ML20207L640
| ML20207L640 | |
| Person / Time | |
|---|---|
| Site: | 07109183 |
| Issue date: | 10/11/1988 |
| From: | Wells A NAC INTERNATIONAL INC. (FORMERLY NUCLEAR ASSURANCE |
| To: | Macdonald C NRC OFFICE OF NUCLEAR MATERIAL SAFETY & SAFEGUARDS (NMSS) |
| Shared Package | |
| ML20204G908 | List: |
| References | |
| 24813, AHW-88-141-ETS, NUDOCS 8810170378 | |
| Download: ML20207L640 (61) | |
Text
RETURN TO 3 7-$7 81
/
- ,/ / r
\\f 4
Nutteer Assutence Corpotetten b
6251 Crocked Creek Nad j
s/
ptW y
so. 200 vW A
Nwess, owg a xon f'
0g512 d%E Ye?s$2$*o 9,/ ty,,.,
D q'g 5*%r atW "/f
'***(400 ""787 f
u.g.,,,,, e,
s G]
h pc.?
soos tw. seww OCT N
5S 75
, NT 't y r tt W",I' October ll, 1988 O
g AHW/88/141/ET5 Mr. Charles E. MacDonald, Chief Transportation Branch NMSS:SGTB, Mail Stop WF4E4 U.S. Nuclear Regulatory Commission 11555 Rockville Pike Rockstile, MD 20852 i
Dear Mr. MacDonald:
The USNRC has asked 11 questions regarding the cask supports and ISO 1
container for the NAC-1 (NFS 4) cask amendment request, submitted by Nuclear Assurance Corporation (NAC) on May 25, 1988.
Tht answers to these 11 questions are attached. These answers show that with several modifications to the cask support system (detailed in the attached answers to the USNRC questions), the supports can sustain a 2 g load factor, The g load requirement for the cask support system is 2 g in the longitudinal, lateral, and vertical directions, applied simultaneously. The analyses performed by NAC, as explained in the attached answers, show that the supports meet this requirement.
It has been noted that the 2 g load factor only ap;11es te truck trailers with air ride suspensions; the fontaine drop frame trailers specified in the license drawings contain air ride suspensions a..d this fact has been verified by NAC, The modifications to the cask sJpport system essentially consist of additional bolts through the cask supports and base plate into the ISO container floor beams so that credit for the welds of the base plate to the container floor is unnecessary.
The welds of the base plates to the container floor have been increased to 1/2 inch for the rotation trunnion support and 3/8 inch for the lift trunnion support for conservatish but these welds are not used in the analyses because welds and bolts are not considered to function simultaneously.
The bolt patterns used in the analyses are shown in the attached sketches and also in the license drawings. Additional bolts are shown on these sketches that are not used in the analyses but have been included in the hardware for conservatism.
Dfc3
'(
DE h@
U
I October 11, 1988 AHW/88/141/ETS Page 2 A further modification to the support system consists of the addition of 2.5-inch thick blocks to the trunnion strap lug to prevent the bending of the strap lug or attachment plate when load is applied.
Should you have any questions or require additional information, please contact me.
Sincerely, NUCLEAR ASSURANCE CORPORATION Y
rr Alan H. Wells, PhD Manager, Licensing and Analysis Engineering and Transportation Systems AHW/tko Attachments 9
ay
__.v.
y_.
__,7-_-,_,-,,,_,,,,,.,_,__,,__.,__,_._m_.
7-3,,,
00CKEI NO.
7/-7/B5 CONTROL NO. _.
- Af/5 DATE Of 000. bC.kCt%(_.-.b. Ihbk bj]cdd _IObh__
DATE RCVD.
j FCUF PDR
/
FCAF LPOR _
l & E REF.
/
SAFEGUARDS FCTC_i[
0~
DATE/0/ [h
\\
p u e,\\ Mou e,w wk Pre teed c a.s k su p po v t - M Ac - 1 A da_m so n conha,tner A nc,ho v boH iocadions SAE 34296,,Gr,%
Li$ hwq Tvvwn tow SvPPoVI
_3 4 (7yp.)
7 0
D l
/
t
.. -g.g.--
-o o
._ 8. ~6 Q"
2 l
i t
I I
t m
X.. X.
i 5_g I
A ll
'Q 1
u i
p ds i
I-beom sopoovi Ficor Roto.ftou Tvu n e t0 M Suppovi t
h._e
c c
o o
o j
o o,
e h
[
O _ - - ---
l
_ ;.. o o..- - -- - O O
O
--0 l
~ ~ ~ =C
=8 O
O O
-o o
- O
[;: - - -
i I
h i
- l i
l
-- rc o
o o
-o-c --.. - - o o
o o..- O. =-
Fve\\ M 04e<wt d 9vd\\ecb C aa k Gu ppo v t - h15d - 1 E v e v m o 6 h e, v Codo th c V - Andso v bolf l o c,oh onS i
6AE J 47.9 e i dr, 8 l'
t.ifhug Tvvwwiow Support o
/
f,
/,2 & (TTPd f
J i
i
_ _ _. ~O O
G O
O _T l
g iam.. m gun - e Q
Q no i
l I'
o C
O O
O O
chc.dal support viooy pla,te, I
R o t o. t i on Tvun u to w Supppvi_
m l
_e o
-o o.
__o. _ __
_ _c__
I 1
1 g
i l
___.__4 e
e e
e e
____c i
l i
i I
}
i a mo a==.=
O 0
0
-0 0
o-1
/
/
J
'/
1
I i
NRC Comments - NAC-1 Cask Sunnorts i
Re f. :
1.
Letter from Nuclear Assurance Corporation to U.S. Nuclear
'j Regulatory Commission (A.H.
Wells to C.E.
MacDonald),
AHW/88/55/ETS, May 25, 1988.
I 2.
Letter from U.S. Nuclear Regulatory Commission to Nuclear Assurance Corporation (C.E.
MacDonald to A.H. Wells),
l September 15, 1988, i
Nuclear Assurance Corporation requested an amendment to Certificate No.
71 9183 for the NAC 1 Cask (Ref. No. 1) to incorporate:
(1) drawing Nos.
I NAC 347 586 F2 and NAC-347 586 F3 of the ISO Container Configuration; and f
(2) the use of the Fontaine Drop Frame Trailer and the associated package
[
center of gravity.
l I
The U.S. Nuclear Regulatory Commission rsquested 11 points of additional information (Ref. No. 2) in connection with their review of the NAC request.
i The NAC response to the requests for additional information is as follows:
[
f i
i h
i 1.0 U.S. NRC Co - nt:
Justify using design tiedown loads of 2.0 g for the cask supports in each of the three principal directions (i.e., longitudinal, lateral, and verticsi) instead of the 10, 5, and 2 g loads specified in 10 CFR Part 71.
NAC Response:
The design load factors for the NAC 1 Cask Supports -
2.0 g in each of the three principal directions (longitudinal,
- lateral, and vertical) acting separately or in any combination were selected as conservative values based on the requirements of 49 CFR 393.100c.4.e and 49 CFR 393.102b, which are Federal Highway Administration Transportation Regulations for."rotection Against Shifting or Falling l
- Cargo, GJneral Rules, Special Rules for Miscellaneous Metal Articles, Special Rules for Intermodal Cargo Containers and for Securement Systems Tiedown Assemblies, respectively.
The load factors specified by 49 CFR 393.100c.4.e are:
1.70 g downward, 0.50 g upward, 0.30 g lateral, and 1.80 g longitudinal. The load factor specified by 49 CFR 393.102b is:
1.50 g in any direction.
i The structural analysis of the NAC 1 Cask Supports and Container I
Attachments use's the i 2.0 g load factors in combination with a j
l material yield strength allowable stress criteria.
I The design tiedown loads specified in 10 CFR 71.45b.1 (10 g lon-gitudinal, 5 g lateral, and 2 g vertical) are for a system of tiedown devices which is a structural part of the package; the NAC 1 Cask
[
Supports are not a structural part of the package, since they are not welded or bolted to the package, but rather capture the trunnions via j
bolted straps.
The cask supports have never been considered to be a l
l part of the cask package in any of the dravirgs, Safety Analysis f
- Reports, or Certificates of Compliance.
Bt;ed on these considera-I tions, the requirements of 10 CFR 71.45b.1 are not applicable to the 4
NAC 1 Cask Supports.
I 4
i I
t f
2.0 U.S. NRC Comment:
Justify that the material strength of Aluminum 6061 T6 used in the analysis is higher than that shown in Table 1 8.4, Appendix I, Section l
III of the ASME code.
NAC Response:
The material yield strength of 6061-T6 aluminum alloy from the ASME Section III Appendices are used in the revised analyses of the NAC 1 Cask Supports and Attachments: S - 35 ksi minimum yield strength and y
S - 42 ksi minimum ultimate strength.
The margins of safety remain u
positive for all of the analyses that were affected by this revised material yield strength.
In conjunction with these analysis revi.
l
- sions, the analysis of the Forward Support Assembly (Rotation l
Trunnion) at a section 8.0 inches below the trunnion centerline was corrected to use the cross section dimensions of the final design l
j configuration, 1
The origina?. analysis used the typical yield strength of 6061 T6, S - 39.6 kai at 100'F.
y i
Based on the available test reports for the NAC 1 Cask Supports materials, the actual material yield strengths are 42 ksi minimum with i
one plate at 39.2 ksi.
The support materials were produced to the ASME specifications.
l l
i 1
i W
i 1
. _.. _ _ _ _ _., _. _ _. _ ~. _
4.0 ILfi. NRC Corarsent:
Specify the materials used for the bolts in the package.
- Also, provide the sources for the material properties used in the analysis of the bolts.
NAC Response:
The bolts used in t.be NAC-1 Cask Supports and for their attachment to the ISO containers are as follows:
Forward Support Assy., Rotation Trunnion Clamp Bolt:
18 UNC SAE J4290, Grade 5 Aft Support Assy., Lifting Trunnion Strap Bolt:
18 UNC SAE J429 s, Grade 8 Evermastet ISO Containers Forward Support Base Plate to Cross Channel Beams:
1/2 13 UNC SAE J429e, Grade 8 Aft Support Base Plate to Cross Channel Beams:
1/213 UNC SAE J429e, Grade 8 Adamson ISO Containers Forward Support Base Plate to I Beam Cross Members:
3/816 UNC SAE J429e, Grade 8 Aft Support Base Plate to I Beam Cross Members:
3/816 UNC SAE J429e, Grade 8 The mechanical properties of the bolts are:
SAE J429e, Grade 5 Medium Carbon Steel, Quenched and Tempered S - 120,000 psi S - 92,000 psi u
y SAE J429a, Grade 8 Medium Carbon Steel, Quenched and Tempered S - 150,000 psi S - 130,000 psi u
y
NAC Responso (cont):
The bolt material specification is.-
Mechanical and Quality Requirements for "SAE Standard J429e Externally Threaded Fasteners," by the Society of Automot.
Engineers, Inc., New York, New York, l
l I
i
/
Immums ASTM, SAE AND ISO GRADE MARKINGS AND TECHNICAL IFl MECHANICAL PROPERTIES FOR STEEL FASTENERS DATA u.s.m.
m...,
,s..
u.....,
- 5. -+ ~ a
. n.,
,,, u
...a s,..,
- f.......,,,,
o,.d. m 0..,..
- w.,,,.i S A8 J429 Med.wm Cor.
1/4 *rv i 95000 9' J00 170 000 o <od. S 4.%
b.n5 eel, Overl,.l.1/2 74000 s i,000 10$ 000 f
Sc e.. a.
o v ea6ed I,/ N 5'vd e
.ad 1/4 *rv i 85 000 92.000 120 000
'V A$fM A449 f e-e.e ed O..eI *rvI1/2 74 000 41.000 105 000 0..r l l/2 *<v 3 55000 54 000 90.000 t....~
.wm C.,..,
ov 2.d
":18 u*0 iax0 ru.',",
s.--
-v
,......d t.. e...
..o.
4.x o,.d.,2, o...d i u *,v i Si x0 ux0 i m.
2
$Nde e.d 1.mee<ed M ed.wm C.e.
4$fu A323 b.. Ste el.
1/2 *ev i 85.000 92.000 120 000 O * '.** d 1 1/3 'htv 1 1/2 14 000 41.000 10!.000 am f,pe l Y
femoored L.. C.rt..
i H.gn
- u. ri....h.
I /1 A$fM A32)
$tt.ag h St..d, f,p. 2 Ser
'vt.4 o v.ad.d I/2 *'v l 0$ 003 92.000 1 I0.000 I
V 8as
.ad f e-o er ed as.ich er..
,4 C.< e.s.. a
g[,'[9 1/ 2 **v l 85.000 92.000 120 000 f
A5fu a323 g
11,8,hre1.1/2 74000 81.000 103.000 f,0 3 g,
g f.
....d
,s -
attu A35 80 000 83000 10$ 000 g
o rd. Il An..
1$ 000 18 000 100.000 l
)
+/
- 6. *t 1/4 *,v 21/2 0 * '[3
)
2 2/4 *rv4 SNdi t
isto A33 r.-.. w ies x0 i e, x0 i23 0x 4
4 c..d. 8 C 93 x0 99 000 i t 3 000
%/
wu v Cee.
q
...Ac.,
SI,*[..
o..' A d li' "' 1 1/2 105 eM li3 m 133 m j
o,.
I&
...d.
M.d v.m C.#,.
1 c.,
i.o. n.
o...
o..
.a ld.cJq s
,8 1.,
,.-....d
,,0 -
,30 m, 3
.c..,...<
1
.,,. 33.
o.....d c.e. 0
.......d s.. im~.:.... % : 4 N-23 m
5.0 U.S. NRC Comment:
Show how the channel cross members are supported for both the Adamson and the Evermaster containers.
Provide an analysis of the load carry-ing capability for both containers.
NAC Response:
The floor cross cembers are I beams for the Adamson containers and channels for the Evermaster containers.
An analysis of the load-carrying capability of the cross members is provided by a beam analysis and by a bolt bearing and shear tearout analysis.
Additionally, the containers have each been load tested per the American Bureau of Ships (ABS) requirements, including a 2.0 g verti-cal floor load.
/
N00.I d'scK Evermaster z$O cs' nfahrer F/ss r Besm -- Aoss' c'sss di /i /a r
= Spy ~- 23, YJD A'q = fa, (o ?D /b:.
$s CG' /YAal'/sf//s;' k as 6btce fde es sx d, G. O cestered' b hrs #9 ss a' j
/s beafec/ /nsp'Ad> a//g ae eds.sm :
l' l,,'N4'f9l kW'I*M/dM Nsbr4 knHVIF/ds9
~
/
Q a
3"
==> M s...-
p
(
9A d M./
Rp Rp
/J4.4'
$PGdk.(AN &ff0Yhb kg =. of6 ) 00 Y /b $
e/)
Ap. = 2 6>&8I Jhs. 6,fa / en Arrst d' Ja'ppsrh Eh = a r2,a = /J, NJ /As. <>w eseA AiTr,wid'J&tpset
/
Ade d4s% s%d'4 a c4WWdaA d' /ssd' sn/
/
Becat.ve essesx/rs/ecr/ neierd J.<-p t /ss &'n e w M 7 J l
Me eya/ss/e a'. 4 Whew /S eae4 Are,ss,d c1<ppdf has e s,s-A 7s;-/n e A /6de ldsse,p/s te//sor,$/s/e. aiA/ CA r ash c,4 rerf.s s n M e.
/2-ist/YA'me/dP fdkk dsnre/h&P i
cAsone/-sdsp/ dred' a Ced e,rss:c-me.ede)s y //el /s,adbsas sn A4e QFe dswss '<
C.rrtd GMfrafea Pdsc/s Urs.s' i /sst deJMs a r&.kefi/Pr'a f
$M YAe //ssr dess1s. 73ree zb de eWeenve ni appur&sp,7% nr.wes' J:ypsrf:r.
7Jesi, A4e /Ast des,x h<d a :
8e= AN = Hs~e' /ds.
C O
ca 7,,,,,,)
VHi>wo
<n rain) ff*8 ffM i
I o
o 66._TO" 4
l'22(8 mnO YA $ </? M,k',O!N/ N d&Mc// </f /,?)sksssif s'n a f/cv )-
8en n) /O
- Mr.o =. c'/%vr.) Se
= 8 8, 778 h> -/ds.
l
z NAd -1 6sx _
Everma s tey Z$6 6n6her Moor 6' om
.lsga' &ssA&'/a (esntW 5 e
~719e /br.4ean.? ptsp erhw.s a re ur->
2*ff3?
h = Se $f /hs 5l,c, 2 fo 0A s'n,
.E = /s. u in.+
"b nE 1
7s. usa,n),,ry p.
ic = 2. 779 ih.
5%
t
(##w.:c%
rhus )
IIS SM Co s&cfuhr/ s/ee/
SI3 = 8y M,83'r Au' (s3Kp/mn*)
(dalcuisied 3+ress)
[
sa = S FB
- 22,o% pu' 1/G (safefy m t H S, F. = b
= 3. a.
Sa i
i l
\\
l 4
l 1
i i
l i
i l
1
3 A/#d L dssx E w r s n o n % >-
Zso dw/shieV-F/cor Bes/n - Bo/t dest. bro / Sdest -broa t (G eometry ')
3:S SMro shacfa/vNke/, s = fd, r.39,su' y
- a. 9ss "
^
~~b s n)
Af77:..
A/77" (sr.r-m) J.
l (n rmm.) j l
- i o.ss'"
(4mm) 1 l
- o. c"$ belWie t
4 t-(4 e a d' do,dsdi A'/y )
i b ea r k et v
4 194V = (d.fo)(0. p 34.) = 0.//a 4
- Beoriop i s' e for, & = A s-c N )tc = @s//s)&', s)(/4,739) = 8,3co As, i
l Shent - Teorsa f
\\
/1, = (3-)(0, a sc,) (M77-6 2g) = 0.54S%. '
\\
$Tbec = (s.rdrXfd,e39.)@.s77.) = /s? Yo /ds.
I l
Be//.SA e.st-
%-/Joac S A 5 27? k Grss'e s i
(FEs )g =m(s.M/9)(as?rMus.,s:w) = /s.,4N As.
r.hfressw x s i
y z'.sku/sfed ds// Assa/
(Swstd 3,ywrf -/!de'Ar )
v.:,,
l LPak = c/of soo% ra,ssi)V'/)s = 4,-14 0 As/ddt (sp l.eds)
Lead &cikp
,d.)? = c4*o)(e.sj =.s.57
~
+
NAd.1 & s a</esssm Iss ds' san >>e?-
F/ssr Bessy
.lms' d.'uxs'A Av y'
ff/Af flf6 $PdP/)A?s*fdl-Yk/>> &Y Q//d/ f/S kj- = o.rRp = /s,3fo /ds. sn eac4.Braord ca,prt.
In /Ae dokwn &sfon)ers iCx>- //wr 4es. sis sre.
7k 1%s,s,de-sseu psi.&o s.Me Atav/-d cappss-7s.
effea &ve 47 64ad Ar :
7,4 ui,
/
Se = Af
= 3,.s a e /Ar.
JR ff" _
4%so"
/f. 4fL
(/HFMM>
' (rs 7,wm)
'(gs7,am)~ ~98 y%
1 y
a a
s e. g o
cas ca m m?
~
74-ankww desA>>p ames t by a f/sst de.wi /s,
Mre = (/9. 9r.)(A% ) = 4 4,, r.r3 k-/ds.
d3eam Nge rtle s.)
- s. rr ~_
a = s..r n,'
'(,74 ma)"
7-I = /o,44/d u
- d,J 7de i
l (tem)
.d. = 2.30 in,
i no s S OolYY
.T 3 /,}{,,[,h,5
.o (rmm) 2 j[
(&Hcw.s&/e C/ress)
- 36 S//wcfund' s/s. /
S's = Sy = 34,000 PGA LcaIculated shess )
8n =
~= /.:G 4oo psi say ran = s.e = g =. 2.si
s-N ad
.L a sx Hsa.s n zcs dan 64er s
Rose nem - as# se.o>se / shere -;wesat v
(G eom e+ry..)
- 34, sfrxcfars/ che/
,. n -
( 1 (, * * )
e I
k/G
_ 1/g "
l_
1/g #
- si,/g 1
f' I
i i : 4 i
o..,ys -
. L 1
t r->
=
i bol k ce u o s u )
V oa d a,sa d/ M g I
8 ear /n ex
(
y Ase = cs.srr.)co.sn ) =- o./s3ra,. '
Sear /np &c7%r, & c Ar (Obu:.= (e./oss.)(As)(34, coo) = x 579 /4:.
j SAder - Pearsa f
$3 :(3)(d.2 M)(d.42f-d.22.) = d.D2/in.
\\
(Sr% = 9.caC(34 000.)(s.sv z) =- f 4 frb.
Ao/f SAear J/r-Ito UNc.
SAE J*/2% Gn,de 8
(&g =r(en. 0 77f.)(Jor'7 7)(/30,eoo) = f,8/0 /d.c.
c
,va Area nue y s y (Yk'N/a /dc/.ddll AoaW )
(hirauVd Sy,Wrf - 36 8e/fs.)
(4 )a = Got,,wso* +rs,soE)/u = s,a.so a s./sw (27 sas's :
l Lead 4 be A, n.=
" X o r.)
- a. s 7
=
(s,no
Lloyd's Register of Shipping FRE!GHT CONTAINER CER flFICATE Name d Menufecturw Adatason Containers Ltd.
c=oficate No. 501176 Lacete of worte Station Roade Reddish, ofr,ce Manchester Stockporte Cheshire.
oca 30.10.85.
Thle le to certify that the fre.ght containers desenbod below have been manufactured at theee worts and constructed and tested in occordance with the requvernente of Uoyd". Regieter of sP4peng for the Constn,< con and Cerchcate of Pre +ght Containers and coeform to the e.ouiremente of es internstesi convention for sce containe. The de..ie of du,gn, meieneia, construccon and wortmanemo contam ia the soproved pane end to too prototype conten* identatied = fonowe r Menufecturve series No. 938/001 T m w eaht 2080 he Type Approvel No. end c.s c. Aporoves Re+wence c8.LR 6820-9/85 sortei numbe Menvfecturve model numbw CC-HH-1 owaar's l
Manwfecturve Dete of manufecture (yen end month) 1985 Septembor Type of containa 20'x88x4'3" Open Top 850001 938/001 Raag 27000 he 59520 le (Moimum oo eting grow w+9he, to to ownve neme end code lain NACU 850004 938/004 Nuclear Assurance Corporation uoro e sporoved enderweents:
siscung uesuty 160000 he 352740 lb stacung tou locs 72000 ko ** **na trenevne r cong sut tood 15240 ko 33600
't and wea strength N/A sae wed wreasth N/A Fires enemination due date 1990 Auguat w of j
eoai m..wed POUR by vue eenuate i
i Y$
s o.<e4aw J o b i
i l
the wrenced hu um+s evi evem convoi eurvesence et ene ebove waes ec4 conevvete n ucwdenoma ice reece conta a*
cws,<<st'e scheme ecs hu umed evi enaneene sad evoecr sed rece on uve prodvete conte.nn
= r: G e
,f-
/
to ec v* ut e en4* w eeni-e.e v e.f sw re,,is uovd Repcw of sh eens e
8e C.8aguley.
Fwm laca(reit )(i1ns)
I i
_m_
CARGO CONTAINER PRODUCTION CERTIFICATE oenign Type Number: AB/ 785 / e6 Certlieste No.
26-TA 0225 1% Certi6cate is for
'7 Containers e$cptember 86 Date 27 Septer.ber 1956 manufactured during 19
,: :. 6..
sh y. s.a Tills IS TO CERTIFY tha,"Seven (7) 20' I 8' I 8' Open Top
=---" Containen M....
- ~
built by Ever: mater Industrie.1 Corp.
.-.c.
st te.T:
. er ecc.;r s....n x.
r ?1 n GA' % ' ' '
for fluclear Aneurance Ccrp.
~
1 han been thoroughly inspected at each stage of manufacture by our Inspection department under the quality control saneillance of the American Bureau of Shipping and that the detalla of design materiala"ecEnfruction and work.
e manehlp of the containers conform to the applicable speci6 cations and to the American Burean of Shipping Rules
. ;[ s For Certi6 cation of Cargo Containen.
e u.s.......,,.3..
The container (s) are constructed in accordance with prints rev.iend ca _22 Septe=bAr"1986 e
2
.., w e... w.
~
A reference I:]/TK-1765; under general aEgr~m2e drawing ' K03-20510(X)0 'J'$pto*hkof khich has serial number _Td61MCO & E-361405 : was tested oa 27 Septe=ber 1986
,, sane + _ w.,
e..
and accepted with the tuning of prototype test cestiacat, 66.TA 0220-X D
Siae 20' I 8' I 8' Sfodel E2051-01SA ~
Sf ax. Grou Wt.
27,000 kg Tare Wt.
3,050 kg Payload 23,950 kg 59,522 lb 6,721, Ib 52,793 tb hianufacturers serial numbers:
E-861400 through E-861MC6 through through Operating numbers:
!!AC'J35CC05 throu gh flACU85C011-(with glpha pre 6a) through through N
Q4{'s '
Jeff H. Ke !!i,
Qaalar contrei serennteadent The undersigned bu visited the plant of I'.o m ator_ Industrial Cer;cratien locan.d at Chur.g-L Taiwnn and carried out quality control suneillance u indicated in the Rules For)Iertificab of *"'hgo Containers.
F.T. uer
, _ e,e, Americar. Bureau of hipping toe.. e.e.e e....s e..e-e....e
- e. e
.e e s e. s e e e e, ee., e, y.e.e e,....,see i,..ee e, ie ee.
e.,
......e.e >. e < e,, e..
.e ne 1,4 5,
- < e = = ', s e s
's el e.'s e, on e e ie s, s e e e.* i ei Se ee.e # se e i e e e.eis.... e n e.4, ne ne me..eae.i *e.e aos ao s ees e se e 8.!**
...., e. e, e. e,..., s e,, y e.,,,,....'e a e, n et a s a...... g,.ese se te e,.g fee..i y % s e e,.n e,
., e.e o,, e,..
,.e.we e et n e. = e. e s.
I leise, el,4 ee.eo.ei.eItoo. t.e le, weee He' eel 'd e '
- 8 4 f e e ' e e * e. e I l e 's.*.
..e
'etD*'
65.e e
- p*'e
- e e' e. of le t. e ** I e d 's 4.
I s e 9 9.
- 0 ' e e s e e s.g Jet e.es e.- ees ee.e, e g.,* e g. g e go q.
,,g, g,
gg,,ge
,6 e ' I's. s v.
e.e*,
e
- a., s e n e s e, esteegnes ae *e se 1,, t e a 5 < 6) 4 ( i i n g)
i 6.0 U.S. MEC Co - nt:
i i
i The combined strength of the welds and bolts were used in analyzing the cask support attachment. The welds and the bolts may not act simultaneously and may fail in sequence. Justify that the velds and j
l the bolts will be acting simultaneously.
j i
1
}
MAC Response:
Simultaneous load resistance of the bolts and the welds cannot be I
i demonstrated using classical analysis and a no yield criteria.
l l
Therefore, the analyses are revised to demonstrate that attachment l
l bolts alone will resist any combination of the 2.0 g loads at the cask center of gravity in the longitudinal, lateral, and vertical direc.
tions.
All of the attachment bolts are SAE J429e, Grade 8 material l
i (S - 150 ksi; S - 130 ksi) and all attach the support base plates to u
y j
the container cross members through the container floor plates.
t l
The additional load carrying capabilities of the attachment velds.
[
]
which are present, are conservatively not considered. Also, some i
l additional SAE J429e, Grade 8 bolts have been added to the container i
floor plate in the surrounding area of the cask support base places.
but have not been considered in the analysis: Ten 1/2 inch bolts at l
l the Evermaster Forward Support ' Rotation Trunnions); eight 3/8 inch bolts at the Adamson Forward Support (Rotation Trunnions);
and eight l
l 3/8 inch bolte at the Adamson Aft Support (Lifting Trunnions).
The following analysis determines the maximum allowable loads at the Forward and Aft Supports for the Evermaster containers and for the j
Adamson containers. The allowable loads are compared to the applied i
2.0 g loads and margins of safety are calculated for the longitudinal, lateral, and vertical directions.
Finally the bolts are analyzed for the maximum combined load case of vertical tension in combination with longitudinal shear and lateral shear.
Note:
The tensile stress area of the bolts is conservatively used in the shear stress calculations.
l l
4
O NA c - 1 ds sk' 86sK 34DDor75 J NGCbp16Hf_ 80//S fummata of Reso/fs V
(Evermas-fey certained Fswaed' sup,ssi t (&tsk Sankd M, s, = + o, ry AN Sap, cort (afA'y bsks)
M. s. = + i. /J f
(kWAMd/fl $Mk/MeP) f 1
$?Nl$?
f$Yf ff G Y hfMA/#M.$)
Meb,= h*$*?Y Aff Sy, port 6&fhhp 7Fomn.)
M.s.= + s.sr l
I r
i I
i 1
l r
I 1
J
/
A/M.i ddfA Evernuster 756 &%Aber
.4oa s' dona % A y'
2 ecers-yt -is6sc Tc,asice seed - osio; in sawn SAF71'.2teprade 8 : Sa. = 150 m.
sg. 50 m.
i corutio a rutoa suop:c r - ts m / hs uwscaw wd eaooc;/a (sae. maam) ha.cusue sAeor CfA.ss 4 - c.ETi(Gs)
- o.sn t(eo w )
s
'[6 w y
(;e wts o.iq e )(1somi). let nolk en y
5 2 554 tr vge.wAL Zoaa'(la#ad/Yet (,T c3 e e t c A D q )
ALLew AEt.E 2D#:W/d #hWE 6T*bD
=l3 0 kGl 72rnss' e dood
/
( 1.65+st-ma ) (lso oco J.k 5% coo \\r-m 4
i l
+ brik shess Bra also wurvshw)y used 4r sAest -
1
a Nnc.1 da.a ex<nac w w.
L oas' &pb%'7 c dw'M.)
7 umMg neue ee-
- iz e
-Hec 4 eomac
/.,avd 6*e/N h.ucosete SAesh,:crVes(s,SMAe-LoACWd )
i s
- o.s7r (s3 )
s
- o.s77geo mi).
5s. - 15 m Shear hood te.gg.r ' y 014ie).3* g he 1.. '2.'11co l'.s.
v
- M-pr '
jd*
u
_ YG/*
Cdl 00
$$$A$/' 4/' ( k//.fsYd 0e
'/)
A//sesd/e
/ande ' SA> e.r s 65 6g 7
"lM0 L61 4
7ds/s//c dood
~
s 2. *A, ony \\eo cock.
w ul6s s;;o8r
.,i l*
2C&'504 CC4TA!4 %
Beer - 36" - Ko ue
- Tc4it.s hecA. o. o'TT5 i A
- g varwru. - $AE 709e,Gi-a de 8 :
Sa = ico w,
Sg - iso e M @ o d TE o v Mic o G V F UCT - % SouTG, j
hCWW bCQW $d114di
<d (6&\\ChC.* L Ctro% )
J hLtes.>AE4 C- # 4 e'4 /- #~MN:r.s S " C 5 l'i (6 )
I s
9 ot; 7 Lteo c n 4
Q ' 16 $1
- Y h?$G5"?0 Vf N
?
8ob $0 l"* $fi*/H O $$*
3 NAC.i l's sk.
AmMM ccwr.siwes
_l,0e W dd/JA ds'l/ YdL
{C,/11YY*b
.s4aoe Asad'
)
%.s a :rs f,,, o.o')1 G d 's 15 ocok g 7.f o i s w wr
,sco-jd
%%.a )
Lead esDocdu (7ews/Ve Amo%$
4//oauJ/e %nk Is>%rs Sr-Su
-180 w 7c~ssi /c 4es a/
O. O'7'76 d % IM 20 h =
dig &:,,']MN-
.3fe jshES w.
s>wcer-pa r -
.w us-net r o _ w n w a s -- 16 w Its
-HDCteca'tht,. Aodd dsfjeciYt/ (Suc.'Lc3NC.,).
AvecwABA sad 5r $ $ ers y O. sn Ey
- 0.5 g (IEC k.sd i
Ss
15 B'st c
.SAfdr dos o' lla Eo C,,
O C116 /i 'lCzok J5ct:0 b6 y
,2 s.w.xv Zea/ do wee'/(/
csses Leccus.')
l VsereAL.
mussue %o'% (shers
':.,T, C
.7 j #
4?\\
g
/4./1fs'/d 404 W I
1 6 t v.s, ocns g,isoeco k,.
1/orem k
- m-6 vg.-
ps j
l l
l l
l
/ l A/ac-1 & st hss' d.wsh'h/a r
be2MVaid A,$dd 8d$e5 s
I L
IWMgfie COWAi4E f-R.drAilow TcwiN 4LProC.T, Pcf.W&60 l*J COJTA4 P4 E'C-a uwc4T.
g 6
'/ - 1 5 0 + 4 Scum, Grace 6 ) S AE J4 2,0) e..
}
Su. ' \\So w, a3 = \\scs w.e J
h su_ouxeue Leso ici,rso l'<.5 M.s. - !.qt _ i. + 0. 04 io4, w o k Ic+
e_.vv au coAo
(, estice cace v e c e-c., g A c c c c c e e, o a M5 N Th e f~op.u g e u ps c o f )
l
_ LATEl'AL t>ffCte4 J
I tw ow2W.
- i. CAP 101560!bs M.S.e tol__; a d f. Vf sz orou ez.
1 mx oc i
c Ar c 5 L e o.e-
>cTta t r oa l
eewxe w.ee se u-- dc.t S
(, c4 WALP' o acq uac.cc A
i i
3 c.4LCp ATC4 k l% GJ WC fW44At.o
'l Cupet:*'n")
j t
_YIAUCAL DNM 4
r SMooot:
M.t.r M 2. i ="5 2 i
AaNAtte L CAD
~
- 52. coo 40 5'2.
JcTute LOAD i
i j
1
[
i l
s J A d - 1.
do.sk Lead hon hiH hte-Seatts?e dd Os.ses (ca,f V.)
v-MfMA$Tfc. COWTAi4Gg TEvN PdIord SU ARpi'.T* -
A+- i iW CctdTNMER Lt FTha C3 l'2 - Y -16 UNC. Sour'.', W6 6 G44 2429a 1
AT TACH Ms e.n-j Litr - 1CO k.fot, Sga150k.6i Wit udiw Al Os t 6@ o 4 -
12.]O'.V!*:S M.S. =
- Ae AL.r ou n d LOAD o
kb Ac.TU A LcAD
( FoMAcc GJPR:et' x.44TwLG catre #c.Lcho)
LATCt. AL. "Datg-M l
67.f[ 7cols M. S.. Q g = + 1. 44 h LcwAtt.e LEAD L
s r. oco w e2.
e um La I
l Wt'T1cc L Diff CT1c 4 i
l I
'2.1.,; e 4,3, 2.6 _
i 2.2.1 Ahok t%.=
J ALLcubELe LCAD
- 62. oro lec 52.
ersw Loc AD&LGerd CcwTA tWr WMico hp.itcN suphrr - F'erwAto la Co.:rra.14er_.
3 / - % - 6 UNc Soc % QuM.6, SAE. J41814 Nrracumcr.at -
4 f
l uto.150 v.61, Sg = 150 v st t.'
% Ifo h.,.
M.S. = '/.Cr'l j s tl Ol 44.1.COASAG t, CAD is cco 1.5 M
i Ar.n w tcAo I
i Lee rAL D(c.E Cm o 4 M.uoM2 L6 Loho -
M2fc s H S. s w _ l.* 3.02.
e2 cm.
s2 wa.
nc i
YT AL D l f((S C ht.L.cs4 AEtt t, CAD -
!M,17co St M4.= $J ).*6.%
)
MivAt., ccAO 62 cce 14 62-il
c, NAc -1. Ca s K./i k -Sonn yle dood &se.s Cemt V..b Lead Cajn&'
y Acc eoa cow-rAIM6$
Lim 44 T2M@o4 &;PFce.T' - W e4 c c 4 To w e-0 hTtscumcw -
If, - % - 16 uwc Sctx5, Co Asce s, SAE J42Se.
r um - Wo csi, GLj = 150K.s Lo4C-.lTU D i 4AL.
DicerCte4_
$$oco Ik.
M. S. *
- LM44..
AcoAL. I aw -
o k.
LetrAL. c,iec.tiera M 4 04Ai2LC' Lotb-93 om (LS.
M.8.
- Si q =#g{
I 52 oco b,.
52.
AC.HJAL LcAD W (- h t b / f c.11 0 4 h L o.J M LC LcAD -
llol #40 Ik-Kh.
- M
] = [2. @
czom k 52.
u n.>i u e c e
7 A/A c-1 dosK Boi t /;?sw/ys/s-Corn bo'ned L cods twcMacrep. c.ooq Eor.socw Teuwwca suPa%f,, [ 13 LNC 16 - E -
, &EG 6 Eo.n,, 546 '421e.
mu-WM o.W1 (n' Los Ptormco -
~V.Atcius CTra c Atca MAW' Lot 7"fcPCPCG -
Su 160 K6I c,3, Ito at W4wsN.,
ShaoP Site ss 104 ocotbs.
23 = 52 cco !b, AP?uco wAp Soc cryeA, (MCAc) b ]Io h
104 CCo k *
/
($teet*014lbL" '}
- .tr,e J.ArecAu
.sAcar,shess Elcoo h 2g*74 vooIca An%to LOAD a
%.:r enc <% (shea r)
-)
2.0 36o h 54 ca.) L<.
I 2s+in
%t:N%. Tensile
~.;;~Nes.5 L1ccc 1S.
WLC D L CAD -
13 = % :.
.,5 t.osv t.7LC'.'C (7e' nshn)
__3 7o f4o h EI cco M.
i zu4 m' Ee,1a/dwf SAer/
.s*/)-s13 T= (407/0 A.20 %0' ) * = +':G S*/ 7 Ak '
y used ls'r shesy c.%v.c es/cr.
+ & sew. h'veI
N AC-1 dos t Boh'- #esks/s -Oswhined' 4oss's cesisl/,)
ewe.accTet-b m m Le Atb& &miers Soszar>t Ear /ys/ow?' she.rb '
Se = ~fr * + 3 T' '
(to L:P 5 ( A g :r y 7 ) " '
=
81> D S* #si b*
A0 -l M, $, r.,
30 N S/,C5
%2 l
M. G. - % 5'9' l
i, k lWidC] MddldN ND7 A:ruca Mc M -
12 - kg" - 13uwe, QcAcc f6 soms
\\
NNY YhWMhG DON $Ys % $ $UC k fd
- # /// Yo* W i
1 kQN&TUO\\Nhl,
$ $Y ? $
YM A9Pueo w e - 23 voh rep m,Leorem oa msamoa)esmer Aes,vuo o
Ts a s e e % w % u:a.o.
'/
no.f sTree (sheee.)
--> o!ht 1
i
)
i
7 N A d. - 1 Cask _
BeIt Ana]vsis - combined Leads (csad V.')
svez.swtwe - cswo---
)I'hY/b1 Wan/J/ & $ W e7 f LLTcesL. shear th-ers A%CD LMD -
29 w ZL ocobs 62.oool:,
Bo# STEcco 6:rdoer) d 52 om k.
l
) so sso h m*
S
[ 12m o,tet9 &
)
E!cm T l.]ot l[ '
Rt.-T4L 7~em>'/e S/h*rs AFNto LosD - 23
- 2 6 0 0 0 Lv., - 52 ooo Las -
Bcxt STf<tz O &e.5/ M so & L /
52 000 k.
l x
/
), ]0mr.2 (A
i N/ M M
[8 [8 v
6e =
7+5Y i
a
.J G\\,0'.,K?$
\\
~:
e a
b k
l M,s.= m o o m --l l
foi obo j
IliG = \\.I3
/
4 j
i l
A N.A C # $.
$ct S K.
Belf* k nct lysis - Corbine cl Lencls
(&ff,)
ADAMGod Co4N N Q Rarmon T'euwuica SvPPXT flo
'/$ - I w UNc, AcAce B eoS':,, 5 A E T48 '
ATTaco. Mc#
5 Socr FW:5t4 ricc, -
Ttwot.c acA o.o116 i,3 MATCd 4 At WCTWW, -
SQ
- 150 W.Gl y 53 = I5o kAl W ksm) OsN w..$.8 edP $l/-fr.s 2.gw62.ooolbs.=l%ocoUS.
APPLCD LcAD -
seer stre.o (sA ea P3
/
I s1 rp b
/
tc+ccotes, % ~ c.ovea\\-
e (2 770)
W lA M v. 5bdd)~
C l/*d'$.5 MP @ t.odo - '2.c3
- 5. '2h ooc ikx
- L 2 o o o IL,5
)
le sso k,
/
s'2. om tbs,
n k
'd.110 to in*
h % kt,,a Yd4J'//d $*fff3*3 h % to @
.2
,t.;14 oeo /js
- C.2,000 /4 s.
toc-sucf.c (ree r/m.)
@ M,o k '
57.a:>o kt, w
\\
A
'l?!Jo ic' t2 Ec W / / l4 W Y' f,h e n J' S l)-e x.5 i
T=- (;r737o + At4se*.) #h-p., w 7 pse'
^
-X &bs&+'a8're/p used /by SAest s?'>-eis akr.
/,
NAC-1 dask
&I t-Ana lu sM - C.wrhined Acads' ( w J.y.)
wso% co.nuace lofatAtrr M onAvr1 $namf Eao/ro/mf Shers
Se. =. 1crf+s%(
06 9.2o)*+ S(f/447)* '
1 1
.e.
MA%)4 c4 SVP/ TO Yift.D STC G%-ru l
J 1
J
. 5, = ' *7f DS
-I J
l M.s. = + o. 74 1
l Ltpr4C h io4 SuPPcc{
3 ATThC4)M64T- \\G 3 N -iWwc.. Gru 6 h%
/
965 Nce.TIG MATroAL 7 t e F e c n t s N c.
Forsc4 hao4 7
smu
]
M r1UD 4AL JM&#/- #
d' #.5 h cp ro rus,susc coeceuotaac tos o.
1 tur
+
/.2
.N 4 c,- 1 Cast BolV Amhs/s-csmbh,ed Lcccls (dnd W,)
Ace'.Ebd ccs rMNct -
_Liffs's74 '7Fosm'm SusMPY Las0%L S h e a r d i e'r_s-Amco
- t. CAD
= TC3 * % Coo D.*.,
- 52. oco L%
ea.:r sTp x,o ( s h e o O
--) 41 H o b C2, coo k,
1 2
n1 '
(14 w o.o75 2 )
/. 2 fo W1*.T1C AL. DMn'/d f//~e.r $
W Eo t.c e -
Zg ^
2.'o ecob:, E2 cce6k:,
Ecci" STCCES (.Teo sh n )
I 41930 b
- 52. cm U C >
I s
M t.240 int Etm'ynl9ni 6/Pess V
2 Oe *
(x. + 3 Du"
.j (4l 9so)* t eI v'/,9.raj M 6 W hs t#
M A 6d CF 6NT.T-f T y @ S M e" s' G h M,s. =. Bo ao.-i sa m 1.-
M6==o.M
7.0 U.S. NRC Comment:
i Provide a sketch for ti.e Adamson ISO container showing the arrangement of the thirty 1/4 inch p steel rivets and the added six 3/8 inch p grade 5 high strength bolts on the floor plate.
Also, justify the assumption that S - 55 ksi for the rivets.
y NAC Response:
The arrangement of the attachment bolts between the NAC 1 Cask Supports and the ISO container cross members for the Adamson con-tainers and for the Evermaster containers are shown on the licensing drawings, Nos. 347 586 F2 and 347 586 F3, respectively.
These draw-ings are included in the NAC Response to the U.S. NRC Comment 3.
All of the attachment bolts are SAE J429e, Crade 8 material.
The bolts in the Adamson containers are 3/8 inch diaceter and those in the Evermaster containers are 1/2 inch diameter.
The 1/4 inch diameter steel rivets, which attach the floor plates, are conservatively not considered to provide any load reactions.
9
8.0 U.S. NRC Comment:
The eq'tation used to calculate the stress of the af t support assembly lug plate is not applicable to the loading and support condition.
Show that the combined stiffnesses of the lug and gusset plates are adequate to transfer the strap force (which is applied eccentrically on the lug plate to its center where the connection bolt is located).
NAC Response:
The Aft Support assembly lug plate is redesigned to incorporate a 2.5 inch thick block of 6061 T6 aluminum alloy, which is welded to the strap and to the lug plate. A 6.0 inch long, 1.00 inch diameter, SAE J429e, Grade 8 bolt (S - 150 ksi, S - 130 ksi) is required.
The detailed analysis is provided on the foi owing pages.
/
^
- ) 4. )
dCyL.M y ~
t 2 ' C. C~
S A 5 '#-
h u N Y E * ?__.[?d."1. bS b 15 0 ' : _ T c; a w e w
?fiu. m u t L J '2 25 ?93
's l pu e
$,#ww.
i
-g 11
. o..
1.7 5 i
?.2 3- - -
4 P oli S
1 1
9 0 9 b ' 3 S L$7) ? h
.3
'h $ i
- 1
' C7 0 I h, A VL L
L
- e ; c.<l N c\\
M o y e, r <..,,
o M s, 'c S v p p e, t t.
4 A; - !
c.> 0
- 1. '. -..><
26.,790 o 1
c*:.b<><
14: 300 pi 1
L F so'a
%p
- C
=
%. r. 0 % - A L, 7 5 0 x (i) j P,a
=
3 l
(4-p) l 2.2 9 P soy C
l a 3,c o c o. - A t t 7 9 d (1)
P,4
- .;g s
3 i
I 43,795 d l
S =
P oi; o.443,
3 l
E
{
Soit evoy 4 rics ( l -
S u u c')
A g i o, c.o ro Pson
's ng
? -
_t t o 5,2.7 0 ysi 2,
ge sr.
o. G e c, I
f M b wa.oI ?
d<ts4 (4Akja.14e,,jv.
c a., ', o a <,4 e,c 0 4
t J
'x = 13o a s' s
4
.)
M. S. - M'
- ?. 2 3 i
j i
i 4
l i
i I
i i
.l i
I l
I
}
i i
i
ro c. \\ us me.- 4 %3L.
Coa h L ppev k - Wrd.
t..-
A P
i s em aiq o f 19g c-- d pwc.4 gb4 c.s 1
-,.--.s.
l 1
li.15 l
l e^
j Q
M;,
n.
L,,
4 s.
W\\
- ,<'S 1
i i6 t,g
-_t-N I
l 1
i A,=
(. 9 - i. o v 2 ). 21 s :. ' 19 9,
, o..m s
- ), G 41 L
- 1. c M As
- c. i s < t. 7 s
=i.%1I v 1.12 7
=
A'
. v '; D A y' >
- o ~. ~=
^ "
f i
I
).Ib1
?h.
3 1
- 3. 7 5 e 1. 7 $
,s
_* % S_v 3_.575 4 i.., s 3. t,44 5 4 a, m, g,gg '
Q l a.
.i 0. ~1 1 4 1e
' ' b S-h5 CQ A
,M :
IS,30$
Y 4
G _E c Gi b v ~0.7 t Y i
r Mc
,9 43 g ogi s
q., 3 4
{
0,7 q i
I il i
i a
V Ev@I Movt wi ut r>
?
$1)h hofCOPk
\\$i-$
G 4 4.
~ / ' :, N t s c A5$
.f, '.i _ _ _ _.
t,
/
'1 f' 's h b O (.# 3
{ b v
.*d- - -
e
- r. Z. G G in
(
b fy N
- t. n g,u,gog s
MC.
h5d h /h.
A.
t"4 5,,
4 433 Y S1 e * ' Y C C
- E 4' N
- x j
, *s* - -
s.
1 Ns l
s, i
n
{
e i
J._. L ___
\\J
\\
L
\\
\\
5' 1
4 e
.i T.) e, \\ th0 ') 4,,. m L m $
'rp'%
' 4. s 'r.
Sv 7 p s v Y - NTd.
- i t
Fo<
wo
.u-s ps* :. S e c f., +
. 1 a.- s #
-i n
(4.3 7,0 7o v * 'sw i wid W,
3,, c S.*
L., a is O~L.
'*1
- [ i > /S a
(w; 1 iw 1
b
.S75 149J.
Ib O S, s o '6
?, -
--.* 75% tb
-S 13,al4 t ks
- 2, s, hC B a
3 es a :S 7,4,*616.(2 29) : 3 3,5 W I
Ny
\\
i
,< M
.', - 5 4, 9 'A t
- l. 5,. -
. 45, 69 't 05' i
,v o%
!. L b S c 2 '
n M,
i ; 4 6 > 1. a 5 1 s t (,
i e
to< aL%to
'L k !, 9 0 0 *a !
5 ipi
.5 l
4
\\ 3 '6 v 3. M k l
l r
'/A T,3 i,
iw 4
- - 2. 5. w s
I b
- r 2 5,5 0% <145 S 9 % %c t u. ' t, JA s
3
). 2.7 5 c..r,3 i
t i
6 < 35 fa b O l
e 3 1, 1 1,,
3 3g
- i. 1 % < 7,,. @
in cIv d e Oc qv%e k p $1he, b cIW(,% d5 i
T ', s h hJ bQ h#
5 e >4,-3C 79i 1
,1. O.,% - c.7 5% 5 s
T a.so '3 t
I
-9.10 M, 6, =
.4,igo l
i-I
. Evt l M ntwM
- b"T
_Q,4 's. hv opo vi-
'4 A 6 9
,\\ ; 4 Sup pov4 4 uu
'..+e vvv r%)
-~
i, \\
" t,,
G 3,14 5 lb
? g pi
- 5,OMd 57b P '. A t '
b hC 4$
.". L 7.
1 O.
- 3. 9 C ik hb 15O tM 0,/c & '. k c.
D. 7 l}
3.33 I/ s)
' /C. 3 t
A,
.W t, a w';s.,
Jq k*j M
'I
,[ 0,Y o v.
3
- 0 3. l 0 h
[
'. ' '. $ 4 1 - 3,., ) v., 3 )*
/g g,, -
g.
> + 0 '1 g. e; C. 5 6
33
-E,e t,e.
u<
e y
en U
i 3b.hO9
_' I 8 14, 5.
5 s.,,,
I i ter )
i e
I J
i
9.0 U.S. NRC Comment:
Dimensions, which are not identifiable from the drawing, have been used in the analysis of the welds for the aft support assembly, Please provide design sketches showing the length and size of the welds for the various parts that were joined together to resist the applied load.
NAC Responag:
A weld map drawing of the Forward Support and of the Af t Support for the NAC 1 Cask in an ISO container have been prepared to clarify the l
details of the fabrication welds:
Drawing Nos, 347 241.F36 and 347 241.F37.
I
I 10.0 U.S. NRC C smani:
2 l
The longitudinal tie down force is acting alone on the forward support as discussed on page 1 of the Fuel Movement Project. Therefore, the longitudinal load on pages 27 and 28 should be doubled.
Revise the analysim on pages 29, 30, 31 and 32 to account for the increased lot'6ttudinal force.
l l
tiAG_)lcaponse:
i so that the The analyses on pages 27 through 31 are for one support, losgitudinal force used in the analyses is correct, The longitudinal force to be used for the analysis of the base plate veld on page 32 should be doubled to 104,000 pounds.
The actual base plate weld is a 0.5 inch fillet completely around, Lased on the fabrication drawings and visual verification on site.
The attached analysis verifies the adequacy of this base plate weld.
Howev*r, since the attachment of th e container floor plate to the cross members (1/4 9 bolts) cannot be defined because the 1/4 9 bolt material is unknown, bolts through the supports and floor plate (s) to the cross members are used to carry the entire load.
I I
l i
l 1
l J
/
F.; eJ M ove, u u 4 D,0 6
..L4.'L h J f) p0 Y h 5 NhD='
Q C, L
~
Topr.u p d
$ *> y
- t v *
{r % 1 7 0 *-5. * ' h v s 't v ' :: " )
~
~
c 5. % '.'
i
/
g
M IM Qh) MA h$
I O Uk U ' N N D ') S ' *
- 18 h h k
.# N' y gi 6
ei o
o
&p s e
UN hs W
9
'an
( 'ist lR' L
S I, L G *a !bs) ov.c. y: M ion hunnuen cW}q G, l'.
f
/5 N
t p
f.
... g e
I t
L M
l t
j 0
1 7,,3,,, 9 3 e g33 g g~. _ 94:
y
}
m
-,-.4 -.
P a y:./A1 g g
1 i
-a P s 5t,cor I{ 57ft'0 g
}
s i
6 NI 3
if i e 9 3 2 *=
9 is a2ae Lt?
__y_s y ~*
l i
i A2 b l
4 I
h l
1
- 3 M I McNd,Nond hv a d '-
u a s m o,+ - a u._,
ciab rJ e. \\ 4 - s,s p o o 4 40 onc P stc,5M a 3 gr
~
W s 5743 l
,y r
%cd' 4
9
_ f3I 3
(q/
I i
wu t
l o
y its
, c,n l br-i 4,
N lI l
N e
l J
~
m l
E
(
l$
.=
=-
_ l s.
s.
to 1 D, "x
i i
I t
'i.
N fdhe N
x
/
/
?
pvope*k5 we1d (t - 2.k ) 3.7 G 0.31 th 2
~4(IG + 3*d & 6 7 4 3
32 510' 1
3
.'s' 4 iw 1 < t ', v 1 0 t
s
-s
+
G
- "4
- 31 ('. k1 a C 3 [' ) ' 3% (9 9 5 A * !$11 l'a I t,
.ns o,5 )
,,i.
=
v.
sv+
1 i *b. J 4
=
. :. g., s:
.s 3
1 Y l l - 3. 9 ', ; $$.7 #
Ih b2 l
' q. \\ p 1,7 G
\\n l
h
=s s ) m ove.n ee P w u-P
- .u k
% p p,, t - p: i
. c a. l s e.,.i s p.:
s 61, O r '.? A
?r L
e s,i 6
e a
}41k + Et,0Co '51.2 O :
.',19,000 l k 1 '.
$ = 9 0, G S 3 ( 31.'2 53 & 2s. 3 3 )(G.15 -o. % il
- i. 9.15, cro +.:,
M 3 0, c o c (, ' 15 - 9.3 0 = 515,0 0 0 m, l'o My I
w c,' d 5 4r Abr 5 l
l 31 L S T iG,ces v.;
1 ag
- i I
,y
=
- 1..
< s o l,s 1
31, c c J 5 ; 5, c o o. E. y 2 3,,,
=
igu q g,-
l
,o l '. 'A '
. ~.,, ( c
- w E :, 0 0 0 ' 2, 31 s
1 u ~,
puz
- a. 3 1 : ': a y
s
\\
f M
l
/, e. :
tJ e w.t 'u l c.
l r
31d
..' r l
55 5 G lMw
+ s '- c. I.., 3. Q, o as d i
ve- '
l Fv ' O.W 4 6 (14000): G$6f'/tw i
l 1
1 i
M. S. >
NO - 1
-0,/J
.g4 y, l
l l
1 I
l 1
.. _ - ~. - _ - _ _ _. -
l Fval Move,mo.i P ro )c.s 4
[
l c,a.1, k so ypo r4 - N Ad-t
[
d I
\\
Townd
%y9*A L%9 j
W e,l d -
'p M t., pId t hd OOdr p$dd (
I slIo, j
h e,1 d p ro p o+ h i t 5
)
L, 5 2.( 41 5 + 3 0)
- 151 tk 6x=
+
tt.s < SG
% $4rt 1 b
i l
3:S-t it.S r is 5 9219 tw 4
I
}
l Loo d5
[i i
s st,Gos l
Py
=
1 (G,2 cool.- 10 4. 000 f
Pg a
i P
- 2. ( :. c.i s h a s. t.. c c l '
l s
3
't.11%,00cp tw - t b l
10!,000(1,13 My
=
51, G 6 5 (30 1,0 % C oc o tw - Ib Mg a
=
i 4
I I
Wfeld 4 h Y L 8,7$ d., h i
i l
'*1., 4 G 3.
.,.., 4/Ik
}v o.
i 119
{g CH /4w f
4
- 37 1
t I
s l
st.Gv2 5,313.000 t. G WOO O 4
= 19 2't /a w
4 i
y 5
i i
IT, 16o1 5139 1
\\ Goo N/th kg t.
j t
\\4 a.,l d.
o.ll ow c,b l e.
\\
R
=-
e.,o1<a,ooo =gaf.t %
l I
42 #
- u. e. -
-t
- s. + A SS-
/400 7tse aWacA*/raf of' /Ac* {Am*V f le la Ne-l b
l
.c ;e c o.c. r,n.
! e.,44ep. eHsr-pe' ajns (l4 f)4,/4) com/ /e ded:m d', do.6 7%ra. f4 e-use ' t's cmto "de e.,ytire-
).rappefr 6, tJ' e cho.rr -me w d e;-s a t c a
r l /04 d'.
i
- i.
k hfraa?.Cbt5*
5 J
% -,y/CO s r o.
v4.. w.s i e ?# m9 ae
..w. ve ae sew THERMACOTE WELCO COMPANY
.......i.,.3
.s,.........e....,..:ir.......,,,...,,
Fittf C vtTAL CLRilFICATICN pa t e _,1. p. g $
Tel 4.t reging kelco Fr e dd C 4.
5 H s 3/ 3fM6 A j a ta, Ga.
Ncat Me Ec4 40 fill _ _
Acquint"tnta,tc i'44 ccylice with the (clisw(ag 4pecificatiche a.id The ab:ve rs a4 nettdt A.W.3. Sp:c.
A 5,1%.v.S. Cla44 IR 5356
_A.S.T.M..
Military Federal i
Cthth Cktwical Analytias fillt\\ Wrint (x)Typicat l l Milt RagcAt Carbon' Th c 4 p h e.t u e _
Chr en.iun
,05. 20\\___
Sulthur Phvalcal Preterlies
^
Cepp%4
.f01 Melybdtrum Tenaitt Ha ng a n ta (s05..!0%
Cclumbiun l
Nicktl Aluginum. Remainder Elorgation in t' i
. f 5 t __
pag a ta ium_4. 5 - 5. 5 %
fren
.40%
.04 1 20%
Vitid
.0008%
line
.101 F eq llium__
l Lud kits os t a Reduction in A*.ca I
Tin 06:34
.l51 Totat Cobatt (34 jle valute 4 hewn At i
unic44 The undtuigned here(itd.) pac 4 tnt max mum percentnD etherwiat 4pec4 kr.y cert 4(it4 that the abevt inf ormati.
b on is corA t
ewledge and btLit(.
f to the bt'4 4 e( A44 j
William W. Reland,.fr.
Pat 44 dent
- o. '
Maco.' ant (es Ce f c43 sp CS Wo.ref et, p.C hNM kVtthat 6 StWf%' AW 4 d.**s3D@f'."e b t ','
.' a s ni an.8 C. PQan &# 0 C*t. PC J1t M tt 4 6
..........~v...
'I
- lf'F/Fo v,....x..,..o i.,.....,.s a v.. i, we. i'.. *.. : n T H 5 P M A C OT E W F. LC O C O M PAN Y r
..................s......................c.......rei...u.,s..si
/ i((( C lit!A( ((R7lf C.\\ f li'll P2lt 9/?)/85 Tot
.ia tional helde r s $ grly
"'ClC8 h 8ddCI.- 13!4
.C35 m 15 Gcl R3 4 S.C.
14 4 iW k t. %
100*3 d
Tht f. b c v t r a ( C '. ( J d ( C P 9 ( i d e # s t h I I..' ( c lic'.'(.10 e p : Cif (C ific e t
.2. t,'
Attwirtatnts :: neit t:
A.h'.$. $p14., L % J \\.L'.*..
(l f.\\ l _ _ ( R ))$6 A.S.I.M.
Ifiti:n '. y IedtAc.l,,
C 4 4. t &
Chtmient AnalyJia:
Fit t aa ut tat (x] Typic st l l$lill EdF'044 Catb.'t._
l'h 0 4 pl. C W 4_
i's.r c e i.; r,_, C 5.. ! H
$6(phua P A es.* i c 4 2 P a. cut,fItj,,
Ci sph %_ d @[,
M6'lij b it d w m It:14 L l t
$(M e g C P.14 4. 0 5. 10 %
Ct lu a biuri i
Nitktl AtugietustL __ R ts i n 'fl 4 E lt n g a tio ni in t*
l Silicon
. ! b)_ _
Wagncaiuu, 3 5 5.5%
140s
.40%
- Titanius,
'.f3
.!Cl Vitid fi n e.
.30%
S c t y lliu n_,,
.0008%
Ltsd MitA09tn ttduelion in Art.1 Tin-Oth44
.15) Tetal l
Cebalt g
(singit valuta 4hewa 4tp4f6 tnt na eth c A*'id e 4 pe cifie d. )
pe s e t si t<ty t t si.i t r 4 4
- a. u ei The undtt.signe d heatby c ta filita flat (In t abtvt informatten 46 ce44 g
i te the btet 08 kia knewltdst and belit(.
RI T D,.' A Y a n e w
....e er i
p.oh{j_
Wit &iam N. Reland,,J4.
it.1. un.
PA444#88I i
ACCI !'F' j 4C 6
d p
A
>v4 catht uw.aivan cwecin e,ci.e.eitari t
.g,we n m i iwn" w *..;.,i.70'e'." O,*gt,'l',,7J:.* l,','l'l,:.7,','..
,, e. ;..,i...., c.,e..<,,pou i
.i N,
i i
i i
I i
i l
Metals Handbook Ninth Edition
.i 4
I i
4 l
i Volume 2 Properties and j
Selection:
l Nonferrous Alloys j
and Pure Metals 1
i
)
l q
Prepared under the direction of the ASM HandbecF Committee j
William H. Cwbberly, Director of Reference Publications Hwgh toker, Mons;ging Editor David Benjamin, Senior Editor l
Poul M. Unterweiser, Monoger, Publications Development Croit 'N. Kirkpatrick, Chief Copy Editor Vicki Knoll, Prodwetion Coordinator Kathy Niemon, Editorial Assistent i
1 i
I 1
f g3 AVERICAN SCC:5TY FCR METALS l
W VETALS PARK. CHlO 44073
m
.-m_ _ _ - -.
.___.__.m Com O h==W,- g : t:: se reess :-, :. ;;_.. for M W <h Me.WI
\\
Tesede streach Comyseese e SP ese esseegth Senneg ensemph P*3J Pe=.d ere u k heree. ge E4desseehe Y6el46ct ease gsa sce ESeSn. nee YleW tAsimene Yle&A Alley eed see.pe, g eme e.es 6a Sira ks MI*e bei MP.
kee Mrs has MPs hd Mrs kal MPs bd 1800 1112.ll!4 All A!!
. 76 Il 31 45 31 45 55 8
17 25 160 23 55 8
3ta13 8112.1814.1136.1188 All All AH 97 14 48 7
46 7
69 10 28 4 265 30 83 12 Akted.ksu18112. Ills. lil& Ills All A!!
All 90
'3 41 6
41 6
69 le 24 35 205 30 76 Il 3004102. ID4.1836. Il3e All All All
.. ISO 22
'26 II 76 II 97 14 45 61 315 44 140 20 AkteJ 3Wa4 8132. ID4 lD6 All AU All
. 145 21 76 Il 76 Il 90 13 45 45 305 44 130 19 IDB !!!4. 3816 38833 If25 h et All All
.115 37 62 9
62 9
83 12 24 5 250 36 105 15 SWAS lil2. 3114.1832.1834 All AU All
. 97 14 48 7
48 7
62 9
23 4
195 25 69 to
'0 241132.1834 All All All
.125 1a 55 8
E5 8
83 12 30 45. 250 36 83 12 I
sus 21D2.1D4 AU A!!
. Itis 25 90 13 90 13 lie 16 52 75 345 50 133 19 M*3 IIIII Estrus =m.
All All
.270 39 145 21 340 20 160 23 83 12 540 7s 220 32 18323 St. net esJ gante 47-388 018185
.275 40 165 24 165 24 165 24 97 14 550 23 250 36 13323 Plate 38176*
I f.01-3 0. 270 39 160 23 160 23 165 24 to 13 540 79 235 34 18323.18343 W et All All
. 275 40 165 24 165 24 165' 24 97 14 550 80 250 36
&#*6 IIIII Eastwomes All All
.240 35 125 38 115 17 145 23 69 10 455 70 195 2S IIII 3%se 64-127 0 254s499. 240 35 115 17 115 17 145 21 6r.
95 485 70 195 2$
till2 5%se 123-454 05010
.240 35 110 16 110 16 145 21 62 9 485 70 195 28 till2 Shae 25450s 1 005-
. 240 35 97 14 97 14 145 21 55 8
485 70 195 :s 1812.1D4 Sect es.J gJete All 20
. 240 35 130 19 13F 19 145 21 76 11 485 70 195 28 53541838 St.cet All AH
. 205 30 105 15 105 15 130 19 59 85 415 60 160 23 5454 Illi t Estru awns All All
.235 31 110 16 105 15 130 19 66 95 425 62 165 24 Illl2 Estrusewns A!!
All
. 215 38 83 12 83 12 130 19 49 7 425 62 165 24 1D2.1834 Sect enJ gdete All AU
.215 31 ISO 86 110 36 130 19 66 95 425 62 165 24 54563 fill Estruseons All All
. 285 41 165 24 ISO 22 165 24 97 14 565 82 260 34 till2 Eatsumana All A!!
. 2n5 48 130 19 130 19 365 24 76 11 565 82 260 38 g
l
!!221 SIresand dete 47381 0 las a 5. 290 42 180 26 165 24 170 25 los 15 580 44 260 38 4
18321 5%se 371-762 1508-30. 2n5 41 165 24 160 2'!
170 25 97 is 565 a2 260 38 E
3
(
~
18323.18343 W et AU All
. 230 42 180 26 180 24 170 25 105 35 580 84 260 28 J
l f
w61-T6.7651.T6510.76511sda All O er $ 5 Over 0 375. 165 24 140 20 140 20 105 15 83 12 345 50 205 30
)
l 76.1651.76530.765llte)
All Over 9 5 O es 0375. 165 24 105 15 105 15 105 15 62 9 345 50 205 30 7
606375.76 A!I AU All
. 115 17 76 11 76 Il 76 II 45 45 235 34 ISO 22 g
6321-7544#
Estrussee.
Over S 5 Over 0 375. 165 24 340 20 140 20 106 15 83 12 345 50 205 30 15.es Entsumane.e Over S E O.er0 375. 165 24 105 15 IM 15 106 16 62 9 345 50 205 30 n
ul
..ee.
- e. a e ai
-e 4.,..se m
as4 4 or.u. vm ea..a e asMr ur.. --.- -.a e
.c.a..e,ee
.es.e.a
.eu mee meu 6 s Venues are 4 r ee4S ag week $163.13% ee ELM Ener amo.ergoedlessa the kooma Valese slee apply se shee -
- less ahme S & mm g
se a 0 24 efters se 2LO me.610 na e ge,e lee's'n as e.as a 40 371 en 6 et.ee oeueng.a 4=se emb 4h43. 5114 er be.54 &l.es =we des hiees ese Le meldaag wesh 4043.&&&4 er &654 &J&er were q
T.
7 l
198/tivmir m thickness to 6 mm n in.) thick, or butt tural con 6guration at both surfaces, rosion is not adversely affected by
)
joints in aluminum wire and rod from and merges them to form a soertd met. ultrasonic welding, but the usual pre.
1 0 6 to 10 mm (0.005 to
- e in ) in diame. allurgtcal bond.
cautions should be taken whenever die.
tar, and for joining slummum to other Ultrasonic welding is well suites.N similar metals are joined.
metals.
handhng matenal having thicknesse.
Electron Iseem welding applies Iuplosive welding is accomplished in the lower part of resistance welding's est by means of a concentrated beam by the energy released from detonation enge-for aluminum, the range is of high velocity electrons. 51sgnetic f
of high e rplosivas. This is a lap w elding fra foil thicknuses dess than 0.005 fields focus and secelerate electrons process that allows aluminum to be mm, or 0.0002 in.) up to about 2.4 mm from an incandescent Alament. The a
l pined to itself or to other metals with. (ssa in.). Furthermore, with ultrasonic bearn and the work are usually under out loss of strength, and is used to welding very thin aluminum foil can tw high vacuum-in the order of one mi.
j produce transition pints between alu. ) ined to very thick aluminum, and cron. While the stre of the work is limit.
minum and dissimilar metals. Explo. aluminum can be joined to many dis-ed by the available vacuum chamber, a
sive welding has been useful in pining atmtlar metals.
this environment is ideal for prevent.
t aluminum pipes and bus bars in the Although it is not formed by general ing weld contamination. Equipment for i
onld' fusion of metal, the bond achieved by welding in low vacuum and in air also 4
j ultrasonic welding is an intimate met. has been developed.
Friction (inertie) welding is a butt welding process in which a sptn*
allurgical union. Strength is propor.
Well.fttted joint preparation is essen.
I tional to weld site. When tested to tial, and high concentration of energy l
ning part is pushed agatnst a statier..
i ary part and the fnettonal heat and destruction, ultrasonic welds in hard in a focused beam makes very narrow, force generated produca a solid stat
- alloys usually fail in shear. Those irt single pass welds possible. Welding hes bond at the interface. Aluminum alloys aofter alloys usually pull out a button. little or no effect on the heat. treated or a
Weld strength data for electne resist. cold. worked structure of the base met.
l cen te fotned by inction weldist to similar er dissimilar alummum alloys ance spot w elds may be used for design, al and weld contamination is nil.
Testing done no far indicates this would Because equipment cost is high, this and to other metals When alley 0061* be conservative. some test resulta are method is useful only where scund, 1
T6 to fusion welded to 304 stainless steel, a bnttle intermetallic compound pubhshed in AshtE paper No. 60.WA.
high strength oints are more impor.
J j
is formed, but when 6061.T6 is fnetton 330 in the table entitled "Compannon tant tharilow welding cost. Apparetus welded to 304 it forms a sattsfactory of Ultrasonte Strength with Reststance is avalable to handle parts 9 m(30 M or Welds on Alumtnum Alloy Ap lica-more in diameter, and aluminum alloy I
pint for cryogente and heat. transfer tions for Illtrasente Welding of Afumi. thicknesses up to 100 mm (4 m.) have applicanons.
n u m."
been welded.
Ultresonic welsling resembles re.
Indentation caused by clamping force Leser Beam Weleling. The word sistance welding in the general config. seldom exceeds 5% of metal thickness. "laser" means light amplification by J
uration of equipment used. Overlap. It ta creater with the scfter aluminum stimulated emission of radiation. Laser ping parts to be pined are clamped alloys than with the harder matenals. welding has developed into a high.
between tips to weld them at a spot, or Adiacent or overlapping w elda can be volume production process for joining between rolls to weld a seam. No heat made, and proximity to an already and cutting metals. The high intensity i
energy, as such, is supphed. The w eld ta cornpleted weld spot does not dowTi. light beam from a fused laser is highly 1
made without fusion in the ordinary grade the quality or strength of the colltmated and has good wavelength l
sente of the term. An mtenae,locahred, neat one. When lap seams are rnade to punty, Decause of the resultant high mechamcal wiping devs occur where pm foil, the pinta can be tnmmed power density, matenal in a lxal area l
the parts are pressed tegether. This sienply by taanns ort the excesa lap of a workpiece can te melted andor sction scrubs away oudes or other im.
adjacent to the weld seam.
vaponred with httle or no etTect on the pcnties, rearranges the metalhe strue.
Reststance of alummum alloys to cor. adjacent matenal. One of the disadvan.
1 TeMe 4 Mississenses empested testelle ottoegtene et voeleve teaspeestwees See butt welded alwsssinwsus clicye 1
Auer rujee.
and emetal Tomade unseth ta MPs Aeo a.t j
umme au.,
- i na *c t. sm 'n
-ize'er.se'n ta 'c i im 'n as 'c ism n tso'cisoo' n en sao'c e w ' n si i
2:19 T1?M 2319..
., 334 < 48 5) 275140>
- 50 (34) 240t35) 215 (31) 130 (19) i 2:19 c) 0319...
445i64 51 410 iS9 5) 3M t55) 345<50)
- 60 (38) 150 (22)
)
3003 1100.
. 1901275) 149(21 5) 1:1 (17 5) 97 (14) 64 (9 5) 34(5)
)
505:
5354.
260(39) 215131) 153 (24 51 170(25) 145 (21) 7:(10 5:
1 5083 5183.....375(545) 315 t 46) 0906405)
- 5 (40) 5064 5354.
.330t46) 50t405) 245(35 5) 240 (351 5454 5554.....305444) 055 (37) 200 (3:1 215 (31) 160 (06) 105 (15) 5454 5554..,,385(56) 308(47 5) 093(4:5) 290 i42)
.'+
606bT6'b) 4043..
. 238'34 5) 205(301 163i:6 5) 164 (24) 150 (20) 41 (6l 60fild 4043.
380155) 341(495) 315i46) 290 t 40)
- 17(31 51 48til j
s A%s not I sted at t So *C :3o0 *D ene 06o *C iloo'O m na rowreased for see et e*staines omretas teaperstsme of me S4 'C s tS0 'D N A4 setdmi
.e) Heat tmetec an4 seed t*.er meer g 1
f.
5
/.'
Jelning Aluminurn/199 Toble 7 Minimene esposted t
sheer strengthe et tillet welds Fig. 3 Alloweble sheer strengths for single spot welais in la elemineas elleys eleminens elle,ys e different tenslie strengths ah e rin.e...at
- w.. g*
.u.y wre het N *** s mt
- 1100............... 82 7.3
. ne'
,,,[,
im}
2319( a@.......... 110 16 iss ie ns wee 2319W............ 150 22
]
usi seip-l 4043a).............
79 11.5
} pe
[
7'5 6052 l. 2 2 [ 52 ZI.',"," %' /
5154
$3 12 ime 8554.............. 115 17
- .se f
6554.............. 140 20
/
l\\
f l '"
_f
, \\p og
$454............... 83 12 tem.welpu.r..ue m H n.aut.4 au vgj j
"in.in..
cru. a.
- Aru.
' ' 'l. n m tw.,.
..a.
g M-
,,,.~.i l
in ue.
'e" '^" " ** 8 -
nesi s
is is is as to s4 ss w u.% =
l Fig. 4 Benge of typleet sheer "r'av'b8 '** *8aele io..ica,.
.x w
,veima
..n 61..h
.ws*isba.d.a*.
epet wolde in three high.
,m g S, mio,,,.s..
strength eleminese elleys w,,,.e ooi.
the 6aaz series.100% emetency can be on the minimum reproducible ahear obtained when the welded structure strength (of single.epot spectmens) ob.
l
, n,a u u 'm in..,
can be soh.tton and precipitation heat tainable under the established manu.
j tm r
i treated after welding. Nearly 100% er. factunng condittons. Figure 4 presents
/ -]
A:iency can be obtained when welding such test data for three high strength
- , a in the T4 tempt by using one of the alloya. Figure 5 shows design allow.
high sped welding tuhatques. such as able ahear strength in relanon to the
/
)
),,'
../
inert gas shielded metal arc welding or tensile strength and thickness of the o
-1 }
electron beam welding. in which the alloy being welded,
~_
d,
}
j amount of heat dawing into the ba e
.)esign allowables develend in sin.
gg A
Inetal of the pint is limited, and by gle epot shear specitnens are applicable n,
_ f' w.i w,
ters to precipitation heat treating anet weld. to multispot patterns. provided the dis.
1 g!
ing. In the 1 aa and Tatz wnes, such tance between adjacent we!da is not i
l
- s practice produces less improvement in less than two nugget diameters. Clour l
s' pint erl'.ciency. Alloy 0014 and espe. distances w.ll result in shunting cur.
l
- * " " ~
ctally alloy 2219 are widely welded for rent losses, which will reduce current j
spacecraft boosters, where machined or density in the spot weld and reduce the chemically milled lands are provided to sta of the weld and its ahett strength.
i achieve adequate strength across the Such losus, wrach increase with the tages of this process is the initial equip. welded pints. Summanes of minimum thickness of the matenal, must be tak.
I ment cest, which can go as high as e spected butt.w elded prope rties of eom. en into account an design.
$1000 000.
monly w elded aluminum alloys are giv.
j en in Tablu 5 and 6. The minimum Breming Processes Strength of Welds ext *ct+4 *h'*r strength of fillet weldwl aluminum ta gisen in Table 7.
Brazing is a typ ofjotnteg process in The strength of sound, normal. as.
The fatigue life of welded pints at which oalescence is obtatr.e4 by heat, deposited aluminum alloy weld metal high loads unes with the alloy. As the ing the base metal to a te=prature is approumately $0 to 050 MPa (12 to load is decreaud. differences disappar twtow sta solidus ternperature and add.
i 40 ksa Joints in non heat treatable until, at about one to ten million cycles ing a aller alloy. using duz. T'ho dus
]
alloys can be made so that they will fail of ax421 loading G = 0). the fatigue promotes wetting of the pint surface by in the base metal, rather than in the strength of an arc welded pint ts ap.
the Alle alloy, which is selected to I
j eeld metal by prepr wiection of the prour:v.tely the same regardless of al.
hase a liquidus ternperature slightly filler alloy. For hard rolled tempers. loy and is 50 to 70% that of the un. below the solidus of the base metal.
the bau metalin the heat a:Tected rone w elded alloy. Typteal data are given in Although the base metalis ' tot melted.
en either side of the ytnt is sedene i by Fig. 3 for alloys 3003 0. 5154 H34 end there is dedntte dithaion terween the the heat of welding, precludmg the 6061 T6.
bas.e and Aller metals, pssibility of et..atning high ptnt etT).
Design entena for resistance spot Braatng can be used sue:esst'ully on j
ciency. With heat treatat>1e alloys of welded aluminum usually are based very thin matenal and on assemblies l
l 11.0 U.S. NRC ce_gacA:
l l
It appears that the same veld may have been used to resist upward, longitudinal, and lateral loads in separate calculations (pages 27, 28).
Provide a design sketch to show all the velds and calculate the l
stress based on combined loads.
I l
NAC Responsg t
The subject welds previounty analyzed on pages 27 and 28 are reanalyzed for the combined loadings in the vertical,
- lateral, and l
longitudinal directions.
A sketch defining the weld locationi, lengths, and sizes is provided. The weld filler.netal is ER$356 with ultimate and yield shear stress allevables of S,
- 15 kai and S,y - 12 ksi.
i 1
1
/
J l
I f sj r *,p I,' ;,9 '. L
',"e C..
I fe ' b
. Md h,) OpoYk*
Nh'"'
4;ono,k e. Lt M__- 3,- E 5.
, wet i itet,,
and :&8,wr.1 - 7, / - 7, is I
l'
..'4 ?,Il e} x et i.
i 3 vides g
r-h I
w y
X s.
,/
--NOki f tOh D
f p!/. )M 4 b d j
Tf;e3wtoh y'
Q
/,
.,ib A
o-y 7,
a u
s x
i i
~
bb
~~
Is k
] (C t,'\\
\\
l e
x 2
,4 $ 6
- i. 7
\\ '
l l
M A
a \\
f.
_. __ L__ t h's',
( c,
/
i:
,i i
_ _7 5.__ _'
,A I '
Op.
y s
se.soe t. t.
s f
~
E, % 1'? 5 0 b g#g$h d
5 ? \\ ri l b
g4 h e
~a..
-g
.,, js a
1 3 7,
h #$ @
,. D **$.
\\
.a 1,. "4
\\
'L1 l
A..
.ArJ-J E
m.4-aiw_A--J..% eda,.E.2--e
-a.
+.m,.-.,-a,.,
4.-
44 A.-
_.Ocd
--ww-
-W---#--A
+6-
- AE J--a+-ba
+
w &-
- - - -+
i t
i i
)CI M OV t,w 4,a k ?vo 1C M I
,M b Su990v4-N4C-i
') $
M OvhM!MS
)
I b A O **-
I f-M,,eJ.has b 4
- wpi,
'c u k % thuso l
3 Ob6 MOT
'M7, Y d, O D M O e
)
S e.c. h i e w pvapCyhic$
(
l
?
0.10 7 (41 d( 1015 41 v ",5) +
k yv o ns ( 9., s +1-t.s3 ' o.3% G o.7 6 9.5 0 m'
(
w e.u A c.55 e. 5 I
o643 PS 8
x s a.
' 90 DS ooh 3
+
p l.7 3
?$g e
i
?-
- - -9.5 l, : Q H' -
e <,. '
39
, s.
d.
t"o q 751 4 4 s
,g 1
3 w
1 D U ) *A P d h
- I /
4
(*
a.
$ t,\\ d ks\\\\
,y
'r s'L CKf* 3~$
J t
~
~
wk M
l 6tv
/[ M O C 5 $ * /,f k %'
3 i
sud I
l a Ewo}/s cAcar :7'rers ; E F ?'wscrw &vel/ ose 4W.si., A Jwa/ west.?
is acfua//y a Awsde x 2e A bAr?>Ar #mA~.x, to/.2, foy e. /17.
+
J
Quff1.? C o b'e '
3 ;
WF/E5 v,.... t.,,.... 3,,,,,.. e.4 u n,,, u t THERMACOTE WELCO COMPANY 3..........:. ei+...:
3..........e..... ser.............
Filt[R vtT AL CL R17 FIC ATICN Ca t e,_,,j. ty. 3 $
1 Te 4.t ecLging kitco Fr e da c t
$ 1 e s 3/ 3tMd A.ja ta, Ga.
Heat Narbe.a 4Crif f _
requirt,"tnts,tcri'al cceflita.'ith 4I;c f ellow(ng 4pe cific atich4 The a6:ve ra.
and I
as nettit A.W.S. Sp:c. A 5.15.U.S. Cla44__tt $356
_A.S.T.M.
Military Federal s
l
~
04Atr Cht"ital Ans244ist 1
fillt\\ Wetal (x)TypiCat
( IMill tag. ort Carbon Thcsphotua _
l l
Chr e w.lun,05..t01 Sulphur Phritical Precerties j
Cepper
.fol Melg6dtman Ttnaitt Mangantae305..t01 Columbium k'ittti S t u;inum. Eteaindtr llongation in t' Silicon
.tli Fa;nt4 4un_4. 5 5. 5 %
1ren
.4C%
Titaniun
.06-ICI Yittd line
.301 "Beryttium _. 0 0 0 3 % ' ','.
A ltsd NitAegtn ttduction in Arta t
Tin OtAtra of51 Total Cobalt l
(Sinste valuta 4 hewn Acpresent rati%n peretntage6 untc44 etAtwi4 4 4pec4(4td.)
to the htet of kla kerwtedge(ite tlist the abevt in(creati.
tat undsteigned Att:6y certi on 44 ccAA ett and beliti.
i Vittian W. Reland,.fr.
rat 44dtat
- NN.=1Iet ce t'C4 9 e a.Cl.4.** f et i. C lig M hV$ nst6( W ririnW 44.'.sJD W gY3, {,3
[.h')',','fgf a es 88 C P38% A*0 084. De0 48 0% ?8 L i
...........i.......,.........s...i........
.c...... :. v...
6.,, n....
{
iilllt IfLIAL ClRTil;Callt'll Qa l t _ _9/21/8 5 Iol National Welde rs Sw; ply IC c f C 0 Product 33!4
.035 x 15e Col #.N. as. S.C.
llc a l % r-b r.1 103-1
\\
J 1
Tht r.bCvt r'aic'ial cceptice :n's t la : l..'. f ellcwio19 s pe cif.ic a tio n s a.s')
Acqui4cetnto
/,fl.'*id:
A. h'. S. S p '. c., A 5. I b. L'. 0. Cleat EP $356 A.S.T.M.
Ililita*.y Tcdtrc.l Ct.'tr Chtmical Analysis, Filles setal Ix) Typic 1L
( J Alill Rdport Ca t b :. r.,_.
P h o s p h c \\ u s,___
Cl. A t r i.'r',0 5.10 5
$Ulphun,_
Ph sos i c al P s cwkt_s_,
C:mi.4_,.._l,d, Mutgodtnum Tens tte Mt: ns a r t s t. 0 5.t0\\
Ccluon bium Nitil t t Aluplotutt.,_Rc,,caindlA E lc n g a.tio,t in 2" Silicon
. t h.\\.__ _
Mi g n e s iu,.,_.5-5.5\\
4 3ron
.401 Titaniuos
.06._tC1 Yitld li n e.
.101 Beryllium,_.000S\\
- t. t a d Hitnogen Reduction in Area Tin _
Othe 4
.l5\\ Total Cobatt _ _
^)
(Single values 4henin A cpatient matimu,a perc ent,tyc6 u it tt4 4 ethc Awis t spe cified. I The undensigned herab.
.to th e 6 t's t o f hie k n c).ut e dg e a n d b eli e f.etAtilits that the abcvs informat t
RITE V.' A Y j
'.V n u s w s..re.es er p.o ) &ce)
Viitiam N. Rctand,,Jr.
it.1...u g:.
h t 4 Lden (
r._s2 ACC, th4C 5
.w..%.c q q we,,.,',u.. -,..,,, -......
g
,s, -, +,. m.....
s=,'. e:.,t::,w,:;r,y,.,,.,,,..,.,,,,,,..,.,,,,...r,a,,,,<,,,
.i g,
Metals Handbook Ninth Edition Volume 2 Properties and Selection:
Nonferrous Alloys and Pure Metals Prepared under the direction of the ASM Handbook Committee William H. Cubberly, Director of Peference Publications
- i Hugh Baker, Managing Editor David Benjamin, Senior Editor Paul M. 'Jnterweiser, Manager, Publications Development Craig W. Kirkpatrick, Chief Copy Editor Vicki Knoll, Production Coordinator Kathy Nieman, Editorial Assistant AMERICAN SOCIETY FCR METALS META'.S PARK, CHIO 44C73 l
l
Table s "h em;:r:d pc:;%s et. _ _. teanperatore for bett wolded eImaniseen ellersteHb)
Ten de strength Compreselve Sheme strength Bearing strength y6 eld Predect Taickneen range Ultimmae(b)
Yleid(c) strengtWel Ultianese Yleid Ultianase Yield ABey and seamper forma man in.
MPs kai MPs kmA MPs hat MPs kai MPa hat MPs hat MPa kal 1100-1112,1I14 All All All
. 76 11 31 4.5 31 55 8
17 2.5 160 23 55 8
3003-1112,1814,1I16,lito All All All 97 14 48 7
48 69 10 28 4 205 30 83 12 Aklad 3003-1112,1114,1116,1I18 All All All
. 90 13 41 6
41 6
69 10 24 3.5 205 30 76 11 3004-1 0 2,1134.II36,1138 All All All
.150 22 76 11 76 11 97 14 45 6.5 315 46 140 20 Alclad 3004-1132,1134, II36 All All All
.145 21 76 11 76 11 90 13 45 6.5 305 44 130 19 1138, til4,1116 3003-1125 Sheet All All
.115 17 62 9
62 9
83 12 34 5 250 36 105 15 5005-1112,1114, 1132, 1134 A!!
All All
. 97 14 48 7
48 7
62 9
28 4
195 28 69 10 5050 1132,1134 All All All
.125 18 55 8
55 8
83 12 30 4.5.250 36 83 12 5052-1D2.1D4 All All A!!
.170 25 90 13 90 13 110 16 52 7.5 345 50 130 19 5083-11111 Estrusions All All
. 270 39 145 21 140 20 160 23 83 12 540 78 22d 32 ID21 Sheet and plate 4.7-38.1 0.168-1.5. 275 40 165 24 165 24 165 24 97 14 550 80 250 36 11321 Ihte 38.1 76.2 1.501-3.0
.270 39 160 23 160 23 165 24 90 13 540 78 235 34 1D23, IDt3 S! wet All All
. 275 40 165 24 165 24 165' 24 97 14 550 80 250 36 50 4 11111 Estrusaons All All
.240 35 125 18 115 17 145 21 69 10 485 70 195 28 11112 ihte 6.4-12.7 0.25-0 499. 240 35 115 17 115 17 145 21 66 v.5 485 70 195 28 till2 ihte 12.7-25 4 0.50-1.0
.240 35 110 16 110 16 145 21 62 9 485 70 195 26 11112 thte 25 4-50.8 1.001-
. 240 35 97 14 97 14 145 21 55 8 485 70 195 28 1132. 1134 Sheet ara plate A!!
2.0
. 240 35 130 19 130 19 145 21 76 11 485 70 195 28 5154-1138 Sheet All All
.205 30 105 15 105 15 130 29 59 8.5 415 60 160 23 5454-11111 Extrumons All All
. 215 31 110 16 105 15 130 19 66 9.5 425 62 165 24 11112 Estaussons All All
.215 31 83 12 83 12 130 19 49 7 425 62 165 24 1132, 113 4 Sheet and plate All All
. 215 31 110 16 110 16 130 19 66 9.5 425 62 165 24 5456-lillt Extrussens All All
.285 41 165 24 150 22 165 24 97 14 565 82 260 38 11112 Extrunaons All All
. 285 41 130 19 130 19 165 24 76 11 565 82 260 38 g
ID21 Sheet and plate 4.7-38.1 0.188-1.5. 290 42 100 26 165 24 170 25 le 15 580 84 260 38 9
11321 lhte 38.1 76.2 1.501 3.0. 285 41 165 21 160 23 170 25
?'
14 565 82 260 38 3
11323,11343 Sheet All All
. 293 42 180 26 180 R$
170 25 If 5 560 84 260 38 6061-T6. T651. T6510, T6511(d)
All Over 9 5 Over 0 375. 165 24 140 20 140 20 105 15 83
'2 345 50 205 30
)
- ~
T6, T651.T6510. T65115e)
All Over 9 5 Over 0.375. 165 24 105 15 105 15 105 15 62 9 345 50 205 30 C
6063-TS. T6 All All All
.115 17 76 11 76 11 76 11 45 6.5 235 34 150 22 g
6351.T5(d)
Extrumoen Over 9 5 Over 0 375. 165 24 140 20 140 20 105 15 83 12 345 50 205 30 g
T5ae)
Estruaions Over 9 5 Over 0.375. 165 24 105 15 105 15 105 15 62 9 345 50 205 30 C
3
' ' in Tabla 3. Ultimate tenaale estese are ASME weld <inahncation-test values.
2 (a b Ces tungsten-arc or gas meta. ort weLims with me poetweld heat treatment. (b) Faller wues used are those s g
sc,0 21 edert sa 250-rna 4laan. p gage length acrees a butt welJ 416 Velues are for weLimg with 5 t h3. 5356 or 55',6 6:ler wire. recstdless of thwknees Valuce also apply to thuk neeers q
to 375 sa ) when we1Jang is does with4043,5554 er 5654 611er wue ieb Values are Iur weWang with 404J.m4 or W4 Men were.
B
7 198/ Aluminum thickness to 6 mm (t4 in.) thick, or butt tural configuration at both surfaces, rosion is not adversely aiTected by jomts in aluminum wire and rod from and merges nem to form a sound met-ultrasonic welding, but the usual pre-0.6 to 10 mm (0.025 to A s in.) in diame-allurgical bond.
cautions should be taken whenever dis-ter, and for joining aluminum to other Ultrasonic welding is well suited for similar metals are joined.
metals.
handling matenal having thicknesses Electron beam welding applies Explosive welding is accomplished in the lower part of resistance welding's heat by means of a concentrated beam by the energy released from detonation range-for aluminum, the range is of high velocity electrons. 51agnetic of high explosives. This is a lap welding from foil thicknesses (less than 0.005 fields focus and accelerate electrons process that allows aluminum to be mm, or 0.0002 in.) up to about 2.4 mm from an incandescent filament. The Joined to itself or to other metals with- 0 2: in.). Furthermore, with ultrasonic beam and the work are usually under out loss of strength, and is used to welding very thin aluminum foil can be high vacuum-in tne order of one mi-produce transition joints between alu-joined to very thick aluminum, and cron. While the size of the work is limit.
minum and dissimilar metals. Explo-aluminum can be joined to many dis-ed by the available vacuum chamber, sive welding has been useful in joining similar metals,.
this environment is ideal for prevent-aluminum pipes and bus bars in the Although it is not formed by general ing weld contamination. Equipment for field' fusion of metal, the bond achieved by welding in low vacuum and in air clso F ricD.en (inertia) welding is a ultrasonic welding is an intimate met-has been developed.
butt welding process m which a spin-allurgical union. Strength is propor.
Well fitted joint preparation is essen-tional to weld size. When tested to tial, and high concentration of energy ning part is pushed against a station-destruction, ultrasonic welds in hard in a focused beam makes very narrow, ary part and the frictions! heat and f ree generated produce a solid state alloys usually fail in shear. Those in single pass welds possible. WJding has bond at the interface. Aluminum alloys softer alloys usually pull out a button. little or no efTect on the heat treated or can be joined by friction welding to Weld strength data for electric resist-cold worked structure of the base met-similar er dissimilar aluminum alloys ance spot welds may be used for design.
al, and weld contamination is nil.
and to other metals. When alloy 6061-Testing done so far indicates this would Because equipment cost is high, this T6 is fusion welded to 304 stainless be conservative. Soine test results are method is useful only where sound, steel, a brittle intermetallic compound published in AShiE paper No. 60 WA-high strength jointa are more impor-is formed, but when 6061 T6 is friction 332 in the table entitled "Comparison tant than low welding cost. Apparatus welded to 304 it forms a satisfactory of Ultrasonic Strength with Resistance is avalable to handle parts 9 rn (30 fu or jomt for cryogenic and heat transfer Welds on Aluminum Alloy Applica. more in diameter, and aluminum alloy applications.
tions for Ultrasonic Welding of Alumi. thicknesses up to 100 mm (4 in.) have num."
been welded.
Ultrasonic welding resembles re-Indentation caused by clamping force Laser Beam Welding The word sistance welding in the general config-seldom exceeds 5% of metal thicknesa. "laser" means light amplification by uration of equipment used. Overlap-It is greater with the softer aluminum stimulated emission of radiation. Laser ping parta to be joined are clamped allo /s than with the harder materials. welding has developed into a high-between tips to weld them at a spot, or Adjacent or overlapping welds can be volume production process for joining between rolls to weld a seam. No heat made, and proximity to an already and cutting metals. The high intensity energy, as such, is supplied. The weld is completed weld spot does not down-light beam from a fused laser is highly made without fusion in the ordisiary grade the quality or strength of the collimated and has good wavelength sense of the term. An intense, localized, next one. When lap seams are made to purity. Because of the resultant high mechanical wiping does occur where join foil, the joints can be trimmed power density, material in a local area the parts are presaed together. This simply by tearing otT the excesa lap of a workpiece can be melted and'or action scrubs away oxides or other im.
adjacent to the weld seam.
vaporized with little or no effect on the punties, rearranges the metallic strue.
Resistance of aluminum alloys to cor-adjacent material. One of the disadvan.
Table 4 Minimesse exputed tensile strengths art verleve temperertwres for butt welded asleminum clisys suoy nuer-cM metal Tensue strength in MPs (list at tem per aUoy
- 165 *C (- Soo 'M
- 129 'C ( = 200 'M 73 'C (- loo 'M 38 'C (10L 'M 150 'C (300 'D al seo 'C (500 'Na) 2219.T3ht) 2319.... 334 (48.5) 275(40) 250 (36) 240 (35) 215 (31) 130 (19) 2219(c) 2319..
. 445164 5) 410 (59.5) 380 (55) 345 (50) 260 (38) 150 (22) 3003 1100.....
190 (27.5) 148 (21.5) 121 (17.5) 97 (14) 66 (9.5) 34 (5) 5052 5356.... 260 (38) 215 (31) 183 (26.5) 170 (25) 145 (2')
72 (10.5) 5083 5183.... 375 (54.5) 315(46) 280 (40.5) 275 (40) 5086 5356....
. 330(48) 280(40.5) 245 (35.5) 240(35) 5454 5554.... 305 (44) 255 (37) 220 (32) 215 (31) 180 (26) 105 (15) 5456 5556..... 385 (56) 328(47 5) 293(42 5) 290 (42) 6061 T6't) 4043.... 238(34 5) 205(30) 183 (26 5) 165 (24) 150 (20) 41 (6) 6061(c) 4043.
. 380 (55) 341 (49.5) 315 (46) 290 (42) 217 (31.5) 48 (7) lei AUoys not hated at 150 *C (300 'D and 060 'C 15o0 'D are not recorrsended for use at sustamed oprsunt temMrstures of over 65 'C (150 'D. (b) As melded, aci Heat treated and aged aAer meldms
5 Joining Aluminum /199 Ymlele 7 minisiewei expoeted stieur strengeles of fillet welds ylg. 3 Allowable slooer stresegtles for single spot welds in in aluminene elleys aluminesse elleys of dlMerent tensile stroegtles Shear Fillereetal ettength alloy MPs ksi Sheet tNcknas. o oot in.
e to o
u u
m no 1100...
52 7.5
.m
,, h, ins ie"sss ur.
2319(sXb)..
.. 110 16 t
2319(c).......... 150 22 l
us a 58 k@
- 1500 }
g 4043(a)..........
79 11.5
} soo 5052............ 52 7.5 h"ss ur*e m*a*
[
m 1
5154 83 12 7g,3
\\'
,mf f 40 5554.........
115 17 j=
fg/, q \\\\,j 5556............. 140 20 t
5654........
...... 83 12 p q 7,,;
n,,,m m,,,g g
u t.m.im y i.eiets,ee mntu. m ru.gg,g eus. m ne.i. ire.se4 an4 f
y E
ossu l
l
.s
,s i.
is Shut mickness, mm rig. 4 Reage of typteel siteer strep for stengle In welding two sheets of unequel thinness, elloweble sheer strength le based on the spot welds en tieroe Itigita thicknese of the thinner sheet, strengtle eleseninosa elleys the 6xr.: series,100% eHiciency can be on the minimum reproducible shear sr
..ocoi.
obtained when the welded structure strength (of single spot spccimens) ob.
no a u m m in
- two, can be solution and precipitation heat tainable under the established manu-i treated after welding. Nearly 100% ef-facturing conditions. Figura 4 presents
/
8 Sciency can be obtained when welding such test data for three high strength i
7 a
in the T4 temper by using one of the alloys. Figure 5 shows design allow-
/
.,3 ]
high speed welding techniques, such as able shear strength in relation to the j*.
/.
inert. gas shielded metal.are welding or tensile strength and thickness of the 3
electron beam welding, in which the alloy being welded.
j 2
smount of heat flowing into the base Design allowables developed in sin.
3 I
=
Ei'u ~
5 metal of the joint is limited, and by gle spot shear specimens are applicable n7sas precipitation heat treating after weld-to multispot patterns, provided the dis-g[
ing. In the 2xxx and 7xxx series, such tance between adjacent welds is not e
o practice produces less improvement in less than two nugget diameters. Closer a
a a
e joint eiliciency. Alloy 2014 and espe-distances will result in shunting cur-cially alloy 2219 are widely welded for rent losses, which will reduce current spacecraft boosters, where machined or density in the spot weld and reduce the chemically milled lands are provi4d to size of the weld and its shear strerigth, achieve adequate strength across the Such hsses, which increase with the tages of this process is the initial equip-welded joints. Summanes of minimum thickness of the material, must be tak.
ment cost, which can go as high as expected butt. welded properties of com-en into account in design.
$1000 000.
monly welded aluminum alloys are giv-en in Tables 5 and 6. The minimum Brazing Processes Strength of Waleis expected shear strength of Allet welded aluminum is given in Table 7.
Brazing is a type ofjoining process in The strength of sound, normal, as-The fatigue life of welded joints at which coalescence is obtained by heat-deposited aluminum alloy weld metal high loads varies with the alloy. As the ing the base metal to a temperature I
is approximately 80 to 280 MPa (12 to load is decreased, differences disappear below its solidus temperature and add-40 ksi). Joints. in non. heat treatable until, at about one to ten million cycles ing a filler alloy, using flux. The flux alloys can be made so that they will fail of axial loading (R = 0), the fatigue promotes wetting of the joint surface by in the base metal, rather than in the strength of an are. welded joint is ap-the filler alloy, which is selected to weld metal, by proper selection of the proximately the same regardless of al-have a liquidus temperature slightly filler alloy. For hard. rolled tempers, loy and is 50 to 70% that of the un-below the solidus of the base metal.
the base metal in the heat.afTected zone welded alloy. Typical data are given in Although the base metalis not melted, on either side of the joint is softened by Fig. 3 for alloys 3003 0. 5154 li34 and there is definite difTusion between the the heat of welding, precluding the 60dl T6.
base and filler metals.
possibility of obtaining high joint efli-Design criteria for resistance spot Brazing can be used successfully on ciency. With heat treatable alloys of welded aluminum usually are based very thin matenal and on assemblies