ML20207P648

From kanterella
Jump to navigation Jump to search
Rev 0 to Seismic Design Criteria for HVAC Ducts & Duct Supports for Comanche Peak Steam Electric Station 1
ML20207P648
Person / Time
Site: Comanche Peak Luminant icon.png
Issue date: 12/15/1986
From: Harrison P, Hettinger F, Womer J
EBASCO SERVICES, INC.
To:
Shared Package
ML20207P636 List:
References
1651R, SAG.CP23, SAG.CP23-R, SAG.CP23-R00, NUDOCS 8701160363
Download: ML20207P648 (199)


Text

SAG.CP23 ENCLOSURE Cl I

I I

EBASCO SERVICES INCORPORATED Seismic Design Criteria For E

HVAC Ducts and Duct Supports For Comanche Peak Steam Electric Station No. 1 E

i tl l

PREPARED l REVIEWED l

APPROVED l

l PAGES l

1llREVISIONI BY l

BY l

BY l

DATE l AFFECTED l l

l l

l l

l l P. Harrison l l

l l

l RO l$

lF. Hettinger l R.

exandru l 12/15/86 l l

l l

!l

E I

I 1

(

EBASCO SERVICES INCORPORATED

' g 2 World Trade Center 3

New York, NY 10048 I

COPYRIGHT @ 1986 1651R l g 3

8701160363 861223 PDR ADOCK 05000445 A

PDR

L SAG.CP23 SEISMIC DESIGN CRITERIA FOR HVAC DUCTS AND DUCT SUPPORTS TABLE OF CONTENTS

[

PAGE L.

I.

Purpose 1

II.

- Reference Documents 1

III. Design Parameters for HVAC Ducts and Duct Supports 3

1.

HVAC Duct Span Lengths 3

2.

HVAC Duct and Duet Support Loading 3

3.

Material 4

4.

Design Loads 5

IV.

Seismic Design Approaches, Seismic Input Requirements and 6

F Design Acceptance Criteria 1.

Static Analysis 7

p-2.

Equivalent Static Method 11 L

3.

Response Spectrum Method 12 V.

Recommendation of Successive Methods to be used for 13 h

Design of HVAC Ducts and Duct Supports APPENDICES 1.

Peak Acceleration Tables.

2.

" Structural Embedments" Specification No. 2323-SS-30 Revision 2,'

prepared by Gibbs & Hill, Inc., including all appendices as follows:

o SS-30 App. 1 Civil Engineering Instruction for the Installation of Hilti Drilled-In Bolts (CPSES Instruction Number CEI-20, Revision 9) o SS-30 App. 2 Design Criteria for Hilti Kwik and Super Kwik Bolts o SS-30 App. 3 Design Criteria for Screw Anchors

(

o SS-30 App. 4 Design Criteria for Embedded Plate Strips o SS-30 App. 4W Design Criteria for Embedded Plate Strips

{

(Alternate) o SS-30 App. 5 Design Criteria for Embedded Large Steel Plates a

o SS-30 App. SW Design Criteria for Embedded Large Steel Plates (Alternate) o SS-30 App. 6 Allowable Load Criteria for 1-1/2 Inch Diameter-A193 Grouted-In Anchor Bolts 3.

Ductwork Design Criteria DC-MS-85, 300 Series System Sketches, Rev.0 1651R I'4

SAG.CP23 I

SEISMIC DESIGN CRITERIA MR HVAC DUCTS AND DUCT SUPPORTS I.

Purpose HVAC ducts and duct supports are classified as either Seismic I

Qtegory I or Seismic Category II structures, and therefore, shall be adequately designed for the effect of the postulated seismic event combined with other applicable and concurrent loads. To facilitate design verification, seismic Category II ducts and duct supports i

shall be treated as Qtegory I unless a modification is required to satisfy the more stringent Category I requirements. he design requirements for seismic Qtegory I structures are delineated in I

Regulatory Guide 1.29.

Bis document provides the seismic Category I design criteria for HVAC ducts and duct supports of the Comanche Peak Steam Electric Station Unit No. 1.

R ese criteria summarize the design parameters, applicable load combinations and their associated acceptance criteria, the various design approaches and their corresponding seismic input requirements. h e following sections describe in detail the criteria for the seismic design of the HVAC ducts and duct supports and lists the applicable reference documents.

These criteria do not address the design verification of duct housings, plenuas or duct mounted accessories and equipment.

II.

Reference Documents The following list includes the documents referenced or prepared by either Corporate Consulting & Development Osapany, Ltd. (CCL) or Gibbs & Hill Inc., which may continue to be used for the design of Seismic Category I HVAC ducts and duct supports for Comanche Peak Steam Electric Station Unit No. 1.

1.

Applicable Codes and Regulatory Guides a - AISC - Manual of Steel Construction, 7th Edition, including Supplement Numbers 1, 2, and 3.

b - AWS Dl.1 Structural Welding Code.

=

I e - SMACNA, "Iow Pressure Duct Construction Standards," Sch Edition, Virginia 1976.

d - SMACNA, "High Pressure Duct Construction Standards," 3rd I

Edition, Virginia,1975.

4 e - AISI Specification for the Design of Cold-Formed Steel Structural Members.

f - Regulatory Guide 1.29 - Seismic Design Classification, Revision 3, September 1978.

g - Regulatory Guide 1.61 - Damping Values for Seismic Design of Nuclear Power Plants, October 1973.

l 1

1651R

SAG.CP23 SEISMIC DESIGN CRITERIA FOR r

HVAC DUCTS AND DUCT SUPPORTS

[

II.

Reference Documenta (Cont'd) h - Regulatory Guide 1.92 - Combining Modal Responses and

[

Spatial Components in Seismic Response Analyses, Revision 1, February 1976.

i-NUREG 1.75 - Standard Review Plan 3.8.4, November 1975.

L 2.

Final Safety Analysis Report (FSAR), Comanche Peak Steam Electric Station, Section 3.8.4.3.3 Ioad Combinations and Acceptance Criteria for Other Seismic Category I Steel i

Structures.

{

3.

Seismic Qualification Report of Seismic Category I Dactwork and Hangers for Comanche Peak Steam Electric Station, CCL Report Number A-424-81-10.

4.

Eba' s General Instructions for HVAC Duct and Duct Support Ana. sis for Comanche Peak Steam Electric Station No.1, Rev. O, Dece.ber 15, 1986.

5.

Duct Test Evaluation Report for the Bahnson Company, CCL Report Number A-414-81, February 19, 1982.

6.

Duct Test Data, CCL Report Number A-413-81, March 18,1982.

7.

Ductwork Fabrication Procedure, Subcontract Number 35-1195-0526, Bahnson Service Company (BSC) Document Procedure Number DFP-TU3I-001, Rev.13, July 15,1986.

8.

Duct Support Design Fabrication & Installation, Subcontract Number 35-1195-0526, Bahnson Service Company (BSC) Document Procedure Number DFP-TUSI-003, Revision 11, May 6, 1985.

[

9.

Structural Fabedments Specification Number 2323-SS-30, Gibbs &

Hill, Inc., Revision 2, June 13,1986.

10. Refined Response Spectra for Auxiliary Building, CPSES, Gibbs &

Hill, Inc., Document Number FAB-4R, November,1982.

11. Refined Response Spectra for Containment Building, CPSES, Gibbs

[

& Hill, Inc., Document Number FRB-7R, December, 1982.

12. Refined Response Spectra for Electrical Building, CPSES, Gibbs &

Hill, Inc., Document Number FEB-4R, November, 1982.

n

13. Refined Response Spectra for Fuel Building, CPSES, Gibbs & Hill,

{

Inc., Document Number FFB-3R, December,1982.

C

~

E 2

1651R

SAG.CP23 I

SEISMIC DESIGN CRITERIA FOR HVAC DUCTS AND DUCT SUPPORTS I

II.

Reference Documents (Cont'd)

14. Refined Response Spectra for Reactor Building Internal Structure, CPSES, Gibbs & Hill, Inc., Document Number FRB-8R, December, 1982.

3

15. Refined Response Spectra for Safeguards Building, CPSES, Gibbs &

g Hill, Inc., Document Number FSB-5R, November,1982.

I'

16. HVAC Ducts, Louvers and Accessories, Specification Number 2323-MS-85, Ebasco Services, Inc., Revision E0.

III.

Design Parameters for HVAC Ducts and Duct Supports I

The parameters considered in the design of HVAC ducts and duct supports are as follows:

1.

HVAC Duct Span Lengths "As-built" span lengths shall be used in HVAC duct and duct support design verification.

S 2.

HVAC Duct and Duct Support Loading 2.1 "As-built" duct weight reflecting actual in-line equipment I

and duct configuration shall be used for design verification of the HVAC ducts and duct supporto. Weight of any insulation, fire protection, or accoustical material identified on "as-built" drawings shall be included.

I 2.2 All HVAC ducts and duct supports shall be design verified based on "as-built" duct layout drawings.

2.3 All HVAC ducts and duct support components (members, connections, base angles, containment liner clips and anchor bolts, etc.) shall be design verified.

I I

3 1651R

SAG.CP23 SEISMIC DESIGN CRITERIA FOR HVAC DUCTS AND DUCT SUPPORTS

~

III.

Design Parameters for HVAC Ducts and Duct Supports (Cont'd)

~

L 3.

Material h

e J

Duct and duct support structural steel members conform to a.

ASTM A36.

l b.

Sheet metal ductwork conforms to ASTM A525, A526, and A527.

F = 33 x 103 y

pei*

Fu (Ultimate Stress) = 45 x 103 p,ie

  • Values for Fy and F for sheet metal have been u

obtained from BSC Certified Mill Test Reports (CMTRs).

1 c.

Welding electrode conforms to AWS AS.1 Class E-70 XX.

i d.

Concrete 28-day compressive strength is a minimum of 4000 psi.

Nelson studs are CPL or CFL type manufactured by TRW Nelson e.

Division.

.f.

Expansion anchors are HILTI Kwih and Super Kwik bolts

[

manufactured by HILTI Fastening Systems.

Screw anchors are Richmond Insert bolts conforming to ASTM g.

A307 and A325.

[

h.

Structural Bolts (flange / flange connections) conform to ASTM A307.

1.

Embedded plates (strip and area plates) are ASTM A36.

4 165M

SAG.CP23 SEISMIC DESIGN CRITERIA FOR

[

HVAC DUCTS AND DUCT SUPPORTS III.

Design Parameters for HVAC Ducts and Duct Supports (Cont'd)

L

4. - Design Loads The HVAC ducts and duct supports shall be design verified for

[

the following loads and load combinations:

a.

Load Definitions L

D - Dead loads and their related moments and forces -

generated by applying -13 vertically to the duct and duct support masses, including insulation, duct mounted equipment f

and accessories.

h L - Live load equals sero.

P - Maximum positive or negative differential pressure w$ich occurs during normal plant operation, including pressure resulting from air flow, damper or valve closure and design, as defined in Appendiz 3.

PT - Pressure differential resulting from design tornado condition or wind, as defined in Appendix 3.

P - Pressure differential resulting from design basis accident such as LOCA, or lesser pipe break, as defined in Appendix 3.

  • T

- 1hermal effects and loads during normal operating or o

{.

shutdown conditions, based on the most critical transient or steady state condition, are equal to zero.

f Fego - Loads generated by the operating basis earthquake L

including secondary wall displacement effects.

Fegs - Loads generated by the safe shutdown earthquake

(

including secondary wall displacement effects.

  • Ta

- Thermal effects and loads during accident conditions, based on the most critical transient or steady state condition, are equal to zero.

Wd

- Loads generated by the design wind of 140 miles /hr equal to 50 lb. per sq. ft. for ductwork located outside.

Note: LOCA related jet impingement, pipe whip and missile impact loads are zero as established in CPSES Damage Tolerance Study.

  • Thermal effects and loads are to be demonstrated by test to be zero, and are not to be explicitly considered analytically in design verification.

5

{

1651R

SAG.CP23 SEISMIC DESIGN CRITERIA FOR HVAC DUCTS AND DUCT SUPPORTS III.

Design Parameters for HVAC Ducts and Duct Supports (Cont'd) 4.

Design Loads (Cont'd) b.

Load Combinations - Duct Supports The following load combinations shall be considered in design verification of duct supports:

i) D + L + Fego = S u

ii)

D+L+Wd=S lii) D + L + To + Feqo = 1.5S iv) D + L + To + Wd = 1.5S v) D + L + To + Fegs = 1.6S where S is the required strength based on elastic design H

methods and the allowable stresses defined in Part 1 of the AISC " Specification for the Design, Fabrication and Erection g

of Structural Steel for Buildings" (published in the Manual of Steel Construction, seventh edition). In no case shall l

allowable stress exceed 0.9 Fy for normal tensile stresses and 0.50 Fy for shear stresses.

c.

Load Combinations - Ductwork i)

D+L+Po + Feqo S

=

l

11) D+L+Po+Wd"S iii)

D+L+To+Po + Fego = S iv) D + L + To + Po + Wd = S j

v)

D+L+To+Po + Feqs = S I

vi)

D+L+T+P

=S a

vii)

D+L+To+PT "S

I where S is a measure of the strength of the effective corner I

areas of the duct and is empirically determined. Per reference 5, the allowable normal stress in the effective f,

area is taken as 16000 psi for rectangular duct and as 6000 psi for round duct, for the normal condition.

f IV.

Seisuic Design Approaches, Seismic Input Requirements, and Design Acceptance Criteria There are several analytical methods available which will be used in design or design verification of ducts and duct supports. Because I

the level of sophistication is not the same for each method, the seismic input requirement must vary in order to compensate for whatever the method lacks in sophistication, and therefore the conservatism of results associated with each analysis method also I

varies.

The following procedures describe the three (3) most acceptable methods: static analysis, equivalent static method, and response spectrum method. The seismic input requirements for each analysis method are also addressed.

I 6

1651R 5

SAG.CP23 SEISMIC DESIGN CRITERIA FOR HVAC DUCTS AND DUCT SUPPORTS IV.1 STATIC ANALYSIS The Static Method described below may be used for straight runs of duct of uniform size and stiffness supported by uniformly spaced supports of uniform stiffness.

For supports which satisfy the above requirements but are within two supports of a change in the system uniformity, another analysis method, described in IV.3 below, shall be used.

The method of analysis used shall be determined by the engineer's evaluation of system uniformity.

a.

Finite Element Model 3-D models shall be prepared to represent HVAC duct and duct supports. Offsets or eccentricities due to the assemblage of various types of structural members and/or transmission of loads shall be considered in the preparation of the computer model.

Boundary conditions at anchorage points shall proper'ly simulate the most realistic model of the actual connection.

b.

HVAC Duct Loading The total duct loading for each run shall be calculated based on Paragraph III.2 above and the actual duct span lengths which are shown on the "as-built" duct layout drawings.

The duct loading shall be lumped as nodal weights at the actual

(

locations of the connection to the supporting members and, if not known, at such locations on the supporting members so that the worst member etress responses and the maximum anchorage

{

reactions will be induced.

c.

Seismic Input "a" Values For a static analysis, the peak spectral "g" values from the 2%

damping OBE curves and the 4% damping SSE curves which are generated at the mounting locations of HVAC duct supports shall be used multiplied by a coefficient to account for multimode response.

If 4% SSE curves are not available 3% SSE curves may conservatively be used. These peak spectral "g" values for various buildings and different floor elevations can be found in Appendix 1.

For the case where the hangers are supported off the wall, the envelope of the response spectrum curves for the floors immediately above and below the hanger location shall be used. The required seismic design "g" values in three (3) orthogonal directions are 1.5 (multimode response multiplier-MRM) times the peak spectral "g" values.

[

1651R

SAG.CP23 SEISMIC DESIGN CRITERIA EUR HVAC DUCTS AND DUCT SUPPORTS IV.1 STATIC ANALYSIS (Cont'd) d.

Static Analysis The seismic load effect on the HVAC duct and duct supports will be treated as a static load.

1he dynamic effect from both the seismic event and the response characteristics of support I

i structure-are conservatively considered by using the 1.5 times the peak spectral "g" value as an input. However, for transverse type cantilever and trapeze HVAC duct supports not lI positively connected to the duct, the seismic load effect due to the support's self-weight in the longitudinal direction (direction parallel to duct run) shall be determined by multiplying the spectral "g" value corresponding to the HVAC duct support's fundamental (lowest) longitudinal frequency by 1.5 regardless of whether that frequency is to the lef t or right of the peak response frequency.

If the duct support is attached to a steel structure, use 1.5 times the peak spectral "g" value and a fixed base boundary condition.

The static analysis shall be performed for the following load cases individually:

I

1) Dead load
11) Seismic load in vertical direction iii) Seismic load in transverse direction iv)

Seismic load in longitudinal direction v)

Thermal, pressure and wind loads, if any Note: Seismic load includes both OBE and SSE events.

e.

Analysis Results Ibe following maximum responses shall be obtained for each load combination:

1) Maximum member stresses (bending, axial and shear) and nodal displacements shall be obtained.

The stresses and l

displacements resulting from the simultaneous effect of three earthquake components shall be obtained by using the SRSS method.

ii) Maximum anchorage reactions shall also be obtained by using the SRSS method to account for the simultaneous effect of three earthquake components.

I 8

1651R

. SAG.CP23 SEISMIC DESIGN CRITERIA FOR

-HVAC DUCTS AND DUCT SUPPORTS IV.1 '

STATIC ANALYSIS (Cont'd) f.

Seismic Design Acceptance of Ducts Duct Supports and their Anchorages The ducts, duct supports and their anchorages are considered to be acceptable when the structural member and connection stresses and the anchorage reactions, which are induced by the load combinations described in Sections III.4.b and III.4.c, are within the allowable stress limits and allowable anchorage carrying capacity. The following describes the acceptance criteria for ducts, duct supports and their anchorages:

1.

Duct and Duct Support Structure The structural member seismic design acceptance shall be evaluated using the'AISC interaction formula with modification for various load combinations as follows:

fa fbr for load (Ti + 75x + gfb)41.0 combination III.4.b.1, III.4.b.ii, and III.4.c.i through III.4.c.vii (fa, fbx, fby) Zl.5 a

for load Fa Fbx Pby combination III.4.b.iii and III.4.b.iv

(

(Faf_a, f br, fby) gg for load Fbx Fby combination III.4.b.y fy&F for load combination III.4.b.i y

and III.4.b.ii f d 1.5 F, dG 0.50 Fy for load combination III.4.b.iii y

and III.4.b.iv f 4 1.6 F 4 0.50 Fy for load y

y combination IV.4.b.y where fa = axial stress f = shear stress y

h fbi = bending stress Fa, Fbi and Fy (for duct supports) = allowable stresses for axial, bending and shear stress, per AISC 7th edition, and in all cases no more than 0.9 Fy for normal stress and 0.50 Fy for shear stress.

Fa and Fb (for ducts) = allowable stresses for axial and bending stress are as specified in Para. III.4.c.

11.

Anchorage o

Kwik-bolt and Super Kwik-bolt The design criteria and allowable loads for above driven-in bolts are tabulated in Apper. dix 2.

[

9 1651R a

23 SEISMIC DESIGN CRITERIA FOR' HVAC DUCTS AND DUCT SUPPORTS IV.1 STATIC ANALYSIS (Cont'd) -

f.

Seismic Design Acceptance of Ducts, Duct Supports and their L

Anchorages (Cont'd)

' ii. Anchorate (Cont'd) 9-o Screw Anchors

/

The design criteria and allowable loads for screw L

anchors are contained in Appendix 2.

When an "as-built" drawing does not identify the bolt / threaded rod material in a Richmond Insert, A-36 material shall be assumed in

(

the HVAC duct support design verification.

i o

Anchorage Assemblies L

Anchorage assembly allowables specified in Reference 4 are to be used in design verification unless verification is performed explicitly for each individual anchorage assembly component. Reduction of anchorage assembly allowables due to proximity of anchor bolts to each other or to embedded plates shall be in a manner consistent with Appendix 2.

Note:

1.

The allowable loads for anchorages with Hilti expansion p

anchors for the load combination involving OBE are the L

load capacities corresponding to a safety factor of 5, and for the load combination involving SSE are the load capacities corresponding to a safety factor of 4.

2.

The safety factors for anchorages with Richmond Anchors are 3.0 for OBE and 2.0 *or SSE.

3.

Prying action on anchor bolt, if any, shall be considered. The effects of the flexibility of the base picts on the anchor bolt shall be considered.

4.

For floor-mounted HVAC duct supports in building areas with concrete topping, the actual anchor bolt embedded

(

length (as determined from the "as-built" drawing) shall be reduced by tw, inches (2") to account for the topping.

iii. Welds Connectina Duet to Duet Supports AWS D1.1 weld stress criteria shall be used to design verify duct-to-support welds, without considering the AWS ainimum weld size provision.

iv.

Duct Mounted Equipment In-line and permanent equipment attached to ductwork are evaluated on a case by case basis. The duct system frequency at the equipment location shall be determined and, if less that. 33 Hz, recorded in the calculation package.

1651R

SAG.CP23 SEISMIC DESIGN CRITERIA FOR HVAC DUCTS AND DUCT SUPPORTS IV.2 EQUIVALENT STATIC METHOD The Equivalent Static Method described below may be used for straight runs of duct of uniform size and stiffness supported by uniformly spaced supports of uniform stiffness.

L For supports which satisfy the above requirements but are within two supports of a change in the system uniformity, another analysis method, described in IV.3 below, shall be used.

L The method of analysis used shall be determined by the engineer's evaluation of system uniformity.

l L

a.

Finite Element Model See Section IV.1.a b.

HVAC Duct Loading See Section IV.1.b c.

Seismic Input "g" Value I

5 1.

The fundamental (lowest) frequency of HVAC duct support (f ) shall be determined in each of three (3) orthogonal p

directions separately.

L ii.

Determine the f requency (f ) of the HVAC duct itself d

corresponding to the actual span length in each of the three (3) orthogonal directions separately.

iii. Determine the system frequency using the following conservative formula:

1 1

1 2"f 2+f 2

f L

sys d

a When fd or fa are 33 H or larger this term's z

contribution to the system f requency may be disregarded.

1he above system frequency will be calculated for each of three (3) orthogonal directions separately.

i v.

Obtain the spectral "g" value corresponding to the system f requency (fsys) for each direction separately when fsys is on the right side of the peak response frequency.

If fsys is at the left side of the peak frequency., the peak spectral t

"g" vaine shall be used (except as noted in Section IV.l.d).

[

[

11 1651R

SAG.CP23 SEISMIC DESIGN CRITERIA FOR

{

HVAC DUCTS AND DUCT SUPPORTS IV.2 EQUIVALENT STATIC METHOD (Cont'd) v.

Determine the required seismic design "g" values for the

. I HVAC duct and duct supports by multiplying 1.5 to the above "g" value (obtained in Step iv) to account for multimode response. For supports with a minimum system frequency greater than the cut-off frequency of 33 Hz, an MRM of 1.0 is used.

d.

Equivalent Static Method

l
W The stress analysis for HVAC ducts and duct supports shall be performed on the 3-D finite element model using the "g" value obtained in Step c.

The load cases which shall be considered are the same as those listed in Section IV.1.d.

e.

Analysis Results

W See Section IV.1.e f.

Seismic Design Acceptance of Ducts, Duct Supports and their Anchorages See Section IV.l.f.

IV.3 RESPONSE SPECTRUM METHOD a.

3-D Model of Ductwork and Duct Supports Construct a 3-D model of duct systems which includes and I

therefore simulates the dynamic behavior of duct itself and duct supports.

In order to adequately simulate the seismig response of the duct I

system, a minimum of 4 duct spans shall be included in the model, with two spans on each side of the support under consideration. The duct will be represented by a beam type

!'I finite element in the 3-D model, with duct properties.obtained from test, and specified in Reference 4.

Either 3-D models or equivalent spring representations of the duct supports may be used, as appropriate.

b.

Frequency Analysis I

Perform a frequency analysis of the above 3-D model which includes all modes up to 33 Hz.

Total modal mass shall be 90%

of the total mass. If it is not, the residual mass shall be

,g multiplied by the largest spectral acceleration at or beyond the 3

cut-off frequency and applied as a rigid body force on the structure.

I i

12 1651R 5

SAG.CP23 SEISMIC DESIGN CRITERIA FOR r

HVAC DUCTS AND DUCT SUPPORTS

'IV.3 RESPONSE SPECTRUM METHOD (Cont'd)

[

c.

Spectral Analysis Perform seismic response analysis for the above 3-D model using

[

the appropriate floor response spectrum as an input. NRC Reg.

L Guide 1.92 shall be followed in calculating the modal response.

(

The 2% damping of OBE curves and 4% damping of SSE curves shall be used as an input for each direction separately.

If 4% SSE curves are not available, 31 SSE curves may be conservatively

, used. Seismic responses are obtained directly from these l

analyses using modal superposition per NRC Reg. Guide 1.92.

d.

Response Spectra Analysis The stress analysis for HVAC ducts and duct supports shall be performed -on the 3-D finite element model using the "g" value r

obtained in Step c.

The load cases which shall be considered

[

are the same as those listed in Section IV.1.d.

e.

Analysis Results

(

See Section IV.1.e

~

f.

Seismic Design Acceptance of Duct Supports and their Anchoranes See Section IV.1.f.

V.

Recommendation of Successive Methods to be Used for Desian of Duct and Duct Supports The ducts and duct supports may be designed or design verified by a static analysis method first (IV.1).

If the ducts or duct supports fail to meet the seismic requirement under this most conservative

(

method, a refined analysis method of equivalent static method (IV.2) shall be used. If the ducts or duct supports still f ail to meet the design criteria, then the response spectrum method (IV.3) may be used. The response spectrum method approach simulates better the

(

dynamic behavior of the duct system under the effect of the postulated seismic event and thus may produce seismic responses of the structural system closer to reality. Therefore, by response spectrum method, the conservatism associated with the seismic response obtained from static analysis and equivalent static method can be reduced to a minimum.

In conclusion, if the ducts or duct supports still fail to pass the acceptance criteria by a response spectrum analysis, a much more refined analysis such as a time history analysis method can be used. A procedure for such analyses will be given, should the need arise.

[

13 1651R s

?

I SAG 0CP23 SEISMIC DESIGN CRITERIA FOR HVAC DUCTS AND DUCT SUPPORTS I

I I

~

I I

APPENDIX 1 Peak Acceleration Tables I

I I

I I

I I

I I

' I I

1651R

t -

SAG.CP23 r

SEISMIC DESIGN CRITERIA FOR 4'

HVAC DUCTS AND DUCT SUPPORTS L -

b H

1.

Reactor Building Internal Structure I

i i

[

l l

Peak "g" Value I

l I

I l

Floor l

l l

f l Elevation l OBE I

SSE I

L l

(Pt) l l

l l

2%

l 3%

l l

l x

v I

H V

l

['

l I

i I

I 905.75 l

4.23 2.17 l

5.01 3.19 l

l l

l l

I l 885.50 l

3.45 2.05 l

4.11 3.01 L

I I

I I

l 860.00 l

2.47 1.90 1

2.97 2.79 l

l i

I I

[

l 832.50 l

1.41 1.75 l

1.75 2.58 l

1 I

I I

I 808.00 1

0.80 1.62 l

1.09 2.40 l

f I

I I

I 5

I 783.58 1

0.70 1.50 l

1.03 2.23 I

I I

I I

b

[

[

\\

E'

[

(

E 1651R

SAG.CP23 SEISMIC DESIGN CRITERIA FOR HVAC DUCTS AND -DUCT SUPPORTS I 2.

Safeguard Building i

i i

l l

Peak "g" Value l

Ficor l

l l Elevation i OBE I

SSE l

l (Ft) l l

I l

l 2% -

l 3%

l I

H V

l H

V I

I I

I I

l 896.5 l

3.29 2.18 l

4.25 2.85 l

I l

l l

l l 873.5 I

3.09 2.36 1

3.87 3.38 l

l 1

I I

I l 852.5 l

2.34 2.18 1

3.00 3.16 l

l l

l l

l 831.5 l

1.64 1.90 l

2.15 2.83 l

I I

I I

I I 810.5 l

1.01 1.83 l

1.52 2.74 I

I I

I I

I 790.5 1

0.61 1.47 1

0.94 2.78 l

I l 785.5 1

0.55 1.42 1

0.88 2.21 l

I I

I i

l l

l l

'I l 773.5 i

0.47 1.32 1

0.73 2.06 l

I I

I I

i Note: Safeguard Building Peak "g" values are applicable to the Diesel Generator Area of that building.

e

!I

,I lI 1651R

L SAG.CP23

[

SEISMIC DESIGN CRXTERIA FOR L

HVAC DUCTS AND DUCT SUPPORTS r

L I L

3.

Electrical Building F

L I

I I

[

l l

Peak "g" Value l

L i

I I

l Floor l

l

~l H

I Elevation l OBE I

SSE I

L l

(Ft) l l

l l

l 2%

1 3%

1 J

l l

H V

l H

V l

l 1

1 l

l h

l 873.33 l

2.54 1.93 1

3.09 2.90 l

I I

I I

[

l 854.33 l

2.22 1.91 1

2.71 2.88 l

L I

I I

I I 830.00 l

1.57 1.77 l

1.94 2.68 I

e l

I I

I L

807.0 l

.. 02 1.84 l

1.50 2.78 l

I I

I 778.0 1

0.71 1.75 l

1.08 2.77 l

l l

l Note: See sheet 4.1 of Appendix 1 for clarification of column lines defining the Electrical Building.

[

[

e

[

[

1651R

SAG.CP23 p

SEISMIC DESIGN CRITERIA FOR

(

HVAC DUCTS AND DUCT SUPPORTS r

L IL 4

Auxiliary Building i

i l

[

l l

Peak "g" Value l

L I

I I

Floor l

l p

l Elevation 1 OBE l

SSE l

L (Ft) l l

l 2%

l 3%

l l

l H

V l

H V

l l

l l

l l 899.50 l

3.78 2.72 1

4.57 3.69 l

l l

l 1

r l 886.50 1

3.27 2.57 l

3.99 3.68 l

L i

I I

I l 873.50 l

2.77 2.39 1

3.41 3.76 l

l l

l l

l 852.50 l

2.25 2.36 l

2.87 3.71 l

l l

l l

1 831.50 l

1.69 2.26 l

2.25 3.40 l

l l

l l

l 810.50 1

1.01 2.12 l

1.40 3.09 I

I I

I l 790.50 1

0.74 1.91 l

1.20 3.01 I

I l

l I

~

l Note: See sheet 4.1 of Appendix 1 for clarification,of column lines defining the Electrical Building- - -

1l h

1651R

SAG.CP23 SEISMIC DESIGN CRITERIA FOR HVAC DUCTS AND DUCT SUPPORTS

- 4.1 -

~

The Electrical Building peak acceleration values shall be utilized for all HVAC Duct Supports located within the building area boundaries defined by 4

column rows 5-A, 1.9-A, A-A, and E-A.

~

u N

l l

E-A 1

I l

UNIT 1 l

J.

l ELECTRICAL l

BUILDING I

I A-A u

I I

5-A 1.9-A J

The specific building room numbers included in the present Unit 1 scope are as follows:

Floor Elevation Arch Room No.

778'-0 113 115 I

115A 792'-0(Part Plan) 119 l

121 I

122 125 l

129 L

807._0 133 840'-0 148B 148D 150 854' 150A 151 l

151A I

j Note that even though the " Unit 1 HVAC Duct Support Program Scope for I

As-Builts" identifies these Room Nos. as Auxiliary Building, review of the I

Architectural drawings indicates that these rooms are physically located in the Electrical Building.

I II I

I 1651R

SAG.CP23 g

SEISMIC DESIGN. CRITERIA FOR L

HVAC DUCTS AND DUCT SUPPORTS IL F L

5.

Fuel Handling. Building u

I I

I F

l l

Peak "g" Value l

L I

I I

l Floor l

l l

r l Elevation l OBE I

SSE I

L l

(Ft) l I

l l

l 2%

1 3%

l l

l H

V l

H V

I

[-

l l

I I

l 918.0 l

3.56 1.47 l

4.52 2.13 l

l 1

I i

{

899.50 3.12 1.49 4.13 2.21 l

l 860.0 1

1.58 1.34 l

2.35 2.05 I

I I

I I

[

l 841.0 1

1.39 1.24 l

1.89 1.90 l

l l

l l

1 825.0 1

1.19 1.18 l

1.82 1.83

[

l l

I l

l 810.50 l

1.02 1.08 l

1.56 1.71 I

I I

I I

l l

ll 1651R

L-SAG.CP23 SEISMIC DESIGN CRITERIA FOR HVAC DUCTS AND DUCT SUPPORTS s-r L -,

L 6.

Containment Building

[L I

I I

r-1 l

Peak "g" Value

'l L

i I

I i

Floor I

I I

r-1 Elevation i OBE I

SSE I

L-l (Pt) l l

l l

2%

l 3%

l l

l H

V l

H V

I

[

l l

I I

l 1000.50 l

3.70 3.44 1

4.35 4.03 l

1 1

I I

f I 950.58 l

2.85 2.69 l

3.39 3.23 l

I I

I I

I 905.75 l

2.10 2.01 1

2.53 2.90 l

l l

I I

{.

I 860.00 l

1.32 1.81 1

1.66 2.67-1 I

I I

I I 805.50 1

0.86 1.62 1

1.15 2.40 I

[

l l

I I

l 783.58 1

0.78 1.50 l

1.04 2.23 l

l I

I I

[.

[

c;

[

[

[

[

g 1651R

~

1 i

['

SAG.CP23 SEISMIC DESIGN CRITERIA FOR HVAC' DUCTS AND DUCT SUPPORTS L

E F

L' b

E APPENDIX 2 STRUCTURAL EMBEDMENTS

{

Appendices from Specification No. 2323-SS-30 Rev 2 E

[.

[

[

[-

Notest 1.

This is a Gibbs & Hill document incorporated in the Design Criteria without any changes except the tables for SSE

(

Richmond Insert and Bolt Allowables are added by Ebasco.

2.

When an "as built" drawing does not identify the

{-

bolt / threaded rod material in a Richmond Insert', A-36 material shall be assumed in the HVAC Duct Support design verification.

[

[

[

[

1651R

t

[.

[

TEXAS UTILITIES SERVICES INC.

AGENT FOR TEXAS U*ILITIES GENERATING COMPANY r

L~

ACTING FOR CALLAS POWER & LIGHT COMPANY TEXAS ELECTRIC SERVICE COMPANY

{

TEXAS POWER AND LIGHT COMPANY

[

[

COMANCHE PEAK STEAM ELECTRIC STATION UNITS NO. 1&2

[

[

STRUCTUAAL EMBEDMENTS

[

,---.:..a

.e = - 3 0 e-:

.O.. NO.

-c.. s a REVISION 1 - FEBRUARY 10, 1984 REVISION 2

..~JNE 13, 1986

[

. -. ~,,,,

'b.**. f *. g,

[

- 4,.

s

... m.,'s *,... [

. l.

,,/ s j

u o.' ;

m

.?

'.3, l

o e.,,: :.:.::",; -

+

/

[

n - t................... n ;., '

v l

./

r;

$ /6 56

't;,T.. ** : :

.;f"w

/

[

C $.,",i.,,.,'{t.

. '.',; f

'. ('.

g%..

.a-

v..

{

1

[

-GI335 & E'~~,

INC.

[

_.v.v-

v. _r_ a e.,

,r..e..,r aS,

ON S~.~.4.,-.,s. e..S

.a w

NEW YCRK, NEW YORK

[

L E

t r

lL Gibbs & Hill, Inc.

Specification No. 2323-SS-30 Revision 2 L

June 13, 1986 Page i IL STRUCTURAL EMBEDMENTS CONTENTS

[

SECTION TITLE

,PAGE L

1.0 SCOPE 1

h 1.1 DRILLED-IN EXPANSION BOLTS 1

1.2 SCREW ANCHORS AND'EMBEDbED PLATES 1

2.0 INSTALLATION OF EILTI EXPANSION BOLTS 1

2.1 CINEML REQUIREMEN*S 1

2.2 EXPANSION SCLT SPACING 2

p 2.3 INTERFERENCE WITH STRUCTUML 2

L REINFORCING STEEL 2.4 CU""!!NG STRUCTURAL REIN. FORCING STEEL 2

2.5 SET!!NG EXPANSION BOLTS 2

3.0 INSPECTION 3

3.1 INSPECTION OF EXPANSION BOLTS 3

I 4.0 REPAIR OF EXPANSION BOLT FAILURES 3

L 4.1 EXPANSION BOLT SLIPPAGE, LCOSENING, 3

p PULLOUT OR FAILURE (RUPTURE, L

DISTORTION, DEFORMATION) 4.2 CONCRITE SEEAR CONE FAILURE 3

5.0 REPAIR OF DAMACED CONCRETE 4

E E

E

L_

r L,

E Gibbs & Hill, Inc.

H Specification No. 2323-55-30 Revision 2 7

June 13, 1986 L,

Page ii L

SECTION TITLE PAGE 6.0

' DESIGN 4

6.1 DESIGN CRITERIA FOR EXPANSION BOLTS 4

k 6.2 DESIGN CRITERIA FOR SCREW ANCHORS 4

6.3 DESIGN CRITERIA FOR EMBEDDED STEEL 4

PLATE STRIPS 6.4 DESIGN CRITERIA FOR, EMBEDDED LARGE 4

{

STEEL PLATES 7.0 QUALITY ASSURANCE 4

(

7.1 SCREW ANCHORS AND EMBEDDED PLATES 4

7.2 DRILLED-IN EXPANSION BOLTS 5

L APPENDIX 1 CIVIL ENGINEERING INSTRUCTION FOR THE INSTALLATION OF HILTI DRILLED-IN BOLTS

(

(CPSES INSTRUCTION NUMBER CEI-20, REVISION 9)

APPENDIX 2 DESIUN CRITERIA FOR HILTI KWIK AND SUPER KWIK BOLTS APPENDIX 3 DESIGN CRITERIA FOR SCREW ANCHORS APPENDIX 4 DESIGN CRITERIA FOR EMBEDDED PLATE STRIPS APPENDIX 4W DESIGN CRITERIA FOR EMBEDDED

- R F_V 2 PLATE STRIPS (ALTERNATE)

APPENDIX 5 DESIGN CRITERIA FOR EMBEDDED LARGE STEEL PLATES APPENDIX SW DESIGN CRITERIA FOR EMBEDDED LARGE STEEL PLATES (ALTERNATE)

-k6Y b APPENDIX 6 ALLOWABLE LOAD CRITERIA FOR l-1/2 INCH DIAMETER-A193 GROUTED-IN ANCHOR SOLTS

u I

L J

L Gibbs & Hill, Inc.

Specification No. 2323-SS-30 Revision 2 m

L June 13, 1986 Page iii s

The following DCA's have been incorporated into Revision 1 of

)

Specification 2323-SS-30 as follows:

DCA No.

Rev. No.

Section No.

12411 O

Appendix 4 13194 0

Appendix 3

[

13215 0

Appendix.4 15338 1

Appendix 6 15883 0

Sect. 2.5 F

us-m

I E

I Gibbs & Hill, Inc.

Specification No. 2323-55-30 Revision 2 June 13, 1986 Page 1 i

STRUCTURAL EMBEDMENTS 1.0 SCOPE 1.1 DRILLED-IN EXPANSION BOLTS This Specification covers the design criteria for'the I

use of drilled-in expansion bolts and the requirements for furnishing all equipment, labor and materials necessary for the installation of drilled-in expansion

{

bolts in, existing structural concrete.

The drilled-in B

expansion belts shall, be Hilti Kwik-Bolt and Super Kwik-Bolt Anchors (including nuts and washers) as furnished by Hilti Fastening Systems.

I 1.2 SCREW ANCHORS AND EMBEDDED. PLATES I,

This Specification covers the design criteria for the use of screw anchers and steel plates embedded in concrete to which miscellaneous hangers and other.

structural supports are attached.

Screw anchors are I

Richmond Structural Connection Inserts as furnished by Richmond Screw Anchor Co.,

Inc.

Installation of screw anchors and fabrication and installation of embedded plates are as shown on the engineering drawings.

2.0 INSTALLATION OF HILII EXPANSION BOLTS l

2.1 GENERAL REQUIREMENTS The expansion bolts shall be installed in strict g

accordance with the installation instructions and i

E procedures as developed and recommended by Hilti j

Fastening Systems tind the requirements of this l

Specification.

Where Hilti requirements conflict with

  • equirements of nhis Specification, the Specification shall govern.

2.2 EXPANSION BOLT SPACING I

i I

Unless c herwise specified on design documents, expansion anchors shall not be spaced closer than l

s l l 10 anchor diameters.

The minimum anchor spacing between

'E vo (2) unequal si:ed bolts shall be the sum cf (5) respect;ve belt diameters as shown in A :achmen: 1 ef Appendix 1 of this Specifica:icn.

Fer expansion bolt 1 II

L l

L Gibbs & Hill, Inc.

Specification No. 2323-SS-30 Revision 2 June 13, 1986 5

Page 2 r

spacing less than that required by Attachments 1, 2 and 3 to Appendix,1 of this Specification Engineering I

approval shall be obtained prior to installation of the expansion bolt.

2.3 INTERFIRENCE WITH STRUCTURAL REINFORCING STEEL Where interference between the expansion bolt and reinforcement is encountered, the bolt location shall be adjusted within tolerances as noted on design drawings to avoid such interference.

In no case shall reinforcement steel be, cut without prior approval of the Engineer.

2.4 CUT!!NG STRUCTURAL P.IINFORCING STEEL Rebar cutting procedure, where permitted by the Engineer, shall be in accordance with CEI-20 (Appendix 1 cf this Specification).

2.5 SITTING EX?ANSION SCLTS Expansion bolts shall be set by tightening the nut to the required torque value as given in CII-20 (Appendix 1 of this Specification.)

These torques are the minimum values required to obtain, without slippage, a

minimum static tensile test load capacity of 115 percent of the allowable tensile working load given in Tables 1 and 2 of Appendix 2 of this Specificati'on for a factor of safety of 5.

Torque values for other allowable tensile working loads shall be established by on-site testing I

2.5.1 Setting (torque) verification of expansion anchors, if I

not at time of installation of the expansion

anchor, shall be as follows:

Setting verification shall be by application of the torque as specified in 3.1.4.1 of CEI-20 (Appendix 1) during the verification process.

Nut may turn additionally due to the initial relaxation.

Tcrque must be obtained pricr to nut bottoming out in the threads.

Frequency of verification shall be per applicable site QA/QC precedures and instructions.

l' F

l%

l l

Gibbs & Hill, Inc.

Specification No. 2323-55-30 Revision 2 June 13, 1986 Page 3 s

i 3.0 INSPECTION 3.1 INSFECTION OF FJ*FANSICA SOLTS All installed expansion bolts shall be visually inspected for proper size, embedment length, and thread projectioc.

above top of nut, and for possible cracks, distortions and damaged concrete.

4.0 REPAIR OF EXPANSION BOLT FAILURES All expansion bcits that, during installation or after F

inspection fail to meet the requ rements of this L

Specification shall. be repaired as follows by the Contractor, unless otherwise directed by the Engineer.

4.1 EXPANSION BOLT SLIPPAGE, LOOSENING, PULLOUT OR FAILURE i RUP-*" r

" *TOET:0N, CEF0FJ"AT:ON)

{

4.'

'or expansion bolts that

slip, loosen, pull out,.or fail, using appropriate equipment, the exist ng anchor bolt hole shall be redrilled in acecrdance with Appendix 1 of this Specification.

4.1.2 For cases in which the bolt can not be removed, the bolt shall be cut flush with the concrete surface driven back

~

into the hole and the surface of the concrete patched as required by this Specification.

4.2 CONORETE SEEAR CONE FAILURE I

For concrete shear cone

failure, using appropriate equipment, the existing anchor bolt hole shall be redrilled so that the new embedment depth is 4-1/2 anchor diameters for Kwik bolts and 6-1/2 anchor i

diameters for Super Kwik bolts greater than the previous embedded depth.

As an alternate the expansion bolt may be relocated, however the damaged concrete shall still be repaired.

\\

l l

I I

~

Gibbs T. Hill, Inc.

Specification No. 2323-55-30 Revision 2 June 13, 1986 Page 4 1

5.0 REPAIR OF DAMAGED CONCRETE Repair of damaged concrete shall be in accordance with Specification 2323-SS-9 and Appendix 1 of this I!

Specification.

s 6.0 DESIGN I

6.1 DESIGN CRITERIA FOR EXPANSION BOLTS Design criteria for use of Hilti Kwik-and Hilti Super I

Kwik-Bolts are provided*

in Appendix 2 of this Specification.

6.2 DESIGN CRITERIA FOR SCREW ANCHORS Design criteria for use of Richmond structural l

connection inserts are provided in Appendix 3 of this Specification.

6.3 DESIGN CRITERIA FOR EMBEDDED STEEL PLATE STRIPS I

E 6.3.1 Design criteria for the use of embedded steel plate strips are provided in Appendix 4 of this Specification.

l 6.3.2 Alternative design criteria for the use of embedded steel plate strips are provided in Appendix 4W of this j

specification.

Appendix 4W is a Westinghouse generated JE.V 7-t document.

The design methodology, assumptions, procedures and summary of results are provided in Westinghouse document WCAP 10923 dated 8/30/85.

6.4 DESIGN CRITERIA FOR EMBEDDED LARGE STEEL PLATES 6.4.1 Design criteria for the use of embedded large steel plates are provided in Appendix 5 of this Specification.

6.4.2 Alternative design criteria for the use of embedded large steel plates are provided in Appendix SW of this

-RI=_y 2 I,

Specification.

Appendix SW is a Westinghouse generated document.

The design methodology, assumptions, procedures and results are provided in We:tinghouse document WCAP 10923 dated 8/30/85.

I t

L r

L V

Gibbs & Hill, Inc.

Specification No. 2323-55-30 Revision 2 l

June 13, 1986 Page 5 e

l 7.0 QUALITY ASSUPJWCE H

7.1 SCREW ANCHORS AND EMSZDDED PLATES Quality assurance requirements for use of Richmond structural connection inserts and e= bedded plates shall be in accordance with site engineering procedures.

-REV2 7.2 DRILLED-IN EXFANSICN B,CLTS L

7.2.1 MANUFACTJRER'S REQUIREMENTS Hilti Kwik-Bolts Super Kwik-Bolts shall be supplied by the manufacturer with a

certification of compliance signed ~and dated by a

responsible person within the l

=anufac:urer's organization.

This certification shall state that the Hilti Kwik-Bolts and Super Kwik-Boits furnished under the purchase crder are manufactured in accordance w th Hilti Catalog Supplement #H-390B, dated 4/77.

In addition, the certifiation shall state the grade of material used, part numbers, and n"+er cf each par: number covered by the certification.

All materials furnished may be subject to confirmatory testing by the Contractor to assure that the quality of the material is consistent with the specifications listed in the above mentioned catalog.

7.2.2 INSTALLATION REQUIRE!E.NTS Quality Assurance Installation Requirements shall be in accordance w.th Appendix 1 cf his Specification.

7.2.3 DESIGN Quality assurance requirements for use of drilled-in expansion bolts shall be in accordance with site engineering precedures.

REV 2.

W

L

[

SS -30 AFFENDIX 1 I

INSTALLATION OF "HILTI" DRILLED-IN BOLTS OI'-;O REVISION 9 I

e I

i I

i ki i

BROWN & ROOT, INC.

PROCEDURE EFFICTIVE CPSES NUMBER REVISION CATE PAGE

/ 9 12/16/83 1 of 12 CEI-20 i

/2-/4 *$,3 TITLE:

ORIGINATOR C

Data

  • INSTALLATION OF REVINED BY:

N m., M _ _-,r wi,r*

/2./4 93 "RILTI" DRILLED-IN

/

yf' 4

BOLTS s

~

s IWGCG Data AFFROVID BY:

M

/[-/Nb i

CDNSTRUCTION FROJECT MG1 Date o.1 TABLE OF CONTENTS k

1-

"***"C*'

CPE:G T [Es{

I; 2.O CENERAL i

2.1 FURPOSE gg 2.2 SCOPE NY 2.3 RZSFONSIBILITY y1

't l

1 2.4 DEFINITIONS g) 3.0 PROCEDURE p

h > 0.}NI&

/

3.1 INSTALLATION 3.1.1 Locatina Bolts I

3.1.2 Drilling Roles 3.1.3 Markina solts 3.1.4 Setting Bolts i

3.1.3 Repair of Broken Concrete and Abandoned Holes 3.1.6 Modification 3.1.7 tavork of Bolts in 2-inch Concrete Toeping Areas 3.2 INSFECTION 0.11 ATTACEMETf5 No. 1 2tinimus Spacing Batveen Rilti Expansion Bolts No. 2 Minimus Bolt clearances No. 3 Minimum Clearances to Embedded Flates No. 4 Length Identification System

1.0 REFERENCES

1.1 161 construction Procedure 33-1195-CCP-12 Concrata Fatching.

Finishing and Fraparation of Coastruction Joints" I

1.2 IM-13966, "Bilti Kvik-Bolt Testing Frogram".

1.3 TUF-4593, (May 22, 1978) 1.4 B4R Quality Assurance Procedure CF-QAF-16.1 " Control of Nonconforming Items".

l I

l IO ER0 net & ROOT, IM:.

IMSUUCTION EFTE"?tVE CPSE3 NUMOER REVISION QATE PAGF JOS 35-1195 CEI-20 9

12/16/83 2 of 12 8

1.5 TUSI Procedure No. CPF-EF-1, " Procedure for Preparation of Design Changes".

1.6 35-1195-IZI-13, B&R Instruction " Calibration of Micrometer Torque f

Wrenches".

1.7 CF-QF-11.2, TUCCO Frocedure, "Surveillsace and Inspection of Concrete Anchor Bolt Installations".

1.8 QI-QF-11.2-1. TUCCD instruction, " Concrete Anchor Bolt Installation".

1.9 QI-QF-11.2-3. TUCCO Instruction " Torquing of Concrete Anchor Bolts".

1.10 QI-QF-11.2-4, TUCCO Instruction, " Inspection of '*Rilti" Super Kwik Bolta".

2.0 CENERAL 2.1 FURPOSE 2.1.1 The purpose of this instruction is to describe the methods "to be I

followed in the field installation of Ililti drilled-in expansion anchors.

2.2 SCOPE a

2.2.1,

This instruction covers the location, repair and preparation of ex-pension bolt holes, installation of the expansion bolts, and the per-manent marking of bolts for identification both prior to and af ter I

their installation. The provisions of this instruction apply to both Hilti Kwik-Bolts and Hilti Super Kvik-Bolts that are used for installation of safety related equipment, and for the installation of non-safety related equipment located in safety related structures.

Deviations from this instruction are permitted provided they are properly approved by the Engineer. Post nut cape may not be substi-tuted for hex head nuts without prior Engineering approval.

I 2.3 RESPONSIBILITT 2.3.1 Establishment of control points and lines for use in layout of I

bolt locations shall be the responsibility of the B&R Field Engi-nearing Superintendent. Determination and marking of bolt hole location shall be perforned by the craf t which prepares the holes and installs the bolts; and the superintendent of that craf t shall be responsible for this layout work and for preparation of holes and bolt installation.

I b-

l t

o

(.-

i k

IR0ndt & ROOT. Inc.

INSTtucTION IFFICTIVE CPSI3 MUMIER REVISION QATE

  1. 4G,,s JOS 35-1195 cEI-20 9

12/16/83 3 of 12 2 4 DEFINITIONg 2.4.1

" Drilled-in Expansion Bolts" are bolts having expansion wedges so arranged that, when placed in a drilled hole and the nut tightened, the wedges are expanded and the bolt is securely anchored, all as annufactured by 511t1 Fastening Systems, Inc.

(

2.4.2 "Bilti" is Eilti Fastening Systems, Inc., supplier of the expansinn bolts.

(

2.4.3

" Bolt Length" is the total overall length of the bolt. This is the length dimension shown in the Bill of Material on the appro-priate drawings.

,a 2.4.4

" Setting" a bolt means positioning the bolt and tigntening the nut or poet nut to the extent required to complete the expansion of the wedges.

2.4.5 "Embedmont Length" is the length of bolt extending below the sur-(

face of the 4000 pai (28-day strength) structural concrete prior to setting (tightening). lihere mt shown on the pipe / instrument support design drawings, the miniaun embedment length shalt as as 2oliows:

30LT DIAMETER MINIMUM IMBEDMENT Kwik-Bolts Super Kwik-Bolts 1/4 1 1/8 3/8 1 5/8 1/2 21/4 3 1/4 5/4 2 3/4 3/4 3 1/4 1

4 1/2 6 1/2 l

1 1/4 5 1/2 8 1/8 Dimensions are in inches, they are according to recommendations by Rilti and correspond to the minimums shown in Abbot A. Banks, Inc. Test Report No. 87831 on Ewik-loits and Test Import No. 4786 on Super Kwik-Bolts, as published in Eilti " Architects and Ingi-(,

neers Anchor and Fastener Design Manual.

I e

)

g.

f ERCWN & ROOT, IK.

IM5TRUCTION EFFECgIVE l

CPSE3 NUMBER REVISION OA.:

PA G,c

',408 35-1195 CEI-20 9

12/16/83 4 of 12 i

The above minimum embedment lengths are into structural concrete.

On floors where 2-inch thick concrete topping (and thicker on I

roof slabe built up to slope to drain) has been placed separately, bolts shall be of sufficient length to provide embedment length or overall length at least equal to the thickness of the topping in addition to the length shown on the drawings. For floor mounted I

pipe supports only, the engineer shall evaluate and approve the supporr:

for sufficient embednent length on a case-by-case basis. The areas l

where this topping occurs are shown on the following drawings:

I Drawing No.

' Sheet No.

Building FSC-00421 1

Fuel l

I*

FSC-00421 2

Fuel FSC-00422 1

Raaetor #1 l

FSC-00422 2

Reactor #1 I

I FSC-00422 3

Rasctor #1 j

FSC-00422 4

Reactor #1 i

FSC-00422 5

Reactor #1 I

')

FSC-00423 1

Auxiliary

[

FSC-00423 2

Auxiliary FSC-00423 3

Auxiliary I

FSC-00423 4

Auxiliary I

FSC-00423 5

Auxiliary FSC-00423 6

Auxiliary TSC-00423 7

Auxiliary FSC-00423 8

. Auxiliary i

FSC-00423 9

Auxiliary TSC-00424 1

Safeguard #1 TSC-00424 2

Safeguard #1 i

FSC-00424 3

Safeguard il FSC-00424 4

Safeguard #1 FSC-00424 5

Safeguard #1 FSC-40424 6

Safeguard i1 FSC-00426 1

Service Water Intake

'FSC-00425 1

Safeguard i2 FSC-00425 2

Safeguard #2 FSC-00425 3

Safeguard #2 3.0 PROCEDURE 3.1 INSTALLATION 3.1.1 I4eatinst Bolts 3.1.1.1 As required by authori:ed engineering documents, bolt locations shall te determined by the installing craf tsnen using the control points and lines established by the Field Engineering Department; and, as I

l

)

l MC W & ROOT, IJc.

IM57RUCTION U HCTIVE CPSE3 NUMsG REVISION CATT

PAGs, f

JOS 35-1195 CEI-20 9

12/16/83 5 of 12 an aid in locations where reinforcing steel integrity is considered to be critical, utilization of reinforcing steel placement drawings and suitable reinforcement detection equipment may be used. The ministas spacing and/or clearance for expansion bolts shall be pro-vided as indicated in Attachments 1, 2 and 3 unless specifically approved otherwise by the Engineer using appropriate design documents.

3.1.2 Drilled Holes-3.1.2.1 Erpansion bolt holes shall not be drilled into structural reinforcing steel unless approved by the design engineer or his representative.

Roles for the expansion bolts shall be drilled into concrete by the s

use of suitable power drills using "hilti" carbide mascary bits of the same nominal size 'as the bolt and which are designed and recom-

~

sended by the Hilti corp. specifically for this purpose, or an ap-p>;oved equal. The holes shall be drilled to depths at lesst one-j half ( ) inch greater than the embedaant length of the bolt. This is in order that any accessible / usable abandoned bolt can be cut off and driven deeper into the hole and top covered with grout or I

other suitable filler to close the hole. Abandoned bolts that are not usable or accessible may be left in place without further re-work or approval.

3.1.2.2 Holes shall normally be drilled as near the perpendicular to the ennerate surface as feasible. In no case shall the long axis of installed bolts be more than 6* from this perpendicular direction.

Excess dust should be cleaned from the hole af ter drilling.

3.1.2.3 Where cutting of structural ref aforcing steel is permitted by the Engineer Drillco water cooled carbide / diamond bits or equal shall be used. Once the structural reinforcing steel is wt, the re-I mainder of the hole shall be drilled with a "hilti" carbide masonry bit per 3.1.2.1.

soth bits shall be of the same nominal diameter as the bolt to be installed.

/

3.1.2.4 in limited access areas it may be difficult to drill holes for azpansion bolts using equipment as required by 3.1.2.1.

yor this situation, a fle'xible drive drill with drill press / vacuum base and Drilleo water cooled carbide / diamond bit or approved equal may be used. Caution shall be used when drilling to avoid the cutting of structural reinforcing steel. In no case shall structural rain-forcing steel be cut without prior approval of the Engineer.

3.1.3 Markint Bolts

(

3.1.3.1 The threaded end of bolts shall bear persenent markings which 5

indicate the bolt length.

r m

M

[

f BROWN & ROOT, Inc.

IM57RUCTION t.hjpE 3

C75E3 ftJM8ER RE/ISION OA r.

8 A G,,e 12/16/83 6 of 12 408 35-1195 CEI-20 9

3.1.3.2 These markings shall be made by the manufacturer by die-stanping a letter or a number on the top and of the bolt. This stamping shall

(

indicate the bolt length in accordance with the " Length Identifica-tion System" (Attachment 4).

Bolts any also be marked on-site by the same system if verified and documented by B&R QC. For Post

(

Nut series Rilti Bolts, the letter or number designation shall

(

correspond to the overall length of the assembly with the Post Nut Cap completely installed (threads bottomed out).

3.1.3.3 Hilti Super Kwik Bolts shall be additionally marked with a " star"

(

on the end which will remain exposed upon installation. This marking will be performed by the craft in a manner which does not

(-

obliterate the length marking. The stamp shall be controlled by t.

the cognizant QC Inspector.

3.1.4 settina Bolts 3.1.4.1 In'no case shall bolts be set in concrete having strength less than the 28-day old design strength.

Inserting bolts may be accomplished either by use of a mandrel or double outs. In using double nuts, they shall-be placed on the bolt so as to protect

)

the bolt and and threads. The bolt shall be driven into the hole the embedaant length by blows on the mandral or nut. Projection of the bolt should be such that, af ter final tightening, the.end of. the bolt is not lower than flush with the top of the nut.

Its projection above the top of the nut is not limited although its change in projection during tightening shall be within the limit specified below. The mandrel, if used, is then replaced by a nut, or the top double nut is removed and the bolt is " set".

The setting vill be accomplished by tightening the nut against the fix-ture being installed. At that time, the nut will be drawn down and the bolt pulled to set the wedges by the use of a torque wrench, attaining at least the respective final values shown in the following table unless otherwise shown on the drawings. During tightening the nut, the change in bolt projection shall not exceed one nut height unless othenvise approved by the engineer. Where 5/8" dia-meter bolts are used in erecting Uni-Strut members for instrument or conduit supports in such a way that the bearing surface under the nut, used with a flat washer, bears against the open side of the Uni-Strut, the nut shall be tightened to 80-foot-pounds torque.

I

- tm

I

~

1 3RCWN 1 ROOT, INC.

IM5TRUCTION EFPwIVE I

CPSE3 NUMBER REVISION CATT PAG,e J08 35-1195 ctI-20 9

12/16/83 7 of 12 I

BOLT SIZE TORQUE (Ft.-Lbs)

(Bilti Kwik or Super Kwik, all embedaant depths) 1/4 8

3/8 17 I

1/2 70 5/8 120 3/4 15 0 I

1 230 1 1/4 400 These values were determined by field testa conducted by Hilti I

at the TPSES site which yielded a minimum static tensil load capacity equal to or greater than 115% of the tensile working loads given in Tables 1 and 2 of Appendix 2 of Specification 2323-55-30.

I ment. (Ref. CPFA-7240 or R&R IM-13966).

The complete report on those tests is filed in the B&R QC Depart-I Bolts which cannot be torqued to the above minimum values shall be cut off, driven deeper into the hole, and patched per Reference 1.1 or shall be removed and replaced in accordance with 3.1.4.2 below.

Torque wrenches used in this operation shall be calibrated and I

periodically recalibrated in accordance with Engineering Instruct $on 35-1195-IEI-13. " Calibration.of Micrometer Torque Wrenches". Kai-erence 1.6.

j 3.1.4.1.1 For. post nut series Hilti bolts, setting the bolts shall be done in accordance with Section 3.1.4 with the following exceptions applying to Section 3.1.4.1.

Inserting bolts any be accomplished by the use of a post nut, placed on the bolt so as to protect the bolt and and threads.

The bolt shall be driven into the hole the embedmont length I

by blows on the post nut.

Projection of the bolt should be j

such that, af ter final tightening, the and of the bolt has a minimm thread engagement of 3/16" for 1/4" dia. and 5/16" for i E 3/8" di= batta. The Projectica should also be limited such g

that, af ter final tighta ing, the threads on the post nut have not bottomed out on the bolt. The post aut used to insert the bolt should then be removed and the bolt is " set".

The setting I-will be accomplished by tightening a new post nut against the fixture being installed. At that time, the nut will be drawn down and the bolt pulled to eat the wedges by the use of a torque wrench and 3/8" drive screwdriver adapter attaining i

1 g

l g.

1 E,

~

ERCWN & RCOT, INC.

INSTRUCTION E T-WE f

C75E3 NUMBER RO/ISION CA e,c

,4, G,e

I 9

12/16/83 8 of 12 JOB 35-1195 CEI-20 at least the respective final values shown in the above table unless otherwise shown on the drawings. During tightening the I

post nut, the change in bolt projection shall not exceed k" for a k" dia. and 3/8" for 3/8" dia. bolts, unless otherwise approved by the engineer.

'I 3.1.4.2 Replacement of expansion bolts that slip, loosen, pull out or fail to achieve the specified torque any be accomplished by one of the following method.:

3.1.4.2.1 The bolt shall be removed and replacad with a bolt that has an embed-

=

ment depth increased by at least 4h bolt diameters for Hilt 1 Kvik-Bolts and 6h bolt disseters for Hilti Super Kwik-Bolts unless other-I*

vise directed by the Eng1,neer. QC shall be notified prior to ecm-mencing work.

I 3.1.4.2.2 The re-installation of an expansion bolt in an empty but " pre-used" hole is acceptable provided the following requirements are met:

,i h]

a.

The existing hole has not experienced structural damage as may 3

be exhibited if the previous bolt had been displaced,through tension or shear causing severe concrete spalling. Severe concrete spalling are depths that exceed the dimensions ' pro-vided in 3.1.5.1 below.

b.

New " Replacement" expansion anchors are at least one diameter size larger.

c.

New embedment depth is equal to or greater than the previous bolt but in no case less than the minimum embednent required per 2.4.5 above based on the " replacement" bolt size.

d.

Bolts that cannot be. replaced per the above may be replaced by a bolt meeting the requirements of 3.1.4.2.1 or may be I

cut off, driven into the hole and patched per Reference 1.1.

e.

QC shall be notified prior to commencing work and af ter the I

bolt has been removed so that QC may inspect the " pre-used" hole in accordance with the applicable QC procedures.

f.

QC shall be notified prior to commencing work.

I I

i I

'K E

e

L r

/

Itclat & R007 UC.

DISTRUCTION EFFICTIVE CPSE3 MuretR REVISION QATI P4G,s s

12/16/83 9 of 12 JOS 35-1195 cEI-20 9

r L

3.1.4.2.3 The re-installation of an espansion bolt in an empty but " pre-f used" hole is acceptable provided the following requirements l

are met.

5 a.

The bolt being replaced has been removed from the concrete

/

using a Diamond core bit of the same nominal outside diameter-

[

as the replacement expansion bolt. The replacement bolt shall be one diameter size larger than the bolt being removed.

b.

The existing hele af ter bolt removal should not show evidence of structursi change as in the form of severe concrete spalling.

Severe concrete spelling are depths that exceed the dimensions provided in 3.1.5.1 below.

c.-

New aabedment depth is equal to or greater than the previous bolt but in no case less than the miniana embedment required per 2.4.5 above based on the " replacement" bolt size.

d.

Bolts that cannot be replaced per this method any be replaced by a bolt meeting the requirements of 3.1.4. 2.1, 3.1.4. 2.2 or

{

may be cut off, drives into the hole and patched per Reference 1.1.

e.

QC shall be notified prior to commencing work, and after the bolt has been removed so thet QC may inspect the " pre-used" hole in ac.cordance with the applicable QC procedures.

3.1.5 Itaosir of Broken Concrete and Abandoned Roles 3.1.5.1 Structural concrete that is broksa or sys11ed as a result of bolt installation but is structurally sound shall be cleaned up and any be cosmetically repaired either in accordance with Construction Procedure CCP-12, or by the see of "IrDTEC" #113 as annufactured by and according to the reco m odations of Southern Imperial Coating.

Inc. Spalling of structural concrete to depths greater than those listed below shall be cause for rejection of the hole and redrilling will be necessary.

[

Max. Acceptable k

Role Size Spell Death 5/3" and under 1/2" 3/4" to 1 1/4" (incl.)

3/4" Spalling of the 2" topping ta areas described in Section 2.4.5

(

shall be cleaned up and repaired in accordance with Construction Procedure CCP-12 using materisi described in Section 4.1.2.7 of CCF-12. Maxima spall depth is not 'to exceed depth of topping.

o at

.Om zm-iW C75E3 NUMBER REVI!!b.

DATT PA G.e JOS 35-1195 CEI-20 9

12/16/83 to of 12 3.1.5.2 Abandoned holes shall be filled and patched prior to coating the il concrete. This repair shall be in accordance with provisions of lW 34E Construction Procedure 35-1195-CCF-12 for filling " Tie Roles" l

by the use of patching mortar prepared as described in paragraph ig 4.1.1.3 of that procedure. Bowever, abandoned OVEIREAD holes,

'g orginally drilled for Bilti expansion bolts, which vill be com-pistely covered by the base plates or angles of attached fixtures and which are farther than four bolt diameters (center-to-center)

!lg from an active Rilti bolt, may be filled with "Silpruf" water-l3 proofing sealant or "GE ~1300", both as annufactured by General Electric, Inc. Boles located at a distance of four bolt diameters and closer, measured center-to-center, from Rilti belts shall be B

filled and patched according to Procedure 35-1195-CCP-12 described above prior to torquing.

3.1.5.3 Unused Richmond Screv Anchors which have been ' plugged by Richmond I

screw-in plugs may be used for parassent anchorage caly af ter specific approval by the Engineer.

,3.1.6 Modification 3.1.6.1 When it is necessary, as the result of reinforcing steel interfer-ence or on-site unavailability of correct lenght bolts or for other I

reason, Bilti bolts may be modified, with proper QC witnessing, on-site shortening, rathreading, and stamping the new length designation.

This shall be done only on a case by case basis upon approval of the I

design engineer responsible for the fixture or ites involved and upon coupletion of appropriate permanent plant documentation (i.e.,

DCA, CMC, FSE, Operational Traveler, Design Drawing, etc.) by the design engineer. Final bolt length shall be sufficient to satisfy -

the design requirement.

3.1.6.2 Substitution of a 11111 bolt of the next larger size is acceptable, provided all spacig and embedmont requirements are met or exceeded I

, for size R11t1 bolt substituted.

3.1.7 Rawork of Bolts in 2-inch concrete Topoint Areas 3.1.7.1 For areas in which the requirements of Section 2.4.5 cannot be met, the following action shall be taken I

3.1.7.1.1 Expansion bolts which af ter setting have less than below indicated embedment length into the structural concrete shall be reworked by one of the methods provided in section 3.1.4.2 or as followe t Bolt ?vve Embedeent Af ter Setting Kwik-Bolts 3h bolt diameters Super K.rik-Bolts 5 bolt diameters Ane I

. /'

I BRCW & ROCTT, DC.

DtSTRUCTION at e s--

VE a

CPSE3 EMID REVISION CATT pa g,,e 12/16/83 11 of 12 JOS 35-1135 czt.20 9

a.

Existing location 1.

Bolt removal - The removal of in-place expansion bolts shall be completed with care so as not to danae the con-crate, thereby impairing its integrity. A hollow.or' I*

hydraulic ran placed directly over an appropriately sized baseplate which is centered on the bolt any be used to l

apply direct tension to pull the bolt through the expan-sion wedges. The baseplate should be a h inch thick square plate of a minimum of 16 expansion bolt diameters in width, bearing directly against the concrete surface.

2.

Osca the bolt is removed, ese a high speed drill and bit to drill through the wedges remaining in the side of the hole. Issove any loose wedges in the hole.

j 3.

Using appropriate equipment, re-drill existing expansion 3

bolt hole so that the sev embedment depth is a minimum of 4h bolt diameters for Riiti Kwik-Bolts greater than the

(

. previous existing embedment depth or to the specified embedment depth, whichever is greater unless otherwise directed by the Engineer by appropriate design documents.

I 4.

Rainstall the appropriate sized expansion anchor to meet the required embedmont length.

b.

Salocation - Abandon existing expension anchor bolts and re-locate support structure. Abandoned bolts should be cut off, driven deeper into the hole, and patched per Reference 1.1.

1.1.7.1.2 Expansion bolts which have less than the specified designed embe'l-ment length into structural concrete but greater than the values indicated above in 3.1.7.1.1 shall be evaluated by the responsible i

design engineer. If found to be acceptable "as-is", appropriate design change documents shall be issued. If found to be unaccep-table, the expansion bolt shall be reworked in accordance with 3.1.7.1.1 a or b.

I 3.2 INSPECTION 3.2.1 Inspection of Rilti bolt installation shall be performed in accor-Ig dance with References 1.6, 1.7, 1.8.1.9, and 1.10 and other appli-g cable site QA/QC procedures and instructions.

j q

=

3

.b.e 80*88*

O*

PROCEDURE EFFECT!YE BROWN & ROOT, INC.

MJMBER REVISION DATE PAGE

~

CPSES k

J08 35-1195 CEI-20 9

12/16/83 12 of 12 i

3.2.2 Removal of as inspected tilti bolt shall be documented oc an IRN in accordance with CP-CFM 6.10.

Removal and replacement of non-Q E11ti belts ta'Catagory I structures shall be documented on an IRN and submitted to QC for subesguant processing.

I Note:

An IRN is not required if a non-Q Eilti is only going to be removed and not replaced.

9 e

um e..

1 k

l i

f G

I I

- r

L m

.m.

.__,._.;..,____._._m_-,

[

)

BROW 4 ROOT. IIC.

Ins 7RUCTION EFFECT!YE t.

CPSES MER R M 510N QATE M8E CEI-20 9

12/16/83 1 of 1 ATTAC

  • ENT 1
  • MINDEM SPACINS BETWEEN HILTI EXPAN5!0N BOLT 5 Milti salt CENTER TO CENTER SPACINS 70:

Size 1/4"H11t13/8"H11ti 1/2"Hilti 5/8"Hilti 3/4"H11ti 1"Hilti 1 1/4"H11ti

/

1/4 2 1/2 3 1/8 3 3/4 4 3/8 5

6 1/4 7 1/2 5/14 2 13/16 3 7/16 4 1/18 4 11/18 5 5/16 6 9/16 7 13/16 r

3/8 3 1/8 3 3/4 4 3/8 5

5 5/8 6 7/8 8 1/8 1/2 3 3/4 4 3/8 5

5 5/8 8 1/4 7 1/2 8 3/4 5/8 4 3/8 5

5 5/8 6 1/4 6 7/8 8 1/8 9 3/8

(

3/4 5

5 5/8 6 1/4 6 7/8 71/2 8 3/4 10

~

7/8 5 5/8 4 1/4 6 7/8 7 1/2 8*1/8 9 3/8 10 5/8 1

6 1/4 6 7/8 7 1/2 8 1/8 8 3/4 10 11 1/4 1 1/4 7 1/2 8 1/8 8 3/4

.9 3/8 10 11 1/4 12 1/2 Gimensions in inches.

  • The minimum spacing outlined in the above chart applies to Hilti bolts detailed on separate adjacent fixtures. Violation of mini-mun spacing by the installation of two separate adjacent fixtures will be approved only by issuance of an Engineering Evaluation of Separation Violation Form by the CPPE design groups (Ref. CP-EP-4.3).

Hilti bolts detailed on an individual fixture drawing may have less than the minimum spacing tabulated above. Such fixtures have been derated by engineering justification and are the responsibility of the organization issuing the respective fixture drawing. Install-ation in this case shall proceed in accordance with the fixture drawing.

L-l O

=. - - - -...

.m.

u

~

_ _~C.~.- *i ~- ~~..

T

m..~ _,.

1-I

~

3 ROW & AM, INC.

INSTRUCTION EFFECTIVE I-CPSES

  • peer REY!510N CATE PAGE JOS 35-1195 CE!-20 9

12/16/83 1 of 1 ATTACINENT 2 l

MININJM 80LT CLEARANCES *

(INCHES)

I MINIMLM OISTANCE TO h

Ricfmono Abandoned Hilt 1 Bolts or 3

Hilti Belt Size screw Anchers' Concreta Edge

  • Holes and Embedded Anchor 1-inch 14-inch Bolts that are cut Off**

i 1/4 75/8 12 1/4 1 1/4 1/2 m

3/8 8 1/4 12 7/8 17/8 3/4 l

1/2 8 7/8 13 1/2 2 1/2 1

5/8 9 1/2 14 1/8 3 1/8 1 1/4 3-3/4 10 1/8 14 3/4 3 3/4 11/2 1

11 3/8 16 5

2 l

1 1/4 12 5/8 17'1/4 6 1/4 2 1/2 Measured Center to Centar of bolts and bolt center to edge of concrete in l

I inches.

" Minimum spacing between holes covered by this column shall be measured center-l to-center and based on size cf hole being drilled.

(e.g., Pilot hole spacing is based on pilot bit size.)

Locations closer than the above distances shall be used only upon approval of I

the angineer.

Hilti bolts may be installed as close as practical to unused Richmond Screw Anchors which have been plugged (i.e., grouted. Richmond Scree-in plug or l

I snap-in plug, etc.).

Unused Richmond $ crew Anchors located nearer to Hilti bolts than the respec-

[

tive distances shown above may be used temporarily for construction purposes den the applied load.is:

(a) For l' Richmond Anchors, less than 8,000 pounds minus the actual load supported by the Hilti bolt; or (b) For 1h" Richmond Anchors, less than 20,000 pounds minus the actual load supported by the Hilti bolt.

I m

E_.

I BROWN & 2007. INC.

INSTRUCTION EFTECT!YE I

CP5E3

18. peer REV!$10N DATE PasE I3 II CEI-20 9

12/16/83 1 of 1 ATTACINENT 3 MINIMM CLEAAANCES 70 EMBED 0G PLATES 1, distance of 12 inches on both sides of a proposed Hilti' Solt locationWhere sabed I

as shown below, the center of the bolt any be as close as practical to edge of the plate without damage to plate.

N' -

~

ygg L

W fWM

(

m.

4 y m r.c=

. \\ '%

g

.w,yr.,.

-r").

2.

WF.sre the embedded steel plates are occupied.by attachments within siaimum distances shown above, the minism clearance to Hilti Anchors shall be as follows:

Hilt 1 Anchor Nelson stud Edge of plate Size to Hilti Anchor to Hilti Anchor 1/4 5 1/4 3 3/4 1

3/8 5 7/8 4 3/8 l

1/2 61/2 5

l 5/8 7 1/8 5 5/8 3/4 7 3/4 6 1/4 1

9 7 V2 1 1/4 10 1/4 8 3/4.

Dimensions are in inches.

Distance measured with reference to center of bolts and studs..

Where location of the nearest Nelson Stud can be determined from the "S* stamps on the embedded steel plate, the minim a center-to-center clearance to the Hilti Anchor as shown above shall 3

govern. Where location of the nearest Nelsen Stud cannot be so i 3 detarsined, the minimum clearance to Edge of Plate" as showi above shall govern.

I I

_.-s I

E

~

. "L...

. a * -

1=_.~.

. -. -.., ~.:

.~-~~_-..

r l (

3RDW 4 ROOT. IIC.

INSTRUCTION EFFECTIVE CPSEs NLsetR REVIst0N DATE PAGE CEI-20 9

12/16/83 1 of 2 ATTAC)t4ENT 4 I

l LDETHIDENTIIICATIONSYSTEM Stamp On LarHith of AneMr (Tnches)

Anchor From up to (not including)

A l ut 2

E 8

2 2 1/2 l

C 2 V2 3

D 3

3 1/2 E

31/2 4

l F

4 41/2 l[

G 4 U2 5

H 5

5 1/2 I

51/2

'6 l

J 6

6 1/2 K

6 V2 7

L 7

7 1/2 M

7 V2 8

~

N 8

8 1/2 0

8 V2 9

I P

9 91/2 9 1/2 10 Q

A 10 11 I

3 11 12 T

,2 13 U

,3 14 V

14 15 5

W 15 16 X

16 17 Y

17 18 Z

18 19 l

iE, I

l

_ _ _ ~.. -... _ C ' ~ ~ ~.,~~~L.._

  • I* '

I

(

3RWM l Nupe REVISION TE PAGE JOB 35-1195 CEI-20 9

12/16/83 2 of 2 ATTACMENT 4 (cont'd)

E LENETH IDENTIFICATION SY3 TEM Stamp On Length of Anchor (Inches)

Anchor From Jp to (Not including)

AA 19 20 IS 20 21 I

,D U

M M

D EE 23 24 I

FF 24 25 GE 25 26

. Ni 26 27 II 27 28 I(

JJ' 28 29 KK 29 30,

LL 30 31 31 32 I

M 32 M

. 00 33 34 PP 34 35 I

QQ 35 36 RR 36 37 SS 37 38 TT 38 39 l

UU 39 40 VV 40 41 i

ETE:

1.

Stamped letters shall be on top (threaded) and of bolt.

l 2.

Bolts of 19-inch length and greater may be stamped with number corresponding to the bolt length.in inches in the same manner instead of the stamped letters as listed above.

It.

I

=

E

-- =-

F FL F

H h

SS-30

{

APPENDIX.2 E

e u

CESIGN CRITERIA FOR H:LTI KWIK-AND SUPER KWIK-3CLTS C

C FI

I I

I Gibbs & Hill, Inc.

Specification No. 2323-55-30 Appendix 2 Page 1 of 9 I

APPENDIX 2 DESIGN CRITERIA FOR HILTI KWIK-AND SUPER KWIK-BOLTS

1.0 REFERENCES

1.1

" Architects and Engineers Anchor p.nd Fastener Design I

Manual" by Hilti Fastening Systems, 3.6/Hi-1, No. E-427A 10/78.

1.2 TUSI correspondence CPPA-7419 - Reduced Design I

Allowables for 1"

diameter Hilti Kwik-Bolts,

dated, 11-18-80.

~

2.0 MINIMUM SEPARATION REQUIREF*2NTS 2.1 To attain the design capacity of a Hilti Kwik or Super Kwik bolt for a specified embedment the mi.simum spacings I

provided by Appendix 1 of this Specification must be maintained.

I 2.2 For installations not conforming to the provisions of Section 2.1 above, the capacity of both anchors shall be reduced on a straight-line basis to 50 percent at half

.he minimum distance between embedments given in I

Appendix 1 of this Specification.

In no case shall embedments be spaced closer than half this minimum distance.

Methods for evaluation of this reduced capacity are given at the end of this Appendix and are controlled by concrete stresses, i

l l

3.0 DESIGN ALLOWABLE LOADS i I 3.1 Design allowable tensile and shear loads are provided in Tables 1 and 2.

These design allowables are based on the average ultimate tensile and shear loads published in Reference 1.1 and 1.2 of this Appendix.

Factor of safety of less than 4 is not acceptable.

I I

lI

L

~

F Gibbs & Hill, Inc.

Specification No. 2323-55-30 F

Appendix 2 Page 2 of 9 3.2 Prior to the utilization of the allowable tensile loads in Tables 1 and 2 of this Appendix (except for the L

1-inch diameter Kwik-bolts) the manufacturer shall certify the valicity cf the ultimate capacities of the Kwik and Super Kwik bolts as published in reference 1,1

~

of this Appendix.

F i

l lI l

I lI 1

I l

I t

I I

I

.g l

Gibbs & Hill, Inc.

Specification No. 2323-SS-30 Appendix 2 Page 3 of 9 4.0 COMBINED LOADING When the Hilti expansion anchor is subjected to a l

combination of tension and shear loading the following interaction requirement shall be met:

T S

s1 74r g

T Actual applied tenzion load T =

T1 =

Allowable design tenision load I

Actual applied shear load S

=

51 Allowable design ' shear load

=

5.0 REQUIRED EMBEDF. INT For the required minimum anchor embedments see Appendix 1 of this Specificacion.

I I

I I

I O

I I

I

L L

r L

Oibbs & Hill, Inc.

E Specification No. 2323-SS-30 L

Appendix 2 Page 4 of 9 E

L TABLE 1 EL KWIK-BOLT 2ESION ALLOWABLE TENSILE & EHEAR LOADS * (1bs)

EE FACTOR OF SAFETY FS=4.0 FS=5.0 DIAMETER EMBEDMENT TENSION SHEAR TENSION SHEAR r-L 1/4 1 1/8" 364 653 291 522 653 445 522 1 1/2" 556

[

1 3/4" 675 653 540 522 2"

781 653 625 522 2 1/4" 827 653 662 522 2 1/2" 837 653 670 522 h

3/S" 1 5/8" 588 1276 471 1021 2"

756 1276 605 1021 2 1/2" 975 1276 780 1021 F

3" 1075 1354 860 1083 L

3 1/2" 1150 1354 920 1083 4"

1187 1354 950 1083 4 1/2" 1200 1354 960 1083 1/2" 2 1/4" 1377 2079 1102 1663 2 3/4" 1800 2079 1440 1663 I

3 1/2" 2362 2079 1890 1663 4 1/2" 2806 2558 2245 2046 5 1/2" 3012 2558 2410 2046 6"

3075 2558 2460 2046 I

5/8" 2 3/4" 1650 2890 1320 2312 3 1/2" 2275 2890 1820 2312 4 1/2" 3000 2890 2400 2312 I

5 1/2" 3575 3839 2860 3087 6 1/2" 4000 3859 3200 3087 7 1/2" 4250 3859 3400 3087 3/4" 3 1/4" 2537 42S3 2030 3426 I

4" 3350 4283 2680 3426 5"

4125 4283 3300 3426 6"

4500 4616 3600 3693 7"

5250 4616 4200 3693 I

8" 5750 4616 4600

' 3693 9"

5975 4616 4700 3693 1"**

4 1/2

4000 6719 3200 5375 1

5" 4725 6719 3780 5375 5"

5860 5719 46EB 5375 7"

5860 6719 4688 3375 3"

SS60 6622 4680 669E I

1 1

I 1

Gibbs & Hill, Inc.

I Specification No. 2323-SS-30 Appendix 2 Page 5 of 9 TABLE 1 (Cont'd)

FACTOR OF SAFETY FS=4.0 FS=5.0 DIAMETER IM9r.DMENT TENSION SHEAR TENSION SHEAR 9"

5860 8622 4688 6898 10" 5860 8622 4688 6898 1 1/4" 5 1/2" 5750 8920 4600 7136

,I 6 1/2" 6775 8920 5420 7136 7 1/2" 7775 8920 6220 7136 8 1/2" 8650 8920 6920 7136 9 1/2" 9450 8920 7560 7135 I

10 1/2" 10225 8920 8180 7136 I

  • Design allowables'are based on average ultimate tensile and shear loads published in "HILTI - Architects and Engineers Anchor and Fastener Design Manual" 2.6/Hi-1, Reference 1.1 and 1.2 of this Appendix.

I Design allowables are based on 4000 psi concrete (fc'=4000 psi).

    • Values per Reference 1.2 of this Appendix.

I I-I E

I

L F

u F

L Oibbs & Hill, Inc.

Specification No. 2323-55-30

~

l Appendix 2 Page 6 of 9 IL TABLE 2 SUPER KWIK-BOLT DESION ALLOWABLE TENSILE AND SEEAR LOADS * (lbs)

FACTOR OF SAFETY FS=4.0 FS=5.0 DIAMETER EMBEDMENT TENSION SHEAR TENSION SHEAR 1/2" 3 1/4" 24,96 2860 1997 2288 r

4 1/4" 3695 2860 2956 2298 L

5 1/4" 3641 2860 2913 2288 6 1/4" 3786 2860 3029 2288 l

1" 6 1/2" 8741 6884 6993 5507

{.

8 1/2" 12452 6884 9962 5507 10 1/2" 12439 6884 9951 5507 1 1/4" 8 1/8" 10675 10369 8540 8295 10 5/8" 13420 10369 10736 S295 13 1/8" 16230 10369 12984 5295

{

Design allowables are based on average ultimate tensile and shear loads published in "HILTI -

Architects and Engineers Anchor and Fastener Des gn Manual" 3.6/Hi-1.

Reference 1.1 of this Appendix.

I Design allowables are based on 4000 psi concrete (fe'=4 COO psi).

ll I

L f

L e

L-.

Gibbs & Hill, Inc.

Specification No. 2323-55-30 f-Appendix 2 L

Page 7 of 9 IL EVALUATION METHOD I:

r Calculation of the reduced allowable capacities for

?ROBLEM:

Hilti expansion anchors spaced at less than minimum 7

separation requirement indicated in Appendix 1 of t

this Specification.

EVALUATION:

STE? 1:

Determine actual loading conditions on the Hilti expansion anchors,in question.

r L

STE? 2:

Calculate the separation ratio. (S.R.)

Separation ratio is defined as the ratio of the

[

separation provided to,the minimum separation required by Appendix 1 of this Specification.

This ratio must be equal to or greater than.500.

(-

SEPARATION FROVIDED (1) 5.R. = MINIMUM SEFARATION REQL* IRED and S.R.2.500 (2)

{

STE? 3:

Cnce the separation ratio is cceputed and actual l'oads are determined, the following relation shall h-be satisfied for acceptability of the anchor design.

T 4

S s1 (3)

[

S'(S.R.)

T5(S.R.)

WHERE:

T

=

Actual Tension; 5

= Actual Shear';

(

T1 = Allowable Design, Tension; S2 = Allowable Design Shear; S.R.

= separatior. ratio.

r STEP 4:

If the requirement of Formula (3) is satisfied,

(

Hilti expansion anchors for the support in question are acceptable.

(

If the relationship in Formula (3) is not satisfied, Hilti expansion anchors are not acceptable and an appropriate action shall be taken by adjustment of separation to meet the requirement

[

in Icrmula (3) l

L r

u 7L Gibbs & Hill, Inc.

Specification No. 2323-SS-30

[

Appendix 2 Page 8 of 9 m

L EVALUATION METHOD 2:

PROBLEM 1 Calculation of the reduced allowable capacities for both the Hilti expansion anchor and the Richmond screw anchor when minimum separation is not p

provided as required in Appendix 1 of this L

Specification.

EVALUATION:

STEP 1:

Determine actual loading condition on the Hilti expansion anchor and/or Richmond screw anchor in question.

STEP 2:

Calculate the separation ratio (S.R.).

{

SEFARATION PROVIDED (4)

S.R.

= MINIMUM SEPARATION REQUIRED and S.R.2.500 (5) p STEP 3:

Once the separation ratio and the actual loads are c or.puted, the following relations shall be I

satisfied

for, acceptability of the anchor and insert design:

For Hilti expansion anchor:

T S

s1 (6)

T'(S.R.)

S 1(S.R.)

For Richmond insert-

.g.-

_h T'(S.R.)

S'(S.R.)

(7)

S s1 T

q, For Richmond insert design allowable values see Appendix 3 of this Specification.

I

I I

~

I Gibbs & Hill, Inc.

Specification No. 2323-55-30 Appendix 2 Page 9 of 9 I

i STEP 4:

If the requirements of both Formula (6) and (7) are satisfied the Hilti expansion anchor and Richmond screw anchor for

.he support in question are acceptable.

If any of the relations in Formula (6) and (7) is I

not satisfied, the corresponding Hilti expansion anchor and Richmond screw anchor for the support in question are not acceptable, and an appropriate action shall be taken by adjustment of the I

separation to mee,t the requirements of Formulas (6) and (7).

I I

I I

1 I

I I

I

I

~

I l

I

~

l 1g ss-w g

APPENDIX 3 g

I esszcN ca: za:A rea scazw ANCHORS I

g 1

I I

I fl I

f I

L Gibbs & Hill, Inc.

Specification No. 2323-55-30 F

Revision 2 June 13, 1986 Appendix 3 Page 1 of 10 L

F APPENDIX 3 DESIGN CRITERIA FOR SCREW ANCHORS 1.0 CENERAL 1.1 Screw anchors are Richmond structural connection inserts L

(Types EC-2, EC-6, EC-2W or EC-6W) and are prefabricated steel anchors embedded in concrete to which structural supports are attached.'

l.2 ASTM A325N A490 or A449 bolts -(suitable washers" opcional) shall be used for the Richmond insert bolt connections.

ASME SA-193 threaded rods with ASME SA-194 double nuts may be used for the Richmond insert bolt connections'as a substitute for ASTM A325N bolts.

l 1.2.1 Thread engagement into the Richmond insert shall be at least 2 x bolt diameter + 1/8 inch 1.3 In no case shall these inserts be loaded before concrete l

attains its 26-day design strength.

2.0 APPLICABLE

REFERENCES:

I 1.

" Richmond Inserts for Concrete Constuction" Bulletin No. 6 Richmond Screw Anchor Co.,Inc.,

catalog.

2.

Manual of Steel Construction AISC 7th Edition.

3.0 DESIGN CRITERIA 3.1 Design allowable tension and shear loads (under working stress cendition) for respective center-to-center spacing of inserts and respective concrete thicknesses, are provided in the following Table 1.

3.2 Inserts and

A307, A325, A490 or A449 bolts or A36 threaded rods subjected to conbined cension and shear s

loads should sa sfy the following interaction fcrmulas.

11 l

5

L f

f

(

Gibbs & Hill, Inc.

Specification No. 2323-SS-30

[

Revision 2 June 13, 1986 Appendix 3 Page 2 of 10 L

I L

FOR INSERTS:

L F/

+ - [ Fy

~

I T S

$1 r

(

FOR BOLTS:

(Verified for specific type bolt materials.)

T8; S1 different for each grade.

2 2

I I

' 51 (T \\ + M S

[

~

F 3 WHERE:

T

~ APPLIED TENSION S

APPLIED SHEAR l

T1 DESIGN ALLOWABLE TENSION St

' DESIGN ALLOWA3LE S*-2AR

[

3.3 Minimum distances between Richmond screw anchors and Hilti belts for 100 percent perfer=ance of each are provided in Appendix 1 of this Specification.

For those situations where minimum distances cannot be met, evaluation method 2 shown in Appendix 2 of this Specification shall be used to calculate the reduced capacity of Richmond inserts.

PCI MANUAL ON DESIGN OF CONNECTIONS FOR FRECAST PRESTRESSED CONCRETE

[

[

[

~

[

L r

NOTES FOR TABLE I

(^gg[

1.- lNSER7 CAFMC/7/ES ARfBASED QV/NSERTEMBfDDEO /N 4% OPS / COMPRfSS/0N STREMGTH Cl>ACRf7f.

2.- ALL ALLOV^*81F LOADS SWOWN /N7A84fIDF TH/S APPEND /W arf N M/PS.

3.- TO DEVELO** THE FULL TfHS/OW CAPAC/TV OF/MSERT(EXCEP7 L

A7 BEAM S/ DES) THEM/N/ MUM D/ STANCE FACW1C04CRE7E EDGE TO CfMTER Or/NSERr SHALL M //?f& l'2"4 /NSERTS 6

[

A N D 7"fO 9 /"46 HSCRT5.

/

4.-To oevfLOP rNEfua SHEAR CA91C/7V OF /NSERT (f'CfP7 A7 BEAM S/ DES) THEM/N/ MUM D/STANCEFRQW CQVO?f7f EDer to CrNTrn ociNser7 SHau afirroR 124 wSfRrS

[

AND 9.S"fo9 /"9 /NSERTS.

6 5:FOR MAM S/MS 7N/S D/STANCf SHALL BE A M/M/ MUM 8"FOR

/b4/MSER/5 AND 7"fa9/'#/MSERTS.(FQ9 TENS /O/ AND SHEAR)

[

G.- CENTER 70 cfM7ER (Cfc) D/SrANCES SHOWN /N 7ABLE Z OC TN/S APPEND /XAREM/N/ MUM FOR THE ALLOWABLELOADS.

2-WNEN PART OF THE /b'9 /NSERT CLUS7fR (/MSERTCLUSTERS 6

{

WE9E 09/G/NAllY FWOV/DED FOR P/PE WH/P RESTRA/NTS)

/$ USED fo9 NANGER SUFFY>?75 THE O./7fRMOS7 ROW OF

[

/NSERTS USED FOR THESESUPPORTS SHALL BE A7 LEAS 7 20" AWAY FRO 44 TNFNEAREST/NSERTS USED RY4 ANYO7NER SUPPORTS 09 RESTRA/NTS BA$fRATE.

EXAMPLf ;

7W6SFINSER75 CAM l

e e

e e

e e'

BEUSED FOR NAhGfR PtPC JG'MPRf37RANr__

m

,$yppopy$ netry 643f PLArf f

CAPActr/ES AS G/VfH e

e e

e w:

1 i /H TA8C Z 3

~

)

=

n

),G->

[

oc wrustruar 4

~

.V

/NSERT.$ UN465$

e[1

, t APPROVfD By' ExctNErn 2L C-e e

e, e

e '6

[

N

!b g ;

  • V

~

207wxJ

[

TYPICAL INSERT CLUSTER m.-..

I NOTES FOR TABLE I(Contd.) $$$$N8) b.- 70 f/NO THECAA4C/77E5 Of'/NSER75 WHERE BR4C/hG AND CONCRETE TH/CNNESS ARENO7SHOWN /N TABLEI Of THIS h

APPEND /X USE THE/NSERT CAAMC/7Y Of 7NENEARE57 CO? RESPOND /AG t.OWER /NSER7 S*AC/NG OR TM/AWER COACRE7E l

WALL,SLA8 OR COLUMN /ND/CATED /N 7A84E I Of7N/S ApprNoix.

I I

g I

I lI I

I

~

I lI I

I I

1y

o c-

.r v

r-v r-,a

-r ALLOWABLE LOADS OF RICHMOND lNSERTS AND BOLTS TO BE USED IN INTERACTION FORMULAS FOR BEAM SIDES I: INSERT CAPACITY B BOLT CAPACITY T: TENSION S SHEAR INSERT SPACING ON 6"CM ONE WAY INSERT SPACING ON 8"C/C ONE WAY

~

AND 20"CR, OR GREATER OTHER WAY AND 20"CM OR GREATER OTHER WAY INSERT TYPE A-307 BOLTS OR A-325 0R BETTER A-307 BOLTS OR A-325 OR BETTER AND SIZE A-36 THD. RODS BOLTS USED WITH A-36 THD. RODS BOLTS USED WITH USED WITH INSERT INSERT USED WITH INSERT INSERT T.

S T

S T

S T

S I

8.9 8.9

  • 8. 9 8.9

/O.OS

/O.05

/O.0S

/O.05

/V EC2W B

/2.//

7:85 24.23

//. 78

. /2.//

7.85 24.23

//. 78

/

I

//.53

//.53

//.53

//.53

/2.85

/2.85

/2.85

/2.8S

/2"#EC6W 8

28.//

/7G7 56.2/

26.6/

28.//

/7.G7 SG.2/

26.5/

TABLE I OBE /)LLOLJABLE IAPPENDlX 3 i

( PAGE 5 OF 10 [

1 r

m c

_r ou v

- r

<- u-v,

cv, ALLOWABLE LOADS OF 1"d RICHMOND INSERTS (EC2W) AND BOLTS 10 BE USED IN INTERACTION FORMULAS FOR WALLS, SLABS

& COLUMNS I: INSERT CAPACITY a: BOLT CAPACITY T: TENSION S: SHEAR INSERT SPACING ON INSERT SPACING. ON INSERTSPAclNG ON 14t/C OR lO"C/C BOTH WAYS 12"C/C BOTH WAYS MORE80THWirS(FULLCM ')

CONCRETE g.307 BOLTS OR ' A 325 OR BETTER A 307 BOLTS OR A32 GOR BETTER A 307 BOLTS OR A3250R BETTER THICKNESS A 36 THD. RODS BOLTS USED A 36 THD. RODS BOLTS USED A 36THO. RODS BOLTS USED l

USED W/ INSERT W/ INSERT USED W/ INSERT W/lNSERT USEDW/DISERT W/ INSERT

,i T

S T

S T

S T

S T

S T

S i y'on E

6 6

6 6

885 8.85 8.85 8.85

//.S

//=C

//. S

//.S

"#M B

/2.//

785 24.23

//.78

/2.//

7.85 24.23 //.78 /2.f/

78S 24.23

//.78 L

TABLE I (Contd.)

of E duouABLE IAPPENDIX 3 1

$ PAGE 6 0F10[

~

~

~_

. a' g

)

ALLOWABLE LOADS OF l/'2"W RICHMOND INSERTS (EC6W) AND B USED IN INTERACTION FORMULAS FOR WALLS, SLABS & COLUMNS I: INSERT CAPACITY B : BOLT CAPACITY

, T: TENSION S: SHEAR INSERT SPACING ON 20"C/C BOTH WAYS._

INSERT SPACING ON 22"CM OR MORE BOTH WAYS (FULL CAPACITY)

CONCRETE A-307 BOLTS OR

' A-325 OR BETTER A-307 BOLTS OR A-325 OR BETTER THICKNESS A-36 THD. RODS BOLTS USED WITH A-36 THD. RODS BOLTS USED WITH USED WITH INSERT INS ERT USED WITH INSERT INSERT l

T S

T S

T S

T S-l I

25 25 25 26 3/.3 27 3/.3 27 i

/2"OR TH/CKER 8

28.//.

/7G7 56.2/

2 6.51

'28.//.

/267 56.2/

26.5/

I TABLE I (Contd.)

l 0 0 6 k l.-[O U /9 5 L G

,4 IAPPENDIX 31

( PAGE 70F 10[

T ALLOWABLE LOADS OF ik2"# RICHMOND INSERTS (EC6W) AND BOLTS.(IN CLUSTER) TO BE USED IN INTERACTION FORMULAS FOR WALLS, SLABS r

5

& COLUMNS IN 12" THICK CONCRETE I: INSERT CAPACITY Bt BOLT CAPACITY T: TENSION' S: SHEAR E

[

INSEF.T SPACING ON Ifc/O BOTH ' WAYS INSERT SPACING ON 18"CM BOTH WAYS k

A-307 BOLTS OR A-325 OR BETTER A-307 BOLTS OR A-325 OR BETTER INSERT PATTERN A-36 THD. RODS BOLTS USED WITH A-36 THD. RODS BOLTS USED WITH

}

USED WITH INSERT INSERT USED WITH INSERT INSERT T

S T

S T

s T

S k

I 22./

22./

22./

22./

26 25 25 2S yo

/MERS 8

28.//

/7G7 56.2/

29.-S/

28.,//

/7 G7 SG.2/

26.S/

I

/YES lY 20 lI 23 lI 20 ES El 23 ?l 23 2l 23 2/

$~

FOUR ee IMM B

28.//

/7.G7 EG. 2/

26.5/

28.//

/7 67 59.2/

26.S/

ee E

/3.24

/S 2d

/5.24

/5.24

, 2/. /G 2/. AG 2/.^6 2/. A6 S/K

l NSERS g

gg,;;

7, g7 Sg gj gg,S/

gg,jj j7gy Sg, gj gg,57 eee E

/2.57

/2.57

/2.57

/2.57

/2 83

/783

/783

/783 3

pyyg

!h

  • M e$

8 28.//

/7G7 5G.2/

2G.5/

28.//

/XG7 SG.2/

26.S/',

I'l i

'i TABLE I (COntd~.)

r*(appenoixs1 PAGE S OF IO j ggg g[Lggg,3/f j

ALLOWABLE LOADS OF 1/2"# RICHMOND INSEF,TS (EC6W) AND BOLTS (IN CLUSTER) TO BE USED IN INTERACTION FORMULAS FOR WALLS, SLABS a COLUMNS IN 16" THICK CONCRETE I: INSERT CAPACITY B: BOLT CAPACITY Ti TENSION ~

S: SHEAR INSERT SPACING.ON IOt/C BOTH WAYS INSERT SPACING ON 12"C/C BOTH WAYS A-307 BOLTS OR A-325 OR BETTER A-307 BOLTS OR A-325 OR BETTER INSERT PATTERN A 36 THD. RODS BOLTS USED WITH A-36 THD. RODS BOLTS USED WITH USED WITH INSERT INSERT USED WITH INSERT INSERT T

S T

S T

S T

S.

Two I

20.45 20.45 20.45 20.45

22. /

22./

22./

22./

INSERis g

2g.//

/7s7 Sg.27 gg.Si 2g.jj i7 g7 5g.21 9g.Si E

/6.05

/6.05

/G.OS

/G. OS.

/8.c

18. G

/8.c tg. G foup B

28.//

/767 SG. 2/

26.S/

28.//

/7. G 7 Ss.et 26.57 Six ee Z

/4.59

/4.59

/4.59

/4.59

/7.44

/244

/744

/X44

/NSEA6 B

28.//

/787 5 6.2/

26.5/

28.//

/7G7 56.2/

26.5/

se N/4/E I

/2.57

/2.57

/2.57

/2.57

/d.9

/4.9

/4.9

/4.9

/N ERM,ll B

28.//

/7 G7 SG.2/

2G.5/

28.//

/7.G7 5G.2/

26.5/

S/XTEEN *

  • l I 10.06

/O.OG

/O.OG

/O.06

/2.03

/2.03

/2.03

/2.03

/N ERN eee g

gg_,,

,7 g7 Sg_ g, gg, g, gg_,,

,7_ g7 gg g, pg 5, TABLE I (Contd.)

[APPENDlX 3 h OCE A !. LO LO4 B L E gPAGE 9 OFlO)

~'"

M lEWE

h I

ALLOWABLE LOADS OF I/2"W RICHMOND.lNSERTS (EC6W) AND BOLTS i

l-(IN CLUSTER) TO BE USED IN INTERACTION.FORfAULAS FOR WALLS, i

SLABS & COLUMNS IN 22" THICK OR GREATER CONCRETE i

I.: INSERT CAPACITY B: BOLT CAPACITY T TENSION S: SHEAR y

i

~ INSERT SPACING ON 10NC/C BOTH WAYS INSERT SPACING ON 12"C/C BOTH WAYS A-307 BOLTS OR A-325 OR BETTER A-307 BOLTS OR A-325 OR BETTER 1!

, INSERT PATTERN A-36 THD. RODS BOLTS USED WITH A-36 THD. RODS BOLTS USED WITH 4

USED WITH INSERT INSERT USED WITH INSERT INSERT 5

T S

T S

T S

T S.

r I

20.45 20.45 20.45 20.45 22./

22./

22./

22./

3_

y

/NSERT5 3

gg. // -

/7G7 SG.2/

2G.5/

28.//

/7G7 SG.2/

26.51 s

I

/G.OS

/G.05

/G.OS

/6.05

^ /8. G

/8. G

/8. S

/8. 6 j

mp

/NSERTS ee 8

28.//

/7.G7 SG.2/

26.5/

28.//

/7.G7 56.2/

26.5/

5 ee Z

/4.59

/4.59

/4.59

/4.59

/744

/7.44

/7.44

/*T.44 gyy I" ERIS ee 8

28.//

/7 G7 SG.2/

26.S/

28.//

/7.67 59.2/

26.S/

l eee I

/3./5

/3./S

/3./S

/3./S

/C.22

/6.22

/G.22

' /G.22 g,,,

/usERys

,,e 8

28.//

/767 se.2/

26.5/

28.//

/7. G7 56.2/

26.S/ '

i gix,,,,:::: 1 a.so n.s4 a.54 a.s4 n.es is.es i4.2s is.es.

/NSEATS 8

28.//

/7.G7 SG 2/

26.5/

28.//

/7.G7 56.2/

26.S/

5 TABLE I (Contd.)

(PAGE IO OF IO;i Appenorx s A L LoLJ/SLE f

l CSE f

L I

k u

(

ALLOWABLE LOADS OF RICHMOND lNSERTS AND BOLTS TO r

BE USED IN INTERACTION FORMULAS FOR BEAM SIDES-b-

I: INSERT CAPACITY BtBOLT CAPACITY T: TENSION SiSHEAR I

g INSERT SPACING ON 6"C/C ONE WAY INSERT SPACING ON 8"C/C ONE WAY AND 20"C/C OR GREATER OTHER WAY '

AND 20"C/C OR OREATER OTHER WAY

[

INSERT TYPE A-307 BOLTS OR A-325 OR BETTER A-307 BOLTS OR A-325 OR BETTER l

AND SIZE A-36 THD. RODS BOLTS USED WITH A-36 THD. RODS BOLTS USED WITH fl USED WITH INSERT INSERT USED WITH INSERT INSERT L

T.

3 T

S T

S T

S k

I 13.3 5 is.ss (s.ss is.ss is.oS is.c3 15.co 15.08

/VEC2W g

B n.92 12.s(o 35.86 18.85 n.92 12.56, 35.8(o 18.35 I

1 I.So n.so n.30 G.30 19 26 19.2 8 19.2 8

\\9.28 f-

/b"+ mew p.

a 41.4 0 28.27 6 3.19 42A2. ~

41.(oo 28.27 83.19 42.42

[;

1

(

p I

TABLE I E'

L SSE ALLOWABLE V

V E

I IAPPENDIX 3 I h

(PAGE 5 0F 10 [

i l

rumm umrummsumsum w w t_rt_n ruu ALLOWABLE LOADS OF I"si RICHMOND INSERTS (EC2W) AND BOLTS TO BE h

j USED IN INTERACTION FORMULAS FOR WALLS, SLABS

& COLUMNS i

I: INSERT CAPACITY B: BOLT CAPACITY T: TENSION S: SHEAR 4

,5 INSERT SPACING ON INSERT SPACING. ON INSERTSPACING ON 14tM OR l

10"C/C BOTH WAYS 12"C/C BOTH WAYS MORE BOTHVWtfS(FULLCAPACm ')

CONCRETE A307 BOLTS OR A 325 OR BETTER A 307 BOLTS OR A325OR BETTER A 307 BOLTS OR A3250R BETTER I

THICKNESS A 36 THD. RODS BOLTS USED A 36 TilD. RODS BOLTS USED A 36THD. RODS BOLTS USED l

USED W/NSERT W/ INSERT USED W/ INSERT W/ INSERT.

USEDW/NSERT_ W/ INSERT l

T S

T.

8 T

S T

S T

S' T

S fo og I

9.00 9.00 9.00 9.00

\\3.2B 13 26 13.26 13.2 6 n.25 11.'2 5 n.25 n.25

    1. CNN B

n.92 12.5 6 35.86 18.85 M.92,12.56 S5.56' 18.8 5 nAt 125G S5.Sto 18.8 6.

TABLE I (Contd.)

SSE ALLOWABLE I

i

( APPENDIX 3PAGE 6

m

~

c m

r, r

r r

n ALLOWABLE LOADS OF lh2"W RICHMOND INS $RTS (EC6W) AND BOLTS TO BE I

USED IN INTERACTION FORMULAS FOR WALLS, SLABS & COLUMNS It INSERT CAPACITY B: BOLT CAPACITY

, T: TENSION S: SHEAR INSERT SPACING ON 20"C/C BOTH $AYS INSERT SPACING ON 22"C/C OR MORE BOTH WAYS (FULL CAPACITY)

CONCRETE A-307 BOLTS OR A-325 OR BETTER A-307 BOLTS OR

' A-325 OR BETTER THICKNESS A-36 THD. RODS BOLTS USED WITH A-36 THD. RODS '

BOLTS USED WITH USED WITH INSERT INSERT USED WITH INSERT INS #RT T

S.

T S

T S

T S-I 31.5 o

'37.5 0' 37.50.

37.5 0.

46.95 40.50 46.95 40.50

/2"OR TH/C/mR S 41.6 o.

26.21 83.19 42.41 41,40 28.27 86.\\9 42.42 l

i TABLE I (Contd.)

SSE ALLOWABLE IAPPENDIX 31 l

( PAGE 70F 10[

-y

,3 cm ALLOWABLE LOADS OF 1/2"81 RICHMOND-lNSERTS (EC6W) AND BOLTS.(IN CLUSTER) TO BE USED IN INTERACTION FORMULAS FOR WALLS, SLABS

& COLUMNS IN 12" THICK CONCRETE I: INSERT CAPACITY Bt BOLT ' CAPACITY T: TENSION' S: SHEAR INSERT SPACING ON 12"C/C BOTH WAYS INSERT SPACING ON 18"CA: BOTH WAYS A-307 BOLTS OR A-325 OR BETTER A-307 BOLTS OR A-325 OR BETTER INSERT PATTERS A-36 THD. RODS BOLTS USED WITH A-36 THD. RODS BOLTS USED WITH l

l USED WITH. INSERT INSERT USED WITH INSERT INSERT T

S T

S T

S 3T S

I S 3.15 33.15 33.is 3315 37.5 0 37.5 0 37.5 0 3T.5o wo

~

  1. 8#G a

41.Go 28.2'T B3.W 42.42 41.6 0 28.27 B3.19 42.42 I

25.94 25.94 25.94' 25.94 34.82 34.82 S4.82 34.82 roua

  1. SMIS B

4t. go

'18.27 8 3.19

~ 42.42 41.6 0 28.27 85.19 42.42 e *-

I 22.86 22.86 22.86 22.86 31.7 4 31.14 3134 31.74 sfx WSMS a

41 6 o 28.27 6 3.19 42.42 41.6o 28.27 63.t9 42.42 I

IS.86 18.86

\\8.86 i S.86 2635 2fa.'l5 2635 2.635 ufyg

'" # 5 B 4\\.60 26.17 63.19 42.42 41.6 0 26.1T Ss.\\9 42.42.

e TABLE I (COntd.)

farpenoix si SSE ALLOWABLE

  • IPAGE 8 0F 10 f

t M

C O

D M L

_f U7

__Ful u~

I ALLOWABLE LOADS OF I/2"W RICHMOND INSERTS (EC6W) AND BOLTS.(IN CLUSTER) TO BE USED IN INTERACTION FORMULAS FOR WALLS, SLABS l

a COLUMNS IN 16" THICK CONCRETE It INSERT CAPACITY B: BOLT CAPACITY T i TENSION' StSHEAR L

INSERT SPACING.ON lot /C BOTH WAYS INSERT SPACING ON 12"C/C BOTH WAYS A-307 BOLTS OR A-325 0R BETTER A-307 BOLTS OR A-325 0R BETTER (i

INSERT PATTERN A 36 THD. RODS BOLTS USED WITH A 36 THD. RODS BOLTS USED WITH USED WITH INSERT INSERT USED WITH INSERT IN_ SERT T

8 T

S T

S

'T 8.

I S0.06 30.68 30.66 30.G8 33.15 3 S.15 33.15 S3.15 7g IMSER7S B

41. foo.

28.27 BS.19 42.41 41.(oo 26.17 83.19 42.42 I

24.06 24.0 S 24.oS 24.0e 27.9 0 27.90 27.9 0 27.9 0 joga

/MSEN75

~

Al.(,o 2 8.27 8 3.19

'42.42 41.(oo 28.27 SS.19 42.42 B

S)x ee Z

21.s9 2\\.s9 ql.89 2l.89 2to.1to 2ta. t6 21.t t, 2to.\\to

/NSE46 B

4l. loo 28.27 8 3.19 42.42 41.(oO 28.17 63.19 42.42 afhe I

to.sto 18.eto 18.85 is.st, 22.ss 22.ss 22.ss 22.35

'"SE"'S. *.

a 4I.(oo-2s.27 8 5.19 42.42

41. (oo 28.27 83.19 42.42' s/rrera *,,,

I 15.o9 15.09 is.o9 15.o 9 18.os is.os is.es is.es

'#8##'8 * * *

  • a 41.too 28.27 6 5.19 42.42 41.too 28.27 BS.19.

42.42 TABLE I (Contd.)

fappenoix 3;

%E AL_ low /ABl_E (PAGE 9 OFloj

um um num um uma um em um em me, j um I

ALLOWABLE LOADS OF I/2"W RICHMOND INSERTS (EC6W) AND BOLTS (IN CLUSTER) TO BE USED IN INTERACTION.FORIdULAS FOR WALLS, SLABS Bi COLUMNS IN 22" THICK OR GREATER CONCRETE I.: INSERT CAPACITY B: BOLT CAPACITY T TENSION S: SHEAR

~

)

jl U

lNSERT SPACING ON 10t/C BOTH WAYS INSERT SPACING ON 12"C/C BOTH WAYS

~

1N A-307 BOLTS OR A-325 OR BETTER A-307 BOLTS OR A-325 OR BETTER N

INSERT PATTERN A-36 THD. RODS BOLTS USED WITH

'A-36 THD. RODS BOLTS USED WITH USED WITH INSERT INSERT USED WITH INSERT lt46ERT T

S T

8 T

S T

S.

.J I, 30.68 30.63 30.63 30.68 33.15 3 3.15 33.15 33.15 g

WSERTS a

4g,go -

28.27 83.l9 42.42 4140 26.27 8 5.19 42.41 I

24.0 6 24.0%

24.Ob 24.06 t'l.90 21.90 23.9 0 23.9 0 FOUR ee

/NSERTS ee g

4t,go 2s,13 ss.t9 gggg Ag,so gg,13 g3,;9 A9,41 e! r 2s.s9 2t.ss 2t.s9 21.s9 2s 1s-2s.nu 2a.ta 1s.ru g,y NSERG B

4\\.60 26.27 83.19 42.42 41.6 0 28.27 63.19 42.42 e

    • e I

19.7 3 19.7 3 19.7 3 19.33 24.33 24.33 24.33 24.SS N/uE eee B

4).40 28.27 Ss.19 42.42 4.1.s o 28.27 St.19 42.42 '

/NSER7S I

U 3I U'3I U'DI U DI 2I'S6 SI'60 2I'6D SI*DD S/ F FE//

/NSEN S ee**

6 41.4 0 28.23 8 3.19 42.42 4).GO 28.27 8 3.19 42.42 TABLE I (Contd.)

APPENDIX 3 '

[PAGElOOFIO[

(

~

SSE ALLOvdASLE

t L

M

~

SS-3D APPENDIX 4 J

u I

DESIGN CRITERIA FOR EMBEDDED PLATE STRIPS 1I 1

1 1

l lI

h Gibbs & Hill, Inc.

Specification No. 2323-S5-30 Revision 2 h-June 13, 1986 Appendix 4.

Page 1 of 22 APPENDIX 4 DESIGN CRITERIA FOR EMBEDDED PLATE STRIPS

1.0 DESCRIPTION

Embedded plate ; strips are ASTM.A36 st' eel plates, 3/4" thick and 8" or 10" wide, embedded in concrete

walls, col'mns, sides. of beams and the underside of floor or u

roof slabs and attached to the concrete by means of Nelson studs welded to the plate.

They are used to

{

supp. ort' hangers and other structural. supports which are connected to the. embedded plate by welding or by threaded Nelson studs.

The design of the threaded

[

Nelson studs and the weld at the connection to the embedded plate is the responsibility of the designer of the hanger or the structural support.

2.0 APPLICASLE REFERENCES 1.

Manual of Steel Construction AISC 7th edition Embedment Properties of Headed 2.

Design Data 10 Studs-TRW Nelson Division 2-77 3.0 CAPACITY OF EMBEDDED PLATE STRIPS FOR CONCENTRIC LOADING 3.1 Allowable loads on embedded plate strips are shown on

(

sheet A4.1 and A4.2 for loadings acting-at mid-spans between studs and sheet A4.3 and A4.4 for loadings acting at stud locations.

However, as shown on sheet A4.3, the maximum allowable tensile load at the

[.

extreme stud location on both ends ef.the embedded plate strip is reduced by 40 percent.

For loadings acting between mid-span and stud location the allowable load shall be determined by linear interpolation.

~

3.2 Loading is not permitted on the cantilever portions of

{

the embedded plate strips beyond the last pair of studs.

3.3 Allowable loads as shown en sheet A4.2 and A4.4 are valid only when loadings are placed within =3/4" of the

(

centerline of the embedded plate and only if the Nelson studs of the embedded plate are located at least 8" from b

~

(

Gibbs & Hill, Inc.

Specification No. 2323-55-30 Revision 2

{'

June 13, 1986 Appendix 4 Page 2 of 22 a

concrete free edge (i.e.,

openings, face of beam,

(

etc.).in any direction.

3.4

" Pin Connections" shall be assumed for load transfer to the ; embedded. plates.

Only forces normal to the

[.

embedment (P) and forces in the plane of "the embedment (S) may be transferred to the embedment.

Moments due to cantilever. action or from any other

{'

source may be transferred to the embedment only when the embedment is stiffened for the calculated moment.

3.5 The loading pattern on sheet A4-1 and A4-3 assumes-that

[

'the embedment is loaded at the midpoint of every span between pairs of studs for A4-1 and at every pair of studs for A4-3.

In cases in which the load is distributed on more than one pair of studs, the full

{

normal load (P) and only half of the plane load (S)

I should be considered when using the figures on sheet A4-2 and A4-4.

3.6 For capacity of embedded plate strips for loads acting on stud line see Cases 3 and 4 (A4-5 through A4-9) 4.0 CAPACITY OF EMBEDDED FI. ATE STRIPS FOR LARGE ECCENTRIC LOADING

(-

4.1 Tension and shear forces generated on the stud anchors by loads applied eccentric to the supporting stud group should be calculated to insure no failure of the stud

{

anchors.

4.2 Ultimate tension and shear capacities of the stud anchors shall be taken from reference 2 of this Appendix.

4.3 The number of participating stud anchors may be

{'

increased by welding stiffeners to the embedded plate strips and to the support structure to ensure that the loading is spread to all the selected stud anchors.

The embedded plate strip shall be checked for bending and shear.

4.4 Steel plate material is A-36 Nuclear Safety Related as defined on Drawing 2323-5-0786 for embedded plate

{

details.

[

i I

Gibbs & Hill, Inc.

Specification No. 2323-55-30 Revision 2 June 13, 1986 Appendix 4 Page 3 of 22 i

5.0 REDUCED CAPACITIES OF HILTI EY.PANSION SOLT - STRIP PLATE VIOLATING MINIMUM SEPARATION REQUIREMENT 5.1 For calculational procedures see final pages of this Appendix.

1 4

I I

I

~

I I

3 2


.-v-

--.r-,,.,.

m y

APPENOlX 4.

M

- Y "'-

PAGE 4 CF 22

l. _

RLit, OF STUD 5 o

ft9eV ;

3 m

_=

tw>

~

?

1,_ r

".j 6

E L-ik '

f~1t9

' J' r t 'j 4 "c n

c r

L A,r

,,A

^

NQ*ges

(

u (w) r PLANOR ELEVATION u

c

~

f-2+h a (fsi.

i

- 5mos L

m. m.

CrTR)

L

,4,,

t S

- 1 c

ggi

-g

-,36 i

-,3t(

4 r v

i r a 3,

[

18 P

P m

SECTION A-A

[

CASE 1

[

, LOADINGS AT MID SPAN BETWEEN STUDS

[

NOTA' TION :

[

P--- Ac,Ttat wuto Tucics uwo.

e-- x, Tutu muac w.m uwo.

TLISI cone nxc.

[

AL ' 0mE LCAOS CH E%ibECCE.O MTE.S g*

e=== = = =

l 2S23 SH. A4-1 I

[

w

l

((APPENDIX 4h c

PAGE O OF27/

7.

1g g

L

'(o.o; EPI) 1(alo;pW G.

?

5

~

E n

A.

g l\\

g A-r t.

~

1.

. I l(26.6;e00) i, g

o.

a.

o.

s.

a.

c. e. n.
s. a so. ea. 44. as.

S (cps)

ALLOWABLE EMBEDDED PLATE CAPACITY FOR COMBNED TENSION AND SHEAR LOADS INTERACTION DESIGN CURVE FOR LOADINGS ACTNG AT MO-SPAN BETWEEN STUDS

(

CASE i

[

NOTATION:

P--- ALTUN MPLILO TENSOb4 U:WC, D--- AC,TUAL APPUFO SE.AA. LJ:AC.

l "fL,j $1 cmus. w uc.

ALLOWAELE LCADS N jg EMeiDCE.D PLATEt

y = _-

(

tm sH. A4 2 b

0 F

(APPENDIX 4T 12' W.

PAGEO OF22) g B

sf ! (.-=

[

" mg; NW 5

=

s, \\ m" w

g*

L

- c t

c x

f 1,P"

.76

)"d

-u b Q

' "' Em l 'fjq p erePQ g

(

" SS P

]

t B,r v8 o

afg,g u,.,,,,,c. y n

y (JTR)

PLAN on ELEVATION 0'

2 6 4,7 r, LE.

,l 4

e W OS s

i

.i.

su.

.u.

a us.

b M W) t i

i n _f i

q y

4 4.j --*g

-+s

-+g

g go ww i,coumM' 1r 1 r 1 r 1 r 1 r u og, WP P

P P

%P ce:L.wr.,

SECTION B-B CASE 2

[

LOADINGS AT STUO LOCATONS NOTATCN :

P-ACTUAL APPLIED TE.NSK"N kJCND-S-- ACTLAL APPLIE.O SHE.AA N-g COMANCMB. N ALLCMAELf. L%CS CN E.MBE.CCE.C MT'rS

  1. 3 l L

- - ~

1

== 2523

94. A4-3 h.

o IAPPENoix 4'\\

fAGE 7 OF 22) 16.

W IG.

I A0;la.E) l 017tAA5) i,'

\\

,g 4

E w

n.

i 6.

CL s.

k 4,

g I

36.610.0) 4-

<l.I g,.m j

j 0

2.,,4.

E 6.

c. ra.
14. is. 16 1D. 27 % es.

s <w

. I

/4.LONABLE EMBEDOED PLATE CAPACITY FOR COMBNED TENSION AND h

SHEAR LOADS g

INTERACION DESIGN CURVE FOR LOADINGS ACTNG AT ST1.0 LOCATIONS

!I CASE 2

>I NOTATION :

I P-MTUAL. APPUE.D TENSN LOAQ, 3

3-- ACTLWL APPy6.Q CHPAX. LOhD.

TLl'$ l 5

COMANCHE. PEAA.

~

ALLNAJbt E. L%Q ON (g

1 3g E.MbE.COE.O PLATE.S a

--2525 SH. A4-4

/

APPENDIX 4

~

ft.MX;o.

4f PAGt!. 6 ofs 21

_.5"4-wAincasrues o

r

'#hk_.

j-g (mr.)

(

K a

4 4

"{

Jl_0 9

$;;1

'i yA O '

M.

.!1!d

-8

[6 -

l

_m AV u

Vt >'

/_ y,t T r e.)4W.' [,,ctve.)L 8g ili PLAN on ELEVATION

~

v L

5e 2-h *p x7 g t g NELSON STUc5 CR EQ.(TYP.)

1l h=

.. ? t..

---*s' bitt

.y (J '

Y

8

,re vp ve cetu'uw, nEm Cs 5

CEluNG

[

SECTION A-A.

[

l c

CASE-3 LOADINGS AT MlD SPAN BETWEEN STUDS ON STUD 'UNE

. NOTATION:

c.1. ACTUAL APPLIED. TENSION LCAD TU51 S. ACTUAL APPLIED SHEAR LCA6.

CCMANCHE FEAR

. ALLCWAbbE \\. CADS CN

^

EMBEDDED PLATES 3

l

, o m aum*

4TE%.6

  • T.,.-**

a' -t-

=

o,gggg-

.SH.34 '-5

-i-t-i-+=

{

l, l, [,

L APPDHDix 4 F

PACE, 9 eF 22; a

r L

7 s.

x p

E i

Q w

w 3.

0' d; C5L550 10 s.tr. 2.4as) 1 1

1.

-L

" #9N.

~

e CL 1., 4 S. E M2.1 4 9 le.1BQ, 2L 14, 2G.

7

~

.$.b. * * $

(K1PS)

.AltoWABt.E EMBEDOED PLATE CAPACITY FOR COMBINED TEN 510H' AN I-SHEAR LCADS.

INTER CTION DES)GN CURVE FOR LOADINGS M. TING AT MlO SPAN BETWEEN STUD 5 CN STUO LINE s.

P CAS E-3 l

.NOThT10N:

7.,*,. ACTUAL..APPUED TENSION LCAD TU$l r. ACTUAL. APPUED SHEAR LCAD "CCMANCHE PEAK s

/

ALLCWASLE 1.CACS CS EMBECCED PLAT ~d~

5 h.-%

A 4.

2323 SH A4-G

-i -

- + - _ = t; p

l.

i

_ FCWAKt_

APPEHcix 4 PACU ID cF 22. ) * ~

i

.gr

~~ CTTR3 -

t p

PAIR CF.171JDS 7

4 C

crrv.).

y l

n f

t

-u l

q~,n

' ? '[ yj 71, j

o8 "...

i

~

g t

' -._.8 df t 0, g

_.__d!

' Tr 4

- ;al

.V B ce y

!l ve,>'toi.;is s *

[ %,.3

'8 v crw.)

!t PLAN en ELEVATION -

lt lg l

24%7%.

4 we m sTuce l

ce sca.ctrea a,,t w.

u.m.

I w-

,.., e.::

y

=-------

's dwAt.t.

~

3 ' F.-*a 3

1 l.

4 vo.e p ve.

vr.

ve vo.au couuk sem e CEILING I.

SECTION B-B g

g' CASE-4 EOADING5 AT STUD LOCATION:ON STUD LINE I

g NOTATION 1L_

. P..TX.TUAi.* APPLIED _7ENSON LOAD l

x.: ACTUACAPPUED SHEAR CCAD TUS CCMANCME PEAX ALL.CWASW LCAc6.Ct tuetooto etAiss g

~

c,-

m l

gggg SQ,,A4 7

- t " ' "" ** ' ] '

"' '"* ? "

ee g

l

'(. PAGE. !! ep t2./

A&GNeix.4 g lg t

,i.

.rs.

,A 4

g

],it.

l 1

4,s

,6 l

g

\\

a.

N w.

g, I,

. 4, K

h l

2.

.\\bl, G,52.op)

~

l g

c, t

4. G.
a. to. T2. 4. IG. la. to. 22. 24. M.

S OcPs) l

. ALLOWABLE EMBEDDED PLATE CAPACITY 'FOR COMBINED TENSION ANC g'

SHEAR LCAOS t.

I INTERACTICN DESIGN CURVE FOR LOADINGS ACilNG AT STuo LocATioHs ON'sTuo UNE C ASE g g

.h0TATION :_.

LP,.T. ACTUAL

  • APPLIED TENSICN. LCAD._

I

.TSLACTUAL APPLIED SHEM LCAD_

TU$1 CCMANCHT. PCAK

~

l ALLOWABLE LOAD CH weecoso Pums 3

i I

% y,"" "

iTRy g, i

= -j

- m i;'- - -

n23 SH. A4 - t

/ APPuNDix 4 T l'

]

NOTE

\\. r A c s la o p sts. /

Cl) F THE LOAD LIES N bETWEEN THE CENTER LlHE OF PL, ATE

' AND THE STUC LINE, NTERPCLAT1CN MAY BE MADE SETwtEN

.cCRassrowoNs eRAPMS AND/oR PCRuutAE.

.N s'

<t

<L

-i l-d owe' h,

L, i t m

4, p' <, ;-

['

li; 3

ki

? <s

_. _ f e s A

. *s ' ' <al 1

rs 4r.p h W h.I tW W d

h h

_4 3

.m L STuo,'t.nm

.4 c

n r.)

(A4 2 4 A4 G)

DouSLE NTER-(A#,-4 4 A4-6) i (FRC4 SS-SC)

PCLATICH RECL4

('/RotA 9S-SC)

F, L

4 F THE YARtATION OF LCAD kCCATION'it 1H TWC DIREC.TICHS DOUBLE NTERPOLATICM 13 REQUIRED.

(

(2) LOADS (P 4 5) SMALL NOT. DE %PPLIED

. DEYCNo.sTUC LINE TOWARDS EnGE

. CF.THE Pt. ATC.

~

(3) FOR AcomCNAL APPLICABLE NOTES SEE

&[

TU51 COu AWCME PEAX ALLOWABLE LCAoS CN EMcEDDED Pt.ATES j

l

,l

~,~~,.

,e TMW #Q.

I i

-~

23,2s SH.A4 '?

l _,,,, g ~

- -i.

=

~

{

11 l

ll Gibbs & Hill, Inc.

l Specification No. 2323-55-30 i

i Revision 2 June 13, 1986 l

i l

Appendix 4 Page 13 of 22 8

Reduced Cacacities of Hilti Exoansion Belt-Strio Plate, Violating Minimum Seearation Recuirement Calculation of the reduced allowable capacities for Hilti expansion anchors and embedded strip plates spaced at less than minimum separation requirement indicated in attachment 3 item 2 in Appendix 1 of G&H specification S5-30 (CE I-20 Rev. 8) lE Notation I

d Diameter of Hilti bolt (in)

I X

Distance between Hilti bel and nearest edge of embedded strip plate (in) l s

Z Actual or estimated minimum distance between Hilti bolt and nearest Nelson stud of embedded strip plate (in)

'I u-X+1.5 Z

Minimum distance between Nelson stud of embedded strip plate and Hilti bolt for each to have 50% capacity (in)

Z =1.5+2.5d I

i Za Minimum distance between Nelson stud of embedded strip clate and Hilti bolt for each to have 100% capacity (in)

'O z =4. 0+ 5. Od R

Allocation ratio for distance "Z"

i R=

d d+1.0 a

Distance allocated to Hilti bolt (in) a=R (Z-Zs) + 2.5d b

Distance allocated to Nelson stud of embedded stip f

plate (in) b=Z-a b21.5" S.R.

Separation ratio for Hilti bolt S.R.

=

a Sd R

Tensile capacity reduction of Nelson stud due to separation TU requirement violation (kips)

T' Allowable (working) capacity of Nelson stud in tension

.g (kips per stud) g' S'

Allowable (working) capacity of Nelson stud in shear (kips per stud)

T Allowable design tension load for Hilti bolt, see Tables 1 A

and 2, Appendix 2 of G&H specification SS-30 S

Allowable design shear load for Hilti bolt, see Tables 1 A

and 2, Appendix 2 of O&H Specifica en 55-30 t

O 6

L y

(

Gibbs & Hill, Inc.

Specification No. 2323-SS-30 Revision 2

. Tune 13, 1986 Appendix 4 Page 14 of 22 T

Reduced allowable tension capacity for Hilti bolt (kips)

R

(

S Reduced allowable shear capacity for Hilti bolt (kips)

R P

Actual applied tension load on embedded strip plate (kips)

I S

Actual applied shear load on embedded strip plate (kips) 5 i

6 L

1 i

l i

g,

^

\\

l 1

/ AFFDHOIx 4).

\\PAGE,lSoFttJ-

.W(hMX.)

TN M SO t

~

crrn)-

star etArc

).

z%

g 1

1 p

m 7

l i

]

"j 9

j:

e a

e 4

L u si.,a v,,in b

PDN ok E2EVAT/QV s

L roseoesterwrn

/

STR/P PLArf l_

)

1 g

y

_ V 4

e 4

H.2047 1s" x

v umarstuo ro s

NN.7/ 60t?

AF fgyzfp LOCA17QVQF$74/D L6Of77QV OfSZ/D f

AC7'KNOWN KNOWN hC7A" 770M

.4 N/47/ B047 TUS/

~

.9 NGZSCN S7un ecmrprAx Mcuen C.U'Actr/63 O**

///t.7/ BCLT-SrR/Ffu77, V/C4ATING M/N/Mf/M t

SEMRAriCHMCU/MM.9/7 C

+ ~ - - -

y vfw l

-- w

su. u -to

I I

Gibbs & Hill, Inc.

Specification No. 2323-55-30 5

Revision 2 June 13, 1986 Appendix 4 Page 16 of 22 FRCCZDURES Stee 1 Find out the distance

'Z' between the nearest Nelson stud of embedded strip plate and Hilti bolt.

a)

If location of stud is known, measure

'Z'.

b)

If location of stud is not known, measure

'X' where

'X'

=

distance between Hilti bolt and nearest edge of embedded 1

strip plate Z=X+1.5" Steo 2 Determine whether spacing violation exists:

Min. Z req'd = Zs = 1.5 + 2.5d

-if Z<Zs, not acceptabl, relocate Hilti bolt

-if 222 =4.0 - Sd, both stud and Hilti belt are 2

I fully developed therefore no spac ng viclation exists and ne reduction is rec'd.

-if J. 5 + 2.5d,s 2 <14.0 - 5 d, I

"Za t

a spacing violation exists, proceed to step 3 Steo 3 Calculate the reduced allowable capacities of the Hilti bolt.

R=

d d+1.0 a = R(Z-Zt) + 2.5d b = Z-a S.R.

=

a i

5d Reduced allowable (work ng) capacity of Hilti bolt in tensten and shear I

l

I

~

I Gibbs & Hill, Inc.

Specification No. 2323-SS-30 Revision 2 June 13, 1986 Appendix 4 Page 17 of 22 I

l B

T

=T (S.R.)

R A

I S

=S (S.R.)

R A

N Steo 4 Calculate the reduced allowable capacities of Nelson stud'.

I R

= 12.4-2.5b (for 1.5 s o s 3.5) 3.y l

R

= 23.9-7.2b (for 3.5 < b s 4.0)

TU Reduced allowable (working) capacity of Nelson stud in tension, y

T'

= 9.95 - R g (kips / stud)

T l

2 Stec 5 f

Verification of embedded strip plate adequacy.

J A)

Location of Nelson studs of the embedded strip plate is known.

I Case 1:

Loadings (7&S) acting at midspan between studs; l

embedded strip plate is adequate when equations 1 and 2 are both satisfied.

2 2-1/2 j

h

[

?

s1.0 (1) l (107.16)

(6.75j S

+

t I

H v'

Gibbs & Hill, Inc.

~

Specificatinn No. 2323-55-30 Revision 2 June 13, 1986 Appendix 4 Page 18 of 22 L

IS

+

P 5/3 si.o (2)

H f

1.54(T')

y 17.92

[

Case 2:

Loadings (P&S) acting at stud location; embedded-strip plate is adequate when equations 3 and 2 are both satisfied..

L-2 2 - 1/2 S

+

P

$1.0 (3) 306.00 14.46 F

N 5/3 p

S

+

P 5/3 s1.0 (2) 17.92 1.54(T')

j Case _3:

Loadings (P&S) acting somewhere between case 1 and case 2

(1 mwuevorm) l sn/a Locxnzw (cast 2).

~-

=

7 1

4 9

k l

y'%y MOSPAN(C4SFJ)

%g y y

(

f*

swowcAnon Q'

ps c, _y ~%sronen sw su(cser$

I e

rr l

i I

b I

I Gibbs & Hill, Inc.

Specification No. 2323-SS-30 Revision 2 June 13, 1986 Accendix 4 P' age 19 of 22

^

Calculation procedure:

l (1) Measure distance

'Y' (from nearest stud location to applied load P&S).

l (2) With known S

(or P) calculate allowable P (cr S) for'both I

case 1

and case 2

as per equations 1,

2, and 3,

2 respectively.

(3) Interpolate by the use of either of the two following equations 4 or 5.

P case

= P case

+

2

( 6 - Y) (P case 2 - P case 2) Kips (4)

(Allowable)

I a

S case

( 6 - Y) (S case 2 - S case

) Kips (5) 3 = S case t

+

6 (Allowable)

I E

I I

I I

I

P-L F

Gibbs & Hill,.Inc.

I Specification No. 2323-SS-30 Revision 2 June 13, 1986 Appendix 4 Page 20 of 22 P-(4) Compare

-P (allow) of case 3 (or 5 (allow) of case 3)~ with actual P (or S).

H E

r C

B)

Location of Nelson studs of the embedded strip plate not known:

Enbedded strip plate is adequare when equations 1 and 2 are both satisfied.

[-

I I

Gibbs & Hill, Inc.

I Specification No. 2323-SS-30 Revision 2 June 13, 1986 I

Appendix 4 Page 21 of '22 I

ALLOWABLE LOADS FOR ADJACENT SFANS I

h

~

YfNAY.) _ u l-hr (7YR) 3 o

c__

a a b i

4 g

=r r

MM WM/

WAN/B t

s.-

u L

P

/N

/N l

_1 1

R,a NMh/

~

g stuo x.sar g

1 l

1 a)

Z'

& Z" are used here only for illustrative purposes.

b)

Z'

< Z" and both Z' & Z" are bolt violations.

c)

The maximum capacity of the embedded strip

plate, in particular span 1, is determined by calculating the allowable I

(working) capacity of the Nelson stud nearest to the Hilti bolt, (Z' in this case since Z' <::").

h d)

If a

load is to be placed on span lA, the maximum capacity w

deter =:.ned for span 1 may be used for span lA provided that no c:her spacing V:.clation ex:.s:s for an other Nelsen stud supporting span lA.

If another spacing violatien dees exist, I

then cheese the sma'.les:

2 dimension for any one cf the

l 8

Gibbs & Hill, Inc.

g 5

59' i'i**ti " u. 2323-ss-so Revisio.s 2 j

June 13, 1986 1

j Appendix 4 5

Page 22 of 22 3

4 studs of span 1A to determine the load capacity by using the procedures curlined on the preceeding pages.

e)

If a load is to be placed on span IB, the maximum capacity of strip plate is determined by calculating the capacity of the Nelscn stud located at Z"

distance from. Hilti Bolt, as i

illustrated above, provided that no other, spacing violation exists for any other Nelson stud supporting span 18.

Follow the procedure as mentioned above in note d if another spacing violation exists.

I e.

't I

I E

I I

I I

I

\\

3

I ss -sc, APPENDIX 4W 1

t OE5IC.1 CRITERIA FOR EMBE00E0 PLATE STRIPS

~

5 CA """^'")

1.

(Attachmer:: to Westinghouse Occument No.

10923 Transmitted with NPI-8031 and 50-433 Dated s/3/ns I

I E

8 5

I I

l

~

B:

B l

APPENDIX 4W DESIGN CRITERIA FOR EMBEDDED l

PLATE STRIPS l

l B

l JUNE 3, 1986 l

Revision 1 l

~

I r

5 Cu,',ml h.,

AUTHORS:

l R. S. Orr r

hh,one),&^r/

d s

g a.

.c 1

II 1

l a @ 6.J vEarr1ER:

H. P. Bonnet I

/.Az s-g immm

/

n. nan,a I

I

I Gibbs & Hill, Inc.

Specification No. 2323-SS-30

~

~l.

Appendix 4W Page 1 of 14 5'

1.0 DESCRIPTION

3 Embedded plate strips are ASTM A36 steel plates, 3/4" thick and 8" or 10" wide, embedded in concrete walls, columns, sides of beams and the underside of f1cer or roof slabs, and attached to the concrete by means of Nelson studs welded to the plate. The design of the threaded Nelson studs and the weld at

)

the connection to the embedded plate is the responsibility of the designer of l

the hanger or the structural support.

2.0 APPLICABLE REFERENCES 2.1 Manual of Steel Construction AISC 7th edition 2.2 Design Data 10 - Embedment Pr'operties of Headed Studs-TRW Nelson Division 2-77 3.0 LOCATION OF ATTACHMENTS 3.1 Attachments may be welded to the strip plate at any location provided that the centroid of the weld configuration is inside the stud area. For attachmer)ts that are welde'd on 2 opposite sides the centroid of each weld I

shall lie within the stud area.

3.2 Attachments should be located to meet a minimum spacing of 12" between the center lines of attachments measured along the center line of the plate strip (see Figure A4W-1). If this minimum spacing re::uirement is satis-fled each attachment may be evaluated individually.

If the spacing is less than twelve inches the attachments must be evaluated concurrently as I

specified in paragraph 4.4 3.3 Allowable loads given in this sec' tion are only valid if the Nelson studs e

of the embedded plate are located at least eight inches from a concreta free edge (i.e. coenings, face of beam, etc) in any direction.

I 1542s/238s:10A

l 0

I

.Gibba & Hill, Inc.

Specifi'dati'c'n' No. 2323-SS-30

'~

Appendix 4W Page 2 cf 14 3.4 Construction tolerance shall be considered during the design phase.

Allowable loads are based on the eccentricity of the attachment center

~

line from the centerline of the plate strip. The design eccentricity j

shall be increased by 3/4" to provide location toleranca during construc-l tion unless increased eccentricity is prevented by the one inch minimum edge distance of paragraph 3.1.

4.0 CAPACITY OF EMBEODED PLATE STRIPS 4.1 The embedded plate shall be evaluated for loads frem all attachments or I

both stud capacity as specified in Paragraph 4.2 and for plate bending as specified in Paragraph 4.3.

Where attachments are located closer to each other than twelve ir.ches attachmhnts shall be evaluated concurrently as.

specified in Paragrah 4.4.

8 If the attachment is located less than 4 inches from the end of the strip plate, the allowable stud tension loads shall be reduced by a facter S',

T if there is an. adjacent strip plate.

S' equals the distance between the end studs of the 2 plate strips, see Figure A-4W-3.

Note that the shear l

I capacity does not require reduction as long as a 3 inch spacing is maintained between studs.

If the end stud locations are not known the attachment weld centroid or I

centroids must be located at least six inches from the plate end, otherwise 5 must be assumed to equal the minimum possible spacing of 3".

Leads applied to the attachment are designated as Fx, F F, Mx, M,

2 y

y M, (kips or inch kips) with z normal to the plate and y parallel to the z

plata center line.

'A' is the minimum dimension of the attachment cross-Section. When a base plate is used,

'A' is the dimension frcm the compression face of the attachment member to the tension weld between the 8

base plate and the embedment.

'Ex' is the eccentricity of the attach-ment center line from the center line of the plate.

I 1542s/238s:10A

Gibbs & Hill, Inc.

Specification No. 2323 55-30 Appendix 4W Page 3 of 14

~

I 4.2 Studs shall satisfy the allowables defined by the following equations:

Stud Tension:

T, = (0.5F + 0.16M,)(1 + 0.4E,) + 0.2My (1 + 0.2E,)

z 2 1/2

)2

' Stud Shear:

V, 1/2 ((F,

+ F3

=

+

Interaction:

(

)S/3.(

)S/3 $g I

4.3 Plate stress : hall be evaluat'ed for attachments with minimum dimension

,less than four inches and shall satisfy the allowables defined by the

, follow.ing equations.

fl = 0.375 Vs f = 2.4 (1

.10A) (1 +.2Ex) Fz 2

f3 = 1.1 (1

.15A) (1 +.07Ex) Mx f4 = 0.9 (1

.15A) (1 +.2Ex) My f=ft+f2*f3*f4 f 1 27 ksi 4.4 For attachments A and B located closer than twelve inches apart at spacing

's', calculate the stud loads (Tsa, Tsb. Vsa. Vsb) and maximum plate stress (fa. f ) using the equations given in 4.2 and 4.3.

The b

combined stud loads (Ts, Vs) and plate stress (f) calculated from the following equation should then be checked in the stud interaction equation and against the allowable plate stress.

[

Ts = Grpater of (T a, Tsb) +(12 - S) x lesser of (Tsa, Tsb) s 12

.Vs = Greater of (V a. Ysb) +(T) x lesser of (V a. Vsb) 12 - 5 s

s f = Greater of (fa. f ) +(12 - 5) x lesser of (fa. f )

b b

12 1542s/238s:10A

Gibbs.& Hill, Inc.

Specification No. 2323-55-30 Appendix 4W Page 4 of 14 These expressions assume that the higher loaded attachment is located at the most critical location. The influence of the other attachment is then obtained using linear interpolation between zero influence at twelve inch spacing and absolute susmation at zero spacing.

i 4.5 The nu=cer of participating stud anchors may be increased by welding j

stiffeners to the embedded plate strips and to the support structure to ensure that th'e loading is spread to all the selected stud anchors. The

, embedded plate strip shall be checked for bending and shear.

4.6 Steel plate material is A-36 Nuclear Safety Related as defined on Drawing 2323'S-0786 for embedded plate details.'

l

{.

l s

1542s/238s:10A

I

~

~

G.ibbo & Eill, Inc.

  • * 'Specifi' cation No." 2323-s's '3 0 ~"

Appendix 4W Page 5 of 14

I m ir I.I

~

h.

1.u

2. u2" z-2~

l 5=-

i ae i

1 u-

, - - -e -

-E---

"E e

g

E x

Il I

m I

e e ---- e -

c--

i i

!l lV s

I 4

g y

l T

E

-F.--

_=

-e - ---e-m d

ti

-i I

Mi a

L

==

-r-G l

m 2

=

5 5

~

I c-s 4

C 5

9 2

Ex S

(= 12" MIN. FOR I

-e - +

e -

inogptsagsr 4 ----

EVALUATION) l E

4:

I b

n i.

i_

s RE

~

l Y*

55 r

-e - - - e -

m.s+ - -

i ss I

bM m

q P.

I W

M r, -

,: A s.

4-a,

'i

,. 5 2a r

~

I I

Gibbs & Hill, Inc.

SpecificaticW No. 2323-55-30 8

Appendix 4W Page 6 of 14 5.0 REDUCE 0 CAPACITIES OF HILTI EXPAHSION BOLT - STRIP PLATE VIOLATING MINIMUM SEPARATION REQUIREMENT 5.1 The reduced allowable capacities for Hilti expansion anchors and embedded strip plates spaced at less than minimum separation requirement indicated in Attachment 3 item 2.in Appendix 1 of G&H specification 55-30 (CE I-20 Rev. 8) shall be calculated using the following procedure:

I 5.1.1 Notation (see Figure A4W-2) '

d Diameter of Hilti bolt (in)

~

X Distance between Hilti bolt and nearest edge of' embedded strip plate I

(in)

Z Actual or estimated minimum distance between Hilti bolt and nearest Nelson stud of embedded strip plate (in) Z=X+1.5.

Zi Minimum distance between Nelson stud of embedded strip plate and Hilti bolt for ea,ch to have 50% capacity (in) Z =1.5+2.5d.

i Zz Minimum distance between Nelson stud of embedded strip plate and Hilti bolt for each to have 100% capacity (in) Z =4.0+5.0d.

2 R

Allocation ratio for distance'"I" R=

d d+1.0 a

Distance allocated to Hilti bolt (in) a=R (Z-Z ) + 2.5d 1

b Distance allocated to Nelson stud of embedded strip plate (in) b=Z-a b>01.5" 5.R.

Separation ratio for Hilti bolt S.R. = ^

5d RTU Tensile capacity reduction of Nelson stud due to separation requirement violation (kips) lI T'

Allowable (working) capacity of Nelson stud in tension (kips per stud)

S' Allowable (working) capacity of Nelson stud in shear (kips per stud)

TA Allowable design tension load for Hilti bolt, see Tables 1 and 2 Appendix 2 of of G&H specification 55-30 I

~

1ms nm.1.

f Gibb3 *& Hill, Inc.

(

Specificatfich' N3. 2323-SS-30 Appendix 4W Page 7 of 14 SA Allowable design shear load for Hitti bolt, see Tables 1 and 2 Appendix 2 of G&H Specification 55-30 TR Reduced allowable tension capacity for Hilti bolt (kips)

I Sg Reduced allowable shear capacity for Hilti bolt (kips)

P Actual applied tension load on embedded strip plate (kips)

S Actual applied shear load on embedded strip plate (kips) e

(

e S

e G

e 1842s/23Ss:10A

i Gibbs & Hill, Inc.

Sp cification No. 2323-55-30 l

(

Appendix 4W j

Page 8 of 14 l'

l L

c'

_12"(MAX.)

L

,E_

~

TYP. ~

3/4" THICK EMBEDDED

/STRIPPLATE a

4 0

0 0

C u

k

,I.

L t

h

(

L. NELSON STUD E

[

PLAN OR ELEVATION r

L EDGE OF EMSEDDED STRIP PLATE V

z f

[

2 O

[

/

H. BOLT X

1.5"

=

NEAREST STUD TO g

h HIL11 BOLI

( P-STUD i

LOCATION OF STUD

-LOCATION OF STUD h0i KNOWN KNOWN WCTAT CN h N!LTI BOLT FIGURE A 4W-2

  1. NCL5CN STUD

k

[

Gibbs & Hill, Idc.

L Specification No. 2323-55-30 Appendix 4W Page 9 of 14 r,

L.

5.1.2 Calculation Procedure Sten 1 r

~

Determine the distance 'Z' between the nearest Nelson stud of embedded strip plate and Hilti bolt.

L a) If location of stud is known, measure,'Z'.

I

' b) If location of stud is not known, measure 'X' where 'X' = distance between hilti bolt and nearest edge of embedded strip plate L'

Z'=X+1.5" Sten 2 Determine whether spacing violation exists:

Min. I required = Z1 = 1.5 + 2.5d

-if Z<Z, not acceptable, relocate Hilti bolt 1

-if Z>Z =4.0 + Sd, both stud and Hilti bolt are fully developed 2

{

therefore no spacing violation exists and no reduction is required.

.gf 1.5 + 2.Ed < Z 4. 4.0 + Sd

[

Li La a spacing violation exists, proceed to step 3 Steo 3 Calculate the re'duced allowable capacities of the Hilti bolt.

a = R(Z-Z ) + 2.!d 1

b = Z-a S.R. = f

{

1542s/22Es:10A

7-h

[

Gibba & Hill, Inc.

L Specification No. 2323-55-30 I

Appendix 4W

)

Page 10 of 14 Reduced allowable (wrking) capacity of Hilti bolt in. tension and shear TR=TA (S.R.)

s = s (s.R.)

n a

c Steo 4 C

Calculate the reduced allowable capacities of Nelson stud.

r L

RTU = 12.4-2.5b (for 1.5 5b$ 3.5)

RTU = 28.9-7.2b (for 3.5 5b $ 4.0)

F L

Reduced allowable (working) capacity of Nelsen stud in tension.

R T'=9.95-h (kips / stud) e

[

[

C

[

1542s/238s:10A

lL Gibbs'n Bill;'Inc.

Specification No. 2323-ss-30 Appendix 4W

{

Page 11 of 14 Step 5 Verification of embedded strip plate adequacy.

A) Location of Nelson studs of the embedded strip plate is known. Use the reduced allowable (working) capacity of the stud in tension in the inter-action equation of paragraph 4.2 for all attachments within spans 1, IA and IB (see allowable loads on adjacent spans, pass 12).

[

B) Location of Nelson studs of the embedded strip plate is not known. Use the reduced allowable.(working) capacity of the stud in tension in the interaction equation of paragraph 4.2 for all attachments located less

~

than twelve inches along the plate strip from the Hilti bolt.

ZCE CF 2*FILUCI I

12" 12" hHILTIBOLT 1542s:10A

H Gibb3 & Hill, Inc.

F Specificatien'No. 2323-SS-30 L

Appendix 4W Page 12 of 14

~

ALLOWABLE LOADS FOR ADJACENT SPANS

~

L L

I 2

l 12" (Mar.)

l L

~

(TYP.)

O d

b i

SPAN 1A 5 FAN 1 SPAN 18 e,

9 I

b m

L

/\\

[N h

o

[

nasoN z.

STUD m

i M. BOLT a)

Z' & Z" are use'd here only for illustrative purposes b)

I' < Z" and both I' & Z" are bolt violations c) The maximum capacity of the embedded strip plate, in particular span 1, is

{

determined by calculating the allowable (working) capacity of the Nelson stud nearest to the Hilti bolt, (Z' in this case since I' < Z").

d)

If a load is to be placed on span lA, the maximum capacity determined for span 1 may be used for span lA provided that no other spacing violation l

exists for any other Nelson stud supporting span lA.

If another spacing violation does exist then choose the smallest Z dimension.for any one of the four studs of span lA to determine the load capacity by using the l

procedures outlines on.the preceeding pages.

1542s:10A

~

Gibbs & Hill, Inc.

Specification No. 2323-SS-30 I

Appendix 4W Page 13 of 14 i

e) If a load is to be placed on span 18, the maximum capacity of strip plate l

is determined by calculating the capacity of the Nelson stud located at Z" distance from Hilti Bolt, as illustrated above, provided that no other spacing violation exists for an other Nelson stud supporting span 18.

Follow the procedure as mentioned above in note d if another spacing violation exists.

I I

I I

~

I I

I I

I I

I 1542s/238s:10A e

I

f~

Gibb3 & Hill, Inc.

L-Specification No. 2323-SS-30 Appendix 4W Page 14 of 14 j

r L

l

['

r

)'

e e

l

{

[.

(,

i i

1 O

e.

I

[

e

[

s'

[

[

[

~

[

(

[

[

[

{

FIGURE A-4W-3

[

i 6

L e

I r~

e l

L__ -

r-l SS -30 APPENDIX 5 7

u r--

L IL DESIGN CRITERIA FOR EMBEDDED LARGE STEEL PLATES E

E E

F

T

~

Is.

L L

Gibbs & Hill, Inc.

Specification No. 2323-SS-30 Appendix 5 I;

.Page 1 of 13 t

APPENDIX 5 DESIGN CRITERIA FOR EMBEDDED LARGE STEEL PLATES r

L

1.0 DESCRIPTION

Embedded large steel plates are ASTM A36 steel plates, 3/4". thick connected to concrete walls and the under side of slabs by means of Nelson studs embedded in the

[- -

concrete and welded to the plate.

They are used to support-hangers and other structural supports which are connected to the embedded plate by welding. or by threaded Nelson studs.

The design of the threaded

[

Nelson studs and the welds at the connection to the embedded plate is.the responsibility of the designer'of

~

the hanger or other' structural support.

[.

2.0 APPLICABLE REFERNECES 2.1 Manual of Steel Construction AISC 7th Edition 2.2 Design Data 10 Embednent Properties of Headed Studs - TRW Nelson Division 2-77.

[.

3.0 ALLOWABLE LOADS ON EMBEDDED LARGE STEEL PLATES 3.1 For design purposes each steel plate is divided into

(

four different regions:

Cantilever, Exterior, Exterior

Corner, and Interior.

There is an additional region called " Exterior Region Near Opening" if an opening in f

the steel plate exists.

See Sheet A5-1.

Designation of k

regions is as follows:

Area A; Interior Region Area B; Exterior Region

{

Area C; Exterior Corner Region Area D; Exterior Region Near Opening

(

Area I; Cantilever Region 3.2 Steel plate material is A-36 Nuclear Safety Related as

[-

defined on Drawing No. 2323-S-0786 for embedded plate details.

+

L e

k Gibbs & Hill, Inc.

Specification No. 2323-SS-30 Appendix 5

{

Page 2 of 13 h

3.3 For allowable tension and shear loads at any location of

-each particular region of the steel plate see Sheet AS-2 through AS-4 and Sheet A5-8 through A5-lo.

No loading

{'.

is permitted in the cantilever region except if special design is made for' adequate load distribution.

3.4 Stiffners may be used between the attachment and the E.

plate for load distribution in order to stay within "the allowable loads defined on Sheet A5-2 through A5-4 and Sheet AS-8 through A5-10.

3.5-When moment is transmitted to the plate, the moment may be converted into a couple acting on the plate; th.e r

couple is calculated as the resultant tension and L-compression force of.the distributed pressure acting on the plate due to the moment.

The tension component of-the couple and the direct tension load shculd be

{-

combined numerically.

The resulting tension force and the simultaneous shear force should be used in conjuction with Sheets A5-2, AS-3, A5-4, A5-8, A5-9 and' r

AS-10 in order to ensure that the plate _ is not L

overloaded.

Other design methods may be used if preven by analysis.

{'

3.6 Weld contours of adjacent attachments, ' including auxiliary

steel, shall be separated by 12 inches minimum.

See Sheet A5-5.

For examples, see Sheet AS-6 and Sheet AS-7 for pin and moment connections to the large steel

plate, respectively.

3.7 a)

Allowable load capacities for attachments smaller than 6"x 6" are shown on Sheets A5-2 through A5-4.

h b)

Allowable load capacities for attachments 6"x 6" and larger are shown on Sheets AS-B through A5-10.

A :achments should be welded all around.

Note:

If the attachment is not square the smaller dimension of the attachment shall be at least 6".

(

'3.8 For plate attachments larger than 16" x 16" the use of Sheets AS-S through AS-lO may be too conservative.

In these

cases, the total tension and shear forces may be

[

ciz:ributed to a few lumped force points along the tension welds.

Each lumped force point should maintain

[-

L E

Gibbs & Hill, Inc.

Specification No. 2323-SS-30 Appendix 5 p

L Page 3 of 13

{.

a minimum of 12" from any adjacent lumped force point.

The allowable load capacity shown on Sheets A5-2 through A5-4 may then be used to check each individual lumped p

force.

g.

3.9 Ifthe attachment is connected to mere than one region

{>,

of the large steel plate the smallest allowable load capacity of these regions should be used.

3.10 Attachment dimension iefers. to the dimension of 'he t

(

attachment at the interface with the large steel plate.

[

[

[

[

[

E

[

[

'u

' u

( wesom s, l-

. <rxa a er es )

' CANTILEYiR REGION (AREA E) 7 T 'XTERIOR REGl#N (ARE E

1

/l I

I U

l BUTTINGi usedhumuW imod LINE.(TY70.

unmquemmismuumansumanet 1..,,..-INT ERIC R...

-EXTERIOR CORNER RE&lON (AREA C)

.hKEA,,,)

.I.'.f ' J.(.

ll$hh/f/Vb$A R 0?" $ 5 @

REGI ll

'/

' ?.

J 5

]

/[

\\

/

-CANTlLEYER RE410W 2

E

/

1lY VM. :l l ~

we 6.

/

e,.04.o.c,,R-s

/

/ :

W/////jWk?:'.h l.

g.y,,s.,,,1.o INT ER R* '.")'I-N8d1.G.ME15pW

[

'- S grypoggguAL jl'.. '?. REG

.@REA', AM..jl 4775) 3

':' ' '*l b '..'. ';

{: *~l'.. l h, l ':.' :'

5 1

j i

1 I

I I

I a

PLAN OR ELEVATION

. NOTES :

yi c.,..

1. FOR ALLOWASLE. LOAD CAPACITY.AT ANY LOCATION OF *

=

AREA A ; INTERIOR REGION,SEE FIG.'2. AND FIG.8.

AREA 5 ; EXTERIOR REGION,SEE FIG.'S AND FIG.9.

AREA C ; EXTERIOR CORNER REGION, SEE FIG.3 AND FIG.9. -

AREA D ; EXTERIOR REGION NEAR, CPN'6.,SEE' FIG.4 AND FIG.lO.

2.THE DIMENSION"De" 15 THE FREE EDGE DISTANCE AS SHOWN.

' 3.FOR LCCATION OF STEEL PLATES SEE. DE/CD 5-1645.

+

~~ 4.FOR NELSON STUD PATTERN SEE. DE/CD 5-15M I

TUSI COMANCHE PE AK TYPICAL CONFIGURATION OF LARGE STEEL PLATES FOR 5

LOADED REGIO.N nmm

==

-- 2323 SH.A5-l

(IAPPEt4 DIX SS)

I."*

PAGE 5 OP'13 e

1 o' II.

(0.0.510.8 5) 1 lL 3 (3.! 10.6 5) 5 w

\\

t

\\

4 a

L k

r 5, G.

3 N

\\

h~

r q

k 4.

L

\\

1 1

r L

.g (1125;8.8) s 1

0, 0.

I.

2.

3.

4 B.

G.

7.

8 S.

10.

I1 12

[

~

S (icies)

ALLOWABLE LOAD CAPACITY FOR COMBINED TENSION AND SHEAR Foa ATTACHMEN TS SMALLER THAN 6"x6"

. INTERACTION DESIGN CURVE FO A LOADINGS ACTING AT.4TERIOR (?EGION(AREA A) r G. 2 NOTATION P--- ACTUAL APPLIEP TEMSlON LPAP*

S---. ACTUAL APPLIE9 SHEAR. LAAD 5

-US COMANCHE PEAK s

sEE SECTION 3.5 OFTHIS APPEND (%

ALLOWA8LELCADSONLM4E STEEL Jt' FOR ATTAGNENTS SMAll.fR 7'HAN G"x 6"

        • Q2-

--2323 SH. A5 -

/APfVNOlx Sh (PAGE G CF l3j t

2 30.0 7.5'))

i i.

2%

b

\\

D h(EXTERIOR. (AREA B)_

5 1

T 4

_ (0.0 t 2.95)

\\

g 'h EXTERIOR CORNER.-

N 1,

(AREA C) h,IAbsk d.

~,.

12 0.

l.

2.

5 4

5 6.

7 3

9

10. II.

2 s (gies) m.

ALLOWABLE LOAD C APACITY FOR COMBINED TENSIO'N AND

~'

q

_ SHEAR

- F o g.

ATTACHMEN TS SMALLER THAN 6"x6'"

INTERACTION DESIGN. CURVE FOR LOADINGS ACTING AT EXTERIOR REGION (AREA B) 4 ACTING AT EXTERIOR CORNER REGION (AREA C)

G. 3 N

NOTATlON TUSI COMANCHE PEAK P___ACTU A L A PPLI E.D TEN SION LOAD

  • S.__ACTU AL APf'LI ED SHEAR LOAD
  • A440WA34E l0/05 0#tAAGF l

g,7gj[

YJ 5

'# SEE SECTION 3.5 OF THis APPENOlX.

ggjg g

4' e ;._= --

- - 2323 SH. A5-3 I

(APPENDIX S)T

/

~

f" ACE 7 CF LS

~

H' s

u

~

N

.g

.?

4

  • }0.0,s.ss) $'

f' g

, ya, feh;7.53) k k

T L

w P' \\

\\

\\

\\

r a

t i

\\

\\

r L'

i

\\

\\

\\

-De ~= 2' kDe=4" he=6" kDe=8"

~

L

\\

l'

\\-

\\

\\

(1.5 5 1 0)

((5.I,Ii0.d)

N.43;p.0) {(Il.43;0.0) 0

.o O.

l.

2.

S.

4 6.

G.

7.

8. T9. 10. I 1.T '12.

7 L

s (la es)

[

ALLOWABLE LOAD C APACITY FOR COMBINED TE NSION AND SHEAR Fon.

ATTACHMENTS SMALLER THAN 656" IN TERACTION DESIGN CURVE FOR LOADING 5 ACTING AT EXTERIOR REGION NEAR OPND.(AREA D'J WITH DeT*AI48 l

r' G* 4 NOTATION p__

ACTUAL APPLIED TENSION LOAP8 S,... ACTUA L APPLIED SHEAR L*

TU l

COMAN PEAK 5

~

SEE SECTION 3.S OFTH1S APPENOtX ALLOWABLE L CADS dNLUGE STEEL & MK ATTAC/NENTS

$MALLEK THAN 6"x 6"

~ =~ mow

= = =

==2323 SH. A5-4

r f APPENOlx ST (PAGE 8 CF IS/

p kY b k il l OE. O E!L. N Gir I.m yl 1ln!Eh.).35-%

i

(

Yg ( h' y

g g.

^5A l41 SA c

ri s.

e r

=

=

d l.1 s

l.I ll\\

i 1

i r

l I

I L

,i PLAN OR ELEVATION L

NO TE:

(

l FCK ANYSUFFCRT WHEME CNE ATTACHM11719 /W TEMS/0W AMO CNE A TTACHk1ENT /6 INCOMPAESSACW, TN1 MlW. I2* SffA' KA T/CW CRITER/A (d) KffEK$ 70 THE D/ STANCE Bf TWfHM THE WELD &** TM TJN6/0V ATTACHMENT 70 THE CENffRL,/NR OF THE COMPRf361dW

  • ATTACHMENn ypp, g w

4 I

+

t d e' Ju ra'r f

ud.

=,

=

mm. - :.n w

i jv V t.

ll t

l

}'

-4 ;_

y -

-w SECTON 5A-5A

~

(

IIGUR

'5' Tusi mm nu.

i MINIMUM CLEAR.

DISTANCE (d) BETWEEN 5

ADJACENT ATTACHMENT 5 y *"y'

.. mML

== 267.6 SH. AS-5

/APPfD40tX ST

}

EXAMPLE'l (PAGE9OF13/

I HAW 6ER AT EXft!r11c2 EEAfOU ( Af25A B) 0F LAEGe. ST5fL PLATE c

u

f. WALL CE GILL 4Ci 7

m m

m m

...i j g N.

y

<,, J.p f^r:'e( y j b L=

( 34,t.

H N.&s L

cwAcast I

H A M cat t.

s t

PLAN cEt ELEVAT'lOM

.I L

Nt A

-L 4

i a

e o

C 4

f"s _

~

p p

C C

C C

l

_ y M'-

^w__

g acusaaet.

V SECTIOW GA-GA FIG' ORE G coserica e in p. c,.o* Awo e 3.o= is raa LAcc.e.

ernst. Pt. ApeddATE.7 DCLUTIOM s MIt0M F1CnoRE. *b P'6.O*

S Au.ewAtta.

  • 5.55 > '5.o".

~

c.w..

TUSI ceu Aacae esAw.

A a s, a.is A os.c uAre..

PiW CCWWeCl'IN b

To LAr24E ST~ec.L PLAP-e cudo.a " *

== - Md Ve.

__ AL SH. A5-6

}.

(fAPPENoix 5)S J-F,XAMPLL P'2 pAse io or is J

dANGE.R AT INTE00E EEGIONI,AEEA A) 0F LAE' die 6 TEEL PLATE, Base. R.

4*.

m.]

1_

n ecasuwe L

.. m m

m

-,, L !

Z.}m oc w'Au._

a -W'?!?

a <

c i

c is'1 w' a 7Ac

',: :r ~ ~

7A s

(

~

H

==

o

/

Q.g==

j

[,

i N

/

s. -

v f wI r

/

sei,e 4.

1 L.

g bw,*EcTioM M

P "7_.w' secTrow 1 -

r

~

HANchart 34,mEE 5

4

--.s

_SEf, DON 7A,,1 r

PLAN OR ELE.VATION u

FIG _UEE.

7-E J

cuESTION : [F 6 = '2.0 % P = 'Z. 0 5 l = 2f-f A ND C = l0 15 THE LAE8E STE.EL PLATE ADLQUATE '2 SOLUTION : RT WELD A '.

$ HEAR: SA c_.M = "Z.0/2. 81.0" TENSION DJE TO,CANTILEME.E MOMENT :

Pl FA- & n g ov.s.4 TEN 510N DUE TO DIEECT' TENSION C.DAVTPA PA* = F/t. '= 1. 0" F

R.E.60LTANT TE.MSlON, IPA

  • PA' 4 Pi = 8.4 + %
  • 9.4

FEoM F16:UEE "2 5 auh=44 = 5.d."> SHEET 4 1 o" o.K.

AN6 : 8 15 ADEGUATE.

4: IF PA' <, PA' THEH THE EE50LTANT h

TEN $loN IPA = P + PA' f

7g g g

[

ccMAwcHE PEAK MOMENT CONNE.CTION

{

TO LARGE STE.EL PLATE

-==

.seus

== v25 SH. A S -7 '

(/APFTNDix ST twiiEllOF13/

15 14 r QO.0 12.2)

P

%~

3 7

g3 7_

L@03'*

]

12 X

r 3

+

10 S

e s

"0 7

)

L

  • 7 v

E6

~

5

\\'

4 a

3 p

2 1

{l6.G;, 5 g_U!

2 34 56 7 8 9 10 11 12 13 A (5 16 'l? IB S (KIPS) e

~

[

ALLOWABLE LOAD CAPACITY FOR COMBINED TENSION AND 5" e st.

AT TACHMEN TS 6"x 6" OR LARGER SHEAR INTERACTION DESIGN CURVE FOR LOADINGS ACTING AT INTERIOR REGION '(AREA A)

F G.8 2rs/ou P

_MruAL AFFL/fD TEM 4kWLd40*

S.. ACTUAL AFFLIED SHEAR 40AO*

b

,gg ny,ggg gg,pg gyygg COMAN E

PEA K

$ SEESECr/ON 3.5 OfTH/S APPEND /X STEEL & FCK ATTAC/MENTS (r

OF 6'r6' A ND LARGEK i

+

  • Q*"2 =~ WM2

-- 2323 SH. AS-8 4

l

/

(APPENDIX ST FWaE F2OF 13/

16

,g I5 I4

,g 13 12 l

,l 1I i

f(D0,8.86) fxTERlCR (AxIA 6)

~

9:

I 8

x w

v7 A

g

o. 6

[

g.

r@O,3.75)

\\

\\

  1. ' fXT1M/CM C0KWEK (AM1A C)'

(16.0 3,.09)l\\

1 l

3 2-3 1

l O 6,00)%d O

O I

234 56 7

8 9 10 11 12 13 14 15 16 17 18 f9 20 h

S (KIPS)

. ALLOWABLE LOAD CAPACITY FOR COMBINED TENSION AND SHEAR FoR.,

ATTACHMENTS 6'x 6' OR LARGE R g

INTERACTION DESIGN CURVE FOR LOADINGS ACTING AT EXTERIOR REGION (ARE A B) l AND ACTING AT EXTERIOR CORNER REGION (AREA C) rG9 l_

uorAnow F--

ACit/AL AffL/ED TEN 6/0NLQ4D*

I S--

ACTUAL APPL /ED SHfAR LCAD

  • 7
  • e"-wo" as w ruis mo-

,2"LCJBL, s

,r m m ar - z,

CF6's6' AND LARGEK a

wg2

/DNE

--2323 SH. A5-9 h

[

[ePescwx s) c I3' p

16 15 L

'4 5 A ' ' '*'

H 13 L

C.0,13.6). T

/ 0 0.0,12. 2) 12

\\@.5,12.6\\T E

g; 10 H

AO.0 8.8)

\\

\\ N 3

gg

~

8 57 Y

Y X

\\

~

\\

\\

\\

6

[

5 4

\\

\\

4 I

M 2

M 4' 1 ~

De = 6'

_1

\\ De=8' i

\\

t l

$.76,0.Q)-

\\

\\

y 3

.M.q24e y

96,wN p6 ego o-O I

234 56 7

8 9 10 11 12 13 - M 15 16 17 1819 20 B

S (KIPS)

ALLOWABLE LOAD CAPAtlTY FOR COMBINED TENSION AND SHEAR FoR.

ATTACHMENTS GN 6*OR LARGER I

l INTERACTION DESIGN CURVE FOR LOADINGS l

ACTING AT EXTERIOR' REGION NEAR OPND. SREA D)WITH De= 2',4'6'A8" FIG.lO N 0 ?A T/0AI l

r--

AcruAL Arruso TEMstav imo*

'"U$l PEAK 0 -

ACTUA L AFFL/fD $NEAK LDAD*

COMANCHE g SEE SEC770N 3.5 Of TH/S APPEND /X ALL OWAbl!LDADS CHLARGE STEEL M FOR ATTACNMEN75 f

0F 6'rf' AND LARGER C { ~ ". O -~ NONE

--2323 SH. AS-lG

F.

F.

L FL Yu SS-35 APPENDIX SW i

DESIGNCRITERIAFOREMBED0EDLARGEbTEEL'PpTES'

( ALTIER.N ATE)

(Attachment to Westinghouse Document No.

10923 Transmitted with WPT-8031

_ Oated 9/10/85

)

I I

l I

l I

/

Gibba & Hill, Inc.

L Specification No. 2323-55-30 Appendix SW g

L r

L APPENDIX 5W

{-

r L

DESIGN CRITERIA FOR EMBEDDED-LARGE STEEL PLATES AUGUST 30, 1985 O

AUTHORS:

I = l u cI h

,R. S. Orr

{.

f///

[.

i R. Condrac L

VERIFIER: 4J k b.-SOY H. P. Bonnet l

/..,#

(b' d../

7 APPROVED:

t..

/

M. Manlab

E I.-

Gibbs & Hill, Inc.

Spe.ification No. 2323-SS-30 Appendix SW Page 1 of 6 I.

1.0 DESCRIPTION

Embedded large steel, plates are ASTM A36 steel plates, 3/4" thick connected to concrete walls and the under side of slabs by means of Nelson studs embedded in the concrete and welded to the plate. They are used to support hangers and other structural supports which are connected to the embedded plate by welding I

or by threaded Nelson studs. The desig,n of the threaded Nelson studs and tha welds at the connection to the embedded plate is the responsibility of the designer of the hanger or other structural support.

I 2.0 APPLICABLE REFERENCES 2.1 Manual of Steel Construction ATSC 7th Edition.

I 2.2 Design Data 10 - Embedment Properties of Headed Studs - TRW Nelson Division 2-77.

3.0 ALLOWABLE LOADS ON EMBED 0ED LARGE STEEL PLATES 3.1 For desig'n purposes each steel plate is divided into different regions:

Cantilever, Interior and " Exterior Region Near Opening", if an opening in I

the steel.p. late exists. (See Fig. AEW-1). Designation of regions is as follows:

I Area A; Interior Region Area 0; Exterior Region Ntar Opening Area E; Cantilever Region 3.2 Steel plate material is A-36 Huclear Safety Related as defined on Drawing i

No. 2323-3-0786 for embedded plate details.

I I

W G

L F

Gibbo & Hill, Inc.

y Specification No. 2323-SS-30 Appendix SW f ',

Page 2 of 6

[

3.3 Loads on attachments on the interior region (Area A) shall be evaluated L

by calculating stud tension and shear loads using the following algor-ithms and evaluating. these stud loads using the stud interaction equation e

L given below. Loads on the attachment are defined as Fx, F, F,

y 2

Mx,M,Mz with the z axis taken normal to the embedment. plate.

y F

'a' shall be taken as the smaller attachmer.t dimension but shall not be taken grester than 6".

The absolute value of the maximum load shall te used.

L Stud tension: T = 20 F

+

3 0

g 0.05 M )2+ (F +.05 M )2)1/2 Stud shear:

V, " 12

[(F

+

a x

g y

g I

I T

V(d)5/3 Allowable stud loairs: (h)II 4

g-

+

3.4 No loading is permitted in the cantilever region except if special design is made for adequate load distribution.

t 3.5 Attachment to the exterior region near openings is only permitted when the edge distance, De, from the face of the opening to the first stud line is known such that the extent of the cantilever region is defined.

I If Deg 4" loads en attachments may be evaluated in accordance with l

paragraph 3.3.

If De 4 4" stud tension and shear load shall be evaluated in accordants with paragraph 3.3 and these loads shall be l

evaluated using the following interaction equation.

I Y

(Tl" 63)5/3 I (2.975 0' )5/3 s

s I

I 1531s:1CA

L Gibbs & Hill, Inc.

Specification No. 2323-55-30 Appendix SW F

Page 3 of 6 L

p 3.G Stiffeners may be used between the attachment and the plate in order to L

incresse the effective attachment size to stay within the allowable loads defined in paragraphs 3.3 and 3.5.

L 3.7 Weld contours of adjacent attachments, including auxiliary steel, shal.1 I

le separated by 12 inches minimum. (See Fig. ASW-2). This minimum spacing is also aop1icable across butting lines between adjacent plates.

3.6 For plate attachments larger than 16" x 16" the use of* paragraphs 3.3 anc 3.5 may be too conservative.

In these cases, the total tension and shear forces may be distributed to a few lumped force points along the tension welds. Each. lumped force point should maintain a minimum of 12" from any

' adjacent lumped force point. The allowable load capacity of paragraphs 3.3 and 3.5 may then be used to check each individual lumped force.

3.9 If the attachment is connecteo to'more than one region of the large steel plate the smaller allowable load capacity of these regions should be used.

1 3.10 Attachment dimension refers to the dimension of the attachment at the interface with the large steel plate.

If the attachment consists of a structural member and baseplate welded to the sheet plate, the dimension a shall be the distance from the compression flange of the structural l

member to the tension weld of the base plate to the sheet plate (see Fig.

ASW-3) l l

G 15als:10A

)

I Gibbs & Hill, Inc.

Specification No. 2323-55-30 i

Appendix SW Page 4 of 6 INTERIOR CANTILEVER FREGION REGION I

2" [0 "(TYP)

(AREA A)

(AREA E) l l

l a

t I

l l

1 1

0 -o-o-0

-o-o-

-o-o l

lf I"TYP I i

0 -- o - o - C - o - o - o - O - o o

l l*

l' l

1 l

O - o - o

.o - o - o - o - o - o o

I I

I i

I e

-o-o O -o-1 h \\

(

o-o 0

s N

\\-C c

-o 0-o-

~

O o

-o O

\\

10' sl I

O-C-c o -O

\\

De l

0 - o _.

OPENING

._ o - 6

\\

4 b_

e N \\ \\ Y X b \\ \\ \\ 3 \\l\\

g o _._ g o $-o[$-o-oko I

o O

g

- ~, ~

y n

EXTERIOR REGION CANTILEVER REGION NEAR OPENING (AREA E)

I (AREA 0)

PLAN OR ELEVATION VIEW OF SHEET EMEEDDED PLATE r'IG. ASW-i I

)

Gibbs & Hill, Inc.

Specification No. 2323-55-30 Appendix SW Page 5 of 6 m

e A

..;..y.:<:;.1. - ?.}J',

1...Q4%*.o&GAn\\

a

. l

..r

=

. D.

g.

~.t, *. *. *. : *, n r

ce a

i e

e..

a i

a 5A i,l "I

d SAI

~

e. I r

3 1

1

\\

l E

1-

. 3.

PLAN oR ELEVATION l

NO TE:

g i FCK ANY$UPFCRT WHERE CNE ATTACHMENT /$ IM TEMSICW Jet 42 CNE AirJCHkfMT /d INC4WRESSACN, CE Bf TWf!M THE WELD CF Th

E THE MIN.12' S!FAKA T/CW CA/7/K/A (d) K!FfMS 70 THE O/STAN

.71NflCU ATTACHMENT 70 THE CfMTERLINE CF THE CCWPRZJi/CW l

'AiTACMMEN7;

,g l

'=

pf

~

d= a'

4=Y2' I

z,. ~, I : ~ m. ~ : n, " A r ra'.-

~ =r I

3/4" PLATE y

l

?.

l l

A_

- - ).

l SECTON SA-5A i

6 I

g

m. u;-:

u F

Gibbs & Hill, Inc.

Specification No. 2323-55-30

[-

Appendix SW L

Page 6 of 6 EL E

. 9, ANGER AT INTECOR E Gl0N.(,AEEA A) 0F LAEGE 6 TEEL FLATE, e

L i

E L

CEtt !WG

... e

,m cewAu.

[

~ ~. \\'. P.'.

;.m

/

.h 7f.i r.

r

. ?

. t;.'"

l y

=

l'It.

/

t baAsa d.

[

H P % seerim nrue.sn.

r

_.3 L

PL AN OR ELE.VATION

[

i MSE, R, c 4. m l_

1. - _

+1 e

F i'

-A., p..

7 4

1 9,l i hD"F" i

e_*

N

.y,

\\

11 d

SE CTION

'jiA N G T. K -

6ECTlCH "d"

"1A FIGURE A5W-3

L r

i" IL F

L F

L_

E L

j$ *]O APPENDIX 6 y

lL L

ALLOWABLE LOAD CR:!ERIA FOR l-1/2" DIAMETER - A193 GRCUTED IN 1.NOHOR BOLTS u

E E

F e

L.

f L

f -I L

Gibbs & Hill, Inc.

Specification No. 2323-SS-30 f

Appendix 6 Page 1 of 1 r

L:

ALLOWABLE LOAD CRITERIA FOR l-1/2" DIAMETER - A193 GROUTED-IN ANCHOR BOLTS r

LL For a single grout-in bolt installed.in accordance with procedure set forth in CP-EI-13.0-3-Rev.1, allowable load criteria is as

[~.

follows:

1 Allowable Tensile Capacity L

a..

Ultimate load condition - 105 Kips b.

Working load condition' -

66 Kips

~

2.

Allowable Shear Capacity a.

Ultimate load condition -

69 Kips b.

Working load condition 34.5 Kips

(

3.

Cembined Tension and Shear a.

Ultimate load condition T

+

V s 1.405 in.2 (Tensile stress area of 73 Kai 49 Kai 1-1/2" 01ameter - A193 bolt) b.

Working load condition T

+

V s 1.405 in.a

{

47 Kai 24.5 Kai Use allowables given for ultimate load condition when designing for emergency / faulted (service level C&D) loads and when design is based on normal / upset (service level A&B) loads use allowables given for working load condition.

{' :

The above criteria can be used for a group of 4 bolts and 6 bolts in a 2'-9" min. concrete thickness, provided a minimum spacing of 14 in.

for 4-bolt pattern and 18 in.

for 6 bolt pattern is maintained.

[

In the event ef, a) overlapping due to another anchor of a near-by support b) edge distance effec: due to proximity of cpening

[

above criteria cannot be applied directly.

Such situations etc.

shculd then be independently examined on a case by case basis.

E

u 5

5?.E Q GC0(2)

.',.. c *.=.e:

e.c j

u I

G:f:i' 4 ' - ~ ~ ' ; ~

T 77CE 1 CF 2

e

~

C::19NGE PEAK SF.M C.EC"?.IC S"Z"!CN CESIG( GANGE AL"HCRIO.A'"ICH (w! t.) ('/EZ A$') SE INC::RPOIUCD IN DESIGI DCCOa.nT DCA 20. 15.333 R-1 toFOR OrFICE Ah,D -

1 SA5.E:Y m'"D m.CC: U YES

~

2.

CPAINAT.R: CPPE E ORIGINAL CES GIEiL c,m.,cERING USE ON' Y 2.

OES. tIPrICN:

lu A.

APPI.IC7J1LE SPr.J" WG/CEfr 2323-SS-30 REV.

O I

3.

cc--A

'!HIS REVISICN VOIDS AND SUPERSEDES DC.A-15,338 R-0 m

Add Aeoendix 6, " Allowable I. cad Criteria for 1-1/2"6 - A193 Grouted r

in Ancher Bolts". to the, referenced specification.

I I

3 5.11 Q $

i CICElVED I

'G M t o 10o 4 4.

SCPPOR'."DC CCC28.D?rA'"!CN:

'I OCCLMENT CQNTROL e wu GIN-576.,,

.:, GIN-62137 l

Deleteo Page 2 of Rension "G" of Inis LCA per telecen oct een E. L. 5enor v d P. Patel en 1-12-81 5.

APPRCVAL SIGMRES:

PP/ccp

// 2 U A.

CRIGINA::cR:

cA::

B.

DESIGI REPRESDTDC VE:

It.u QA:l:E /7 'E. ~ h y md.-,-. so I

i e

cA::5 d :/:e C.

cESIca nEvIr.w mCR m issue:

g 6.

VD: DOR RE!X'D NA!CE X.

NO NUMBER l

7.

S 7c.:Apo DISTRISc ICN:

Art'.S (CRIGINAL)

(1)

B. F. JONES-PRDCJRBOT (2)

CCAIA"Y cGINEERDC (1)

I-c:"U !tR CRIG. ::ESIG?

(1)

TS FOR CRIG. DESIGN (1)

PSE (1)

In !tPM 9-63 CIVIL ENGINN:

(1)

I

-6

[

L

{

~

s p gcgp icA T tcN 2323-55,5c A PPEND tX 6

r L

AL t.QWA51.E LOAD CMtTE.RtA FOR IE"' - A 19 3 I

SROUTED-IN ANcMOR BOLT. S L.

h For a single grout-in*liolt installed"in a===rdance with procedure set forth in CP-ET;-13.0-3-Rev.1, allowable load cri aria _is as follows:

h

1. Allowable Tensile capacity -

a) Ulti= ate load condition - 305 Kips b) Working load condition - 66' Kips F-L

2. Allowable smear capacity a) Ultimate load condition - 69 Kips b) Working load condition - 3 4.5 Kips f

L

3. combined Tension a. Shear a) 01:1 mate load condition

(~

7YKs14TKai(

1.405 in.2 ;,,,gy,

,gg,,,

,,,,,g ;.,g.,,;93 3,;;;

T

+v g

h) Working load condition

[-

T

+ y,

( 1.405 in.2 47ksi 24.5Kai Use allowables given for ultimate load ce=diti:n when desig **g for emergency / faulted (service level cac) loads and when design is based on normal / upset (service level A&B) loads

{.*

use allowables given for working 1 cad condi:.iwn.

The above criteria can be used for a group of 4 bolts and 6 bolts in a 2'-9" mia. concrete thickness, provided a

{

mi n d em spacing of 14 in. for 4-bolt pattern and la in.

far 6 belt pattern is maintained.

Is the event of, a) overlapping due to another anchor of

(

a near-by support b) edge distance effect due to proximity of opening etc. above criteria cannot be applied directly.

Such situations should then be independently exa=ined on a case by case basis.

[

(

DCA

/5332 Rev l

~-

[

F4ye 2 g 2

[

~

s.+

t

.s...

7

.]... Y.:.~.. ; g..

PME'1 CF 3

..-.- T..:.. ~

... -s

,- ?% -

...... Jy.

W:-., s..eq.,..,:;.,v m ;. 4.....,

7

,., ys. T-

. u q,,-

._-- m m

~;,.:,..--.

(

l.

- 3.1.

CDIANGE PEAK S':TM EM' SD2%CN

r 3

, :.p DESIGi GANGE AUDElRI' ATICN 2n.u. XM

. : :.4. c..

4

.. -,.. ~.

T.

. :n a.

m...

. s.. >.

(utII) (1EIEEM2I) BE int %RPCRAT!D IN CISIGE D*JC2GN:'

.IX1 10.

15,338

. :.'y

  • 1.

SAFEET llEIAZID IXXIDEN1': XX 125

- 153

..a.

.9, 2.

GtIm292DRs CFFE XX SIIIINAE DESIGNER h..

~ _-

....:.c. 2..

-(. ;

3.

DasCRzFIICN:

tc-

.m e... <,.,...

m..:.... q.v.-

L.,

Q1;_..u u.

r.~ % ~ l A.

APFLICART.2 SB8tVM3"2NENit' 2323-SS-30 IIET' O t s..

E,zz

..s.

.,...,p.'

1.

Add sheet 2 of 3 hereof to Accordix 3 of the IE. RI..I.?Qhx:.s

. 7;.

E.

2 +-.

c.m referenced soecification.

, m. w..

u M S ".

4.:.;

4^

7,,,..

- F-

~

  • u -

t....-

. T(dFAnneWdfii'6"_ " Allowable toad Criteria for 1 1/2"9 - A193 Grouted in

.~.4 Anchor Bolts". to_ the referenced seeciffeatioit.

2.

j -

... m.- -*.. -

.v.e;-

g_... g-

..p

.,7, T..

m-y S Q.;q.c.

  • en;." :,-

_,+ z:..

- Q &

,,;: :

  • y,,

.u;.

.s

. g..yg..;

g..-

g-

,., ;. 3.,, q,...p,.,.

i.

s.

""...*.';.i.,.-

.. ~

. ;s.

l' f

"c3 NO. aJ-w "h

e e p: i V E ii

..,,n..

". ~

i n %7 t

c m

,g, 4.

SUIGCRTING t%%%MENULTTCN:

- E C E I V E d' u!!

t -

GTM-5767h.

GTN-61623.

GTN-62137 i

5.

APPRCVAI, SIGNATURES:

JCG/sgf 12-8-82 A.

CRIGINATCR:

CATE /8 4 - 4 2 7

B.

CESIGT REPRESINDLTIVE W f2Dt CATE[2-8"$1 6.

VINDCR QNSMITIAI, R*J"Jr"RES: ES M M3

7.
  • SDNCARD DIS'DLIECr!Ch AMS (Cr'.ginal)

(1) 8.F. Jones Procurement (2)

CCA fe 11-80 Cualit / dngineering (1) kra. Tev N2

'IS f=r Crig. Cesign (1)

West:.i;w1 cuse-51te

. (

( 1).

Civil Engineering

1).

-.e J

..~.

~=

.+*

....... 's.7 1

u. -
,.24,;.

.. - --ey%;*.s.p,;;-. -.'.<. r.*;

=

- - -. - - ~ ~ -...

.-g.

-...w =sr

m e i

L ScA " 15,228 s);f.

?.f 9

. %a. A n+ ;.n.:.,a.x.

.g.....

.. n :. :... ~ ,, ' J/ 6.d.- i. 3 P E C 11rIC A T tC N 2323-SS-SC ' :w., {. f4.h .--+.e.- y,9,.n..g'Wi".g

p...

.. + - . nt,: ~ A ppgMD Gr. 6. -p::.:.:.2 :9,..,.w,.L..y. c. .,1tn. ..u.s... w m. ....g,,u.i...,., r.,. ~ N., ALLOWABLE LCAD NTgm m b - A W g / me ,. q agouTED-l.H AMCHoR SQL-t g 6,R.A46 S7 :lefw Iz ,'...:9; S, '.*:%.%: l-

5;.. ~, J.

. w.-.. ~ b..

.u.p..-
'.- "_,l

..?;.: > N.-. ~. :-.N' -r For a single grout-in

  • b'oIt installed.E * ~

accor:Ence with procedura set forth in CP-El-13.0-3-Rav.1,. allowable load critaria is as follows: .. 1......:.. l.t. ... ;~. ~.:<. 9chc. kQ- ..? ~;i:h ' ~: '.:;>1LAllowable Tensile Capacity - T-SF^ a) Ultimate lead condition - 305. Kips P. ' mc...4.:'4 - V ~ ^ '. ~ -@= M - h. %.EF.E.b)workingloadconditicin .,2 @ M s,V.-: 3:iin T'+; ~"fr ' .6s.Eipe k.T (Qir.

, 4
t. -

. ~ -. - : - ~ ~': k.s ", v. ' Q'- * &.Q~%- *. L l& *. .m/2:4 Allowable Shear capacity - ~* i. .. ' ~ './fss:-fa)..Ultinate-load condition - , 1..j..; g :. ': .~ .Di. 69 Kips

g.,. '.

..idar b)? Working load, condition - 3 4.5 Kips <.... - u. ;"uy.:. f.... g .....n. :g.v. :

,.,n

.;.7 p.. M.. t.;N

  • en -

. ; R.. :,.. ,n . :: -.-:.. w+F y .s - - :13f cm bined Tension 4 Shear . ~. - ..w. n e . i.. t 4."' :.. 5- ..'Wi. a) Ulti= ate.1 cad condition -5 [.. ~ .-:~.z ..'. I o- .:f'l '. 6 V .". 9 7TKai 4TKai N 1.405 in.2(Tansils stress area of 1 9-A1931::: + v" .. '~ b). Working Icad. condition .v.

g..s.

~l

g..

,. - q.... '.:.".:. v + s- .L 1.40s in 3 m + ~ p..-- I' ..n. %. 47Kai 14.5Zs1 .~ ~ T. ~.-' "1 14?." F. s a run. h.us..: '- k* Use allowables given for ultinate load condition when designing i for emergency / faulted service level CsD) loads and when design is based on norm (al/ upset M 5 (service level Asa) loads \\ . use.allowables given for working 1 cad condition. ~ I The above criteria can be used for a group of 4 bolts and 6 bolts in a 2'-9" min. concrete thickness, provided a

4 a 4 -"_

for 6 bolt pattern is maintained. spar.ing of 14 in. for 4-bolt pattarn and 18 in. { In the event of, a) a near-by support b) overlapping due to another anchor of of opening acc. above criteria cannot be applied directly. edge dist Such situations should then be independently ex=-4 ~.ed on a esse by case basis. S S.

  • d'

......,..L- _ _ - _ - _ _ - _ - - - - - - - - - - - - - - - - - - ~ '

SAG.CP23 SEISMIC DESIGN CRITERIA FOR HVAC DUCTS AND DUCT SUPPORTS 9 I I \\ APPENDIX 3 i Ductwork Design Criteria DC-MS-85 (300 Series System Sketches, Revision 0) 1 .I 1 5 1 I i I I I I 1es1R lt

W 'n. n n . NU~ p - 7 /v u v T r BOCTWORK BRSIGN CRITERIA 3CmitB-85 TEI&S UTILITIES CMfDIC CO. IlmEI Or SYSTat SEETCERS COINICE FRAK IRIIT 30.1 StEET 1 0F 6 I e llovember 14,19M i 1 sTS1st i l l ABEREVII.TI 3If l JYSTF.N TITLE I I asuu a arv. 1 i t I NO. R-l NO. l R&TE l REMARKS l I l 20f7ATIAWIT TBITILATICII 57S7505 (FIaII DIAC. 2323-It1-0300) 1. CARCS Costelament Air Recirculatlag & Coeling 300/1 0 11/03/M System 2. NDWCS Neutroe Detector Well Cooling System 300/2 0 11/03/M 3. OLDMVS t Control Rod Drive Mechaatse Westilation 300/3 0 11/03/M Systes 4. ECPPCS Reactor Coolant Pipe haetration Coellag 300/4 0 11/03/M System '~ COIffAI1RWIT AIR CLEAN-OP SYSTBES (FIN DIAC. 2323-M1-0301) 5. CPFS I Containment Preaccess Filtration System 301/i 0 11/14/M 1 6. CPSS Costalament h ree Supply System 301/2 0 11/14/M I 7. CPES l Contalement h rge Enhanet System 301/3 0 11/14/M i 8. CRS Containment Pressure Relief System 301/3 0 11/14/M 9. CSPSS Containment Rydrogen hrge Supply System 301/4 0 11/14/M 10. CHPES Containment Eydrogen hrse Esbaust System 301/3 0 11/14/M ( l I e i k 1677R s i ' h&

U rv w".3 r u --- u -- v, r- \\ DOCTWORK EESICII CRITERIA BC-MS-85 TEIASWFILITIESCBWAT Conuscs PEAK WEIT 30,1 INSEE OF STSTDI SKETOIES SEEET 2 0F 6 ~ Movember 14, 1986 I i 56 - t i aun I mEv. i i l i AssaIvzATIrw I STSTEu TITIa I wo. Su-I me. I mTE I aBaaxS I SAFECUARD BUIIalNG VBffIIATION STSTBIS (FI4li DIAC. 2323-M1-0302) Safessard Deflding Destilation Seppky System 302/1 0 11/03/84 11. StvSS t 12. SNES Safeguard Building Teat 11stfoe Erheest System 302/2 0 11/03/M L DIESEL CENERATOR ARIA TENTIIATION STSTBIS SAFECUARDS MJC. EL.810'-5 (FLOW DIAC. 2323-M1-4302) 13. DGtVS Diesel Generator Room West 11ation System 302A/1 0 11/03/86 14. DTRYS Day Tank Room Teatilation System Traise A&B 302A/2 0 11/03/86 112CTRICAL ARIA TBITIIATICII STSTEMS SAFECUARDS ELDC. (FIAW DIAC. 2323-M1-0302) 15. IAMVS$ Elec';rical Area Normal ventilation Supply 3023/1 0 11/03/84 System 16. EAPVES Electrical 3rea Normal Teat 11stico Embauet 3023/2 0 11/03/86 System 17. EAEG Electrical Area Energency Cooling System 3025/3 0 11/03/86 EL. 852'-4 I-18. EaEG Elaetrical Area Imergency Cooling System 3023/4 0 11/03/86 I IL. E10'-6 l l'

7 MM 'W W W M W W l V V F U U V l- -F DUCT 90tr DESIGat CRITERIA DC-MS-85 TIIASUTILITIESCINERATINGC COMUICEE FRAK UNIT NO.1 _INDEI 0F SYSTDt SKETOIES SuttT 3 0F 6 November 14, 1986 l l l SYSTEM l l SKETCB i REY. 1 I I l l ABBREVIATION I SYSTEM 1ITLE l NO. SK-l NO. I DATE I REMMtKS l MAIN STEAM AND FEEDWATER AREA VENTIIATION SYSTEMS (FLOW DIAC. 2323-M1-0302) 19. MSFWSS Main Steam and Feedwater Area Supp1h Systeu. 302C/1 0 11/03/86 4 t 20. MSF1ES Mala Steam and Feeduster Area Inhaust System 302C/2 0 11/03/86 AUXILIART BUIIEDIC VENTIIATION SYSTBIS (FIAU DIAC. 2323-MI-0303) 21. ABVSS i Anzi11ery Building Ventilation Supply System 303/1 0 11/03/86 y 22. FCUit Fan Coil Daits For Pump Roome 303/1 0 11/03/85 l 23. ABVES Auxiliary Building Ventilatica Exhaust System 303/,2 0 11/03/86 l 24. ABVERSS Auxiliary Building Ventilation Equipment Rooma 303/3 0 11/03/86 Supply System 25. ABVERES Auxiliary Building Vent 11stio6 Equipaent 303/4 0 11/03/85 I Rooms Exhaust Systen 26. ETES Effluent Treatment Exhaust System 303/5 0 11/03/86 1677R

M Y M S O M M S Y S DUCTuomK IESICN MITERIA BC-MS-85 TRIAS UTILITIES GE ConulOE PEAK MfIT 350.1 INDEI 0F SYSTEM SKETCIES SBEET 4 0F 6 November 14. 1986 l 8 sua4mn I l l ABBREVIATION I SYSTEM TITLE l NO. SK-l NO. l DATE l REMARKS l g i SKETm i EY. I I I FUEL BANDLDec SUILDDec VBITIIATION SYSTEMS (FLOW DIAC. 2323-M1-0303-01) 27. FEBVSS Fuel Bandling Building ventilation Supply 303-01/1 0 11/03/86 System 28. FHBVES Fuel Esadling Building Vestflation Exhaust 303-01/2 0 11/03/86 Systes 29. SFPES Spent Fuel Fool Exhaust System 303-01/3 0 11/03/86 (DNTROL RC3f ARi;A AIR CONDITIONING SYSTDtS (FLOW DIAC. 2323-MI-0304) ~ 30. GACS Centrol Roce Area Air Conditioning Systen. 304h 0 11/03/86 31. CRES Control toom Exhaust Systems 304/2 0 11/03/86 32. OL?WLSS Control Room Makew p Air Supply System 304/3 0 11/03/86 33. CREPASS Control Roce Emergency Pressurizatica Air 304/4A 0 11/03/85 Supply System - Train "A" 34. GEPASS Control Room Emergency Pressurization Air 304/45 0 11/03/86 Supply System - Train *3* 35. CREyS Control Room Emergency Filtration System 304/M 0 11/03/86 - Train "A" 1677R

M E E W E W Wl I IUUUU BUCTWtar DESIcN mITERIA DC-MS-85 TEXAS UTILITIES CWWEATING CO. DmEI 0F STSTEM SKETmES CONLNCME PEAK IRIIT NO.1 -SREET S OF 6 ,JBovember 14, 1956. ~ l i SrSTu. 1 l l ARRREVIATION I SYSTDs TITLE i sants mEY. i l__ NO. SI-l NO. I D&TE l REMARKS i l 36. GUS Control Room Emergency Filtration System 304/55 Train "B" 0 11/03/86 I s 37. acKTES Control Moon Compler Kitches & To11 Ezhaost 304/6 0 11/03/M Systee UNCONTROLLED ACCESS AREA VIlrFIIATION SYSTEE (FUNF DIAC. 2323-M1-0305) 38. UASS Uncontrolled Access Area supply System I 305/1 0 11/03/06 39. . UA4ES. Uncontrolled Accets Area Exhaust Systan 305/2 0 11/03/86 ("l 40. DCDPES Battery Garser Distribution Panel Exhaust 305/3 0 11/03/86 System Unit No.1 & Ilo. 2 ; 41. BRES Battery Roce Erhaast System Unit No. 1 & No. 2 305/4 0 11/03/86 PRIMk17 P1 ANT YENTIIAT.ON SYSTEMS (FUNF BIAC. 2323-M1-0309) l 42. PPVSS l Primary Plant Yeatilation Supply System l 309/1 0 11/14/06 43. PPVES Primary Plant Ventilation Exhaust Sveten 309/2 0 11/14/86 (Sheet 1 - Diagram, sheet 2 - Tables) A4 i PPVESFES Primary Plant Ventilatic.: Iagineered Safety 309/3 0 11/14/86 Feature Exhaust Systes l 167T1 l l l

W W W W M M W NM W M M M M W M M M M M DOCDIORK DESIGN CRITERIA DC-MS-85 TEXAS UIII.ITIES (ENERATIE C. CalANCHE PEAK UNIT NO. I a _INDEI 0F SYSTEM SKETCHES SHEET 6 0F 6 December 2,1986 I i SYSTEn i i Sxac i arv. i l l l ABBREVIATION l SYSTEM TITLE l NO. SK-l NO. I DATE I REMARKS l SERVICE WATER IlrTAKE STRUCTURE VENTIIATION STSTDfS (FIDW DIAC.2323-M1-0312) 45. SWPAES Service Water Pump Area Exhaust System 312/1 0 11/03/86 46. DFPRES Diesel Fire Pump Room Exhaust System 312/1 0 11/03/86 UPS AREA AIR CONDITIONINC SYSTDI (FIDW DIAC. 2323-M1-0313) 47. UPSDRCS UPS & Distribution Roose Cooling System 313/1 0

  • 1/03/86

/ 0FFICE AND AREA VBrTI!ATION SYSTEMS (FIDW DIAC. 2323-MI-0304-01) ( 48. OSAACSS Office and Service Area Air Conditioning 304-01/1 0 11/26/86 Supply Systen 49. OSAACRS Office and Service Area Air Conditioning 304-01/2 0 11/26/86 Return System i 50. OSATES Office and Service Area Toilet Exhaust System 304-01/3 0 11/26/86 l l l ( 1677R i 1

f w 1-- m m v v m v rp r u-- x _ r-w w ~,

REFERENCES:

25:5 MI-osoo acv.c.p.s I plow osA% RAM-J . 2 SPECff1 CATIONS 232 3 :

. MS-32A REv.s

..t M S-89 REV.0,400 0 3 OUCT LAYOUT (BYlMHM50ft) _.i 2323 Mi-osso

  • 2 2 SES-ME OS5t

.5 E S ES-M I O SS 2. [3 4 ZSZ3 MI 0553 CONTA'N MEN T,, .5 2323 MI 0554. AIR e -->= To VARious I. 2 5 25. M I O s 5 5 CONTAINM ENT 7 Z323 Mf 055G .- AREAS 4, G H calc's i hooLING SUPPLY O 8 0 Coll HCuSfHG , AH- -o 3co-s psa uEy.o coHTAINMENT ), Tl4ESE SECTIONS ARE SAME from ( \\ Pt.ENUM 4 UNITS i CONTAINMENT Al R. RECIRCULATINGd. COOLING SYSTEM (CAR.CS) FAN TAG NO CP I-VAPHAV-of o2!,os,o4 CPM: Gs,ooo eacw sP(is w.s): l.o (REF: 2.8). [ OPERATING CDHDtTlONS LEAKAGE l SECDDi CLASSIFATtON "OUCT -~ 6ESCRIP71 O N (FRcM " * " " ^, _ NERW REMA K RScEREt4CE. gggg sAFi?Y 55'f%;! - f.!CTtCM INTERNAL (O TE? *.PEQ'.liU.*; PRESS.'N-CLASS CATEGCRY TYPE PRE 55URElatWG ou T SPACE IN W.5. SUPPLY ouCT(FA4100MPR) o-t NNS E TYPICAL FOR4 dNIT5 8 ;S.ZjS.+f S.5 ~ ~ ~ SUPPLYDUCT(CWCIDPMIAftl t - 2. NNS g t4.o O TYPICAL FOR4dWITS li S.SiSdi S.5 PL&NUM E-S NNS E +4.0 1;3. sis.4j5.5 -s$ SUPPLY OUCT .5 - 4 NNS E EJ 94 / 880 / ALL oucTwoRK coWN- -no pesa/ (.S/ at STREAM oF PLENdM gI3*g _ 3,7 coot N4 co:L NouslNG S,c NNS

  • E (a

TYP. POR4COOUNGOLS -so rs.a (3 ase CPI vAccuc-oi.orpao4 t; g z; gg, gg RETURN DUCT c, - o. N NS. .E . fP. POR. A UNITS 13 5 ~6 - S 5 / / / NOTEsr (QINTERNAt. PRE SSURES A RE SASEo ON Sf 00 4fff LL CALCULATIONS. -- samsces esecoserostavso TEXASUTIUTESGEPERATING CQ (z)MAxlMuM PRESSURE AcMoss THE oucT WALL. out To LocA. C0f1ANCHE PEAK UNIT NO I S K~ (3) TEMPERATURE RISE DuETo LocA Arao1M5ec TD 2So** =a " *

==11. ~ 44 00CTWORK OESIGN CRITERI A goofI none'w- )%---4 4 DC-MS-8S wev.o - '"T,l! - [ 5 1 .^..

v M O O_ W O r W. v w' 4 _REEEi.RENCE6-I'Fl.OW DiAGRAPW: CESE3-M t.oDOO REV.CP.9


4---

7 ,Ff NS-2525i l g 1 To 4.rmoM RexTest vessel SUEWO8m5 ~ ZM S-89 REY.O, ADD.I R CAVITY AMO MeuTftON DE & Duct 1.AYOUTS(SY BAHWSOH) l "..I ESES-MI-OSSO ) I g gg g gg g l

  • 2 2323-Ml-OSSt j

..3ZSZ5 MI0554 7 L } 4.G (H CALC'S -f -03OO-2P REV.O O -g, O O g u- - J..... n. IP N CEL[ ' _ FAN ' ~CMiVADPOCj04.- .g s u <= < cak Y . 30PPLY.E C34005. ~. ' ' ~ CONTAIN ME N T VENTILATION SYS TEM S NEUTROWDETECTOR: W E LCCOOLf N 65YSTEM (N D WCS) 4 FAh4.TKG~N O_C C R iiMA f=.NAV50 *l;-l O(ST-E5 Y):-~C FM IS,IC O e x a SE(IN.W..S.):.lf; (REEZ.l) l OPERATINGODNDITIONS. LEAKAGE., @ DUCT-SECTIOf Ct.ASSIFICATION s~ m w as s a TERIA - DESCRIPTION (FROM REMAPF4 REFEREMCE. SAFETY SEW ffc UCTtOM INTERNALO) TEMPER 4ltstf?s:-PRE 55. N O!W Cf ASS CATEGCRY.7YPEE PRESSUREptWG DUCT SPACE IN W.G. SUP.P!;Y DUCI Oil-O*. B N ST. .E > + j . I;3 RETURN ~ DUCT *. ~ 2' O. 33TO!!i. .II.' ~. [ g3S, i s' COOCING'COlC NOUSIN6 f.!. RNS "Ir ^. } h.D CO,I g; 2.23 3 E 47 f RETURN OUCT*

  • S 4-L' - rRNS.

tr.. ~ (; 5, X // y ,/,/ / / / NOTE 5:(I)lNTERNA(_ PRESSURES arc 15ASEO ON GISB543flLL CAlfULATION someco sunnces secosupostatso TEXASUTILITES GENESTING CO (2)MAYlMUM PRES 5URE. N CROSS THE OUCT WAlf. DUE TO LOCA. COMANCHEPEAK UNIT N01 C3)TEMPE.RATURE. RISE DdE. TO LOCA AT 40*ff$EC TO 280*8: ,'" g, -,g,, ' sg_ w 00CTWORK DESIGN CRITERIA 300/ r. um, m = . M. uA, oc-retri - aav, o

k

E E E E E E E E E E E E E E E E' W E E REFERENCES,8 h h h h i FLOW DIAGR.AM: 23Z 3-MS-oSco RE.V.CP-9 Z SPECit'lCATION-23 2 5: EXHAUST MS-8S A REV.O Pt.E NUM fE FAN 3 OuCTLAYOUTS(SYSANNSON)' } i E325-MS-OSSZ _----p-H - - - - - > = 3 .2 ESES-MS OSSA 3 3 2323 MS-0555 {RgM 4' 0 To CONTAINMENT -0 0-4P E V. O

p-

.( rd EXHAUST FAN CONTAINMENT h h V E N.TI LATI O N sy Te= s s CONTROL ROD DRIVE MECHANISM VENTILATION SYSTEM (CRDMVS) FA N TAG NO. CPI-VAPNCfb-CI,- 02(ST-BY) CFM: G2,too sAcH GP(IN W.G)1 "T.ZS (RcP;2) DUCT OPERATING (DNDITIONS LEAKAGE Oc ACRf PTt ON RM CONSTR-HOM' AsNomAL CMTERIA REMAi:tKS f35FEREMCE. sAFeTv ee wxTen istemnAu., m - e m.u m = CLASS ' ATE'JKY TYPE PRESSURElitWG oucT SPACE IN W.G. c5t"^",%94,WNLaT) 1.: o. NN5 E MT '$d '*U M 3 '~ 33 ece~um 2. 1 sss 2 3s di% '2% n 3 i-SS h ExMAUST QUCT 0.* (, g4 NS E ^ fTt I 5 0

  • I " 5' $

3, U M OF ~ /~ // / // / / / NO TE5:(1) INTERNAL PRESSURES ARE. BASEO ON GISSS& HILL cat 4ULATIONS-(2) MAXIMUM PRESSUF:E. ACROSS DUCTWALL CUE TO LocA. asAsco sautvices INCORPORATED TEXA5 UTILITIES GENERATING Ca (A) TEMPERATURE-RtSE DUE TD LOCA AT 40Y/S!C TO ESO'*. =Q M ' ~ " " ' ', COMANCHE PEAK UNIT NO I Sl<- g .wov si w /M, -J aI OC-MS-85 gev.o i

r m_ r-y3 r-c -- m -~. - - - -g REFERENCE S: g g g, 1 FLOW OtA4 RAM: E32B-M l-soo REV.CP-S SUDPLYFAN 2 SPECIFICATION 25258 ) M S - S S A' REV. O '. 1 E & Duct t.A' routs (by f3 ANN $oQ coNTAINMENr .I 2523.MI-C 55o AR w; O .Z ESE S M I-OSS4 - .3 E5ES-MI oSST. / -^To REACTOR coot. ANT PtPE ~ 4 Cs i H cat.C'S - pan etinAreoNa ~ - 03OO-SP REV.I - 73 coNramucNr p' ~ ^ '

  • DJ I

- Tuest sEctioni AncsAnet Suppt.Y f"AN FOR LOOPS 2( 3 AHo e g4 co N TAINM E NT. (, ST-fBY) g ~ VENTILATION SYSTE MS REACTOR COOLANT PIPE PENETRA, TION COOLING SYSTEld(RCPPCS) FAN TAG NO* CPI-VAFNfSL-ol.cz.oS,oe CFM; 2000 EAOf SP(IN WAh 10.0 (REF: 2) 6 DUCT OPERATING CDHDITIONS LEAKAGE S DESCR!PTl Ot4 ( h REMARKS REFEREMCE. M r c_:_Y SE:sffc UCTtOM INTERNAtJ.0 TEMFER."!!RE*FFF.E55. N E Of W CLASS CATEGORY TYPE PRESSUREIKWG OuCT SPACE IN W.G. ,f SUPPLY DUCT $7, ' N N'S .TI' ] I,b g SUPPLY OUCT 1-E NNS 3I; + } ^ g DO 5 h I*b l ir / / / / // Y // / / / NOTES: (O INTERNAt. PRESSURES ARE BASEDON GreOS$Hft.i.CAlfUf.4TIONS, seasco essmcas wecomponarso TEXAS UTIUTIES GENERATING CO. (2) MAXfMUM PRESSURE ACROSS DUCTWALL DUE To1.OCA. CONANOE PEAK UNIT NO 1 sg-yg **",, a (3) TEMPERATURE RtSE OuE TDLoCA AT @T/Sec TO 280*F. ," e DUCTWORK OES'GN CRITERIA Boo [4l a aou a mu hl4 DC NS-as e e.v. o i "?$ !4 l

M~~~ M ~~~ M M~~M' W D .P RE F f. R g NC lL S : h h 3 h h (Y) 6 g, p to w o, Aggay ( F373-MI- 0500 REV. CP-9 f SPaciFICATsoNs 8, ['3.-CPt -VADFoc -C8 .I 737 5-MS-82 Rtv. o 800.5 - FAlt CLOSED ft 2.525 -M S-92A ret I ..e .N 3 puCT LAYOUT (BT BAHNSON) ap-.. ..-.e.. -l 25?5-Mi-oS5 To 055+, ' N *Pl-VADPOC-07 N I 0759 4 0760 C g 4 q4 g cx(c, o3co-3p,RN4 All NED ATMosPweRic 3 To vARious - CoNTAsuMENT RECtRC. Fee 4S AIR CLEANUP

  • g AR E AS UNITS Y st NoID O

~ .l./. q -- CouTAmue uT FRou VARious -._p.p= _h ( (-cpi-vAoPoc-io AREA 6 Cot 4TAIMME NT g g AIR CLEAN-UP g SY6TEMS i CoHTAIMMENT PREACCESS FILTRATION ~ SYGTEM" (CPF6) FAN TAG HO CPI-VAFuAV-Il $ 12 CPM' l'4000 EACH S.P (IN W.G) 8.0(RILF. 2.1)(REF: 2.2) + 3 ' AIR. CLEANUP uwlT TAG No: CPI-VAFUPK-17 4 I& CFM 15,000 OUCT OPERATING CDHDITIONS LEAKAGE ' ' ~ ~ QMM @STR-Me' A%omAt o s= e g e P T S N RON R.E M AR.K*- RSFEREMCE. ~~ ~ SAFETY 55'5M!.- 'lCTCM INTERNAL (t) TEf.4FECTifE*c-PRE 51 gg,.; O-.A S 3 CATEGCRr TYPE PRISSUREIMWG ouCT SPACE IN W.5 RETURM DUCT '" 2 3 I NNS H, lj3 29 Re.TuRu ouCT 5-4  %

  • 4 I

'I#/ -~ NHS E DAMPE.R TO CLEANUP UNIT 9-to -50 PSIG fGo/ 280 li3 l ) _. AIR CLEANUP UNIT h.$g HMS H E s'u E' I; 2.I

  • 3 pR
  • 4*

RETURN cuct 5-G-7 -83.o *

  • f> ltof stof 4 5 FAN SHUT-OFF l

~I CLEAWue untT To FAN 91-12-15 06 I

  • io P5a6 / 200 /f80 PRESSURE q3 I

RETugu puCT 7-8 +0.1

2) 12 5 l'20 /

i;3 NN$ H FROM PAN DISCHARGE ID*l4 ap pggg 280 f f80 / // NOT E 5:(e) :NTE.RNAL PRESSURE.S ARE. BASED ON GISBS 4 HILL CALCuLATEON 5 asAsco esRvicas INCORPORATro TEXAS UTILITIES GENERATING CO (2) MAXIMuu PREMuRE AccRoM Duct VAu. puE To t.ocA COMANCHE PEAK UNIT NOI S K-E. g DUCTWORK CESICN GliEFuA soi/i .Aer ,, m.i4 m ])(ig_.) g4 00t15-85 uv.o k

O M M n __ D n M .m V G p....D O R a re me NcEti s g g g g g

f. F LOW DI AGR AM g

_ PENETRATION MV-l .I 15th-MI*03OO REv. CP-S E L. 6 6 7'- G- .t 1515 MI-O Soi REv. CP-$ r-PPVSS .) 1325 MI-0 609 REV Cf' 8 150L ATION VALVG. PRIMARY PLANT

2. SPEctricATION 1525:

c ps - VAoFec o' SUPPLY Ana Ptf

gug.gg g gy, l b

g REF.+ SE .gHg.80 R E Y. O. AD O.1 EJ

3. DUCT LAYOUTS (BY BAHH50N)

VARIOUS AREAS [3

i tat s -Hi-osso To-osss

.1 252 3 -MI-o75tC760,0M24045 ',"yco,", WENT. g / -(f /

4. StefcH 5x-sos /I mav.O g

\\ ,3 ggg3.gg-gggg et ass. iTf. ~ /\\_ /\\ ei.3zm-o e e.c

s

\\ +. ' FIRE DAMPER C'**E" " ison_Arion valve c e s - vAcmec-o s c es-vau n ua -os CONTAINMENT AIR c, i-vA ceoc.g. CLEAN UP SYSTEMO CONTAINMENT eLos. _ FUEL HANDLING SLD4 AtJ W. &LOS C O t4 TAI N M ENT PU RGE SUPPLY SYSTEM (CPSs) S0,000CFM + SECTIO l CLASSIFICATtON OL'CT OPERATING CDHDtTICNS LEAKAGE -~ NN ucM' =%m re. DESCR'PTt ON (FKCM R.Eh1 ARK ~- RSFERENCE. CIAi9P) Ot mSNAus) M*NM*MEM .o ggjtp'- CLAS3 ' ATE'd'.RY T YP E-PRESSURElitWG our.T SPACE IN W.G. eT[cTHIAS'n."'*"# l'- 1 N N.5 I 2) ~ gm 'r" I' 'I 'O'

  • I * * *

^ j _ SUPPLY DUCT, ELEC. HEATER (8 .To. isot. vAtv n. 2-s NNs 1 ,3.0 [ M*81 /see / SUMMER AMD WINTER t F est Vits Dest &M CONDITIOM5 1.2.; 3.I; 3.1 PEHETRATION M Y-I ' 3-4 7. 1 + l.1;1 1)33)3.3 l f Iw"sE'a* cESElinMENT. - 4-s 3 I pd $f74

i. ; s.:

3 l &_ ELECTRIC HEATER AND f f / / l . 04NPeas iN surety nucr. NH5 E / / l Nort 5:ce m re.:% ,==-et-.rts a. 4. e -w c N aie.=.s t :..i. cAtcier.ariot e o seasco senveces wecoaronavuo TEXAS UTILITIES GENERA 1'ING CO (s) max. PRESSURE ACROSS DUCT WALL DUE To TORNADO (tate 4 COMANCE PEAK - UNIT NO I S K-l (5) max. PRESSURE ACROSS DUCT. WALL DOE TO. LocA. . m-DUCTWORK DESIGN UilTERIA 3O1/2 l . w ii m a _E 1-A,,(. OC-t15 85 =sv.o h

~- W WW W W W W W W7 T-7 D f 7.. f U' W L T \\., T W g % "q"""E"r _ A um et ReFERE NCES:

l. Flow OI AG RAM %

gg gg g .I 2 32 5 - He-O SOO R EV.CP-9 PEH ETRATION SM-Y-z .2 232 3-MI-0301 R EV. cP-S .5 2 32 3 -NI-0 309 REV. cP 8 O O O 'U c pf.v4 O pse-ov c s-a-vAomoc-os

2. SPECS FICATION 2 3 2 3 :

I MS-8G REY. Y

3. DUCT LAYOUT Dwd5(8v8AWH50N) g

.I _f323-M6-0550 70-05.6 .t'2515-Hs 0759,-0%q-041,-0765 FRoM VARIOUS \\ .3 2 32 5-N1-OSS2 AREAS IN O courAm uc u r _ _ _ _ _4-

==. w- @

4. 5tCETC H t 5sC-309/2 R EV, o PRcM et. sis *-s I

-,yto,g, s a y car.c s g .ogo9.gp REv.t. ToTHe.coMe g g I cro-vao ocoe $$xmmenr~ Y"' h ~:'~'" -

  • N.

~ ,,g,,,, TKisRRY PLANT EYHAUST -ce -v4opsc.os penET'iRArion

  • H-V-i4 -

c"8'v^DPSC fo R I CONTAINMENT AIR l e t. _s y s. e,. ('I.EAN UP SYSTEMS. C O NTAI N N4E NT PU RG E EXNAOST SYSTEM [C PES 3 30.OOOCFM (5ECTIOrts 1-2-3 4-5) l Co r4TAINMENT PRESSURE RELIEF SYSTEM (CPR6) (SECTION5 6-7-6-9) l + l =e l SECTim CLASSIFICATtON Ol'CI "I "b l^ DE SCR!.c Tt O P4 (FROM* ^"O**'- RE M AR.K~'" REFEREMCE. M-Fc-Y SE Sn.- f.!CTIOM NTERNAT TEMFMG!TFFF,E S S. OfAI W' b CLASS CATEGORY TYPE PRESSUREINWG DUCT SPACE IH WG, I 3 1 ~ l'8 I I'll D'8 1 E CONTAIMMEl4T. p PENETR ATION e M-ll -7. 23 2 1 I.1}2j3.I;3,3 g l "A"n^? nan 7. W X % i.2:1.3; 3.2 s-+-s 3 ~1 P " R i M " 8 3 2 n s n T. I

  • M

'% '2% i.z; 3. : 3.3 '-v c PEN ET RATION

  • M-E-i4-7-S 2.

I l,2,; 2; 3,1 NN.To NiI usT oucT. B - 4, 3 I ) 1.2 ; I. 3; 3. 2. NOTES:(s) NTERNAL PRESSURES ARE. BASED ON GlBB5 ( HtLL CALCULATIONS nummen ggnvicEs tNCORPORATED TEXAS UTILITIES GENERATING (D (2) max PRE 55URE ACROSS DUCT WALL DUE To LOCA CONANCHE PEAL ( UNIT N01 SK-(3) MA). PRESSURE ACRoss Duct WALL-DUE To TORNADO (Lates)

==M. ,%ov. i4. is es K - l Arf OC-MS-85 u v.o ' mcwsf. I i J,, m: 1 Y I

W W W W W W W W W M' l Ml G f'1 f~T. F + AUX.BLOG.,,CONTAIMMENT BLOG RE FE RENCE Is * 'l h h h h hb

e. FLOW OI AG R Atw :

pg pg .I 152 5 - No- 0308 R EV.C P 't PEHETRATioN Hh .2 2 3 2 5 - MI- 0 309 R EV.CP-8 l .5 2 3 2 5 -M1-0 Sol R E V. C P-4 l SUPPtx FAH7 8 El 87S'-' ( .2. 5 PECI FICAf s0N 15 2 51 l CPL-VADP5C-20 .I -M S - 8 5 8 REY. 0, ADD.'2 p N ,g.H5-86 REV. I i 3 i~ s s .s-ns-si Rev.o d l oVARICUS SPACES 3.30CT LAwuf Dw4h(sv BAutisa4) ,e ATHOSPHEsuC CLEANtNG UNIT i j ( I IN .I 2125-us-Osso To-os56 r CONTAlHMENT. C8'X-VA FT RT-0 5 .21523-Ms-0759;oN0;07624 07G5 .S 2525-Hi-Os5 2 T E3 c5eerCH sg-soe/l REV. o s.ot H CatC s CPI-VADPBC-05 CPI-VADPBC-04

  • 050s.lP R EV. I PPVSS PRIMARY PLANT l

E1'EI NSNun SUPPLY FAH 1. COtiTAINMENT AlR REF.4, SECT ON @ PIP NG 3 EF t.s-CLEAN-UP SYSTEM DUCTwo RK CONTAINMENT HYDROGEN PURGE SUPPLY SYSTEM (C.H PSS) 4 .FAH TAG No._CPK-VAFNCB-05,-o4(STAND 8Y) CFM *700EAOd SP(P544) = 5.2 (REF. 2.1) i OL'CT OPERATING CCNDITIONS 1.EAKAGE ~ D C '~' ~ R ' Yi -O P4 (Fg REMARXS P&FEREMCE. A'* -5AF:.TY 5 5'5 V C 'l"IlMI t h75RN A'.U) ~E!.'FSCI!WC %EM N',# p'- Ct.A53 'AT E5".RY T YP E-PRESSUREINWG Du"T SPACE IN W.i l SUPPLY DUCT g.2 pin S i o e p.t; i.2; 3.2 } 3. 5 . PLENUM TO CLEAHOP UNIT -3. 5 iso 88+ 3 l .'ATH. CLEANUP UNIT Z-5-5' I > 4 3,o )Q# 4'.-15.0 IN.W 4 DESIGN ~ . PRESSURE REFi2.5. 1.l; 3 1; 2..S o4 ~ 5 U e rt_Y Duct S-*

2) /no -[so+o

.i; 5.i I l'.LEANUP UNIT To FAH 3'-4 ugg -y 0 4 -%0 "^ H To PEN TI fl0 DG 04 [~,,% PENETRATioH et M-E-la s-c 2 I at omens I.:i 5.3 ; 2.2 .PIPlHQ ~ tHSIDE CCHTAINNENT G-7 5 I M"W""" M 3 3*' a / // T2=BM&b No Th St(i) m TE RNAL PR E55URE5 ARE EASED oH ogBBS ( HILL CALCULAT10N S E5ASCO SERVICES INCOctPOftATED TEXAS UTILITIES GENERATING CO (2J H AX. PRE 550RE ACROSS DUCT WALL DUE To TCRN ado ((afn) COMANCHE PEAK O NIT NO I S K- [ k ". mss g e DUCTWORK DESIGN UsITEnlA 301/4 wo v.i 4 g -J p/- OC-t15-85 = e v. o man. 1 f 1 "i i i,i

, i V

M M ~~ M ~ ~ M M M MA O O_ C + T R AI N "A" Aor. SLOG, CONTAINMENT R k FE R E NCE 1!s 3 PRIMARY h h h h h hpIPtHG PENETRATIONeMM-Mh h I. F LO W O s Ac.R A M : i E2 HAUS,4TMR Et. a ss -so 2.15 2 5 -M S -0 309 REV.CP-8 { t.152 5 - Ml-0 5CI REV. C P-1 l PtEno TRMM A* 3,13 2 3-Hi-0 50 s REV. CP-+ f Etr.4 j s SECTeoNh$ SOLATION WVE

1. 9,PECIFICATtONS 2313 :

pggy CP3-VADPSC-tS N S -8 5 6 REY.0, AD D. 2. C unit et ~ H5-86 REY. 8 ~~ +---7 REF.I.3 MS-81 REV.O, ADD.3 X-VADCrC-OI EXHAUST FAN ATH.CLEAMUP UNIT T M FROM Mtl0US .1 323- - 5 0-05 / SPACES IN 2 2575-hl-0759474-044-01G5 CPX-VAF N CB-01 C PX-VAFU P K-49 hg ,,,,, d M -CPx-VADGC-OZ cg g ny 3 ts23-ni osst ~ CPK-VAFNC5-02 ( ATH.CLthiUP UNIT [CA EXHAUST FAN G C* 5 C PX-VAFU PK-to ISOLATION ELVE 150LATt0N VALVE 4~ ,,,,s, 4 c- - - cpl +ADPSC-OI C PI-VAD P BC-0 2 PRIMARY PLANT ExHAt.MT ArR PLENUM l TRA:n a REs:.* CONTAINMENT AlR SECTION M 3 (7) g-(5) CLEAN-UP SYSTEMS. 1Run s~ CONTAINMENT HYDROGEN PURGE EXHAUST SYSTEM (CHPES) FAN TAG No. CP)t-VAFNCB-01,-01 CFM = 700 SP (IM.W.G) = S.S R E F. 'L.I + O t.'CT OPERATING CCNDITICNS LEAKAGE DSN "0D' WO W A'- CRITERIA D E ~c-f g s or, c g p, gg ~ 5ACETY M *JNL- 'lCTIO N INTERNAuo 7EMPEC M.E*r5." M ' C'*^) L, CLASS CATE5CEY TYPE PRESSUREINWG our.T SPACE lH W1 _[ IHs [AtHMENT D e_ '-2 - 3 I BY OTHERS l.8 ) 3.8 3 ^ PENETRATION H-E-tal 1-3 'l I }- l'5Y OTH E R.5 t.5 ; 2.2; b.I E ';1s. I P2WCa0" M 4.4 r.svor e s ;52:>5 UNir 3 2 ATH. CLEANUP UNIT 3 I U 2,' II A*I5 $'III'3 M PR SU R EA N N TO ' FAN --' 6 3 I 1.o; 3.2; 3. 5 ='un n 3 1 -s* x X ..u s.213.3 / // %. T i u .w.. *..*.. ~. 3 a.w e : -o N ciess(aiu cA-Cm> ries : es AsCO srRvlCES INCORPORATED TEXA5 UTillTIES GENERATING CO (2) MAv. PRESSURE ACRoss DUCT Watt DuE TO TORNADO (CAfvt) jg ,g COMANCHE PEAK U NIT NO I S K-DUCIWORK DE51GN ChiTE61A 30t/5 i . AcA_ Nav.is. n et A%G-l gh DC-t15-85 e e v. o sawsf. f R i i V

m I'~~\\ T1 m m m m m fm n D m, O m E-n T-n r-r nEPanaNems: CD '.1 Z3ES-MI OSOE REV.CP-8 .t Z325 M e OSOS REY.CP-It ] .3 2323 MI.0509 RE.V.CP-8 T-

2. SPECip'ICATION 2 52 3 8 MS-SI REV.0,400.2

& DUCT LAYOUT (BT BAngasson) I { glt Q -MI-oG50 To 0657 4 4 / ~ k 40 4.5 KETCH SK,-So9/s Rev.o 5 S. G 4 H CALC'S C 3 - 0 309 - 2 P RE V. I T Floost EL 852*-G De = _ Auxt t_e ARY .SA8EGUARD_ f SunbotNE. SWILQiNG [,,m,,1,SoR ESP" ,Y Pne6 Coil Uh88TS p SS-PRit4ARY PLANT PUMP rooms SAFEGUARD BJtLDlWG PLY AIR PL.SNUM VENTILATION SYSTEMS REA 4 SECTsoN@-$ DJG VEbJTilATioeJ SUPPL.Y SYSTEM [6BVSS) (JNIT NaI-24,500 CFM s AFEGUAR.D SUILD FAN Coll tad No: c PI-VA AUSE.-os; ot; os; OG; 07; od CPM

  • 3MNTEAcetC(sert')

i -;+ cps -VAA USE -11; 12; I5J I4 CFM: 4500 EACHI(peC2) e, OtJC7 OPERATINGCDNDITIONS LEAKAGE SECTIGi CLASSIFICATtON ~. ^ " * * ' - R.EM AQ< 6 REF EREMC.E. C c " ' R' '"= T t O N (F SAFETY SE85M'c UCTtCM INTERNAt.IO TEMPErJIIIRE*rfT.E5ff DI N CLASS CATESCRT TYPE-PRESSURElstWG DUCT SPACE IN W6. _f SUPPLY DUCT (*) 1-1 MNS I 1.f; l.3; ~ ~

  • E I.lj 3 SUPPLY DUCT (e) 2-5 MNS I

J s not "oj 7,LQC-^ i,,; 3 ~ 50FPLY DocT (*) 5-4 NNs T 5 ga d fr[t N T M* 5 [ [ 5)DWPEltS p4 SUPPLY DUCT 5 HNS 3I ~ ~ / // (( ALL uwiTs 1.1. EMERGENCY FAN Coil UNITS 5 I 1 / / / NOTES:(O IwTE RNAL PRESSURES ARE. SASED ON (tBBSsL HILL CALCOLATaoM S seasco esavoces sucostposeATse TExA5 UTIUTIES GENER ATING CO l (2) uAviuuu PREssume Aestoss pocT wAu. Due. To vostwApo (LATan) COMANCHE PEAK UNIT NO I SK-pg _,,,, l . m-DUCTWORK DESIGN UtlTElilA SO2/l ,,,, ww. s. nen M4 OC-ns-es se v. o "Of ' fk

w m_ m_ rm rn r-n r~n _m rn m m .m r rm__ r-r r---, r- --. y.- -. n_ RE FEMEf=4CE S s 6% g /I\\ l Flow 08 AGest A>.9 : W W .I 25 t S-MI-OSC E REV.CP-8 .12323-Mt 0303 REv.CP-51 5 232S MI-0309 REV.CP-8 4'

2. SPECIFIC ATI ON 3 occT LA10Uf(6f IWeW5ow) 2323-ul-oc5o to ocs7 4 g

o7e g4p_5-__. r !/__ ig%g,m/2 nevo E -0 309-IP REVl _=. 4r.f.VA.DPft D..= 6 0r-c CP s r prvEs SAFEGUARDS BUILDING' sap eauAsto .. Auw st_ tasty c suico Ne muito Ne aw,4Ausf Ann VENTILATION SYSTE.M5 N YsSe SAFEGUARD BulLDING VENTILATION EXHAUST SYSTEM (SBVEdijuMIT No.l. 44,3OOCFM ~. -- r + s OUcy OPERATINGCDHDITIONS LEAKAGE SECTIGi Ct.ASSIFICATION e assuosturt CRITERIA 'OESCRf cTt O P4 (FROh! g SF c_ _e Y SE!5M!- 'lCTICH iMTERNA1.fo TEMPECUttG.'FPRESa'M - Ol W O CLASS CATEGCRT TYPE-PSMHe8 utWG DUCT SfW.E IN W.& E.yMAuST. DOCT t-1 5 I NQ% I'8

  • 3 t.1 ; 5 N

E.%4AuST DUCT. 2-3 5 I exhaust pocT 3-4 5 I % 'M t.2; i.3; 5 P / / / / // / // / / / u oT ts:rs) a>JTE RNAL PRESSURES ARE BASED ON dfplSSS $ Hil.L CALCULATION S smasco eastveces --- TEXA5 UTILITIES GENERATING CO (2) uAuuuu PItES6uer. ACROSS DUCT wnu. Curr. To Toc 4Apo (LATEE) COMANCHE PEAK ONIT NO I S K-g DUCTWORM GESIGN CalIE61A 3oz /2 ,w .,,wov s _ i,es M A-OC-MS-85 m e v. o ^ k

V n n n n n D n n n n n n n o o r3 r-- v '4 i REFEREt9CE$1 J bOf ESEt. GsNERATOR AREA h W OfM W r. I 232.5-F4(-OSCE REtCP-8 { $ l . EXHAUST. PLENUM h --#" i b Z:SPEclFIC TIONS-2323s - 1 a To ouToooms .: MS-sf s REV. o; ADO.I 8 e M .2 HS-90 REY.O W a oucT urounoG58'ersANMso4 g a e 2 .I Z S 2 5 i M t. s 8 I l Exe4AusT FAN ~

4. G L' H C ALC S e

g j g -0502 -4 P REV. O L o Al. atEcr.seEATERS

  • l 0

' ^ ' ' ' " ) . MUM-ES.24,ot,02 DIESEL 6ENERAIOR AREA e I VENTILATION SYSTY.MSb SAFEGUARDS SLOG.EL8l0*-4. DIESELGENERATOR ROOlvt VENTILATION SYST Etvf(DGRVS)' l l EXNAUST FArtJAGNo: CPI-VAPNAV;ES TD 3 2,. CFtvt 50.00o' EN- SEQM W.G.)s t.5. (Ref". 2.I) i 4 .......-.. n. - ;.:. .e . f2.e.. SECTN36 Ct.ASSIFICATM)H 'Dyc7 {ERATING QM4DITIONS LEAKAGE i ~ DESCRIPTt 074 (FRofd " C ^^"- - - A RElvtARKS REFERENCE. SAFETY 55t5Mic UCTICH NTERNA1.40 TEMPERslIKE*FMESS.C M gg l ,o CLASS CATEGGtY TYPIE PRES 6URElalWG DUCT SPAct (N W.4 l .[ $"$$[-fe.,u SN TYr*lcAt PORSONIT5 13 3.1;.$.2 q ,,g. ,_ 3, ,7= o,g N YchE.'ID -C' I' - 3-3 ~'- TYPlhL fCR 8tlNITE.t i b.f j $.E .I + / / / \\ .a ~ a -p ~ / / / i ELECTRIC WEATERS NH6 2r TYPICAL FOR 4UNITA Z.Z., - ./ // ~ ~ / / / NOTES:Q) rNTERN A L PRESSURESMtE SAMD ON G#66$4 WILL cALCULAnoN4 seasco smeweces NTuo TEXAS UTIUTIESGENERATING CO. G) MAXIMUM PRESSU8tE AC4056 DuCTW4f.L DUE TOTORNADo(LATER). C0t1ANCHE PEAK UNIT NO I SK- , g e,g,a. .m DUCTWORK DE9GN CRITERIA SO2A/l w w as.ar fu, ;,/); DC-t15-85 Rev. o

  • $^

!O

E E E E E E E E E3 E E 4 REEE.RENCE ST \\ 01ESE$. GENERATOR AREA l.FCOW OfAdRAM.'. To ouTocou E523 MI-0503 REV.CP8

2. G PECIF 8CATIOt4S-2513-l EXHAUST";FNENUM h --*-

g $.83B REV.O ADD.1 S DUCT LAycuT(6YGAHNSOh n / 2 s& U ,1 2323 MJ-oGS8 er} 3 g .2 23 23 M s-oc59 o truAust-rea e o ^ v r e n 4.c.tu cuc s l[ -OSO2-4P REV.O 3 FM @~ = o owwm [p^' {e - Boom xV Otr.5ELGENERATDR AREA VENTIt ATION SYSTEMS

  • f.

SAFCGUARDS AREA Et.SIO-l D AY ' TANK R.OOM VENTit._ATION SY. STEM (OT RVM TRAIN 6 A&B + EXmgSMN TACEMCricela/AEt4CBiod$ 05 CEKiCECOD~ eA, ' SECIN.WE.)D;O (fREF.2).' = ~ SECTlhCLASSIFICAT1ON otfcr. OPERATING CDHD1TIONS LEAKAGE ^ " " * ' DESCRIPTlON (FROff REMARKS REFEREMCE. 4 SAFc_iY SEtSMr.- UCTtOM INTERNAt 0) TEMPEL".!!RE*F PRESS. @ ' g,g g CLASS CATEGORY TYPE PRESSUREthWG DUCT SPAm IN W.G. _f -EuYTS[sfh'E ^" I'O -2E T-l} D.I j S. 2 - 7 +08 a 12 2 / szz / TYPICAL FOR 7. _EXMAUST. DUCT-FAr4 o _y-- y s -~ + C. I /t 22 /s22 LlN1T6 li O'II D* g 'DJSCHAR:E TD EXMPLENUM f f f (( ~ l / / / 1 // / NOTES:( ) NTeRNAs. PRsseuRES ARE SASEDCM GIB6646tiLL GLCtt!ATt3NS 'E TEXAS UTILITIESGENERATING G (2) MAYlMUM PRE 55URE ACROSS DOCTWALL DuE To TORMAto$A 2T,uASCO SUMCES WCORPORATED cot 1ANCHE PEAK UNIT NO I S K-yg g DUCTWORK DESIGN CRITERI A SO2A[E . AAA-o ,Jmap,nas JM#/, DC-tis-BS aav.o h i 1 l ... =.

~ (. M E T ,E R E F E R E, N C E S - REF. 4 SECT 80N @

t. FLOW DI AGR AM:

e e 7szs-ui-03oz atv.ca-a

7. SPECIFICATION-2 515!

my '^ F##8 cP8-VApPQO-30 ,'2 L L E. C l r g ,3 gq s..) g. ggy,g g g .4 M S-32 A REV 1 E L. 652*-G l } l 5.COCT LAYOUT D% SY (W4NSO4 l P g O L 7575-MI-0652 TWitu 0657 4 SKETCH "J8C-30?S /05 DEV.O vaesous E . ; CA I 5 SKETCH SIC-3026/oS REv.o QCAL E y 4 Y et.ss2.cesi 6 u t 6.G 4 H calc's l C PI-WDPOU-82 ,g 3 g g. 3 p g gy,o M HOO5 SNG Fodt F LTERS ELEc T R SCAL Y HEAT

  • CDL AND MlHQ Aa EA -.-:

et. eno*- G R S Kguppty - WA 9MMQ FAN E.LECTRICAL AREA cps-VADPGU-04 (p VENTIL ATION SYSTEM S V SAFEQUARDS BLDQ FROM EM NCY . rau Cat l REF. 5, St.CT ONQ 1 ELECTRICAL AREA NORMAL VENTILATICN. SUPPLY SYSTEM (EANVss) ~ + FAM TAG NO-CP I - VAF N AV-15 4.IG CFM':15 000 ' CFM.f.ACH SR (14 W.G.) 5.0 W. 2.4) 4 j OtJc7 OPERATING CDHDITidNS LEAMGE ^ DESCRf PTt O N ( h REMARKS REFEREHCE. > TE N CLASS CATEGTr TYPE-PRESSUREIMWG DUCT SPACE IN W.G. s 5 AIR IMTAME TO DAMPER, I-2 HNG .E MAYi MIN TEMPERATURE 5 l [ , DAMPER. TO HOUSINQ 2-3 NNS Il WH R I; 3 HoustHG wtTH CDOLING 4 -7.0 44 4 mf 10 4 ello'F UP TO CL4. COtL f att 22 90*F JFTER C14. COIL I 5, 2.1 - ?. 3 M "5 E neAriwo costs Ano FiLTEas HoustNQ To FAM INLET ggg y7 COft. 5, I;5 co,L g, FAN ASCHARGE. TD Pt.ENUM ,N N 5 II i NkI [U OFF S yw;pg

e. u.

.5 ~~e x se-,- $ $ 4 Te.4N uat M I;3 3 4 w WN DUC o } NOT ES:(s) IM TE RNAL PR ESSURES ARE BASED 04 GISS 54 e4 ELL CALcutATeoN S seasco servicus peconPonATuo TEIAS UTIUTIES GENEflATING CO ,m _yu COMANCHE PEAK UNIT H0I $ K-(r) uex: MUM PgessumE. AcROSS pocT vmLL CUE To ToRMApo(LATER) , Aaa-CUCTWOfiK DESICN CElTER!A So2 2 /I ,,,,wov, m e6 AYay1,4 DC-MS-85 nEv o moc. 3. 1 i

iY

4

REFERENCES:

98 ~ h h6

8. FLOW Dt AGR AM -

To EMmGEMM 2525-MI-0502 REV.Cd-S ' Roof vENTsLAToR $4 M$ 1 SPECiFfCATaoN 25258 f1 ELECT R ecAL -P4S-83A R EV.O - = =@= -== g psi y A = = - mat - = a4---V-AAEA 3 CUCT LA1 DOT DWG BY BANHSOM EL. 8 52*-G' To coTooong, 2323-M8-oGS2 naeu oc.57 l l ' 3 5 SKETCH Sat-3028f 4 RsV.o 4 SKE.TCH SC-302 S f 3 R E V.O g E3 ) & GiH CALC *S l -03o2 -3P REV.O 3 p _ \\} _ _ _ _ _ _ _ _.4+E'Eggpt g EL 834*-6 g 856*-2 ROOE VENTILATOR Q e - ELECTRICAL ELECTRICAL ARJ.A Y -Ed L - j, d+ A*shd VENTILATION SYSTEM S y77 qgfy--- et To ourocons a FAu et uusTs SAFE GUARDS BLDQ J ReA s secTiow O ELECTRICAL AREA NCRMAL VENTILATIOM EXHAUST SYSTEM -(EAMVES) + ROOF VENTILATORS: ' CPI-VAF NRV-Ot (02): CFM: 15000 EACH ~S.R (84 W.G.) '2.0 (REF: 7.) ~ SECdGi Ct.AESIFICATION DUCT OPERATIM CDHDITIONS LEAKAGE CONSM MA' usamAt CRITERfA 08:

  • CR *Tt O r4

( REMAMS REFEREMCE. SAFETY 55f5M!- UCTION INTERNAUC TEMPEN*FPRESS g j .o CLASS CATE5 CRY TYPE PRESSUREINE Ouc.T SPACE lH W.& an4AusT cucv To.

-2

- 3 1 -o.Go a esa / iis / THEst secTim artearE -o.4o fett fat 2 puRear, meenwat co.e. li3 cinav TY camPEas 4-s ~ %[

  • Nws 3r I;5

-LO ExuAusT cucT g-]., NHS It 80 4 exhaust occT 1;3 ? / / / ~ / / / ~ / / / NOTES;D) ouTERNAL PRESSURES ARE BASED eM G38654 saLL CALCULATION S EsASCO SERVDCES #GCORf* ORATED TEXAS UTILITIES GENER ATING CO m MAxiwou PRassuns Aegoss cucT WALL cue To ToRMADO(LATER) cot 1ANCHE PEAX UNIT NO I S K- [ us "y u ,,,uov. s_ rum M 4/4_ CUCTWORX CE5tCN CRITEFCA 3o2S/7 : A u-OC-t15-SS a ev.c, l

i

M M M M M M M N N M M N N 4 AEFERENCES: a m m n

8. FLOW Ot AG raw; M*)

W W W 2523-Me-05o2 REv.cP-s g

2. SPECIFICATION-2 3 2 5 2 MS-81 REV.o, ADD.O.
3. Duct LAYCUT DWG SY EMHNSON 2325-Ms-oGS4 0656

$UPPtY CucT To 7 ~ ~ ~ ~) i-EXHAUST DOCT rROM

4. 5 KETCH SK-3d2B /l REVo uerrRCat.A:eA(

I g EtecTRicat AREA ei.. ese-<. S.se<Eroi sc.3-so2e/t nuv.o et.as2'-G E,* * $ tim" * # " cpi-acw-a f ru cat uw g n,ycate i Tl gc SfEk5 N 3 j g -0SO 2 - S Pg REV.O d-h en-woPau-at +-.- I I-c I 3. _ _. J ~ j ~ FAM CoalIN8T ELECTRICAL AREA i CPS-VADP40-65 VEMTILATION SYSTEMS l SAFEGUARD 6 BLDQ ELECTRICAL AREA EMERGENCY COOLi% SYSTEM (EAECE9 EL 852'-fo + FAN COfL UNIT Na CPI-VAAUSEL-IS (IG CFM: 3600 EACH 5.R (su W.G.)" 2.0 (REF. 2) N SECnm Ct.ASSrFICATION Ot!CT OPERATING CONDITICNS LEAKAGE w enmat EM DESCR'PTt ON (FROM, SAFETY SE*3M'- ' 'CTt OM inrE:tNAus) 7E*.*FEC:2!R**rFSES.. RE M AQf<,,. REFERENCE. g". g# O* CLASS CATE5 CRY TYPE PRESSUREIMWG Du'T SPACE IH W.G 9.j;h 5 I g.2;3 D RETUeu ouCT I FAM Call UNIT k.' 5 I tQsu I;2;3 r1 PEsc.A owl l SUPPLY DUCT ~ 3 I ~ 3*3 y -/ / / / / / / // 1 // / l w oT ES:(s) N TERM AL PRESSURES Ans. SASED OM 4eOOS d W LL CALCutATaoMS asAsco somcas escostronATED TEIA5 UTILITIES GENERATWG CO l (2) MA:g. PRE.SSURE. ACRO % DUCT- *lALL DUE TO TocJADO, (LATER) COMANCHE PEAK ONIT ho I S K- [ ka "TM DOCTWORK CE. SIGN CRITEhiA goto/3 a

===u. l wov.uus aw,%r oc-rts-es auo 1 naa. f a a: V l e

gggmmwmwm m 4 RE F E REr4 C E S g g g g

1. Flow OI AG RAss4:

2323-us-osot REv.ce-a Q MS-88 RExo, ADa.2

t. SPECIFICATION - 2 3 3 3 :

e

3. OtMT tActJT CW6 BY EWelSou SuPPo' DUCT M ELECTRICAL A2f4

/ -7 E375-M6-o652&o656 exhaust DUCT FRoM

4. SKETD4 Set-3028/l REV-0 EL. 8&o*-6 g

S ELECTR8 CAL AREA

5. SCETCH SK-502B/2 REv.O CPI-Md48 {FAM Ct>LM g/

E.AuvS5-RM 4 EL. S to'-(, g4 g y g4tg, g SECTCM @. Q c e C, -05o2-5P2 REv.0 m (p) ,6. -+ \\--I s TT i (C--od 1 t __a e cri-vAorso-6ol -rm cost uu T ELECTRICAL ARE A ~ VENTILATicN SYSTEMS SAFEGUARDS BLD4 ELECTRICAL AREA EMERGENCY COO ING SYSTEM (EAECS) EL. Blo'-G + FAN Cott UNIT N(2 CPI-VAAUSE-17tl8 CFU: 3600 EACH S.R(BJ W.G) 2.0 (REr-il - 5 OUcT-OPERATING CDHOITIONS t.EAKAGE ~ ^ DESCRIPTl OM ( M REMARK RS[EREMC.E. T A'E M F

  • N O

~~ CLASS '.ATEGCRr TYPE PRESSUREIMWG DUCT SPACE !N W& ', I IJ3 RETURN DUCT 2-55 -3 5 j,j, 3 I

  1. "egega"t c h I;f;5 FAN COfL LHIT 3eg SUPPLY DOCT 3

I I;5 ~ / / / / // / / / NO T ES:(8) IN TE RNAL PR ESSURES AME. SASED ON GsBBS ( HsL L CALCutATION $ Esasco SEstvtCEs weConPonATED TEXAS UTil.ITIES GENERATING CO (2) mar. PRE 66uRE ACROSS oucT watt pue To TORNADO (L ATE 3y COMANCHE PEAX UNIT No I S K- %- TM cucTwora cEsicn csirEsA soze, /+ Hu3..w. c 1,( oc-ns-as mo l l I l

g m g y m w mw gum r 4

REFERENCES:

b . F Low Os AGRAM: 2525-ul-o302 REY.CP-8

2. SPEC 158CATIOM 252 5:

.I MS-8 9 REV. 0, AD D. 8 .f HS-SO REY.O ADD y .5 ns-si REv. j .4 l t S-S1 A R EV. 8 I 8 .5 H S-84.s a EW. t ( OcA f 72 25 d L i t

3. Duct LAfour Dar Bf ESawsou e

To MAM stet.M 4 = A U 25-ul-4.G sH CALC,oG54 THRu oG5G FEEE"wwATER ARLAS = \\ 1 so m FANS / I t = .g'_OAI 5 5 4 = s' -0 30 2 - 2P R EV. o >CP3-VL DPo p -85 g g 07 Noo. ,<T.-s e M U "w 7 L cei-vnoppo-55 BJ ]l HEArou4 cost & i cootiNo cost cri-vAcccc-cA i d MAIN STEAM AND 6 FEEDWATEll'. - AREA ATioN MSTM FEE E A _ _ ELECTRICAL AstEA n a~ c u EA_.- 1 seauAnos am MAN STE.AM AND FEEDWATER ARE.A SUPPLY SYSTEM G4SFWSS) F-AM TAG No: C PI-VAF-N AV 874 IS CFM: 7500 EACN $.FI (IN Wo): 50 (REF 2.4) n' i DtJCT OPERATING CDHDITIONS LEAKAGE EChad CLASSiFICATtON CR1TER REMARKS REFERCHCE. DESCR!PTI C N (FROM, SAFETY SEISNf'- UCTtOM INTERN AUO TEM.".CC:!WrPRESS' E CLASS CATEGCRr TYPE-PRESSUREtM*G oucT SPACE IN W.& -oL 80 i __f ArR INTAX.E To CWMPEIE l-2. NMS E POM RATURES 'I3 ~ cofUiESPDHD TO SUMMER 4 DudPER To HOUS4NG 2-3 N46 H WIIGELDESi&RGBelTa0MS I;5 h l 8 03 3-4 NN5 H ~ HEA$suc,cNsfNN costs .p, c I; 2.1 - 2.5; 3 M(( $.p A M~_f ER HT I; 5 uMS II AIR sNTAKE To PAN's ch"To pEkNic. k -9 "MS E P Sun li3 Lw PdR 'QERENT I;3, 2,5 ire 9-80 3 I esot_ATt cm47R

  • hd h N EE nck-8$5 gYs IJ 3

$%t9A dg%$^" 80 -88 NuS E N oT ES:(s) iN TE R N AL PRE 550RES ARE. BASEO oN diilSSS(, HILL CALCULATsoN S reasco ssmncas enconMMtATED TEXAS UTILITIES GENERATING CO (.2) maw. PREssocE AcRoss cucr watt. DuE. To TostwAoo (LATEa) ~ COr1ANCHE PEAK UNIT NO I SK-

  • " Tu e

DUCTWORK OESIGN CRITEfdA 302C /t >=w. g n u. /bplA OC-t15-85 9tv.o ,J. J., T

y ww suum w numm murj ame ummy - - wi - uur n w. r ~' e

REFERENCES:

Roop vEufruaTost m$ i.pi.o w o:A s = A v :- zs25-ui-o3o2 REV.cP-8

2. senos.sc Arnou s.n 3:

. ins-asA esv.o

-e===

1s15 84.I REV.s j DCA 37225 4 To comosas 1 fff3,jg,4 Tg,7,"f* '^ I

4. G i H c4Lc5 g

8 .oso2 sr arv.o I / E ) -.- { 5 -+- 4-w+ s.,+-- l \\ ? cP3 -VADPSI-Of este.ssure reAusiewT y cri-woero-s,

SotArion cmrea poos vEwTitArost Ce -vroroc-44 I

4 J etEcTaicat. AREA _ To spoosts SAFE 4ueJt.os stoq _ mas 4 STEAM 4 MAIN STEAM ANO. -.FEtDWATER ARL A FEEDWATEstl AREA PIPING AREA _. VENTILATION SYSTEM S MAIM STEAM AND FEEDWATER AREA EXHAUST SYSTEM (MSFWES) + FAN TV NC: CPI-VAFNRV-o3 $ 04 CFM:7500 CAcs4 ; S.R (tu W4): I.5 (REF. - 2.1) = DUCT OPERATINGCDNOtTIONS LEAKAGE ~ MCT!GI CtASS?FICATION ^*"O**' REMARKS REFEREMCE. 'DESCR!PTl O N (FROM SAFETY SE'5M! - 83CTIOM INTERMAt.fi) TEMPER.Ut!qE*r PkESS' gg g '; CLASS CATEZEY TYPE PRE 55UREINWG Ou!.T SPACE IN W.6. /~f* '#3/ '#*/ ~"5 ExxAust oc To -2 uus n

  • D'us,catgrut enawant 3,3 s

l4 SPS4 / 340 M 40 Sot ATioN DAMPER c To mas 4 STEAM ~* ~ Qd y,F E, 2-5 5 7. est DcA 5

I, 2.2, 5 y

kT["[% h*d.'y ~ NNS U l,3 l T.: ./ / / ', s l / / / l / // / / / l NOTES:(s) INTERNAL PRESSURES ARE SASED ON Ga365 4.HetL CAlcuLAT80NS smasco sanvocas sNCOR*ORATsD TEIAS UTILITIES GENERATING CO (2) mat. PfEEOSpeF ACROSS cVCT mht.L Duf., TO TORWADO 6ATEE) COMANCHE PEAK UNIT NoI S K-ug l

    • RF cuC1wofiX CESIGN CRIIElifA 102C/C l

l new syn JMAM uL DC-MS-85 n e.v.o k l l lE-

y L v, m m n m_ m v-m n m v ryg r' 4 REFERENCES A4 Q3 Oz n' 'a'o~ o'^ca^~* v t.1$13-Mt-0 503 stEV.CP-s2. I v 2.13 23-Ml- 0 509 REV. CP-8 I l 12 525-Nt-0304 ol REV.CP-G 2.5PECIFICATION 1513 I .I H S. Sl REV.0, ADD.2. WARIOUS SPACES .2 M S-85A REV.0 EL 790'-E,813 -G g 3.0UCT t.AYouT DWG'S SY BAWM$0N s.25254n-0752.-075 5 t -015 5 f 831*-C i S S 1*-G \\ 1.242Wi-0151 T0-016 5.132 3+e-07s2 To -0 7G 8 3 PUMP ROOMS 7 5 e 4.50tETCH 58C-309/8 R EV.O 5' 08 8 H CALC ~6 ?. CPx-VADPFD-SS CP3-intPMC-05 ~ 7"~ - _4_ b2 rinEorseEn av LoCKE0 0 FEM 1

  • 030~" "EV8 l

LOCAL TAN COIL cpx-M DPFD-55 FLoost EL.813'-6 l--PPV55 .N g ' uniisi eusmo pg,nagy, taur SERVICED. T.TU - SUPPLY AIR PLENUM {0gF CE REF.4, GECT10H $g gggy gyg(gggg BtNE BLDG VENTILATION SYSTEMS AUXIUARY BUILDING VENTILATION SUPPLY SYSTEt4 (ABV55187900CFM 1 FAN COLL UNITS FOR PUMP ROOMS (FCUPR) l FAH COtL UNIT TAC: HO CPI-VAAUSE-054-04(ESF) CFHs3 GOO SP(IN.W.G) = 0.7. REF.1.8

cpl-VAAUSE-OS (-eO (ESF) CFM*5000 SP(tH.W.Cr) = 0.7 R E F. 2.1
C PS-MF HCS-0 5 (HON ESF) CFM* 3300.. SP(IN.W.G) = a5._ REF. 2.1

/ 4 4 DL'CT OPERATING CDNOlTIONS LEAKAGE ~ 5 Oc

  • F C T t O P4 c

RE M ARJ<,*~- REFERENCE. '~~ SA.ETY 55 5M!~ UCTLOM INTERN AUI) TEMP'OTERE*r F%E S ". n -- 7~ -~ CLAS3 CATE50RT T YP E-PRESSUREINWG OucT SPACE IN W.1 O SUPPLY DUCT (*) l-2 NNS I I.1; i.SJ $ "~ 2-3-4 + t. 5 ) 32 f,o4,,/ ALL. DOCTWORK.. _@ I*'I 3 8 / 122 p#21 SUPPLY DUCT (P) 1 DOWNSTREAM OF SECTION 3-5 A 5 $ t.ANPERS IN SUPPt.Y De rTS HNS E Tt N Y / / / l ~ / / / 1 [ CPI-VAAU52-05,040Sito a3 2.s LOCAL FAN COIL UNITS (ESF) 3 I LOCAL FAN CDllUNITS(NCHEST) HNS 1 CPI-VAFNC B-05-~ : l

  • 2. 2

.sor = c c. rc.:... _ ncs.- ri.s a.w c w.a c c. c.e.35 t...u. ce-Certe nce 3 anoco semicas suconeonArm TEXAS UTIUTIES GENER ATING CO COMANCHE PEAK U NIT NO I $ K-(1).H AA.7PE550RE ACROSS DUCT WALi. 00E TO TORH ADO- ( M ue) ,gg .g CUCTWORK CESIGN CRl!Ehta 303/l , A4 A-a ,

  • tov.s. n se, J M of DC-t15-E5 cm o i

1 x.n?. 4 v

r t m r"w_ _rMm _ r-w att r-w w-, _r-4 y TURBaNE BwDG=2 h FROM OFFICES h FROM OFFICES TURB4NE BLDGal PPVES RE FE RENCG5: .E. y% E m{, y (SERYlCE BLDG EXHAUST air INTAlfE I.FLo w oa AGR ant S n--- PLLHUM, REr.4 SELT10HM p. .4 132 5-Mt- 0303 REv.CP-31

  • T.1325 -MI-O SOS REV.CP-S CPX-vAD PFD-85 O

CPX-VADPFD-68 3 5 1315-MI- 0304-8 REV.CP-G l g l,

1. 5PeCinCATion gg 4

e l

5. DUCT LAYOUT OWG5 av SAHMSONe k

3 2 .I 1323-Mi-0752,-0753,-075 5 h .12323-Hi-0757 To -07Go 1 AREASsN Jeg

4. SKETCH SK-509/2. REv.o FROM VARIOUS Aux.ELoc.

1 1

5. SKETCH SK-309/3 REV.o J-wq G. SicETCH Set-S03/5 REV.O e

CPK-VADPOC-77d CPX VADPOC-53r

7. SKETCH '5K-303-0Y2. "REV o l

LOCKED OPEN , LOCKED OPEN 3, 4 4 H CALC'S' dL ~0 30*t -g p AEV. I FROM DEMISTER BYPASS DUCT RE.F.6 SECTICH@ ETESftEF.6 SECTioN @ Ol5CH ARCr E 'M AUXILIARY BUILDING FROH FHBYES.-M REF.7 SECTION@ . O ESF EXHAUST UNIT VENTILATION SYSTEMS REF.5 SECT 10NQ AUXILIARY BUILDING VENTil ATION EXHAUST SYSTEM ( ABVES) =J3.600CFM + 4 l Ot!CT OPERATING CDNDITION5 LEAKAC,E SECTICH CLASStFICATt ON CCNSTR NoSteAt-anAr. CR1TER!A REMA S REFERENCE. o e e. g

  • e T, c. g (pg3,

' ~ ~ - ' nggj.; SAFETY 55'an-1CTIOtt mTERMAt.to TE.vPSUN_*F PF,ES S j CLAS5 ' ATE 5*Rr TYPE PRE 55uREtawG our.T space IN WJ UNT [ CTM l3i3 ,[ TEXHAUST DUCT l-2.-3-4 3 I I -l.S (1) 30 4 / 804 / DOCTWostK m TustasNE B4.D4 _ EAH AUST. DU CT 2.- 7 (IN AOK.' BLDG QMt.Y )' 38 / ggg fili NO,1(t]SHMS,H0HSEISMIC 3*li 3 l 3 g i 10 4 EX H AU ST~.DO CT 4[h' 3 I y P / / / // / / / / /// .'.o e * :;..~ ; e.-.. n. ia. -. i.s A N e v-a e e. ca.w. mu. cc-C n.r r p. : reasco assmcas sacoaconATED TEXAS UTILITIES GENERATING CO (2) max. PRESSU RE ACROSS DUCT WALL'DUE TO TORNADO ((Attv) COMANCHE PEAK UNIT N O 1 S K-OUCIWORX DESIGN Cf:ITERIA '303/2 , 4aA. e umy.cias Nu DC-MS-85 a e.v.o h ~ m

m a mW W M W W mi'M M M @ CM S' W M + AUX.ELDG _. SAFEGUARDS BLb'G

REFERENCES:

l UNIT *I. g, p:LO W OI AG R AM : h h h Q .E2323-HI-0303 REV.CP11 8 .21 25-MI-O SOS REV.CP.S SUPPLY FAN

2. 5P E CIFIC ATION-2323t CPY-VA F N AV-t S TO FILTER STORAGE MS-32A REV.I

.1 - M IT

  • l.

3 0001 LAYOUT DWG5 BY BAK4 SON H005!NG FCR FILTLisg I HTG CotL(coot:HG [] .I2325-HI-0759 .2 2325-Hi-0760 Colt CPK-*CCCC-25 y 4 - =]D FILTER STDRAGE j N2 ~ i ROON UNITot* h l_SAFEGLRRDS BLD*G' ~ 4._5 KETCH : Sic. 309/s REV.o cpy.VAD 4 i 5'GiH CALC'S j -- } 7 " UNIT.2 _ _ , HiV EQPMT. -505-2P REV.O h l CPI VADPOU-O FAIL OPEN l Y AUX 1LI ARY BUILDING ePyss PRIMARY PLANT OUTSibE SUPPLY FAN

  1. O N

LCPX-VADPGC -16 AIR INTAKE PLENUM CPX-VAFNAV-2G REF:4. SECTiOH @ (STAND-BY) AUXIUARY BUILDING VENTILATION EQUIPMENT ROOMS SUPPLY SYSTEM (ABVER55) 4 FAN TAG NO. CPX-VAFNAV.15 416 (STAND bY).CFM: 30,000 EACH..SP(IN.W.Ci)

  • 5.0 (REF.2. )

Ol'CT OPERATING ODNOtTtCNS LEAKAGE ~ ' ~ OM "OM A'* C N A,_ CRITERIA n: e -c.e ;, a, g PSF N E ' " ~ ~ ' ' g SAFETY 55:5W ~ 'l Ut ' t t tNTERN A'. It) S *.* EWE'Fi% elf ~ g g-CLASS CATE% Rr TYPE PRES 9JREINWG DUCT SPACE IN W.G PC hum fo HOUSING 3-1 NHS I ~I 14Ait(MIN. TEMPERATURES l.2) 5 ~ Hou5t H G b 23 NN5 I 4 R GH oHD 5 8.21 3 ~ ~- _ SUPPLY Duct (*) 3-4 }7122,8/

  • st ito*F urTo coouHG CotL NNS I

- 2.0 m) Hous HG TO FA*4flNLET 3-4* l.2

  • 5 122 78'F AFTERCOOUNC Coll

' ~ FdN [ANYSCbARGE - I / 5 5 -8 2 ER 4 CO L I II 3 TDAHPER.5 IN_5uPPt.YTUCT H N S. 1,I (( / / / / // wen ... re..... = c.er - c u. e. s c.s-u e ~ ci.v:- -,. :,iu. co-cevu n ; * : reasco scavices mcon-onarro TEXA5 UTillTIES GENER ATING CO 12J MAE.?tE55URE ACROSS DUCT ~. Walt DUE TO TORN ADO (LA4cs) COMANCHE PEAK UNIT NOI S K-($ MAu NOZILE LOADS ON COOLING COILS 600LB5 AXsAt THRUST. 500t.8g ,,, M E. mE LATERAL FORCEJO,000.!M-LBS.BENDLNG.4 TORSIONAL MCMENT. N 303/3 . sov,3.esas Ji4 l v/, 00t15-85 yev.o h

v 'r-h REFERCHCE63 hh g 4

l. P LOW DI AGR AM i

.IiT25-Hi-0503 REV.CPill 9 .2 D25-Hi-0509 AEV.CP-S n 1.SPEClF.lCATION-2323: MS-91A REV.I f~ ~ ~~ ~ 1 DUCT LAYOUT DWG BYBAHMSON 1 N PPVES 8 2325-Ni-075S g EXHAUST FAN T CPx VADPGC-33 AIR PLENUM TRAltt'A* .3 2325-Mi-07G2. -PRIMARY PLANT EKHAU$T .12315 Mi-07GO CPX-VAF yv_-17 VAR 1005'5 PACES, m j TR AIN *A REP 4 SECTIONQs Q9 .,+.2 32 3 -Hi- 0 7G4 IN EQOIPtettfi 200*( I b h 4.5 KETCH SK-309/1 REv.O I l SiG i H CALC *SS -0 303-2P REV.O . l-n- - f l m,3 $dAdf4AV-2]8 CPX9ADPGC\\+ ""AU.tf XUX1LiARY BUILDlHG l ~ EXHAUSTIAN 3 JtEE;.4 SECTION g 3fENTILAT10N SYSTEMS l AUYlLIARY BUILDlHG VENTILATION EQUIPMENT ROOMS EYMAUST SYSTEM IABVERES) - 4 . FAN TAG NO. CPx-VAFNAV 2 7 g 15,.CSH )qoco EAcM. _SP OH.W.r.) = 4.0 (REF.1 ) DUCT OPERATING CDNDtTIONS l.EAKAGE DESCRIPT 0t4 ( ROM ,gyo t, REMAES REFERENCE. g 'd CLA33 CATES ~RY TYFS PPWIREINWG ouCT SPEE IN W.*> EKHAUSTJ DUCT l-1 -2.4 4 noe / so+ / ALL DOCTWORK ""I I TO_ FAN. IN LE T _- 2-5:2-5' /'22 _/ rig OPSTREAM OF FAN 5. I*I ** 3 M FJil D CH-OG V _DNPL 3'.4 NH5 1 I.2'; 3

  • 5*

3 I TY DMI d TO EHuH y / / / / // / / / / // so e r :.. ~ i .:,a.. an-is...cr.s e em_o e n sie,,s t aiu. cA*_c ir.t ncie - - esmicas mcoaronsuo TEIASUTluTIES GENERATING CO p) HAx.rRE$sumE ACRoss. DUCT; watt out.To.ToRnAto.(e) COMANCHE PEAK UNIT NO I S K- ,,, g, ,,ter K DUCTWORK DESIGN CRITERIA 303/4 ms. m oC-ns-es m.e ^ ^ k

.w. m m w m 4-RE FE.RE NC E S :

1. F Low Of AGRAM g

g g 1323-Ms-O SO S RF.V.C,P 11

2. 5P E CI FI CATIO N -

CPx-VAD PDC.-85 CPx-vADPoc-86 f M, 100CT LAYOUT M BY WNW FROM CONDENSER .I 2323-Mi- 075 s q s .2matsvMi-0762 PS m AG + puRBIBE. GLAND

4. SKETCH5K-305/2. REV.O,

STEAM SYSTEM _ pcx.vAMEDM 'MVES~ DEHISTER HOUSlH6-d f Exi+AUST DdCI @ _REF.4, SECTION Q)- BY PAsSA PlPlH G g m3CMORE AUXlLIARTBUlLD. LNG-popoc. VENTI % TION SY. STEMS EFLUENT TREATMENT EXHAUST' SYSTEM (ETES) 4 ~. GEN 13JIW5Jueg;_tsoo(Mtw)_ 4 SEcrim CLASSIFicATlof4I DL'CT OPERATING CDNOtTICHS LEAKAGE mm. e u-CRITERIA DESCRf PTt OP4 (FROM SAFETY SEf5M!- UCTION INTERNAtJo TEMPE8MMU?rMESS9 S. RUEETE. U CLAS3 CATESCRY TYPE-PRESSUREINWG OUCT space IN WG ~

_ EXHAUST _ DU CT_

NHS H

i. g 13 3

~ ~_ EXHAUST Duct' I.. 3 I ~ J t; 3 ? / / / / / / // / / / / / / I s,y... ,. :..- u... r..... es 3 s. - e.. _ : % :..== a, s.. 6 e es*_::.r. r r.:.. : - - sumaces necon=onaw TEX AS UTILITIES GENER ATING CO ~ (2) HAx. Pressure ACRoss Duct WALL DUE To TORNADO (4*A). ,Da COMANCHE PEAK ONIT NO 1 $ K-DUCTWORK OESIGN CRITEftlA 303/5 _f y>9 +-v., oc-ris-es ,,,,nowsises ..v. o 7$. .I. i s. l

g g g g. M E M E N + (I) R E F E R E N C E.5-

1. F LOW 0 8 AG R ant ;
t. 2323-Mt-c%5-os Rty.cP-7 2.2525-M t -obo*J REY.cP-8
2. SPECS 3*.lCATO oNS - 2 3 2 3 :

I'lS-8 8 R EY 0 ADD.2 b-- -

3. Coct LAvouT dY EAHusoN) i I

2323-uS-osso To oess g(RE g

4. satETcs 4.y -m/s ptEv.o g

7 4 E G 4 H CALC S -309-2P RE Y. PPv55 MlOOS AEEAS FRIMAftY PLANT

  • 3 op FukL IWC.maq 8

/ mLp4 surpLv Asa PLE.NUM. frEP. 4 7 7 SECTroN@-@ O + ~ FUEL HANDLING SOILDtMG L ocAL Eu EucY VENTit.ATioN SYSTE MS AuwlLI ARY BLD4 REL H480 LING SLDG L FAN CotL ON T (ESF) FUEL ' HANDLIMG BUILDit4G VENTILATION SUPPL.Y SYSTEM (FHeyss) 31,350 CFM 4 FAN CotL UMIT TAG N0. CPX-VAAUSE-os.$ of CF+4: 4ois.EACH; 5.PGu W4)ct,SS (IEEli 2) SECrim CLASSIFICATION OlJc7 OPERATING CDHDtTIONS LEAKAGE 'DESCRf PTt ON (FROM ~ E' "40" A'- IA REMARi<S REFERCt4CE SAFETY 5Ef5M!- UCTICH INTERNAus) TEMPEC!lIF*r PF,ES S DIMM N, CLASS CATEGCRY TYPE PRESSUREIMWG ouCT SPACE IN Vli ) Q*" 8.I,1.2; 5 SUPPLY occ7(s) t-2 NHS I + SUPPLY DUCT (*f 2-5 NNS I 2) mMW q l.1; 5 MMM9ERS 14 SuPR.T DUCT NMS ]I [g"MMMMSER 3 l ? / / / i ~ / // l EAM Coll UNIT 5 I I ALL UNITS 2 2 1 // / l woT E S:(i) : wTE RN AL PR ESSURES ARE. BASED ON 4158 5 4. HILL CALCULATION S EsAscD esumcas $NCORPORATED TEXAS UTIUTIES GENER ATING C0 (t)Manuou Psts.ssuns ACRoss puer sau. out To Toamoo (LAtesQ COMANCHE PEAK UNIT NO 1 S K-i [M" tw, DUCTWORK OEstGN ChiTEhlA 3o3.os/s l u nov. s M vk DC-M5-8S eno mus?. 1 4 Y l L

mW W W W W W W MWW m W mW @ W W W" 4 g g gg R E F E R E N C E.S; Poot No.

t. F LOW OI AGRAM :

semon @ I. 2 525-MI-0 505 -O e REuCM stEF. 4

2. 2 52 5 - Mi -0 505 R EV. CP-8 FIRE DAuPC.R-2 SPECIFICATIONS -

CPx-VAE8tFD-45 I 5 DUCT LAYOUT (BY BAetNSOM) z523-ul-osso To can /' \\ 4 SKETCH so3-on/5 REV.o ^^ CPx-vADR:C-M {"""" 5 SeeKH 505/2 REV.o L^^g,^'y,^,( '

  • D$^I'mEv..

p l 4 -o i am. -E, 4 4 - - - 1 - - -;.. -. T, - -.. < ~ DUCT. SE4TLou$ / r Res:. s 1 N FIRE DLMPER I CPx-ac.eco-45 N[. 4rarou 55rts p FUEL HANDLING SOILDtMQ Aux LEARY BLDG FUEL HANDLIM4 ELD 4 VENTILATioM SYSTEMS FUEL. HANDLIMG BulLDI G VENTILATioM E%HAUST SYSTEM (FHEWES) 31,350 CFM + B DUCT OPERATING CDHDITtCNS LEAKAGE DESCRIPTt ON RM STR-MER A== N e w As. MTEM REfvtAR.K5 REcERESCE. SAFETY SE!W!,- f.'CIlfeFL t MTERN ALCs) 75MFSCICIT.*F ME! f * .g9 CLASS 'ATESCRr TYPE PRE 550REltWG Dur.T SPACE IN W.& p- .[ EXHAUST Duct [.$ 3 I ~ )% % $7Eg#k 4 g I.1; 3 o ~' EXHAUST DUCT g,( 3 1 b eitg ,,,; 3 J X> % =;g; i.y s E m ueT over 34 3 1 / // / / / // / NOTES:6) twTERNAL PRESSURES ARE BASED oM QlSOS (HILL CALCUL ATION S (23 M Axeu uM PRES 50EE ACRO % DOCT WALL QUE. 'o Tor.uAoo (LATER) COMANCHE PEAK UNIT N01 S K-ESAsco SERVICEIB INCOR*0 RATED TEXAS UTILITIES GENERATING C0 [h" OUCTW0sK DESIGN CFtITEtilA So3 -o t/2 ,,,uov.s.esac, Mok - DC-t15-85 rav o iii;

m W W W M M M M M M M M M iM M W' W WW 4 b b b RE FE R ENCES.

l. A Low ot A& RAM t 2525 -MI-o305-ol REY.CP 7
2. SPECIFICAflo N S-2 3 2 3
  • HS-S1A REV. 0, ADO.I EXHAUST q.,

1 DUCT LAYOUT (dv CAHMSON) e 2323-MI-c850 TO 0855 F """ **

  • f "" * *]
4. SKETCH St-505-oi/2 REv.o C"huECTION To g

3

5. G (H CALC /5 EMBED DED PI PF.

8/ _. J_a N8 -0303-ol tP REV.0 --_4-w g w Y P D asA I _T I ,f-- g yr** * $T -,. _/ I i u _.

  • crews @< @

o,sT, __,3a =4 E.*HAUST fol-THESE SECTIONS ARE THE SAMe. mot Sf'ENT FUE.L FbOLS No.1 AND No.2 ~ FOEL HANDLING BUILDIMG VENTILATION SYSTEMS SPENT FUE.L PJoL EXHAUST SYSTEM (SPPES) ~ k FAN TAG No CPX-VAFNAV-534 54 (SPENT f"UEL ftOL Na l} Cp4* 4500 EACH 5.R (H W4.):5.o (REF 2) FAN TA4 No. CPX-VAFMAV - 55 4 5f.(SPENT FUEL FteL uo.2) CFM 45co ELACH S.M (N W4.1s.o (REF 2) SECTICH CLASSIFICATlON DUCT OPERATING CCNDtTIONS LEAKAGE DESCR!PTt ON (FROM

  1. 6#

"E# ^"3 " * * ' - REMARKA REF ERe.MCE. SAFETY SE'5M!c 'JCTION iNTERNAt to TEMPEUUU_*r PRS 2* ggg.; CLASS CATEGCRY TYPE PRESSt!REINWG Duc.T SRtcE IR W.& _f EXHAUST DUCT l-2 NNS NCHE lj 3 DEMISTEIZ HOUSING 2 NMS MONE 2] lijf g;3 '~ E.'AHAUST DOCT 3 [,I.4 D 3 N45 E I I I ~ lj3 EX4AUST DOCT 54;4-7 MNS II + l ' I;5 k ExHtOST odc7 5 7. ) 1;3 / / / // / MOTES:(s) INT E RMAL PRESSURES ARE. BASED oN GIEOS(HILL CALCULATION S EBASCO SERVICES INCOR* ORATED TEXAS UTILITIES GENER ATING CO CD MAxlMUM PsrE45ustf-MAoS$ DUCT WAU. DUE To TogNADo (LATER) COMANCHE PEAK UNIT NOI S K~

  • [ k ~y OUCTWORK GESIGN CftiTE6iA go3.ci/3_

.,wev, n,isos JY_g-d,d, DC-i15-85 arv. o m.,if. f Il '"i i i

i V

~ M 6M M W W W l_ FM'El D_ C% W W W W W + RE FEERENCES: 1 FLOW DI AGRAM: g J 2325-MI-OSO4. REV.CP-it FROM CRE.f S T R AIN B* g, SPECIFICATION .I 7 D 2 3 M 6* 8 T R EY.I sui F : 7.5ecTfC N Ot.

3. DOCTLAYOUT(BYOMfNSON) v 8

q 1 ES23 Mi O T56 A /C UN e T U .I E323*Mi 075S l (TYRFOR+ cur \\ .3 2523 -931-07G3 \\ P cex-vAmeou-rs a A zo2 5-vts -OTG6 N, gt /

4. SKETCH SK SO4/E.REVO To CREFS TRAsN',(B L 1l REF:6 SECTION S E CTf CNS@-@-@ @ ARE.SAME A SKETCH SK SO4/5 REV.o G. SKETCH SK*504/5AREV.0 F Ro M cRMASS FCR FOUR A/C UNITS OUPl"LY I OKED @.SO4/SSREED

] ggyggy S SECTION@~ REF: PLENUM ll P' "

  • . '3

.gp igy.1 ^ To cRES - 1 REF:4 SECTIOH@ 1 I L., - I 11 N' & $~ S 5 $e"ci?c* ( ". CONTROL ROOM AREA / $TEMs' TION f NG N l } _ i conTRot.noou vAnsous spaces, j l l -CONTROL ROOM AREA AIR CONDITidNING SYSTEM (cR ACS) ~ A/c uN rrTAEL NO. CPX-VAACCR Ot,02,OS,04 CF M 2 5,Soo tacM SP(IO W4.): c,(REF. Z)... + (mts_wsTsx OPERATES.DUR1HGi HORMAL, EMERGENCY 'REctRDUCATION, EMERGENCY VENTILATION.AND;l5OLATION MODES) ~. 6 Otff.T OPERATING CDHDITIONS LEAXAGE DESCRIPT1 ON { ROM M "0E

  • B NOR" *'

REMARKS REFEREMCE.: EW SEM INTERN W lU M N T MESS Ol>6fW4 @gjt., CLASS CATEGCRY TYPE PRESSUREIMWG ouCT SPACE IN W.G. SUPPLY DUCT (FAN) TO SUPPLY PLENUM O'I - 0 1 + 0. 2 O SG 10 4 TYPICAL FOR 4 na sc so4 A/C. U N I TS I I D i O* E SUPPLY PLENUM ~2-$' 3 I fjc u oMMO OR 4 g;3,,;3,g. SUPPLY DUCT (Pl.P. HUM 4.$ 3 1 +15 SG/ y s- / ALf.DUCTWORM DOWN-4 To sPActss)

.s.

/s6 71s stREAMor6utytyrumu li S. I ; e,2. i.. g Re.Tus.N ouCT(SPACES <-1 -i.5 r) rs f5 7s/ Att oucrumKa#BirfAM y To PLENtJvf')

8. at 3

I 7 Is oF RETLIRN PLENUM II D* I.I 3,I ..s RE. TURN PLIENUM 10-Il 3 I O OR 4 (; S, fj 3.2, $CT)c'R$ T("8' "" 4 u 8 Z D 3 .I FOR 4 ~ A/C UNIT HoustNCi Ib -0 3 I b MP 13 2.l;S.f j a.2 Du i If Elf imu HOTES:0) INTERNAL PRESSURES ARE BASED ONG 6f5$4 Nf LL CALCULATtOMS. smasco scavices suconronArno TEXAS UTIUTIES GENERATING CO. (2) M AXf MULA PRESSURE. ACROSS OUCTWAU.DUE To TDRNADO(i.ATER). COMANCHE PEAK UNITNOI 6K-uA DUCTWORK DESIGNCRITERIA 304/l Le_v.s. i9sr. MM DC-MS-8 5 nev.o O

Y h Y S Y W S 4 ReremeHcast b b b

1. Flow D' AGR AM 5

' EXHAUST .I 23 2 3 Mt- 03o4. REV.CP f E FAN .2 23 ED-M t- 03 0 8 REV.CP-b

2. SPECIFICATIONS ZS23:

(*$ 'T M S - S S rb. REV. 0, AD O.R m

3. DucTt AYouT(BYRAHNSON).

~ s '- ~ 3 l .: 2323 MI-015G .2 2 3 23-Mi- 0158 y cPX-VAFMGU-23 ,3g3g3.gg.Ol6b CRACS '/ ~V ~~+~~~ f4 2323 MI OT(sG REF.4 5ECTIONh@ f - E RETURN AIR DUCT =- To

4. SKETCH SK-304/1 Rev.o l

OUTDOORS h G$H CALC'6 OSO4 lP REV.2 FJ L:__ e _cex-VADPMu OE ' N CPJf-VAFRGU E9 EXHAUST FAN CONTROt. ROOM AREA AIR CONDITIONING SYST EMS CONT ~ROL R'OOrv1 EXH AUST SYSTEM (C R$6) FAtTTAGNOTCPY;VAFrqiD OT$O7.J(ONE ST-f3Y) cFMs t TSO.PACH "SP6H.W.G):4 5G(REE.1). + ( ruis sysreM oesnAreS' DURINS NORMAS. d.EMER4ENcy VBNTIt ATeoet Mootb OdV) SECTIGi CLASSIFICATlON DLect OPERATING CDNDITIONS LEAKAGE DESCRf PTt OPd (FROM ""C"^'- RE M AR.K:'- REFERENCE. cAFc-eY SE S!!! '.'CTIOt t tNTERNAUO TEMPERULSE*F Fr<,E51 pgggg CLASS CATEGCRY TYPE-PitE55UREINWG OUC.T SPACE IN W.G. f g,,3 3 g'g S y Z: A D OR EXHAUST CPUCT p ~~ exhaust oucT 5,- o, - 3 y ,j 3 r; 0;ljo'-l 3 y, M U R EXHAUST DUCT Wgp p g; 3 b f / / ./ / / / / / ~ / // No rn :.. w r gra...=ris,**CS Ed E?.MO C N Gle.a,g g,; gLg, CALCrgi,p_ fq Ca t ! )l ESASCO SERVICES INCORPORATED TEXAS UTIUTIES GENERATING CO (c) u^muum enessuam Acnose ovcTwAu. cue ToToRNADOCJm COMANCHE PEAK UNIT NOI S K- [Dg.4-OUCTWOfsK OESIGN CfilTEhlA 304/2 wov.5,_tMq_ KM 4/4 00t15-85 ney.o oms?. f 8 (": v

E E E E E E E E E E E E E E TRA8 N

  • a".

REFERENCES:

TR.As N *A* l ' Q i $Is o'I E ^c % I"*"'

2. SPECIFICATIONS - ZS23:

M 6 -9 Z 15~ REV.0, ADO.I

3. DUCT LAYOUT (6,0758,07f.

SYBAHNSON ToCREF5 To CRE"* 2 5 23-MI-075 TRAtH *A* T N4 *G* 4, g g g 7g y 3 g. 3 0 4. I REV.O REF.7 REP 8

5. SKETCH SK-504 A REvo suPPt.Y FAN SECTION @

CPX-VADEQU_.M-eEC.TioM @ supeix Pave c,,.,og.g g CPx-noecu-is G. Se(ETCH SK-304 bety.a T \\ l I G 8 j /

7. SKETCH SK.So4 S Aatu E3 8

8, h' 8, 8 8

6. 5kE rC H SK-304 s eavo oAs p

oAs

9. G 4 H CALC'S

+ ', - 0 50+ -I P REV.2. j l A l 7o caep,3m 3 N eu-vAoeou. 0 I Crx-vAcPou es I ne e. s. sectic l , CD-VADPou:17. M Yc'r",^,'l'g, CONTROL ROOM AREA ,Q,,.,c.c7 KIR~ CON DITIONINGr neP.+ secTioH@-6 SYSTEM S CONTR5L ROOM MARE-UP AlR SUPPLY SYSTEM (CRrvfASS) 1 -Ik (THIS 5YSTEM OPERATES DURINGTHORMAL'( EMERGENCY VsNTILATIDH. MODES ONLY)_ FAN TAG No: CPK-VAFNAV-S7(, TRAIN ~A-)-SS(TRAIN *Pj) CFM8 Soi)O. SP(HM.G) t.5{REF 2)7 -- l + l Otfc7 OPERATING CONDITIONS LEAKAGE s NSW ^" ^'- A DESCR!PTt ON (R REMARKS REFEREMCE. SAFETY S E'SN'!," 'lCTt SM INTERNAUG TEf *PECIP.!M.*F fT.E55 g g.4*,, p' CLASS CATES KY T Y P E-PRESSUREINWG Duc.T SPACE IN W.a. SUPPLY DUCT 4* - S' -0 30 3) .I' * "O 'O I o l} 3 TO FAN INE.ET 4-5 -o-20 804 glN d max SUPPt Y DUCT S'- O' - o. 6 g 7 il M TEM PE RATURES TO FAN INLET 5-O / -o 50 / 880 10' CORRESPONDTD g/3 g,8g,{ 3 7 2 6 DE II 3 k T d

  • j'I*

o p 6UPPLY cuCT CONN. 2-5 O { ~ 'gfo / )

3 4

3 g v To CRACs RET ouCT 2-3 -W "t ' 804 / / / / // NcTE S:ci:. ;~ r -,: a.. *r e.57,wt.s A. 4 c.+ s so cc. caise s t:os t. cA_cesut ncu s asAsco ssRvicss ancoR*oRATEo TEXAS UTILITIES GENERATING C0 (2) MAXIMUM PRE 65URE. ACROSS DUCTWALL DUE TO TORNADO (LATER) g e ,,g.a. COMANCHE PEAK UNIT NO I. S K- [ pA-CUCTWORK CESIGN CRITEh!A g4/3 m.3,8;se pG, ) g,f DC-MS-85 w v. o - /

w .v ww vm -u-R E F E R E N CF.5 8 g g Q g g

1. F LO W c l A G R AM -13231 Mi-0 304 RI'V. CP-It
2. SPECIFIC ATION -1313

.I HS SSB REV.0, ADD.2 .2 MS-82 RtEV.0, AD D.1 c ex-vAces u -oi 3.DOCT LAYOUT'DWG4(BYBAHttSOH) .I 2323-Hi-075G 9 + v .1 232 3 - MI,-075 8 .31323 MI-07G5 i e r

4. SKETCH SK-304/5 REY.0

$UPPhy$uc / l

5. SKETCH SK-304/5A REV.O REF.4 SECnoN@

s .t.

6. G-iH CALC'5 8 ATwosPHanec suP, PLY CREPS TRAt M *A*

-030+-IP REV.'l AIR Ct EANUP ONIT PAN RETURN DUCT 1 CPX-VAFuPK El neF.5 6eCTIONh g _g c.o M TRo t. RooN1 AREA AtR CONDITicNING l l SYS T E M 6 CONTROL ROOM EMERGENCY PRESSURIZ ATION AIR SUPPLY SYSTEM (CREPASS)-TRAIN A' FAf4 TAS NO: CPK-VAf'NcrS-oE-CI:MiCoo .SP(IN W.G;)* 17..O (R.EF Z.t) .M (THis SYSTEM OPERATES OuRIMS EMERandENcy macamculATf oN om sEMests.EHCY VENTILATioH e toOE-8[ ONLY) SECrio( Ct'ASSIFicATtON DUCT OPERATINGCDNDITICMS ,LEAKAG E. .D EcSCRI P'l~t O N (FROM OE Asursm TWA. REMARi$6 REFEREHCE. SAFETY SEfaf t - UCTION INTERNAt (t) TEMPEEtIIIRE*FPRESS r g r,y' CLAS3 'ATECRY T Y F C-P.t!55UREtttV/G Out.T SP.t E IN W.* \\ (ck s To DAMPER )- 4-5 3 I I' 3 ~~ -/4 TEMP RATURES 1; 2.2; 3 AIR Cl.eAN UP UNIT 3-2 D I - 18.0 811e / 88 0 804 CORRESPONO To 5UPPLY DUCT ATM d -M - /0 ENM 4MM 1 CLEANUP UNIT TO fat 4 3 ' I- -et.o / 880 / 804 DESIGN CONDITIONS g3 $NN cn'af=c, O-I S I' M I' 3 - Su P RLY '.DO CT7 - ATM 30 CLEAtiUP_._ UNIT ~ 3-D D 1 p) -M -M -$20l'. BEFOR.E AND - - 0.2 f tto /to4 Go*F. AFTER llEATlHS g5 g coll of AIRcuRNUP UNIT PResSU t an'p Notes:, is Tc Ars.. Pr.45?"iT5 Ace G

  • Ps.o C N Gle.%i titLL CALCfjf.t flC9 f 3 ESASCO SEm4CES INCOftPOftATED TEXAS UTILITIES GENERATING CO Cz)MAxsMuM pnessunr_. Acnos6 cucTWAtt. Due TO TD RNADo(TAT 1tR).

COMANCHE PEAK UNIT NOI S K- [h "g 4' OUCTWORK DESIGN CRITERIA SO 4/4 A ,xov.2, i=>as i #4, lg4 OC-t15-85 as v.o 7,$ .I y e. 3 s

W M M W M M MM g g g g g

REFERENCES:

1. 5 LO W O I AG R A M -13235 Hl.0304 REV. CP.-It
2. SP E CIFICATION. 2 3 235

.I MS. 8 3 8 REV.0, ADD.t. c Px-vAoPGd -0 2. .2 M S-Si REV.0, ADD.2 3.00C7 LAYOUT DWC5(BY BAHH50H) l .I 232 3 Mi-075 E i Y B. .1 132S Mi-0758 1 If / ~ 7 .3 f.313 Mi- 0765

4. SICETCH SK-3O+/5 REv.o g

l /

5. SKETCH SK 304/5B REv.0
6. C 4 H CALC'S 8 -

4 4 - 0 So+~- I P REY.1 SUPPLY ATM O SPH ERic C REFS TRAIN as* FAN __ Af R CLE ANUP UNIT CRMAS6 s sE m occr c P X - VAP U P s<. - Z Z 3gppgyggg7 REF.5 SECTION @ RE.F.4 SECTioN @ ' PX -VAD W CONTROt. ROO MTAREA AlR CONDITIONING SY6T E.M S l C ONTROL ROOM EMERGENCY PRESSURIZATION AIR SU PLY $YSTE M(CREPASS)- TRAI N ~Pi FAN TAG No: C P X - VA F N C fB - OG C F M r 800 SP(IN WCq)21Z.0 (,REF, E.1) + C THis sveveM ope = Raves ou=:Nas arviemenNcY futECIRCULATfCN OR EMERFiENCY VENTlt.ATION MOotte* ONLY) h SECTIDI Cl.ASSIFICATION OUc7 OPERATING CDHDtTIONS LEAKAGE CRITERI A - CCNSTR-Ho @ ' xe.4m at_ DESCR8 cTl ON (FROM ERENCE. SAFETY :5Eff J:.- OCTIOl't INTERNAs.Jo TEMPECTt!U_*r PGESS eg g 4 CLAS3 CATEGORr TYPE PRESSUREINWG DufT SPACE IN W.G. SUPPLY DUCT ATM 2,) ~ (C RMASS TO.D A M P E R ) 4,3 y g; 3 - 0. 2 Ito 104 M IN. d M A W ^ ) AIR CLEANUf" UNIT S*- 2* 3 I [ogpg5EMPEmu Ey lj 2.2 f 3 g CL ANUP NT FAN 8 I $AN TO CR 0*- l' 3 .T. M M I; 3 "PP" FS,

. SU.P P l.Y DUCT ATM (2) o 4o 420Y. SEFORE AND g 3 To CLE'ANUP' UNIT; ~

- 0.1 81 0 804 MMMNE I4 cost er AIR ur UNIT y PRE OR R NoT e s:ce. i,-. re.r.ru. 7w...mcs Ac.: cA! _o e m cie.as e. ais.t cAtcete.e recie s ) esasco sunvices mconeonarro TEXAS UTILITIE5 GENERATING CO (2) MAXIMUM PRESSURE ACROSS OUCTWAt.t. 000 TO TORNADO (LATER COMANCHE PEAK O NIT NOI S K- ,gg ,,, uA DUCIWORK OESIGN ChlTEhlA 304MB .wov.3, nas M ut DC-MS-85 se v. o - " ^ i i

i

M W g g g REFERENCE 6s

f. FLOW OI AG R AM z3E3:

M I-OSO4 REv.CP-11

2. SPECIFICAYlONS R3E3:

l J MS -SE REV.0, ADO.'L .1ful6-etP5RE ADD.1 cpx vAopeu os e px. v4 o.ou.4 s .i OUCTI.AYOUT SAW8850N) ] E S 2 S-M l*0156, G S 4 C6

4. SKETCH SK-50+ t REV.o

?%

5. SKETCH SK-SO4/3 REV.0 l

8 y [ TR 6,5 KETCH.6K*.504/4A REv.O IN & I p. tQ . / ,s.e p. 7eCTION @

1. SKETCH EK-304/56 REVO e

. - +. g g _T -r, a Gr 4 H CALC's s l ATMoSpodesuc 'k ~ AIR CMMP UNIT { f .y CRACS R C* CPK-VAFUPK E5 RETURN Atn 4 g g._ , CPX -VAWU.f & MRF".5 SE!CTICHh l N FleoM cREPAs6 CONTROL ROOM AREA I TRAIN *A* RDUCT AIR CONDITIONING RE F.s.sectroN @ ggy,4 SECTIOH0= -@ 5Y*T

  • M-*

~ CONTROL. R.OOM EMERt$ENCYTI CTRKTION 6Y6 TEM (CREFS) ' TRAIN *A' P AN TAG F40 s,CPX-VAFNcfb 26 Cf* M8 6000 SP(IN WG):II.O (RELfr. Z.2) + (Turs system oremArea ouRINe muumseNCY 5tECistcu( Arson.EMEft4ENCY VENTILATIOH{l50 TAT 10HM00E50HL'rJ OtJcr OPERATING CDHDITIONS LEAKAGE ~~-- STR-NW AsN E AL GREm DESCRIPTlON ( M REMAR.KS REFEREMCE. SAFETY 55f5M!c 'lCTION INTERNAL (O TEMPECTWE*r PRE *, egggp) p-CLAS3 CATE".4.RY TYPE PRESSUREINWG OUCT SPN.E IN W.G. RETURN oucT ATM CRACS TD CLEANUPUNIT "T-G 5 S I . z,5 I; 5 CN.NoNANUP UNIT 54S I [ ,M .M IJ 5 AIR CLEANUP UNIT S-2 'I f Rf I) 2.3 ) 3 N g6 RETURN DUCT ~y CLEANUP UNIT TO t= AN g,o 3 y 4 DESIGN CONDITION - f - l I.b so to4 g; 3 RETURN CUC*f FAM TO CRACS RET. PLENUM C-1 J I ~ - 1.8 / og f go4 I; 5 St.-15.0 N.W.4 DEstc H . PRESSURE REF.2.8 NOTE 5:NN TG ehA*. ?F.-U'.9 *e?l.S A.M C At V CN 40WM iIdl.t. CALCriu TlCt 9 f., ESASCO SERVICES WeCORPORATED TEXAS UTIUTIES GENERATING CO (2) M AXI MUM PRES 5URE ACILOS$ DUCTWA LL DUE To TORNADO (LATEST) COMANCHE PEAK UNIT NO I S K- [M **g DUCTWORK OESIGN GITE61A 3o4/5A now.a.issa JH d DC-MS-8's new. o ms?. 1 "i i i i.; i V

M ~' W M W W W W W W W W W W W -r REFERENCE 6: g g g g g ( Fl ow Os A6R AM 2323 M t-o$ 0 4. REV. CP-12

2. SpectncArtoNS 23Z3-

.I M 6* 8 7 REV.O, A00.1 f c P x -vAoPou-4E cpx.vAcesu-o4 .2M 5 S S f5 REv.0, ADO.2 3, ouCTL. AYOt.1T(6YOAusiso@ 23 23 Mf 01%. 5SJ.S( ( c

4. 58< ETco 4 SK 304/5 REv.O 3 SKETCt4 S i<. 30 4 /31t Ev.O s

l d SICETCH SK-3o4/4B REY.0 l T -_-rmm-g y,se< ETCH SK. So4/ 5A REV.0 l ll N

6. G ( WCALC'S1 f RON.j[

Ny l ATMOSPHSRIC

  • - 03O+ -l P REV.1 CRE F6 TRAIN *A* h AIR CMANuP U NIT Re f". 7 SECTION c PX. VA FQ PK-z 4 (RAr%

Rect RC, ret. At R, PLe_a NUM@ cex-vAceou z s pan Ra p,4 sEcyton CON Trot-ROO* 4 ARE A Sutou c R EPAss At R CONotTIONING reoM cR_uAss @ Mk8$ 3(7,ogg RE F. 5 bECTloN SyS7eg s C ON TR ot. R OOM EMERGENCY FI 8.TR ATI O N SYSTEM (CREFS) TR AI N"Pi e As T A c N os cpx-vArsce z4 CF Ms ecco 6P(INvVG):(E.c (REfr2.e) + (Tais sy srem oPan Are s ou Riws eMenaewey necincus.Arion, rHERGFNcy.vENTILATioH.MD350LAT10H1400ES ONLY.) N Ol'CT OP ERATING CCNDITIONS LEAKAGE CCNSW HM-Awch NEm DESCRf PTl ON ( REMARKS REFEREMCE. S*AFETY M *5Y!C "CTIOM INTERN AUO TEMPictlE*F %ESS. g'g~g p- .LA52 .'AT ~ ~-JY TYPE-P.G550REthWG D J *.T 5 PEE IN Wa RETU R N OucT ATt4 Z) G '- 5, 3 I [ /_ g' j li 3 cRACs To cLEANUPutilT i l /'g /jf/so4 M I N. 4 M AX 'I 3 ate 1 -f RE TUR N Duct b ~ 4', g D I I CRAC$ To Ct.EANUP UNIT - 2. 5 so y TEMPE RATuRES Arg y' ~ 40 ' AIR cl.E A N U P thll T 3 - 2' 3 y ,,L, -8834 80 7fo4 CORRE S POND Tb I; 2.l;,% u .W M SUMMER, l g5 RETURN Duct l y CLE ANUP UNIT To F AN g.- O' 3 I - 18 3 ] {t '40 NEsION.CONDITaoe4 / 80 /tod gI 3 N OCR RET. PLEHdhi O'- l' 3 1 43 / //

  • -ds'*J6nTI e

/ // NOT'f :O :. :N r M r u.. ? F.~.:'7-e78.5 A:M C * + W G N GME *2 t : tI.t. CA' Cf H. A D C D 8 !. ESASCO SERVICES iNCOR* ORATED TEXAS UTillTIES GENERATING CO (z) M Axi mum PRessune. AcRoss oocTWAL L OtJE TO ToftNADO(LATEC COMANCHE PEAK UNIT N01 S K- ,gg 24 , Ank. DUCTWORK DESIGN CRITERIA SO44f5 nov.3. ten M,A j OC-MS-85 nu o l i=ws?. f 4 '" 5 i i i

-W'M M M W W W W W W W W W 4

REFERENCES:

g g g g i

t. Flow Ot AG R AM :

2323-Mi-oso 4 REv.CPIE cPWvAoou za CPx-VAopsu-38 L specericATIows-2S2$8 FT Ms - sS ib.REV. 0, ADO.Z j

3. ou cT t. AYouT(BY 6MlH50N):

1 " " * " " ~- '"9 J 23 2'S MI- 015G j fT 5 2 2323-Mt. 01SS f .3 Z325-M i- 0 TG S l I/ To 4

c. at H cat.C s s

~~ ~ HC / W- ? = = - FA OUToooMS 7 i s n I L, l__ i J cPX-VADPod E F 'cPX-VADPGU SO -CONTROL stOOM ARMA ra p AIR CONDITIONING W v SYST E M S CONTROL ROOM COMPLEX KITCHEN 4.Tol LET EXHAUST SYSTEM (CRCKTES) FANTAG NO:CPX-VAF NID-OS 404(oNE ST 6Y) CFMs (250 SACH 6P(IN W.G.)5 7 5 (REF.T.) Y (THis system operates oda:Nai NonMAt-Ano-eMenseNCY VENTid ATIoM MODES ONIY) 8' SECTICH CIASSIFICATtON Dt!CT OPERATING CDHDITIONS LEAKAGE e DESCR'PTt O P4 (FROM " "O ^*O**' RE M ARK **- REFEREMCE. SAFETY SE!5M!- "CTtOM tNTERNA' (0 TE.V.MRE!!We PrsESS pp g ; O,,,- CLASS 'ATEGCRr TYPE PRESSUREINWG DUCT SPACE IN W.5. 0'- t + 0. 20 z) TG / lo4/ ALL ouCWK DowN-O 1;E g- -i EXHAUST DUCT I- + 0.20 f 7G fo o4 STRl'AM OF FAN oljTLET1 gI 3 g 7 i EXHAUST DUCT . f.~ g. 3 I [- '~ O t3 [ EXHAUST DUCT 4-5 7 i ALE.DUCIN0ftK UPSTREAM 3 7 ~g , _1, 3-5; 3-5' - c.7o 15 804-Or DAMPERS:. f / // l / // / / / NOTiE S:le ' t e@!.~ %. #F-W.** *e e.S AC*i G A.MO C N Gieyss a. tsef_t. CAL.CelW TIO' 8 0, ESAsco sEMICES p0CORPORATED TEXAS UTIUTIES GENERATING CO r (2)MAXlMUM PRESSURE. JACROSS DUCTWALLDUETOTURNADo(LATER COMANCHE PEAK UNIT NO I S K- , ge s 4 . MtA-DUCTWORK CESICil CRITERIA 3()4./g, l .,,,uavs asac. MWo'i' -l a4 DC-t15-85 ucv.o - '*7A I l 4.r

NyNg[ggy,4 P.E FE R EN CE.Si g, Ft.ovv DI AG R.AM ; S 2'bES-M t 0305 REV.CP-8 surety 09 T FAN

2. SPEC #Ff CAT 10NS-2.525

.f M S' 89 REV.Oj ADD.I 2 MS-SO REY.0,' AD D.I 3 H.5-3 I REV. I ' 5 .4 M S-StA REV.I S. DUCT LAYOUpoYBAHMSON): 3 r a L J Z3Z3 MI- 01 j2 \\ / (', To uNCONTRoLLao oAg 232 M S-5 4 Mrsc. AREAe, h CPX-VApPou-43 4 23 23-Ms.o"T56 3 gggg.gg g g g,3 i k ' 1 ' L t323 M g-oTG,c1 HOUS'ING FOR FILTERS,

4. SK'ETtH SK-Sos /2 REV.o HEATING COLL s S. 41 H C ALC*G s,

COOUNG Coll cPx-VAcccc-OS -0305-3P REV.O b UNCONTROLLED ACCESS ARILA VENTILATION 'Sif 6T EMS UMCONTROLLED ACCE56 AREA SOPPLY SYGTEM (OAASS) + ; FAN TM HO:' CPX-VAFNAV -314 52 CFM: 3t500 eACH 5.P(,N w.G.):G.5 dtEF-Z.4) m, I CLASSIFICATION DUCT OPERATING CDNDITIONS LEAKAGE CONSTR-MOS9t-enoRZ CRITERIA F_m SAFETY SE!SML-UCTION INTERNAUO TEMPECTitRE*F *RES S. O!W CLASS CATEGCRr TYPE PRESSUREINWG DUCT SPACE IN W.G. '"'dh!S,WE** I-z-S uns 1 WWN s 5 's ~~ -z o @ H I $lto*P. UPTO CoouNs tort. / HouslNg (3) 4-5 NNS X ,g =go.R AMMC00UNGC01L I; 2.5 - E.S ; 3 - NuSNG ThAN int _ETs 6 h -7 06 I 9 II O ~ b SUPPLY DUCT FROM FAN 0[*8 NNS E,. + A C g g g I;S ~ -o.s up to* 74o / max 4mLTEMPERATURES(_ TSUPPLY'.DUCCrO [HOU$lHCi 5-4 ' HMS f 5 CORRESPOND T030MMER. NINTER_DE$16N CONDtil0N: / / / / / / NorEs:m)iwre f:reAs. ;=ms.wnts Ar:E GASEO ON 4166S4 HILL CALCffLt.M094 S teASCO SEIMCES INCORPORATEo TEXA5 UTILITIES GENER ATING CO (2 MAXf MUM PRES 5URE ACROSS OUCTWALLVUE TO TORNADO (LATEf COMANCHE PEAK UNIT NOl S K-us (3)MAy..N0ZZLE. LOADS oH COOUNG COILVt00018,S' AxlAL THRUST,. ""AAA- _500LBS LATERAEFORCE,I7000nL85 BENDlHGTTORSIONAL MOHENT." ,"*g,,., m g, 4 pf, DC-MS-85 3o5 [t OUCTWORK DESIGN CRITE6iA n ev.o , i,. I i kf

REEFERENCIES:

f. F Lo vv OI Adi R AM 2 323 Ml-OSDS REV.CP-8
2. SPEctFICATIOM5 f.523:

MS-8SA REV.o r7

9. oucri_^yourgsAHgSON)

@ -- f -1 jP32Tu'i.%i c X.vso ..i r- - g ( .5 232S MI- 0754 A 2323-M l-O'I SO [] lEXHAUST 1 5 2323 84 t-O%3 AyuO'smeRa . } "T"4 \\y 3./. - -, { FROM fjNCONTROLLED r3N 70 + .c 2323-Mi o7 c.9

4. SKETt~H SK-SOS [l REV.O g

g l g5cEt LANEOUS

5. G $ H C ALC*S S

-0505 - 2P REV.O CPX -VADFtHJ -So I I t wT' ' t. f J l l h UNCONTROLLF_D ACCESS AREA VENTILATIOM m surety. n r '/

  • S(STEMS secTiOu@.

ne v=.4 UNCONTROLLE.D. ACCESS AREA'. EyJ-lAUST SYSTEM (twAES) + FAN TAG NO: CPX-VAFNid-05 ( O(. CPM

  • 25,250 EACH SE bH.W.Q:S.O (REF: f) n' SECilol CLASSfFICATlCN DUCT OPERATING CDNOtTIONS LEAKAGE S

^*" " " ' DESCRf PT1 ON (FROM REMARKA REFERENCE. SAFETY SE!SMfC UCTtOH INTERNAt.fi) TEMPECTilRE*pPrsE55. ~ pp.g,; CLASS CATEGCR'r TYPE PRE 55UREINWG OUCT SPACE IN W.& EXHAUST DUCT TO I-2

  • E* 8 (eg 4

304 At.t. DuCTWORK NNS E '-. u PSTREAM OF FANS ,I3 FAN INLETS 2-3;34 121 812 QHAUST DUCT FROM S S"4 5 gg3 g (r) g3 '.E xHAUST DUCT I". NN6 .][ 1;S + d j$ RE t URN AIR DUCT 8 dl MNS "IT. l)S / // / / / / / / N O T E.$:Ns N T6 DAt.,*I sis.%R(5 Af*d, $p,f.EO C N Gl8GS d. tstli. CALCf fMTICi t S ESASCO SERVICES peCORPORATED TEXAS UTIUTIES GENERATING CO (2)MAXIMUMPRESSURE ACROSS DUCTWA LL DUE To TORNADO (laten), g e. COMANCHE PEAK UNIT NOI S K-DUCTWOR!( CESIGN CRITERIA 305 /2 A RA-mav.uasl Ws Lpk OC-MS-85 e ev.o k

M MMV 4

REFERENCES:

^@ g g g

1. Ft.OW Ot AGRAM s ExHAu6r Z3ZS-Ml-OSOS RiiV.CP-S FAN
2. SPECIFICATIONS-2 52 5:

g g M S-S S A 'REv.O 1 O

= = = =

= = = = =,

==

,g g3 {-a4 =*. .2 2S23 MI 0151 l I U .SZSZS Mt-0164 I b OsPu r M S1"s^usz y lh___{= 7 cgg;g,igry,=,y, jigjgg:8Mg e f5uT40N PANE L. 4 2 3 2 3 M t- 0 7 G 'i l 3 AREA

4. 4 4 H CALC's

'%d ,- 0 30 5 - I P It EV. f M e Ed U UNCONTROLLED ACCESS SAME FOR. UNITS NO # 4 No c. AREA VENTILATION $YSTE Pf 6 B ATTERY CHARGER DISTRIBUTIOWPANEf EXMAt167. SYSTEM (SCDPES) UNIT'MO f d, NO 2 SP(f M WG)::2.0 {REF2) FAN TAG NO: C P8-VAFN to-05 TOG CFM:2400 EACH FAN TAG NOs CP2-VAf"NID-05(OG C F M : 33OO E ACH SP(IN WG) Z.O(REFZ) j su -i SECTICN CLASSIFICATtON DUCT OPERATING CDHD1TIONS LEAKAGE N ^ ^ DESCR!PTION (FROM ' REMARKS REFERENCE. SAFE Y SE:5Mic UCTICM LNTERNAlto TEMPER 17 tin.*FPF,ES S DIMF#.*) N, CLASS CATEGCRY TYPE PRE 55UREINWG OUCT SPACE IN W.G. EXHAUST DUCT I NNS ~II g g,1. 00 [ A t. wc p

3 g,3

,4 uT"' 8~5 NNS E .M %S li3 ~ EX H AUST DUC.T gE . EXHAUST DUCT S' )s HNO X NNTNb t 'A 1 t A P / / / l / // ~ / / / / / / No T E 5::::. m te ANA. =u.550RCS ACG. GAFFO CN G1EV55 t Isil.t. CALCtlLATtCt t S raAsco semCas INCORPORATED TEXAS UTILITIES GENERATING CO (2)MAXf MUM PRESSURE ACROSS DUCTWALL Duc TO TORNADO (lATER) COMANCHE PEAK UNIT NO I $ K- , m _,.g,4, 24A-DUCTWORK DESIGN CRITERIA SOS /S m .-nayJus as M4 DC-t15-85 e e v.o h I

- i. r rw y y aerea.~cee, - F2 B

f. FLOW Ot AGRAM :

2323-Mi-oSos REV.CP-S g-2 gu' tag.gsa.s '= I S, occT t_AYour(bYEANNSON): g. l J 2323-Mt-o1So A MO5PH FROM i l s ..se.w 42323 Ml 07S6 g py7gy~ ...,6 . - U. 5 2B2 3 M t-07 G'S, -

,nooMs
r...QM Q
-

4 232S-M 8 07 G9

  • l,4,

~ ) . n >. pa ,_ a " ' 4. G 4 H ~ CALC,6 -3_; 1 =. A..F 4 -* :WO '. N f. ro3o5-I P RF.V.11 q tc i j T - ' E3 E3. -1,

4.,,,/ ; :g,b 1:,,,.

s e ;. ; q* SAM E FOR BATTE RY ROOMS f-1,1-2,f-3,E"8,Z-2,2.S. . j,.. g' y 4.,.",*. 4 ' ' s gf.* 7 4

rre.9yt w i

~ "~ a* + ,g.. =...-a .- v _. : ;- c... e,ATTERY ROO AA f3XHAUST SYSTErvtOCBRE.'5) UNIT NOr t d NQ Ey:.W. Ox,.. 4~: unco'HTRoLLeo AdeS6't ,i.25 h. s g. h k - V N o o ',$ O* k o c

io H sWON

^" I f I FA N TAG No t C Pl - VAF NID - I f,12 SP(IN Wh.f.Z5(RE f".2),,,.,, 'W', : ;$,. -.:p,. CFMr 700 EACH l C P2-VAF NIO - 11,12 ,j k' ~' f. 4. l[. '. J:., l otsc7 OPERATING CDNDITIONS t.fAKAGE; eti. " '.K-r wn #.N

  • .+' : cc-t -

SECTIOg CLASSIFICATION CONSTR-MOM' AenenMAt_ CRITERf A - Y ' b-

  • T 'Y

-'M l DESCRIP TI O N (FROM EREHCF_. SAFETY SEISM!c UCTION INTERNAt to TEMPER 48RE*FPRE55. N ~'E UI CLASS CATEGCRY T Y P E-PRESSUREINWG DUCT SPACE IN W.G. ,f EXHAUST DUCT 2-Sh4 0 I ./ A O PERS II D ExHAUbT 00CT. {.*a 1 j' Wfh $,'l.hhh${$ ' . t i b:' $'..,l?.? ~ N ~~ EXHAUST DUCT jg7 ,3 I ( t u-O oD PERS II O ? / / / ~ / / / / / / / / /

w u...,< r ~.. n.". *. ' :- du E
  • n ' c N ci m
  • 8. 5 '8.t CC-C'2'.s re ru :

usasco serncas mcomponArno TEXAS UTILITIES GENERATING CO (2) MAYlMUM PRES 5uRE ACROSS OUCTWAt.t. DUE T0 TORNADO [ LATE ( COMANCHE PEAK UNIT N01 S K-l ,m, ,g, . AaA_ DUCTWORK DESIGN CRITERIA 305/4 wow;m.issa M ut DC-MS-85 = ey.o "M .I k M _. =

t. - m_.

r +- _ m -. -..... -.. 1

1 O v n n n n n n v v m n n o r u-- ~ ~ 4 l l@ REF E RWCW To AevEnss REE 8 SECTioN @

f. F t.ow of ACisRAM 2325-

. NS-o309 REv.CP-8 g N .2N20toI REv. CP-4 OAI ~p S / f \\ q To CPSS UNsT f. .3 N7-o302 REV.CP-2 step. l.2

2. SPECIFICATIod 2 3 2 5-3 w

T T ' "5A "EV 8 ^* ' M., Housing./ L SUPPLY FAN r)j To ASyss .2 M's-91 REV.I q new. 7 sECTioN@ .3 Ms -9o new.o Apo. 2 4 g? lE 2 ou p ,4 us-ag. atv.o Apo. : ro e a pucT LA'roor (eV >Asuson') W - nw.,uevssSeCTioN(D t m -Ni-o m.o m oxedon s p --4 r M< as M

4. SKETCH 9C-Sol /2 REV.o SECT 1045 @ To @ Aar. THE k{

5 SKETCH SIC-3oAREV.O = To se,,v55 UNtt 2 oar p = M n.g sAue. FOR ElGHT UNITS s a. ' 3 g, $gyeg eg.3og/l gEv.o g _,

gep, I Sktd sec,-303/s uv.o
a. '

a wETCH se noso To Sovss unit s (D 9 Semi SE-3os-ogEto o

  • 4 nEp. r secTioN R5V o oxi ~ p To CHPSS To CPSS s9Ntf g PRIMARY PLANT y

RtA S St.CT,loN @ d rep. 4 SECTloN@ VENTILATION SYSTE.MS g IQ G $ H CALC'S. PRIMARY. PLANT. V :NTILATION SUPPLY SYSTEM (PPVSS) -oso9-2P REV. I FAN TAG No: CPX-VAF4AV-17 Toff CFM: -1710 24 (RER 2.2y ) ELECT. HT 000 EACH SR(14 E& do (REF. 2.8) HOUSING WITH: ICOLL FILTERS Crx-VAFT 2 + CT (NORMAL CPER/Tiod oNLY)G.CDets CPW-VAEHCH-17 To 24(REE 2.3) + CLG.ColLS CPX-VACCCC-17 ' TO OPERATING CDHDITIONS LEAKAGE " DUCT SEcn m Ct.ASSIFICATION SM ## "C * ^t_ CRITERIA D E ~* ~R'"oT1 O t4 (FROM RF MA <e,c R"iF EREMCE. SAFETY SE'5M!.- 'JCTt DN tNTERNAUO 'W.9CTl!F.* C FF.1$ $. gq N,- CLASS CATESCRr TYPE PRESSUREINWG DUCT SPACE IN W.& _[ O AI PLENUM l-2 NNS I ~ h I; 3 PL T OUS14G 3*4 NN6 I l} 3 H0051)JQ (3) 4-6 WNS 1 g M f (ERA l' 2.2 - 2.4; 3 5 g

  • 4 50PPLY DUCT

-fr * - 2.0 rj $f@sof-4 SUMM DEsl4N ~ I HoV6144 To FAM INLET 6'0 NN+ 1 i l ATM. V C040lTioNG. 1, 3 ~

f. SUPPLY PUCT 8&

ff O

2) 44 / 48
  • M N#"E 4 O 5

I FAN DISCHAlt4E'To FLENUM ATu. 782 AFTER HEATl46 Coll 1; 3 DulFJ WINTER. OFER-6()PPLY AIR PLENUM 8-9 NNS 1 f T, F ,; 3 [ 4 5 DAMPE.Its 14 SUPR:( DUCT NNS E NOT ES (I)(UTE RNAL P'RES$ustES ARE SASED'oM Gises(H Lt. CALCOLATION S ESASCO SENWDCES INCOftPOftATEo TEXAS UTILITIES GENERATING CO (f) MAv. PRE %uRIL ACCRo95 DUCT MLL DUE To TOIINADO (LATER) COMANCHE PEAK UNIT NO I S K-(M MAv. Not1LE LOADS ON CooLIMde COIL : doo in AnuAL T9Eust 500 lbs

== ME LATcRA1. r-oRCE,lgooo IN-lbs BENpl% ( TostSloNAt. Mod.N1. . AgA-DUCTW0fiK OESIGN CftlTElilA 309/l wov.14 lM /Eg., }. y( DC-t15-85 n e v.o

g g E E E E E E E E E 7 O R R IU 4 l R.EFER E NC E S :

1. FLo w DI AGRAM: 152 5i

,_________________________________.__l..,._.4 .,I Mi-0509 REV.CP-8 ,1.,,,, ,,V. C,.. e I 4WENT STACM ".3 M2-0301 REV.CP-2 ) g g g g $,r h 2.5PECIFICATION 23135 .I MS-82 REV.0, ADD.3 / / ,) (, D +\\ \\ .2 NS-838 REV.0, AbD.2 + = >f = c.. ._ e f.h -.;e -- 3 3; WCT LAYOUT (BY S4HNSON) / y 2323-HI 0159,0760,0762(0765 4 EXHAUST ATuoSPHEEIC 2 ATMOSPHERIC EXI*AUST .e 4 5KETC64. CK-301/S REV.0 o p F S'5 KETCH. S K-302 ltEV.0 2 I FAN CLEANUf'UNif CLEANUP OWir FA** 2 2 G. SK ETCH '5K-30 REV.o 4 4 W H W \\ SECTIONS @ T0@AJtE Twr. Gw?./ g \\ SECT 10dG@ TO@hKE TW_ SAh4E j 2 N j IL TH 3 REY.0 FOR.5EVEM UMtT6 I gy ~~ - ~ ~. - T RAlH. *A* TRAlH,

  • B' W I to. G 4 H cal _C'S 8
9. SKETCH SK-301/5 REV.O Folt. SEVEH UNITS a

p < 3 - ~ " 1 2 4 3 -OSOS-IP R E.V.1 8 ~~~FIEDM.*CH PES TRAlH *A* k fi'- - PROM CNPES TRAlH *B* II us -5 _REE;1,SECTion @- j._ " RP_F.-3,..SElllHQM;g--.,. .g --- - Q ~ P=ou Aeve== miu __, 8 l rao A m e=Es TnAia_A-REF 7 GECTlON Q) g REF. *F SECTION(4,) a 1 Ta,ow PPv_E5FE,S,7,,, *A.*._ FR,OM _PPV_E.5 FE SeEcTiOw@ C T TR/uM

  • g,,_ 3 3 g,,,,

F ' ~ ~ ~ 5._g _: p___ t,. s'. p _ ; _ .e a _ _ _ _ _ _ _.a ~_ _ _ w a '- !i R g VENT STACK mij g ~

1. L[n

.a _.a y _H n f. _.~ F RO M C P E S IMIT t.,, ,,I"' [ FROM CPES UNIT' 8 q_ REF. 4 SECTION @ R EF. 1.E g UNIT 2 _ E E FROM SN ES A d ~ FROM A&v&4. REF.I,S RE 6 SECTIONh y ~- dM REF. 5 SECTION @ PRIMARY PLANT VENTILATION SYSTEMS 3- .O. --- U - '~ PRIM ARY-- PL AMT VENTitATIONIEN4 AUGTrGYST E M-[P PV EdE,') - r TRAi4 A.- FAN. TAG NO: CPX-VAFMC5 = 09, I I l I 25. CFM : 1 O EACH ' S. f'. IN W. 14.0 ; (REF. 2'.M -- ' T -~ .' TRAIN"B*- FA4 TAdi NO: CPX-VAFNC5-10, ?!"CFH I O EACH S P. 14 vi. '. 14@. (3EEF.17-) 2- - TRAtH 'A*- ATMOSPHERIC CL.EANUP LldlT" VAFtJPK-0 09,II,13, lG CFM* l 000 EACH (REF'.21). . TRA14",B"- ATMOSFHERIC CLEAuuP, U4lT. ' TAG Ho. CPX -VAFUP_K, ,l0,82,14, I(e_, C,FM" l_000 EACH,(RE F_2 1)_, _ _n,y, (NORMAL _0PERATION.0HLY) reasco senveces enconronATs0 ' IEXASUJMIIESGENERATINGTO, lSHEE11051 __LuPiartuttu tM_UNittiU. I G K.* NOTE WORK. THis 5 KETCH WITH JABLE ON SK-30g'2 SHEET 2ost,"" y e.g% 7 ~.DUCN0ltK DE516H ERITERI A 509/2 Nov.14 war. Jt(;f ) AiA DC-MS-85 eev o h ^ i

  • e rm r

r-- r-r. r-r r rm em r v m .c r 7 rw 4 PRIMARY PLANT VEN.TJ LATION. EX HAU ST SY.ST EM (PPVES)- PRIMARY PLANT ~ WORK THIS TABLE WITH DIAGRAM OH SKETCH SK - 50 5/2 SH E ET I 0F 2.. . VENTILATION SYSTEMS DUC.T OPERATlHG CONDITIONS. LEAKAGE CRITERIA CONSTR-MORM A' anNORMAL - DE.5CRI PTl O N g.g g SAEETY SE15MIC UCTION INT ERN AL(t) IEMPERATME?FPRESS. U E CLASS CATEiGORY T_Y P E' PRE 550RE 1104 DUCT SFinEE MW6 kbibkUST.MR lETAKEN bb4UM.. I-2 ' 3 .I I ~ 4o COMMost TO TRAIN *A*(%" li & ~ T.XHAUST; DUCT YPl.ENuts.TO 3 ~ - - 'I - ' - -3.r- -- see 60 4 - IyrlCAL poa r4 UNIT 5' i---i ~ 3 ~ ~ T.EEANUP UNIT. ~- 3'- 4' - TR A I N *A"' 4/*S *-- ~ . ATMOSPHERIC. CLEANUP UNIT. k.h* 3 I se l' f..I ; 3 h e - h.k* -- 3 :-- - I ~ U ~ - - 1; 3 ] -- r EXHAUST _ DUCT; FAN Wi. 6 - l* .~ H Z.7. 4 DISQiARGE TO,ELEHolgg . s _"7*,.3j - - y. +3.3 y 1,5/- u /- I; 3 5 10 4 a 7, 7 7-O j TRAlH? 1 ~EXIiA'OST AIR"PLENOM~.'.' 3: 'I

TYP,

,gy, gy,3 EXHAUST DUCT FROM... 6*-10 3 1 + 3.0 g Hi / 884 / V-V- II D PLENUWTO.. VENT *.aTACK~ 8 -f o.e s EXHAUST DUCT _EROM... .g. 3 5 + 3. 0 88 3 /- 40 4 P.I'END M3ONEHI3TAEJC s.'13 -s4 3 1 f gI g ? . VENT!sTKCK.'. R*_Q NNs: E f V j n. [ [ lilAY.4He0TEMPEIETURES

e. se 00RRE5 poled TtLSUMMER4

_g_ ME(W.5ENGilmly . _.y.. ,,,, 1,

-'j-

-fEO.bs. ~ _ _ ' ~ ~ SEET1 # 2 No y c s: O) INT E R N At.. PRESSURE.5 ARE aASEELON 6tBSSINILL. CALCUL ATIONS.. Emmsco agNWeems secoAreAMED TEXAS UTILITIE5 GENERATlHG CO. (O HAX ERESDURIL.ACROSS DUCT. WALL'DUILTO.TORHADo (taess) COMANCHE PEAK UNIT NO.I SK-g (3)SEEi. DIAGRAM _OOK1309/2 SHEET.I.oK 1 DU.CIWORKDESIGN. CRITERIA 309/2 _ wov>4.isas M aK. DC-M5:85 - nav.o

( n n n 17 n n n n n n D m M m. m. v rm_ m J,. E "DY REFERENCES, CPM-VADR3C-?7 -- g 4 S Tlog g CPK-VADPt;C.g3

f. 8~Lo w OS AG RA Nt -2323:

h hh h T hh h h h Mi- 0 509. REY.CP-8

2. SPECIFICATI0H 2323 g

.i Hs-as., arv.o, Aoo.3 l .1 M S-6 55, REV.0, AD D. 2 5~. DUCT LAYOUT (BY EbAHNSON) 2z> 1, k 252 5-MI-0759.0760,07G2(0765 4 SKETCH SK-305/L REv.o G l 2 $ af

  • 9 /

\\ \\ I

5. 5 KETCH di,K-So9/1 R Ev.o

'.q q o

s. s t H. cat.C'_s..

4 +- u N . g ?_0 503__lP ggy,I

. +

q MYp 4 ) u, b EVRAllST ATMoSPHEEIC AT140SPHEIDC E%HAUST N2 se in CLEAf40P UNIT FAW {d FAN Cl4AMVP UNIT CPK-VADPOC - S 8 - ~ CPA-W POC-59 L er FAIL OPEN .FAtt OPEN TRAIM 'A' TRAIN 'S' PRIMA 1EY PLAhlT VENTILATION 9fSTEMS EXHAh6T SYSTEM [PPVESFE6) PRIMARY PLhlT VENTILATIOM 'ENGtNEER.ED SAFETY PEATOlitE: FAN TAQ No: CPx-VAFNCD-07 (TRAIN 'A*), OlB (TRAIN 'D*) CFM:15,000 EACH SR(IN Wis.)*14.0 (REiF. 2. 2) 4 ATMoSPHElt.tC CLEAHUP UNIT. TAG Ho:CPX-VAFUPK-01(TRAIM*A')W2(TitAtM*s J-CFMlHE'000TEXCH~(REF~CI) 4 Ot!CT OPERATING CDNDITIONS LEAKAGE SECTIO ( CLASSIFicATtON L CRITERIA C N5IK' 't. MWWS MWWM M ~ ggpy,; W M DE~ ~Rf PT* 9N (FRCrit M *w t.Ctm s n T E R u w t> wmWEn N,- CLASS !ATESCRY T YP E-PRESSUREIMWG ouCT SPACE IN W 1 - 2. ) I ~ l idAN(M8N. TEMPERATURES I; 5 EXHAUST DUCT TO I~I I I -2.8 rit sit ct EANUP UHIT. k 3 'I ~3 h TE CW c D N u p I Nih. I$- g; 3 - hg ds, I; 2.1; 3 ATMOSPHERIC CLEANUP t,MIT fI. - 3 1 ~ 406/att li 3 -II. G g6 Et1HAUST DUCT-ATM. CLEANUP 4,- S, 3 y -II.G 22 48 y UNIT TO FAH tt4LET. 4-5 t 3. 5 _8'S / 'OA fixHAUST DUCT-FAN 5-G 3 7 li 3 DtSCH ARGE TO PLENUM. 5*- G' + 3. 5 V #22 812 ./ / / NOTE 5:(s)INTE RNAL PRESSURES ARE BASED ON GISS54 HILL CALCULATION S mamm SEstWICES 3peCostPOftATED TEXA5 UTILITIES GENERATING CO (2) MAX.?RE55URE ACRO $$ DUCT WAt.t. DUE TO TORNADO (Wa) g COMANCHE PEAK UNIT HO I S K-DUCTWORK DESIGN CRITERIA SOCJ/3 ,,,,seanssas Julif._,l af 4 OC-MS-85 m,o .,c.cf. i .L 7 Y

M M M M M MM O O. O O M1 O O r .g RE I:E R E N CE S :

f. Flow DI AG R AM :

ZSZ3.MI-O$t E REV.CP-+ g g r:;g g a

2. SPECIFICATIONS-23132 W

W .2 MS-92 A-REV.I ; ADD.1 .I M S-6 3 S RELV. 0 carAvery

3. DUCT LAYour(r:YSANNSO@

l DAMarR 23z3-ui airo j fw pb"o

4. Ca 4 54 CALC'S I

U -03tt 8 P REv.o l ? FROM -05:2 3 PREV,0 l .y-- r - - e.- - -- H & PuMe i AREA + U" l To ourocoRS I \\ EXHAUST FAN exwAu FAN PL_ENUM Tutseseenons AstasameIL FoA DAMPER ElGHT (S) FAN 6 SERVICE WATER INTAKE STRUCTURE SERVICE WATER PUMP ARE-A DIESEL FtRE PLIMP ROOM VENTILATION SYSTEMS EXHAUST SYSTEtv1(6WPAE6) E.XWAU6T 6YSTEM(DFPRES) FA N TAG NO:CPX-VAFNWO.0Z TD 09 CFM:80cc SP(IN W.di/; r.OFAN TAG NO:CPX VArHAV-4-l(RE F.2.2) CFMf GS8f EACH SP(IMWG):o.75 (REF. 2.8) M D L'CT.- OPERATING CDNNTIONS LEAKAGE SE(.Truf CLASSIFICATION NM "0M' ^ A E '_ CRITERIA REMAR.KT REFEREHCE. - D:' R! P T t O N (FROM SAFETY M '5 M L- '.'~ T C +L istggs4Lriy 75p,:5.;_.mt ; egg 33 CIAIM Li h,, CLASS ' ATE 50RY TYPE-PRESSURElt VY. DUCT S mcE IN W & O^M FOR EtMT + Z] EyHAusT oucT4 PLENUM l T-S D I ANS / / / ~~ 4-5 NNS g ~ k I QW AUST DUCT TO FAN g;3 E E2 # *l N 'ES '/e re 8iS

5 EvHAust oucT FRpM 5-G HNS H

FAN OtSCMARd E- ,er y / / / / // NO7 E 2 :l:' :o4 Yf C',:,.'. *f.#5.** @.LS AC6 G A.SSO C N Gt P/% f., hil.L cat.CrJg.TtCH *. ESASCO SERVICCS INCORPOftATED TEXAS UTIUTIES GENER ATING CO COMANCHE PEAK UNIT t401 S K-C) MAXIMUM PRESSURE ACROSS DUCTWALL DUE TO TORNADO (LATER) _ g, ,g 4o- . LUCTWGRK CESIGN CRITERIA 3 t 2. / l __ 3cv.s.esas /Y v lpt l DOMS-85 u e v.o wn!. i f, "r. L____

M M M M M M M M M M M M W W 7 n s NuPS & DisTRieuTsoN Room'5-REF.EJtENCE.S *. F--------------- --M

f. F4W DIAGRAM:

2525-Mi-0313 REv.CP-4 r 6 l I

2. SPECif:tCATioNS 2.523:

l MO l

  1. ^

' ADD.I,(DCA12144litv2 lg g .E H S-9 REV g 5 OUCT LA' ROUT (6YBAMNSON)* l 3 .I Z323-MI-0TSO 4 ,f .1232 5-M I-0751 ) l AA UNsT l I

4. GiH CALC /5 i

25 PACES l l / - 0 505 -4P REY.O g,. __ -: b; g f /_ p f me. oAMpg=.g UPS ARBA VENTICATIQ_N__/ RETumw Anst Ag g coNogygoggga CHA5n-E5ooSTER IRAN g=g g7gg a UPS~4.'DISTRIBUTIONROOMS COOLING SYSTEM (UPSDRCS) TRAIN *A* 4'B' - .SR((IN WG3:I H.W.G. 12.O (ESTIMATED)(REl~.1. 2.'} ~-

  • FAM~ TAG _NO.____CPXWAFNAV?4Z, 02 r.EMCCL,EOO 43 EFMITI2OO SP 50

) (REF. 2. I ) WMir. TAG ECP.XIVe:AcuP_IO1,. 'Ot!C.T OPERATING CDNDtTIONS t EAKAGE. DESCRIPTt ON N ,j Q" REMARKS REFEREMCE. g 5 ~ CLASS CATEG%Y T~YPE. PRESSt!REINWG DUC.T SPACE IN W.& @ + _[ QMO DgM u ry 3 y (t) TYPicAf. FOR2 UNIT 5

S.1 Su yow 2

I @ p 2MS To PACE 6 I' EXHAUST DUCT 33 3 y -41 80+ /. 10+/ alt. DucTwoRK UP-IO / TEE [t 22 STMEAM OF SPACES t Fr% Old 6PACGS -49 ' @@Q-WAusr 3;;gg. 3, y 3 gI% TYPtCAf. FDR Z UNIT 5 I 39G.713f4 IT D~-25 3.

  • I-2)

TYPtCAt. FOR E UNITS / / / / // ESASCO SERVICESINCOR* ORATED TEXA5 UTIUTIES GENERATING CO I NOTES:(O INTERNAt_ PRESSURES ARE BASED ON Gr8554 #ft.L CALCUt.4Tf 0NS) ( ) MAXIMUM PRtiSSURE AcROSSDt.1CTWALt DUETOTORNADO(LATER COMANCHE PEAK UNIT NO I S V,- l ,mg . Aaa-DUCTWORK DESIGN CRITERIA SIS /f l wovausas AM ul DC-MS-85 u nv. o m nf. i .. arm

:. f,/

7 J-~1 n f~~1 _ O M M M M M M 1~-~'t n n,.. _ n n M. O O D + CONTOOL GOOM SLE. Tunging aLocr. REFER EN CE5 8 T@ O3 Os 06 ' "'a w o '^ a"os^ REY.CP.G 'd : 1 5 1 S NI-0504-FROM 05AAcR5@J .'mAtyg.Ob Q

2. SPECIFICATION *1S13 S REF.4 5ECTION l

uNiy I <gX-WDP60-07 MS-SS REv. I

3. DUCT LAYOUT SWC5(FY BA69450H)

) /- / 5. 2 .1 E nt3-MI-0451 11S1 S-MI-0750 -0752 0F54 0Fss 6 / .S iStS-MI-0765

5. 6 $ N CALC'6:0904 /1'RSf.O
4. SK E TCH Sec 304-Ol 3;PPL's FANd

/@NM 1PREC TO VARious ct 3 OFFICES 4 g. a SERVICE AREAS [5, ) SUPPLY FAH y {" EL. Sio'-G ( G q N ~ 70 secorenAmy sAmptE. a00M i \\ OFFICE { SERVICE AREA' l - pK y PK04 - CPK-VAlm50-Os AIR IHTAKE PLEMUM 6 20 UNIT AND FILTER HouslHG" C VENTILATION SYSTEMS i CPX-VAFTRA-02. ~ g g g ~ OFFICE ( SERVICE AREA AIR CONDITIONING SUPPLY SYSTEM (OSAACSS) _3H ~ TAG NOf CPRVAACPK-05,-04 CFM = 8750(EACH) SP(IN.W.G)= 4.0 REF31. A> m \\ DUCT OPERATING CDNDtTIONS LEAKAGE T , DESCRIPTI ON-M REMARKS REFEREM T C us) S CLASS CATEGGRY LEVEL PRE 55UREINWG OuCT SPACE IN W.G. @M IiLN[,400$an"O, '^" 'I f. h"io is he I; 5 ~ 'I NH5 5 t f SOP. PLY DUCT To A/C UNIT.~ I.~,). ~ HHS j. t g g} g $.~.f. NN5 I.

p

'A/C U NIT. 1; 1; 3 SU PELYlbOCT. AFTER FAH. ' I". NHS [8 ) I; 5 TN M ,,,g ...;H N S.- : NOME ^

  • F RC00uHe L

y _47*UPID HEATINE COIC y 64* AFTER teEATW86 cost. HoTES:(illWIERNAL PRE 460RES ARE SASED' ON CstSBS 4 HILT. CALcdLATioWS

            • 8'"w'ess smoonPORATs0 TEXA5 UTIUTIES GENERAT1HG CO

._ __ (2)e4Axt>Aun4.PnessuRP7.Acace6 OuCT WALL 005lo Tost 4 ado (LATER') ~ ,,,w e. s.g COMANCHE PEAK UNIT NO.I S K-DUCTWORK DESIGN CRITERIA 304-01/1 .Ms s -- new a a m Els4 DC-MS-85 tr.v. o ^

1 m m m m m m m m r 'm m t-r' m - m r~ r"~n rm _m r-m 'O 7tJR88HE BLDG. _s e CONTROt. R00M BLDGr. PLE F E, R E NC E S : I l' n A A m a

1. F t O W OI AGst A M s W

W W W W 13t%-MI-OSO4.-Os REV.CP-6 CPK-VADPGO-23

2. SPECsF8 CATION : 151)

O MS.SSA REV. O. s.oucv Lavour owo s(svannnscN) .: tsas-me-oest M 3 1 .1 nes-nt-oisos-arsa,-oTet,-one Fs .s tsas4g-o7ss y _._ ] Crx70n[sU __d iH LCh. SO4-2P ItEKO 2 ECEE t7 ~_ M $ RETURN FAN sElmCE AREAS '. EL. 680 -G. 1 $ CPK-WNCS-18 L,:p --+ Fnon seconoany f h SAMPLE ROOM CPX-WPGO-14 WR IHTAKE PLF. HUM EL.7 78'-0 REF.4. SECTION O' -@. OFFICE { SERVICE AREA- .l VENTILATION SYSTEMS l _. OFFICE 4 SERVICE AREA AIR CONDITIONING RETURN SYSTEM (OSAACRS) l FAN 'DW Nos. CPX VAPHCB-27, -2.6 (STAND BY).. CFM = ~P050(EACH).- ~. SP (IN.W.G).= 1.0 REF.2. 4 SECTI% CLASSIFICATION DL'CT ATIM NTICNS .mGE CCNSTR-eem.W-m.e c-- CRITERIA. DESCR!.cT't GN (I kOM K.E M AR.KE-REFERrMCE. SAFETY SEISMIC UCTION INTERNAuo TEMPECCIstE*F PRESS. N I 0 CLASS CATEGCRY TYP& PRES 6URElllWC DUCT SPACE iN W6. c W,""ruC?a.' Ed. NNs 1 -M X;il% i32;3 9 17 e04 NHS E

  • pA. )

AETURN DUCT f'-j l; 3 l FAH ot5 CHARGE.70 PLENUM j ~ ~ ~ LN _*" FIRE. g_ W / '/,' y / [ 1 / // / / / ...r -, s. .- c

  • n..w cien s t s.iti. CALC + r t e :
  • e ;

seasos sammens -aven TEXAS UTILITIE5 GENERATING CO w *"- '. ' e) esc. i c. c.,on4und Passeuma Actant DucTWALL odt10TOstHapo (W.._. _ COMANCHE PEAN UNIT NOI SK' ( l g DUCTWORK DESIGN CRITERIA ___eamas.naa jar.. I gr. DC-f15-85 SO4.ot/q l aav.o "W$, .I. I.O t m

M M M M M M 4 TURBINE BLDG._,, fDitTROL ROOM BLbG.

REFERENCES:

I'

l. F LOW DI AG R AM:

h h h h b 152 5-MI- 0504 -01 REV. CP-G CPX-WDFGO-22.

2. SPECIFICATION : 2 3 2 %

M S - 8 3A REV.O

3. DUCT LAYOUT DW65(BYBAHNSON)

.I 2325-Ht 0452 3 .12525 MI-0150-0752 0754,-0758 7 d g 5 25z5-MI-01G$ FROM TofLET5 EXHAUST FAN

4. SICETCH:

TO OUTDOORS

5. Ca( H CALC'S i0304 -2P REV.O SHOWER ROOM u

CPX-M F NC B -2.6 -+ y EL. 87 5'-+ + 4 ( $.Rj0"5 EXHAUST FAH 0 Crx-vAFacB-zs g L}0 - _J 3 l 7 CPX-6U-23 OFFICE ( SERVICE AREA VENTILATION SYSTEMS OFFICE 4 SERVICE AREA TOlLET EXHAUST SYSTEM (OSATES) FAN Tact H05 CPX-VAFNCB-2.5, '2.G (STAND-BY) CFM= 2.07."2-SP(tH.W.G)

  • l.0 REF. ?..

Y d n SECTIOl Ct.ASSIFICATt ON Otfcr OPERATING C)NDITICMS LEAKAGE 6 ^ " " ^ ' - '^ DES CR 8 P Ti Oid (FROM ' REMARKS REFEREMCE. SAFu__Y ME UNM INTERNAus) TEM.W-WF %W DIA5% N,'- CLA55 CATEGCRY TYPE-PRESSUREINWG DUCT SPACE IN Wi NYAH s'UcNOli. _k. - NHS U ~ 15 3 E.x H AU ST DUCT. }-4 + 0.3 17 / so+ W .EROM..FAM __TO OUT Doors g';j NHS. E /e2'i' M 12 182i3 / E ~ NMS ~ MONE P / / / / // / / / %M& ilk I L/ / / N o r g y :.i- :~ r 2 Aru...*.6w.R(.5 A. 4 C +c.J c N clivw i nill CALC'U.r reoN ; esAsco ssRvicats, INCORPORATED TEXAS UTILITIE5 GENER ATING CO (2) MAxlMuM PRE 55UltE. ACRosb DUCT WALL outTo loRWADO (l.ATER) COMANCHE PEAK UNIT NOI SK- , u.a g wan.nas hig l pt. DUCTWORX CESIGil CRITERIA 304-01/3 ms DC-t15-85 e tv. o k 'T. ^ .}}