ML20209C674

From kanterella
Jump to navigation Jump to search
Revised Pages to NEDO-32408, Model 2000 Radioactive Matl Transport Package Mtp - Type Fuel Divider & Tower Shielding Reactor Fuel Basket Sar
ML20209C674
Person / Time
Site: 07109228
Issue date: 06/26/1999
From:
GENERAL ELECTRIC CO.
To:
Shared Package
ML20209C667 List:
References
NEDO-32408, NEDO-32408-03, NEDO-32408-3, NUDOCS 9907120171
Download: ML20209C674 (29)


Text

,

^

999 1

62 enu J

l ne i u rF Z

e 6

6 6

6 6

6 6

6 6

6 6

6 0

0 0

7 6

6 6

7 6

6 6

Wh 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

t s

gsn e i n dk 0

0 0

0 0

0 0

6 0

0 6

6 6

d c 2

2 2

2 2

3 2

1 2

2 1

1 2

1 ai) 0 0

0 0

0 0

0 0

0 0

0 0

0 0

hni lCT(

0 0

0 0

0 0

0 0

0 0

0 0

0 0

DO 5

5 5

0 5

5 0

0 5

0 5

1 5

1 l

3 7

3 7

3 1

3 1

3 3

1 1

3 1

e) un 4 3 4 3 4

4 4

5 4

4 5

5 4

5 i

F(

0 0

1 0

0 1

1 1

1 1

1 1

1 1

htg le n) u e n 5

5 5

5 5

5 5

2 5

5 2

2 5

5 5

FLi(

1 1

1 1

1 1

1 2

1 1

2 2

1 1

1 tnh e t mg n )n 5

5 5

5 5

0 5

0 5

5 0

0 5

e e

8 8

8 8

8 0

8 0

8 8

0 0

8 lEI i(

2 2

2 2

2 3

2 3

2 2

3 3

2 a 'm )

ta u

D ign(

l os 1

0 0

8 8

0 8

6 2

4 8

e c s u

r a 8

1 7

7 8

8 7

8 8

6 7

0 0

9 9

0 0

0 0

0 9

8 9

2 0

9 i

F ZM 1

3 2

2 2

2 2

1 1

1 3

2 1

A e

G m

h) 7 8

I p

i%

c 1

0 R

4 r

4 2

T n (t 0

0 0

0 4

3 0

4 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

3 E n 2

2 7

7 9

9 2

9 2

2 2

2 2

2 2

2 7

2 2

2 2

2 2

6

-O m%

D 8

1 t

E uh 1

N in ig 0

0 0

0 0

0 0

0 0

0 6

a e 0

0 0

5 5

0 0

2 5

5 5

5 5

5 5

5 5

2 0

0 0

0 5

r e

UW 8

8 8

8 8

8 1

1 2

3 3

4 8

8 8

8 8

2 3

1 4

8 8

lba

)

T g

1 5(

4 3 s 7

7 7

7 1

7 6

7 7

s 7

2 a 3

3 3

3 4

3 1

3 3

7 1

5 1

l 1

l 1

5 5

6 6

9 9

3 0

6 4

5 8

7 l

l 1

t 7

UM 1

4 5

5 3

3 3

3 1

1 1

5 5

3 9

)g 8(

3 s 8

s 0

0 9

9 4

4 6

6 3

9 5

9 0

7 2 a 3

1 1

1 4

4 5

5 9

0 5

1 1

5 8

UM 1

3 2

2 1

1 1

1 5

4 6

2 2

1 3

m i

u nocd s

s s

s s

s s

s s

s s

s s

s s

s io e

e e

e e

o e

o e

e o o

o o

e e

e e

e e

o e

e r

ZR Y Y Y Y Y N Y N Y Y N N N N Y Y

Y Y Y Y N Y

Y marg g

o 5p n

y y

y y

r i

o o

o o

P dd l

lo l

lo t

o o

n#

c n 2]

a c

c c

S S

S S

S S

S S

n S S

e l

l l

n n

S S

I I

A S

S 6

C S

S S

S S

A S

I 8 m

I e

01 v

97 l

r o

90 e

r l

I wd l -

p o

r r

U U t

lor U m

1K o

e E

E l

E I

n ir f

L L

ol L

e 7C ip p) a)

R F o f

1O r

( 4

( 4 P

P P

P u

4" d/

d/

L L

L C

l t

P iL 0D l

. 6 6

I e

I I

e n I

~,k

'F 1

1 S1 S1 F

F F

A FC F

u 1

uo L

2A l

5 t 1 t 1 e

F 7

A

=

0R I

1 G.

I I

I 1

P 9D e

l I

I I

V X

I I

1 1

I s

I l

I 1

V V

V V X X X

X L 9

I Ra 1

1 t

I V V V V X X X X X X X X

X X X X X X

X F

V I

I i

I I

1 I

I l

TC 1

i I

~

-}

  • [

s '.

. NEDO-32408 June 26l1999.

4 As 6.7.7.1.5 TRIGA Case XVII Fuel-The GEMER model for the TRIGA Case XVII fuel consists of 4 fuel pins loaded into each TRIGA divider position. TA total of 560 grams of 70% enriched U-235 per divider s

. position in the TRIGA type fuel divider is modeled in this' criticality analysisp The H '

corresponding masses of U-238, Zr and H can be estimated. Subsection 6.7.7.5.3 sh6ws' the simple FORTRAN program used to calculate the fuel number dentities (U-235, U-238, Zr, and H) for the case of TRIGA Case XVII fuel pins.and the' associated

~

FORTRAN output.

6.7.7.I.6 TRIGA Case V Fuel -

}

The GEMER model for the TRIGA Case V fuel consists of 660 grams of 94 % enrichedL U-235 per divider position in the TRIGA type fuel divider. This represents 4 TRIGA fuel pins cach with 165 grams of U-235 or 3 TRIGA fuel pins each with 220 grams loaded:

into each divider position. Based on the U-235 mass (165 grams per fuel pin' for the four pin case, and 220 grams per fuel pin for the three pin case), the corresponding masses of -

U-238, Zr, and H, and cladding material can be estimated. The detailed calculations of these number densities are shown in Subsection 6.7.2.2.2.

,O 6.7.7.1.7 TRIGA Case VIII Fuel -

enriched U-235 per divider position in the TRIGA type fuel divider. T The GEMER model for the TRIGA Case VIII fuel consists of 660' grams'of 9.4L%

15 fuel pins per divider position. Based on the 2nU mass (44.0 grams x 15 fuel pins or 33 grams x 20 fuel pins), the corresponding masses of"'U, Zr and H, and cladding' material.

can be estimated. The detailed calculations of these number densities are shown in8 Subsection 6.7.2.3.2.

l' f

g 7

.a f'

'v, k

.s

'/,

5 r,.

'. h.

i /

e ~-

  • ^j c

. p:

- p 4

l])i L

)

w

.c s

t 2.-

4 e a s

1 '

g 7

U 2

' 'I '

3

([

~-

.y

>s t

4

,['

NEDO-32408 '

Jua* ?f,1999 O

6.7.7.1.0 Summary of Results Tnbles 6-119,6-120, and 6-121 summarize the results of the criticality evaluations for the TRIGA Case XVII, V, and VIII fuel respectively for the case ofinfinite cask arrays.

Table 6-119. Summary of Results for the Infmite Cask Scenario for TRIGA Case XVII -

Fuel (70% Enrichment) - Discrete Fuel Model Condition / Parameter Quantity / Comment.

Number of Containers in Demonstration Infinite Array Optimum Hydrogenous Moderation 1.0 Weight Fraction H O 2

Maximum Multiplication Factor k,y+ 2a + Bias 0.92617 Table 6-120. Summary of Results for the Infmite Cask Scenario for TRIGA Case V Fuel (94% Enrichment) --- Discrete Fuel Model Condition / Parameter Quantity / Comment Number of Containers in Demonstration Infmite Array Optimum Hydrogenous Moderation 1.0 Weight Fraction H O 2

Maximum Multiplication Factor k,y+ 2a + Bias 0.93826 i

Table 6-121. Summary of Results for the Infmite Cask Scenario for TRIGA Case _VIII Fuel (94% Enrichment) - Discrete Fuel Model Condition / Parameter Quantity / Comment Number of Containers in Demonstration Infinite Array

_ Optimum Hydrogenous Moderation 1.0 Weight Fraction H O 2

Maximum Multiplication Factor k,y+ 20 + Bias 0.94062

/N O

3 I

(,-420 j

.s NEDO-32408 June 26,1999 Ot Table 6124. Package Parameters for the Model 2000 Cask with TRIGA Case VIII Type of Fuel (94% Enriched)

Parameter Quantity / Comment Fuel Construction Cylinders Fuel Material UzrHa (10 wt% U)

Cladding Material Inconel Total"U mass per divider position 660 grams (15 pins x 44 grams or 20 pins x 33 grams)

Maximum Fuel Enrichment 94.0 %

"U mass per divider position 42.1 grams l

Minimum Fuel Burnup

-N/A Burnable Poison Materials 2.8 wt% Natural Erbimn (Not Modelled)

Nominal Incoloy Density 8.01 g/cc l'

O c)

't 6-422

-y g

('

NEDO-32408 June 26,1999

.O

3. The TRIGA Case VIII fuel consists of 20 or fewer fueled pins. The fuel pins are mo' deled in GEMER as cylinders as shown in Table 6-127.

Table 6-127. TRIGA Case VIII Fuel Pin Discrete Model Description Inner Radius Outer Radius Top height Bottom (cm)

(cm)-

(cm)

Height Active Fuel 0.0000 0.64770 66.04 10.16 Incoloy Clad 0.64770 0.68834 66.04 10.16 Top End Fitting 0.0000 0.68834 68.58 66.04 (Incoloy)

Bottom End Fitting 0.0000 0.68834 10.16 0.00 (incoloy)

The stainless ingot is 125.27 cm high and the boral plates extend to a height of 125.27 cm.

O 6-425

i u -

-j NEDO-32408 -

June 26,- 1999 6.7.7.3.2 Package Regional Densities i

The fuel assembly model assumes the maximum possible fissile mass of 2"U per fuel assembly with a maximum enrichment of 94.% for TRIGA Case V and. Case VIII fuel, and 70% for TRIGA Case XVII fuel. Subsection 6.7.7.5.3 lists the FORTRAN program

{

used to calculate the fuel densities used in this analysis.

j Material densities and corresponding number densities are based on standard material.

specifications. These materials have been calculated earlier (Subsection 6.3.2). Tables 6-128 and 6-129 present the material densities and number densities for ' substances (materials) in the criticality model. Substances composed of more than one element are

.i broken into their elemental number densities in the number density column.

Table 6-128. Material Densities Used in the Model 2000 for the TRIGA Type of Fuel Region Material Componert Density.

Number Density (gm/cm')

(atom / barn-cm)

Cladding /End Fitting Incoloy 8.01 1.94815E-02 (Cr)

(

8.78012E-05 (Mn) 3.97312E-02 (Fe) 2.63002E-02 (Ni) 304 Stainless Steel SS304 7.800 6.82690E-05 (C-12) 8.53360E-04 (Si)L 1.53600E-02 (Cr) 6.04950E-02 (Fe) 6.82690E-03 (Ni) 1.70670E-03 (Mn) 2.56010E-05 (S-16)

Lead Shielding Pb i1.35 3.2989E-02 (Pb)-

Water (Reflector).

H0-1.00 6.691E-02 (H) 2 3.345E-03 (O) lV }".

l

]

c-

y y 426
c.

.c

' NEDO 32408 June 26,1999 O

6.7.7.4.3.2 TRIGA Case V Fuel b

Tables 6-135 summarizes the GEMER results for the infinite cask scenario for TRIGA Case V for the Discrete Model.

Table 6-136 and Figure 6-86 show the variation of the k-effectives as the number of fuel pins is varied from 1 to 4, maintaining the same fissile content within each fuel pin (i.e; 140 grams of U-235 per fuel pin for the 4-pin case, and 220 grams per U-235 fuel pin for the 3-pin case) and at full-density water.

To maximize the reactivity within the 3-pin case, the pins are analyzed in a triangular arrangement, instead ofjust pulling out a pin from the 2x2 cell. The closer triangular pin arrangement tends to have a higher reactivity than a rectangular design with a missing fuel pin.

j In addition, the fuel pins are assumed to be equally spaced within the divider slot.

For the 4 pins x 165 grams case, the optimum number of fuel pins is found to be 4, and the 4-pin case is expanded to include full range of water moderation (i.e. varying H/U* '

ratios). These results are shown in Table 6-137 and Figure 6-87. In addition, the 3-pin case is also studied for the full range of water density (Table 6-137 and Figure 6-87).

tR d

For the 3 pins x 220 grams case, the optimum number of fuel pins is found to be 3, and the 3-pin case is expanded to include full range of water moderation (i.e. varying H/U*

ratios). These results are shmvn in Table 6-138 and Figure 6-87. In addition, the 2-pin case is also studied for the full range of water density (Table 6-138 and Figure 6-87).

The water reflection (WR) case denotes the case when the surrounding materials outside of the fuel basket is replaced by full-density water and the perfectly reflecting boundary conditions are applied on all sides and the top and bottom.

The 4 pins x 165 grams cases and the 3 pins x 220 grams cases are also studied with l

J varying pitches in the x-and y-directions and the results are shown in Table 6-139 and 1

Figure 6-68.

j The pitch sensitivity case shows that the system tends to be t nder-moderated and hence increasing the fuel plate pitch tends to increase the k-effective. The equally-spaced pitch I

used in the base model represents a condition very close to the wornt configuration.

1 The maximum k, for TRIGA Case V Fuel is 0.93826 for the discrete case after accounting for uncertainty and bias. These values are below the subcriticality limit of

- 0.95.

i Kv 6437

.l.j

%i NEDO-32408 '

June 26,1999 O0 6.7.7.4.3.2 TRIGA Case VHIFuel Tables 6-140 summarizes the GEMER results for the infinite cask scenario for TRIGA Case VIII for the Discrete Model.

The 20 pin cases are modeled in a 5 x 4 fuel pin loading design. The 15 pin cases are modeled in a 5 x 3 fuel pin loading design and in a 4 x 4 - 1 fuel pin loading design (with one rod missing in the 4 x 4 arrangement).

Tables 6-141 and 6-142 and Figure 6-89 show the variation of the k-effectives as the' number of fuel pins is varied from 1 to 15 or 20, maintaining the same fissile content-within each fuel pin (i.e. 44 or 33 grarns of U-235 per fuel pin) and at fuiboensity water.

These fuel pins are assumed to be equally spaced within the divider slot in both the x-and y-directions.

The opt; mum number of fuel pins is found to be 15 or 20, and the 15-pin and 20-pin cases are expanded to include full range of watei moderation (i.e. varying H/U* ratios). These results are shown in Tables 6-143 ano o-144 and in Figure 6-90. In addition, the 14-pin case and 19-pin cases are also studied for the full range of water density (Table 6-145 and 6-146 and Figure 6-90).

(O O

The water reficction (WR) case denotes the case when the surrounding materials outside of the fuel Nsket is replaced by full-density water and the perfectly reflecting boundary co:.ditions are applied on all sides and the top and bottom.

The 15 pins x 44 grams cases and 20 pins x 33 grams cases are also studied with varying pitches in the x-direction and y-direction and the results are shown in Table 6-147 and Figure 6-91.

l The pitch sensitivity case shows that the system tends to be under-moderated and hence increasing the fuel plate pitch tends to increase the k-effective. The equally-spaced pitch used in the base model repr.:sents a condition very close to the worst configuration.

The 4 x 4 -1 fuel pin loading design cases are also shown in Table 6-148. Of the three fuel designs (5 x 4 with 33 grams per pin,5 x 3 with 44 grams per' pin, and 4 x 4 -l with 44 grams per pin), the 4 x 4 -1 design is found to be the n ost limiting.

The maximum k,,r for TRIGA Case VIII Fuel is 0.94062_ for the discrete case after accounting for uncertainty and bias. These values are below the suberiticality limit of-0.95.

(%

x]

i 6-445 l

j

+

E 3

g-NEDO-32408 June 26,1999 b

Table 6-140. Summary of Results - Infmite Cask Scenario for TRIGA Case VIII Fuel Condition / Parameter Quantity / Comment Number of Containers in Infinite Array Demonstration Optimum Hydrogenous Moderation 1.00 Weight Fraction H 0..

2 Maximum Multiplication Factor k,y+ 2a + Bias 0.94062 l

Table 6-141. GEMER Results -Infmite Cask Scenario for TIUGA Case VIII Fuel (Discrete Model, Fuel Pin Sensitivity for the 20 x 33 Grams Limit Case) l HO Number of H/ E U Kerr ia Bias k+2e + Bias 2

Density Fuel Pins Ratio Weight %

100 8

1086.892 0.63614 0.00233 0.00932 0.65012 100 12 707.232 0.77221 0.00244 0.00854 0.78563.

100 14 598.758 0.81494 0.00232 0.00779 0.82737 100 15 555.369 0.82915 0.00256 0.00742 0.84169 100 16 517.403 0.85936 0.00255 0.00707 0.87153 100 17 483.903 0.87246 0.00246 0.00674 0.88412 100 18 454.126 0.88590-0.00240 0.00642 0.89712 100 19 427.483 0.89701 0.00277 0.00612 0.90867 100 20 403.505 0.90738 0.00249 0.00584 0.91820 l

I l

i

' (G

'^g.

1 i

-1 6-446 j

.g NEDO-32408 June 26,1999

()

Table 6-142. GEMER Results - Infinite Cask Scenario for TRIGA Case VIII Fuel (Discrete Model, Fuel Pin Sensitivity for the 15 x 44 Grams Limit Case)

HO Number of H/ M U Keff io Bias k+2a + Bias 2

Density.

Fuel Pins Ratio Weight %

100 8

824.865 0.69845 0.00272 0.00909 0.71298 100 12 540.121 0.85762 0.00258 0.00729 0.87007 100 14 458.765 0.90256 0.00259 0.00647 0 91421 100 15 426.223 0.92230 0.00259 0.00611 6.93359 Table 6-143. CEMER Results -Infinite Cask Scenario for TRIGA Case VIII Fuel (Discrete Model, Water Density Sensitivity,20 pins x 33 grams Case)

HO Number H/*U K,y io Bias -

k+2a +Blas 2

Density of Fuel Ratio Weight %

Pins 0

20 38.785 0.56440 0.00173 0.00016 0.56802 10 20 75.257 0.58280 0.00195 0.00085 0.58755 20 20 111.729 0.63251 0.00197 0.00151 0.63796 p

30 20 148.201 0.67748 0.00196 0.00214 0.68354 V

40 20 184.673 0.72153 0.00221 0.00275 0.72870 50 20 221.145 0.76143 0.00208 0.00333 0.76892 60 20 257.617 0.79904 0.00224 0.00389 0.80741 70 20 294.089 0.82991 0.00233 0.00442 0.83899 80 20 330.561 0.85626 0.00224 0.00492 0.86566 90 20 367.033 0.88161 0.00245 0.00539 0.89190 100 20 403.505 0.90738 0.00249 0.00584 0.91820 WR 20 445.009 0.87666 0.00266 0.00632 0.88830 1

I u

n 6-447

r-NEDO-32408 June 26,1999 Table 6-144. GEMER Results - Infinite Cask Scenario for TRIGA Case VIII Fuel (Discrete Model, Water Density Sensitivity,15 pins x 44 grams Case)

HO Number H/*U K.,

io Bias k+2a + Bias 2

Density ofFuel Ratio Weight %

Pins 0

15 33.785 0.57002 0.00197 0.00006 0.57402 10 15 77.529-0.59761 0.00169 0.00089 0.60188 20 15 116.273 0.64716 0.00186 0.00159 0.65247 30 15 155.016 0.69514-0.00231 0.00226 0.70202 40 15 193.760 0.74500 0.00229 0.00290 0.75248 50 15 232.504 0.78524 0.00244 0.00351 0.79363 60 15 271.248 0.82027 0.00224 0.00409 0.82884 70 15 309.991 0.85023 0.00254 0.00464 0.85995 80 15 348.735 0.88110 0.00221 0.00516 0.89068 90 15 387.479 0.90234 0.00245 0.00565 0.91289 100 15 426.223 0.92230 0.00264 0.00611 0.93369 WP 15 467.727 0.88985 0.00264 0.00657 0.90170 a

o

'6-448

Table 6-145. GEMER Results - Infinite Cask Scenario for TRIGA Case VIII Fuel (Discrete Model, Water Density Sensitivity,19 pins x 33 grams Case)

HO Number H/*U K,g io Bias -

k+2s +Blas 2

Density ofFuel Ratio Weight %

Pins 0

19 38.785 0.53324 0.00180 0.00016 0.53700 10 19 77.655 0.55840 0.00201 0.00089 0.56331 20 19 116.525 0.61214 0.00219 0.00159 0.61811 30 19 155.395 0.65969 0.00203 0.00227 0.66602 40 19 194.264 0.70393 0.00250 0.00291 0.71184 50 19 233.134 0.74851 0.00255 0.00352 0.75713 60 19 272.004 0.78819 0.00228 0.00410 0.79685 70 19 310.874 0.81651 0.00238 0.00465 0.82592 80 19 349.744 0.84826 0.00250 0.00517 0.85843 90 19 388.614 0.87524 0.00240 0.00566 0.88570 100 19 427.483 0.89701 0.00277 0.00612 0.90867 WR 19 471.172 0.87416 0.00240 0.00660 0.88556 6-449

NEDO-32408 June 26,1999 O

Table'6-146.

GEMER Results - Infinite Cask Scenario for TRIGA Case VIII :

Fuel (Discrete Model, Water Density Sensitivity,14 pins x 44 grams Case)

HO Number H/ "U K,y

  • a Bias k+2a +Blas 2

2 Density ofFuel Ratio -

Weight %

Pins 0

14 38.785 0.53191 0.00154 0.00016 0.53515 10 14 80.783 0.56065 0.00210 0.00095 0.56580 20 14 122.781 0.61785-0.00229 0.00170 0.62413 30 14 164.779 0.67188 0.00224 0.00242 0.67878 40 14 206.777 0.72044 0.00238 0.00311 0.72831-50 14 248.775 0.76387 0.00227 0.00376 0.77217 60 14 290.773 0.80055 0.00235 0.00437 0.80962 70 14 332.771 0.83323 0.00208 0.00495-0.84234 80 14 374.769 0.86175 0.00248 0.00549 0.87220 90 14 416.767 0.83282 0.00263 0.00600 0.89408 100 14 458.765 0.90256 0.00259 0.00647 0.91421

~

WR 14 503.234 0.87873-0.00224 0.00693 0.89014 GV O

6-450 o

NEDO-32408 June 26,1999

/V Table 6-147. GEMER Results - Infinite Cask Scenario for TRIGA Case VIII Fuel (Fuel Pitch Sensitivity for the 15 x 44 Grams and 20 Pins x 33 Grams Cases) 11 0 Fuel Pin Fuel Pin H/ M U Kerr io Bias

.k+2a 2

Density X-Pitch /

Y-Pitch /

Ratio

+ Bias :

Weight %

Diameter Diameter 20 Pins x 33 Grams per Fuel Pin [5 x 4 Design]

100 1.0073 1.4530 403.505 0.84828 0.00253 0.00584 0.85918 100 1.1453 1.4530 403.505 0.88473 0.00242 0.00584 0.89541 100 1.2179 1.4530 403.505 0.89461 0.00259 0.00584 0.90563 100 1.2915 1.4530 403.505 0.90738 0.00249 0.00584 0.91820 100 1.2915 1.0073 403.505 0.82142 0.00224 0.00584 0.83174 100 1.2915 1.1453 403.505 0.85738 0.00250 0.00584 '0.86822 100 1.2915 1.2906 403.505 0.89087 0.00258 0.00584 0.90187 100 1.2915 1.3995 403.505 0.90306 0.00226 0.00584 0.91342 15 Pins x 44 Grams per Pin [5 x 3 Design]

100 1.0073 1.9373 426.223 0.87542 0.00256 0.0061T 0.88665 x

100 1.1453 1.9373 426.223 0.90161 0.00270 0.00611 0.91312 100 1.2179 1.9373-426.223 0.91215 0.00245 0.00611 0.92316 100 1.2915 1.9373 426.223 0.92230 0.00259 0.00611 0.93359 100 1.2915 1.0073 426.223 0.79654 0.00249 0.00611 0.80763 100 1.2915 1.2906 426.223 0.85842 0.00256 0.00611 0.86965 100 1.2915 1.5811 426.223 0.89954 0.00292 0.00611 0.91149 100 1.2915 1.7264 426.223 0.90715 0.00270 0.00611 0.91866 100 1.2915 1.8717 426.223 0.91432 0.00257 0.00611 0.92557

.n-

. (

)-

i'\\

. 6-45 f

y c

NEDO.32408 Jun226,1999 Ob Table 6148. GEMER Results - Infinite Cask Scenario for TRIGA Case VIII Fuel (Fuel Pin Loading Sensitivity for the 15 Pins x 44 Grams Cases)

HO Fuel Pin Fuel Pin H/ E U Keft ie Bias -

k+2a 2

Density X Pitch /

Y. Pitch /

Ratio

' + Bias Weight % Diameter Diameter 5 x3 Design 100l 1.2915l 1.9373l 426.223l 0.92230l 0.00259l 0.00611 0.93359 Missing 4 x 4 - 1 Design Rod Corner 100 1.6144 1.4530 426.223 0.91793 0.00255 0.00611 0.92914 Side Central 100 1.6144 1.4530 426.223 0.91755 0.00257 0.00611 0.92880 Central 100 1.6144 1.4530 426.223 0.92991 0.00230 0.00611 0.94062 Central WR 1.6144 1.4530 467.727 0.89962 0.00255 0.00657 0.91129 Figure 6-89. GEMER Results - Infinite Cask Scenario for TRIGA Case VIII Fuel (Discrete Model, Fuel Pin Nurnbr f.,ensitivity)

TRIGA Case Vlli Fuel 1.00000

.......h.............L-0.90000.

0.80000 j 0.70000.........L.......

....L.......L.....

.......h............h.......i........

En 0.60000 -

0.50000........l..............l............-..

p

.y, 0.40000

......k.......'.......L......

L o

s s

0.30000

......p

..... 7..................

.= 0.20000

........l.

......p..

....l........l....

0.10000-........L.......L...... L.......L_....

0.00000 O

4 8

12 16 20 Number of TRIGA Pins

[

'6-452

c NEDO.32408 June 26,1999 ~

. Figure 6 90.' GEMER Results - Infinite Cask Scenario for TRIGA Case VIII Fuel, Water Density Variation for the 19/20 out of 20 Pins and 15/16 Out of 16 Pins Sensitivity)

TRKM Case VE Fuel (94% Enrichment,660 g per Sbt) 1.00 i

i 0.90........ '....... '........ '....

4...

i 1

i 0.80.........lu.......u.

.g i

i ED 0.70

.......l...-

........l........l........

+ 20 x 33 g l 0.60 l

l l

+ 15 x 44 g

.9

? 0.50

.......u.

.....i................

+ 19 x 33 g N

i e

i i

+

i e

s a

0.40

+ $4,44 9 g

=g 0.30

....l........;........l........l........

e i

i i

] 0.20

....u.......;........;........;........

0.10 i

0.00 O

100 200 300 400

$00 H G235 T

6-453 1

L

-l

e NEDO-32408 June 26,1999 G-Aj Figure 6-91. TRIGA Case XVIII Fuel, Infinite Cask Array, Pitch Sensitivity for the 16 t

Pins x 43.75 Grams and 20 Pins x 35 Grams Cases TRIGA Case Vill, Pitch Sensitivity 1

e i

e n

0.9

~.:

i 0.8

........'....._.1........'......_;.......

+ 5x3 Hns x 44 Garrs, X-i e

4 i

- 0.7

,j

...q.......t.......,i.._....;..._...

Rch/ Diam = 1.2915 1

I

(

  • , 0.6......._1

+ 5x3 Pins x 44 Gams, Y.

4

......a.......

-.......l

........l........,'.......

Rch/ Dam e 1.9373

,ea 0.5 m 5x4 Rns x 33 Gams,X.

+

e

,j 0.4

.......l.......?.......l.......'.......

Rch/ Dam = 1.2915

...,.......r'-- --- i------,! -------

--* 5x4 Plns x 33 Gans,Y.

l

$ 0.3 Rch/ Dam = 1.4530 g

l e

t t

0.2 1.......'.......J........

s o

0.1

.t_

.....'.......a_...

1 i

l l

(%

1 1.2 1.4 1.6 1.8 2

\\

Fuel Pin Pitch /Diamoter 6-454

w

,-c,..

  • i 9t
NEDO 32408 :

June 26,1999)

6.7.7N.4 Conclusions ',

'All results, including the conservative accident condition cases, are subcritical.~ ;The -

maximum k-effectives for the worst ^TRIGA Case XVII,' V, and VIII ~ cases,L after.

. accounting for uncertainty and bias, r.re 0.92167,0.93826, and 0.94062 respectively. The effective multiplication factors are all less than 0.95. It is usually true that the discrete model will tend to have lower kieffective than the homogenou's modelibecause the worst.

case homogenous model tends to be optimally moderated.

The system will be subcritical under all conceivable and realistic accident scenarios. This conclusion is reached based on. the' requirement that the borated aluminum poison -

structure is maintained under all credible' accident conditions; This meets all NRC -

requirements for the subcriticality safety analysis and the TRIGA Case XVII, V, and VIII fuel can be safely transported using the Model 2000 cask.

O q

4 l

~ 6-4555 O

t NEDO-32408 Jun2 26,1999 6.7.7.5.9 GEMER Input Decks for TRIGA Case VIII Fuel This section includes GEMER geometrical plots and input listings for the infmite array.

Each NBSR basedeck contains a " header" with fuel material and geometry information.

6.7.7.5.10 Infinite Case (94.0% Enriched Fuel) for TRIGA Case VIII Fuel TRIGA8 / IF2000/21 ELEMENTS SS+Pb SHIELDING. 5x4 LOADING, U235 IN EACH ELEM 105 /* # BATCHES 1000 /* # NEUTRONS PER BATCH

$ /* # BATCHES TO SKIP 2123469/* INITIAL " SEED"(IF NON-ZERO) 0 /* "lDUMP" 0 /* "NRSTRT" 0 /* "NBTED"(NON-ZERO IS PRINT EDITS) 0 /* "KRED"(NUMBER OF COMBINED REGIONS IN EDITS) 0 293 18 11 4 293 0 0 U(94%)ZRHl.6 33.0 GRAM /FA MAT 1 1 4.4526186E-02 401 2.7828865E-02 2381 7.2352668E-05 2351 1.1480256E-03 3 293 0 0 Boral 0.25" Plate (75% Bcron Loading) MAT 2 0

10 4.15822E-03 11 8.48616E-05 131 5.8001 E-02 2 29300 MODERA TOR IN CASK (100.00%)

MAT 3 1 6.69111121E-02 16 3.34555566E-02 1 293 0 0 LEAD SHIELDING MAT 4 22 3.29890E-02 1

7 293 0 0 304 STAINLESS STEEL MAT 5 12 6.82690E-05 14 8.53360E-04 24 1.53600E-02 26 6.04950E-02 28 6.82690E-03 55 1.70670E-03 1316 2.56010E-05 2 293 0 0 FULL DENSITY WATER (100%)

MAT 6 1 6.69111121E-02 16 3.34555566E-02 1 293 0 0 AL CLADDING MAT 7 131 6.026464E-02 2 293 0 0 FULL DENSITY WATER (VOID)

MAT 8 1 6.69111121E-09 16 3.34555566E-09 1 293 0 0 GRAPHITE MAT 9 I[

12 0.1366692 1 293 0 0 ZlRCOLOY-2 MAT 10 401 0.0432825 6-482

NEDO-32408 June 26,1999' 4 2930 0 INCOLOY 8.01 G/CC 21% CR 1% MN 46% FE 32% Ni MAT 11 24 1.9481473E-02

$5 8.78012E-05

)

26 3.973116E-02 23 2.630021E-02 KENO GEOM 18 /* "KREFM" 9 /* "NBOX" l /* "NBXMAX" l /* "NBYMAX" l /* "NBZMAX" l /* "NXX" n /* "NTYPST" l /* "NEMBRG" 0 /* "NGMCHK"

-1.0 -1.0. -l.0 -1.0 -1.0 -1.0 BOX TYPE I /*MODEL 2000 CASK & STAINLESS SUPPORT STRUCTURE CYLINDER 6 33.65 140.64 0.0 16*0.5 CYLINDER 5 35.85 140.64 0.0 16*0.5 CYLINDER 4 46.34 140.64 0.0 16*0.5 CYLINDER S 48.56 140.64 -14.90 16*0.5 BOX TYPE 2 /* CASK TOP CYLINDER 4 30.96 158.42 140.64 16*0.5 CYLINDER 5 48.56 162.23 140 64 16*0.5

. BOX TYPE 3 /* 21 SLOTS FILLED WITH WATER 125.2778 CM HIGH r

CUBOID 6 4.4450-4.4450 4.0005 -4.0005 125.2728 0.0 16*0.5 I

BOX TYPE 4 /* 21 SLOTS FILLED WITH WATER

"* EXTENDED HEIGHT CUBOID 6 4.4450 -4.4450 4.0005 -4.0005 15.35 0.00 16*0.5 BOX TYPE 5 /* BORAL PLATE (VERT) 125.2728 CM (49.32")

CUBOID 2 0.2667 -0.2667 3.937 -3.937 125.2728 0.0 16*0.5 BOX TYPE 6 /* BORAL PLATE (HORIZ) MODELED AS 3.1" X 0.21' A 49.32" MIN DIMENSIONS CUBOID 2 3.937 -3.937 0.2667 -0.2667 125.2728 0.0 16*0.5 BOX TYPE 7 /* TRIGA FUEL PIN 90 CM HIGH CYLINDER 1 0.64770 66.04 10.16 16*0.5 ' /* FUEL R=0.255" CYLINDER ' 11 0.68834 66.04 10.16 16*0.5 /* CLAD R=0.271" i

CYLINDER 11 0.68834 68.58 0.000 16*0.5 /* 4" BOT. PLENUM,1" TOP ENDPLUG '

I CUBOID 6 0.87376 -0.87376 0.87376 -0.87376 90.0 0.0 16*0.5

'l f

BOX TYPE 8 CYLINDER 5 33.34 125.2728 0.0 16*0.5 BOX TYPE 9 /* OVERALL BOX FOR THE PROBLEM CUBOID 6 48.60 -48.60 48.60 -48.60 162.23 -14.91 16*0.5 CORE O 48.60 -48.60 48.60-48.60 162.23 -14.91 16*0.5 CUBOID 6 48.'70 -48.70 48,70-48.70 162.33 -15.01 16*0.5 9 t il t il li t i BEGIN COMPLEX

/* PLACE THE FUEL PLATES INTO THE SLOT

'/*

PX= PITCH (X) = 1.778 CM

/*

' PY= PITCH (Y) = 1.8669 CM

/* BOX TYPE 3 FOR NORMAL HEIGHT

/* ' ' (-2.0 PX,-1.5PY) -

COMPLEX 3 7 -3.556 -3.00038 0.0 5 4 1 1.778 2.00025 0.0 /*5X4 FUEL PINS j

' /* PLACE FUEL ASSEMBLIES INTO CASK. NORMAL HEIGHT v

COMPLEX 8 3 -22.860 -10.540 0.0.5 3. I 11.430 10.540 0.0 /*M1DDLE ROWS COMPLEX 8 3 -11.430 -21.080 0.0 3' 2 I 11.430 42.160 0.0 /* OUTER ROWS

' 6-483

p NEDO-32408 June 26,1999

/* PLACE BORAL PLATES INTO CASK COMPLEX 8 5 -17.145 -10.540 0.0 4 3 1 11.430 10.540 0.0 /* VERT PLATES COMPLEX 8 6 -11.430 -15.810 0.0 3 4 I 11.43010.540 0.0 /*HORIZ PLATES

/* PLACE LOWER SECTION (NORMAL IIEIGHT)INTO THE BOX TYPE 1 COMPLEX 180.0 0.00.01110.00.00.0

/* PLACE PROTRUDEL' SECTION (EXTENDED HEIGHT) INTO THE BOX TYPE I

/* COMPLEX 1100.0 0.0125.2728111 0.00.00.0

/* PLACE LOADED CASK INTO OVERALL PROBLEM BOX COMPLEX 9 1 0.0 0.0 0.0 1 1 1 0.0 0.0 0.0

/* PLACE TOPINTO OVERALL PROBLEM DOX COMPLEX 9 2 0.0 0.0 0.01110.0-0.0 0.0 END GEOM

  • END GEMER*

6.7.7.5.11 Number Density Calculations for TRIGA Case VIII Fuel FORTRAN Program O'

PROGRAM NUMBER C

C PRODUCTION RUN C 9/18/96 C

AKC C U-235 (94% ENRICHMENT CASE)

C i

C AKC C U-235 (% ENRICHMENT CASE)

C STAINLESS STEEL CLAD (FLIP TYPE OF TRIGA FUEL)

C 22" ACTIVE FUEL LENGTH,0.542" O.D. FUEL ELEMENT, C

0.016" CLADDING THICKNESS C

C NO ZR ROD C

REAL NPIN,N235 TOT,NUTOT REAL M235,M238 REAL U235 MAS,U238 MAS REAL MZR,MU,MH,MH16,MH2O j

REAL N235,N238,NH,NZR,NZR1,NHFUEL REAL MNI,MCR,MMN,MFE,MCl2,MSI

. REAL FEMAS,CRMAS,NIMAC,MNMAS REAL NNI,NMN,NFE,NCR,NSI,NCl2 REAL LREFL -

REAL N24,N55,N26,N28 C'

DATA Pl/3.14159265/

1 6-484

]

. r,'

NEDO-32408

_J u 26,1999 4

5 C

OPEN(6, FILE ='P.OUT. STATUS =' UNKNOWN')

AV-0.6022 M235 =235.0439

.g M238 =238.0508 MZR=91.224 MH=1.00794 MH16=1.6*MH MH20=18.0153 C

C C

INCONEL C

MCR=51.996i MMN=54.938 MFE=55.847 MN!=58.690 C

C C CALCULATE THE INCONEL DENSITY RHO!NC=8.01 N24=RHOINC*0.21 *AV/MCR N55=RHOINC'0.0l'AV/MMN N26=RHOINC*0.46*AV/MFE N28=RilOINC*0.32*AV/MN!

WRIT E(6,*)

WRITE (6,*)

  • INCONEL NUMBER DENSITY' WRITE (6,*)* 24',N24 WRITE (6,*)' 55',N55 WRITE (6,*)' - 26',N26 WRITE (6,*)' 28',N28 C

WRITE (6 *) ' *"*"**"*"" TRIGA CASE VIII FUEL ""**'

C C

  • "" INPUTS""" *
  • C WT_U = WEIGHT OF URANIUM C WT_U IS CALCULATED BASED ON A UZRH MASS OF 2360 G C

SEE NUCL. TECH. VOL 105,1/94, PAGE 42, PAPER BY MELE ETC.

C BACK CALCULATE WT_U TO BE 0.188446-12/14/98 C

WT_U=0.10 C-C RHOZR=ZR DENSITY (G/CC) 1 C RHOREFL = REFLECTOR (GRAPHITE) DENSITY IN G/CC I

RilOZR=6.50 RHOREFL = 1.60 C U235 GRAM = U235 WEIGHT PER ELEMENT IN GRAMS

- C ER-167 MASS IGNORED.

C

' C- ' WEIGli f OF U-235 PER FUEL ELEMENT O

1 q.

> ' C. U235 GRAM-35.0

/J 6-485-

m k.

?

I NEDO-32408

- June 26,1999,.

[

~

~ U235 GRAM =33.0 NPIN=20.0 ENRICH =0.94 C

C C

U235 MAS =U235 GRAM.

WRITE (6,*)' U235 MASS PER ELEMENT =',U235 MAS,' GRAMS' WRITE (6,*) ' TOTAL U235 MASS =',U235 MAS,' GRAMS' WRITE (6,*)

  • NUMBER OF FUEL PINS =',NPIN C

C RHOSS = STAINLESS STEEL DENSITY (G/CC)

RHOSS=7.8266 C RFUEL = FUEL OUTER RADIUS (CM)

C RCLAD = CLAD OUTER RADIUS (CM)

C RZRROD=0.25*2.54/2.0 -

RZRROD=0.00 C

C RFUEL=1.395'2.54/2.0 C

RCLAD=1.475'2.54/2.0 C

C RFUEL=(0.542/2.0-0.016)*2.54 RFUEL=0.6477 RCLAD=0.542/2.0*2.54 O

C FLENGTil = FUEL ACTIVE LENGTH IN CM C FCLENGTH = CLAD LENGTH + ACTIVE FUEL LENGTH IN CM

)

C i

FLENGTH-22.0*2.54 FCLENGTH=(4.0+1.0)*2.54 + FLENGTH WRITE (6,*)' FUEL OUTER RADIUS =',RFUELlCM OR ',.

  • RFUEL/2.54,' INCHES
  • WRITE (6,*)' CLAD OUTER RADIUS =',RCLAD,'CM OR',

RCLAD/2.54,' INCHES' WRITE (6,*)' FUEL ELEMENT LENGTH =',FLENGTH,'CM OR ',

FLENGTH/2.54,' INCHES' d

WRITE (6,*)' TOTAL CLAD LENGTH =',FCLENGTH,'CM OR',

.l FCLENGTH/2.54,' INCHES' j

C 1

C VOL_ENDFIT= 118* l.224/8.01 C

. = 18.01 (PREVIOUS DESIGN)

C CLADDING IS STAINLESS STEEL-304 C CLAD = FUEL CLAD + END FITS + CLAD OVER GRAPHITE REFLECTORS C

C iVOL_ENDFIT = 69.153 CC(FROM S. JAIN 8/5/96)

')

C.

VOL_ENDFIT = 0.0

-(

CVOLUME = Pl*(RCLAD*RCLAD-RFUEL*RFUEL)*FCLENGTH

+ VOL_ENDFIT

.g C

'C.

NEXT THE' CENTRAL ZR ROD:

i 6-486-

,'l r,'

NEDO-32408 June 26,1999 P\\

C b

C RZRROD=0.25*2.54/2.0 C 2RVOUME = VOULUME OF ZR RODS IN THE CENTER C

C ZRVOLUME = Pl*RZRROD*RZRROD*FLENG'lli C

2RRODMAS = ZRVOLUME*RHOZR C

C RREFL = GRAPHITE END REFLECTOR RADIUS (CM)'

C-REFLVOLUME= REFLECTOR VOLUME (CC)

C LREFL = TOTAL LENGTH OF BOTH REFLECTORS (CM)

C REFLMAS = REFLECTOR MASS (G)

C RREFL = 1.40*2.54/2.0 LREFL = (3.4+3.4)*2.54 REFLVOLUME =Pl*RREFL'RREFL'LREFL C

ZRVOLUME = Pl*RZRROD*RZRROD*FLENGTH C

REFLMAS= REFLVOLUME*RHOREFL C

FVOLUME=Pl*(RFUEL*RFUEL RZRROD*RZRROD)*FLENGTH C

FCVOLUME=FVOLUME+CVOLUME -

C C CALCULATING THE CLAD MASSES C

WTMN=0.020013 1

WFCR=0.180116 p

WTN1=0.080145 1

WTFE=0.70892 WTCl2=0.0008 WTSl=0.010006 C

MNMAS = RHOSS*CVOLUME*WTMN CRMAS = RHOSS*CVOLUME*WTCR NIMAS = RHOSS*CVOLUME*WTN1 FEMAS = RHOSS*CVOLUME*WTFE SIMAS = RHOSS*CVOLUME*WTSI Cl2 MAS = RHOSS*CVOLUME*WTCl2 C

C L ADM AS=MNMAS+CRM AS+NI MAS + FEM AS+C l 2M AS+SIM AS C

U238 MAS =U235 MAS / ENRICH - U235 MAS UMAS=U238 MAS +U235 MAS ZRHMAS=UMAS/WT_U - UMAS ZRMAS = ZRHMAS*MZR/(MZR+MH16)

H16 MAS = ZRHMAS*MH16/(MZR+MH16)

TOTAL 1= (ZRMAS + H16 MAS + U238 MAS +U235 MAS)

TOTAL = TOTAtt

' VOLTOT= FVOLUME

' WRITE (6,*)' '.

-C C

(,4 WRITE (6,*)' FUEL DENSITY =',~

jM)-

-C

  • (ZRMAS + H16 MAS + U238 MAS +U235 MAS)/FVOLUME,' O.CC'-

C : ' WRITING OUT THE

SUMMARY

TABLE o

6-487 m

m~

l

' NEDO-32408 June 26,1999

.m WRITE (6,1005) 1005 FORMAT (23X,' VOLUME (CC)

MASS (O)',5X,' DENSITY (G/CC)')

C WRITE (6,1006) ZRVOLUME,ZRRODMAS,2RRODMAS/ZRVOLUME C

WRITE (6,1007) REFLVOLUME,REFLMAS,REFLMAS/REFLVOLUME WRITE (6,1010) FVOLUME,H16 MAS +U238 MAS +U235 MAS + ZRMAS, (H16 MAS +U238 MAS +U235 MAS + ZRMAS)/FVOLUME WRITE (6,*)' '

WRITE (6,1024) U235 MAS WRITE (6,1025) U238 MAS

' WRITE (6,1026) U238 MAS +U235 MAS WRITE (6,1021)ZRMAS WRITE (6,1022) H16 MAS WRITE (6,1023)ZRHMAS WRITE (6,*)*

  • 1021 FORMAT (IXl 2R MASS (FUEL)',14X,F14.3) 1023 FCRMAT(1Xl ZRH MASS (FUEL)',14X,F14.3) 1022 FO,tMAT(1Xl lil6 MASS (FUEL)',14X,F14.3) 1024 FO LMAT(IXl U235 MASS (FUEL)',14X,F14.3)

-f-1025 FO iMAT(IXl U238 MASS (FUEL)',14X,F14.3) 1026 M iM AT(1Xl U235 + U238 (FUEL)',14X,F14.3)

C WRIT E(6,1008) CVOLUME,CLADMAS,CLADMAS/CVOLUME WRITJ(6,1013) VOLTOT, TOTAL, TOTAL /VOLTOT 1006 FORMAT (lXl CENTRAL ZR ROD ',3F14.3)

("

1007 FORMAT (IXl END REFLECTORS ',3F14.3)

. \\g]

1008 FORMAT (IXl CLAD + END FITS ',3F14.3) 1009 FORMAT (IXl WATER ONLY

' 3F14.3) 1010 FORMAT (IXl UZRH FUEL

' 3Fi4.3) 1013 FORMAT (/,1Xl TOTAL (FUEL + WATER)',3F14.3,/)

C N235 - U235 MAS

  • AV/M235/VOLTOT N238 - U238 MAS
  • AV/M238/VOLTOT Nil - H16 MAS *AV/MH/VOLTOT NHFUEL = H16 MAS *AV/MH/VOLTOT NZR = ZRMAS*AV/MZR/VOL' LOT NZRI = ZRMAS*AV/MZIUVOLTOT C

.i WRITE (6,*)' FUEL NUMDER DENSITY' WRIT E(6,*) '

l',NH WRITE (6,*) ' 401',NZR WRITE (6,*)' 2381',N238 WRITE (6,*)' 2351',N235 C

RATIOl = NHFUEL/NZR1 WRITE (6,*)

  • H/ZR (NUMBER DENSITIES IN FUEL) = ',RATIOl

' C "**""" CALCULATE THE N(H)/N(*i235)

C WRITE (6,*)' '

WRITE (6,*)' DENSITY NH/NU-235'

.7s

-(

)'

DO 100 ITER =0,10,1 1

.V.

RHO _ WATER =0.1* FLOAT (ITER)

N235 TOT =N235'NPIN*.21.0*FVOLUME x

6-488

.j

_l 1

C.'

p.

NEDO-32408 June 26,1999

.~ ~ -

O CASK _ RADIUS =33.65 CASK _ HEIGHT-140.64 SLOT _ HEIGHT =125.2728 C

FA_ HEIGHT-30.37'2.54 FA_ RADIUS =0.271'2.54 C

UNCOVERED _ HEIGHT = CASK _ HEIGHT - SLOT _ HEIGHT WATER _ TOP = Pl* UNCOVERED _ HEIGHT

  • CASK _ RADIUS
  • CASK _ RADIUS FA_VOLU M E=NPIN ' Pl
  • FA_H EIG HT* FA_ RADIUS
  • FA_RA DIU S WATER _ONE_ DIVIDER =71.12889' SLOT _ HEIGHT - FA_ VOLUME WATER _ TOTAL = WATER _ TOP + WATER _ONE_ DIVIDER *21.0 NHTOT=2.0 # rdiO_ WATER
  • AV/18.0
  • WATER _ TOTAL + NH'NPIN*21.0* FVOLUME C

N HTOT = RHO _ WATER

  • AV/18.0* WATER _ TOTA L RATIO 6=NHTOT/N235 TOT WRITE (6,*) RHO _ WATER, RATIO 6 100 CONTINUE WRITE (6,*) ' TOTAL WATER VOLUME =', WATER _ TOTAL,'CM^3' C

C WATER REFLECTOR CASE C

r'^S WRITE (6,*)

/

WRITE (6,*)' WATER REFLECTOR CASE' RAD _WR=48.56 RAD _ CASK =33.34 HT_ CASK-125.2728 HT_WR-140.64+ 14.90 VO L_WR= P l * (RA D_WR-R A D_CAS K) * (RA D_WR-RA D_CA S K) * (HT_WR-HT_C A S K)

WRITE (6,*)' VOLUME OF WATER REFLECTOR =',VOL_WR,' CM^3' NHTOT=2.0* RHO WATER *AV/18.0* WATER TOTAL + NH'NPIN'21.0'FVOLUMU

+ 2.0* RHO WITER*AV/18.0*VOL WR ~

~

RATIO 6=NHTOT/N235 TOT l

WRITE (6,*) 8'"O_ WATER, RATIO 6 END l

1 FORTRAN Output for TRIGA Case VIII Fuel INCONEL NUMBER DENSITY 24 1.9481471E-02 1

55 8.780!!92E-04

{

26 3.9731160E-02 x

28 2.6300205E-02

)

..............* TRIG A CASE Vill FUEL """

l 7

.U235 MASS PER ELEMENT = 33.00000 GRAMS 1

l L

{

6-489

={

>(

I

y.,'

f,'

NEDO-32408

, June 26,1999

[U]

. TOTAL U235 MASS = 33.00000 GRAMS NUMBER OF FUEL PINS = 20.00000 FUEL OUTER RADIUS = 0.6477000 CM OR 0.2550000. INCHES.

CLAD OUTER RADIUS = 0.6883400 CM OR 0.2710000 INCHES FUEL ELEMENT LENGTH = 55.88000 CM OR 22.00000 INCHES TOTAL CLAD LENGTH = 68.58000 CM OR 27.00000 INCHES FUEL DENSITY = 4.766855 G.CC VOLUME (CC)

MASS (G) DENSITY (G/CC)

UZRH FUEL 73.647 351.064 4.767 U235 MASS (FUEL) 33.000 U238 MASS (FUEL) 2.106 U235 + U238 (FUEL) 35.106 ZR MASS (FUEL) 310.469 H16 MASS (FUEL) 5.489 ZRll MASS (FUEL) 315.957 CLAD + END FITS 11.698 91.220 7.798 TOTAL (FUEL + WATER) 73.647 351.064 4.767 FUEL NUMBER DENSITY I 4A526186E-02 401 2.7828865E-07

,f"'%

2381 7.235'1668E 05 (j

2351 1.1480256E 03 H/ZR (NUMBER DENSITIES IN FUEL)= 1.600000 DENSITY Nil /NU-235 0.0000000E+00 38.78502

j 0.1000009 75.25700

-]

0.2000000 111.7290 0,3000000 148.2010

,]

0.4000000 184.6730 0.5000000 221.1449 0.6000000 257.(169

(

0.7000000 294.0889 I

0.8000000 330.5609 0.9000000 367.0328 1.000000 103.5049 l

TOTAL WATER VOLUME = 193560.2 CM^3 WATER REFLECTOR CASE

' VOLUME OF W/.TER REFLECTOR w 22026.80 CM^3 1.000000 445 0093

" ( -)

)

+

1 6-490'

+

u s

g4 l

13 l

19 l

W l

-tO l

9

" ' ' ' ' l U-C 7

-~,

d ACI 3/4 'O 9eusesRfs).

g g

V tJs t

b SE W 9 f_h.

5" " ^

,,2 _ _

I' 4

J%

e 1

'g A'

P 8'"

J 3.17 MAX r

g

__:2 c

AA,*,J.

,=.J. A s(,;

'7 i

FWEL gemy pnet sner.7tn Asamme tefs j

g) meumuu

'namm s-

. _ _ _ _ _ _l SX.26.2S 1

4X 4S' 8

E # O.

6

-3/

JN-2A 3

, Ts "" '"P' W--)

l e

SX 10.50 MAX l

3.00 _

o-l O

6 l

l AP d

8 2.80 l

.,.S.

62.00 MAX

.13 I

4X 37 CHAMFER l

r t '._.

AA l

w u^

3 2-1/2'0D X.25 NALL (CPWWJ 8

S.00 N LEO X.13 kWI fvP at m aos pggg g,ncoi

- 3 s.& m aos en Ausmans E

3 7

/

.l D

l A

T H

W< 4 4

/-

{

c y

c,j;

,gg l.

h son *Tro suMNUW

/

\\

jl(.

AA o$1 N nacu f

-manu t ; A40tih-WIN 84 CON'? TNT; 3.45 WDGHT PERCDfT E

E\\

E q

J 1, APPL 4MM,1 FA38tAf10N CRAUtl4:

I e

h g4. *_,

\\,

lj.

w e.

No-42o0 -

Q gr WEL

~ " ~

m, R c.

. ~~ ~ um n D

.l y} - '"r -

l hy'Emi trl-!KEE m

[.'

' (e) ATdC CCElt. frtC (3, $US SErmote NG -

d

~~

. t,, b-

).k LWTNG WA Mp%D ruft IJrf 40 F DMDDt.

  • jk I'

gw omesAss,aw,_

t@.

ca w,,,;,,w4

,jwyd

.,\\

?:

+<

j l

...E..

5 40, i] f) j lygM,.' 12 '

.Af.

.l'.

9 l

7 8-10 -

11

! l o

l

-0 l

4 l

u essom, 2

-ioecesor

"?

I t asgig=

a E'WB" x a ".M De srx e 4 4

, E_3g ayy St2 m 8 af,n,N tggitg, -

,,. " 'L, A

er m s l

s am i NE h[

l 5k_

7 l

e o ve-w o,soaam gg f 7 m O~,5 s

=nse.w, w m

8

  1. 23.00 %

i

._ y s

'T-~.",q_-

7 k%

j- '#

se 2n _

'~-

i 5

\\g'

~

A

-===:-

sx e2sJs-

\\

g f

h =m

,- - I t 0*'D **

80 " b v2s.7s w

,,, - (ex AA k., MT[

,s

,_i _,, w s

"N tw A

gsg-aun-2s Nur "E'*"' " ' "

SECTION A-A 70% *w*e 30. U A S"sw.mWcw"un' Ptn Asut sA iss-se

d. DRMN HOLES ffr sex PWG f----<** * "

,u uu -

UA hEf8

/

w

_ f//

r~5 YlA 0m)

Mt

(

r I

DETAIL. VIEW D C

d hk b

CAwr

[

r-------

A l

I t

Also Avu,w,e,

I l

~

f.-

AD6rtur I

I l

l I

I N

I I

ss rm.2x.

==

  • sot i

L-l wra g s/w 001 l

j A

V r

l

,or,

,,h' r,

\\-n.tm uax.

g I

1

. m. mzs =

e f.ar oix. c a l'*t a" $""" *" "*""'

wx I l

l I

I c

J 3

s u - os..cm3 i

y

..2 F_ _ _ _ _ g;

\\

L._____.____

~

wunDE ft

~

ONLY

  • ' % 2 'asa "'

w d

NOT A SAFETY RELATED COMPONENT

-xn.m.m-

. f

'F 19 20===s-7 rum. -

90f il /

- CEMW1 CAT 10N DFIG

[-

8(

?"""""

namememumseen

[

l eas sumptes e WE M

j p*

spuurunansnam seus a y y e in ii r w

u

.