaminated at a level equivalent to the MDA for the TSC measurements.
For a given survey unit and configuration (i.e., exposed or unexposed), the weighted average TSC was computed as i
TSC,, =
JMean Net TSC x No.of Measurements)t ' x(No.of Blocks-No.of Measurements) No.of Blocks 4-3 The avercge TSC values established for each survey unit for the second characterization and remediation effort completed for Site 9632 are given in Table 4-7. i I
m CY-HP-0031 Revision #: 0 Page 29 of 233 Table 4-7 Average TSC Values To Be Applied To All Blocks Within A Given 4 Survey Unit For Site 9632 For Blocks Removed During The Second Remediation Average TSC (dpm/100 cm'i Survey Unit Exposed Unexposed A 6.894E+03 4.162E^03 B 2.836E+04 1.426E+04 C 5.032E+03 3.441 E+03 D 6.501 E+03 3.949E+03 l E 4.061E+03 4.861 E+03 F 5.493E+03 4.055E+03 1 G 3.012E+03 3.012E+03 A TSC value to be applied for blocks removed during the first remediation effort for Site 9632 was established based on using the maximum smear result from the smears taken for each of the blocks. This approach was used since it cannot be assumed that all of the contaminated blocks would have had removable contamination that would have been detected with smears, it was assumed the smears covered an area of 100 cm'; though in reality the area was !ikely larger. The smear result was converted to TSC by applying an assumed smear removal efficiency of 0.1 and an assumed removable fraction of 0.15. Seo section 3.3 for details on the basis for these values. The maximum smear result for the blocks removed from Site 9632 in November of 1997 was 337.2 dpm (beta). Assuming this value is for a 100 cm2 area and applying the removal efficiency and removable fraction given above, one obtains a TSC value of 2 22,480 dpm/100 cm . This value is applied to all 59 of the blocks removed during the initial remediation for both the exposed and unexposed surfaces. The TSC data daveloped above are applied to the exposed and unexposed surface areas for the blocks associated with each survey unit. The exposed areas established for each survey unit are summarized in Tab!e 4-8. The corresponding unexposed area is computed by subtrecting the exposed area from 3.11 ft2, the total surface area for a block. The exposed areas were selected based on how the blocks were typically utilized at the residence. However, no credit was taken for self-shielding, which is a significant conservatism in cases where blocks were stacked on top of one another. Table 4-8 Exposed Areas And Bases For The Blocks in Each Survey Unit For Site 9632 Survey Exposed Area Basis Unit per Block (ft 2) A 2.22 5 sides exposed, one 8" x 16" side unexposed B 2.22 5 sides exposed, one 8" x 16" side unexposed C 1.33 one 8" x 16" side and one 4" x 16" side exposed D 1.555 half of the surface exposed E 2.22 5 sides exposed, one 8" x 16" side unexposed
CY-HP-0031 Revision #: 0 Page 30 of 233 Survey Exposed Area Basis Unit per Block (ft') F 1.33 one 8" x 16" side and one 4" x 16" side exposed G 2.22 5 sides exposed, one 8" x 16" side unexposed Initial . 2.22 5 sides exposed, one 8" x 16" side unexposed 4.2.3 Radiological Conditions at Site #9632 for the initial Period Sub-sections 4.2,1 and 4.2.2 above summarize the approach used to conservatively establish the total activity associated with Site 9632 at the time of the characterization and remediation activities recently completed. The total activities associated with the soil and blocks removed from the site are summed for each survey unit to obtain the total activity for the site and the distribution of this acti.vity among the defined survey units. This information is then used to back-correct these total activities to obtain the activities at the time the blocks were first brou~ght to the residence (initial period). Interviews with the homeowner of Site 9632 revealed that he could not recall when the blocks had first been brought to the residence. However, plant records suggest that these blocks were removed in October of 1975. It was therefore assumed the materials were brought there in 1975, which is consistent with the time when the blocks were first made available to the CY staff. Two additional considerations are applied prior to back-correcting 1) the inclusion of other short-lived radionuclides that would have been present initially and subsequently decayed to non-detectable levels; and 2) the conversion of the gross measurements of the TSC data to the relative proportions of"Co and "7Cs.
- a. Inclusion of Short-Lived Radionuclides The radionuclides other than "Co and "7Cs were included using historical records from the CY facility pertaining to the types of materials that were stored in the area shielded by the blocks while they were in use at the plant and the radionuclide distribution associated with these materials. This review included interviews with staff of the CY Site Characterization group, which was responsible for the Historical Site Assessment (HSA). It was during the process of performing the HSA that the issue of the contaminated blocks being released from the site was initially identified.
Most of the activity contained in the storage area shielded by the blocks was in the form of spent resin from early in the plant's operating history. This material contained higher levels of activated corrosion products than is normal for more mature PWRs because of corrosion that occurred in the reactor coolant system during the plant's first fuel cycles (ATCOR 1970, CYAPCo 1969, Lehr 1969). There were materials contained in the temporary storage area where the concrete blocks were used that would have had a radionuclide mix more representative of that seen for a typical PWR. However, to ensure additional conservatism, a mix was selected that was very high in "Co relative m
r CY-HP-0031 Revision #: 0 Page 31 of 233 to these typicallevels. The ratio selecW.J was 10:1 for58Co to
- Co. This insured that the bounding calculations adequately considered the resins containing the unusuaSy high activities of activated corrosion products from the early fuel cycles. In addition, the high level of 58Co was used to insure that other short-lived activated corrosion products (the activities for which are normally low relative to that for
- Co) were sufficiently accounted. For added assurance, a high ratio of *Cs (relative to "7Cs) was also chosen. A ratio of unity was used, which is significantly higher than that seen for normal PWR waste streams. Thus, both short-lived radionuclides (half-lives of a few months) and longer-lived radionuclides (half-lives of a few years) other than5 'Co and
*Cs are indirectly included. The transuranic radionuclides are also included as discussed in 4.4.4.
- b. Radionuclide Partitioning for the Gross TSC Measurements A partitioning fraction must also be established for the TSC data so the relative contributions to the TSC from
- Co and ' 7Cs can be established. Note that in this case, the partitioning refers to the ratio at the time of characterization and not at the time the blocks were first brought to the site. (The 58Co and *Cs fractions discussed above are for the time the blocks were first removed from CY.)
The soil characterization data for Site 9632 shows that the proportion of ' 7Cs activity to the total over all of the survey units averages 96.5%. Though the soil characterization data include any contributionc. from fallout, given the significant time that the blocks were in the environment prior to the characterization measurements be:ng made, it is assumed that the presence of the fallout '87Cs has affected the blocks in a similar manner. A '87Cs fraction of 0.95 was therefore selected to proportion the TSC data. This fraction is significantly lower than the '27Cs to
- Co ratio implied by radiochemical analyses results for the concrete pad that was originally enclosed by the blocks. These analyses showed a '*7Cs to
- Co ratio that was greater than 0.9995 or 2000 to 1 (see Attachment 9). The fraction of 0.95 is therefore conservative relative to this result, since
- Co is the dominant contributor to dose from the blocks.
4.3 Material Configurations and Occupancies i The blocks brought to Site 9632 are known to have first been stored in a large pile pnor j to being utilized around the property. However, this dose assessment treats the blocks ' as if they were installed in their "as-found" configurations from the time they were first placed at the site. This is a conservative choice since the blocks were stored in the large pile over the winter. Thus, the effects of self-shielding coupled with low occupancy would result in doses that would be much lower than those obtained using the subsequent material configwations. The occupancy factors used for the direct exposure pathway to the blocks found at Site 9632 were based on interviews with the residents. These individuals are avid gardeners, and this fact is represented in the i
CY-HP-0031 Revision #: 0 Page 32 of 233 occupancy values established for each survey unit. Note thct the occupancy values are applied as if the exposed individual spent this time in close proximity (at a distance of one meter) to the blocks. l l The family residing at Site 9632 consists of a husband and wife and their three adult children. These individuals have been the only occupants since the CY blocks were placed at the site. Only one of the children currently lives at the residence. The homeowners asserted they spent an average of 7 months per year in their yard, with the husband, wife and children being there 10 hours per week, five hours per week and 2.5 hours per week, respectively. For the purpose of the screening-level dose assessment, an occupancy of 10 hours per week was used. For Survey Units A through F, this time was divided evenly across the six areas. This results in an occupancy time of 0.238 hours per day. Since the " Initial" survey unit could have included blocks from anywhere on the site (i.e., from any and all of the survey units), the 10 hour per week value (i.e.,1.429 hours per day) was applied directly. For Survey Unit G (the basement of the home), an occupancy of 0.286 hours per day was chosen, the equivalent of 2 hours per week. The residency values used were 213 days per year (the equivalent of 7 months per year) for all of the outdoor areas and 365 days per year for the indoor area. The product of the occupancy (in hours per day) and residency (in days per year) gives the total hours an individual spends in a given area over the l course of a year. Survey Unit H (the storm drain) was not included in the analysis, as l no activity was found there and any occupancy would have been small. In addition to the occupancies established for the survey units defined for Site 9632, handling times for the blocks are needed to determine the deep dose equivalent and skin dose from handling the blocks. In the case of the deep dose equivalent, a handling time per block represents the time the handler spent in closc proximity (30 cm) to each block. Different handling times were defined for the initialloMing and unloading of the blocks when they were first brought to the residence from CY and for the subsequent handling that occurred as the blocks were used. For the initial handling of the blocks, a handling time of two minutes per block was chosen. Two minutes per block times a total of 435 blockt gives a total time of 14.5 hours that the user was assumed to be holding the blocks at a distance of 30 cm. For the subsequent handling of the blocks that would have occurred as they were being utilized around the property, a handling ! time of five minutes per block was used, giving a total exposure time of 36.25 hours with the blocks at 30 cm. For the purpose of computing the skin dose, a contact time is used rather than a handling time to reflect the fact the skin of the handler would have been in direct contact with the blocks for a shorter duration than the handling time. A contact time of 2 minutes per block was chosen for both the initial and subsequent handling. I 1
CY-HP-0031 Revision #: 0 Page 33 of 233 1 4.4 Dose Assessment Results 4.4.1 Direct Exposure to Contaminated Blocks Figures 4-2 through 4-4 below show the initial assumptions (shaded data) and activity calculations for Site 9632. As seen in Figure 4-4, the total activity for this site is conservatively established as 2.3 mci. Figure 4-2 Initial Assumptions su t ivtN unLauvM NUMDtM l ULJ4 ] 3IIL UtswMW uvN ( A3 POUNU) { Tolai Number of Block 5 FehnTon Bite 4JD Block Total Surf ace Area (ft'); 3 11 seach ten) hou pensary (g/cci; lia Tsar Mater 6alErought to site iW/o Characterization pate lif)5 Time Liapsea Prior no Assay (years) 23 taposau nioca unexposea t ea-a-a womammaica vontammatou Survey Unit Number of Blocks Area Block Area Salt Area Soll Depth Soll Volume Occupancy Residency (ft') (ft') (ft') (ft) (ft') (nours/ day) (days / year) A M4 .. 4WO / 53 7 140.4 : . 1,U 146 4 U 2JU 4TJ 5 43 05.3 22 J 140 7 - 1.U 14b 4 U.ZJ5 41J V. JJ 43 W b5 / 4W l .U 49 U 4JU dlJ U Vd . 1452 146 2 011.1 10- bil l U ZJG 213 t LW 1 J 1.0 52.0 45L 3 1U 255 3 U.4JC ZlJ F CW W10 - 122 5 253.U 1U 255 0 U 4JD - ZlJ V 4 44 15 U L, U.U . UU U.4Db JUL IrML8i DW T J1.U . L2 D 1U 1 1.lJ 10 I 144W dlJ Total 4J5 51Z.4 540.4 1353.B 1353.5
CY-HP 0031 RcWsion #: C Page 34 of 233 Figure 4-3 Activity Assessments in 1998 ELOCK AND ECIL GONT AMIN ATION MEASUREMENT RESULT 5 l j c1pD5e9 DurTace5 UT D3DcR8 Uneapotag purTace5 DI DIDcM5 60 0U con narTyle Me5ulI5 b 5- 3 J E D OH Da mple M e Bull 5 j mean me an Survey 8Jnet Mean TSC Total Activity Mean TSC Total Activity Concentrabon Total Activety Concentration Total Activity i (dpnW100 cm') (pGi) (dpriv 100 cm') (pGs) (pGisg) (pGi) (pGug) (pGi) A b.uv4 bU 4.104 1b u 11 U/ I lv 46 6 U Mtl.JtKJ G5 14.40W 13 U U'a UJ J UU i'U 5 L b.U32 UW J.441 y5 U V4 UU U JD U1 IJ 6.DUl 4U 3 94V 24 U.Ub 14 1 t!W 44 5 L 4.Ub 1 22 4.tR21 11 U Ut3 1U 1 (( Z3 3 F L,4WJ 21 4 U5D 21 U.U4 05 11W 15 7 U .JA14 UI 3.012 UU U UU UU U.UU UU !!r uld 44.4 0U li J 44.4 0V 4b U.41 02 bl.01 JJ b l F
>IUMH J4.4 14.4 4. J 100.4 ENNan Q lu.UDD B.491 U.UI 4.W1 T6Tas unoca Acuvityle ba; 40.4 i cias no61 L;o40 uuvaty (pu) 4.3 i
Averat@31ock Activit y (dpnV100 cnr) 5.546 Total Soil Gs-137 Activity (pGi) 105.4 { i olai Acuvity As E5Eiatea vvitn tacn turvey Unit: i swDrmaligsu Survey Unit Total Activity (pCa Fraction + l
- w. x.,a 2.1 i'W U 1 s"4 0 1W 1h U L2 3 24 %
L 6, e sia P ZD 4 W% Ki D1 U% Iruttal 5. G 21 % i t 3U3AL ZSJ 1 11'4 i
o CY-HP-0031 Revision #: O Page 35 of 233 Figure 4-4 Site Activity Assessmentin 1975 SITE RADIOACTMTV INVENTORY come ano cs 134 mcuvay rracuans vvnen merenal Len UT: (co 05 se retalwe 10 co+U. Us-134 m relate to 06-1J/) Acuvsyreacuon Co-LU 1U Cs 134 1 Decay correctea plock Acuvity: uscay Acuvity Fraccan (at Corrected characterizaHon) Nuclide Acevity Decay Period HaN Hfe Activity (pui) (years; (years) (pus) LocU - U va . 24 23U D ili 4w 5 US- 1 JI U Ub et; U 23 U JU ll (5 U C045 N/A NA NA Q 194 4WI O Gs-134 N/A NiA N/A 2 Ub2 /5 U Total tus.a vocay correctea 30:1 Activity: voNEL13a Nuclide Activity Decay Portod HaN ilfo Activity (put) (years) (years) (pyt) Lotu 4a 23 U t all nu 4 Us-14I leib 4 23 U JU 17 31b 2 C045 N/A N. A U 194 554 1 Co-134 N/A N. A 2 Uti2 316.2 Total 15U4.3 Total Decay correcte i acuvity; tl co+U 1 Co-w 394 2 Lo-b5 T Jul I C& 134 394 2 Total 2JUe.Z inmal stock surface J clavity; vorreciso a osai neoca Corrected Activity Activity Surface Area Average TSC L4Ci) (dpm) (cns') (dpnV100 cnt) C9+U 13132 3Ub7L+05 12bb 55d 2 441L*U4 GS-1J/ JW42 5(bOL+05 12':155d
. b E4L+04 Go45 1 JUl . ( J Ut iL+UW 12bb tiJW 2 441L +US US-134 Js4 2 57bCL+05 12b6.53W ti WtdL+04 Total 2 3U5.3 5.124L +U9 4.UI Tt +D8 Figure 4-5 shows the results for all of the external dose (DDE) calculations. The deep dose equivalent determined for the first (limiting) year the CY materials were located at Site 9632 was 28 mrem. This assessment assumes, among other things, that the same individual loaded, unloaded and installed all of the blocks used at the site and was the individual that had the highest occupancy. These assumptions are in addition to the many conservative assumptions used in the development of the source term and the calculation of external dose. These include: . that no credit is taken for self-shielding, despite the fact many of the blocks were in various stacked configurations; e that the soil concentration data are applied as if all of the soil removed from a given survey unit was uniformly contaminated at that concentration with both
- Co and ' 7Cs (most of the soil would not have contained '57Cs from CY due to the presence of Cs-137 in fallout);
e that the soil concentration data for '37Cs are not corrected for the contribution from fallout despite the fact this is known to be a significant contributor;
CY-HP-0031 Revision #: 0 Page 36 of 233 e that the TSC data, which are maximum values, are applied as averages over the entire exposed or unexposed surface area of the blocks; e that blocks for which no surface contamination was measured were still treated as if they had contamination at a level equal to the MDA for the TSC measurements. Figure 4-5 External Dose Assessment DDREFROKDRTIAE'WANDONGWUAD3TCTANDUNEDAD ATRESIDENTIACIDCAHUN) [ conversion racier l Averace TSC Act6vity Fraction g 30 cm DDE Rate Esposure Time Total Exposure Tim i Annual DDE ti.. . . .. per (dpmt100 cm2) dpm/100 cm2) (mromeir) (hrs / block) (hrs) (mrem) 70-60 24 4Jb 5 W9% 5 /UUL@ 2 12L {3 U UJJ 14 bu O UJ 18-137 09621 17 08 % 2141 E G 149E C3 0 033 14 50 0 02 3 & 55 244 059 bW 50% 3 b53L @ 5 Wat 43 0 033 14 50 0 13 38-134 69621 17 06 % 6 043E@ 4 2G3 D D33 14 bD D Db rotal 407,(UI 074 mat rnum avascwve.n s nanuunu.u ncaiutn nat LLummun conversion ractor Average TSC Actiview h 7. an @ 30 cm DDE Rate Esposure Time Total Exposure Tim i Annual DDE (mrenvrw per (dpmt100 cm2) dpm/100 cm2) (mrom/hr) (hrs / block) (tws) (mrom) lo4iG 24 400 5 99% 5700E @ 212E 43 0 UB3 3525 0 05 JS-13I UW b21 17U5% 2 141 L @ 14bt 4J U U53 36 25 U Ub D&E6 24405W 5966% 3 583E@ 599543 D 053 36 25 0 3T 34-134 bd b21 11 U5% 6 04JL @ 4 ZitOJ U U53 Jb 23 U 15 IoIel 407 IUT U.51 wat rnum votia t-..-. .= m nc asus = nmL Lu.m irun taposed mock Mace contamination I m.,......__ Exposed Block DDE Rate at 1 m poi Decay Weighted Survey Unit initial Mean TSC Area UnstTSC DDE Rate at 1 m Occupancy Residency Annual DDE imremmr per (dpm/100 cnh (ft') dpm/100 ern) (mrom/hr) (hrsiday) (days / year) (mramtyear) A__ 445.167 205 7 ? b5;L @ 4 soE c2 0 238 213 2 in B 861 827 65 5 4 7.'E-Ob 4 07E 42 0 238 213 2 07 C 41(52 43 9 409.,5-06 16WE 43 0 238 213 0 09 D 412 521 146 2 5124 @ 3 35E C2 0 235 213 1 TD E 347 B'Ii 1310 7 651EG 2 67E C2 0 238 213 1 35 F 21 hi 1 WU B15 6 471E@ 140E 02 U 235 213 0 71 G 2W G75 44 J 949E-09 1 73E @4 0286 E O 02 k ubdi b43 bb4 13; O 7 6W1E @ 4B3E42 3 429 213 14 b5 Totas Za.ic uneaposed noch zurface contaminaticii vocay vroegmeu uneaposed Bloci DDE Rate at 1 m pcr Decay Wolghted Survey Unit imbal Mean TSC Ares Unit TSC DDE Rate at 1 m Occupancy Residency Annual Exposure p.,. .. pn (dpmt100 cnh (ft') dpmt100 cnh (mrom/hr) (hralday) (dayalyear) (mromfyear) A 448 lbi BJ I 165GL @ 7 JJ 03 0 235 213 U 37 U Obl C2/ 22 3 i UGL @ b 204 {3 U 235 21J U 34 G 41.d L2 bu l 141 LL @ b W1L 44 0 235 213 0 U3 U a T 4 521 145 2 1 '45St @ 5 ZUL 03 U 235 213 U 42 L 34 7 thA) L2 D 1 34UL @ 4 (AaL C3 U i35 21J U 24 F 21W l dV 122 5 1 50i t. @ 414043 U 235 413 U 21 U ZW U/ 5 15 W tw/L-lO 2 (VL-UD U 2tb ;L5 0 00 khhal b4U Db4 L2 b 1 34UL @ 5 LUL 4J 142W 21J 2 bl l otal 4,22 IVImL ult.F" UvDE EWUIVmLc.n 5 l 1 ivimL uve run rmsi 1 tan imrem; = Zu.i i
CY-HP-0031 Revision #: 0 Page 37 of 233 ) Examination of the external dose calculation for exposure to contaminated blocks (see Figure 4-5) shows that the dose from handling of the blocks is small relative to that from direct exposure to the blocks once they are " installed" around the property. This is due to the comuination of the higher dose rates due to the assumption or area sources (with no credit taken for self-shielding) and the longer exposure duration. { The deep dose equivalent calculated in this analysis is very dependent on the
- Co fraction for the TSC data and the exposed surface area of the blocks. The external dose is relatively insensitive to the 58Co fractit ' and the block handling times. As an example, if the
- Co fraction is increased to 0.3, u.a calculated dose increases from 28 mrem to 51 mrem. A
- Co fraction this high is unrealistic, however, and is not '
supported by the limited number of gamma spectroscopy measurements that were made for some of the blocks recovered from Site 9632. These results showed
- Co I fractions that were quite similar to those seen in the soil characterization data, suggesting that 7Cs from fallout impacts the blocks and the soilin a similar fashion.
Thus, a larger
- Co fraction cannot be justified unless the ' 7Cs data are corrected for the contribution from fallout.
4.4.2 Ingestion Dose and TEDE To compute the TEDE, the deep dose equivalent computed in the previous section must be added to the bounding ingestion dose for the same individual. The bounding calculation for the ingestion dose is illustrated in Table 4-9 below. The total activities from Figure 4-4 are used with S Sr added to account for radionuclides that are not of consequence for external dose but do contribute to internal dose. A quantity of
- Sr equal to 50% of the ' 7Cs activity ingested was used. This fraction is quite conservative given that fallout 7Cs is incluc ed in the source term and the fact that the levels of 8 Sr seen in PWR waste streams are typically small relative to the 7Cs content. To further strengthen this point, radiochemical analyses performed on samples of the concrete .
pad that had been enclosed by the blocks showed the ratio of 8 Srto'7Cs to be approximately 1 part in 6000 (see Attachment 9). As seen in Tab!c 4-9 below, the CEDE from this calculation is 32 mrem. Adding this result to the DDE value from the previous section (28 mrem) results in a TEDE of 60 mrem, significantly less than the 10 CFR 20 limit of 100 mrem. This results is considered the highest reasonable dose that an individual may have received considering the various conservative assumptions made in calculating both the ingestion dose and external dose. l l l J
CY-HP-0031 Revision #: 0 Page 38 of 233 Tab!e 4-9 Calculation For The Ingestion CEDE For The Individual Handling The Blocks For Site 9632 total"Co for arte = 138.2 pc total *Cs activity for arte = 394 2 903 total"Co activity for sne
- 1381.7 pCl total *Cs activity for sne = 394 2 po removable "Co activity a 20.7 WO removable *Cs activity = 591 pG removnbie "Co acthnty a 207.3 pCi removable *Cs schwity
- 59.1 pCl assumed ares fraction (fraction of bloc
- area contacted by skin)
- 25%
assumed transfer fracten (removable to skin)
- 10%
assumed ingesteon fraction (skin to ingeshon) = 10% i "Co activity ingested
- 0.1 pCi "Cs activity ingested a 01pQ t "Co activity ingested = 0 5 pCl
*Cs activ61yingested = 0.1 pCi "Sr activity ingested . 0.1 pCl (* 50% of *Cs activity)
FGR 11 ingeshon dose factor for "Co a 7.28E-09 Sv6q (for f, = 0.3) FGR 11 Ingestion dose factor for *Cs
- 1.35E-08 Sv6q FGR 11 Ingeshon dose factor for "Co a 9 68E-10 SvSq (for f, m 0.3)
FGR 11 ingeshon dose factor for *Cs = 198E-08 SvSq FGR 11 mgeshon dose factor for "Sr = 3 85E-08 SvSq (for f,
- O 3) 50 year CEDE for"Co
- 140E 03 rem 50 year CEDE for *Cs a 7.38E.03 rem 50 year CEDE for "Co = 1.86E-03 rem 50 year CEDE for *Cs = 1.08E42 rem 50 year CEDE for "Sr = 1.05E42 rem Total CEDE = 3.20E 02 rem 4.4.3 Skin Dose Contribution to TEDE The calculation for the skin dose contribution to TEDE for the source term established for Site 9632 is illustrated in Table 4-10 below. This calculation assumes a total contact time of four minutes per block with no protection applied for wearing gloves. The dose conversion factors and skin dose weighting factor are discussed in section 3.5. As indicated in Table 4-10, the skin dose contribution to TEDE is 2.3 mrem. This value results in a small increase to the TEDE for handling of the blocks. Therefore, when this value is added to the TEDE from direct gamma exposure and ingestion from handling the blocks, a total TEDE of 62.3 mrem results.
Table 4-10 Skin Dose For The Individual Handling The Blocks For Site 9632 SDCF Nuclide TSC(dpm/100cm') (mradIhr per Dose TEDE dpm/100cm 2) (mrad) (mrem) Co-60 2.44E+04 1.88E-05 13.3 .133 Cs-137 6.96E+04 3.04E-05 61.4 .614 Co-58 2.44E+05 5.33E-06 37.7 .377 Cs-137 6.96E+04 2.28E-05 46.1 .4S1 Sr/Y-90 3.48E+04 7.04E-05 71.1 .711 Total 2.3
CY-HP-0031 Revision #: 0 Page 39 of 233 l 1 4.4.4 Assessment for Transuranic Radionuclides l Very low levels of transuranic (TRU) activity were identified in a lab analysis performed on a block recovered from Site 9621 (see Attachment 7). These results showed trace amounts of 24'Am and 243.2"Cm, though curiously, no isotopes of plutonium were ; identified. (One would expect to see 2Pu in a power reactor waste stream if there was a detectable amount of 2Am present.) TRU activity was also noted in the analyses performed on a sample of concrete taken from the pad that had been enclosed by the blocks. These analyses indicated the presence of 2Pu at a concentration of 6.2 pCi/g i (see Attachment 9). However, no other TRU nuclides were identified as having been present in levels in excess of the detection limits. The fact that no2 Am or other l isotopes of plutonium were found in excess of the lab's asserted detection limits is indicative of the s all amount of 2' r'u that was present. The activities of the TRUs were determined using the ratio of the2 Pu activity to that for'7Cs (which was also identified in the lab result) from the analysis of the concrete i sample for a time 24 years prior to the analysis date. The concrete sample data were l used instead of those for the block because the results for the concrete sample give a higher proportion of TRU to ' 7Cs. Though they did not show up in the analysis, ; isotopes of plutonium, americium and curium were also considered in the assessment, ' as these nuclides would be expected to be present along with the 24'Pu. To account for these additional nuclides, activity ratios for an end-of-cycle PWR fuel bundle (Hermann et al.1995) were used to establish ratios between these nuclides and 24'Pu. Thus, the ratio of 2Pu to '87Cs from the concrete sample analysis results was used to establish I the amount of 24'Pu on the blocks for the purpose of this bounding calculation. The ratios from the end-of-cycle PWR fuel were then used to establish the activities for the other TRU nuclides. The end-of-cycle data used were for a sample of irradiated fuel ; taken from a bundle discharged after four cycles at the Calvert Cliffs station. The { burnup of the fuel sample was 44.34 GWd/MTU. The activity measurements were 4 made following a decay period of approximately five years. This period was deemed l consistent with the decay period for radioactive material that would have been present on the blocks at the time they left the CY site. The ratios used to compute the TRU activities relative to '37Cs are given in Table 4-11. The ingestion dose (in terms of CEDE) was then computed using conversion factors from FGR .11 (EPA 1988). These conversion factors are provided in Table 4-12. i I
4 CY-HP-0031 Revision #: 0 3 Page 40 of 233 ( Table 4-11 Ratios Used To Compute TRU Activities Relative To '37Cs ratio of 241Pu to '37Cs= 1.583E-03 ratio of237Np to24'Pu = 3.140E-06 ratio of23sPu to 241 Pu = 4.382E-02 ratio of239Pu to24tPu = 2.570E-03 24 ratio of Pu to 24'Pu = 5.488E-03 ratio of242 Pu to241 Pu = 3.143E-05 ratio of241Am to 241 Pu = 1.247E-02 . ratio of 243/244Cm to 241Pu = 6.092E-02 f ratio of24'Am to ' 7Cs (23 years prior) = 7.322E-06 I ratio of243r2"Cm to '87Cs (23 years prior) = 1.157E-05 242 ratio of Am to 24'Am (EOC) = 1.182E+03 243 24t ratio of Am to Am (EOC) = 3.500E-02 2 ratio of ' Cm to 243r2"Cm (EOC) = 8.410E-03 j ratio of 242 Cm to2"Cm (EOC) = 1.465E+00 ) I 239 24t ratio of Pu to Am (EOC) = 2.700E+00 ratio of23sPu to 239 Pu (EOC) = 7.689E+00 ratio of 2' Pu to 239 Pu (EOC) = 1.640E+00 2 ratio of Pu to 'Pu (EOC) = 3.691 E+02 239 ratio of 'd2Pu to Pu (EOC) = 6.272E-03 j Table 4-12 FGR 11 Dose Conversion Factors Used For Computing ingestion Doses From TRU Radionuclides Radionuclide Ingestion Dose Conversion Factor ' (CEDE, Sv/Bq) 23sPu 8.65E-07 23sPu 9.56E-07 2'Pu 9.56E-07 2Pu 1.85E-08 242 Pu 9.08E-07 24'Am 9.84E-07 1 243 Cm 6.79E-07 l l l T
CY-HP-0031 Revision #: 0 Page 41 of 233 Using the source term established for Site 9632 (i.e.,394 pCi of 7Cs) and the ratios from Table 4-11, the ingested activities for the TRUs are calculated as provided in Table 4-13. Table 4-13 Ingested TRU Activities 237 Np activity ingested = 7.346E-10 pCi 23sPu activity ingested = 1.025E-05 pCi 239 Pu activity ingested = 6.014E-07 pCi 24 Pu activity ingested = 1.284E-06 pCi , 241 Pu activity ingested = 2.340E-04 pCi 242 { Pu activity ingested = 7.353E-09 pCi 2Am activity ingested = 2.918E-06 pCi 24sa"Cm activity ingested = 1.426E-05 pCi 24'Am activity ingested = 1.082E-06 pCi 242 Am activity ingested = 1.279E-03 pCi 24 sam activity ingested = 3.788E-08 pCi 242 Cm activityingested = 2.485E-06 pCi
'8 Cm activity ingested = 1.438E-08 pCi 244 Cm activityingested = 1.696E-06 pCi 23sPu activity ingested = 2.247E-05 pCi 2 'Pu activity ingested = 2.922E-06 pCi 2' Pu activity ingested = 4.793E-06 pCi 2Pu activity ingested = 1.079E-03 pCi 242 Pu activityingested = 1.833E-08 pCi Applying the dose conversion factors from Table 4-12 results in a CEDE of 0.1 mrem, l which is clearly negligible relative to the value given in section 4.4.2 above (32 mrem) l for the fission and light activation product radionuclides. (The dose conversion factor i for 2' Cm was used to assign dose for both 2' Cm and2 "Cm.)
4.4.5 Results for Residential Farming Before the residential farming scenario from the RESRAD program could be applied, the time period representing the highest soil concentration was needed. This evaluation assumes that the homeowners engaged in light farming activities during this time period. To determine this time period, the leaching rate of contamination from the blocks to the soil is needed. A fast leaching rate (relative to the radiological half-lives of the dominant radionuclides) would mean cause the soil activity to reach its maximum prior to the site characterization process. For this condition, a method to calculate the maximum soil concentration is needed as input to the RESRAD analysis. A slower rate would mean the soil concentration would not have reached its maximum at the time of characterization, and thus the characterization data (which define the condition just
CY-HP-0031 Revision #: 0 Page 42 of 233 prior to remediation) would represent the highest values. This evaluation provides the method for determining the contamination leach rate from the blocks to the soil. Leaching rates can be estimated using the source term data for Site 9632 by computing the effective half-life using the initial activity on the blocks (for 7Cs and
- Co) and the the weighted average of the soil concentration data from the characterization effort. !
This approach reasonably assumes that the observed soil radioactivity is a result of the leaching process described by exponential behavior. The half-life for the leaching process can then be found by applying the expression for the effective half-life, i.e., T,a x T,,,,c, T 4 = T oa + T,,,, where the radiological half-life (T,a) and the effective half-life (T,y) are known; and solving for the leaching half-life (T,,,3). Doing so yields
= (T ,XT,, )
T,,,,, 4-5 T,a - T,, For each nuclide, the effective half-life is found using the as found data for the soil and the blocks given in Figures 4-3 and 4-4. For
- Co, these as found activities are 4.3 pCi and 2.4 pCi for the soil and blocks, respectively. Summing these gives a total for the site at the time of characterization of 6.7 pCi, which corrects to 137.9 pCi for the time at which the materials were first brought to the site 23 years prior. Assuming that the only loss mechanism for the activity during this 23 year interval was radioactive decay,137.9 pCi then represents the total activity on the blocks at the time they were introduced.
The effective half-life for the
- Co activity on the blocks can then be found by solving the equation 23 yess
?"'
A,4,,a,,,u = A.,sna,e 4-6 for T,g , where A.33u, is the initial activity on the blocks and A,,,,a,,,u is the as found activity, or,
-231n(2) g Trg = r 3 asf< mod.bknb
( ..bhds j where T,, is expressed in years.
p CY-HP-0031 Revision #: 0 Page 43 of 233 Substituting the values of 2.4 pCi for the as found activity and 137.9 pCi for the initial + activity into Equation 4-7, one finds that the effective half-life for an exponential loss of
- Co activity from the blocks is 3.9 years. 1 Referring to Figures 4-3 and 4-4, one finds the as found 7Cs activities to be 186.4 pCi and 46.0 pCi, respectively. Summing these values and correcting for 23 years of decay yields an initial activity of 394.2 pCl. Making the appropriate substitutions into Equation 4-7 then gives an effective half-life for the loss of ' 7Cs from the blocks of 7.4 years.
Substituting the effective half-life found for
- Co (3.9 years) into Equation 4-5, a teaching half-life of 15.0 years is obtained. If the effective half-life determined for 7 Cs (7.4 years) is used, a leaching half-life of 9.8 years is found. The reason (s) for the difference in these leaching rates cannot be determined with certainty. However, the the faster leaching rate for 527Cs compared to
- Co data is consistent with the degree of conservatism in the '87Cs soil data. For this nuclide, the soil data is more conservative than the block data. Therefore, in this case, the effective half-life (and thus the leaching half-life) estimated using these data will be too low (i.e., the rate at which activity is transferred from the blocks to the soil will be overstated). The reverse is also true. The transfer rate will be understated if there is greater conservatism in the block data than for the soil data. One should note that these observations are based upon an assumption that the leaching rates from the blocks to the soil are not markedly different between ' 7Cs and
- Co for the physical and chemical forms that were initially present on the blocks.
If the above estimations are indeed indicative of the true leaching rate (s), then the soil characterization data can be considered limiting since the maximum concentration for
'87 Cs would have been reached. However, if these values are too high (i.e., the actual leaching rates were faster), the characterization data would be lower than the concentration in prior years. This is illustrated in Figure 4-6, which shows the 7Cs concentration in soil for leaching half-lives of 1, 5,10 and 15 years for an initial activity on the blocks of 394.2 pCi. The soil concentration profile as a function of time provided in Figure 4-6 are determined using the following expression.
A,,,(t) = A ,,,Me-O - c-**h 4-8 The product of the first exponential term in Equation 4-8 and the initial activity gives the total activity that is distributed between the biceks and the soil at time t. The product of the second exponential term and the initial activity gives the activity that remains on the blocks. The difference in these two terms thus gives the activity in the soil. For each leaching half-life considered (1,5,10 and 15 years), the corresponding value of 4, was determined by using Equation 4-4 to compute the effective half-life and then dividing this value into In(2). Soil activity for a given time t was converted to concentration by dividing by a mass of 6.416 x 107 grams, which is the total mass of soil removed from Site 9632.
CY-HP-0031 Revision #: 0 Page 44 of 233
7 Cs is used for this illustration because it is the longest-lived of the radionuclides considered in this analyses and because it (along with
- Sr, the half-life of which is nearly identical) is the dominant radionuclide for internal dose.
Figure 4-6 Effect Of Leaching Rate On '87Cs Soil Concentrations 6 000 6.000 4 000 - - - _ - . 3 000 ..* . 5 years y nm a* _..-.-*~*-.~~.. ~*= s . / .................... d 2 000 ,
/' , ,,,s*~** /**,,.r
j' 1000 - * -p' , '
,/ j'* /.
0.000 0 5 10 15 20 25 Elapsed Time (yeam) As seen, using the soil concentration established for Site 9632 (weighted average = 2.9 - pCi/g '87Cs) at the time of characterization would be acceptable for slower leaching rates but not for faster rates. Thus, a range of leaching rates should be considered when addressing the issue of residential farming dose given that significant conservatism is present in the source term data for Site 9632. The curves in Figure 4-6 above for the 1,5 and 10 year leaching rates reach their maxima at 5,14 and 20 years, respectively. The 15 year curve does not reach its maximum in the 23 year period considered. J Given the leaching rate considerations discussed above, the RESRAD program was lj run for two cases using the initial total activities established for Site 9632 (see Figure 4- ) 4). The first case was with soil concentrations computed after the blocks had been on { site for 5 years assuming a leaching half-life of 1 year. The second case used a leaching half-life of 10 years and a 20 year duration. For both cases,8 Sr was included at an amount equal to half of that for ' 7Cs. I The soil concentrations for the two RESRAD cases are given in Table 4-14 below. i
m CY-HP-0031 Revision #: 0 Page 45 of 233 i Table 4-14 Soll Concentrations Used For The Two RESRAD Cases l Radionuclide Concentrations (pCilg) Radionuclide ' Leaching half-life = 1 year leaching half-life = 10 years i elapsed time = 5 years elapsed time = 20 years ,
"Co 1.06 0.11 I "Sr/Y 2.60 1.40 'dCs 1.09 0.01 '7 Cs 5.24 2.87 24' Am 1.0E-4 5.7E-5 243 Cm 5.1 E-4 2.8E-4 23sPu 3.6E-4 2.0E-4 23 Pu 2.1 E-5 1.2E-5 24 Pu 4.6E-5 2.5E-5 24' Pu 8.3E-3 4.5E-3 242Pu 2.6E-7 1.4 E-7 27Np 2.6E-8 1.4 E-8 The RESRAD (Attachment 6) results for the two cases indicate maximum dose rates (TEDE) of 38 mrem /yr for the first case and 13 mrem /yr for the second case. In both cases, these maximum doses occur in the first year and the dose decreased for all subsequent years (out to 1,000 years). In the first case, "Co and ' 7Cs contribute equally to the external dose, while in the second case "Co has decayed to a level where the external dose is dominated by ' 7Cs. In both cases, "Sr dominates the internal dose. Because of the many conmvatism assumptions applied in this analysis, these calculated doses represent the maximum dose that an individual may have received from this material. Therefore, it is very reasonable to conclude that doses to members of the public from this contaminated soil source are well below the applicable limits provided in 10CFR20.
As noted previously, the two RESRAD analyses assume a contaminated area of 2,400 m2rather than the default value of 10,000 m 2. This smaller better represents the sizes of the affected properties but is stilllarge compared to the area of any potential farm located on these properties. Furthermore, performing this analysis for the larger default area results in only a minor increase in dose (approximately 10%).
r CY-HP-0031 Revision #: 0 Page 46 of 233
- 5. Conclusions Conservative bounding assessments have been completed to address the radiation dose that members of the public may have received in uncontrolled areas as a result of exposure to potentially contaminated materials removed from the CY site. The results from these assessments show that it is highly unlikely that any individual received a Total Effective Dose Equivalent (TEDE) in excess of the 100 mrem Smit prescribed in 10 CFR 20.1301. This assertion can be made for any of the pathways considered sven if the same individualis considered for all assessments. The maximum dose from the initial transfer and handling of these materiais is 62 mrem. The maximum annual dose from subsequent activities (i.e. farming) at this site is shown to be 38 mrem. It is not appropriate to sum these doses since it is possible that these doses could have occurred during the same calendar year.
These doses are the maximum bounding doses for the site that contained the highest quantity of radioactivity and therefore represent the bounding dose assessment for all offsite locations. The realistic dose to a member of the public is not calculated in this analysis however, it is likely that this dose is well below the values provided in this analysis because of the many conservative assumptions applied. These conservative assumptions are shown in Table 4-15 for each of the major categories considered in this analysis. A review of these assumptions clearly reveals the degree of conservatism represented in this evaluation. Table 4-15: Summary of Conservative Assumptions Applied Calculation Category Assumption
- 1. Assumed no decay of the short-lived radioisotopes of the period Radioactivity Quantity from termination of CY's use of the shield-block structure involving ;
radioactivity to the period where blocks were made available to CY employees.
- 2. Total surface contamination of the blocks assumed to be the maximum observed readings applied to all surfaces of the blocks.
- 3. In cases where the blocks exhibited "no contamination" the minimum detectable activity was assumed to be present on all surfaces.
- 4. Removable contamination assessment assumed to be from a smear of a 100 cm2area where the actual smeared area was larger.
- 5. To account for short-lived and difficult to measure radioisotopes, very high radionuclide fractions were assumed for the following:
Cs-134/Cs-137, Sr-90/Cs-137, Co-58/Co-60, and Co-60/Cs-137 rather than more realistic values.
- 6. Cs-137 contribution from fallout in soil was assumed to be from CY.
l l l 1 j
CY-HP-0031 Revision #: 0 Page 47 of 233 Calculation Category Assumption
- 7. Cs-137 was identified in only surface soils. However, the measured concentration was applied to all soil to represent the average soil concentration.
- 8. The decay from the period representing the initial placement of the material at the offsite location to the placement (at least 6 months) in the final configuration was not included. For the site under esaluation, the material was stored in a pile during the winter months.
Direct Gamma Exposure 9. Only one individual handled all blocks. This person received al! calculated exposure.
- 10. During handling, the blocks were one foot from the individual.
- 11. Once the contaminated bloc'ks were instalied, the individual received exposure from the blocks at a distance of 1 meter for the assumed occupancy intervals. The assumed occupancy intervals represented time spent outdoors.
- 12. No self-shielding was assumed for exposure to the contaminated blocks in the installed configuration.
Ingestion Dose from 13. No gloves were worn during all hanCling activities and no activity Handling Blocks removal from the hands from washing was applied.
- 14. A high removal fraction was assumed for contamination transfer to ingestion.
- 15. Twenty five percent of the block area was in contact with skin.
- 16. The activity removal fiaction was based on 1 block that experienced virtually no weathering and therefor e represents the maximum expected value.
Farming and Exposure to 17. Consumption of farm and animal products bated on 50% Contaminated Soil f sustenance level. All soil assumed to be contamina^ed leading to (RESRAD analysis) contamination of ground water, surface water, crops, and animal products. l
- 18. Actual contaminated area was 1400 @ rather than tue assumed {
value of approximately 25,000 ft2 This actualland area may not be I large enough to support 50% sustenance. l
- 19. Conservative estimates of soilleaching rates for contaminated )
blocks to soil was applied. ! I
CY-HP-0031 Revision #: O Page 48 of 233
- 6. References (ATCOR 1970)* " Safety Analysis Report for the Shipment of Connecticut Yankee Spent Filter Elements in the ATCOR Cask LL-28-4 from Haddam Neck, Connecticut to Nuclear Fuel Services",
ATCOR, Inc., Elmsford, NY March 16,1970. (CYAPCo 1969)*
- Notes of Conference on Crud Problems and Chemistry Program at CY of July 11,1969", CYAPCo document number 7818710055.
(CYAPCo 1998) "Haddam Neck Plant Offsite Material Recovery Plans", letter to the U. S. Nuclear Regulatory Commission Document Control Desk, Docket No. 50-213, CY-98-054, April 29,1998. (EPA 1988) " Limiting Values of Radionuclide intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion", Federal Guidance Report No.11, U. S. Environmental Protection Agency, Washington, D.C., September 1988. (Hermann et al.1995)" Hermann, O. W.; Bowman, S. M.; Brady, M. C.; Parks, C. V.
" Validation of the SCALE System for PWR Spent Fuel Isotopic Composition Analyses", ORNL/TM-12667, Oak Ridge National Laboratory, Oak Ridge, TN, March,1995.
(Klein et al.1992) Klein, R. C.; Linins, l.; Gershey, E. L.; " Detecting Removable Surface Contamination", Health Physics, Vol. 62, No. 2 February),1992. (Kocher and Eckerman 1987) Koaher, D. C.; Eckerman, K. F.; " Electron Dose Rate Conversion Factors for External Exposure of the Skin from Unifo miy Deposited Activity on the Body Surface, Health , Physics, Vol. 53, No. 2 (August),1987. j (Lehr 1969)* " Conn. Yankee Reactor Coolant and Crud Sample Analysis', NSD-O-RFL-531, letter from R. F. Lehr (Westinghouse) to W. P. Johnson (Yankee Atomic Electric Company) dated July 7, 1969. , l
- Copies of these references are provided in an attachment to this document.
" Relevant pages from this reference are provided as an attachment to this document. l 1 I
CY-HP-0031 Revision #: 0 Page 49 of 233 : Microshield Cases For Determining The Deep Dose Equivalent Rate Per Unit Dpm/100 Cm2 From Direct Handling Of The Blocks I i
1 CY-HP-0031 Revision #: 0 MicroShield 4.10 - Serial #4.10-00521 Page 50 of 233 Licensed to Yankee Atomic Electric Company CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: CS134S.MS4 Case
Title:
Cs-134 handling dose - shielded This case was run on Tuesday, January 19, 1999 at 2:54 p.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 2.971e-006 1.033e-005 Photon Energy Fluence Rate MeV/cm2 /sec 2.150e-006 7.280e-006 Exposure Rate in Air mR/hr 4.105e-009 1.395e-008 Absorbed Dose Rate in Air mGy/hr 3.584e-011 1.218e-010 mrad /hr 3.584e-009 1.218e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.211e-011 1.434e-010
. o Opposed 3.415e-011 1.159e-010 o Rotational 3.415e-011 1.159e-010 o Isotropic 3.021e-011 1.025e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.483e-011 1.526e-010 o Opposed 4.268e-011. 1.452e-010 o Rotational 4.268e-011 1.452e-010 o Isotropic 3.228e-011 1.096e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 3.730e-011 1.272e-010 o Posterior / Anterior " "
3.324e-011 1.129e-010 o Lateral 2.495e-011 8.447e-011 o Rot.ational " 2.974e-011 1.010e-010 o Isotropic " " 2.546e-011 8.632e-011
------+-- Ca me
Title:
s--134 handling dose - shield -- - - - t ,
, j ) . I *4 ,
Y y
- s. . h .
s
-= , e- . - Side View Ucrtical llettangular Area =- - = - + - - - - 4 >X 4H . % U 31 1:1 F Ent. r :'.h i e l d ILi t a l X , 'I~ , .N ;; - il 4H f .1 .
i fi j y - I ..s p e ,, ,.,1,,..4..e. - .ro H t ; . o . ; i...,i<1,..e.. ..ri st- , I (+ 11 es I ter,i, l. ....v-- . I T il.1 u i t e h. - v i. o
CY-HP-0031 Revision #: 0 MicroShield 4.10 - Serial #4.10-00521 Page 51 of 233 Licensed to Yankee Atomic Electric Company CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: CS134U.MS4 Case
Title:
Cs-134 handling dose - unshielded This case was run on Friday, January 8, 1999 at 9:44 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 3.325e-005 3.334e-005 i Photon Energy Fluence Rate MeV/cm2 /sec 2.331e-005 2.337e-005 i Exposure Rate in Air mR/hr 4.471e-008 4.483e-008 l Absorbed Dose Rate in Air mGy/hr 3.903e-010 3.913e-010 a mrad /hr 3.903e-008 3.913e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Prxallel Geometry mSv/hr 4.598e-010 4.609e-010 o Opposed " 3.714e-010 3.723e-010 o Rotational " " 3.714e-010 3.723e-010 o Isotropic " " 3.285e-010 3.293e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.893e-010 4.905e-010 o Opposed " 4.654e-010 4 666e-010 o Rotational " 4.654e-010 4.666e-010 o Isotropic " 3.510e-010 3 519e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 4.077e-010 4.088e-010 o Posterior / Anterior " " 3.618e-010 3.627e-010 o Lateral " " 2.704e-010 2.711e-010 o Rotational " " 3.235e-010 3.244e-010 o Isotropic
- 2.764e-010 2.771e-010
---- COse
Title:
Cs 1,34 hand l ing Jose anshielded t Q
**A , ,.. y ; '$ f, W '* -- * * ' ' -*^ ' * ' ~ " ' " -' '
(Y fN I (50 M O $$00 OF MO g
>X E fl U, .
H $1 l Ent i r M in i l <1 l'a t a l X Y H :.' il 1H i s) , l', .'4
> . w . .a ,. .
l li t l t 4 e fit Ir34 t, l g 'hi d 1, I ri - o- i . .- , i ,i....i,- i!i,i t- . I sil t nl t r ,+ , l.- . . . . - , i T t.1 u i t i Iw - vs<a
CY-HP-0031 Revision #: 0 MicroShield 4.10 - Serial #4.10-00521 Page 52 Of 233 Licensed to Yankee Atomic Electric Company CONVERSION.OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: C058S.MS4 Case
Title:
Co-58 handling dose - shielded This case was run on Friday, January 8, 1999 at 9:54 a.m. 1 Results (Summed over energies) Units Without Buildup With Buildup j Photon Fluence Rate (flux) Photons /cm2 /sec 1.812e-006 6.091e-006 Photon Energy Fluence Rate MeV/cm2 /sec 1.370e-006 4.490e-006 Exposure Rate in Air mR/hr 2.610e-009 8.585e-009
. Absorbed Dose Rate in Air mGy/hr 2.279e-011 7.495e-011 mrad /hr 2.279e-009 7.495e-009 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 2.667e-011 8.787e-011 . o opposed 2.176e-011 7.150e-011 o Rotational 2.176e-011 7.150e-011 o Isotropic 1.923e-011 6.320e-011 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 2.847e-011 9.375e-011 o Opposed 2.714e-011 8.933e-011 o Rotational 2.714e-011 8.933e-011 o Isotropic 2.058e-011 6.760e-011 Effective Dose Equivalent Rate (ICRP 51 - 1987) i o Anterior / Posterior Geometry mSv/hr 2.372e-011 7.811e-011 o Posterior / Anterior " "
2.117e-011 6.962e-011 o Lateral 1.597e-011 5.239e-011 o Rotational 1.894e-011 6.228e-011 o Isotropic 1.625e-011 5.336e-011
.,- == Case
Title:
Co-58 handling dose - sh ie lded - - - - - ,
- a Y
. Y . c I - Side Vicu - Vert iu l Rectangular Ar em == = - - = - = - - = . j .- >X 4H.16 U M .1ll l Ent e-r Mla i, ld Da t a l I X .1 .' H 10 f .1 -
l l'. 1 i I ,
,m , c .. ,. - - - ,.0.0 ll,ii . . . .'tr,- te. -
g t, 1 .s. .- [ ,.. .i,; .. < i' , l felt av 1 tii;rsli- e-t- . I T.. t.1 s ii c h.'- visu-4 1 { i l
CY-HP-0031 Revision #: 0 MicroShield 4.10 - Serial #4.10-00521 Page 53 of 233 Licensed to Yankee Atomic Electric Company CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: C058U.MS4 Case
Title:
Co-58 handling dose - unshielded This case was run on Friday, January 8, 1999 at 9:40 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 1.948e-005 1.953e-005 Photon Energy Fluence Rate MeV/cm2 /sec 1.430e-005 1.434e-005 Exposure Rate in Air mR/hr 2.732e-008 2.738e-008
. Absorbed Dose Rate in Air mGy/hr 2.385e-010 2.391e-010 mrad /hr 2.385e-008 2.391e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 2.797e-010 2.804e-010 . o Opposed " "
2.274e-010 2.280e-010 o Rotational 2.274e-010 2.280e-010
" " 2,015e-010 o Isotropic 2.010e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 2.984e-010 2.991e-010 o Opposed "
2.843e-010. 2.850e-010 o Rotational " 2.843e-010 2.850e-010 o Isotropic 2.150c-010 2.156e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 2.486e-010 2.492e-010 o Posterior / Anterior " " 2.215e-010 2.220e-010 o Lateral 1.666e-010 1.670e-010 o Rotational 1.981e-010 1.986e-010 o Isotropic 1.697e-010 1.701e-010
-- - ==- Ca se
Title:
Co-58 haewiling dose - unshiel - ---- - - - l [ 4 *t T ,, y .
. %d ..
T ;y (
- '- - - ,- Siete View - Vertical Rec ta ragu la r Area + = - * - - - - " , , >X :lH H U .M ml I Lnt. r C h i e 1 <t lutal l X Y .o . . .
it 1H I,1 z s s-l '
. A t g' ( ..e gt l., it ' i . i'i g ra i. . ; ' , .?H H
- t. 1.. !'3 ..i<J. .2, r.:,i t- , t eil t f. ! t,neil,- a.e, I To!. I .u k t h. - v i ctr :
9
) CY_HP-0031 Revision #: 0 MicroShield 4.10 - Serial #4.10-00521 Page 54 of 233 Licensed to Yankee Atomic Electric Company CONVERSION pF CALCULATED EXPOSURE IN IIK TO DOSE FILE: CS137S.MS4 Case
Title:
Cs-137 handling dose - shielded This case was run on Friday, January 8, 1999 at 9 : 5 3 a . tr. . Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm /see 2 1.052e-006 4.080e-006 Photon Energy Fluence Rate MeV/cm2 /sec 6.312e-007 2.448e-006 Exposure Rate in Air mR/hr 1.232e-00? 4.778e-009
. Absorbed Dose Rate in Air mGy/hr 1.076e-O 4.171e-011 mrad /hr 1.076e-C- 4.171e-009 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.284e . 4.979e-011 a " . o Opposed 1.015e-ul 3.936e-011 .
o Rotational 1.015e-011 3.936e-011 l o Isotropic 8.975e-012 3.481e-011 l Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Ceometry mSv/hr 1.360e-011 5.273e-011 o Opposed 1.288e-011 4.994e-011 o Rotational 1.288e-011 4.994e-011 o Isotropic 9.581e-012 3.716e-011 Effective Dose Equivalent ".r (ICh? 51 - 1987) o Anterior / Posterior Ge".- ty mSv/hr 1.132e-011 4.392e-011 o Posterior / Anterior " " 9.922e-012 3.848e-011 o Lateral 7.271e-012 2.820e-011 o Rotational 9.862e-012 3.437e-011 o Isotropic 7.498e-012 2.908e-011
,m.#-..--
Casee Ti t 43 : Cs-- 137 hand LAng dose - @ eided .
.h , , . . , . 1 .1 - \ m .,, ?l
_a1 */ ,
.- [ r l9 Y < -
v' 7" \ s ., \'
., ,s 9
[
; ,, Y ,
I . M, . g.* y q
-) \ v - V -
j v. ,%
- - Side View Ucrt ir.a l Rer:tangu lar Area -=",=====-h.- .
l r s ,>X 418. 1 6 U :H 411 I I:n t e r S h i e l ,i Da t a l i
- j. X l ;i'
. ;1 :' il 1H f1 ' - ' l 1', .1 1. , , A i t- Gag
- oir. .1 6
- i. .!.i.. e
'Hp f i. ... : ,...;.!,.X i' .U L' 14 o li i-1 - , l'. c 1 . - ! Ti i r i .a p 1 :i, ! '
( r i t i ri t, i 3d.M T .e 1 . ~ - !- ,..,.1 .t.,,.. . i+ . Intt ul t<..,1,- . . . - . I T .. tl - o i t , lo- ' v i e u-
l CY-HP-0031 Revision #: 0 MicroShield 4.10 - Serial #4.10-00521 Page 56 of 233 Licensed to Yankee Atomic Electric Company CONVERSION,OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: CO60S.MS4 Case
Title:
Co-60 handling dose - shielded This case was run on Friday, January 8, 1999 at 9:51 a.m. Results (Summed over energies) Units Without Buildup With Buildup 2 Photon Fluence Rate (flux) Photons /cm /sec 4.224e-006 1.015e-005 Photon Energy Fluence Rate MeV/cm2 /sec 5.436e-006 1.277e-005 Exposure Rate in Air mR/hr 9.435e-009 2.228e-008
. Absorbed Dose Rate in Air mGy/hr 8.237e-011 1.945e-010 mrad /hr 8.237e-009 1.945e-008 Deep Dose Equivalent Rate (ICRP 51 - 1907) o Parallel Geometry mSv/hr 9.363e-011 2.212e-010 . o Opposed " "
- 8. 07 9e- 031 1.905e-010 o Rotational " "
8.079e-011 1.905e-010 o Isotropic " 7.220e-011 1.701e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 9.945e-011 2.351e-010 o Opposed " " 9.589e-011 2.266e-03 3 o Rotational " 9.589e-011 2.266e-0.0 o Isotropic " 7.633e-011 1.800e-030 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 8.426e-011 1.990e-010 o Posterior / Anterior " " 7.770e-011 1.833e-010 o Lateral " " 6.201e-011 1.459e-010 o Rotational " 7.003e-011 1.651e-010 o Isotropic " " 6.203e-011 1.461e-010 __ _,.- ase T tje: Co as# ha nd l i ng dose - shierlded - - - - W . 1
.I *A y , 7 M k T S i fle U t a=W - Veri H.de I Mt:t d engu l at e 8tTA * *** ' " * ' " ' * "
e j 4H 16 U ' ;H in i I + .t' M li l e i A lutoi X - l>X',' s N: ' il l a t ,1 /
- .' 1', .l l-I g4 m . .. . ,.
- D W I',,i t. , ,e i , -< , , .
f, 1 . . . . l T. r i .!,., ,, ....l1 , 1ii' fi l 1-Q.- ..i , IT,Q,t it r- "ir<+ 6
CY-HP-0031 Revision #: 0 MicroShield 4.10 - Serial #4.10-00521 Page 57 of 233 Licensed to Yankee Atomic Electric Company CONVERSION.OF CALCULATED EXPOSURE IN AIR TO DCSE FILE: CO60U.MS4 Case
Title:
Co-60 handling dose - unshielded This case was run on Friday, January 8, 1999 at 9:34 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 2.986e-005 2.991e-005 Photon Energy Fluence Rate MeV/cm3 /sec 3.733e-005 3.739e-005 Exposure Rate in Air mR/hr 6.520e-008 6.531e-008
, Absorbed Dose Rate in Air mGy/hr 5.692e-010 5.702e-010 mrad /hr 5.692e-008 5.702e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 6.477e-010 6.480e-010 a "
5.574e-010 5.583e-010
. o opposed o Rotational 5.574e-010 5.583e-010 o Isotropic 4.977e-010 4.986e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 6.885e-010 6.897e-010 a "
6.644e-010 o opposed 6.633e-010 o Rotational 6.633e-010 6.644e-010 o Isotropic 5.268e n10 5.276e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 5.827e-010 5.836e-010 o Posterior / Anterior " " 5.364e-010 5.373e-010 o Lateral " 4.268e-010 4.275e-010 o Rotational 4.832e-010 4.840e-010 o Isotropic " 4.273e-010 4.280e-010 7 - - Case
Title:
00 -449 hand I i ng dose -- unsle ie lded - - - - -- O o v i 4 . l T i i 7 y
. . . . . _ . . . . . . . . s , a.. v , ,,o v.,r i w. i n.,. u i , e . .
i
>X "3H M U st 1: f I En f. r :'h < c la le e t a l I X 1 . C :. ' !I < i i 1 .. l'. .Li l 6 .' ,.,,c .....
Ilit a' - , t Itt *t f u ie t' 5d 0 Y. } 'I ttJ'- f . ! I ie i'*I , ll4 l $ l4 ! iit- ,'r f' r$ 'f . ( ) 'I I 'tj h i
- hI OIe ',1 I
i l l
. 1 T
a CY-HP-0031 Revision #: 0 Page 58 of 233 Attachment 2: Microshield Cases For Determining The Deep Dose Equivalent Rate Per Unit Dpm/100 Cm2 For Area Sources ~.
. , . . . . . . . - . ~ . . CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 59 of 233 , CONVERSION* OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 134400S.MS4 Case
Title:
Cs-134: shielded 400 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 10:06 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm /sec 2 1.179e-005 5.455e-005 Photon Energy Fluence Rate MeV/cm2 /sec 8.641e-006 3.879e-005 Exposure Rate in Air mR/hr 1.646e-008 7.426e-008 Absorbed Dose Rate in Air mGy/hr 1.437e-010 6.482e-010 mrad /hr 1.437e-008 6.482e-008 De.3p Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.687e-010 7.627e-010
. o Opposed " "
1.371e-010 6.172e-010 o Rotational 1.371e-010 6.172e-010 o Isotropic 1.213e-010 5.460e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.797e-010 8.119e-010 o opposed 1.711e-010 7.725e-010 o Rotational 1.711e-010 7.725e-010 o Isotropic 1.296e-010 5.833e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 1.498e-010 6.767e-010 o Posterior / Anterior " " 1.334e-010 6.010e-010 o Lateral 1.003e-010 4.501e-010 a " o Rotational 1.194e-010 5.376e-010 o Isotropic 1.023e-010 4.598e-010
-- - - - - - Ca se
Title:
Cs-134; shielded a. rt 2 area at I neter - - 3 .,
. [
si l -
. , . . . . . ,,......._.,M Side View Vertical Rectangislar Arca - - - " ~ - -
i
> }( 110.16 U. (#1 tc II:ot er Ubic id Da t a l f X - Y -
114 H H IMi t,
.'. 'rN . H Air Gap .-
th,i, . ,id ire t<, 1HH H
- i. 4 - ., . { . ,, .I : li 4 i .i
.. int , l fil l uliti..u W a.. . I T .i t.1 u s te In . vie u- . .
1 CY-HP-0031 l' MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 60 of 233 CONVERSION* OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 134400L.MS4 Case
Title:
Cs-134: unshielded 400 ft'2 area at 1 meter This case was run on Monday, January 11, 1999 at 10:02 a.m. Results (Su- over energies) Units Without Buildup With Buildup Photon Fluecce Rate (flux) Photons /cm /sec 2 2.309e-004 2.346e-004 Photon Energy Fluence Rate MeV/cm2 /sec 1.619e-004 1.645e-004 Exposure Rate in Air mR/hr 3.106e-007 3.155e-007 Absorbed Dose Rate in Air mGy/hr 2.711e-009 2.754e-009 mrad /hr 2.711e-007 2.754e-007 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parc.llel Geometry mSv/hr 3.193e-009 3.244e-009 o Opposed " 2.579e-009 2.620e-009 o Rotational " 2.579e-009 2.620e-009 o Isotropic " 2.282e-009 2.317e-009 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 3.39Be-009 3.452e-009 o Opposed " " 3.233e-009 3.284e-009 o Rotational 3.233e-009 3.284e-009 o Isotropic " 2.438e-009 2.476e-009 Effective Dose Equivalent Rate (ICRP 91 - 1987) o Anterior / Posterior Geometry mSv/hr 2.832e-009 2.877e-009 o Posterior / Anterior " " 2.513e-009 2.552e-009 o Lateral " " 1.879e-009 1.90Be-009 o Rotational " 2.247e-009 2.283e-009 o Isotropic " " 1.920e-009 1.950e-009
. Case
Title:
Cs- 134 : unshielJ.- 400 f t 2 area at 1 sieter
. t{ . -' ,)
{ , 4 i. Y n . .e k -- . - - . . . - . . , g j a,. y j ,,w VerticaI Rectangular Area " - - - - - - --
>X 100.9 ' U 6,W 1. h I Li.t or .lii l a lia t a l X ,
Y +1 y H 1,6 ni , e .
'Hi- ):
Air Ga) - (l . t t ,il :.*., 16M 61
'. 1 - , . ' ..i!.,. xi .M t . I:il: ril t..!, ... . I T .i l.1 uife In - vi,u
, CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 61 of 233 CONVERSION,OF CALCULATED EXPOSURE IN NIR TO DOSE FILE: 134225S.MS4 Case
Title:
Cs-134: shielded 225 ft'2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:58 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 1.148e-005 5.160e-005 Photon Energy Fluence Rate MeV/cm2 /sec 8.402e-006 3.663e-005 Exposure Rate in Air mR/hr 1.601e-008 7.014e-008 Absorbed Dose Rate in Air mGy/hr 1.39Be-010 6.123e-010 mrad /hr 1.39Be-000 6.123e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.641e-010 7.205e-010
. o Opposed " "
1.333e-010 5.829e-010 o Rotational " " 1.333e-010 5.829e-010 o Isotropic " 1.180e-010 5.156e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.74Se-010 7.669e-010 o Opposed " " 1.664e-010 7.297e-010 o Rotational " 1.664e-010 7.297e-010 o Isotropic " 1.260e-010 5.509e-010 g Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 1.457e-010 6.392e-010 o Posterior / Anterior " " 1.297e-010 5.677e-010 o Lateral " " 9.750e-011 4.250e-010 o Rotational " " 1.161e-010 5.078e-010 o Isotropic " " 9.946e-011 4.342e-010 Case
Title:
Cs 134: shielded 225 ft 2 area at 1 seeter k Ny x i ' , e
-. e ,
Side Vinu Vertical Re cta ngia l ar Arca w-~'- - "- - i
>X 1)H .16 U l'..'.' IIM.: h i ' 1.1 Ni t .* I I X i 'J . ': r. It f.' -
g
- g. l t 4
ni,. c.y. . ii* , -- ' .; i!4 i t } l lei iI
, . , . . 'c . . ' ' ! ,t+ .t [ ' ,, J ' ,
l] .1 1 (t1,j. v i , _. s
CY-HP-0031 Revision #: 0 MicroShield 4.10 - Serial #4.10-00521 Licensed to Yankee Atomic Electric Company Page 62 of 233 CONVERSION* OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 134225U.MS4 Case
Title:
Ce-134: unshielded 225 ft^2 area at 1 meter This care was run on Monday, January 11, 1999 at 9:52 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 1.845e-004 1.870e-004 Photon Energy Fluence Rate MeV/cm2 /sec 1.294e-004 1.311e-004 Exposure Rate in Air mR/hr 2.481e-007 2.515e-007
. Abrorbed Dose Rate in Air mGy/hr 2.166e-009 2.196e-009 mrad /hr 2.166e-007 2.196e-007 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 2.551e-009 2.586e-009 . o opposed "
2.061e-009 2.089e-009 o Rotational " " 2.061e-009 2.0B9e-009 o Isotropic " 1.823e-009 1.848e-009 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 2.715e-009 2.752e-009 o Opposed " 2.583e-009 2.618e-009 o Rotational " " 2.583e-009' 2.618e-009 o Isotropic " 1.948e-009 1.974e-009 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 2.263e-009 2.293e-009 o Posterior / Anterior " " 2.008e-009 2.035e-009 c Lateral " 1.501e-009 1.521e-009 o Rotational " 1.796e-009 1.820e-009 o Isotropic 1.534e-009 1.555e-009
- ~ ~ ~ Case
Title:
Os-134: unshielded 225 ft'2 area.at 1 seeter a , m O F* ; o.
<l o ,a' ?
Side View Vertical Rectanyular Area -'=--"-' ---
= >X 1998 . H U 1'.J i E i .1,4 h ii id D4ta X ,i 1'./
it a r - I ia p
, . lini o il' <! ' ,,,1, , i , ji-! J ; .: ) 'i i- et u 4
I
, CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company age 63 of 233 CONVERSIOp OF CALCULATED EXPOSURE IN' AIR TO DOSE FILE: 134144S.MS4 Case
Title:
Cs-134: shielded 144 ft*2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:48 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 1.093e-005 4.740e-005 Photon Energy Fluence Rate MeV/cm8 /sec 7.984e-006 3.360e-005 Exposure Rate in Air. mR/hr 1.522e-008 6.435e-008
. Absorbed Dose Rate in Air mGy/hr 1.329e-010 5.618e-010 mrad /hr 1.329e-008 5.618e-00B Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.560e-010 6.612e-010 a "
o opposed 1.267e-010 5.340e-010 o Rotational " " 1.267e-010 5.34Be-010 o Isotropic 1.121e-010 4.731e-010 Shallow Dose p.tivalent Rate (ICRI' 51 - 1987) o Parallel Geometry mSv/hr 1.662e-010 7.037e-010 o Opposed 1.582e-010 6.696e-010 o Rotational 1.582e-010 6.696e-010 o Isotropic 1.198e-010 5.055e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 1.386e-010 5.865e-010 o Posterior / Anterior " " 1.233e-010 5.208e-010 o Lateral 9.266e-011 3.899e-010 o Rotational 1.103e-010 4.659e-010 o Isotropic 9.452e-011 3.983e-010
- - . --- - c se gi t4 e : cr 134 i shieIded 144 rt 2 er . at 1 eiet'ers * ". . a .6 3
3 .
.~
A -
\ \ \ . s. ., . ** 4 * " , .e , .., +
h a dt- Vae u Ve r t s a:.s I hem - t .t a ngu .t r Area *
* .iX 11H 16, e ' w' a . ,, iL.,fm*' t j. '1' .1 lu i .e i fg, , l . , ,,p L
- j '
- s. : ..
4 ' e ia , (. .p
, . . , . '*'.l#...~ . . , :,.: , i i .1 , i ." . $ .1.. b a.1 m,,$"d " e i, v ..
e l
f CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 64 of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 134144U.MS4 Case
Title:
Cs-134: unshielded 144 ft'2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:41 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm /sec 2 1.506e-004 1.525e-004 Photon Energy Fluence Rate MeV/cm2 /sec 1.056e-004 1.069e-004 Exposure Rate in Air mR/hr 2.026e-007 2.051e-007
. Absorbed Dose Rate in Air mGy/hr 1.769e-009 1.790e-009 mrad /hr 1.769e-007 1.790e-007 A
Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 2.083e-009 2.10Be-009
. o opposed " 1.683e-009 1.703e-009 o Rotational " "
1.683e-009 1.703e-009 o Isotropic " 1.488e-009 1.506e-009 i
~
t Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 2.217e-009 2.244e-009 o Opposed " 2.109e-009 2.234e-009 o Rotational 2.109e-009 2.134e.-009 o Isotropic " 1.590e-009 1.610e-009 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 1.847e-009 1.870e-009 o Posterior / Anterior " " 1.639e-009 1.659e-009 o Lateral " " 1.225e-009 1.240e-009 1.484e-009 I o Rotational 1.466e-009 o Isotropic " " 1.253e-009 1.268e-009
- - - Case T i t ler : ,m-134: usu:hielded 144 f t 2 area at 1 sector - - -
l' - 4dl, f $ I,d (M ' k d j$g( 7 Mid
, , , , , ,, m m c, . ,r......',,,.m 1. . . , o x cxv : - . . n a s n. ,
- j 1: ' :o; e iIei) f 'i e i i l,s.i '+r . . l IIIi il
! y e*i !'s. 'q - ! t Ir 1 ; qs 'f i} l ! lell$ I$ i if31,ig le ,t./t , l ,4 I a *Ul !E h,6*", 8f lf'LI d
e 9 l l
CY-HP-0031 Revision #: O s MicroShield 4.10 - Serial #4.10-00521 Licensed to Yankee Atomic Electric Company Page 65 of 233 CONVERSION ,OF CALCULATED EXPOSURE IN NIR TO DOSE FILE: 13481S.MS4 Case
Title:
Cs-134: shielded 81 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:36 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 9.661e-006 3.960e-005 Photon Energy Fluence Rate MeV/cm2 /sec 7.040e-006 2.802e-005 Exposure Rate in Air mR/hr 1.343e-008 5.367e-008
. Absorbed Dose Rate in Air mGy/hr 1.172e-010 4.686e-010 mrad /hr 1.172e-008 4.686e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.377e-010 5.515e-010 . o Opposed "
1.118e-010 4.460e-010 o Rotational " 1.118e-010 4.460e-010 o Isotropic " 9.888e-011 3.945e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.466e-010 5.870e-010 o Opposed " 1.396e-010 5.585e-010 o Rotational 1.396e-010 5.585e-010 o Isotropic " 1.056e-010 4.215e-010 Effective Dose Equivale'nt Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 1.222e-010 4.892e-010 o Posterior / Anterior " " 1.088e-010 4.344e-010 o Lateral 8.170e-011 3.251e-010 o Rotational 9.732e-011 3.885e-010 o Isotropic 8.335e-011 3.322e-010
~ = - ~ Case itle: Cs-134: shielded 81 ft 2 area at 1 emter - - -
- d. ,
AF - m x - = , , g , T Side V i e-w UcrtitaI biciangular Area - - - - + "- = * - - ,
, >x .
11H.16 u . J1 t' i l:ot i r qie M li.i t a l X - ' 1 H .iA
- A
~
l n...,..
.- ,. - . . . 1, m ,< ' ;- . i ,,,t ,},.in,. ,-, .- .. I ri! k i. ] try,.t l, . e , j 1, !. j .optr in- o iei'-
O
T ...
. CY-HP-0031 MicroShield 4.10 - Serial #4.20-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 66 of 233 CONVERSION OF CA*.,CULATED EXPOSURE IN nIR TO DOSE FILE: 13481U.MS4 Case
Title:
Cs-134: unshielded 81 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 5:32 a.m. Results (Summed over energics) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cmL /sec 1.111e-004 1.123e-004 Photon Energy Fluence Rate MeV/cm2 /sec 7.789e-005 7.872e-005 Exposure Rate in Air mR/hr 1.494e-007 1.510e-007
. Absorbed Dose Rate in Air mGy/hr 1.304e-009 1.318e-009 mrad /hr 1.304e-007 1.318e-007 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.536e-009 1.553e-009 . o Opposed " "
1.241e-009 1.254e-009 o Rotational 1.241e-009 1.254e-009 o Isotropic " 1.097e-009 1.109e-009 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.635e-009 1.652e-009 o Opposed " " 1.f55e-009 1.572e-009
" " 1.572e-009 o Rotational 1.555e-009 o Isotropic "
1.173e-009 1.185e-009 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 1.362e-009 1.377e-009 o Posterior / Anterior " " 1.209e-009 1.222e-009 o Lateral " " 9.036e-010 9.133e-010 o Rotational " " 1.081e-009 1.093e-009 o Isotropic " " 9.236e-010 9.336e-010
--- came
Title:
cs-1 4: ainshie'ided 81 it 2 area at i neft.er -- - -
. . . 4 e \
- s
, o _.
Y o
= =aW . O-1 S i dr* Vitud - Uf5rtECmI bt< -t .e ngu l a rs Arma - ' " -" >X 1HH.H U ..'1 ! I Gti r ::h ii id luta!
ll X i 1.U 11, .il '
- ; ; .' 1t, ,.,
I
- 1. e p I 1 etir
~
[ 1, . 3 ., ,.,.e , ' .. 1 41i1 li ~ 1 4 , . . . . . . - . l - . . - . ,i t , l61! ri } 6.,, i!.- , . .T.'.l ' ti itil.. lr s 3, e
l l CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 67 of 233 CONVERSION* OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 13449S.MS4 Case
Title:
Cs-134: shielded 49 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:27 a.m. f Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 8.084e-006 3.149e-005 Photon Energy Fluence Rate MeV/cm2 / cec 5.878e-006 2.225e-005 I Exposure Rate in Air mR/hr 1.122e-008 4.263e-008
. Absorbed Dose Rate in Air mGy/hr 9.791e-011 3.722e-010 mrad /hr 9.791e-009 3.722e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.150e-010 4.381e-010 o Opposed "
9.333e-011 3.542e-010 o Rotational " 9.333e-011 3.542e-010 o Isotropic " 8.258e-011 3.133e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.225e-010 4.663e-010 o Opposed " 1.166e-010 4.436e-010 o Rotational " " 1.166e-010 4.436e-010 o Isotropic " 8.822e-011 3.348e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 1.021e-010 3.886e-010 J o Posterior / Anterior " " 9.084e-011 3.45Ce-010 i o Lateral " " 6.822e-011 2.582e-010 o Rotational " " 8.128e-011 3.086e-010 o Isotropic " 6.960e-011 2.638e-010
,y Case
Title:
Cs-134: sliteided 49 f t 2 area at 1 sester 1 l j ..
\ . . .,
n
,.g ,. .
t
- a
, . . .. ,n o s. - .gug ' > .5 Sidg Utene - Uertical Rectangas tar Area - - -. - -. , *; >X , p 110.16 U a'1.3 . Etb -tenter 1;hteId DataJ x 4 Y n n , 4.n H :;u . m, ,--t ; '. 1 H b . . ,;3 .
W . . % ' a { '
' , . . , . . _ _ gjp C,g p 11 it - .4,,i i r J. t i i - q II1H .11 T. ) r o . v.. . .i ..,1 ik..i- a .1 ri .. i41L ni t 'mu le D ,<'< ., I To t, l ' .u i t e. b," v i etn .
G
T. :. . . . , ~ . . . . . . . . . . . . s . . CY-HP-0031 Microshield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric, Company Page 68 of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 13449U.MS4 Case
Title:
Cs-134: unshielded 49 ft^2 area at 1 meter l This case was run on Monday, January 11, 1999 at 9:04 a.m. Results (Summed over energies) Units Without Buildup With Buildup 2 Photon Fluence Rate (flux) Photons /cm /sec 8.150e-005 8.232e-005 Photon Energy Fluence Rate MeV/cm8 /sec 5.715e-005 5.771e-005 Exposure Rate in Air mR/hr 1.096e-007 1.107e-007
. Absorbed Dose Rate in Air mGy/hr 9.569e-010 9.663e-010 mrad /hr 9.569e-008 9.661e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.127e-009 1.138e-009 . o Opposed " "
9.104e-010 9.193e-010 o Rotational " " 9.104e-010 9.193e-010 o Isotropic " " 8.052e-010 8.131e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.199e-009 1.211e-009 o Opposed " " 1.141e-009 1.152e-009 o Rotational " " 1.141e-009 1.152e-009 o Isotropic " " 8.604e-010 8.689e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 9.995e-010 1.009e-009 o Posterior / Anterior " " 8.868e-010 8.956e-010 o Lateral " " 6.630e-010 6.695e-010 o Rotational " " 7.932e-010 8.010e-010 o Isotropic " " 6.777e-010 6.844e-010
- Case T tt le : Cs-134: unshieIded 49 ft 2 area at 1 meter /
e e, y , 7 P
- - ' ~ - .--- Side View Vertical HertanwuIar Area * >k I Htt . 8 U .1l. rt. I ln. te r ? h i e l t! ILi t a .
i
' 8 :.o. ..t f1 i o.
l X 11
', ,.U; ).
5 , . i .
! ) . . n i ,. ta ,,
tt . . . ' . . ' 181H . it t
.il tr . ,1, i..., . ( T . !. ! user 1. 5 - v ii u .
q> . l# f--
1 CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company page 69 of 233 I CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 134S25,MS4 Case
Title:
Cs-134: shielded 25 ft'2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:42 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 5.699e-006 2.093e 005 Photon Energy Fluence Rate MeV/cm2 /sec 4.134e-006 1.477e-005 Exposure Rat ( in Air mR/hr 7.890e-009 2.831e-008
. Absorbed Dose Rate in Air mGy/hr 6.888e-011 2.471e-010 mrad /hr 6.888e-009 2.471e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 8.092e-011 2.909e-010 o Opposed " "
6.565e-011 2.352e-010 o Rotational " " 6.565e-011 2.352e-010 o Isotropic " " 5.808e-011 2.080e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 8.616e-011 3.096e-010 o Opposed " " 8.203e-011 2.946e-010 o Rotational " " 8.203e-011 2.946e-010 o Isotropic " " 6.205e-011 2.223e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 7.184e-011 2.580e-010 o Posterior / Anterior " " 6.390e-011 2.291e-010 o Lateral " " 4.797e-011 1.714e-010 o totational " " 5.717e-011 2.049e-010 o Isotropic " " 4.896e-011 1.751e-010
., Case
Title:
.Cs-134: sMelded,2!5 f t 3 area at 1 soster .q
'4. 1 , . . . l I
O ( t a- -
. y. .
j t. u- y - . - . .
. 1 f
y h , - .. - ~ . Side Ui . rtic)IItectangularArea
~ 'tX .M W E2 . 4 (Eiiter Shield Data 1 .
X Y H 1
. . E2 . 4 - ]
I
--_ A ir i .
c.,,, ___ (Jn i: i t i n t a r" t<r . 3 000.9 t, J...... (c, l , f/ n:o. - ,,.,it,, init wel io yles adm. 1 Ta b l ::w IPt c h< r. views -
, , .v.,
c , W
,.e+,
4
_ __ _ _ ~ . . _ . . . _ _. , . . . CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 70 of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 134U25.MS4 Case
Title:
Cs-134: unshielded 25 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:36 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 5.048e-005 5.094e-005 Photon Energy Fluence Rate MeV/cm2 /sec 3.540e-005 3.571e-005 Exposure Rate in Air mR/hr 6.789e-008 6.850e-008
, Absorbed Dose Rate in Air mGy/hr 5.927e-010 5.980e-010 mrad /hr 5.927e-008 5.980e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 6.981e-010 7.044e-010 o Opposed " "
5.639e-010 5.689e-010 o Rotational " " 5.639e-010 5.689e-010 o Isotropic " " 4.987e-010 5.032e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 7.429e-010 7.496e-010 o Opposed " " 7.066e-010 7.130e-010 o Rotational " " 7.066e-010' 7.130e-010 o Isotropic " " 5.329e-010 5.377e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) - o Anterior / Posterior Geometry mSv/hr 6.191e-010 6.247e-010 o Posterior / Anterior " " 5.493e-010 5.542e-010 o Lateral " " 4.106e-010 4.143e-010 o Rotational " " 4.913e-010 4.957e-010 o Isotropic " " 4.197e-010 4.235e-010 Gaes
Title:
Cts-134: mushipidad 25 tt 2 area a ' 1 estar . ,
/
l j
~ , i 'l ~
j '.,
.}
( .. , Y Y _
- , x . ., .,
s s
.-- M- = S imu - dertical Rectangu rar Area . >X 188.8 W.' ,. 142.4 .
IEnter Shield Ikt.e( X , Y ,% . 2 . le : 152,4
.-:.. Z . ?(. 2 , c- - Air Gay - - -
thi n t u . i e u t n r n: f n . - 1810.0 ' T, 1 -i@. 1 ; ' p ;u . . J i ha ny - i fite, lAlt l'i l t ru y l< c e y e s.. ( T. t,1 u ii c hen . v i hu <. .
. CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 71 of 233 CONVERSION pF CALCULATED EXPOSURE IN NIR TO DOSE FILE: 134S9.MS4 Case
Title:
Cs-134: shielded 9 ft^2 area at 1 meter This case was Iun on Monday, January 11, 1999 at 8:31 a.m. Results (Summel over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm /sec 2 2.722e-006 9.437e-006 Photon Energy Fluence Rate MeV/cm2 /sec 1.969e-006 6.652e-006 I ( Exposure Rate in Air mR/hr 3.760e-009 1.275e-008
. Absorbed Dose Rate in Air mGy/hr 3.283e-011 1.113e-010 mrad /hr 3.283e-009 1.113e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 3.857e-011 1.310e-010 . o Opposeci " "
3.128e-011 1.059e-010 o Rotational " 3.128e-011 1.059e-010 o Isotropic " 2.768e-011 9.369e-011 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.107e-011 1.395e-010 o Opposed " " 3.910e-011 1.327e-010 o Rotational " ' 3.910e-011 1.327e-010 o Isotropic " 2.957e-011 1.001a-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 3.424e-011 1.162e-010 o Posterior / Anterior " " 3.045e-011 1.032e-010 o Lateral " " 2.285e-011 7.718e-011 o Rotational " " 2.724e-011 9.227e-011 o Isotropic " " 2.333e-011 7.887e-011 Case
Title:
Cs-134: shielded 9 ft area at 1 sester ' -- - - g 1 4 l
. i S ,4t' 3
- . . .v .,
, , , . J N, .
e x. -
, l .~ . . . . p ,. .-
Side 4/ a e w ' % M icaI h t m ic l a r' Ar ca "-*>e '
,>X 110.16 U '11 11 li nt er' - Shi<id "" 7 -==" 0.s t a l X
i l' . lq' . ' H 'll 11 % l y, v. ' 3 I P I li' ( e,6 j ) - t im it - , , , ,1 i n tic l uit o
- 1. l. ..,Q,..i,iI ie ) , i i i 4 .ist i ' , I+t1i sii io.,l<.- a.. ., iT1I ui'< hi i':<:s
w,...-...--;- - -
, CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 72 of 233 CONVERSION ,OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 134U9.MS4 Case
Title:
Cs-134: unshielded 9 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:26 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm /sec 2 2.161e-005 2.179e-005 Photon Energy Fluence Rate MeV/cm2 /sec 1.515e-005 1.527e-005 Exposure Rate in Air mR/hr 2.906e-008 2.930e-008
, Absorbed Dose Rate in Air mGy/hr 2.537e-010 2.558e-010 mrad /hr 2.537e-008 2.558e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 2.988e-010 3.013e-010 , o Opposed " "
2.413e-010 2.433e-010 o Rotational 2.413e '010 2.433e-010 o Isotropic 2.135e-010 2.152e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 3.180e-010 3.206e-010 o Opposed " " 3.025e-010, 3.050e-010 o Rotational
~
3.025e-010 3.050e-010 o Isotropic 2.281e-010 2.300e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/br 2.650e-010 2.672e-010 o Pocterior/ Anterior " " 2.351e-010 2.370e-010 o Lateral 1.758e-010 1.772e-010 o Rotational " 2.103e-010 2.120e-010 o Isotropic " 1.79?e-010 1.811e-010 I Case T it le : Cm-134: unslitelded 9 f t 2 area at 1 ester
. i ,
e j Ie g i % a Y s . , r
.g '
g %
. b ,_i_ - -> ; , - . .. ., $ j g. $ j gg . Q g.g j g g j b i Alle(U l dr' 8Pefd - -~-'"-W" PX 16H H U, 'il 14 - " " ' ": ' hirld IEnt,r , ' ' tuta1 ,
X Y l', /, 1(- 'i.1 +1
.f .
lg][ I , 4 gg ,
., _m m,e t . 1 .,m J,.'A i .- .. ;, t. , ] ,3 J+ ,1 l t,3,,, l - ,., , l T .1 ! t; i t i !n yi, si ., < n d
G
gm. .m v- -- _ - .- _.
, CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 73 of 233 CONVERSION,OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 134S3.MS4 Case
Title:
Cs-134: shielded 3 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:06 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm'/sec 1.031e-006 3.477e-006 Photon Energy Fluence Rate McV/cm'/sec 7.454e-007 2.450e-006 Exposure Rate in Air mR/hr 1.423e-009 4.696e-009
, Absorbed Dose Rate in Air mGy/hr 1.243e-011 4.100e-011 mrad /hr 1.243e-009 4.100e-009 Deep Dose Equivalent Rate (ICRP 51 - 19 8 ') )
o Parallel Geometry mSv/hr 1.460e-011 4.827e-011 o Opposed " " 1.184e-011 3.901e-011 o Rotational 1.184e-011 3.901e-011 o Isotropic 1.048e-011 3.451e-011 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.555e-011 5.137e-011 o Opposed " " 1.480e-011 4.887e-011 4.887e-011 o Rotational 1.480e-011 o Isotropic " 1.119e-011 3.687e-011 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 1.296e-011 4.281e-011 o Posterior / Anterior " " 1.153e-011 3.800e-011 o Lateral 8.650e-012 2.842e-011 o Rotational " " 1.031e-011 3.399e-011 o Isotropic " " 8.829e-012 2.905e-011
,--- Case
Title:
Cs-134: sMelded 3 f t 2 area at i noter i e 3, .
. . y T
l
*(,
l e k k,d , k
' ' " ' ~ . ,>X 11H.16 U 'u.'."' ' il I f ot . r !;h i e l d lu t a i ! X ,
7 .t, UD.P. H '..'.of 81
~. I ' , u h ,N ,
N :
, }'
- bhr I eM gt Ii i i i s , ,ig o i,; jlid . 41
- f. 2 i,. i .- .
. .;i- , i.it- i,I 'i,,.[ . . <- , I T.i h I < u iii h - oii.;-
j l l
CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 74 of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 134U3.MS4 Case
Title:
Cs-134: unshielded 3 ft'2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:04 a.m. Results (Summed over energies) Units Without Buildup With Buildup 2 Photon Fluence Rate (flux) Photons /cm /sec 7.805e-006 7.868e-006 Photon Energy Fluenci Rate MeV/cm2 /sec 5.473e-006 5.516e-006 i Exposure Rate in Air mR/hr 1.050e-008 1.058e-008
, Absorbed Dose Rate in Air mGy/hr 9.164e-011 9.237e-011 mrad /hr 9.164e-009 9.237e-009 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.079e-010 1.088e-010 o Opposed " "
8.718e-011 8.787e-011 o Rotational " 8.718e-011 8.787e-011 o Isotropic 7.711e-011 7.772e-011 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.149e-010 1.158e-010 o opposed 1.093e-010 1.101e-010 o Rotational 1.093e-010 1.101e-010 o Isotropic " 8.239e-011 8.305e-011 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 9.572e-011 9.648e-011 o Posterior / Anterior " " 8.492e-011 8.560e-011 o Lateral " 6.349e-011 6.399e-011 o Rotational " 7.595e-011 7.656e-011 o Isotropic " 6.490e-011 6.541e-011
~~- - , Ca se
Title:
Cs 134: unshielded 3ft 2 area at i soster
) .
4 1
. . . := s ', l I ' - * - --' ~~ ~ - - ' Side Umw OertisaI b r tangu l a r Area ' ... ," L 91
- JX 10H H J I L>t , r ';b a i l .f l oi t. a 1 y '
l <
,. :..y la 7"i ij ' '"l '
{ j , i.- m,. 1'., .. ,- . 1 H ti H
.! 6 <,i 1 , !. ' ,iI f ,.,l,. .~ 11 >! , e a 1. h. it ie ," , ,.-n b
e I
CY-HP.0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0
, Licensed to Yankee Atomic Electric , Company Page 75 of 233 CONVERSION pF CALCULATED EXPOSf"" IN AIR TO DOSE FILE: 58400S.A.
Case
Title:
Co-58: shielded 400 ft'2 area at 1 meter This case was run on Monday, January 11, 1999 at 10:05 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm8 /sec 7.288e-006 3.253e-005 Photon Energy Fluence Rate MeV/cm2 /sec 5.557e-006 2.422e-005 Exposure Rate in Air mR/hr 1.058e-008 4.621e-008
. Absorbed Dose Rate in Air mGy/hr 9.237e-011 4.034e-010 mrad /hr 9.237e-009 4.034e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/tt 1.080e-010 4.727e-010 . o Opposed 8.823e-011 3.650e-010 o Rotational " '
8.823e-011 3.850e-010 o Isotropic " ' 7.800e-011 3.403e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/nr 1.154e-010 5.044e-010 o Opposed " " 1.100e-010 4.808e-010 o Rotational " 1.100e-010 4.808e-010 o Isotropic " 8.344e-011 3.640e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 9.612e-011 4.203e-010 o Posterior / Anterior " " 8.584e-011 3.748e-010 o Lateral " " 6.480e-011 2.823e-010 o Rotational " " 7.681e-011 3.353e-010 o Isotropic " " 6.592e-011 2.874e-010
-- - Came
Title:
Co 58: shieIded 4tMI f t 2 area at '1 seetes-
\
l y 0 Y s
. a.s ';ide Uiew - Oert is a 1 Rec t a nwu.L ar Acen ' ' ~ ~ * - " " " - - - - .PX 11Hs 1b U l H:8.t. I F.n t e r ::h i e ld D.S t .i ! . X , , t H t .t W e, -
I
, ,. . .i.o .
i r t i... ,. ,
,, ,lon :n, e - j m 1 , '. . . . . ini, ni t,~,i. -
a, . i l a i u i t i n,- 1, m u - i l
...u.m..-- - . - . . . - . ~ . - - ---...-.:.--~.. , . . - - * - n----~ - - ~ ~ ~ - - - > - - .
< CY-HP-0031 MicrcShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric , Company Page 76 of 233 CONVERSION,OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 58400U.MS4 Case
Title:
Co-58: unshielded 400 ft'2 area at 1 meter This case was run on Monday, January 11, 1999 at 10:02 a.m. Results (Summed over energies) Units Without Buildup With Buildup 2 Photon Fluence Rate (flux) Photons /cm /sec 1.353e-004 1.374e-004 Photon Energy Fluence Rate MeV/cm2 /sec 9.939e-005 1.009e-004 Exposure Rate in Air mR/hr 1.89Be-007 1.927e-007
. Absorbed Dose Rate in Air mGy/hr 1.657e-009 1.682e-009 mrad /hr 1.657e-007 1.682e-007 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.943e-009 1.973e-009 . o Opposed " "
1.580e-009 1.604e-009 o Rotational 1.580e-009 1.604e-009 1.418e-009 o Isotropic 1.397e-009 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 2.073e-009 2.105e-009 o Opposed " " 1.975e-009 2.005e-009 2.005e-009 o Rotational 1.975e-009 o Isotropic " 1.494e-009 1.517e-009 Effective Dose Eglivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 1.727e-009 1.754e-009 o Posterior / Anterior " " 1.539e-009 1.562e-009 o Lateral " " 1.157e-009 1.175e-009 o Rotational " 1.377e-009 1.397e-009 o Isotropic " 1.179e-009 1.197e-009
- - - Ca se itle: Co --58 : essishie dad 4 -f4 2 area at i soster ~ .\ , *A 4 Y
v ,
'. , a 1 ppg --*--4bbfM M / 's %~ p> l-- -
l Q6 lgy f g gg g g[ GY' L J ? , '-* .T't 14N) ,9 U i .n' d i. l i:n t e r :: hie Id lutal
)( e f>X Y a4 y ll t .n' i' ( . .
- t. me I
l l A " -
,,ic u . ,. -
m ., .. ,.o, . E m u,
'" J - .- . - .; ' <.1 e,, ..,,it . I elI t iil fa n. s. , I . .- -- . lT..!.I uif. lo- ot'.J O
e CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 _ . . . . ... Licensed to Yankee Atomic Electric Company Page 77 of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 58225S.MS4 Case
Title:
Co-58: shielded 225 ft'2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:57 a.me Results (Summed over energies) Units Without Buildup With Buildup 2 Photon Fluence Rate (flux) Photons /cm /sec 7.088e-006 3.071e-005 Photon Energy Fluence Rate MeV/cm2 /sec 5.400e-006 2.284e-005 Exposure Rate in Air mR/hr 1.028e-008 4.357e-008
, Absorbed Dose Rate in Air mGy/hr B.977e-011 3.804e-010 mrad /hr 8.977e-009 3.804e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.050e-010 4.457e-010 . o Opposed " "
8.575e-011 3.629e-010 o Rotational " " 8.575e-011 3.629e-010 o Isotropic " " 7.580e-011 3.208e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Gecmetry mSv/hr 1.121e-010 4.756e-010 o Opposed " " 1.069e-010 4.532e-010 o Rotational " " 1.069e-010 4.532e-010 o Isotropic " " 8.109e-011 3.432e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 9.341e-011 3.963e-010 o Posterior / Anterior " " 8.342e-011 3.533e-010 o Lateral " " 6.297e-011 2.661e-010 o Rotational " " 7.464e-011 3.161e-010 o Isotropic " " 6.406e-011 2.709e-010 se fit e: Co-58: sbiold 225 ft 2 area at 1 meter 1 g j
~s , y .\
i
. . ,n. p /= - -
Mide View Uesri af a i Rettayanlar Arca ' = - - -q~ v""="= j
>X I f ft .16 ' U ' 1 ' . 'J .- l l'n f'e r ::le f t i rl D.+ t
- l l X J 'l : . ll U . ',' . '
,. . m I
I' .I l ,ir 4; .c .. i.,,,2 ,...,1 i,. , e. s . , IN .1 i 4 - ', l l ii.i .i r iii 9' .l6IIi ii I f+i'6., I+- c -1 . j I I. I ;tc ii( })# 1 t
.~ ... ~ ~ .... .e .
L.. ..;.a.m.. .. . __ . . . ~ . .. . ~ .--- - , A - ._, . . . . .
- CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 78 of 233 CONVERSION ,OF CALCULATED EXPOSURE IN AIR TO DOSE . FILE: 58225U.MS4 Case
Title:
Co-58: unshielded 225 ft'2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:52 a.m. Results (Summed over energies) Units Without Buildup With Buildup 2 Photon Fluence Rate (flux) Photons /cm /see 1.081e-004 1.096e-004 Photon Energy Fluence Rate MeV/cm2 /sec 7.940e-005 8.043e-005 Exposure Rate in Air mR/hr 1.516e-007 1.536e-007
. Absorbed Dose Rate in Air mGy/hr 1.324e-009 1.341e-009 a
mrad /hr 1.324e-007 1.341e-007 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.553e-009 1.573e-009
. o Opposed "
1.262e-009 1.279e-009 o Rotational 1.262e-009 1.279e-009 1.116e-009 1.130e-009 o Isotropic Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.656e-009 1.670e-009 o opposed a " 1.578e-003, 1.599e-009 o Rotational 1.576e-009 1.599e-009 o Isotropic " " 1.194e-009 1.209e-009 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 1.380e-009 1.398e-009 o Posterior / Anterior " " 1.230e-009 1.246e-009 o Lateral " " 9.247e-010 9.367e-010 o Rotational " " 1.100e-009 1.114e-009 o Isotropic " " 9.420e-010 9.542e-010
. y -
- Case
Title:
Co-SB: usashielded Z25 ft 2 area at 1 secter 9 , .
.4 . -i . .f - . , y,-
Vert u e! Entarewular Area y-
. S ute View , .Y '
y : ,. l . , - . n, i.in
'. . , ' 4 t. Ii *r
- s k Q ' 'i li i;, j,i!t [.I,t .] - ..i , j [<t ( i > t fi l o s t. t' e
CY-HP-0031 MicroShield 4,10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 79 Of 233 CO!NERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 58144S.MS4 Case
Title:
Co-58: shielded 144 ft'2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:47 a. n. Results (Suinmed over energies) Units Without Buildup With Buildup 2 Photon Fluence Rate (flux) Photons /cm /sec 6.737e-006 2.816e-005 Photon Energy Fluence Rate MeV/cm2 /sec 5.127e-006 2.091e-005 Exposure Rate in Air mR/hr 9.764e-009 3.990e-008 Absorbed Dose Rate in Air mGy/hr 8.524e-011 3.483e-010 mrad /hr B.524e-009 3.483e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 9.971e-011 4.082e-010
. o opposed " "
8.141e-011 3.324e-010 o Rotational " " 8.141e-011 3.324e-010 o Isotropic " 7.197e-011 2.938e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.065e-010 4.356e-010 o Opposed " " 1.015e-010 4.151e-010 o Rotational " 1.015e-010 4.151e-010 o Isotropic " 7.699e-011 3.143e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 8.870e-011 3.629e-010 o Posterior / Anterior " " 7.921e-011 3.236e-010 o Lateral * " 5.979e-011 2.437e-010 o Rotational " " 7.087e-011 2.895e-010 o Isotropic " 6.082e-011 2.481e-010 Case T i t,le : Co-58: shierlded 144 f t~2 area' at i soster h E g O '., b - s a. me. e >= (.M
^ '^ ' '
I f' l f *W I ?( Ia NQ(0 $f Mia # ' ' ' ' ' ' ' '
*[ # " -~
lu t.a ' *
>X 11tl .16 U a.', /t , I L.t e r- :: h a u l .1 X' i i i . .: ' 1: ' a'. 'J i . $ h ,' 49 '!i ,I i .i - - ,,
b $ k#d .Il
,f,i)9 fi ) t + , . n .-
e
. i , CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 80 of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 58144U.MS4 Case
Title:
Co-58: unshielded 144 ft*2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:39 a.m. Results (Summed over energies) Units Without Buildup With Buildup a .............................. ..... ............... ............ 2 Photon Fluence Rate (flux) Photons /cm /sec 8.826e-005 8.932e-005 Photon Energy Fluence Rate MeV/cm2 /sec 6.482e-005 C.53a. 005 Exposure Rate in Air mR/hr 1.238e-007 1.252e-007
, Absorbed Dose Rate in Air mGy/hr 1.081e-009 1.093e-009 mrad /hr 1.081e-007 1.093e-007 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.268e-009 1.282e-009 o Opposed " "
1.031e-009 1.043e-009 o Rotational " " 1.031e-009 1.043e-009 o Isotropic " " 9.110e-010 9.217e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.352e-009 1.368e-009 o Opposed " " 1.288e-009 1.303e-009 o Rotational " " 1.28Be-009 1.303e-009 o Isotropic " " 9.745e-010 9.859e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 1.127e-009 1.140e-009 o Posterior / Anterior " " 1.004e-009 1.016e-009 o Lateral " " 7.549e-010 7.637e-010 o Rotational " " 8.978e-010 9.083e-010 o Isotropic " " 7.690e-010 7.780e-010 l
---- Case T i t le : Co-58: unshielded 144 ft 2 area at 1 meter 9
9l
$ 4 .
1 9'
- k Y -
e O Y .
-. x [ 4 - siae vieu ucreicai m.c ta ngu l a r area = . . 4 ,>X 1HH.g y a , , . 7f, H:n t i : r Shield lhit a l
- l x l v 11 - :' : 11
~,',~,'(,
n' ' i i . {'. -
- .- ' : r. ; -
)
l 1
.h i r tia p ;.,, - , . .. t, IUlf . N ,. , ., s .i.1 + .I t r c a i r 1. - - .-(. . I T4h I . u i t a lu- o ie u.: .
l I
CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 81 of 233 CONVERSION QF CAI.CULATED EXPOSURE IN AIR TO DOSE FILE: 5881S.MS4 Case
Title:
Co-58: shielded 81 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:35 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm /sec 2 5.939e-006 2.347e-005 Photon Energy Fluence Rate MeV/cm2 /sec 4.512e-006 .1.740e-005 Exposure Rate in Air mR/hr 8.595e-009 3.32Ce-008
, Absorbed Dose Rate in Air mGy/hr 7.503e-011 2.890e-010 mrad /hr 7.503e-009 2.898e-008 l
Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 8.770e-011 3.397e-010 o Opposed " " 7.166e-011 2.765e-010 o Rotational " " 7.166e-011 2.765e-010 o Isotrepic " " 6.335e-011 2.444e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 9.372e-011 3.624e-010 o opposed " " 8.936e-011 3.454e-010 o Rotational " " 8.936e-011 3.454e-010 o Isotropic " " 6.777e-011 2.614e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 7.809e-011 3.020e-010 o Posterior / Anterior " " 6.972e-011 2.692e-010 o Lateral " " 5.262e-011 2.027e-010 o Rotational " " 6.238e-011 2.408e-010 o Isotropic " " 5.353e-011 2.064e-010
- .-- ' Case Mt le : Co 45 : shielded 81 ft 2 area at 1 noter I .
i r I i d l l A i s
. - . < J , -i .
r .. c
. .. <; j gt e yjg Ug.p t g o, ] btiengular Area *="*w=' '4 l ~-- l
- 4 ;>X 11ft .16 ,U f /4. 'M l l:nt cr- ::h ir Ig lu t a l l x
v
; y p.s u mu ~ . n [itus , p - ..
l
':it <.a' i..+y. 1t111 ti T . 2 .
- i. . ! ; ,',.- ,, , lvil- sil tr. ig l - 9e, I T . !.1 uu i t t he vieul.
.a . .w . - i O
Y .
/
CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 82 of 233 CONVERSION* OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 5881U.MS4 Case
Title:
Co-58: unshielded 81 ft^2 area at 1 meter l This case was run on Monday, January 11, 1999 at 9:31 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 6.509e-005 6.578e-005 Photon Energy Fluence Rate MeV/cm2 /sec 4.780e-005 4.829e-005 Exposure Rate in Air mR/hr 9.128e-008 9.223e-008
. Absorbed Dose Rate in Air mGy/hr 7.969e-010 8.051e-010 mrad /hr 7.969e-008 8.051e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 9.347e-010 9 444e-010 o Opposed "
7.600e-010 7.679e-010 o Rotational " 7.600e-010 7.679e-010 o Isotropic " 6.718e-010 6.787e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 9.970c-010 1.007e-009 o Opposed " " 9.499e-C10 9.598e-010 o Rotational " 9.499e-010 9.598e-010 o Isotropic " 7.186e-010 7.260e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 8.308e-010 8.394e-010 o Posterior /7.nterior " ' 7.402e-010 7.479e-010 o Lateral " 5.567e-010 5.624e-010 o Rotational " " 6.621e-010 6.689e-010 o Isotropic " " 5.671e-010 5.729e-010 Case
Title:
Co-SS: unshielded 31 ft ,;qrea at 1.me . r i
, ', , h. ', . t y *
- [ _ h' %
, .y , 4 Y $. M '*
l . . . , . -
' ' " ' Side uiou vertical hot.nguia Aram - -1 v m-- = * 'tX 100.8 771 U
lq te r .'E i i < 1,4 D.d.a 1 nV41.U: .'( j x 1. rc . u. n f .y . l~,.
. v3 .9. 3 , ,n f
II;. j i * ( .iii;r,te'1' . }$1 N ,
- i. 1 ,. . l' ,. , . ' ',m,,-
, in,;ts , I ri l'1 nI t o e , l ..; M i . , I f,. h i ;;uii<he u<u..
l 4 O
CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 83 of 233 CONVERSION,OF CALCULATED EXPOSURE IN NIR TO DOSE FILE: 5849S.MS4 Case
Title:
Co-58: shielded 49 ft*2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:26 a.m. Results (Summed over energies) Units Without Buildup With Buildup 2 Photon Fluence Rate (flux) Photons /cm /sec 4.958e-006 1.863e-005 Photon Energy Fluence Rate MeV/cm2 /sec 3.761e-006 1.379e-005 Exposure Rate in Air mR/hr 7.164e-009 2.632e-008
. Absorbed Dose Rate in Air mGy/hr 6.255e-011 2.298e-010 mrad /hr 6.255e-009 2.298e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 7.318e-011 2.693e-010 . o Opposed 5.973e-011 2.192e-010 o Rotational " "
5.973e-011 2.192e-010 o Isotropic " 5.280e-011 1.938e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 7.813e-011 2.874e-010 o opposed 7.449e-011 2.738e-010 o Rotational 7.449e-011 2.738e-010 o Isotropic 5.649e-011 2.073e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 6.510e-011 2.394e-010 o Posterior /Anterier " " 5.812e-011 2.134e-010 o Lateral " 4.385e-011 1.607e-010 o Rotational " 5.200e-011 1.909e-010 o Isotropic 4.462e-011 1.636e-010 Case
Title:
Co M : shielded 49 ft 2 area at 1 neter i , i f r 3
, , c 4 ,
Y
+ '
Y 1
-. x .-- *
- m .4 . . . . , . . = - Side View
..,=m.,-
Ucrtical Rec ta ngu lar Area - - - - - ,
>X I Ent. r ::hield lO t a l-11H.16 U ,1 1. n.
X '3 Y 4 :6'.. 4.:l ' H /1 I . N. 'h x ;l :<,,':: ' it i r i .. e l l,i i t . , , ,'it.- 1. t lidi H T, j .. , . , I j.<. ] ,t ., ..i.'4 , [ (, I t si l f . e ,4,I,. -r- , iT.,' ! u i t i 1. - o i . .r J
CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 84 of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 5849U.MS4 Case
Title:
Co-58: unshielded 49 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:03 a.m. Results (Summed over energies) Units Without Buildup With Buildup e .............. .............. ..... ............... ............ Photon Fluence _ tate (flux) Photons /cm2 /sec 4.775e-005 4.822e-005 Photon Energy Fluence Rate MeV/cm2 /sec 3.507e-005 3.540e-005 Exposure Rate in M T mR/hr 6.697e-008 6.761e-008
, Absorbed Dose Rate in Air mGy/hr 5.847e-010 5.902e-010 mrad /hr 5.847e-008 5.902e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 6.858e-010 6.923e-010 o Opposed "
5.576e-010 5.629e-010 o Rotational " 5.576e-010 5.629e ".0 o Isotropic " 4.929e-010 4.976e-0Av Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 7.315e-010 7.385e-010 o Opposed " " 6.970e-010 7.036e-010 o Rotational " 6.970e-010 7.036e-010 o Isotropic " 5.272e-010 5.322e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 6.095e-010 6.153e-010 o Posterior / Ant.erior " " 5.431e-010 5.482e-010 o Lateral " " 4 084e-010 4.123e-010
" " 4.904e-010 o Rotational 4.858e-010 o Isotropic " "
4.161e-010 4.200e-010 7--=' Case 8
Title:
Co-58: unishielded 49 f t 2 area at i soster s l^ 4 ' Y F Y [
%* fW " ff Cd (' d $$QM df fCd "] -'~ # 70 ^ ' ' ## # >X liitt H U ,;1 : io i I:n t . r :;h i r l <1 luta X y 16 , , i .: : it . ' 1 ! . ' )t . . . . ; :. % ,.o n ) .n,,_.,.
Ifi.it ie i,' ir +- < ll1Lt . l1 i j- , l i 1 .. < . i i .l+4}l se] t . ,! !.- . <. IT.bl i.s i t e lu- ii'si-t 6
CY-HP-0031 MicroShield 4.10 - Revision #: 0 Serial #4.10-00521 Licensed to Yankee Atomic Electric Company Page 85 of 233 l CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 5BS25.MS4 Case
Title:
Co-58: shielded 25 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:41 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photens/cm2 /sec 3.485e-006 1.236e-005 Photon Energy Fluence Rate MeV/cm2 /sec 2.639e-006 9.138e-006 Exposure Rate in Air mR/hr 5.028e-009 1.744e-008
, Absorbed Dose Rate in Air mGy/hr 4.390e-011 1.523e-010 a
mrad /hr 4.390e-009 1.523e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 5.137e-011 1.785e-010
. o opposed "
4.192e-011 1.453e-010 o Rotational " 4.192e-011 1.453e-010 o Isotropic 3.706e-011 1.284e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 5.484e-011 1.904e-010 o Opposed " " 5.229e-011 1.815e-010 o Rotational 5.229e-011' 1.815e-010 o Isotropic " 3.964e-011 1.373e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 4.569e-011 1.587e-010 o Posterior / Anterior " " 4.079e-011 1.414e-010 a " o Lateral 3.077e-011 1.064e-010 o Rotational 3.650e-011 1.265e-010 o Isotropic 3.131e-011 1.084e-010
- Case T i t le : Co 58: shielded 25 ht area at i sieter
[ i l I,
- Y
} ~ .w ,: c 3
T S i <te View Ve-et ica l Area =- W Rec tangul lar
',/ h , ,tX 11H.16 I F.n t e r : 3. i c l <1 lutal X Y ,1 11 1'o' j '
f, a e G.e p
. . . .'irr 1. i ] Uli . H 1 , , . 1, i . . . . , ' .. !#elt il f,c, ,l.- . . , . - . I T. ' I a i t i lo - > i ria .G: , _
CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 86 of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 58U25.MS4 Case
Title:
Co-58: unshielded 25 ft'2 area at I r.eter This case was run on Monday, January 11, 1999 at 8:35 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm /sec 2 2.958e-005 2.984e-005 Photon Energy Fluence Rate MeV/cm2 /sec 2.172e-005 2.191e-005 Exposure Rate in Air mR/hr 4.148e-008 4.184e-008
. Absorbed Dose Rate in Air mGy/hr 3.621e-010 3.653e-010 mrad /hr 3.621e-008 3.653e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.247e-010 4.284e-010 . o Opposed " "
3.454e-010 3.484e-010 3.484e-010 o Rotational 3.454e-010 o Isotropic " 3.053e-010 3.079e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.531e-010 4.570e-030 o Opposed " " 4.317e-010 4.354e-010 o Rotational " " 4.317e-010 4.354e-010 o Isotropic " 3.265e-010 3.294e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 3.775e-010 3.80Be-010 o Posterior / Anterior " " 3.364e-010 3.393e-010 o Lateral " " 2.530e-010 2.552e-010 o Rotational " " 3.009e-010 3.035e-010 o Isotropic " " 2.577e-010 2.599e-010
- - - -- Case
Title:
Co 53: unshielded 25 f t 2 area at i soster t s e g
. . y T 4 l .. . s - - x _ l Sido Uieu Ucrtica1 Rec ta ngu I4r Area *=~-"=- - >X IHM . it U J '.M .1 i f:n t e r ::h n e ld Datal X .,
j Y 'f.
. . H l'i/ 1 m ,
l'i i r- bep
!' .r << .i<.t ](179 41
- : - . ! .. l .l... .- ,,iii .Ivilt til ti..ol.- i x e . . , l T.i t 1 .uit M- viev
.y . , --
1 l i 6 I{ p
CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 87 of 233 COINERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 58S9.MS4 Case
Title:
Co-58: shielded 9 ft^2 area at 1 meter This case was run on Monday, January 11, 1999'at 8:30 a.m. 1 Results (Summed over energies) Unite Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 1.660e-006 5.565e-006 Photon Energy Fluence Rate MeV/cm2 /sec 1.255e-006 4.109e-006 Exposure Rate in Air mR/hr 2.391e-009 7.844e-009
, Absorbed Dose Rate in Air mGy/hr 2.087e-011 6.848e-011 mrad /hr 2.087e-009 6.848e-009 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 2.443e-011 8.028e-011 , o Opposed "
1.993e-011 6.532e-011 o Rotational 1.993e-011 6.532e-011 o Isotropic 1.762e-011 5.774e-011 l Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 2.608e-011 8.565e-011 o Opposed 2.486e-011 8.162e-011 o Rotational 2.486e-011 8.162e-011 o Isotropic 1.885e-011 6.176e-011 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 2.173e-011 7.137e-011 o Posterior / Anterior " " 1.939e-011 6.361e-011 o Lateral 1.463e-011 4.786e-011 o Rotational 1.735e-011 5.690e-011 o Isotropic 1.488e-011 4.875e-011
- - ~ + - - - Case
Title:
Co-58: shisided 9 (t 2 area at 1 soster f - " l , . l
,? A i Y i
a
. m j m. l r Y , . . . . m..- .,c. . =v - Side View Certital Rectangular Area m==--=- a 9 >X 11H.16 U ')1. 41 ILnter Shield Datal '
X c l', ,. H 91 11 e . l $ir Me- - - ) 1 :i, i r , i ,1 ;r t. r- t 1IW . H f : . .. I !- . . ,-l ,1...,. . ,i t< , LoIt eiI tj,q.,l. .E
. . . . . . I T.. t.1 u i t < l ., - v ieu -
s
J CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 88 of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 58U9.MS4 Case
Title:
Co-56: unshielded 9 ft"2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:25 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm /sec 2 1.266e-005 1.276e-005 Photon Energy Fluence Rate MeV/cm2 /sec 9.297e-006 9.371e-006 Exposure Rate in Air mR/hr 1.775e-008 1.790e-008
, Absorbed Dose Rate in Air mGy/hr 1.550e-010 1.562e-010 mrad /hr 1.550e-008 1.562e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.818e-010 1.832e-010 o opposed 1.478e-010 1.490e-010 o Rotational 1.478e-010 1.490e-010 o Isotropic 1.307e-010 1.317e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.939e-010 1.955e-010 o Opposed a "
1.848e-010 1.862e-010 o Rotational 1.848e-010 1.862e-010 o Isotropic 1.398e-010 1.409e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 1.616e-010 1.629e-010 o Posterior / Anterior " " 1.440e-010 1.451e-010 o Lateral " " 1.083e-010 1.091e-010 o Rotational " 1.288e-010 1.298e-010 o Isotropic " " 1.103e-010 1.112e-010 Case
Title:
Co-SB: unshielded 9 f t 2 area at 1 seater e g
- v .
y Y
- . . y ~
w
' ' - - - - =- Side t>iew - Uertsral Rect a segu la r Arca -~=---'--g--- * >X 100.0 U ' J 1 .1 -1 I I:nt e r :"h i eyd li i t a 1 )( Y I', L' H ' A 1.11 s . m ,
a nur t .. e f in , t ..n- ir. .t i . i 1 Uti . H 1, 1 . , . .
,,.c. I ,i..., - <nii- . Init ii l in...,l.- ,. I T.i L I w i f e lo- vie .>
CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 89 of 233 CONVERi., ION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 58S3.MS4 Case
Title:
Co-58: shielded 3 ft'2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:08 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 6.280e-007 2.050e-006 Photon Energy Fluence Rate MeV/cm2 /sec 4.744e-007 1.512e-006 Exposure Rate in Air mR/hr 9.040e-010 2.887e-009
, Absorbed Dose Rate in Air mGy/hr 7.892e-012 2.520e-011 mrad /hr 7.892e-010 2.520e-009 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 9.237e-012 2.955e-011 o opposed 7.536e-012 2.404e-011 o Rotational 7.536e-012 2.404e-011 o Isotropic 6.661e-012 2.125e-011 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 9.861e-012 3.153e-011 o opposed 9.401e-012 3.004e-011 o Rotational " "
9.401e-012' 3.004e-011 o Isotropic 7.126e-012 2.273e-011 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 8.216e-012 2.627e-011 o Posterior / Anterior " " 7.333e-012 2.341e-011 o Lateral 5.531e-012 1.762e-011 o Rotational 6.561e-012 2.094e-011 o Isotropic 5.628e-012 1.794e-011 Case
Title:
Co M : shielded 3 ft 2 area at i seeter
- i ) ..[
i e i M. H , I '.
~
Y l 9 I m -
-l W. . , -. . , - -m.,m -- . , . ..z.
Side. View Ucrtical N t.aeegular Area --- - - - - ~ " = ~ = = '
- >X 116.16 V '.X .+"i1 I In,t i r Sh ie Id l'a t31 X y 1, PA1', H ',/ :, 'a1 a , ,e, 'st,l' .
s
, nir I..p N um, . . ... ,. ,. im n i I . . . . I ,-...J l- i ,- u. : t . [(iI' eii +..;o1- .-- , i T . ' .1 ai1e ! :, vi~o.
l l
- l
CY-HP-0031 Revision #: 0 MicroShield 4.10 - Serial #4.10-00521 Licensed to Yankee Atomic Electric Company Page 90 of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 58U3.MS4 Case
Title:
Co-58: unshielded 3 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:58 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 4.573e-006 4.609e-006 Photon Energy Fluence Rate MeV/cm2 /sec 3.358e-006 3.384e-006 Exposure Rate in Air mR/hr 6.413e-009 6.462e-009
. Absorbed Dose Rate in Air mGy/hr 5.599e-011 5.642e-011 a
mrad /hr 5.599e-009 5.642e-009 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 6.567e-011 6.617e-011
. o Opposed "
5.340e-011 5.381e-011. a o Rotational " 5.340e-011 5.381e-011 o Isotropic " 4.720e-011 4.756e-011 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 7.005e-011 7 059e-011 o opposed " 6.674e-011 .,.725e-011 o Rotational " 6.674e-011 6.725e-011 o Isotropic " 5.049e-011 5.087e-011 Effective Dose Equivalent Rate (ICRP 51 - 1987)
- o Anterior / Posterior Geometry mSv/hr 5.837e-011 5.881e-011 o Posterior / Anterior " "
5.200e-011 5.240e-011 o Lateral " " 3.911e-011 3.941e-011 o Rotational 4.652e-011 4.687e-011 o Isotropic 3.984e-011 4.015e-011 Case
Title:
Co-9: unishielded 3 ft area at 1 sieter a bt
- A 4
Y I
$ 9 f e_ . - . - - S i de- Usew Vert it.a t b o t a ngu l a r Area m- ~ - - - - - - - - - - ; >X ffitt . tt U '/ ." L i1 l l:n t e r Mii i c ld Iso t a l )
x -
.o : " n a v p. ",1 ' ,, : n,r,
- h fair f.ip l).,t 1 ,'t f. 1 l l' t1 (i T. 1 - I 4 4i c 3 , -
- I fi ) I ti ! ,fre- ,I- ...s- , lT
X 116.16 .U f an f. (f o t e i Shisid lio t .i l X *i ol H .., u1'i . (,
..- .-1 1 . I o,..,~,,
i ' 1, t ,. - l l *J J 6( f
; r . , ' ' ...i. . . .;i . liil t tel fi..,]. .s, , iT4I uiit he- vti w m ve c s -
1 4
1 l CY-HP-0031 Revision #: 0 MicroShield 4.10 - Serial #4.10-00521 Licensed to Yankee Atomic Electric Company Page 92 of 233 CONVERSION,OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 137400U.MS4 Case
Title:
Cs-137: unshielded 400 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 10:01 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm /sec 2 9.311e-005 9.477e-005 Photon Energy Fluence Rate MeV/cm2 /sec 5.587e-005 5.686e-005 Exposure Rate in Air mR/hr 1.090e-007 1.110e-007 Absorbed Dose Rate in Air mGy/hr 9.520e-010 9.689e-010 mrad /hr 9.520e-008 9.689e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.136e-009 1.157e-009 o opposed " 8.983e-010 9.143e-010 o Rotational " " 8.983e-010 9.143e-010 o Isotropic " " 7.944e-010 8.086e-O'O Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.203e-009 1.225e-009 o Opposed " " 1.140e-009 1.160e-009 o Rotational " " 1.140e-009 1.160e-009 o Isotropic " " 8.481e-010 8.632e-010 Effective Dose Equivsalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 1.002e-009 1. 02 0e-(2 0 9 o Posterior /;mterior " " 8.782e-010 8.939e-010 o Lateral " " 6.436e-010 6.550e-010 o Rotational " " 7.844e-010 7.983e-010 o Isotropic " " 6.637e-010 6.755e-010 Case fit,.: Cs-137: unshielded 488 ft ,2 area at i noter ; I f
.e3 y
i T g
- ?. g .. _ . . - . - - , . . . ..- 4 g;ide (/new 4/ertitaI h tagu lar ha = = = ' " " - = ' * - " ~ , ,>X 1HH.H U (E l 6 II:nt i r ::hield Dtal 4
X Y . e "1 ': H 1319 6 -
- j. ,s l .
, . nic car ,- : I .- 'i- te , *, 1 H}i H
- 1
' ' .. . I i . . ,i. . '
.
- y? , :
Title:
Cs-137: unshielded 225 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:51 a.m. l Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 7.441e-005 7.555e-005 Photon Energy Fluence Rate MeV/cm2 /sec 4.464e-005 4.533e-005 Exposure Rate in Air mR/hr 8.714e-008 8.847e-008
, Absorbed Dose Rate in Air mGy/hr 7.608e-010 7.724e-010 mrad /hr 7.608e-008 7.724e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 9.081e-010 9.220e-010 . o Opposed " "
7.179e-010 7.289e-010 o Rotational 7.179e-010 7.289e-010 o Isotropic " 6.349e-010 6.446e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 9.617e-010 9.764e-010 o opposed " 9.108e-010 9.247e-010 o Rotational " 9.108e-010 9.247e-010 o Isotropic 6.777e-010 6.881e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 8.009e-010 8.132e-010 o Posterior / Anterior " " 7.018e-010 7.125e-010 o Lateral 5.143e-010 5.222e-010 o Rotational " 6.268e-010 6.364e-010 o Isotropic " 5.304e-010 5.385e-010 Case
Title:
Cs-137: unshielded 225 ft 2 area at 1 meter i
\ *A s
Y y . . l
-=X+-
Side Vseu - VerticaI Rectangulas Area =-'m==='=-=---
>X ' 1HO.H U I' ,7 . / IFot r- :h i e la lut a l X i 'ti f, H l' ,7 ;' '.ll 1, .c ., ~ '
II..;i r, i.t ..t, r , 1 Hii . H
* ; .,i.- ! , . - ,-I e b., ,. - ii ! t- , l ,, I t ie I t ,, , < , l . - .e , I T i t. I ui*<he- .vinu-G
CY-HP-0031 Revision #: 0 MicroShield 4.10 - Serial #4.10-00521 Licensed to Yankee Atoraic Electric Company Page 95 of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 137144S.MS4 Case
Title:
Cs-137: shielded 144 ft*2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:46 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 3.726e-006 1.829e-005 Photon Energy Fluence Rate MeV/cm2 /sec 2.236e-006 1.098e-005 Exposure Rate in Air mR/hr 4.364e-009 2.142e-008
, Absorbed Dose Rate in Air mGy/hr 3.810e-011 1.870e-010 mrad /hr 3.810e-009 1.870e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.547e-011 2.232e-010 o Opposed " " , 3.595e-011 1.765e-010 o Rotational "
3.595e-011 1.765e-010 o Isotropic " " 3.179e-011 1.561e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.816e-011 2.364e-010 o Opposed " 4.561e-011 2.2399-010 0 Rotational " 4.561e-011' 2.239e-010 o Isotropic " 3.394e-011 1.666e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 4.011e-011 1.969e-010 o Posterior / Anterior " " 3.514e-011 1.725e-010 o Lateral " 2.575e-011 1.264e-010 o Rotational " 3.139e-011 1.541e-010 o Isotropic " 2.656e-011 1.304e-010 Case
Title:
Cs-137: shielded 144 ft 2 area at 1 soster
.1 A >'
W'
. , s.
1 .
\ *5 l * ' , 4 IA .m. --m-.--.,-. . . - - ,- Side Uinu -- Vertita1 Re<tanguIar Area - == -'= >X. 110. % U h.'. .'f. Ifut r 2 :li i - l .I li.i t a l
- X Y 1: .' :d: H h'. .
f. ; .5 1 ' .# ' ': ;
e d's i O I .1 g b llti l i a 4 .i!1T1 l- I , .
, } Iid, d I 1 is t'ie- , l ,i.a' k,a it ,t*\ <'t3 , ) %' , $ (l $ i I l$ 'n'i'J !* 8 . ! $
- k- 'k)1 4 }H' Ii 1) -
- . 7 ,
CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 96 of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 137144U.MS4 Case
Title:
Cs-137: unshielded 144 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:39 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 6.076e-005 6.159e-005 Photon Energy Fluence Rate MeV/cm2 /sec 3.645e-005 3.695e-005 Exposure Rate in Air mR/hr 7.115e-008 7.213e-008
, Absorbed Dose Rate in Air mGy/hr 6.212e-010 6.297e-010 mrad /hr 6.212e-008 6.297e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 7.415e-010 7.516e-010 . o Opposed 5.862e-010 5.942e-010 o Rotational "
5.862e-010 5.942e-010 o Isotropic 5.184e-010 5.255e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 7.852e-010 7.960e-010 o Opposed " 7.437e-010 7.539e-010 o Rotational 7.437e-010 7.539e-010 o Isotropic 5.534e-010 5.610e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 6.540e-010 6.630e-010 o Posterior / Anterior " " 5.731e-010 5.809e-010 o Lateral 4.199e-010 4.257e-010 o Rotational 5.118e-010 5.188e-010 o Isotropic 4.331e-010 4.390e-010 Case
Title:
CN 137: unshielded 144 f t 2 asea a' t 1 sister
'e f r Y y s
x.
.,.t- 1)'.
- m. U i v . Uegi c a l Itec t a ngu l a r Area -=-=-==--- -
>X 1HH.H -
U a.'. '. L I Lii t e r- C h i e i rl lutal f X '? 1!7 /t . it a>'- '.'i,
, = ~ . . . . .{. '
c o .~ . .. ,.
!).,;1 ..4p+.. 100.(1 +
1 . . . ,' ;
*' ' .- ,.t, - . . . , , . I..ti ..l er, ,1,. . . . . - , [LSJ . 7 i t e' h - vl e a "
e G
. _.._e_ - , . . - - _ _ _ _ _ _ . . . _ _ _ , , CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 97 of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 13781S.MS4 Case
Title:
Cs-137: shielded 81 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:35 a.m. Results (Summed over energies) Units Without Buildup With Buildup a Photon Fluence Rate (flux) Photons /cm2 /sec 3.327e-006 1.540e-005 Photon Energy Fluence Rate MeV/cm2 /sec 1.996e-006 9.239e-006 Exposure Rate in Air mR/hr 3.897e-009 1.803e-008
, Absorbed Dose Rate in Air mGy/hr 3.402e-011 1.574e-010 mrad /hr 3.402e-009 1.574e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.061e-011 1.879e-010 , o Opposed "
3.210e-011 1.486e-010 o Rotational " " 3.210c-011 1.486e-010 o Isotropic " 2.839e-011 1.314e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.300e-011 1.990e-010 o opposed " 4.073e-011 1.885e-010 o Rotational " " 4.073e-011 1.885e-010 o Isotrop.;c 3.030e-011 1.403e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 3 cale-011 1.65Be-010 o Posterior / Anterior " " 3.138e-011 1.452e-010 , o Lateral " " 2.300e-011 1.064e-010 l o Rotational " 2.803e-011 1.297e-010 o Isotropic " 2.372e-011 1.098e-010 I Case
Title:
Cs-13h: shielded 81 ft 2 area at i noter
X il , .. , m .w........
I!i t : r ..( ;' 'I l Ulj . O I *-.. ! g.' il . . . . . , ttii I , lla ! i l' l i i a + 1 '( l(* ,.4s. f ' , l [.e f. l 'Uk l l( ' Vke 1, f ' . 4
CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 98 of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 13781U.MS4 Case
Title:
Cs-137: unshielded 81 ft*2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:31 a.m. Results (Summed over energies) Units Without Build'tp With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 4.481e-005 4.535e-005 Photon Energy Fluence Rate MeV/cm2 /sec 2.689e-005 2.721e-005 Exposure Rate in Air mR/hr 5.248e-008 5.311e-008
, Absorbed Dose Rate in Air mGy/hr 4.581e-010 4.637e-010 a
mrad /hr 4.581e-008 4.637e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 5.468e-010 5.535e-010
, o Opposed " 4,323e-010 4.376e-010 o Rotational " "
4.323e-010 4.376e-010 o Isotropic " 3.823e-010 3.870e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 5.791e-010 5.861e-010 o Opposed " 5.485e-010 5.551e-010 o Rotational " 5.485e-010 5.551e-010 o Isotropic " 4.081e-010 4.131e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 4.823e-010 4.882e-010 o Posterior / Anterior " " 4.226e-010 4.278e-010 o Lateral " 3.097e-010 3.135e-010 o Rotational " 3.775e-010 3,821e-010 o Isotropic " 3.194e-010 3.233e-010
~ --- Case
Title:
Cs-- 137 ; unshielded 91 ft^2 area at 1 meter ,
- A .
Y Y
- e. - - Side V i teu - Ve-r t i t a l Hei t aingu lar Area - = = = - ==- >X 100.69 U , , , u1 1' I I:n t . r ':h i. Id lu t a i ', ';' .1 f.'
X 1 : ,' 11. 11 1 ,' 1 (, lj h f fe..gD i i.p.f fi. i i.. ( gigj $$ I ' 'i- ! ' ' i,- riii1 , l i) If ii l +,,1 ).. .- . f T i t. ) vii< li, - v i e i,
/
4
CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company Page 99 of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 13749S.MS4 Case
Title:
Cs-137: shielded 49 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:25 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 2,809e-006 1.232e-005 Photon Energy Fluence Rate MeV/cm2 /sec 1.685e-006 7.389e-006 Exposure Rate in Air mR/hr 3.290e-009 1.442e-008
, Absorbed Dose Rate in Air mGy/hr 2.872e-011 1.259e-010 mrad /hr 2.872e-009 1.259e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 3.428e-011 1.503e-010 o Opposed a " , 2.710e-011 1.188e-010 o Rotational " "
2.710e-011 1.188e-010 o Isotropic " 2.397e-011 1.051e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 3.630e-011 1.592e-010 o opposed " 3.438e-011 1.507e-010 o Rotat.ional 3.438e-011 1.507e-010 o Isotropic " 2.559e-011 1.122e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 3.024e-011 1.326e-010 o Posterior / Anterior " " 2.650e-011 1.162e-010 o Lateral " " 1.942e-011 8.513e-011 o Rotational " " 2.366e-011 1.037e-010 o Isotropic " 2.002e-011 8.779e-011 Case Title; Cs-137: shielded 49 f t 2 area at 1 seeger ( , n i
^
l . r t 4 , g Y \ l , i I ' i (p ' -
-. y e- $1 '. . =.. m--- , - . . -
Side View Ucrtical b-rtangular Area ~ *-We .- ,
, ;>X 119.16 U /1 D 4, l Ent e-r Sh il- I A lutal X. Y 16u, t .: t H /1.1 A l e .'* I ,- 1,y, p,; /
ft i 't . ( .a p -a
%. ,,,t...o.r .
ne m T. ! . . . . i ., ..,i..,,... o,.it , i n i t ' ,i t tr,yl... , , - . I T ., t.1 u i t r i.e v i e tr.
l CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric CompanyPage 100 of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 13749U.MS4 Case
Title:
Cs-137: unshielded 49 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:02 a.m. Results (Summed over energies) Units Without Buildup With Buildup 2 Photon Fluence Rate (flux) Photons /cm /sec 3.288e-005 3.324e-005 Photon Energy Fluence Rate MeV/cm2 /sec 1.973e-005 1.995e-005 Exposure Rate in Air mR/hr 3.851e-008 3.893e-008
, Absorbed Dose Rate in Air mGy/hr 3.362e-010 3.399e-010 .trad/hr 3.362e-008 3.399e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.013e-010 4.057e-010 , o Opposed "
3.172e-010 3.207e-010 o Rotational " 3.172e-010 3.207e-010 o Isotropic " 2.805e-010 2.836e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.249e-010 4.297e-010 o Opposed " 4.024e-010 4.069e-010 o Rotational " " 4.024e-010 4.069e-010 o Isotropic " 2.995e-010 3.028e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 3.539e-010 3.578e-010 o Posterior / Anterior " " 3.101e-010 3.136e-010 o Lateral " 2.273e-010 2.29Be-010 o Rotational " 2.770e-010 2.801e-010 o Isotropic 2.344e-010 2.370e-010 Case
Title:
Cs-137: unsliie.ided 49 rt area at 1 soster. -
- i *A =
y 7 Y
. ~ .......-..,..-.- Side View m.. .
m-- Ucriicai hotangu lar Area = " - - " - - ' ' - ' ' ="==. , i 1HH.H U .11
'h I I:n t . . r Shield Ita t a l I )( l>X Y 16u, 4.a H .: 1 < 0, } l'f > f ., l I . O i r- I .a p il. i f ...itJr.: ? t- ,
liill H 1 1 is * . l , .! +i i/.- pin) i* , l i't }t h} iio a+i 1 - .'a" . 1 I.* I. ) ' uiIt hl ' o1*') 9
, CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric CompanJ' age 101 of 233 CONVERSION
- OF CALCULATED EXPOSURE IN nIR TO DOSE FILE: 137S25.MS4 Case
Title:
Cs-137: shielded 25 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:40 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 2.000e-006 8.232e-006 Photon Energy Fluence Rate MeV/cm2 /sec 1.200e-006 4.939e-006 Exposure Rate in Air mR/hr 2.342e-009 9.641e-009
. Absorbed Dose Rate in Air mGy/hr 2.045e-011 8.416e-011 mrad /hr 2.045e-009 8.416e-009 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 2.441e-011 1.005e-010 a . o Opposed "
1.930e-011 7.942e-011 o Rotational " " 1.930e-011 7.942e-011 o Isotropic " 1.707e-011 7.023e-011 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 2.585e-011 1.064e-010 o opposed " 2.448e-011 1.008e-010 o Rotational " 2.448e-011 1.008e-010 o Isotropic " 1.822e-011 7.498e-011 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 2.153e-011 8.861e-011 o Posterior / Anterior " " 1.887e-011 7.764e-011 o Lateral " 1.383e-011 5.690e-011 o Rotational " 1.685e-011 6.935e-011 o Isotropic " 1.426e-011 5.868e-011 Case
Title:
Cs-137: shielded 25 ft 2 area at 1 sieter 1 k i
*p i .
j ; Y 6 l i I x .
- m..= - - . - , . , . = -
Side Vip - Uert it 1 Itec t a ngu i a r Area - = - = =
>X 110.16 W l'~ 1 II'nt, r Nh ir lit lutal X Y i r, .< 11 1'o' 1 Jt...:
4tir t ..s p llti a $ .4
- If 5',9'f ll97 F1 T. 1 .i.. I i.. ,l ,
... i.- iiiit , Inli (i l tr i.# !.- .. .<-. ,iTif1 tj i f i In - v i s u-
CY-HP-0031 Revision #: 0 MicroShield 4.10 - Serial #4.10-00521 Licensed to Yankee Atomic Electric CompanyPage 102 of 233 CONVERSION OF CALCULATED EXPOSURE IN IIR TO DOSE FILE: 137U25.MS4 Case
Title:
Cs-137: unshielded 25 ft*2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:34 a.m. Results (Summed over energies) Units Without Buildup With Buildup 2 Photon Fluence Rate (flux) Photons /cm /sec 2.037e-005 2.057e-005 Photon Ene.gy Fluence Rate MeV/cm2 /sec 1.222e-005 1.234e-005 Exposure Rate in Air mR/hr 2.385e-008 2.409e-008
. Absorbed Dose Rate in Air mGy/hr 2.082e-010 2.103e-010 r ad/hr 2.082e-008 2.103e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 2.486e-010 2.511e-010 . o Opposed 1.965e-010 1.985e-010 o Rotational 1.965e-010 1.985e-010 o Isotropic 1.738e-010 1.755e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 2.632e-010 2.659e-010 o opposed 2.493e-010 2.518e-010 o Rotational " 2.493e-010 2.518e-010 o Isotropic 1.855e-010 1.874e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 2.192e-010 2.214e-010 o Posterior / Anterior " "
1.921e-010 1.940e-010 o Lateral 1.408e-010 1.422e-010 o Rotational 1.716e-010 1.733e-010 o Isotropic 1.452e-010 1.466e-010 Case
Title:
Cs-137: unshie ded 25 f t 2 area at 1 noter , v Y Side Usew Ve rt it.a 1 Ret t a ngst l a r Area =4--==-=-~ .
>X 1HH 49 U l ' .. : 1 1I hti r Slii. I d iLi t a 1 X Y '. ,* c' I( l ' . .J 1 l ' ' ' s 3
oii f..p
. . ' - ' . . 1H 3H , ; . ; . . . .! t , 4 - . Iie t t i,I t., .1.- , . < . l T .. L i o i 1 i hi N ii-u
- v. , ,
/ CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 POVISion #: O Licensed to Yankee Atomic Electric CompanyPage 103 of 233 CONVERSION* OF CALCULATED EXPOSURE IN nIR TO DOSE FILE: 137S9.MS4 Case
Title:
Cs-137: shielded 9 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:29 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 9.641e-007 3.729e-006 Photon Energy Fluence Rate MeV/cm2 /sec 5.785e-0C7 2.237e-006 Exposure Rate in Air mR/hr, 1.129e-009 4.367e-009
. Absorbed Dose Rate in Air mGy/hr 9.857e-012 3.812e-011 a
mrad /hr 9.857e-010 3.812e-009 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.177e-011 4.551e-011
. o Opposed " "
9.302e-012 3.598e-011 o Rotational " 9.302e-012 3.598e-011 o Isotropic " 8.226e-012 3.181e-011 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.246e-011 4.819e-011 o opposed " 1.180e-011 4.564e-011 o Rotational " " 1.180e-011 4.564e-011 o Isotropic " 8.781e-012 3.396e-011 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 1.038e-011 4.014e-011 o Posterior / Anterior " " 9.093e-012 3.517e-011 o Lateral " " 6.664e-012 2.577e-011 o Rotational " 8.122e-012 3.141e-011 o Isotropic " 6.872e-012 2.658e-011
- Game TitIe: Cs-137: shielded 9 ft 2 area at 1 meter s
j *A Y I , Y
= , .- =
1 Uer t i t a I Het ta ngu'l a r Area --
- = - - ' - -
Side View ":- q>X 11H.16 U ' '91 <1 1 I 1. i 1, r 5: h i v . l <l i f U Is.pt .i I l X Y i, H ' W1 11 9 r; j
..ic n., i, ,
l',i, ..,1 I o Ir . lNH H T ' ' .. 4
,1 .
1.i,i1 - . I eii t pe 1 1 ri ,,], ,..i, i T . l. ] - gSir14 e ie ts-n i 1
CY-HP-0031 Revision #: 0 ' MicroShield 4.10 - Serial #4.10-00521 Licensed to Yankee Atomic Electric Companfage 104 of 233 COWERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 137U9.MS4 Case
Title:
Cs-137: unshielded 9 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:24 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 8.718e-006 8.799e-006 Photon Energy Fluence Rate MeV/cm2 /sec 5.231e-006 5.279e-006 Exposure Rate in Air mR/hr 1.021e-008 1.030e-008
, Absorbed Dose Rate in Air mGy/hr 8.913e-011 8.996e-011 mrad /hr 8.913e-009 8.996e-009 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.064e-010 1.074e-010 . o Opposed " "
8.411e-011 8.489e-011 o Rotational 8.411e-011 8.489e-011 o Isotropic 7.438e-011 7.507e-011 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.127e-010 1.137e-010 o Opposed 1.067e-010 1.077e-010 o Rotational 1.067e-010 1.077e-010 o Isotropic 7.940e-011 0.014e-011 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 9.384e-011 9.471e-011 o Posterior / Anterior " " 8.222e-011 8.299e-011 o Lateral 6.026e-011 6.082e-011 o Rotational 7.344e-011 7.412e-011 o Isotropic 6.214e-011 6.272e-011 Case
Title:
Cs-137: uvisMeided 9 f t 3 area at 1 seeter A 9 4
$ k Y
Y
.4 - ,
e g. bI b hit %J kfkkCdl hM k A R$U k A F arf"O
#-' ' " - ' ' " " - ' ^ ' " '
g
>k ' 1HH E U 91 11 It%ter :;h ic M btal i
X Y P. A* 4 91 11 y . -l'. , 1 u, ,1 .. ,r . , , ma . a
* ;- .. r . .) . . , . . . . .t. , f (,1 t i,1 tr,o ,le. ...e- . I T.. t J v i i i h. - v ie u .
.c . . . . . . . -. a- .. ..~.~.a.-._ . .. ~ - ... . . _ ~ _ . ~ . . . . . . . . ._u. -
CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Compan33aae 105 of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 137S3.MS4 Case
Title:
Cs-137: shielded 3 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:08 a.m. Resulta (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm'/sec 3.669e-007 1.377e-006 Photon Energy Fluence Rate MeV/cm2 /sec 2.202e-007 8.261e-007 Exposure Rate in Air mR/hr 4.297e-010 1.613e-009
, Absorbed Dose Rate in Air mGy/hr 3.751e-012 1.408e-011 a
mrad /hr 3.751e-010 1.408e-009 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.478e-012 1.680e-011
, o Opposed "
3.540e-012 1.328e-011 o Rotational " " 3.540e-012 1.328e-011 o Isotropic " 3.131e-012 1.175e-011 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.742e-012 1.780e-011 o Opposed " " 4.491e-012 1.685e-011 o Rotational " 4.491e-012 1.685e-011 o Isotropic " 3.342e-012 1.254e-011 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 3.950e-012 1.482e-011 o Posterior / Anterior " " 3.461e-012 1.299e-011 o Lateral 2.536e-012 9.517e-012 o Rotational 3.091e-012 1.160e-011 o Isotropic " 2.615e-012 9.815e-012 Case
Title:
Cs-137: shielded 3 ft 2 area at i noter s . 1 i l 1
- b l
i - v i
- . x - . . .. . . s ,a oi,.. v,.c, ira am:1.. .i , nr . - ::. - - , *x uw w w ' .s .v o n: 4, r m,ii u um
- 4 X Y .i, l' it .1 h 11 '//'s'H I-
.f. : 4 1' ,
l . hl [' . .d k u , ,1 4s .,,,i, , . . 100 o
.' ' 3 . ; ,. ! 1. . , .. .,iit . I ri l + i, I t,,,1,. . . - - . l' T .. t. I uit<he- o i< o ;
4
CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric CompanyPage 106 o'233 CONVERSION* OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 137U3.MS4 Case
Title:
Cs-137: unshielded 3 ft*2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:01 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm'/sec 3.149e-006 3.177e-006 Photon Energy Fluence Rate MeV/cm2 /sec 1.890e-006 1.906e-006 Exposure Rate in Air mR/hr 3.688e-009 3.721e-009
. Absorbed Dose Rate in Air mGy/hr 3.220e-011 3.249e-011 a
mrad /hr 3.220e-009 3.249e-009 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 3.843e-011 3.878e-011
, o Opposed "
3.038e-011 3.066e-011 o Rotational " 3.038e-011 3.066e-011 o Isotropic " 2.687e-011 2.711e-011 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.070e-011 4.106e-011 o opposed " 3.855e-011 3.889e-011 o Rotational " 3.855e-011 3.889e-011 o Isotropic " 2.868e-011 2.894e-011 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 3.390e-011 3.420e-011 o Posterior / Anterior " " 2.970e-011 2.997e-011 o Lateral 2.177e-011 2.196e-011 o Rotational " 2.653e-011 2.677e-011 o Isotropic 2.245e-011 2.265e-011 Casei
Title:
Cs- 437 : unstielded 3 f t 2 area at i noter ; l 4
._/ f ,; e Y
a y
- x -
- f. gl
.. . . . .,.... .- siae ud.w >x , atlet Je vertiu i w % nsoiar nec t e - = - ~ ..
u i t.nt , e ::Jv i . t.t 4f; S t a X .J r 4.1' , il $',,/
/ / Ly:' c# n 1
Y, . 7 j-r .. l . r y. r . . ; n , , n . ;, 1:i t ,,.tir., t. i. - - 1 h t, 11 - T. 1 . , . . , l ,1., .! <;.... ,,..i 9
, f (< l 9 ,,) f,.i.4 1. . #< . I T.< l. I u i i , b. - >i,v- - /
4
,a~u-.A..-. - - - - . - - - - - -~ ~- ~ -- - - - - " ' * ~~ ~ ~ ^"" ~
, CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric ,Companfage 107 of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 60400S.MS4 Case Ti'*.e: Co-60: shielded 400 ft^2 area at 1 meter This case w&s run on Monday, January 11, 1999 at 10:03 a.m.
Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm /sec 2 1.982e-005 6.118e-005 , Photon Energy Fluence Rate MeV/cm2 /sec 2.580e-005 7.764e-005 Exposure Rate in Air mR/hr 4.467e-008 1.352e-007 Absorbed Dose Rate in Air mGy/hr 3.900e-010 1.180e-009 mrad /hr 3.900e-008 1.180e-007 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.431e-010 1.342e-009 a
. o opposed "
3.827e-010 1.157e-009 o Rotational " 3.827e-010 1.157e-009 o Isotropic " " 3.422e-010 1.033e-009 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.705e-010 1.426e-009 o Opposed " 4.538e-010 1.374e-009 o Rotational 4.538e-010 1.374e-009 o Isotropic " 3.616e-010 1.093e-009 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 3.988e-010 1.203e-009 I o Posterior / Anterior " " 3.680e-010 1.113e-009 o Lateral " 2.940e-010 8.867e-010 o Rotational 3.317e-010 1.003e-009 o Isotropic " 2.940e-010 8.873e-010 Case T i,t le : Co-49 : shielded 490 ft 2 area at,1 ter , rr ! i, J, s O g . 5 Y y '* ' A , F
> ,s 4 ' - -^ Side Vieu .Ucrtit.I Rm t a ngu i ar Area == -=- = - ~ = = =
- 119.16 V Wi L ILute r :;h i" I d lia l a l X
, , f>X Y mi i; 1 o 14 t c, i 5.
k I' o1j' t h., i + , ,.,,pm ,, - Im n
- i. 1 - ,- l. , ,, l ,i.3i . i i . ij . 1 ii it it l 'ri., l. . . . . - . IT'l oite ' . . y i .;
I O
CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Compan)Page 108 of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 60400U.MS4 Case
Title:
Co-60: unshielded 400 ft'2 area at 1 meter This case was run on Monday, January 11, 1999 at 10:00 a.m. Resul,ts (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 2.081e-004 2.103e-004 Photon Energy Fluence Rate MeV/cm2 /sec 2.602e-004 2.629e-004 Exposure Rate in Air mR/hr 4.546e-007 4.593e-007
, Absorbed Dose Rate in Air mGy/hr 3.960e-009 4.009e-009 mrad /hr 3.168e-007 4.009e-007 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.515e-009 4.562e-009
. o Opposed " 3.886e-009 3.926e-009 o Rotational " " 3.886e-009 3.926e-009 o Isotropic " 3.470e-009 3.506e-009 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.800e-009 4.850e-009 o opposed " 4.624e-009 4.672e-009 o Rotational " 4.624e-009 4.672e-009 o Isotropic " 3.672e-009 3.710e-009 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 4.062e-009 4.104e-009 o Posterior / Anterior " " 3.740e-009 3.778e-009 o Lateral " 2.975e-009 3.006e-009 o Rotational " 3.369e-009 3.404e-009 o Isotropic " " 2.979e-009 3.010e-UO9 Case
Title:
Co -Wp : unshielded 400 f t 2 area at '1 soster
\
- r. -
- e g y
- j T
i
- - 5. * % ,. *,
a j
+ Side Ugi ew Ucrt ha I Rectavegular Area . =,='~--=-'===J .
i>X 1HH.H U- r iW e 6 - l Ent e r Shield Ita t a l N ! / .'1 :. ,ll l WI e
!. i s. _ ;:o l g* ! < ,,0 <.a r l!> .; .. *y a . 9 , , . 1Pd.H e, ? "i .4 . - i l si; t ii tin, ,J. .-r , e ! J., ' ) ' u a f c h. ' vie w a? f 1
m rs CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric CompanyPage 109 of 233 [ CONVERSION* OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 60225S MS4 Case
Title:
Co-60: shielded 225 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:54 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 1.892e-005 5.642e-005 Photon Energy Fluence Rate MeV/cm2 /sec 2.458e-005 7.147e-005 Exposure Rate in Air mR/hr 4.258e-008 1.245e-007
. Absorbed Dose Rate in Air mGy/hr 3.717e-010 1.087e-009 mrad /hr 3.717e-008 1.087e-007 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.224e-010 1.236e-009 , o Opposed " "
3.648e-010 1.065e-009 o Rotational " 3.648e-010 1.065e-009 o Isotropic " " 3.261e-010 9.5139-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.485e-010 1.313e-009 o Opposed " " 4.326e-010 1.266e-009 o Rotational " 4.326e-010 1.266e-009 o Isotropic " " 3.446e-010 1.006e-009 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 3.802e-010 1.112e-009 o Posterior / Anterior " " 3.508e-010 1.025e-009 o Lateral " " 2.802e-010 8.163e-010 o Rotational 3.162e-010 9.231e-010 l o Isotropic " 2.802e-010 8.170e-010 l l
- v Case TJtle: Co-EJI : shleided 225 ft 2 area at.1 heter ~ ~
l li , a [ .. .
' ~
Y 4 . / r
.. t i ; - 1 , .' , ,
4 F ' 4
.m. ,_3.- . . , . . . - . . Side View - Vertical Se-ctangu lar Area - - = -
p 11H.16 U 4' ,7 . / 'l tuti r :;h ic l <t Da t'a ) l X l>X '
, 'lc - o, t, . H.' 1 ' ,7 . / ~ . 7 s.
4
.i i r. e . ., 3, -
l y..;; ,,,.ei,. v.,
,' - * - ' 10,J . t1 T( 1 . . . <t ih..u,, e ni1- , i n 1 t, $5 I 9 <r s r 11- yv*- . 1 T' . 6. I .
uiii he t. v i r i.P. . ' ' 4 4
,. _. .. _ . ..m . , 4._.... ....m__c. . - . . . - . . . _ _ . . _ CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric CompanyPage 110 of 233 CONVERSION ,OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 60225U.MS4 Case
Title:
Co-60: unshielded 225 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:50 a.m. Results (Summed over energies) Units Fithout Buildup With Buildup Photon Fluence Rate (flux) Photons /cm /sec 2 1.662c-004 1.677e-004 Photon Energy Fluence Rate MeV/cm2 /sec 2.078e-004' 2.096e-004 Exposure Rate in Air mR/hr 3.630e-007 3.662e-007 Absorbed Dose Rate in Air mGy/hr 3.169e-009 3.197e-009 mrad /hr 3.169e-007 3.197e-007 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 3.606e-009 3.638e-009
. o Opposed "
3.103e-009 3.130e-009 o Rotations.1 3.103e-009 3.130e-009 o Isotropic " 2.771e-009 2.795e-009 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 3.C33e-009 3.867e-009 o opposed " 3.692e-009 3.725e-009 o Rotational " " 3.692e-009 3.725e-009 o Isotropic 2.932e-009 2.958e-009 Effective Dost. Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 3.243e-009 3.272e-009 o Posterior / Anterior " " 2.986e-009 3.013e-009 o Lateral " " 2.376e-009 2.397e-009 o Rotational " " 2.690e-009 2.714e-009 o Isotropic " 2.379e-009 2.400e-009 l
. . - - ' Case Ti t le : Co-- :
unshiel ed 225 f) 2 area at 1 noter - g 1 Ik ' 3 . y * .
~
49 s Y s s i e *- E N L
-e X w . .;.. ... . .. . g j ,q e y j ,,y W;ptic,g g.CidingteIer Argd = = - - '---*"--.-~" 4 .>X 100.0 U - fl<' . / . "1 Enter Sh i r l et %t a 1 X ! . ' :: .i. . H 1'u . 2 I . ..(( f> ,
v .
, . O, a - (..<t p - - ' ~ !!i ) i i.i,t ar- .i c - $ 100.H T 1 i . l .- .+ , \ t. 7 , lhl* A ten 4f.- a - et $ . l Ta l. ) u ii r-ht - visu- ; ) 3 G
CY-HP-0031 MicroShield 4.10 - Serial #4.10 00521 Revision #: 0 Licensed to Yankee Atomic Electric Compan[890 ill Of 233 CONVERSION,OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 60144S.MS4 Case
Title:
Co-60: shielded 144 ft*2 area at 1 meter This case was run on Monday, Jar.uary 11, 1999 at 9:44 a.m. Results (Su:' red over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 1.760e-005 5.067e-005 Photon Energy Fluence Rate MeV/cm2 /sec 2.284e-005 6.409e-005 Exposure Rate in Air mR/hr 3.957e-008 1.117e-007
, Absorbed Dose Rate in Air mGy/hr 3.455e-010 9.?49e-010 mrad /hr 3.455e-008 9.749e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 3.926e-010 1.109e-009 o opposed a " . 3.390e-010 9.552e-010 o Rotational "
3.390e-010 9.552e-010 o Isotropic " 3.030e-010 8.533e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.169e-010 1.170e-009 o opposed " 4.021e-010 1.136e-009 o Rotational a " 4.021e-010 1.136e-009 o Isotropic " 3.202e-010 9.027e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 3.533e-010 9.976e-010 o Posterior / Anterior " " 3.260e-010 9.191e-010 o Lateral " " 2.604e-010 7.321e-010 o Rotational " " 2.938e-010 8.281e-010 o Isotropic " "
- 2. 6 04 e- 010 7.328e-010 Case Tit e: .- : is ded 144' t 2 area at i ester s !
. 1 l
E l . g. Y d . . . [ " 6 t
~ side Usew - Uert ita l Hectaingular Area ' - ' ' - - - - - - , >X 1169.16 U R', .n '
I bit i:r ::h i r l ei Data 1 X Y 1;.' in: li - h,'. g.
.: x, ,,.,m,. , 'lli.j 'i...'sei ! .a- l ( 14) H 1 1 , . . , I', . -) i1 , . , , i..,i1 . l 6 e 11 ei l t ii.ili-i .i,e- ., l T i 1.1 t e i t i I n -- eie u
..w w .-... -. ... - - -
' 57 ?)
CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Compan) age 112 of 233 CONVERSION
- OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 60144U.MS4 Case
Title:
Co-60: unshielded 144 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:38 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm /sec 2 1.356e-004 1.367e-004 Photon Energy Fluence Rate MeV/cm2 /sec 1.696e-004 1.709e-004 Exposure Rate in Air mR/hr 2.962e-007 2.986e-007 s Absorbed Dose Rate in Air mGy/hr 2.586e-009 2.607e-009 mrad /hr 2.586e-007 2.607e-007 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 2.942e-009 2.966e-009
. o Opposed "
2.532e-009 2.552e-009 o Rotational " 2.532e-009 2.552e-009 o Isotropic " 2.261e-009 2.279e-009 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 3.128e-009 3.153e-009 o Opposed " " 3.013e-009 3.037e-009 o Rotational " 3.013e-009 3.037e-009 o Isotropic " 2.393e-009 2.412e-009 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 2.647e-009 2.668e-009 o Posterior / Anterior " " 2.437e-009 2.456e-009 o Lateral " 1.939e-009 1.954e-009 o Rotational " 2.195e-009 2.213e-009 o Isotropic " " 1.941e-009 1.957e-009 Case
Title:
Co M : unshielded 144 ft 2 area at 1 meter s
,e.~ ~
3 e . Y Y
- y e-
- -- - Side View Uur t it.a i Rectangular Area - ~ '
s
,tX 1HO.B U o ,' , ,' f , -+ "=-~' " ' .i I I:iit i e Ph si 1 li.i (] i.,,r f .l 1 . ll $ l( i+4 i ,l + i + n.4 , l tI '(f [ i i 18- 4.*j*(*
- ....w _ .= .w,----- . .
/ CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Company age 113 of 233 CONVERSION,OF CALCl ATED EXPOSURE IN AIR TO DOSE FILE: 6081S.MS4 Case
Title:
Co-60: shielded 81 ft'2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:34 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm'/sec 1.504e-005 4.117e-005 Photon Energy Fluence Rate MeV/cm2 /sec 1.947e-005 5.198e-005 Exposure Rate in Air mR/hr 3.375e-008 9.060e-008 Absorbed Dose Rate in Air mGy/hr 2.946e-010 7.909e-010 mrad /hr 2.946e-008 7.909e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 3.348e-010 B.996e-010
. o Opposed "
2.890e-010 7.749e-010 o Rotational " " 2.890e-010 7.749e-010 o Isotropic " " 2.584e-010 6.922e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 3.556e-010 9.561e-010 o Opposed " 3.429e-010 9.213e-010 o Rotational " 3.429e-010 9.213e-010 o Isotropic " 2.731e-010 7.323e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 3.013e-010 8.094e-010 o Posterior / Anterior " " 2.780e-010 7.456e-010 o Lateral " 2.220e-010 5.938e-010 o Rotational " 2.505e-010 6.718e-010 o Isotropic " 2.220e-010 5.944e-010 Cape
Title:
Co M : shhtdod S4 ft esta at 1 soster-a
. e g j Y ,o i .I T * - = X .- .
A ., .. .- ~-- Side Uiew - Vert ic.a t Iloctangu lar Area' -- .
>X 118.16 W R4 . 32 II:hter Shield lu t a 'l X Y 1 - t? 1(, 41 .
274.'12 ,
;; j p . to , - - - hir %Q -
U n a t .. - 4 4 ,n t i m . ' e r . 100.0
- t. i e, i o, ; I f,' n..
c l @m i o -
.oiir, I (r) t et I f r u n,1, +- awe, I Ta l,1 '.:u i t clH m vicwr. . l
r-........- - CY-HP-0031 Microshield 4.10 - Serial #4.10-00521 Revision #: 0 - Licensed to Yankee Atomic Electric Company age 114 of 233 CONVERSION
- OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 6081U.MS4 Case
Title:
Co-60: unshielded 81 ft'2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:30 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 9.999e-005 1.007e-004 Photon Energy Fluence Rate MeV/cm2 /sec 1.250e-004 1.259e-004 Exposure Rate in Air nR/hr 2.184e-007 2.199e-007
. Absorbed Dose Rate in Air mGy/hr 1.906e 009 1.920e-009 i mrad /hr 1.906e-007 1.920e-007 )
Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 2.169e-009 2.184e-009 a "
. o opposed 1.867e-009 1.880e-009 o Rotational 1.867e-009 1.880e-009 l o Isotropic 1.667e-009 1.679e-005 j 1
Shallow Dose Equivalent Rate (ICRP 51 - 1987) I o Parallel Geometry mSv/hr 2.306e-009 2.322e-009 I o Opposed 2.221e-009 2.237e-009 o Rotational " 2.221e-009 2.237e-009 o Isotropic 1.764e-009 1.776e-009 Effective Dose Equivalent Rate (ICRP 51 - 1987) l o Anterior / Posterior Geometry mSv/hr 1.951e-009 1.965e-009 i o Posterior / Anterior " " 1.796e-009 1.809e-009 o Lateral " 1.429e-009 1.439e-009 o Rotational 1.618e-009 1.630e-009 o Isotropic 1.431e-009 1.441e-009 Case
Title:
8o--45: unshielded-81 ft~2 area at 1 noter 9 I r ~ * ' 4 . . . 3 ,
- ' e / > .. a ,
n, ,
.- 4 I T at T s
j -a ... -
'S i dt- View Veri i t.a l Reitangular Arch -- =* ~ -m-- - ,6X 1HB.H U - '" .1 ', IJ n t' r ?:h4 c l.I lio t a X .'1,. H 1. ',' 1 f. : - . s. .
F . I F' e on,. j l' tj p,. t..it ,I p,..lg , , . ! 1. t.1 - .o i t i h, vi,#
, CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric Compan) age 115 of 233 CONVERSION,OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 6049S.MS4 Case
Title:
Co-60: shielded 49 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 9:24 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rat.e (flux) Photons /cm /sec 2 1.222e-005 3.208e-005 Photon Energy Fluence Rate MeV/cm2 /sec 1.579e-005 4.046e-005 Exposure Rate in Air mR/hr 2.739e-008 7.053e-008
. Absorbed Dose Rate in Air mGy/hr 2.391e-010 6.158e-010 mrad /hr 2.391e-008 6.158e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 2.717e-010 7.004e-010 . o Opposed " "
2.345e-010 6.033e-010 o Rotational 2.345e-010 6.033e-010 o Isotropic 2.096e-010 5.388e-010 Shallow Dose Equivalent Rate (ICRP F1 - 1987) o Parallel Geometry mSv/hr 2.886e-010 7.444e-010 a o Opposed " 2.783e-010 7.173e-010 o Rotational 2.783e-010 7.173e-010 o Isotropic 2.216e-010 5.701e-010 l Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anteri'./ Posterior Geometry mSv/hr 2.445e-010 6.302e-010 o Posterior / Anterior " " 2.255e-010 5.805e-010 o Lateral " 1.801e-010 4.622e-010 o Rotational " 2.033e-010 5.230e-010 o Isotropic " " J.801e-010 4.627e-010 Case fitle: CoM!shi'ai dM 49 ft 2 area at 1 sister b~ , 4 t
' 'l i . !, \.
i I I- '
- A.
r ( ,% y
'
- c
.v . . . k ,.- {. . T. a , , f' ' / . .' . * . .; . _ ,, 'L- < .- . a 41 [ .y A Side VsE Urr1ataI b-( Qinguier ba F- t- e-==---- .
11H . % J .t; 7. I I:nt e r Shield ILtal
.X l4' , X . ' i . . i .: : li . ,1 ; h, w t / l:' -: t, , ,; ; . -
1 N[f . c, n i ,. < . ,
] l $1, (i j., .,, 't h , \e. . 4y , . e';,.B,a... < 1,, , . . i . , i . L i , Z , i1 . , . it..i.i o, , w ,,,co k , ,
Um.s . . . . _ - . - _o- ..-~t,. . - - - . - . . . . - + ~ ~ - - - - - . . - ~ . ~- 6
, CY-HP-0031 l'
MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric CompanyPage 116 of 233 CONVERSION,OF CALCULATED EXPOSURE IN AIR TO DOSE FILS: 6049U.MS4 Case
Title:
Co-60: unshielded 49 ft^2 area at 1 meter This case was run en Monday, January 11, 1999 at 9:01 a.m. Results (Summed over energies) Units Without Buildup With Buildup 2 Photon Fluence Rate (flux) Photons /cm /sec 7.335e-005 7.383e-005 Photon Energy Fluence Rate MeV/cm2 /sec 9.170e-005 9.228e-005 Exposure Rate in Air mR/hr 1.602e-007 1.612e-007
. Absorbed Dose Rate in Air mGy/hr 1.398e-009 1.407e-009 mrad /hr 1.398e-007 1.407e-007 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.591e-009 1.601e-009 . o Opposed "
1.369e-009 1.378e-009 o Rotational 1.369e-009 1.370e-009 o Isotropic " 1.223e-009 1.231e-009 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.691e-009 1.702e-009 o Opposed " 1.629e-009 1.640e-009 o Rotational " " 1.629e-009 1.640e-009 o Isotropic " 1.294e-009 1.302e-009 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 1.431e-009 1.441e-009 o Posterior / Anterior " " 1.318e-009 1.326e-009 o Lateral " 1.048e-009 1.055e-009 o Rotational " 1.187e-009 1.195e-009 o Isotropic " " 1.050e-009 1.056e-009 Case
Title:
Col.0: unshielded 49 f t 2 area at i ne1t.or
'N +
J
- y. ,
Y Y # 9 e,.4n - / e- E
- -- - - " S t de= V l t?gd Ut'r t L t e I Nett.tanggt l Ar Arts A -- '- = ^-"'^ " " '
a
; ;>X 1 Hil . H U .14 h. ILf e r ::h ie ld . lsa t a l X '6.. +: H .'1: It , ,j '. s .c , m,. i.,. ' i;: ii,rii 8- 4 , j Pij H i . .t .: . . . - . .t . l ii l l .il 1. e,l.- ie- , i T<t I u n t i hs - v iv us 4
, ....u u . .. -t u .. . ,. .. . .4 , . . a .. ~.- i. CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric CompanyPage 117 of 233 CONVERSION,OF CALCULATED EXPOSURE IN NIR TO DOSE FILE: 60S25.MS4 Case
Title:
Co-60: shielded 25 ft'2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:54 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm /sec 2 8.342e-006 2.091e-005 Photon Energy Fluence Rate MeV/cm2 /sec 1.076e-005 2.633e-005 Exposure Rate in Air mR/hr 1.866e-008 4.592e-008
. Absorbed Dose Rate in Air mGy/hr 1.629e-010 4.009e-010 mrad /hr 1.629e-008 4.009e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.852e-010 4.560e-010 . o Opposed " "
1.598e-010 ~,.927e-010 o Rotational 1.598e-010 3.927e-010 o Isotropic " 1.428e-010 3.507e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.967e-010 4.847e-010 o Opposed " 1.896e-010 4.670e-010 o Rotational " 1.896e-010 4.670e-010 o Isotropic 1.510e-010 3.711e-010 Effective Dose Eqdivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 1.666e-010 4.103e-010 o Posterior / Anterior " " 1.537e-010 3.779e-010 o Lateral " 1.227e-010 3.009e-010 o Rotational 1.385e-010 3.404e-010 o Isotropic " 1.227e-010 3.012e-010 Case
Title:
Co-69: shielded 25 f t. 2 area at i soster I f I -.. .; . l A
, s .
b . v
-i ,
x e -
', s Side View - Ucrt s t o l Ret.tangular Area -- --" - -= - - ; ,
r >X 1 140 16 U l'o' 1 I i:n t i r ::li i e- i d lut a l 1'..' 4 I , X Y t.
. .: H I .: a,.
i
, ,u r . . . . .
I','.' +i ;il pr). t I- . llili . H 1 e - l 1 I .I li.ii,,- io,et , l c' t 'il f.,<r<,1- .e- . I T ,1,1 uitil. - ii,u-O
\ \
s Tg b-s CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric CompanyPage 118 of 233 CONVERSION* OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 60U25.MS4 Case
Title:
Co-60; unshielded 25 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:55 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 4.542e-005 4.569e-005 Photon Energy Fluence Rate MeV/cm2 /sec 5.678e-005 5.'/11e-005 Exposure Rate in Air mR/hr 9.918e-008 9.977e-008
, Absorbed Dose Rate in Air mGy/hr 8.659e-010 8.70 % -010 a
mrad /hr 8.659e-008 e.' 008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 9.852e-010 9.910e-010 o Opposed a "
, 8.479e-010 8.529e-010 0 Rotat3onal "
8.479e-010 8.529e-010 o Isotropic " 7.571e-010 7.616e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.047e-009 1.054e-009 o Opposed " " 1.009e-009 1.015e-009 o Rotational " 1.009e-009 1.015e-009 a o Isotropic " 8.013e-010 8.060e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 8.863e-010 8.915e-010 o Posterior / Anterior " " 8.160e-010 8.208e-010 o Lateral " 6.492e-010 6.330e-010 o Rotationa] 7.350e-010 7.394e-010 c Isotropic " " C 500e-010 6.538e-010
. Case fit e: Cod.B: unali te ld 25 ft 2 area at i noter i a - ~
4 - c e~ i ,
.'a ..*
- r- "
y , , ., . 10 8
. f. ; - -. y w 3 , >'a - -o - - . . - - Sjdp yjg ypp{ j g,g [ by,(p AqJgg ] gp ' gpg5 w.- + d u -. . m ns v-. m.
pX 1Hil . 8 U ( l'.,' 1 ,, IEnter ';h . l .i D a t ,i l 4 X s' 'a , . ' il l ',. ' A S .' .'t...-' - 7Yi r t . .< p I I li . i f i < i .1 .ry *.i 't 'I t iit . t1 i - '- i i
. ! .},.. 4 - .,.i 1 , 1611 si I t e .. r i e l , . , . . . ITt I o .i t < h - . i e ,) .
t 4
]
_ - - - . ~ . . . . . . - . . . . . . . - . -- - ... - - . . . . . -. CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric ,CompanyPage 119 of 233 CONVERSION* OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 60S9.MS4 Case
Title:
Co-60: shielded 9 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:20 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm /sec 8 3.864e-006 9.267e-006 Photon Energy Fluence Rate MeV/cm2 /sec 4.973e-006 1.166e-005 Exposure Rate in Air mR/hr 8.632e-009 2.034e-008
. Absorbed Dose Rate in Air mGy/hr 7.535e-011 1.775e-010 a
mrad /hr 7.535e-009 1.775e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 8.565e-011 2.020e-010
. o Opposed "
7.391e-011 1.739e-010 o Rotational " 7.391e-011 1.739e-010 o Isotropic " 6.605e-011 1.553e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 9.098e-011 2.147e-010 o opposed " "
- 8. 7 72e- 011 2.068e-010 o Botational 8.772e-011 2.068e-010 o Isotropic "
6.983e-011 1.643e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 7.708e-011 1.817e-010 o Posterior / Anterior " " 7.108e-011 1.674e-010 o Lateral " 5.673e-011 1.332e-010 o Rotational " 6.406e-011 1.508e-010 o Isotropic " 5.674e-011 1.334e-010 Case
Title:
. -49 : shielddd,9 ft 2 arya at 1 senter G 7 r r l . , i l , .
! Y Y } - . - . . _ . < . . . . . = Side Vie w - Ve rt ic a l bm t angu lar Ar ca v~
i
.>X 11H.16 U 'il '11
- l Ent it ':h i e l .I Da t a l X'
lJ 15 u il 'il 11
! - .t i . n 1 ,u ,. w l fi. a f , i<itir: ' . . j tid H T j r- ." ! ! . , . - .,,1 1 , li!- pol 't.i..t. . .- . I T . ',1 u i t i lo-vi.u .
. . , _ . - . . ~ . , CY-HP-0031 MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 Licensed to Yankee Atomic Electric ,Compan)Page 120 of 233 CONVERSION* OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 60U9.MS4 Case
Title:
Co-60: unshielded 9 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:22 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm /sec 2 1.944e-005 1.954e-005 Photon Energy Fluence Rate MeV/cm2 /sec 2.430e-005 2.443e-005 Exposure Rate in Air mR/hr 4.244e-008 4.267e-008
. Absorbed Dose Rate in Air mGy/hr 3.705e-010 3.725e-010 mrad /hr 3.705e-008 3.725e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.216e-010 4.239e-010 . o opposed "
3.628e-010 3.648e-010 o Rotational " 3.628e-010 3.648e-010 o Isotropic " 3.240e-010 3.257e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 4.482e-010 4.506e-010 o Opposed " 4.317e-010 4.341e-010 o Rotational 4.317e-010 4.341e-010 o Isotropic " 3.429e-010 3.447e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 3.793e-010 3.813e-010 o Posterior / Anterior " " 3.492e-010 3. 511e-03 0 o Lateral " 2.778e-010 2.793e-010 o Rotational " 3.145e-010 3.162e-010 o Isotropic " " 2.782e-010 2.797e-010
. Case T,itle: Co48: unshieided 9 ft 2 area at 1 meter , . O h I - *b Y
t s-
.e , . ...- Side Useu Ucrtitai hu.tangu lar Area = - = " " - " - '-- ,>X 1HH H U 1 H l l.n t.o r Sle ie ld lu f .e l X !V 1', , 11 it 14- '. j' .;', c, . . .
i I ig i r t..'6'
. .,r *,; 9 '
j6M1 H i+- , j,i*el t.,.,.1 !, . .. .. . lT-l 1 tii f i in oi,u. b I .
>. . - . . . ~ , - .- . .. ;.... ;
. , . . . - - ~. . . .. > CY-HP-0031 ! MicroShield 4.10 - Serial #4.10-00521 Revision #: 0 { Licensed to Yankee Atomic Electric ,CompanPage 121 Of 233 CONVERSION OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 60S3.MS4 Case
Title:
Co-60: shielded 3 ft*2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:09 r..m. Results (Summed over energies) Units Without Buildur,With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 1. 4 4 3 e- N6 3.389e-006 Photon Energy Fluence Rate MeV/cm2 /sec 1.856e 006 4.262e-006 Exposure Rate in Air mR/hr 3.272e-009 7.435e-009
. Absorbed Dose Rate in Air mGy/hr 2.012e-011 6.491e-011 mrad /hr 2.812e-009 6.491e-009 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 3.197e-011 7.384e-011 . o Opposed 2.758e-011 6.358e-011 o Rotational 2.758e-011 6.358e-011 o Isotropic " a 2.465e-011 5.678e-011 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 3.396e-011 7.848e-011 o Opposed 3.274e-011 7.562e-011 o Rotational 3.274e-011 7.562e-011 o Isotropic "
2.606e-011 6.008e-011 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 2.877e-011 6.643e-011 o Posterior / Anterior " " 2.653e-011 6.11Ae-011 o Lateral 2.117e-011 4.871e-011 o Rotational 2.391e-011 5.512e-011 o Isotropic 2.118e-011 4.876e-011 Cassi fi'le: t Co-44 : sliielded 3 ft 2 area at i sueter s n, .
~ "
g i t : . ., Y Y e
*8 A hi ' Side View Ucrtital Rectangular Area ----- - >X 11H.16 W 'n' ~." W i 1 i f.n t r ::h ie l d D.i t a l I li X .. :' n P, ',/ /'s. " # 1 i , l .i, : " r.
j l 1 i i fi i r L.4 p 1'. .i . ,- ' , i It1H H
- . .. ' . .l . . .- ...,:' . 1 11 t .il v<,,,,1c . . . . . , I T.ib ) v i t e h. -- vii.u-.
l l
CY-HP-0031 Revision #: 0 MicroShield 4.10 - Serial #4.10-00521 Licensed to Yankee Atomic Electric CompanyPage 122 of 233 CONVERSION* OF CALCULATED EXPOSURE IN AIR TO DOSE FILE: 60U3.MS4 Case
Title:
Co-60: unshielded 3 ft^2 area at 1 meter This case was run on Monday, January 11, 1999 at 8:02 a.m. Results (Summed over energies) Units Without Buildup With Buildup Photon Fluence Rate (flux) Photons /cm2 /sec 7.020e-006 7.058e-006 Photon Energy Fluence Rate MeV/cm2 /sec 8.776e-006 8.822e-006 Exposure Rate in Air mR/hr 1.533e-008 1.541e-008
, Absorbed Dose Rate in Air mGy/hr 1.338e-010 1.345e-010 mrad /hr 1.338e-008 1.345e-008 Deep Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geometry mSv/hr 1.523e-010 1.531e-010 , o Opposed "
1.311e-010 1.317e-010 o Rotational " 1.311e-010 1.317e-010 o Inotropic a " 1.170e-010 1.176e-010 Shallow Dose Equivalent Rate (ICRP 51 - 1987) o Parallel Geomdry mSv/hr 1.619e-010 1.627e-010 o Opposed " 1.559e-010 1.568e-010 o Rotational 1.559e-010 1.568e-010 o Isotropic 1.238e-010 1.245e-010 Effective Dose Equivalent Rate (ICRP 51 - 1987) o Anterior / Posterior Geometry mSv/hr 1.370e-010 1.377e-010 o Posterior / Anterior " " 1.261e-010 1.268e-010 o Lateral 1.003e-010 1.009e-010 o Rotational " 1.136e-010 1.142e-010 o Isotropic " " 1.005e-010 1.010e-010 Case T tie: Coise : unshielded 3 ft 2 area at 1 meter s i s Y
.d g a -
a Side Vie w Ucriica l Rectangu lar Area - - - - - -
>X 1884 f, g ra ,n g a i g yng ,.c Vlu ey f d N t a l x 1. r h , .1 ' . 11 r,/ '"I."<1 , I .t, r .( , l' ,
4
, n i , w ,,
lI6 ' s .f j'i. 1 J r ' kk
- ; . . I .. .: ; . ..,e t o t . ( eil t ti l t n. .s l - . < - . IT,hl uitt h- vieu.
- .wus m z..- . raw .z x ...-- . .
- . ... - =-a ~ .eaam m _.2 -._e_2- +-
CY-HP-0031 Revision #: 0 Page 123 of 233 i Attachment 3: Soil Characterization Data For Site 9632 i G
, CY-HP-0031 Revision #: 0 Page 124 of 233 . , 2 6
e
- I E k hE 1u=E~Enzgc E e n
.E:.gEEEm g E r z e e ~B i n g eeg ~R e a . == = ? . se t: g E = ~ n e g g =E . g o c.E=a E n-e s g ec:r nx :e g E e :n g:z Ec E - Eceos m :E a .j E
h!!5EEEE!.!EEEEEEE!!!EEiEAE!!!EE!EiE553EEEEEEEEEEEEE!!E!EEEEE 3 3Esg: Esc EBEEE::.a:EE::szEmEREEEEErm EmsEstEEEEEESe5EIEEE=mE
< < < m < m e e o O O O w a e Z O O O O O O O O w in. < < < < < < a e e e o o a O O O O O O O O O O w w w w w w w w < < .e *8 . o $ o so s s E td:6la;o ci<o o.6 6;o'o cV 6 Qd o n o o o o o o o o o o o o o o o e o o e o o o o o o o o o o o o o o o o o o o o o e o #
g.,.n.Eg#g..nas.s-se:ssaa8:=EEg. e: go gsnsao ga.
.. . n e .
g.=7(%"e N's o owo d 6ns m.IN.N$DD.a..~u l ussa oeasa zo: E saas oeso a _ 3.o-o m
) = .% w-M b M s waraw.o E $MS.V o= ; -teaAWo-o'o.6'd G o o o o o o o o o o o o o o o o o o o o o e o o e o o o o o o o o e o o o o e o o o o o ' iT N- 3, ~
u s!se ~is im, #e h. =w.E*$N#
- s. 3 .s,.E h.,
o---o----o-e 3 "
- I S E. .C b. k "s k 5.nnxa
. s . ..oes.n.
s -qm $ N *
- I. k @.sm
---se-to--o--o=~-se-~~oo-o---ee " " k ? E.s* I..k E. .: :. . Eo.s n 7
- E.
8E $ E SE MER. g 2ooo o di55E.55$$5E$$$E0s$555$5E5550EE5b55b5555$5$E$$55$5 o<o ooeooeooooooooooooooooooooooooooeoooooeooeoe E $'R $ N R R2.D
- 3 l.is, oto.o.? s'?.e ? ? ? ? C 2 ? R C N ? ? 2 ? ? ? ? : C R % 2 Q C " O S $ R y T R C ? 2 2 ? ? ? ? ? ?
of<ooooo.,ooo8o,K* oooooooooooooooooooooooooooooooooooooooooeoo e o 6 v o.v.~.k o o o ha. o tr oe.oge;d.: o o o ;o.:6w ooooooooooooooooooooooooooeoooooooooooooooonav u s <g ga8 p g.ggg~ n o o-g7 ..goepggg;g~;~. peg-p;p.gg;g..~,EEeg;E;oe-gg n -- u:o.o o,o 6 6.o-.. o ,o 8o ;icin W
~ . 1o.go; o7oEooo oo ;- o o- eoe o o3 oseoooo-o- o- oEoso5ooo eo oo E o ooo- ooooo- o- o. so -o 8o Eooooeooaoo
- s. f"% E.h A.c wouh=
e c.c.%71 g EIEA!$Ek$5EE!E 1'Ik$k$!5$ !:[.e. =;e k SSSESSSESSSESS g 2 em:g 1.' . ea ge4.n [ $ [ E 5 h. a p & !,v- A m Jg; ,.g y :/.m g4 f i!ST!!TC$555555$5
}e'0 $*~ 2 W~ M i' M D ~ W . E EEEE!EEEEkk$,RE ISDES99.9B5n0tSSSa - a SSSSSSSSSSSSSS =k %Z Gd.M.'.ww.N@QS;J E gg . ; rj~ :: =4 . .E. t. M.- . . . .tT..i.,t i. f..ts .f.,.t..Y.n.. i. l. l. f. i. l. l. i. l l. l. i. l. l. l. i. l. l. l. 1111111111111111111111111 iiill'Illi'i:E:i+I:I:Eittiill! 5:5,5 5 5 5 5 5 5 5 !!!illi!!!!i!!!!!!!!!!!!!!!!!!!!!!!
5 555555555555555555as555555555555555
.5 5 5w.%sc.a5 5 5 5 5 5A 5A-% .yN.9 and.gemu;tm &-
E S EYi'if.iM2Miiiiii i i iiii iiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiii k,fyj d 7
$[{d .. g W %Iv d .',-
s Pl.rP.~ ~ ~ _'- .~ pj.c s c..'.. p?' .
,v-ISh;EM;S}{ A-+ Q; gig %EEEEEEEEEEESS !!!!!EEEEEElllSlelll55EEEEEEEEEE!!EEIEEEEEEEEE '
hDerE u S SESSSSSSSSSSSSSSSSSSSSSSSSSS 4 Ued-w. -E Iu E.~ R h s~ t & - s l E. E. E. E......
. . E E. E. E E. E. E. E. E. E E E E. E E. E. 5 5. E. E. I s. E. E o
E E O"g g*g*
- EEE!EEEEEEEEEEEEEEEEEEEEEEEEEEEE EEEEEEEEEIE '
fd -d 5555555555555S35S$53S$5S555555S5 5555555555S 53 ?
. i.x ;x : ... - .v n . . .
f s a N. , PRR R7 2 R E E E E E E E E R R E1RKai5A JRRRRRiiiRERREsaRRERR g g 2 E Ei&RERR R722RRERRREBERRR 2 E. P E
% y. .kn2WdWWWRWWWWWWWWWWWWWWW2:dWWWWWWgWWWWWgERRR$R enennenen enn WWWWWW .
y . ./ . .: .., .. e cs - f r R gg[nnEgg3gg3ggg3EenneenEEnnennEeEnnsag33gEnen33g n n gg g3gggg ggggg g i ,- sgg f %:. .Uf g i. t. .i t. t i. .f f. .i.
- . 3 .
g.t.tN3.1Y .~.:-['. 14 . 3 l.p,: .". ; hh-y h $l . 5$ii $h5E. E E EEEEEEIEEEEE O m:nr " . r.}g ,a, r? 3 .t 7.i 7c 8 8E 8888 E$ @NhkN!dY o n - u;u;= t s : ; s; 3zn:::- te.??
- . n .y. 5 I
888lyg 5 y .n: - n < mc c
},r y B .
- y hisWQs E- 6. -
g .s s s s s..!..u s sJ mttpr g.:f'2h, b
'1mr uw Wyg.4 %.p 3: gM%mtEaNE. g gagggereeseet: .
3m s
- . m. ,-M. . r ~
~ .u.... ~ ~ ,. . = = v. c. .c. c. ..c.. c .c. e %g,g .WC2/.d.C.%
CY-HP-0031 Revision #: 0 Page 125 of 233 t' 2 EEfffE5fEf5s5EEEEEEEEEEEEEElgEEREffRE!!RIS$
' [EERB!SBff!ElgEEEEdifai!!!leEis5-6:!EiiliEHEEEEi!EEiiE!!!!!Ei!isEEE!!il5EEEEi!
I3 ss.gspssess:,s==xtEEsszs==stsstess:save:Etss:sstsu:es.xsen:
].Ef!5EE!!!sE5E!EEEEEEE!!I!!EEE53EEEEEEEEEEEEEEEEEEEEEli!EEEE
{g.<......ooo<<.o< .......c.... ..oooooooo..oo.o.. coo.ooo y V.E..i. E E .E. E. E E. E. .E. E. .E. E. ..... E. E. E E. E. E. E E. .E. E. E E..E E E E. .E
......... E. E .. ... . E E E E E E E E E. E E. .E !2 W5 E. 5. !. R. i. i. E. . 5 8 5 . 5 5 E. E. s. s E. 5. E. i. i. i !. E. 5 5 5 3 E. E. E. E. E E. E. E. E. E. E. 5. i. 5. E. E f. 5 e , " .f E..E E. E. E. E. .....e.... .E E. ! ! ! E E E ! ! E E E.. 5. 5. B. R. E ...8. E. E. ---E. S .R B E E. .. E .E E .. E. ..
E E. E E. E E. E E E. .E E f E. S E E. E .E E
- 8. E. E. E. E. i. i.. i. t. s. i. l i. E. E. E. l. i..E. E. E. i. i. E. E. i. i. i 3. E. S. . S. E. i.. s. s. i. E. 5. E. E. E. 5 5. E. i. i.
! 3 ....: : : :.. .: : ..:. :. E .:...: :. :. .. : : : ...
- : E s. s : 5 3 : 15 3. : 3 5 5 : : : : : : : : : : : : :
" .i ....
s S ..5 5 E. E E E. .i ! 5 E. E E. E...E : 5..... E s. ....... t s. . . . .. ... .......
. . 3 5 E. E. E E E S ! ... .5 E E H 5 5 B I E. E E. E 5 C ^
g l igisi i:::::::
-~~~----
p i 1 i lisi! !!!!Il!! 11111111111111111111111111111111111111111111111111111111111
!!!!!!!!!!!it!!!!!i!!!!!!!!!!!!!!!i!!!!!!!i!!!!!!!!!it!!!!!!
lesssssssssssssssssssssssssssssss222sss2222222222s22s2222222 . , , s essa....ssa, _;;. l II EEEEEEEEEEE 1RRIliffiiilse!i[ssssssssssagggggggggggggggglSEn$**----::: - --~~~------~~Eseggggt!!rgg!! k Si" MJo ' gsssssss s s, E Essssssesssas . i
! (
4 i 45.fl.EII.II.I.I.II.I.IERI.I.I.II.I.II.I.I.t3EE.EEEEEEEEE.EEEE.E:E::::::::::::: I s s..=;s.. ' 3 . (!!!!!!!!!lllll11:!!!!I1111111111!!!!!!!!!!Ili1=iiiiiii.sm.iiiii E !sssssss ssss s 21BBEERR R E!!! . 1-lI!iilllj g ] a[ j!!! R E !!!! E E R R E B ! ? B E R E B f !!! B E R E a sEEEEssiEllEsissEEEsEEEEEEEEEEEEEEEEsEEEEsEEEEEs
-j ggggg Eggggggg.
ci:
-1 A .' N.;; .- 8 . .
- v. -
W l [ REEE gw@#7hR4.
- g. E IE . J'a '{
~--
I-sas.s E h 5 as ss.ss 5 55 R;?-;e&c; A h q$.<w.;%my h
, g-zzs= n H.. -
g !!!!!g! ggILg gg w ;jg.i.g s,lw r g sg) g- . w3 -
i
' CY-HP-0031 Revision #: 0 Page 126 of 233 -~ . i E!!g!!ERPRER B !di!B.EE56kEEE ~
i{ESEggEEEEEE! 3asse..as ss:s , [go.oooooooo..
,ys.sa.s..i.ssiss.s.
ei!!!!!!!!!!!
*iREE,E!.!EE!E.EE u... .... .-
8i n .! I. i..s...! E E .B. E. i _
~
E -
- giEEE.EI.E.E.EEE.
"gsen. .. ass..essEng i.
a S B i 1,111111,11111 l [i.t.. (( I.I.I.I .. - l12221122111.1 . F . .. + Jt
-c:r--.sa:r Jase as .cceg , +*:....r. ' 1 ;, : 3a.(fe-7
{tilRRElitis
.ssssssssss .
4 1:::::::::: I I.
. I,see.
n :' Re.gazasz -.es l '- TigIIIIt .i sti
,:sassassils R El^ .)llE?l2.ls.;l{.sl i 11t iti 'g
- w .. : .
k.f.I,[d.
. . ,e , ,k>b .;'iY .. a.
FI..N.. ,. *.D.e
* .y,.. . (.'$h.
g g. +. 3
,,'fw**
- i wk^ i ,a"i=a pMH4 tsp s.L]. - .
- -u ~~- ~
. .WWfMck@M i
r CY-HP-0031 Revision #: 0 Page 127 of 233 g,
- Attachment 4: ' Block TSC Measurements Data For Site 9632 a
CY-HP-0031 Revision #: 0 Page 128 of 233 w Log Probe Log Channel E-600 E.600 Survey Surv:y Loc tion Log Date Time S/N Mode Type Reading Gross / Net Units S/N Address Status Unit
-9632CB027S 6/17/98 10:10:00 1403 Scaler Beta 6.39E+02 Gross epm 1106 106 Normal D 2.71 E+02 Gross epm 1106 106 Normal D 9632C8033S 6/17/98 10:29 00 1403 Scaler Beta 3 35E+02 Gross epm 1104 104 Normal D 9632CB051U 6/17/98 13:04:00 1404 Scaler Beta 9632CB062U 6/17/98 13.35:00 1403 Scaler Beta 2.97 E+02 Gross epm 1106 106 Normal D 3 07E+02 Gross com 1106 106 Normal D 9632CBOS2S 6/17/98 13:39 00 1403 Scaler Beta 9632CB063U 6/17/98 13.45.00 1403 Scaler Beta 5.10E+01 Gross epm 1106 106 Normal D ' 9632CB068U 6/17/98 13.55 00 1403 Scaler Beta 2.78E+02 Gross epm 1106 106 Normal D 9632CB072U 6/17/98 14:37.00 1403 Scaler Beta 1.04 E+02 Gross cpm 1106 106 Normal D ,
9632C6072S 6/17/98 14.40:00 1403 Scaler Beta 3 87E+02 Gross epm 1106 106 Normal D ~ 9632CB07BS 6/17/96 14:50-00 1404 Scaler ' Beta 1.39E+02 Gross epm 1104 104 Normal D 9632CBP79U 6/17/98 14.50:00 1403 Scaler Beta 1.30E+02 Gross cpm 1106 106 Normal D 9632C00810 6/17/98 14:57:00 1403 Scaler Beta 510E+01 Gross cpm 1106 106 Normal D 9632C60835 B/17/98 15'07:00 1404 Scaler Beta 2 82E+02 Gross epm 1104 104 Normal D D632CB087U 6/17/98 15:15 00 1403 Scaler Beta 2.48E+02 Gross epm 1106 106 Normal D 9632CB089S 6/18/98 8 40'00 1402 Scaler Beta 1.10E+02 Gross epm 1103 103 Normal D 1.44 E+03 Gross cpm 1102 102 Normal D 9632CB990S 6/18/98 8:40.00 1401 Scaler Beta 9632CB120U 6/18/98 9 57:00 1401 Scaler Beta 2.02 E*02 Gross epm 1102 102 Normal E 9632CB120S 6/18/98 95900 1401 Scaler Beta 7.23E+02 Gross cpm 1102 102 Normal E 9632CB133U 6/18/98 10:24 00 1402 Scaler Deta 1.03E+03 Gross epm 1103 103 Normal E 9632CB143U 6/16/98 11:36 00 1402 Scater Beta 1.30E+02 Gross epm 1103 103 Normal E 4.18E+02 Gross epm 1103 103 Normal F 9632CB160U 6/18/98 13:32.00 1402 Scaler Beta 5 40E+01 Gross cpm 1102 102 Normal F 9632CB163U 6/18/98 13.44.00 1401 Scaler Beta D632CB185U 6/18/98 13.46:00 1401 Scaler Beta 1.01E+02 Gross epm 1102 102 Normal F 1.54E+02 Gross epm 1103 103 Normal F 9632CB164S 6/18/98 13:50.00 1402 Scaler Beta 9632CB177U 6/18/98 14:14.00 1402 Scaler Beta 4.68E+02 Gross epm 1103 103- Normal F 9632CB180S 6/18/98 15'05.00 1402 Scaler Beta 2.37E+02 Gross epm 1103 103 Normal F 9632CB182S 6/18/98 16 01:00 1402 Scaler Beta 4.71 E+02 Gross epm 1103 103 Normal C 9632CB206U 6/19/98 8.33:00 1401 Scaler Beta 2.20E+02 Gross epm 1102 102 Normal C 9632CB206S 6/19/98 8 35:00 1401 Scaler Beta 3.73E+02 Gross cpm 1102 102 Normal C 1.30E+02 Gross cpm 1102 102 Normal F 9632CB211S 6/19/98 9.31:00 1401 Scaler Beta 9632CB213S 6/19/98 9:36:00 1402 Scaler Beta 8.81E+01 Gross epm 1103 103 Normal F cpm 1103 Normal A
* '* .._$,'. ,'[ d<+,.,
Gross 103 9632CB2300 6/19/98 13:03:00 1402 Scaler Be's 1.13E+02 ;
'?' M Ia 9632CB230S 6/19/98 13:07:00 1402 Scaler E ,a 2.47E+02 Gross epm 1103 103 Normal A ^ '
2.36E+02 Gross epm 1102 102 Normal A 9622CB223U 6/19/98 13:12:00 1401 Scaler Beta 2.52E+02 Gross epm 1103 103 Normal A 9632CS234U B/19/08 13:14:00 1402 Scaler Beta A 9632CB234S 6/19/38 13:19:00 1402 Scaler Beta 128E+ 02 Gross epm 1103 103 Normal 1.36E+02 Gross cpm 1103 103 Normal A 963.2CB236U 6/19/98 13.27:00 1402 Scaler Beta Gross epm 1103 103 Normal A 9632CB219S 6/19/98 14.29:00 1402 Scaler Beta 2.83E+02 1.09E+02 Gross epm 1102 102 Normal A ' 9632CB2310 6/19/98 14.31:00 1401 Scakr Beta Beta 6.21 E+02 Gross- cpm 1102 102 Normal A 9632CB253U 6/19/98 14:36:00 1401 Sea et 1.80E+02 Gross cpm 1102 102 Normal A n632CB253S 6/19/98 14:37:00 1401 Scaler Beta 1.85E+02 Greas cpm 1103 10S Normal A 9632CB257S 6/19/98 14:46:00 1402 Scaler Beta Gross epm 1102 102 Normal A 9632CB259S 6/19/98 14:49:00 1401 Scaler Beta . 9.71E+01 Gross epm 1103 103 IJormal A ! 9632CB263U 6/19/98 14:57:00 1402 ScGer Beta 1.67E+02
- Gross cpm 1103 103 Normal A V '263S 6/19/98 15:03:00 1402 Scaler Beta 1.95E+02 Gross epm 1102 W2' Normal A A i $4S 6/19/98 15:03:00 1401 Scaler Beta 1.47E+02 A
2.23E+02 Gross cpm 11C 102 Normal 9632C w68S 6/19/98 15:38:00 1401 Scaler Beta 9632,CB269S 6/19/98 15:38:00 1402 Semier Beta 3.68E+02 Grqss epm 1103 103 Normal - A d 9632CB236S 6/19/96 15:45:00 1402 Scaler Beta ' 1.29E+02 Gross com 1103 103 Normal A a fr , y Gross epm 1103 103 Normal A F> , 9632CB273S 6/19/98 ttS5:00 1402 Scaler Beta 2.12E+02 *' ' 9632CB281S 6/19!98 16:08:00 1401 Scaler Beta 6.9fE+02 Gross epm 1102 102 Normal A { 1.81 E+02 Gross epm 1103 103 Normal A 9632CB280S 6/19/98 16:12:00 1402 Scaler Beta , , , ,
- @ 7. i 3 L ,+;*"7l epm 1102 102 Normal A 9632CB278S 6/19/98 16:22:00 1401 Sc'a ler Bets
- 7.70E+01 Gross j'
9632CB291S 6/20/98 8:59:00 1402 Scaler Bets 1.52E+03 Gross epm 1102 102 Normal A . Q M r OpV4%U.Q
,M: e.?u w - ? ~ ~ * = ~ .._ .,W<, ,w,
l CY-HP-0031 Revision #: 0 Page 129 of 233 l Surv:y Log Probe Log Channel E-600 E-600 Survey Locction Log Date Time S/N Mode Type Reading Gross / Net Units S/N Address Status Unit 9632CB313S 6/20/98 10.09 00 1401 Scaler Beta 1.23E+ 02 Gross cpm 1103 103 Normal A C632CB315S 6/20/98 10.25:00 1401 Scaler Beta 1.15E+02 Gross epm 1103 103 Normal A 9532CB321U 6/20/98 11:04:00 1402 Scaler Beta 1.55E+02 Gross cpm 1102 102 Normal B I 9632CB324S 6/20/98 11:18:00 1402 Scaler Beta 3 56E+02 Gross cpm 1102 102 Normal B f 9632CB325U 6/20/98 11:18:00 1401 Scaler Beta 2.95E+03 Gross epm 1103 103 Normal B l 9632CB325S 6/20/98 11:24:00 1401 Scaler Beta 2 21E+03 Gross epm 1103 103 Normal B
' 9632CB333S 6/20/98 11.50:00 1402 Scaler Beta 3 28E+03 Gross epm 1102 102 Normal B 9632CB337S 6/20/98 12 00 00 1402 Scaler Beta 510E+02 press cpm 1102 102 Normal B 9632CB33BS 6/20/98 12 05 00 1401 Scaler Bets 6 77E+02 Gross cpm 1103 103 Normal B 9632CB343S 6/22/98 11:23 1401 Scaler Beta 518E+02 Grcss epm 1102 102 Norr al D 9632CB3f3S 6/29/98 11:28 1401 Scaler Beta 3 90E+02 Net epm 1110 110 Normal F !
9632CB352S 6/30/98 8 40 1401 Scaler Beta 4 08E+02 Gross epm 1102 102 Normal F - 9632CB362S G/30/98 10:16 1401 Scaler Beta 2 43E+02 Gross cpm 1102 102 Normal F 9632CB3645 6/30/98 10.23 1401 Scaler Beta 5.14 E+ 02 Gross epm 1102 102 Normal F ) , 9632CB374S 7/2/98 14 37 1403 Scaler Beta 2.77E+02 aross epm 1111 111 Normal F l l l t l l l I
^ = 'ly s ,' e_b_ Q ,. ' ?
i \ e l 1
- e ; - /
e s *' , e og
. + . m o . .c.s.t . . x . ,h a -
{.W; G .Q W G J b +6pj'
; . ';p ( l, i fy; ' , ^
CY-HP-0031 Revision #: O Page 130 of 233 : Copies Of References Pertaining To The High Levels { Of Activated Corrosion Products in Materials Stored in The Area 1 Shielded By The Concrete Blocks f
;i
EMMM"
' $ 'v Y il's "(..? ? ', CY-HP-0031 I R
t
!.F '
a 7818710056 n Ih- Revision #: 0 Page 131 of 233 ,,.
- 4, , .
YfMngh00S0 UECidC N0r880f1 - Atc k Pe.w DM.L=s Fvse C.are 84.e
.fh )
p'.' ret N % hwIss.P5mf # h.spye s d - July 7,1969 7 $ KSD-O'RTL-531 ,; i' ' File: CYC-100 - I
?
! ,? . , o <. ; ;
- f Vsedell P. Johnson Tankee Atomic Electric Co.
5M.* h lj ' , Bo s t on , Mas s a chus e t t s 02116 , 4 a 4% ; 72 rear Hr. Johnsons *;P ' e _N . g S ubj e c t: Conn. Tankee Reacter y Coolent and Crud St.::ple Ar.alysis 2t a Attsched plecie find the results of analysis coupletsd to date of Fasctor Coolant liquid 4cd crud samples obtaiced frou the Connecticut
- L'N
.'T Te:: iso plant. . R
$ Addit.iecal radio chemical scelysis of the crud ervple of 5-13-69 are k '#i i b e in g p r fo rge d by Ve s t in gh e ue s An aly t i c al S e rvi e s 1.4b o ra to ri e s T le Valta M11 Site. Mr. L . F . F i con e , Ka na ge r P'tR Sy s t ew Ch ewi s t ry
{ will be prepared to discuss the results of thsee analysis snd the E .
' M genstal qwetion of plant activatten. He vill contact yeu directly 'g; to arrange a smtually agreechle time for a roeting. ; ;,g y n, n 4 - e l %3
( Ve ry truly yours, P ' I M l i cc: E. A. Coldsmith . L. T. Ficone E l W. D. Fle t ch e r .-
~ ' <. t R ." . k.eh r ~+ !
I gul.ing P1 t Service
! cb/RTI. l l . )
l 9 k ' .h I . g
4
' s ei ' ;. -
dyh E* !. - e,u d[ g
., .i ' - l' ;
- g.
'o h o "
a9
.O< 1o6OC- 4A y =* ' -
s M_
' %?go , %** O ,
0 3 geD H ( - O.h(C. ). 4 4 0
."..k 7
3 . 1 1 . ( )" 1
- D x x .-
e M 1 7 } , C 5 5 , ;
- '1 1 ,
y, J
- T 4
3 3 ;
' 0 0 .
4 1 1 - 3 x' x 1 o
- D N 4 2 M C 2 7 .
t n . -
!") .
9 1 -. v, a l . l \ m - o / 9 a C r o W- ' d ( p 0 0 3 0
- O_
M, t n 1 1 A. c o 1 . a e i t 3 1 D x x r e t t. R a - M 2 5 t
- r 1 8 2 l ,
e t i 's e n 1 3 f - k e s. n c c a n, c . Y c n.. C 5
- 4 l
n a 4 2 0 h 1_ e C n o i c m 0 0 1 0 1 1 0 h g m l b f h e 6 x x x o u , a a o c o 0 6 8 r b, T o C 9 4 2 h n i t o d 2 1 5 M i a e t R e ; k
'.e i , ,
s n A, o * [ a p Y . m -n o 6 3 3 - : C 0 0 0
' _) 1 1 1 n
- . l 8 n s.
Y a 5 x x x C o c - -
. I.
e ' i o 4 8 2 y 2, m C 2 3 0
- e .
b . 3 6 ? h c 5 y a d e 6. o r 4 d d i
- e e .
)r a l t
E' R l * '
'. p i ;
5 2 m f 0 0 a 1 1 S d M 4 e $'\'.. . - 3 x D . x o t t r N_a
?*',
a 7 E 6 o p t 5 H 6 d N
*J. e e N s^ .'
- 1 3 t c
r
]lY ' = - e r l e M_ _
r . p o m M
$b.,':, . .,. i . . c a y s .
e-
/-
b 9' 9 a c e i h s d_ f .,. 2' , - 9 6 6-
- N_
t 6 / / D T - fg'. . ' T .. . g '. s
- -. ' a; / 2 - 3 - ~ .T ,N _
D ~- ... '/9
' 1'. 1 , ' / ;:T'- h, .e g - s . Y _ &jat,).$. i 1 / ,. Y' v , l$ . . :. 3 . e, f s.Ds, .'.'s' .t . ). . 5 t 3 - // . . , .
i - 3.N
*.i4. ,g:s' * , a'y4* . d_
p'M ,, . $:. . h *. . . l?. ~{
- r. ;. . i.- . ;'.'
FP.!. Y :'* '.'..{i
- , N n.
,f's,',.?.,\.Y'N'{.'p., } t.D*,% .. ,.fup,'.wn*.':a9au.
c y. g h b'>'h y- . ,
). .L ._ _
t
-Y. *; : ,%;.'h' y .v,s' _
I' 9r b. '- *'
, (a di ( , ) l.
q g [, )i I t
i i
, ; ,I ui! - " 5 u .e.d' ,:.,':,..*% .
- g. $ .
, r- -
N,.,. . 9 L
;ll i - ,!. ' .
l'
,~3
- 1. i i
.l'. .! .! , - ,1; -' j L o.
M;.h . . J*
- x
\ *- :'
o< IPood
'* m* 5o3 u o V e '
t ~e o
-odm o+o td \ .T ni at la '
or ot i
~ " Cn ea p 1 '
W rc p on t o cc a 1 0 0 6 1 3 5 1 O 9 0 0
' Eu r nd .
T" C W 1 5 Q , 4 0 1, 0 N- W
?
s i e 0 ' l n 6 7 5 p 2 0 0 0
~
m I ~ a - 0 0 0 0 - s h"&W d c u r e e
)
l S e p m a k . WV
?
k Y a n I ( f o - u C 4 3 0 3 1 0 1 1 0 9 6 0 v o 2 l e C n n o n o
!s?
1
" " b.
i f o i t i s n o r 6 6 7 8 o p C 7 2 9 9 i m t o 1 0 1 1 i s C f' hWQ o ,\t l p a o m c C i' m e l h a C= 4
- k c 6 3 4 .
V* i 9 7 i N 2 3 m 9
. e 1 3 3 D - 5 4 4 e r c
n e , f. h N . l s e r o u h Y a a e a $ H. 5 8 6 f y e 7 7 3 4 6 - y 6 t 7 7 4 3 a a a. 6 2 2 r n
- o h W... C
- T, .
y y '.
* : 'l b- b ..[L
- s T*:.
k
.
- i .
s d 5 i e A..I . e s y r u i.s s
- ..- ' ;{
9 l . :
,' '- l e 9 9 6 9 a a i .' . p t 6 n e Mf,U'6;2, 6 4 ? ,,'
a
/ . .{' -..{.. - .,
m a a
.s , D /
1 6
/ - /.
2
/
3 - A M 1
" . [l,.;
g f,
*, [: . . ,# .. J. / 4,:- /
9 3, 1
/.*,/.
1
.f.
h.
?' ). :
t.
. Tn,C' h, *. .yf}-
47i ' . i .
't - f i
p,I[N, g * ' "' 3
.,', 3y es.;
c / /,
".'L ;.. $
E . . i . '
?: . }, . .\ gti - Afvy 9 d. . $Ny T. , ,. ,E g ' ; y:.=e :i. s'p u &- ,i' jESf.,% r.'
r
. W, j ..?C k,,,
- ip
# >, ,. .'p* .
iN ,, k . , , , q k, d.Y*.
- s. ?;' V ' '?."
- p. $ h . :' Q.?TgN s
~ %s [N ' r sf .pN i
( .J t,(, ' l. Q la 5 .J t,-. l b. hI I 0 $I&.
. . La ? , - ,
_ __ _ _ _ .. _ , ,_. .,- z. -
' ' 3 v.
u.s
. ?g..p/s.y..y:.f.w.-.c.>> < J:. . * * ~.e m wj :;,' ' r.3 - * . . ;. CY-HP-0031 'J j...;M.4., ,.. . - -
f Revision #: 0
.;fj
- l. * ; , .
. - '~ '
Page134 of'23377.r,y ,, 4
)-
t
. r+ . Table 3 TJ!
Radiocheefes! Composition of Conn - Yanke's Crud .
~ ~ t r Sample p Radiochemical Concentrationl a (dpa/ag crud) i Date Ma-54 Co-58 '
Co- 60 Te-59 g [ . . p
~
4/1/69 8.79 x 30' 7.02 x lo' 1.53 x 107 4.96 x ,10 6 W a
*5/9/69 1.4 0 x lo' 4.48 x 10 7 1.51 x 10 6 -
9.13 x 10 6 O w 5/12/69 1. 68 x 107 4.18 x 10 8 2.25 x 10 7' 1.06 x 10 I 5 5/13/69 2.26 x 10 7 4.14 x 10 8 7 7 2.06 x 10 [' 1.83 x 10 I
. Emle = -
I#F"I"8 natural elezent)_ Deee Ms-54/Fa . . Co-38/Mi Co-60/Co To-59/Ts C C .f.t. h4/1/69 1.14 x 10' 1.17 y 10' 7 NM i 6.42 x 20 I
- 5/9/69 0 2.07 x 10 2.54 x 10' 1.34 x 10 7 i
5/12/69 4.83 x 10 7 9.70 x 10 8 gj% @ 10 - 4.32 x 107 ' 3/13/69 9.56 x 107 -MS* x 10' W C)60 Is % K 10
, 7.74 x 207 g[ f . . . . . . g /a Decay corrected to saple time. 4 s
I '
~ '.T c - .
s . s,,
/ '/ -
s . t .
. - ~ . . . - . . . ~ . - - - . .
- y yy s
*Ho e. , ews .. <w, . -----,_-..__-,..i
,' *e r* ','.'- ..a' L ,y* *.. I g., s..y*/
Revision #: 0 .j4
- - --- Page.135-of-233 .+, , Table 4 * ) ,, .
Chaiest cosmosition of Conn - Yankee Sample 5-13-69 g' . . K' j,, . ' ' 11eseat ? . . ,, . Chemiea1 Cosnosition/s - i g ' (% of exide) . 3 s AS . 1.9
. Al f 1.9 *- $, .% 3 * ,
1.07 k Sa' i
- g. . O.71 4 ., J Se n - ;, 1.6 .
' a
( 31
. 0.98 .' Ca * .s 5
0.91 1 C4 L
< 0.4 -
Co 1.9 1 (. . 1.02
,i K ,
0.18 h'. Li
< 0.05
( f5 Mg 1.5 f No '.ii 5 - 1.2 No 3 {2 ~' . 1.01 Ea t} < ~.12 - y] 5' Xb 0.9 , h Sh 0.54 h~.- - Si 1.6 So
'd , . 1.8 * '
jf Ta
< 0.05 .
I Ti '
! 1.2 y Ya 0.54 - ' -~~ !, W ' < 0.4
- f. Er I
1.6 . l /s F.ased ori ashed sample weight. ,
- f. .
g 4 e..
- - {
g __.
. -- :. :- - ( \ -_
~~~ ^ ~'""~#~"
I 4.M.%3
,.i.s L t.:.dl,+15%.JN O.:g?. n7.f 3:% & gh ~
h '. I I I 7 \- 2".k. . , . 2mm
's .' . 2 7 w.3.g'. c ..
y;$7- . y gg,gye.g.M., ., . . . . g. CY-HP-0031 0.q.. y 3 .%.;c i: . M aif Revision #: 0 4.0%Qg. y'D Page 136 of 233 J. i Aca .;. . .. h,m. e. .,_
*(*' * ~ ~ .K.l:,k.; %:;h?.
s
. . tt* 3..Q h -
M.G..<,
- s-.- - -
. - W 7818710055 h...e7 c. . .:. .c - -/ . . :- m.-- ;
v.e..
.'j., - y- ~ l .- ;0 - i*; *~~ - '
NOTES OF CONFERENCE . c.M ON CRUD PROBLEMS AND CHEMISTRY PROGRAM AT.CY 'M
"$.h.. " . .- . ~ . . .. of July n.1959 . .s . , a. ; / 7. P .
AITENDEES: Vestingbouses Goldsmith, Ficone, Fletcher . 4 c*- i Poston: Vendell Johnson . f; .: - Northeast Utilities t. Dick Craves . ...
. Wi~y' '
Pove: Lou Helder .C CY: - C. Haseltine D. Stands ;. N, 8 '.;' . .
'.Jy1,0 g,--,
V. Hartley D. Lenth J. Eim.elvright M. Morris ,,
". N .r. . . D. Sturmiolo E. Mroczka _,
j Q . i. '.
. y, E. . ,. DISCUSSION: .T ~
g
' g - %@.p ,- - . .
Lou Ecider questioned V, extensively recording cource of CRUD and .f,
.vhether or . net the protective corrosion film for ed on incomel could te yi;, 7 %y'f. i rencved by present Lithium ph program foll'oved by plant cooldovn e.nd .7 l h;.: : ; - . increase of toric acid concentration. . y! l ) .q, .Q... \ 'V vss e=ph.atic in stressing that the corrosion film on inconel is .%
g 4-equal to or superior to that on SS and,that they feel there is no proble= ,.
+
eit. .- of film re= oval during cooldovn. . .-
.h. - u .
- .?
j ) - $. . . .
' E summation of the problem vas simply that an excessive amount of _
y W c ' ' t, , CRUD has been and still is in the plant es circulating or surface-deposited ,Id{ y.
. */ . . crud and that this crud is a natural result of the accelerated corrosion
- a .:.
Fletcher stated that it normally 3 '
. }'f , .,.
d O.7 c,'. rate requires 9 to 12 monthswith associated for a system a nevto rystem. establish normal corrosion film's j '.q ,(
$ and perhaps longer. Nying this period corrosion occurs et an accelerated i .Nff_;
pace and much of the corrosion product is releesed into the coolant sitrees, ?d> r." .f. , ' thsrety building up an inventory of " free" crud. A transient such as vs
. g, ,,had im April-i.e., hf h pover, shutdown, cooldovn, pump starts, heat-up, ;.1 h
i . [;k@[' , 6
, etc..'vould result in this crud teing displaced and redepositing throuohout .J~+(
. Hj
. - the system, including the filters, ion exchangers. ,e ,c. . C.
i .;
* .r . - . . ..u.
- f. 4 , -
';V assumes that the quantity of free crud deposited throughout the .
2-lP
.F :J . . systeE vill Af=4nish with successive plant cooldovns until eventually M l 2$ . - only the relatively asall amount associated with normal flim receval and . .V.
ii redeposition vill te present. * *: Q. *
..G . .$:.* J. . ., - r l)l ,N',
I
. A program consisting of several points vas generslay agreed upon to
!. ( ; - enhance the plant'e knowledge relative to the problem and improve the ,. ji . .>- &- . evaluation of futu.ce inforn.ation. The specific points veres ,,
'1) V vill analyze, the crud film on a piece of th'e 3A" continuous ~
l '." , spray line reioved during the April cooldovn. .~. j r. . l ,h
- 2) E vill analyze a sample to te taken frco the residual heat -
.J T - removal systez-vhich is still filled with ree.ctor coolatt from, . ~' ' f 'C. - . . the April cooldown. ~ * ~ ,. ,f,
- C'i -HP-0031 Revision #: 0 . . , ..-
\
[ Page 137 of 233
, i ! y sl.4kM,- , ,~
W I w
,l ' , p. w:pf. . r: ". %. w , ,.. n..,c.& .s.... w. ... ......+
9 .. n.,,r.s .. ;-..,;c r. .u.%. .n.:,..s v .
- f. v "' e..~. e. .n. . .g.e m., .+. .. 1*.. *: , .,. . * . - , *.;<
? iv.y.-d. . . v. .<- .. f. . ' .T. m~ v. .:.
8 . . n.
..V..,.%..f49.R,~',p. .p'.4 .. . ".l@ f.if. . S.3T.. ..r ' W. .. a:
Mi:'e 1
^. . ..'
- T. ' 'M..( . . . ~ ..~M. .. '. . ..F.?. <%.M.. .,M.. %-
- . : ., s . .
. . . . .c .
r y: . . . . :- - n a :p - '
~2- .c p.c . .g* y:.v.. c ., u.h. n.?..y:. . .. .. . :.m.... .. , .y. . - . .. . *. . . . -
- ~..r4. 9
.2 .. $g'f/".Ym n.M:.'M,.3). E Vill analy.ze a sample of crud to be taken I n . free ."the "; letdov g O-4W.# ' W,.:,,-;'.-: ' ' .?2 system through a'n in-line filter. Suf ficient crud must be col. - . ' ;r.- ., [.p:h?, . *.. lected to provide a detailed an?l ysis. -
L.4 s q.ve-; .v . . . .. ' .J #
. .i ,y. ' .Q g.u '. . . .v.,, ' " E' .vill analyze a resin sample free dovnstrees of the crito saeple.
J.' %).
?,q .. . -?{;; , . g.,: ** *
{ 5). E vill conduct a corrosion test on an inconel sample in a test- 's:&. u
., f,3.' . J . '.- f@,T - '
loop to establish film tenacity. The coupons vill te rc=oved . : 7.,. cne at a time at speelff ed intervals and it.=ersed in a cold f,' e. ' l
.. g.r l.h.. solutten of 1100 pps teric acid. . - . -v.
E lC M;. ' .' . c/ ', J. .;
- 6) A.Aph test vill te vritten for evaluation and persible application. .
4~';I ' h ." "W; 3 . ;< . E 2 cycle 1X vould recove the lithium and return the platt to I' &'1
-, f.#d ~j;.". J-o,Q.. . .. .
an unadjuei.ed ph type operation for a specified interve.1 vhile
.t i,-
f Q
. CRUD levels vere checked; - ,
i 8
- n. . . -
.R % ' ]? . $ f, . *% : ., 7) E vill r'eviev 'other" nuclear pover plants for.their erperiences . t
- . '.i. . .r.. 'Q' ,
(g.f.,.;*t b.... . 9..2.. . sslong these lines. -QJ
~
3{g
; ; .. 9... : - - . .
e .y,-
; 4 r . . t . ., . . w. , n , . e
- n. . 2 n. v. fra .
. . .c .
- l. i., . 4 f. . . . , .
- -: -a
. .q.I.V. :
fp.'d. h..*, . . i 5
- p. . . .v ; .. ". -WE/jb .;<Q Mj[sbg,}-
i ref4
< . .s . . .,,;,. . 4. .t u .. . * *s . . .. M. a.c, M{y l \
u ;:. l . . ..,
. t sr. .-
y.y, .c.,:r {;q . e . .<.
. .. .:6;J
- t , s: :.: v:..
v...,=,.. . .. - c.;.Q: J..v..:. .y. .t . .
.v ry . : .'.y;. . . . ':4:c v. ....c.. .W .j .3 't.'[. 4. ' * '
['. h
. N$ .v. .* . . .
p/.h+.. .
.h j e * :.,.,.'.,.,s2..,
- p. . .s. , . . .
t v.Q. j :A. - ,
. . . . . . . . . . . 9 . .- .s. .. .e *.:.. - _ - . . ..-su, q:
i M *. .
- m. r..; .-h. ..v- .. , .. . ..w-
. . . .p, .. :.. . .. . .R' N4. < '.g -
l (.N@.W*y;:: . .:' '%v.' '. ". . . .. .. . . . . . . . . ' . . * ..w . :- .
. = ; = :
- v = .i .r. 2.. .z . . {.'N.'
Y s54
.. :.= ::- .~. . . - ; . . ::: .- . '. / '. .yQ 1 y . g;y. .. . ~: .: ..,
c...,**. ..
. g; . . ;y; .,:4 . ; *v's , . -4 *,;,,; . - 3:. . +.w.: - . 's . !*. ~-<e =
g* . - +. l.-
. Q.,Y , ' ..a* ?.'.7. . * ,. * % 'N- .:e .
s.? [. 3 - ... .
. .. .;.cd 3.. .
8 - .
. g.;
h5 .. . . . . - . . - - - . . -
~ ~
- h. .
maammes, t ! [' ,
/ 3 - 1.] j 0
CY-HP-0031 - i i L- .b4 I _ -. d
)h t c , . ,e - Revision #: 0 .
M ,[M' J 6 7[9.g* R. .j,4, y j y1 w Page 138 of 233
~
y d ,. n $s
- n. k4 c t A C fv, c
'? . . c; . ,.. v.t.1; .,$'.sw a % .gd .p..m ; '
Pu re , 1. n.- . . + m' -; . i h..pu. ,.r.s:Q. Q k.W.Q &s. ...}y. .k Q .. y*: ' u. .m L~ V. .'.
. o p t%.)[pk -
t - .'#A*g.4.M%M};: S
- p. . . . .r - :e:W.Y' :24.-:?Ww.*6 .. a,
. t i '$. MsXFETW A' :NALY. SIS; REP.0RT.g '1,. ;?';,'. ,; 3:,j v.:.y -:g .,..y%g.g .. m%:: :
8 Nf*'E } k Q; g.:C:s
-G. - .. g 2l* . gi % .g.-q} . ,'. * }]y. Q f.'
p Jqf.*'Q',&' _e: 3,. @4;O.og.y.4.t,'.f .a@y,*g~ :.f.+Q... n V
;.', .f, T,W '*,e -
i .r s ,, .M4 , < 3 q.4 ,. e # f..A
..Ars ,M G .I.# 'L o - - .. .. . .r. r -c s.
n. g"T'13 fw,.cM y :P ';3 .M iJ[r*:<rH w..>, ' s. 1x? .;'.,. ':,m*$. L.1 p.g [. g,,.),"l:* na
- P. .s,.*
. h(, vow. ..j .'y.1-v,.L. e ^ .. -, %, , 6n ,z. r, &y.g. t w ', we+ p a e y.y.wb N,4 w.rs. FOR T'HE . .~. m ;- M < .:, . . x' < - *.g.,'t, ;<:.n. i m::
e b
- .. J A < apWMfM#o : ?.L..i ' ..q;0 .f.b.hlN&' h.c.m r -J.f.h"hyA[;:pN.%
hh:v" t..d.h.v.'.,<',.e$b'
- h. ~.: 5 ;: - ~
- m. .
&M@ . <.M n . >!O:6 . :? %$l%m.%{s&.t.k.&.h.m.A Y' * ~. 1 -
am*; : .s * " bM&. T .*1 r %W.i . is'.* :- n. 2 ly*. *1 ~ , .
* .i -i y ' * .,'A -
fi i
.s. ,
QMy$y % $~ t . Wnd..-W %t' * &2--' n't o ?' Q""'.<A'. - ;;O..??.f 1 v'- - ' - i $ SPENT FILTER ELEMENTS . , j i g ga "f
~: 'k.,f.t.;im 9,.v. .g.4y.r:
u r. .t . -v :..I'N 9..h ....... .4.
.,a. b. .r ,
3 *p e?n M: .* * .s &....u*.. I4 .
.- z ~
w';+r.Q. :%v ~ . 6 +. .;. q . .., . i. *
..y .1 i .
s.- m ~ p., ;.:: * . '- t
'*U 4 ;a. v'.h Q s. c f*.(.;~:.
s ..
" - r.. . ~v' w
J
,ha, ' q,,ph,$f:.s;k,.y .h.
ij ~Q?'I'.? *
.,,.3 1;. ..
Va ' c..., t.0, ) , n.
$i s'.. '& ,
- f. , s.
.y f{Y IYfA:hf ,,i,f,I:{'D;r:. ' * * ' '.'. - . b; - ,' ~.; . ..'.,c, .'
s .,.O T W-M p- i ' '
... .~ . . ';: .. . .: v: , u .k. .f;n., : ,
M.g, W. . hs vj.:*: .h.n. 4, u.a, g .. . %r.,. v. ..,. .s : .
. . ?
L .sr..wf m , .1:.*- y d.i c,.e,;g ..,eD % e .
. ~'i:. . W.N W:?.:y swg..s. ..cv\
4..c..~. g. y y-3 L d,,3,e?b.w...'.,. 3 ..
. x U.:C,k' %"%;.R .... #;:We. .V w fe. v +
M M t. Q :.=i V. ** .. MM:
' e '8 M .1-l . ..'., n' - '. .- 4. .... *.m.yQ.fN.Y.':Y'hhh,., ; ? : . ~b.'^:-- FRO W ~. - c ' i{ % b,.Yo%iW&;# p hid:&v,Mh. 6M.i~::k '; w
- ?: ^r
- - h.' ..n m Y, U:. '.f.;b.r $r*..h.M.r . ;.-U..N .a.M. w.
W 7 l ', 01 %m $:i.ys::.n ...f:.g(, 4 W ..
. , e .m . .,, . w 7
cg.;g.J.g',' At;,.'.f.[;sx.ry
. . :2.' . HADDAM NECK, CONNECTICUT . '.,(
i <. .: , . -
. V. .i.*U.,' r. e .:- -*%p/ W:pv ..
f Q)*pk;.%*c$;?l/lfl3:e;.y
? ** .$ n.
h . . c. 2,**; ' . '*'W L o
.n,]..n #a:,~s .'.. .a .W: '. . ' *.2 " T-
- , L <
l
.. yl T0' .Vy: s. * *b - v <-p .... .?...
- v. y.ss..v. : ..
- i Utl, . %:U.Q :::
v nl'e: .g.-
. % A, ,M -
3 M8 QE,4i < N.. * -**
****?. .l t/ / 'f'4:'.y..; al*
- C - : Lb 4l,." .l.'r .
A. . '
'. ' ',-I
d,l 4.4. *'-
.v '. . .
e ' ** * .
. i ". - ,".C..e wr. p.:;.N,Y ..Q.? :},* ' * '-;N G' j;s y * . *. '. w. ~ .: ' ;r.e *- . . . : ' . % < j.J..ov.'0 - 'u. :f)%.? },
j
. ,. 7 q'~fN.IT'jN,..Q.W':TK.Q:..V>s.Yf': NUCLEAR FUEL SERVICES M.,. . ~ ' .,EV'"'
Y %.:sA: 0f. f; ic.f.[.!'^h.[!NIlk;p!,$'1
. . :.y h i, .
I a .WM ;- n:a. - Q .
.n.: % ;4 9 .m:,,y ?;Gli d;.u.7, ..x. .
l %b.g.):.. W %g. .n,7: .~ b. .Mg Q :p ((. Y.:.<. H ce:. W y- _.m.x~)[:.:.:; .' y. 9 - e.,3- n:.
. :%..?~s . M..c:. m.J 9%..?.p ;lQM,T;f.
7 % tATCOR, Inc.
..V Q 0 k.k.@
ME - . T' .:;M.. Q- F np!9l l*#~'-.;1 W , 5 York Westchester a Wy.g'p g;;..Pla,.- m gf g3. :;.-lg.).7 ;.1, iMarch ::,'.:: ;16,jA L:iA.:197 l .
,' Elm s '.f ord , l\qeg},,..< ,e y, y,g.4,,,;g;; *g' ,.p 0, g , j g.p ,y.,,j,p_ 7, , ,, g, s i. * *. * ,,;,,, m '/ ohn q .s ;l' q , ..$t. . ;y%. *y4 ;e.f.n.y..y :g.y' ' 9.h.'*i ,. .[..sQC.T.
s 1 s- -
'- i . :.tr ;:; ..;. r
- h. * . ;. s.H. %- q
- 4.} .n
; * ,,.:. .: ..) > , . ,t* 7,r,{ . v~d* . p. - ,q.sp r - .
A. . a s..,y
,,- .y . e.,y f ,4 . ';~1,g; h- $.'..;.... . ... . -;s .. Q p;.q,j...;* 1 I ? . .~ - g. v ~ %pf,:Krw .. .< %. s; ,pf"Qy's $ y,, f f. a yv.,g . ::g:, s; y;;1 .3,61g70(.,, . JM .Q.t % ~x. .~ c.t', ,:: . :i ;-h . '*.:.~ ..~: ?%y n. ; .M. :- Q.q. . .;) - .f,,.i., % :q.:).
1 W h ./ 'q MW-y& p%.: ;B',4. w y.y.)
. . gs. ? y.M.y. .? . Ly:
- s.e.y : Q~ .: ; 3
? 1: ~ . ;~ , *.;:3.
Q ~M, M;Q, u.. k . v'r 1 N:., 4.e
\i;Og' EEUk.6. W:u.
I '. lM;,' . .;d %9...' Y.,,dFM Jb'.h.;;;.:: . Y NTjlq.p% W N. *~M :,&n
. .? ,7 .
- p(b.5,'s.N to...:. L1.PURCHAStMDEPTh.
gl, r 4 'e f .[kY'7 *$ ? h Y Q . h ," $ f h k.ua$~h..>..hh
. c2 ~ . . . -..> - . ,.,.
1
.or....,.. . . ;. ; a g ;, -<. . . ..w...
i .. , , o .--. r.,-a - ...
,.e-4 .
ua.
.. ,..m., . . ,.w. s~. f. .. _. m.
2 , 4. ,u . ,. . . ,-, w_ ; ..,...s.,....-
.v ~. ; 4 p. . .s w - . . r.y , .w;. .c . , .s . a
M _r. i-rit: $ w r& _i#;&, 'M R Z.L.9.i ,;4;;MO.C W r.m%~~' W 9; .% h m.y::.. '.. _., A . w.:- &.a.: m-.-
>-m -
CY-HP-0031 1
. Revision #: 0 4 ; Page 139 o' f 233 \.
r3g, ., , ;,
.. .. '; y i ..
- i. b
.- hD 1 .. ,,, .f. .c#.; - )
p;. ;isp
. & h?s#'. ;u N: ' .. . i, MINTR'0 DUCTION v. ~s${ . , . ' w&.. -.'
9
' %,s. ** -;eW' .9.;, a..&. - N .c , . . . . . . .%; ,g.. ' i = ig:g!v.?
p f.j,i; n e A.. :s:,-:.w. n (5Qum.enW. 6!:fg.
~
h -
> . Y ..' l '
6$,dh,ip@)$6q' tie ~st?!forf'aThis.Tsafety,lanalysAs. report.1s, submitted in WdNa f V, .g.p lis.l.Ic'sMcoht'aining.: a'.' pprovalf.singleiEp'or1 entJfilteri element. .The activity shipments of~the Ef. ...GM ' ATCOR LL a(.g.N' s'sithin"alspentcfilterse16mehtGill
$"Q'#
cit . a .. o be'.less j than sixteen (16) j.J.;kl/pg. M:: [ Ek. M% Fi.r'i. .e s.%.s .f),.c.o.b. ' i. .t.i ih. '. th'e ji.z.i S."^poE. d t'i
!u lter ' elements 'are .to be shipped /from the Co.nnecticut-a , ,a, i .
b, N$Y5irike'e'YIt6hiicPo'wer; Statlon"in .Ha'ddini Neek, Con'neeticut 'to i si8
- MNtIc1'eabrbelt Servicis* S',. ?Inci,' West ' Valley, f.b.p?;y.$iD@,huiia%.5..v%.YQ'*.3: w m .) : :, . * .-
.New York "for . *@ 'i,% . .p n":. n.M.%:v m. x. .m. ?.~l .:'O ". '~ ' -l~ . . .W, .C ' Th e" a n.alysis co.- - '. p~.
3 .c i gtMa$MTh63e' y%p;4f.N ff f' .!M b .q. ."f.v.t..' s tilts.of the analysis demonstrate that the proposedn .
. .- 7 ' ~-
i kW~i$.Sh.di, M
.fM %ds of shipment of the filter ~ clem'ents satisfies th
((nents'.establishedby;the. Department.of.Tran.sportation. It J'is indicated that / 9;
# sy,c h $; h integrity in a thirty (30) fthe cask and contents would maintain.their
- 2. k ,. 1* -
t 1 .
",'the . puncture test. oot fall and would also survive d g[i'jM:;ceN'-l *!:.f Dose rate levels on the surface of the
- i.e 3.fh;%P j
,, f{ .h:.Ri;...r. ',together .
inches ~ of lead. provide the ' e'qtfivalent shielding ,ofitwelve ~ ~ [ N); :. (12
- i. ' ' .
Reductions of' lead.'shieldin3 thickness a.'.' W 20 .. l .% accident'would s'till result.in s' . i t . l.'.-l.2, .'i
' Mg hh.,% : 'a result of the postulated. ,
- Dr.'
radiatidn levels several orders of E.agnitude 'belCQ a'.cc' eptable.,:'.y.YN
-d I N, M.NdN.l'.'t')i. . . levels' heat. poses for the' no accident,. situation. f.The. dis'sipation.of decay .': '
Jp
.(0.765 BTU /hr) problem dtte 't M decay tv. f.W load S: The lev . k %:(;;.Q'.?;.: 3.' 7 ... ' involved in this' .
shipmen,els,o of activity the: t are smallbin., relation,to' cask / -l and decay. minimal heat.'. heat.
.f . r . .-4
{ h,%.E ! ... Sca !. . p re.. v :?..s.: ~;> .. pacities . indicating a safe, shipme'nt., '.',1 G t i .4;. / '. . '. . -
. , ..;+f ;;.
p, wy: : :. . .
;a c - , 4 . . a- . . , .h;?< a . , ,e j ].;: ;. y :t,t:1.; .. : ,, y . ..y ., .
- 1. , .,. . , .
..1 . ;p.. gi.,e . . ; p ; ,,s. a r.
- 4. . ;..:g; !.. h. s
% - <.' ., .:q.; .;p '. . t . A..,.,
g$. , c ;; . ~ . . 3 >
.,y,0 . ...t, r.' . c. . :, r s' . .....w - ;v . , o y.j . ~..Q'*L . v.
G.j .'h. .~. .* . n, . . -
.. <j . .e *J e ,,. :.,..1.~.,..,'.. . ... it, . . .: r% .J. 1.. ..,4.,.. .
s l+ l:{ i :-* .'e.<'$. . '. g ***.;:.*~ L., v. :.g' . . .
, . ;,q .. y * .. .. '.. . ..~.' .:.: * ..-' . , . n ;, - . r s . .. .s.,. ,.. n. .,. U, .
t t. * y v . g. '.ng -: %. ,. ,. &. +.*.
..,'s . . .' .',;.*..*', ... g. ; 2 s s,. , A.. .t . :.* . tn . . . .[.8 .,}'*/. .Y!; 1,)! *,f j(}.: n 4.'l ; ~.c . ,.... " ,h.e , o .j .
o
- i
- v. ,, .g '@
/ . .t ' 0 y . g. . . .
1,.x. >.q&.,. .,, k,.y .t ',6. *. .; J,d, (i..-,
- v. *
. g*;,;. .],.
g[h. .:.e:..). ., ..' .), - 1 e. ,*;,s.r. 934 p op. .d.,
, ' . ,. '.: ,,gp . ,.. 7*., ..4 .is ;; . .y . h ,
- r
.i. ... . .- . . t . , , .3'v., ,,3 )yj.yc,p...,. - e p ,,9.*4. "';,;f'.T y.; - ~ .. = *~
e.. . , U .
.; _ y' y. ,: s;::
- b .s *
! .: ;.,N.s . .L,. ::.M 6.; .! .is. a ..]
W , , .. - vl. . . . .,.
. . . . . . I v ,,. ?. . . $.* r. % . %. . L?,.f.,.i.Z'. ." r . . *: ~. . . .Yl A. R. E. r$. +
f gt ,, . g '... e.~ y,m..+ c j..,=,
. .n..e,, . d. .g <.s . ,. , . ,y ;,m. ., .. i,. ... ; .. J '* , . :,. .m;. m,: g. ,s.L. s .,J.
15.. .p..:. ;. ll. .. r*, . . - 1 y.. d , x.r . v. . :. . . . .
~,; ya,. , ea f.q't.m m . . . . . . .
- i.m. .{.. : *;::,
g ,q .:p, g ::; ..4. ..m Ag9.n. @wg, y ;.. ,i. m
.y ..;. i;. p . y.,,t. W. g. .n. . <-
- g. . . . i.: .cy.
. . , w ... .. .. v; .:..c.>j . .. s... .,g ,.. ..
y
.chq.,. > . . .F p7. C. ') . : > . :..
5.. +
. .... .u, : . ,p ,9 : ..... o.r .W.4 i u,; .< v. q g. ; ,. . &. ,s u: :9.%.:. v. .. :-.
4 ;.9.
- . -......:. #,..1,..
c3
. . ....: e. .r t s,..j 4a.o..f'. .;s ,. .' v. ..f. , A. . . ... ,. . 2 .. .
c,9: e . 3. . . . . . , w.;.,.m,.:
.. < . :-... ... 4. '....s..< u. : .. ..o:.r ;. . ., }* -l. 'l,. . .. . .. >e.,r.,p. . - 4- . , );:..*., *4 ; . ,. ,'
- s
,,.,I- . : i. .m. . r . . , . , v. , .. .. . . . '. '.f . ~w<.. .. . . .. .n . . tv., j:.a~. *; (,-its . ~
- n. . ...... ,..
. a . :w..n. .a , !
v* - ** ., . Srr
. .p,. >' . .m. . . . ./
i
. /,' *i. , .. i' *;ia";Y.
h[.7 : 0 '.hl.hl:ls. S l, * .- *
~ l . .. :' '; ,, , , . ,% **L, ,.,.F".L."- * ~ * * * *.. .? .
l .'Q ,' ;'
--Y. -
.-- +.- _- :. ; m. - .
t -
--. ,s h
i
; CY-HP-0031 i _ Revision #: 0 ;.', .x , DETAI S OrcSHIPMENT. fg[$.d:,Q),WI.b ."f(d';i.'y. . m , . . . . , ,, _.,,1 . ,., [ . I. .
N 14';4h,gach; j.
@ .' ggg. M curies ['of disposable Co'-S 8 'and.!1i6? : filter, curie's'element of Co.60'.' "contains The outer a maximum /efc.g y,q.f, ofg$['9g.g.7 ' 'gfD.iy3W[;75h'e114.of' thef filter" elementJi's,,a ' perforate.d .
st Q a 3 N.)?*g,#,b$M.M;'[ 8
@ yWckyp.#WC-:., y >.:. . M;1016'iWchd s i O liD ' . 6* 7 ,. - %& ' '4&.2f.Q .C. by l '.""a'$'d. n.p>
f 2; ,.c.hg.54eS. n erused!to A. .
. a 3 .iM contain the filter'elem..ent M.,ys . .t ya y M. .s . tiv MW 4.ypKW;. s[e'nt[filt'ei'~ 1iner . b.'is6.,-
steel:andt hast a 13h inches 0lD. by 41 11/16 inch length. fabricated .Yfrom 7.st'.e"e..iD. for transport. 1/16 inch carbon The ine.r' EJ:Q~ : (dr 1 s9 %n A
.h g hy.!' y.d,MJ.fk'O'@MTheVannular E'p.;s.%.will. bel ~filledwithconcrete.' * ' space between )}Ggf'72.) M W$r :. th y :y :.6. .:,.y .c . ;:J. . ., <y;. ;
e pa r ;ogf_ a7 f.'Th6' spent filter in the. liner is to be shipped within af65,. f 1 e.. y@ jl::2.$r,6?I.L
,,$.4. - @.'-?:'the,ATCOR . '@ LL-28-4 . cask.. The shipment will be made by a 1%I.@:
a p r c ommon carrier employing exclusive use of a . flatbed trailer. ' ' ? ,E am J,. ..t.e,V.t?.7 w .. : ;. .,.:y-<."e
. ;,.. ~ .. . ' ..
- w N
3 { p,'.yui(:g.3-y.47../.:-.'The
'M gc .N.4.6 ff weighing approximately cask isfourteen a cylindrical (14). tons. lead-filled 'An effective steel weldment ,
3 dy' y .. ' cavity of 15 inches diameter and 43 inches in length is ' %.' y " /.U/i". E. . provided with a shielding equivalent of approximately s
.g.7,- ,1 '11.7 inches'of lead. The outside diameter of the main- . .' :. "-
3 g* N (y "... . - body of the cask is.39 1/8.' f inches and'the"ove9all length A.W.9, h 'i. . . . . Y,.$. .~L h - y. f.. '.. 'A .O q..h... . .. .
k.'. .
5 y&.' 7" The outer sheli of the cask is fabri'cated from"two
. -N 'r.:. -: ,,@, - .
g$fr:~.0';...a.. f '.e . 3 .
',;* / concentric steel shells ~totalihg'171nch'in thicknes's.r The' ' i ., M-
g <
- S/8 iric} tiiick' ASIS -Grade 60 'sfeel '? {* %dB $ Eg%:[." W a T. l7.d Qouter 1 andskin the~is inner made skinfroml is made froni},3/8. inch th'ick type 304 ~ ?j stainless steel. The" inner,shell'of the' cask'is. fabricated ^IM 4 I' W @$
g ' .#. W '.'*l'f M~.of 4 inch thick type 30.19 s.tainles's' steel.. .c -
,. i. ' ' : '@ i ' ~ '
['hh ee' (3) remoha le n ' kd s d' pac'ed 'a t' '1 r,
$ g. ';,., , '.,for intervals cask handling. , 6 inches .below the,; top of .the9 . cask, f are 1 /.
twenty 3/4 inch. bolts. The! cover of the. cask is.isocur,ed'with:The cask is secure y: O . s W. '. 2.' frame on the' flat bed. trailer'with'ctwelve 1;1/8 in'ch' bolts #' Y%
- 4
[ (UTS = 125,000 psi). The.' fraEe lir cohstructed of two i \ F ' SM W*'.J, N
, ,:{ twelve inch channels, along the: length.of the flat, bed trailer." ' g' ',g,,,c / . .',Each channel is fastene'd to ths.traileb. bed hith'. twenty:Jnine' M;.r,j;MI v
y..' .'. ... % ,g. - (29) ; inch. bolts. .L e W 4,'.f. g,M.G.M. g. . drW
, ,.f<,.4,^i;#yg.h.T..%,8,.?c".p:./jfs:
y;c
- . ; v ..y.n.;<.:b j.;p,,g,3gj. .
,g, , .
3; g,.M @s.d...g ..;p : ,'y .!c g.. y. py. g,c,
- V, , . . ., .,l,;.. ;,$ g g g ..p yk M R " f,. , ..
- 1..
. . .2 . . ..- ....> gt:. > --: . i. :.,y y,)g.;,s.p . g.. ;..n }.s A r.: i ..:+,.x.V, ,.a .3v m.,.) t.. ,.. q..
r .n.. ' ,w. . .. .w . n, f . e., &: N.. s,n
'.L .W l;I.:,;s.i.~. %.1 ::m%
- n. -
. **.y N .. . : , Y.i.,&w * >s.t ..> . u; .v < * . m .: ( l'..
i . . . : : .. .. .
. - . g. .
y}].s. {,,.} #*'
.N;. d;Qf idR3,,f.(p ny'.j. . V,. .t,7Q'. \[p ,.'../:
L sS
. - s'I ..yv ~
jG,y h.9
+ ... '. .4;.. . .'.. ;' 4 :. .r.,'.d,; ..<.r .c/ s* .@x . . . . . b.,
q.
;,,,: s,: ... .t~~ ,y. c' y;4,.' . N. ;, au, Q 7 < ;f . .. , n:.
g.. 7.E. ."i. . .O.Y. '[.,. ?. [. .r,J..) h! d.$,M' f.@.(g ,M Y.s4%. :y5M
. .. . c . .,p. ' .g. '
M.s.. e. !.!.s.';%.s .v .>.,@
^; ' ' -lI:~. h . ..-. , .)
Q:, . .C.:[' ' * '? ' :. ) ' t . .' . .Q .S. ! < , '.l'. K y .~.,
. . . % . l? . ',,;' . , , , , ,, f -i ,}.Q' ,, .7,z ";Q. . y Q. J. 'g ; ., g,.;* .
- i < . g. . .
. ,,'af.:d.}' .. y, i _
. . .. .m .. ..c r.# m y r q q . ,. pl y .' '. .j , f ., .....~.'...'.'w.:,..... ~ ;. m" w;.e ,.m . g . n,m ~ \ .v. . , . , - ..;.z. ~ ~_y _ m . .j = -
CY-HP-0031 l
= ~ - ~~ ~
- E -
Revision #: 0
.s y - ,l 6f ( ,. ., v. y g. . . . . 4, Page 141 of 233 a ' . _ , . ..
t .o e (1 WeDESCRIPTIONq @.4 . _ _ _ _ _s 4"
, f. M .. yew Mfd n @ W &
k
- t *' ~:%.a $.ti g ifrd% g p h l q;.;.*:
u .
'( e '
f [, 6 ~ 1 ;.v.
<a.w.tp.p.wc?.h-% aNdhs'k9- k .n.qc&.4QM?..h.$ hh.s.4r N [y.1.c :
w.4t .?' .h?/f.7-,f4 s.;g.;x./7.y9-W
' n- ' -
j i k a ThD ATCOR'.'LL-2.8 @ cask.(see.J" reference - YQ Mdrawing")
. .:g ' 'ynu "O W k l 3'
7 ..
- 3. s.[g~6yllhdrie'alTlead-filled stcel weldment weighing ~
p .
*app i ?, M ^_ '
matel'ya 'Joffourt'een. 15 inches .(14) diameter tons. byi 40 The inches casklong provides with 11.7 an e f fective.~ 7)l-l j.-fa
'i pfij2FJ6avity?leaddquivalentl M' gh' inches shielding. The c,utside diameter of ' .;@;;rjh [ , ->.. ~ c - the'ina'i3 body' 'of. the . cask is l3 9 1/8 inches and the overall' ' *jW.. ~
sM. le'
'- " h- ~[r3.V ' I. -
i A.e p..n'gish. . ..
.- ueW; .
Sis L 67
- w. ., ' inches.
e . /X' /W ~ d.N ',}' i, m. .e ,..
... M. .O. . -. . . . .- ,-
w.y
.A q .1. M.$;The cask is c,.~.:-onstructed of i:wo ' concentric steel shells
- ?- A.
i-pf,.fu #(Jflat. base plate, with a lead-filled steel cover bolted %- wefde'dhat' . PT M.=,$ J' cine ! end i?
. @ Eb: p$ to th'e steel, other.end. shells'~is The space between the inner and outer filled with Icad. TE ' I b
h
'} % .e??.w.
- h. -
. :.. w
[p.h n i.-N.y n:, The. inner shell is fabricated of h inch thick type
!.Md. 'hh dq'y. i .Fy g:g..T ,ht.;$pl. M[ inch I.d )thickThemild i i* $
304 stainless ricated of steel. elliptical dished head is fab-steel. The total thickness
. a.ij l
t #FA:N the outer shell is one (1) inch which is made from 3/8 hhj.Tof
.f-inch thick type 3 0'4 stainless steel (inner ski'n) and 5/8 %,%
3S '!k.".M Jinch thick A516-Grade 60 steel (outer skin). The thickness b *
.chf6 ~
1 pg3 g.A.M *reguirements of the outer shell were set by structural . ":. y ; d.WcM.fe cr.iteria based on a 40 inch drop on a 6 inch diameter , ,yp. I, 7 e.' P'./J.> h . piston. - Q. m : W .. .
..;?(.y M3 i Ihf'i %.w$$1h,. The removable cover consists of a lead-filled steel k
M 20 inci es nominal diameter by 12 inches thick, 5 .; 'k.N;.$I.W,.taperedplug,
?- ,y
- ic fi
?. ,,Q h/ ;./#.yD.J W CJ inchwelded 9 1*;,f two concentricto thick A 516-Grade recesses a 32 inch 60 steel.
of diameters diameter The caskcover 13 3/4 inches and cover contains plate 3 fabricated % of 7/
;1;p,J.y g i 'inche's respectively to accomodate the filter element within ~ - L. $$ @h:
5
, . . i f. .
ii b(. .e' the. cask cavity. The larger recess has a depth of 2 inches n V ; W x A
/p.'-$V.s".%7while 7- the smaller recess is 1inches deep. Figure 1-1 -
f/g. i . i J.:v..'s/?;..G.illustratestheATCORLL-28-4.caskloadedwiththespent .. ;' Mr;]n . a
- f.
- The cover is ' S.. c ."P.Ed "1 d;f[l[-.'-c.s...filterelementwithintheconcretedliner.'c
[U - ...: l.'bolts. secured..to the main bodyequipped of the cask bythr.ee twentyh(3) 3/4.i removable'
.;L inch 'i
- 5. .iQ' " 'O ',$N i(g[8c/.0f.;cy/Yl"eyeboltstofacilitatehandling The cover is also with
--L~'t ... L e. c .r ' . ; .l .f. s M.w $ .Pb a u. Q . * - ..W,,gr * ' , ? ,,Q 3 J The cask is equipped with three (3) removable lifting . 3 . .= g.w .. W ..... .. . ,;y, ;
ff.' .- lugs placed 120 degrees apart and 6 inches .below the top ofThe lifting lugs are design i
;i i' i ;A.l. E ,#? 7,..,.'the lifting cask. lug support and each lifting lug is. held in place ' 8.'J.D'h, M e
f.s . . f W 7.by'two inch bolts. When the cask is prepared for transit', 'Sim G O i . ' ' '. ' '- I:.I the three (3) lifting lugs and the three (3) cover eye bolts M.T k !
! , l, ,' 1h - ' " are detached from the respective functional' locations and T.~% sl. Y r
k:' secured to the cask fins during transit. M.~ c .. ' b' b M I h '; . O, d ,- 3 ;s .p : f .';; ~:.,_ .,.t.j . . .' t .: , - ,M . , .; ' .' h . ', .:.?.h.h.
. : f'&;b.
- i. W;%. : '.. ; .:d : :..A., y :tv;g. ~ . ~ , l. .. -; /:u. .$' ., +?A,3):.:c T .e ??by, 54 i.J:N;:?
\
i.&~:4.%@&
. .. a . \ 'g... ..\
i : r...
';~ . .9 -
jy yJ .1,
.,(K. f a
- Q ~. r.:. };~ , : t.dJ.6,l, 1
J ,4,
- r .%. 4. , ...
M. V vl. , , .;;,y,. ' ; ,e.' 1
.*pA . .a %b.. . 5,- ..9,l,'.. .: ,,4,: . ;*'Q .s .* h .*as,* ' ' .t /'l w. 4 ,.4. . , , t i , ,';, .&,g, .. d.**,.@4 ms 4 .Y .. "- .?r . ; <.)g *C y O . . . u,J 4- ' :' 6. r?> :- "t l:A . v. '. ' f':" & " % .g-u &}:.:..Ve I.'t-i~.f.b % t .' g) k}$;5k.G.'&g.[?. : . ;'.QifQ h h b j $ h k; $i bYN. $ .h i :
1 o -
. ., -. j m.
h CY-HP-0031
.-~ Pa,g.e 1 2 of 2 3a- ... . ,. J . ,j.' '
iI '
$f r[M'Ykhk.y.,,,, +
f\ r ,
~ -s'u .a . ,A nr j.
by. WkwMM.:w 28 % dEXPG.:CMR%25$%%W r '..c: qQ. ;pi Hn l {
- ,9 . g- .y.,W=. . . n.w 2 e y $ e.e g h..M% b .;d
~- . %p/%(M.m ..t (J M.
4 8f'O v: % .w. s .q.WWiv.MT w .s - MA
> m w+ 'WWWwiSiW;.W#-uc.
s -s _s. s
- m. .r. > s.nf -
_f s M.9PWR'y; m-m a.. .,. q;gy = Y~r~r.e "
#3h *- i M.3 ] i 4,9.. ;. $$:sf% , . l$ M&:, s . ,.ve,s.p ,4 rs o v, ,,.::.. 6 s( . -- conc 7cn: r.
es
- 3,y c p ,: a
. .+ _ .: 3 -e. ,g. u .- - ,.
g .. c c <. . a. y.~....
': %,,...p.?M . '
- g. ,-;.
v... 4.
.c y&:g?. . .e. .,.... Fi .'* * * ;.',4 .I'%% L . .,
N .-2,0 -x . .
~ W:.c W ?
t i
'-Mh'd:6 t. ?j' ' **c.e.,*. w., c:u.., * ~ ,....1 w. >-l" % . s ..'. x
- t :
lMyi$i ' . -l ; ***? -
'hl h'*e* .e . %. .WA.W. 7 :... .e.:. *.. *i . '1.! 0 ' LYW 'k L<- .
i W f.r .'S *:?p. ROlf $. %M.).. ' V a. ) ~1.
^
c 0 l
..pW};3. 4.W.. 4 q.(3 <. ..;- . ., . s . 'M;, . ..:: l . ..; .y.9 3' .j
- ... [
"^ . ":y . . '$'3;.'p .. %.J P3." ~ . ;.< t i 3 $ .F* Fig,; -: *s n, ' . 4 .c ,ipn. d@; . t : ' *- ! *
- N
- l M.'i
- .gry$:Ylq.. ' '@
l ?- - g l* ~5 '. ',.;j. g . ..
) ' 2 V . .$.::ci' *. , '.t.
Vf f
~ ' ' 9 ; ,.... ;. %.2'l) .' [ /~ t ' - n ~ .~
EM ~:".~- 3 q
&s.m Q, .C.
h,*1Q}'G?'"${f
;; .'., .p -
i m'i
/ , .:. , % - c -. . . v . , ' = n,.
V. ?;
. . i. *
- M. .ty.1 4 .- L 'j , . '
- + ; ,, u. y ,..~
- -l , , . 4 , ,.
' 'gi 3; .t .(y
- l
.&l..c ...;.
- Y.*:;
,:: ~ ~.- , ,
j, . ,j ., , ' T'
>: n .< : :~ 1., . ,' N . . .. . . y ,h, f , f, ' Pp,f. 6 , .:h[
hf.S'If,,", .;.j ":.[
? : 7 'y , . @- % j l, V ] ^ ',r. '. . ' ] - .)'c ?
y
'. ? *Y .*. , ;. s' ,.' .. g.l?
d. n
- ,g . .j T
.).
f, 9-
,q...s b'.t.
i' f.4 , , .$ ' ' 1
;n. - >g. ; 4 .. ,y *. 4 .y > ..+ .%o;.( . .. . .p . *l;n*}4 d.
h.w, i s<.:<. v' y*
.- %' s^ ,
v;%;
. - )., $, } .. t. 'l9;. .W .'.... % y. .
s .;. .. t . ... . .c
, . . . (p ,:. . f. *;,.,,:
g ; %,..7 . 4,@.
- nd 9:, . r. j ,
,7c e9. .s;; ..y,y y 6 ~-. , x h%. . . , ? . '55.G.*****t.y *.h ** *=* * ',. al.'}.. t. . . O :-M..Wr . q", ,Q..s.N * '- . . A ' , i. gc . f , . . , . ,, 7. c,;g! fg.:j &. g - , - t.
p}
- p. 3.,. q ;'. 3 ..;
~ -. M .~> ...: . }
i %. [24 T'
, .. .t. . . . ' f , ,.* . - ' *;.g;v, y f, . .: . ' .p{l.. :s. :: .:' : .lj' ' .3:::.. ,i i:.g:n. 'y w..p p, -m .T. , ,, L . c:
[ n . .. v. . ,
. , . . , s.
s . s ., s , m,.~. 5 ..
- s. ..
.. .*.; .. ..w -q
(. p */($ d ? ' s #<, -
.. . t..
1: ,,1- / / W u, ,.). ** g
-) . 'i p x_ . , ' 'f:;.v.gi 1 3.;; .. . ..'..... s q
s
.- . s.
l 4,
,.-. o .
E~>W N.-,\ ',. d r.'; ht*
.i ..:;;.n::. i:m.
s
'j'*; **
- d' JA ...
,. - s . , g. -Q:.'; . .yc /. r., > . y 4.; .. ..:c; . . . ,n s>
C w .d.y.e,[130.U
. 'O, .k.
w w
'fr.
w w w w . w w i" I.' h. w
. ;. . ; ... gg. .: z.,. . ;5M.f .
h ;; M.; Q FILTER'GLE.M$.:..s,y:p y,.
; q,9.;.-. ' .
th05mPmNT:i t Y C.9 .
. K ': .", .*:; . y:-e. wP: A. G .N... ' : T, . . . . C.-'&;':, , .+?...'...e-Y ..j.*?
- y. f.., ,
nrL".i?
. . ,s- %,,
- j,
, 'e : e. p. . . s~ .'.4.m-.-. . - . . - . . . .
x,,,,n: ..
'....v.......,.,;. . . **C . l .'V .~ . .;-. .r.. .. ,.?... ;. ,i n. i '<( yl M ,<);., ,;. ,y.L., ,:,.,r.,.i'. . .... . . . , f ,s. .j: } ':L. *-J.s. < . W. A a.. .. .. .v. %g: z. , s. ,x .. .. . G. ; ,w :. ,. , .
h-
---- m- - .
' \ wwan ?u ,mp i *
- CY-HP-0031 j
f 2 9
; y - ~- < .
i Revision # 0 h i.. Jd- k.
- e', , j Page 143 of 233 i
~ ') Yiu.c. gel":Ner .J,o'N $$lW;eMp;NC4'#S: "2 b . . s e' cure d; t o ' tNe.eask . . . .'s...kI . 'd%"*'* 9 I uil6 j .f . h i Thi , ~
D cJ . ] ' mbyytNiv6'k"M;rs,ns' poi't bolts ,tthe(. cask 7.i's.5(UTS.~ =l12 5 12 ).i141/ 8'/ finch 212'. 4E ' McasGsk'i'd"c'bn'si's'tsb'ff tso...( 2 ) ~" parallel .12 : inch chann'els5hichs
~ *' 4 i4 .O fithecoveY.ed . flat bed trailer.a.Each%sQ *[- Qe:itind'I'thR1ength%'t"o'!' the 'Jskid"with O ch2n'nElfis : bolted- ' twe Mnty-nine :!
( 29 9 y'g n
$p 125iO'0',0. ~
y .l WN,NW$$$.M$$,.$MDiN: Wbolt s7(UTSV Wur.* MMWhs k k ,, M $MMNWW 1000-R-0043,
. <w. - . .ATCOR,.Inc.. Revision %. D and W hU'.'l$;Fi.LDMwings :';information '.s'up'plemental shown on drawings of ATCOR. Inc.Q d T0 .:
hkEMf1000-E-0040-0.'and 1000-E,0041' entitled Transfer Cask *. .'i Myg -
.W*,f.5E.? b.4 0 9 ? . . . D * !'k? f'i:. '{Wh ..QF.b%ff'.' M't.,GnhlQ'a. d9.@, ' % y~ 'J.S, - .
9.9.E,h!
.;Y:y. ,~
W .-
- .c..& -; .
'f s./ 9e t w.',f.< ' . h . '.j..v;%m .;.y E- .; -
- yj gg.g.s?:%. '.jtp{1.-(b). Spent q. g.%y@g*j.W;:
Tilter Element Liner. ,
'Akh' .N.k h steel liner is provided within the O COR LL-28 4 .] N b '
J Ni ,'a rightcontaining cask, the spent filter element. The liner is h' n~. $y' .
- d. i '.F h M. i[5 @G. E circular cylinder with an outside diameter of 13 :. *
(4..%2 inches and a height of al 11/16 inches. The cylindrical G,D 71 DO'f. N ~.; 7 t /dEM s.'. - ~}The t body and bottom are f abricated from 1/16 inchdcarbon q'D$ interior of the liner contains six (6) (Q'; . . < i Three (3) are located 6 (3) inches from the 30top of the liner, the ' ,'..gi tj@d: C f ! are located inches from 4,9fa-4
?:%. The three guides in each group are }f.h.%'M..',andtheremainingthreelocated120degreesapartan . y gj'. '/.' l.'>
e'DWg .Jf. f.{ j top of the liner. 1 3 The centering guides are made of Je. . :.i b. 7
- 0. ilV,9 .,., ,below the upper guides.Three carbon steel bottom spacers are located :5 d, .
9 ' .3 They are spaced equally apart #Db y
'g;.i. g: 1,i}d, .. 9, carbon steel.on the floor of the cylinder. * ,directly under the centering guides.. The bottom spacers are B-23h J s
Mh,!/::?
> r$ O ', 2 3 inches long, k inch wide and 1 inch high. The centering..5.M @',:4..F . ." guides are 9.. ' s . ,. spacers are tack welded to the cylinoer bottom.
tack welded to the cylinder walls and the bottomMT3.h .'
.e.3:d"'./yj.
3 r,
'#)y .. m : c. .. ~
y3), [.5'j: p~ /...d' Afterthefilterelement$s~1oadedintothespent b. i I
.- filter element liner, concrete will be poured into the'i.D.E37%'M,%'(k.1 9 $
hjh;c 5./,.- annular space between the filter element and the liner . (
- 3. ,.
- 1. I The purpose of the concrete is to immobilize any wasteT.4.7.)ll.NT%
Q4.*~ ~ which may still be wet. , ... . V ,;J W- Q [:.i. 1 4e t T
- s. nV . %..
4dise - ..~a, , .+. : . r. - .. . "1 s, l
'c**'..*~. ;;t ", ,m [:. . ,k*:%2_.yyQf, .
c.-
^ '^~ ,j$, ,. Q ' . ' ' is. (-f . e -, J.. .'. ..- - "
c - ,, n. o u .-
- .v. 5. . :. ; .. .. . . c :
1* . .-
\ .C . M;.A y '*;'; . D T.M n q M r%+m W* %@
2.,, * .. 4 p;.; ., s .. .
^ ' - m .C , , ' s . p.;. - ; ".; ;. . iy ,g,.3,,g' J- o'. -
p., c'2. . ,.'. .l Drawing: .ATCOR, Inc.10146-C-0001-0
, r e f ' . .'; i '.
(
.-g.ha.,g.$,f.'.',,D.q'. ,j. hg,.7{.., ~' ;,' , h : ,'..Q[.Q,- ,$ #\ ' .',. .ghc ,,
(,di O, .$ .'..: ' , . 5,f ( 3.]
.';\' , ' , , , ,0l. &,t,' @' & ..E; - ,
- at A r.. .l3
.tyG ;- (.,1. ;, , "{.:>.' s- ~r.-. , { _ '. ? "$ .. . , yt D..y h,.,tj:gr [$.g . ;[)',q E 'T f } , . . . c n . * ,. -
- rly' n.tV q:,4 ; G_;. l ? ;;. 6. . . )". W.*H. .
,p:{'.3. "At -; y . ;-;. , , ..) - . . # N. E' C' d i . ; .. b , , A ,Y: ; ., . ./ .' W - * . .a'='. H.'S.,h'h.khi . -% MkW- . .,kUIt.% ' : . o N. .: .. -' 8. : r . . r...s . . . ' 's. " '0 ~ hro,%u M%u&.:..?.
- p n,.
6,4
.i.-. . .., r .,. ed's a.Z. G aN e a .w i; . 9 '. u .).h. m?.sas. A O'M. i.h ,t .>- .M ~ 4' '
r.
.' 'w.' w t
x < 3 : m 2. . - G h--
& w w.: ce.> ~. 4,
__4
.n- m k n p f' hm.
3,,p&*w.we[
.w - s ..
- m. *E^^ w..m.
CY-HP-0031
.~
7.-- Revision #: 0 1 T. g y' y Page 144 of 233 i , S1 W ;p-: ;.m y. . W ' ' W, .. .. C 'y.e.,.ep ,,
.m.
n{,;f. f.1.Y(c ? *<-:* F11t er'. E ement%g6pW.;.~j;&mR.,M;gipg M hb M i c
'. @ %y. .. DP:M ..g%, , ,.m.,e.9:,w. '-M. -i.. -,.3GQiy ]2 \ + .j .. . . .l:;g ,n. w e , .#@%fr,MfM:r.94.r,M&M .te.rt. cleme.n.ts.:shell.;.i. s..ma.de fror. a perforated . d.v/;y. .e,. ..-q, ,.p., Th. e f s.1. ,- ,- - . ., ce .
f
.P. ., . ssis . . t e el,;v.cylin. der 10hlin. hesVinl'diame'ter.
c ~ and .3 9 M./ . .g,b i
+t g{.s,tain.ic.. * . .'~. -
4,3: 6+ the.; [hn%ithin',the inctie'sillo'nUfMthi-h"e',' f11'ter;'makingthe' overall lengthinch'fbail':.is filter elements contains
~ ~ 4 2 ' inches . - Thesludge'f:pB't a maximum of 14.4 -curies 95%g@ . located on the top o i J
ofTiguref1-2 illustrates ' "i.di,'?Dd.Y,'Jlf I r$,h[f<of;,,. col 58'.' add'1?6.,%Uries WS:Ykel M *" Co;60. M .. h-L ' ];
- theif11'terTelement S.:'i ..'Q?'E 2 % R A9 %
? -. gg[.dh.$ ., s* pff W: $ f*' !':rlG '.$- f.' ' \' k l 5 . .h. $k b' $- - ..Y.c,AdA ,
[' j ,'*.$n/ u. u. h.. 3 . n *?. s
, , ~ .s , .w . .
- h S$ [ hr M ,h h, ,$ n $5 '?b h Y Y:i 6;.;<.t.J..
- C'&g.,.+kh '. N *\ $lb ' U .N ~'
h{ I
- s. w.
.1*MM.2. i .f. $? m ,i .-.,f .".:
f g , .*fl^ M. !%E. % 9 D '; Ee..%8: ,t.M*tI M @Q *Q @-:-mW."3,. lll3.*lM... '.',,,. . lmb.. h' N.r*: 1 N. N p M. p3. 9'.'. e -
. ' ):/@*[5 s ..v.4 h,.v '
n!,%b.. i r. e&e .m. ~ .6 e ,i,o . s. . . JS . , . ,s.
- s. s, 6
. .g. 'i k ,' , e4 A..,r' .,.. ' ','., . ~.* , . - *? , wi % .t b.v..Yo.'
- ';2;r. ' t.2:M W ' A :* *.A O !
* ?!j I f*,)hN,slh y, *p%{@&. gl.
Y ' 14 J'
'N g.. 77>
a p.g A.f,f.?d<.',d.v$, v :s gg q,s e-
. y : .s - " ' - g e y..F ,......,y .".. .,g ,,';...k .- , ');[ '
dy'1'#: y ,'M# U,i2i'; , Ih1 Q.* ', Yl. ..' ~ -y" 3 * . f N h.f W h[ q'yf ~r,,' l.RM ,..Y ': ] .:. .Q m '3\'
- 4 * ; .? ' M : + ,
. c.. %'.Tp;W, . hn m Tag.gf,.9 ' ,' : ' :h.;..W; V '.
S
- Y.;:.Jit.;. :. .. .
- u . h,.$
!t w *: . :" - ; .y y u . , f:y.m. r.~' %.1 ' , .s. ' ' ' -* 'lf. :h [, - * , ,s . , - , m, l'.y% * '- +
a@fb' ?%,h'
%. 5 v . ny..)
01 %n). <:Lg:.,*.%y .w3.y.n ..n ? a ?
~
z
>n . >r - ,t . * * . s ~ .'f..A h V z,s 9~f 'j. i. K.. g 7.;s;,sM l $ , sj;e&Q)k.b'.j.d f efv.';Q. : 4.. . ;s. d*. . .
i
. ,2'.:, , n. -o. , .v J ~ !.m.u -m)b a
r.. 2 . t. M*T k.s~r' f s
). t@t ,.Ng;;'f 1 . ' QWd' 4 .a, ,; ? 'I.:Y,fW.
n' 1 ,' '.y'.. i,,.,,
*., -l tE ~,: l.'_q.t nf . . :y [
sb'5h].N.&:.Wl[f'.ll
'. '.o* 'tp,.\. 'sw 4.y.,'s.;) ,
1 . x,;; ,w
- 1
- t.; :.r p . . .' . .. 4:.
..=..i, ,,Q , ,l. h'.R . );*r,mu.y;> ,.3;h: . , , . ., ,J .r . .m A .*.r .;,4.- - ,- s . .
l, , . ,,,,4,,...
"f . * * - F + = .,:( *.- j
- ,.~/yyd s
- 4,*
,; W. ,s*, . . , ' . .". p&j. 'ij. * . /- * ',} y ,, M') j ~. ~ 4'y - " - ;r7. ' - ,g i .'* ! y ;.~.- ' .,f. *m g ,g, v:- .'s' e . . . . ~. x , . . p., ,. ..? ',
g~6. j',:;.p. -- - , .h r. s.. . . . .
..r,,, .s. .c' ., .* = -* a.. I * * . .g*i . .g,. if* $".]* *. . yi;;
v.. . 4)y*m' * :. ,r.
. 3,.
- a. \.**'
"'T, ,,_ 'y ; y y , . -e a. ,a0*(,f<%g e, .. . s h'..,' , ' * ' ,,..y.. , -4 , , . .
- 4 .. . i , e. *8 ,;g, . . ..,...e.., .
's,g'[p. h. , v*. ?l . . -. . , 8 .a e. .
_r,., i 3 ' .' ,
. . e; s: - l:.E. Y.6,.'.'.*;* M. .,p .';.Q..G ,jj. .
t .. [h..y~. . ,; , ,
.g{.... .
r ,< . . . - c. .
. y- . . , .. .m.. , "
- n
,s,.b . . c' - "f . ~
- s. . l g :, . ,
,y;/u>.>. .n %,;,y q, h.
y e .f r ,. r.a ~ , . r.: +. -
.. a Q ..:.y . . . . v.
- . s;7':t ? ,,R
( M;d..v. gp'
',Jl5 4 :.,y :,,
V'. 5.- [1 g .*4.g 7.; ;.,. +. c s ..y:, ,5 * *. *
.1 .,'t,,,.
- n. ., .
> mvs. n .. . n.:n' ,. w' -: .'nn '*.;dh; n . .. *
- w v . z-j> .e1;,;*
- . . 4':.n.n .w , . . . , * . , ...: ' > . .. .;;,:,L. , . p, , ' i . :- ,, ., ,. :g.Y,. + p;; /,;si..
j; :. . .", e ; ; r6 . - ; Q. -: s .:. 3 :- .. . .
. u ;:. :, . ;q 1 5;.;.;,<.pr g. %.g. ;g.yg.,
l 1, . .;,.s. .. y .
;, - ,. 7;.,. 3 , f .. .; .
et.,:: ,., .' ,., ( 4,. g,j.; ,f.f ., , g . , ,
,.r-I g ,*,, ,
k,$l$,i 5' , .,y$Y :. . w-
,?'; ~r. & k ,$,'.- l ' l ' . 'l . . , , ,,,~$,)f.h.h,'.k.
h.f. u% , l.
..a t'y' . , . . ?.v', . ::.k .o . K,lt U. ' ::M* < ':
3+-\, .s ;; . . 9. . * .. .%*
- s :.: .
.- b.,,4.' .;*-?. ,I .'s, :s 4 o ~ r. .b. .- , . . :C ...v: s.. .x ; ~
s.
,s.- . - .;'[r'.- . . v * - t. ,
c .k. ,n 3
. ? ;. .
S
.',.,.,,,,,S n, one ,r.,'a r.:;,a y: ... - . .e ,, .s , .. -9. . ..n . ; .:. .m . ,yt 4.,<r q.:. 4;' y;, ;; -, a. .y. . .,.a .v
- f. ..
- a. ., *
.'. - l', -. .i . v+;r.-Q. ~%.
r .q
- o. ,.. . * . ; - ..- '
;i,.x,.m.t.,ni;-y
- ,.y, .: . :> . . ... ..
p ... .;;
;:p.,,' * * .~~ ;;;.g pp,., .u. W,p . 'l.* .: .f^ q:;.y, ..O; y.q -h.~l%,, . ?, , .,yD. % b%v,; . ,; . .< n
- l.",'.-@%s;.. < l
%.;:v . .. : - t; y 0 v;,' -- '.T:q ! ',Q;;, :.<, . . . c- ' . s ;E &,,'4 zp .'.L..
- 7. g ., <. y ' W g W, . ,'ik = 4' 14 %
. <&m.,M*.q'i.i ';u'n %.).v. xa 49#%* 3 e) .* . .F.. %, 0. .;s .T ju.? , , > '. > . . i. p ~ -
f,, % .y ?' 4 ,,; e; ,r;.~ ' . t6.,
. ..-' < ' -%.. s. a s im . - ~ -
i,_ _ m -
vy.e .w.
- w. . . ,.r.q s ..
{ 4 i y CY-HP-0031 -
;5 - . - Revision # Oi . . )
Y ' o I i ' NMby i 69~ \. 2 T.^ d h. ('- n' % 4. fi % ^dGhMli'Y.@C.hh'$.PDIC -- sid;.. -4. : '. :.:...*Lg.I .?.1 sA';W3';G.;,.Mf5
. n'. .T 'W
- 2. O ; ~m .<:e. f.$7.&:
% .*:QY UM mW%W $QW4.i@QO.M7.?.: =
Y %' t
~ #.%l.6$ &jp W.'3. & %e5mm..wa ). .
(:q$~ f:.'.'9%+W-t>:w:?.W.E-694 %. M.n C :. JP . 1* :..'. ; .h.G;{ @N
?' &a ^ ' 'h'i..L~&& . g ,'Q**'*R:;XM'Ql;2dursb &.: $! k7h i ~ .: w.i. w . 1:E.p W .'l(& 'i;"(..p!'.W 'M ' N..bWn. .'eP .V.W.
E ii
% -D 4 .
3.1[WWl;a,R',M)l.MG
- U;W.% .e.;- hA + '* m '
* ~ ' r* '. -n' Q:9 ^'. ' ' ' . s' $*!.p.y!
i 4..' .'n. 3.I1: r6
- w.
?&.P'
- ? .
, . *. . .' , M. ' . . , . , 'N W'.h k1 Q. Q w,h. sty.1: M' . ;. . s .3,' .q;y E'* '
r .:.
%' 9.$.'%.hyIb.'6.f. ' . .-. ,. : :.. 1
- c. s
.cf
[h.?*'I.I.'.',?&y' y'N .h..:x. f& I ^,. plN.. $&5 .- &.. el;W...;m$.j%g;g4..R.+, t k ..py..:.p,;* .W: -d.Ii $j.),a;w s Y
.' ' -ltc b N. ..g 4 . .' ,. !:l .
- A*J.c .r, k.. . . ,.
e . ... . u(c . ...f .r,.n a y
.g. ;-- a. a . h: r. w. *M .'ye; % : r ;. > + . %, L . .. < 3,.. ,4 *d,
- m:m W. s:: .:" ? .:A. . u,, . .. ,,g.,,., a . : * .+ = * :
waq L k.y.,
, e'h t. 9g 3 e.g .
T
,, ... .- .v a W-p. 7, p.c. y .i..' '.s.w:, #:+'.;>a..g.: . &'M. :" ..y ,', **a r i % M;.: -
- c
.:7 c
- 3. V :wi
_x
. ':. #:.A. .i. M H,9%:& .QP .
n-;*N :s % ;;l,*:-} .
.?m : 4 ^: . .2 -h.t .
se. .t..'.,{.y
* * 's .t).t ;w 1 '. ',e * ?"<- 's h;,,. : .* t' ." : X* :,e ~i' Q' M. % of.l'b,Q:* A.4 .e'.%' , - .;' gx s~ s.9;5.'MC.*
i 6'q.- * * . ,.
' pd . "*. . f *n'4, . ,. ':.Qg' ,
3 :' ' . % y . $.'f.y;
, O. f[,g m.e(y. h .* ' h. *,~ .?#?+?g.
ne h s ..N'
. .e . *' . . '., 5 . * .
m n.. 9+ ..m. . s..e.+.e..
- r -
,,s ,. .-
g
~. ,.
v. g.
. ;,v
[s..* ' A i a[' U.V' .'.* D . ";. . ~. , * &; 5 g .- *
}e,c., ;> f*'& f'/."[d.k .,.
2 ,4
~
n'k... . ' i. .' j,' .~ *m '
.6 4 .R.'d ,
i
.edi ..f i . j, ' $ '.' *. . . . .,'W .r 6.'
k.* l ; ",,,,' h *
,y' ; . , a y ,, f.
w.: c;caM.:: -;. s-. ..;.:... c s. 9, t;3.'s.W:, : r = . m.t..
- v. .. ; . c k,f N. f:r t s .g 1 .vw .@. :.. .e e;%
g
;%. .; ..v.. . . . s,s,.;e a7c. b .: .. ..s..,-:' ,... .
- . i' . , se .> ,'1 .. . . . . . . . . . , ,
;- r,j;,1 . ,c,c(eg -.
qt : . . . n.
...5 . .,.
_; , f,g.. .*
- e ,. y',. .. cs . : .
, s r * . . . . ., . si ~ * * ,. . .. .. .. . r. 'n .Jf, ; A, h$.,b'. . . a.,.g '?. . /.. :j f~'.s...... <.;i '. . . *: * .. .lf. '/.4.k ,,m N l Y.' rh. .K . *. le. ' .?.. ; ' . ~g' ~ ' t '. 9.T*le- . . y.~l1. .$Y.. '.g a
[ [t ns 'w; i. . . .f:' . '
+
t.. ., n j .
.4 . . .
[. ~; . ,' . ., Y.
}.h :
4 ; ~. 7. . 6. . ,;t,' .
; W t'id, ." - *, 1,, ':' ' N:. :}. I ' ^^ , .. G.- *Q 4"* ': . . , . ~ - .'8, c . t -
- i
, .r . .s
- a. . , . -g. . . :. 9 .i. -. w, ;. ~ ~' p; . j,. .. ,
~....i.. . . . . . ,:.. :..
- m. . .,.
. . c r. ... . y.g.
9 <o ;, - . m= p Lp 'ry'a.j.
..,,., (. . . .. ,e .3 . e : .,, .. ...q ;k: ~ ,, A,..;, .,..
1 ...e, . , s . . . , QM . D *. . n. . }p' %
~ * ~
L4 w.
~-~ . . ,..C. . %s :.a . .. w ;o . , , .. ., e .i , .j3. a -J.q. . . . K. . . . y.
1 :. g N .2..s2. f 5 '.; h..hfR .hx.
?' $. h.. ] $e n.f. .: Q:?...? ' ' . ' I ~
N.e. .* *._ 0 W: ' f.
~
7.;
,f,, Qn ;. . s,.
f.s.g2:.. h c:..c.. .i.. i.y ; ....
,. .; ... . . :.,. , . : ,. s.
- u. c.:, ..n ::,,;. ',. . . .~ ,A.; .<.
. v. .n gy a..u. <;., . . :. ..~\,.-. . ...n..,.,. . . ;. . ,. .:. .. n.. >< ..:r; .. . . .y, . - . . gn. ., ,..pg ,. ... n.;,-v..y<. ,y. .::.f e.
g .. ,:5.
,c. e ..
- y. . -
-a q p .y.g, ..n , ?... .
- o. ... : 1,u,a
...a..',...,.., .a. . . .... . . . . - ., *. .. . . . ..,.. ,. .. .s..., .; .p, ~ . a. > . .. -.,....f.u.\,c. . ,.p y... .,. 1,,
s,u:, ,.,:p. n',,. p
-3 f.g, s. , ,;.s, w ,s . . . - - 3.:-. . .*. ,,,,s g l.,,4: ...< k . e. ; a v +3.p.. ..~y r. : ei: - =
k
?.
e - '- . . . . . DIAR 2 . *,. ;; ;. . . J." L/
;,j,q;',.. '..a r .. . . a.r . . Q'..r
- p. .%
4: c... c e Qy y. 9.:.:...,'.;
.s. ..~N. . .--,.' .:o ' ;g:; . ., .i:;4 .: s; . .
- <.n' .. . ..
" . ~ .. ,. -l+ y.y ; -
W.;;y.. 4.. 1.:\,. _s .. ..yp
. iQu,:};
WMy;'J:.y.p g, p. , , p.a y.,
..y y,?: a .. , ..s. y .:.Q..-t . . v.y. j.3- +:a w.y&l+m% .? .w *yy.v:.. , p.yy.v. .. ,-
9.y:
,y .,-e * ** e * *,i- / )* .I,5 k'h. ;E d h,. . , . $.;P..".C *i 4 $$' I .y(t';$q *..f k),..r. . ;: h'fhe ".I { .'; ij 3
- 5.
?- $ '.
ll . .* D,C9EIlXER CECEN1E&M'7: ..Ul.Q,: IW, h%. . %u i
&f ..- . . u ,.,. . .s. . .w &y..
g%.b --
~ ...
s
; e. .
- c. .
.~ ;, . e. . : . ..y*i. '?.f?.. &g.
- l. ,!. ' . yl i'.l ?. . '.'jjj . .. <f; o 0&.. w.n ~&..... 2].hl.a, .W;... . w.;N.g$
- w. n. i %: m %p.w W m, &..
.Q w
[. 4<?b,.0..9... lQ: '.Av.Q'M 1 it.: . - . . .. s.f .:" V. 9". " .
- St::4 wh.m : n.wq:s::,.i.,4lQ; v
h.m:
-f5 g. -r: . . .?m..
- w. . : : ..
. .: .,y .* . -., ,~ ;.. , ; x . ,. . - .:: v.w .m :..Q.?
O o.iq+;!:. w .m. ~ +.. ...
.: . ~W . w9
- 3.: :' .: i. a. 4.-: v. r~n
\ . byb'{yy; d- . ..
. .> eM ' * ' * ..l"G '* 'L* . Q:'W
- .t.'.l3; T ; W )r ..:.. f. %,?.L:",% *:..OW.P; . . , -j ;'.l'. .::r':,_* %y n . J. . . . i v l; ..
- t. ;*y,. Q:%- .P.;;*+};.' * ;.' .C*:: s:. .. , . .;. : ,. '. ,*
i,1 i:w. - . . . ? ;.'W.:'..
' M: . . .. % l.. ,:- . : W : .) <%. .
Ev T . d'a
,, ;n /
o -
CY-HP-0031 Revision #: 0 Page 146 of 233 (This Page Intentionally Left Blank) i i l 1 I l i I
r CY-HP-0031 Revision #: 0 Page 147 of 233 (This Page Intentionally Left Blank) { 6
'.'m.
CY-HP-0031 Revision #: 0 Page 148 of 233 (This Page intentionally Left Blank) l
) )
CY-HP-0031 Revision #: 0 Page 149 of 233 i (This Page Intentionally Left Blank) l
)
i-l CY-HP-0031 Revision #: 0 Page 150 of 233 j l 1 l i l i 1 Attachment 6: RESRAD Outputs l 1 I I 1 i i l 1 l l
)- . ,s ' )
((' )a A
- hL -
0 .!- g3 5 E gC D p 33 1 g a_ L -M C ^ 3)h00
'7
- a r
e ) ) ) ) ) ) ) t 123 ) 4)678) ) )901 )23 ) 4 ) )5789) ee (( ( ( ( ( (( ( 1 111 (( ((11( (11( ( 1 mm aa 22222222222222222 rN FFFFFFFFFFFFFFFFF a CCCCCCCCCCCCCCCCC P DDDDDDDDDDDDDDDDD 011 1 4 551 021113 13 3 00000000000000000 t + - - - - - - - + - - - - - - - - l EEEEEEEEEEEEEEEEE u 0000000000000 0 00 0 a 24 07 93908 22 995108 f 74 4 0161 4239222160 e , D 64 4 3 2 4 3512344 84 85 y 01 1 1 4 551021 11313 3 1D 2D r 00000000000000000 A A a t + - - - - - - - + - - - - - - - - R. R. m ne EEEEEEEEEEEEEEEEE m eu 0 00 000 00000000000 eU eU u rl 2 4 0793 908229951 08 gR gR S ra 7 4,4 01 61 423 9222160 aT aT uV . . P5 P5 r C 64 4324351234 484$h 2 2 e 3 3 t 6 6 e 9 9 m 7 7 a 4 : 4 : r
- e : e a 3l -
3l P 2i 2756 7890123 4 57802i F 11 11 1222222223 F ) dN 9 9 eI 9 9
/ s . . . - . . . . . ./ ta B.
0 e . . * . . . . . . 0 l C - 2 n . . . . . 2 eA i
/
7 i l y- .
. . ./
7 RF S cp 0 e r . . . . . 0 dO / U d a . . . . . . . . U nD m R i m . . . . . R a e T u m .. * . . . . . . T ( r G u r . . . . . es m h S . . . . . . . h rl t e . . . . . t oi n, i d r . . . . . . . . i tF w i e . . . . . . . . w c o r l t . . . . . . . . . . r a i - as c e . . . . . . s . . as F t . er ya u m . . . . . . . . . y . . yaer a n a . . . . .a s n r l e s o r . y . . .w y e o e a 5 y t n e i d a P a . .r
. .m .a .h t a .a w . 5 y i s
r t e h n 05 . .h . 05 m i t n R ) .m . . .
.P t e a = :
o el d e .
. . u . . . . sa =2: vn r a
r o
.S .l eP 2 . . . . . . .
t3 C t . . . . n .t3 o P f i 6 g a . e . . . . . . .l
. Ail .i6 C m9 f n l y.s . . . . . . ll m9 s -
i o i er o . . . . . . reAei e r Le S RasD . . . ed dLe s o t e mn . . . . viri t o t Mi l d dmol . . OuelMi D c TS b n nuia . . . GvcTS a a a aStt . . . . .
.d Ou f r T o
( co . . . el N r s ret . . . . . . mid o n f m u rel moer f o ot eds00011223 uS me i 2 n S t eSnt00000000S mP2 n s u cm an++++++++
- 8. R 5
e r aay eEEEEEEEE Fraen0000000 0 oi sdSeun 8. Ru o5 r e v D u awn e 00000000il ei J nD D DD D D DD . nA oR t x nPho o tZ ;0 0 0 0 0 0 0 0. t cdt nA auiaoR o+ c713 3
+ + +
477108901268
+ + ++
i S i i ca _01313131Rnl riS 24 4 4033331334 4 422 sE M siPdO oct sE e22226112222222222 rR rf e = = = = = = = = eiunrR s- - - - - - - - - - - - - - - - - e n eift e cdNee ocmmmosspabuuu aa v: I vcoaseeeeeeeera ne cV: DAAACCCCNPPPPP o p yi D iiiiiiii onommmmmmmmuRrn,y
,y t eo Dr r CSrm TTTTTTTTS ePCDr Aa a aal /l Aa Rm P eemt a egelRm u S m st mnt snsiS m n b11111111111111111 t Eu . oiuoo - oiooEu e - - - - - - - - - - - - - - - - - - ? RS DSSCT DSDSRS M BBBBBBBBBBBBBBBBBB 1 1 0 i3 g l3j],lii}i* 1 3j ,ii ;i! k* }* ik ! 1n
)( e2C3 ) ]c$ a.
7d$9)C23 D. )c g)i, . U)
"Q _ cb (-nJ )% ht o r ) ) ) ) ) ) ) ) ) ) ) ) )
e )
)
01 ) )23) )456789) 2222222222
))234 1 678901) )23) ) 4) )578901 1 1 1 11 1 1 1 ) ) ) ) )23) t ee )4 )56 )78) 9) 1, 2,
( ( ( ( (( ( ( ( ( 22222222 22 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (12222( ( ( ( mm (22( (2222(( ( 1 1 3 3 33333 3 3 3 3 33 33 333 3 33 aa 3 3 333 3 (
. FFFFFFFFFF FFFFFFFFFFFFFFFFFFFFF rN FFFFFF FF(
CCCCCCCCCC CCCCCCCCCCCCCCCCCCCCC a CCCCCC TT DDDDDDDDDD DDDDDDDDDDDDDDDDDDDDD P DDDDDD RR 3 101 011 1 11 23 335553 233 3 353 3 3 4 4 3 4 3 4 4 4 4 4 3 5 0000000000 000000000000000000000 000000 00
- - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - t - - - - - - - -
EEEEEEEEEE EEEEEEEEEEEEEEEEEEEEE l EEEEEE EE 000 0000000 00000 0 0000000000000 00 u 0 0 0000 00
. 1 56 6 4 523 58 8 4 3 1 93 04 6 7 04 4 563 4 3 83 8 a 3 9 3 79 9 00 34 1 263 3 221 4 66563 04 0225583 34 5004 f 78 8666 50 1323111 1 11 e
133 22754 173 3363 1 1 1 8 4 5 d) D 222222 22 e u n i 3 10101 1 1 1 1 23 335553 23 3 3 3 53 3 3 4 4 3 4 t 3 4 4 4 4 4 3 5 0000000000 0000000000000000000003D n 000000 00
- - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - A o t - - - - - - - -
EEEEEEEEEE EEEEEEEEEEEEEEEEEEEEE c ne EEEEEE EE 00000000 00 0 00000000000000 000000 R. ( eu 00 000 0 00 - 1 566 4 523 58 8 4 3 1 93 04 6 7 04 4 563 43 3 84 5004 3 8 gR eU rl 3 93 7 99 0 0 34 12633221 4 6656304 022 5 583 y ra 78 8666 50 aT r uV 1323 1111 11 1 3322754. 1 7333631118 45P5 a C 222222 22 2 m 3 m 6 u 9 S 7 4 : r
- e e _
3l t s) 2i e sd F m e/ aN l 1 9 rI nC 9 op
/ Pa B. i(
0 C s/ i 2
/ ) A dF n) eg cp 7 eS mk /
0 tO i/ m U aD di e R l
,Cp r T e:
m h}}