ML20207K416
ML20207K416 | |
Person / Time | |
---|---|
Site: | Fort Saint Vrain |
Issue date: | 12/22/1986 |
From: | Potter R GENERAL ATOMICS (FORMERLY GA TECHNOLOGIES, INC./GENER |
To: | |
Shared Package | |
ML20207K390 | List: |
References | |
909113, 909113-IB, NUDOCS 8701090415 | |
Download: ML20207K416 (107) | |
Text
{{#Wiki_filter:____ CPT R1 5 GV:(10/82)2123 Roll N/C,A,B) g 2 GA Technologies Inc. G A 14 ISSUE
SUMMARY
TITLE FIREWATER C00LDOWN USING ONE REHEATER MODULE yag APPROVAL LEVEL (111 HOUR DELAY) (3 DESIGN DISCIPLINE SYSTEM 00C. TYPE PROJECT DOCUMENT NO. ISSUE N0JLTR. I 01 CFL 1900 909113 B QUAUTY ASSURANCE LEVEL SAFETY CLASSIFICATION SEISMIC CATEGORY ELECTRICAL CLASSIFICATION I FSV-I FSV-I N/A / ) APPROVAL ISSUE PREPARED
; ISSUE DATE FUNDING APPUCABLE DESCRIPTION /
ENGINEERING QA CWBS NO. PROJECT PROJECT
'J N/C gy g R.C. Potter 2%UG.P.Connors A.J.Ke,nned r N8M ((. _ " Initial Release ///4/6 A.Shenoy 2970 106 y
D g.v.~v
,) __
$ A DEC 0 3 3 1.C. Potter A.Shenoy G.P.Connors/ A.J Ke nedy Release basis EdRl2Te ; .. _ g -005648 70106
/2/2/sG , g B DEC 11 M R.C. Potter Release basis M[M /a/20/0 CN-005651 2970 106 CONTINUE ON GA FORM 14851 NEXTINDENTURED Issue Su= mary =1 3 RECA Computer Runs =739 DOCUMENTS 2-22 =21 ST9011(246 pages)
Calc. Review Rpt. =3 ST3469(247 pages) Appendix A =36 ST4621(246 pages) N6757 Appendix B ~15 4 SUPERHEAT Computer Runs =110 Appendix C =9 ST7121(27 pages) Appendix D =13 ST7186(27 pages) Appendix E =2 ST1371(28 pages) 3 TAP Computer Runs =1601 ST4104(28 pages) ST1641(533 pages) 3 HOT *'f0DULE Computer Runs =81 ST5129(533 pages) AJ90 (27 pages) ST8014(535 canes) ST/802 (27 pages) 8701090415 861230 f rf302 (27 pages) PDR ADCCK 05000267 TOTAL = 2637 F PDR REV (C2q:ateroltp.It Et distr 'btnedi L SH (Caqputercutput rarairs E/C-Roll 2123 shDws re/ision A) REV (3T4390 ,1802,4302 revis iod B) (:lol L2 L22? SH 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 i V REV I SH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 CWINTER-AAWOR-33 (SR-7335) PAGE 1 0F 263_/
e- %1 s : i 909113/B CONTENTS
, 1.
SUMMARY
...................................................... 4 1
- 2. INTRODUCTION ................................................. 6 3 ANALYSIS ..................................................... 7 3.1 POK E a n d R ATS AM An a ly s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 RECA Analysis ........................................... 9 3.3 TAP and SUPERHEAT Analysis .............................. 9 3.4 Steam Generator Stress Analysis ......................... 10 3.5 Hot Streak Analysis ..................................... 11 3.6 Circulator Operation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.7 Water Side Pressure Drop Evaluation . . . . . . . . . . . . . . . . . . . . . 12 3.8 Miscellaneous Analyses .................................. 12 4 RESULTS...................................................... 13
- 5. CONCLUSIONS .................................................. 20
- 6. R E F E R EN C ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
- 7. CALCULATION REVIEW REPORT .................................... 23 APPENDIX A: REC A, TAP AND SUPERHEAT RESULTS . . . . . . . . . . . . . . . . . . . . . . A-1 APPENDIX B: HOT MODULE ANALYSIS AND RESULTS . . . . . . . . . . . . . . . . . . . . . . B-1 APPENDIX C: PR ESSURE D RCP AN A LY SIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C- 1 APPENDIX D: MISC ELLANEOUS C ALCULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . D-1 j APPENDIX E: STORAGE OF COMPUTER ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . E-1 i
FIGURES
- 1 -1. Economizer tube tempera tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 - 1. An aly s i s me th odology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
- 4-1. Primary system temperatures .................................. 16 4-2. Primary system pressure ...................................... 17 4-3. Circulator helium riow rate .................................. 18 i 4-4. S.G. helium inlet temperature ................................ 19 1
Page 2
909113/B TABLES 4-1. Reheater cooldown on firewater (1-1/2 delay) without liner cooling ........................................ 15 1
'6t Page 3 l
909113/B
- 1.
SUMMARY
A plant cooldown using firewater through one reheater bundle after a 1-1/2 h interruption of forced cooling was studied using the RECA, TAP and SUPERHEAT computer codes. For this study, a single flooded reheater was used for cooldown with the five remaining reheaters and the six EES bundles assumed to be empty. The other loop was assumed to be unavailable (isolated).- Cases were studied for single reheater cool-downs from feedwater flows of 255, 355, and 50% (power levels of 28.6, '39.2, and 54.1, respectively). The purpose of this study was to determine the maximum power level from which a reheater cooldown with firewater can be performed. The results from the stress analysis of the steam generator indicated that the economizer outlet tube temperature limit in a dry EES bundle restricted the plant operation for this event. A maximum tube temperature of approximately 1350*F was determined to be acceptable for the economizer outlet tube. This is dependent on helium pressure and operation time temperature history. Based on the RECA hot helium temperatures including hot streak add-on the maximum power level from which a reheater cooldown can be performed was approximately 44% as shown in Fig.1 -1. At this power level the maximum economizer tube temperature was approximately 1312*F. The estimated peak fuel < temperature was 1800*F which is below the 2900*F limit. The primary coolant pressure exceeded the 804 psig minimum rupture disc relief pressure resulting in an opening of the PCRV relief valve and a venting of about 10% of the primary coolant inventory. This relief can be avoided by depressurizing about 10% of the inventory through the Helium Purification System prior to resumption of core cooling. l Page 4
909111/? FSV PEAK ECONOWIZER TUsE TEMPERATURE AS A FUNCTION OF THERMAL POWER LEVEL FOR REHEATER C00LOOWN UNDER SAFE SHUT 00WN COOLING CONDITIONS 1= l l l : : : : : : : : : i 14 .. ! T l E ! W 1sse- - -- P E l R A g3gg. . I g .. T I U R E 12se- - l -- 0 1 G" "
+ AVG. WODULE l --o--- H O T WODULE
I itse- - l -- 1 I lis : : l l l l l l l l l l l s as at 34 as se de , 4: 44 4e 4e as se s4 se REACTOR THERMAL POWER LEVEL (PERCENT) Fig. 1 -1. Peak Economizer Tube Temperatures Page 5
909113/B
- 2. INTRODUCTION This study represents the results of a follow-on effort to the studies described in Refs. 1 and 2. These studies involved an evaluation of the " safe shutdown cooling" as described in updated FSAR sections 10 3.9,10 3 10, and 14.4.2.2. The previous efforts were l related to cooldown of the plant on the Economizer-Evaporator-Superheater (EES).section of the steam generator after a 1-1/2 h interruption of forced cooling. The study described herein relates to the cooldown of the plant on the reheater section of the steam generator for the same event.
The initiating event for the reheater cooldown is assumed to be a high energy line break (HELB) where neither EES loop and only a single reheater loop is available for cooling. Electric power is lost and both i helium flow and all sources of secondary coolant flow are lost for 1 -1/2 h. After the 1-1/2 h delay, secondary coolant is restored using the firewater pump. Helium flow is supplied by a single circulator driven by a Pelton wheel. As indicatec in the Post Operational Test j POT-22-03 (described in Ref. 3 through 5) as many as two reheater modules could be flooded under the test conditions of simulated firewater flow. Based on the POT-22-03 results, a conservative assumption was made that only one reheater module will be flowing and the other five modules will be void of water. Based on these assumptions, the cooling capability is severely reduced and the five uncooled steam generator modules operate dry at temperatures approaching the hot helium temperature. Analysis based on the above assumptions and conditions predict that there is insufficient cooling surface to permit a firewater cooldown on the reheaters from 100% power. The purpose of this study is to evaluate the reheater cooldown using firewater to determine the maximum power level from which a safe cooldown can be performed. ] l Page 6
4 909113/B 3 ANALYSIS As discussed above, the EES section of the steam generator is postulated to be empty during the reheater cooldown. As a result, hot j helium will be flowing over the dry tubes, for the five modules of the EES that do not have flooded reheaters. Based on initial evaluation, the EES section was determined to be a limiting area with regard to j potential tube failure and loss of a primary coolant boundary. The helium temperature at these tubes is equal to the mixed mean (including i core bypass flow) helium temperature at steam generator inlet. Another limiting area was judged to be the circulator. Since the helium is cooled with only one reheater module the hot helium flowing i over the other five modules may reach the circulator before being thoroughly mixed with the cooled helium thereby reaching the maximum allowable temperature of the circulator. The following sections discuss the analysis performed with several computer codes as shown in Fig. 3-1 to obtain the cooldown transients. In this analysis, RECA and TAP transients were obtained for firewater cooldowns from initial feedwater flows of 25%, 35%, and 50% (power levels of 28.6%, 39.2%, and 54.1%, respectively) . , 3.1 POKE and RATSAM Analysis Prior to obtaining RECA transients, the initial core conditions at each power level studied were determined with the POKE code (See
- Ref. 11). The region power peaking factors, region outlet temperatures r
and other heat balance data relating to an equilibrium core (EQSB3) with 150*F to 200*F initial outlet temperature mismatch configuration were input to POKE. POKE computes the necessary orifice cettings for each j region and fuel / gas temperatures at each node for input to RECA. The
' heat balance data input to POKE was obtained from design criteria, DC-1 -4, Ref. 12.
4 Page 7 i l i
909113 /B l i
).
8 3 Initial Core Conditions Hot / Cold Helium Temps i Orifices, RPFs, etc. During 1.5 H Delay 3 (POKE) (RATSAM)
,, i i i t i Primary System Analysis _ _ ~
Steam Gen. Analysis _ Proto-Power (RECA) (TAP) Flooding Analysis a u ,t
- Hot tiodule Analysis Steam Gen. Analysis Proto-Power (HOT *HODULE) -(SUPERilEAT) [ Flow
- to Condenser t
i I . t - i j Steam Cen. ' ' Stress Analysis , l l 1 l Fig. 3-1. Analysis Methodology i l Page 8
909113/B I i During the 1-1'2 h period of no forced cooling the helium temperatures depend on the core heatup rate and the natural convection helium flow occurring in the primary loop. Previous RATSAM code i analyses (Ref. 6) were used to estimate the hot and cold helium temperatures during the 1-1/2 h delay period. RATSAM cases at 40% and [ 1055 were used and values at other power levels were interpolated or i j extrapolated from these results as described in Appendix D. 32 RECA Analysis l The core cooling evaluation was performed using the RECA code. j RECA is a detailed model of the FSV core which provided calculations of the helium and solid temperatures throughout the 37 fuel regions. RECA was used to determine the maximum core fuel temperatures and to determine steam generator helium inlet temperatures. Since the RECA code does not include a steam generator model, the cold helium temperature transient was input to the code based on results from the TAP code. f 33 TAP and SUPERHEAT Analysis j The steam generator performance was evaluated using the TAP and SUPERHEAT codes. TAP is a single loop transient analysis model of the entire plant and SUPERHEAT is a steady-state model of the steam generator. The entire transient including the 1-1/2 h delay and the
- complete cooldown was predicted with the TAP code. Selected points in the transients were examined with the SUPERHEAT code to verify the reheater heat transfer results and also provide detailed temperatures for stress analysis.
In order to obtain the proper primary and secondary system j evaluation, the following calculational procedure was followed (see l Fig . , 3-1 );: i I 4 Page 9
~
909113/B 4
- 1. An initial TAP run was obtained at each power level for a firewater cooldown with a constant 3% helium flow rate throughout the cooldown transient.
- 2. The core inlet temperature from the initial TAP run was used as input to the RECA code. Initial RECA cases were obtained at each power level.
3 The helium flow and the steam generator helium inlet temperature from the initial RECA cases were used as input to the TAP code. Final TAP cases were obtained at each power level.
- 4. The core inlet temperature from the final TAP cases was I
compared to the initial TAP core inlet temperatures. Core inlet temperature input to RECA was revised and final RECA cases were obtained.
- 5. During the 1-1/2 h delay period, some reverse flow occurs in the primary coolant loop due to natural convection. ~A pre-
~ 4 vious analysis of this effect was performed with the RATSAM code (see Ref. 6). Hot and cold helium temperatures from this study were input to TAP for the 1-1/2 h delay period (see Appendix D). [ 6. SUPERHEAT cases at the peak helium temperature conditions were obtained and the results were compared to the TAP results to verify the heat transfer performance of TAP and to provide detailed temperatures required for stress analysis. 1 34 Steam Generator Stress Analysis
- A structural evaluation of the most critical areas of the steam generator was performed. This analysis included an evaluation of the 4
1 Page 10
909113/B initial thermal shock of the cold firewater in the reheater tubes and an evaluation of the effect of the cooldown transient on the EES bundle. The critical pressure loading case occurs in the EES tubes when full helium pressure combines with zero pressure in the tubes. The methodology and results for this evaluation are presented in Ref.13 35 Hot Module Analysis The economizer tubes in the dry steam generator modules were j determined to be the most limiting component in terms of maximum allowable temperature for the reheater cooldown analysis. The TAP code calculates an average economizer tube temperature assuming that the steam generator inlet gas temperature is the core exit plenum average temperature, which is a flow weighted average of the core exit regions and any cold bypass flow that enters the core exit plenum. However, the inlet gas temperature for a given steam generator module could be higher or lower than the core exit plenum average temperature due to flow and temperature distribution among the various regions and the relative location of a given module to specific core regions. l Additional mixing can occur as the gas flows through the steam generator due to turbulence and cross flow paths resulting from tube banks and other flow path obstacles. Test data for turbulent flow conditions indicate that approximately 985 of the hot streak is mixed by the time it passes through the steam generator reheater tube bundle. Even further mixing will occur as the gas flows through the superneater II, superheater I, evaporator II, and evaporator I tube bundlem. For the reheater cooldown analysis the flow at the module inlet is well into the turbulent regime. Therefore the gas temperatures are well mixed ! within a module by the time the gas enters the economizer tube bundle. The maximum economizer tube temperature was obtained from the hot module analysis described in Appendix B. Page 11
4 909113/B I 3.6 Circulator Operation Analysis During the 1-1/2 h interruption of forced cooling the core heats up, thereby resulting in high helium temperatures when forced cooling is restored. At the helium flow that is available from the Pelton wheel
. operating on firewater, the cold helium temperatures exceeds 1000*F.
Also, due to the single module operation the hot helium temperature from - the five dry modules is likely to reach the circulator. To insure that the circulator can operate for the required period at high temperatures j a study of the circulator operating temperature limits was performed (see Ref. 7). This study showed that at the low speeds (less than 1 1000 rpm) the circulator can operate for 1000 h at temperatures up to 1200*F and for 100 h at temperatures up to about 1300*F. i 3.7 Water Side Pressure Drop Evaluation i An evaluation of tue water side pressure drop was performed to j insure that the necessary firewater flow to the reheaters could be maintained during the entire cooldown transient. The pressure crop from the firewater pump to the power operated relief valves was evaluated by Proto-Power Corporation. The method and results of this evaluation are presented in Appendix C. J ! 3.8 Miscellaneous Analyses Other considerations required in the evaluation of the reheater cooldown included a review of the liner cooling model, and a revision of - the helium mixing equations for the TAP code. Although liner cooling
! was not used in this study, ute liner cooling equations were reviewed and modified slightly to reflect the low flow conditions of the firewater cooldown. Helium mixing equations were changed in TAP to provide a better representation of the helium temperatures with the i
single module operation. Descriptions and equations for these analyses
; are presented in Appendix D.
f i l Page 12
, --.n, ,
r- --..n,.-n- . . , - - - - , , - - , - - - - - - , , . . , , . . - , - - , - - - . , , , - - - . , - -,--,~v , ,,. , . - - - - - - - , ,
909113/B 4 RESULTS Analysis was performed at feedwater flows of 25%, 35%, and 50% feedwater flow with the RECA, TAP and SUPERHEAT codes without liner cooling. The sequence of events and operating conditions used for these transients were as follows:
- 1. A reactor trip occurs at I s into the transient, helium flow was ramped to zero in 5 s, and feedwater flow was ramped to zero in 2 s.
- 2. The steam generator pressure was assumed to be depressurized early in the transient, which is representative of the depressurization for a steam generator leak event. Beginning at 1 S into transient, the steam generator outlet pressure was ramped from normal 2600 psig to 850 psia in approximately 500 s. This ramp time was arbitrarily chosen since the time to depressurize had an insignificant effect on resulting transients.
3 A 1-1/2 h delay occurs with no feedwater or helium flow. 4 At 1-1/2 h into the transient, the firewater pump was assumed to be started and the flow to a single reheater module was ramped to 1170 gpm in 5 min. This ramp time was arbitrarily chosen since the time has little effect on resulting transient.
- 5. The helium circulator with Pelton wheel drive was started at 95 min into the transient after firewater flow to the reheater was at full flow.
- 6. Helium flow passes over one water cooled reheater module and five uncooled reheater modules.
Page 13
/
909113/B 4
- 7. Based on' reheater flooding test data it was assumed that five reheater modules were dry and one was flooded.
- 8. Helium flow passes over the EES bundle but it was assumed that the EES had no steam / water inside the tubes. Heat transfer was allowed to occur between the helium and the EES tubes and other metallic components in the primary system.
The pressura drop through the reheater and the secondary side was determined to be within the firewater pump capability. The results of the hot module analysis are summarized in Table 4-1. Based on results summarized in Table 4-1, the maximum recoamended power level that would allow a reheater cooldown after a 1-1/2 h interruption of forced cooling is approximately 40%. RECA transient results for the 39% power level are shown in Figs. 4-1 through 4-4 The detailed results of primary and secondary system performances are given in Appendix A for 25%, 355, and 50% feedwater flow conditions. Maximum circulator inlet temperatures were calculated as the average of the five hottest module helium temperatures in the hottest loop. i-i J Page 14
909113/B TABLE 4-1 REHEATER C00LDOWN ON FIREWATER (1-1/2 DELAY) Initial Feedwater Flow 251 351 50% Primary System Results (RECA): Reactor thermal power, % 28.6 39.2 54.1 Peak circulator helium flow, 5 3.9 3.8 3.6 Peak fuel temp. , 'F 1667 1786 2000 Peak steam generator helium inlet temp., 'F 1141 1242 1351 Steam Generator Results (TAP): Peak core inlet helium temp., 'F 970 1040 1127 Reheater water flow, spm (input) 1170 1170 1170 Peak circulater inlet temp. , 'F 1000 1100 1170 Peak economizer outlet tube temp. , 'F 1141 1242 1351 Peak reheater tube temp., 'F 1141 1242 1351 Calculated Results: Max. economizer tube temp., 'F 1208 1312 1429 Max. reheater tube temp. , 'F 1208 1312 1429 Max. circulator inlet temp. , *F 1152 1251 1390 (a) Peak prameters refer to highest value reached during the cooldown transient. Max. values includes effects of hot module. Page 15
909113 / B wLm st3*se st<eseos tassesna Mca ses rv FLw veo LINtn coot Me TENPERATURES 2000 1 I I - TINPOS 3\ TINFOS - Core Inlet Temperature O
~ ATotTTP - Average Core Outlet Temperature 1500 N.. _ TAVOTT - Average 5.C. Islet TeeForature ATOUTP , tuAx . u,,1 c ,,t ,,,cor, I- _x_ 's ~ '
D ' E TAVOTF o - fN s. . --'-- R : g X-X- li' "
#"G--- -
TNAX E 1000 ' ' E -
- C S -
F $=00 see; 0 , , , 9 2 4 6 8 10 TIME, HOURS I I 1 Fig. 4-1. Primary System Temperatures i I ( Page 16 t l
)
909113/B l 4 M *Sf3 M ll'M/M 84888883 RECA 384 FW FLOW Use LIER C99 tiles PRIMARY SYSTEM PRESSURE 900 PHPSI 4 See 700 N ~ I - A _
-W 600 See , , , , ,
8 2 4 6 8 10 TIME, HOURS Fig. 4-2. Primary System Pressure I
)
i 1 Page 17
909113 / B i
* * " ' * * :
- ss asiais = c. 3 ,, ,t ,, g ,, ,,,
CIRCULATOR HELIUM FLOW RATE , 49 FLOHTX [ O O c . 0 30 L - B S
/ 20-S .
E . c . 19 9 C O, ; * , ' ' 9 2 4 6 8 is TIME,-HOURS , i I I Fig. 4-3 Circulator Helium Flow Rate Page 18
909113 / B t d 4 f.e. Intti tems. Jos -v rtov - ou cestins - vitu no sapetss, 1400 Legend
- Hot Module T g ............
1300
, ~ f Avg Modute " . I P - ..
e - r . a 1200 , l L l '.
- u i, r : .,
e - 1100 - j '.. o - . e - i g - '..,,...' 1000 A F -
'g -
900 i e 0 2 4 6 8 10 12 Time, Hours Fig. 4-4. S.G. Helium Inlet Temperature Page 19
909113/8
- 5. CONCLUSIONS Based on the results shown in Table 4-1 it was concluded that a satisfactory firewater cooldown using the reheater can be performed for plant operation at a power level of 44% or lower. For the cooldown transient the most critical parameter from a stress standpoint was the economizer outlet tube. A maximum tube temperature of approximately ms aslinJ4a/
1312*Fg Peak fuel temperature was 1800aF which is below the 2900aF FSAR limit and peak primary coolant pressure exceeded 804 psig which is the minimum PCRV rupture disc relief pressure. The r(lief valve opened and reclosed anc about 10% of primary coolant inventory was vented to atmosphere. The circulator operating temperatures were determined to be acceptable. 4 ) i l Page 20
909113/B
- 6. REFERENCES
- 1. CFL 909030-N/C, " Study of Firewater Cooldown After 1-1/2 Hour '
Interruption of Forced Cooling," by R. C. Potter, dated Sep tember 16, 1986.
- 2. CFL 909052-N/C, " Firewater Cooldown with 300*F EES Exit Temperature (1-1/2 Hour Delay)," by R. C. Potter, dated October 6, 1986, 3 PSC letter, R. F. Walker to A. Giambusso dated January 9,1975.
4 NRC letter, R. A. Clark to R. F. Walker dated May 30, 1975.
- 5. PSC letter, R. F. Walker to R. A. Clark dated June 23, 1975.
- 6. SAM:113:GJC:77, "PCRV Depressurization Analysis During LOFC-FSV (105% Power, 2 h Delay Through As-Built Train with Rerouted 2 in.
pipe)," from G. J. Cadwallader to G. C. Bramblett, dated May 3, 1977.
- 7. CFL 908867-N/C, "FSV-Calculations for Circulator Temperature Related Operating Conditions," by M. Nichols, to be released.
- 8. GA-A13614, "RECA2 - A Program for Thermal Analysis of HTGR Emergency Cooling Transients, User Manual," by G. M. Baccaglini, October 29, 1975.
- 9. J78-6048-TR-1, " Review of the Fort St. Vrain Transient Analysis Program (TAP)," by James R. Carlson, JAYCOR, dated July 1978. '
- 10. GA-D14776, " Steam Generator Thermal Performance Models and Data Reduction," by D. P. Corosella, dated February 1978.
l Page 21 ,
909113/B
- 11. RGE 906762/A, " Validation of FSV Version of the Poke Code," by S. Munct, dated June 17, 1983
- 12. DC-1-4 I.taue B, " Design Criteria: Plant Operating Parameters,"
dated January 30, 1970. 13 CFL 909190-N/C, "Effect of Firewater Cooldown Using Reheater on Steam Generator Structural Integrity," dated November 7, 1986. i' j Page 22 1
, _---,v, - ,r,- , - - . - - , , , , , . . _ , , _ , ,_ ,, . , - , _ , ,,_, y , y - --,- - -, -- . - - ..,, - - - -.
GA1543(REV 11/8o1 909113-B l CALCULATION REVIEW REPORT TITLE: MODUIE APPROVAL LEVEL 2 FIREWATER C00LDOWN USING WE REHEATER 3 (1 HOUR DELAY) QAL LEVEL I DISCIPLINE SYSTEM 00 C. TYPE PROJECT DOCUMENT NO. ISSUE NOJLTR. I 01 CFL 1900 909113 N/C INDEPENDENT REVIEWER: NAME F. A Openshaw/G. J. Cadwallader ORGANIZATION (647) SYSTEM DESIGN AND PLANT DYNAMICS BRANCH REVIEWER SELECTION APPROVAL: BR MGR A. Shenov h$ E b 5b v REVIEW METHOD: YES NO ERROR DETECTED ARITHMETIC CHECK LOGIC CHECK N'46 ALTERNATE METHOD USED SPOT CHECK PERFORMED d"6 COMPUTER PROGRAM USED V' HI5d CALC $. CH6ClQiD & See 3 d fe m k REMARKS: (ATTACH LIST OF DOCUMENTS USED IN REVIEW) e CHPNE{5 wHtcH unot b GFFGC7 ffSL%TS of ts TAP RvHS ctfixbll,'D FDA ff* gM g cASG, ,- CHAUGdS ff0M 5615 CAM (C&78) FCC Cf'fCT i C/bd5 CffdCf6D AS/' INS Y S'0% CASE i MAINST MT/) 56d4C0 , a St.!Nc:fJtL cH6CK of Ladic /MP AS5dMPfloNS As Wd!. L AS Ali30CT'S W \ (Df- PM60NA8L4Nd5S 5
* }i' eda impar rawsrXEA/75 CHECNEk netJbnG .ZwsnML con < troys &@ rfdx.sicM~npur.s qr-B&ED GN MLriff RESu473. foaA/D THA7~ deEE /MW 7&AO'A13'#E 4'dS /9* 730 f aa) Y 92 3D% dAff, IS* 7Do Los) 504 759. dAfA* Duf/#0 ,'d "W OMY OfWW MAX /Mit/M fME4 A#b dpgr gyr2.Er 12;>rAENR7MrdS /J ONLY .2 RNb l DMEM; R'ESPECf)d2.{ AC SO# 2a CASf* 35% CASE' /S OK CoMLUS/ CMS a/E Nc7/ FfGd73;21 1 CALCUL ATIONS FOUND TO B D ND Cg10NS TO BE CORRECT g INDEPENDENT REVIEWER M bMM8/M DATE // / NM # SIGNATURE Page 23
G A 1543(R EV.11/80) 909113-B l CALCULATION REVIE'N REPORT TITLE: FIREWATER C00LDOWN USING ONE REHEATER MODULE (1.5.H DELAY) APPROVAL LEVEL 2 I QAL LEVEL DISCIPLINE SYSTEM 00 C. TYPE PROJECT 00CUMENT NO. ISSUE NO./LTR. I 01 CFL 1900 909113 A INDEPENDENT REVIEWER: NAME F. L. Openshaw/G. J. Cadwallader ORGANIZATION (647) SYSTEM DESIGN AND PLANT DYNAMICS BRANCH REVIEWER SELECTION APPROVAL: BR MGR A. Shenov g 8 b *TE /2 b/SS
/
U
- REVIEW METHOD: .YES NO ERROR DETECTED ARITHMETIC CHECK LOGIC CHECK V ALTERNATE METHOD USED SPOT CHECK PERFORMED COMPUTER PROGRAM USED " .
REMARKS: (ATTACH LIST OF DOCUMENTS USED IN REVIEW) Chue r73$ s be hecdn i.s u e. N/C and issae A Nere e reger{. 1 CALCULATIONS 4 FOUND 624tduedTO BE V Lip AND CANCLUSIONS 11 ., TO BE CORRECT: INDEPENDENT REVIEWER 8 A>dddd- DATE n/1/e6
/ ' SIGNATURE /' Page 24
l G A t S43(P E 1 /8 01 CALCULATION REVIEW REPORT FIREWATER C00LDOWN USING ONE REHEATER MODULE (1.5 DELAY) APPROVAL LEVEL 2 QAL LEVEL I OlSCIPLINE SYSTEM 00 C. TYPE PROJECT 00CUMENT NO. ISSUE NO.lLTR. I 01 CFL 1900 909113 B INDEPENDENT REVIEWER: NAME Ing Tang ORGANIZATION (647) SYSTEM DESIGN AND PLANT DYNAMICS BRANCH REVikWER SELECTION APPROVAL: BR MGR A. Shenoy ,Q $ W DATE / /7[ N ' V REVIEW METHOD: YES NO ERROR DETECTED ARITHMETIC CHECK LOGIC CHECK X ALTERNATE METHOD USED # SPOT CHECK PERFORMED Y heeA/:k1) COMPUTER PROGRAM USED c/ sea <in/en.1) / (.cu Mede 2) u REMARKS: (ATTACH LIST OF DOCUMENTS USED IN REVIEW)
'~/7tJreOOG /
s (2edan+1eA h 661 'lft C eS fey CQe3ihE m uau}er ()O f toc / arc $)dem.,4J. gewex/f , f/c}e 1, //af me;t& e f % ylm /are mIA*A h b & T b'" V ~l ScY1/a & n ) Ltic l<.adu</u com pdck JA. 4 j a+} 7 k *f AspbeL. h/ul of L '1 ad 70 *f, 7% ,.n,5m e,rer m CQii ., A 1L<. /det AV d MODULE ~ w. SN37 o a,.d sy, n a
'7luy dc atef e tr<q6%er N ^!k % . -hat b '.i y re cadtd en 724/e y -/
M M 7 W'eb m conch /reeg g , ! Nobt S ' A ll Wl1*r C $ sp iAvolvi r-e-fl aced }Nrw /-/ a~d Y-(,e hsd-k' G i.,< ,z o.// c A< ek) l0 d>< C cyre e} &cyt' a. /-es
,g i 2. ( rey'r>,/W) srb <A n/wid }>< t af9L c? g a,Ja,h- ,,,,,, x g w ,,,
M 1.9 of . X', w e ewe , 4$ du th du n u.<*J , O CALCULATIONS FOUND TO BE VAll0 AND CONCLUSIONS TO BE CORRECT: INDEPENDENT R EVIEWER h I DATE M [ SIGNATURE [ / / Page 25 l . - _ . - 1
i 1 909113/B i APPENDIX A RECA, TAP, AND SUPERHEAT RESULTS l 1 Page A-1
RUN*ST90tt 18/04/86 13:39823 REC 4 254 FW FLOW U/0 LINER COOLING TEMPERATURES 2000 TINPOS i TINPOS - Core Inlet Temperature O
'~k '
A*1UUTP - Average Core Outlet Temperature ATOUTP 1500--- TAV TF - Average S.G.. Inlet Temperature -
'- - -X-- ----
D s THAX - Maximum Core Temperature !
' sN - - -
TAVOTF E G a' A---
-gX .x :l N~~~' ' ' n-*--
R I- ~~~.-- TMAX E 1000 . u r - - - --v ---e ---- M ~ -. -- n E S ( C T '" T- " ~~ T F OO 500 - 0 ~ta i 1 . . , , 0 2 4 6 8 10 Y
% i TIME, HOURS
> k' g Fig. A-1 Primary System Temperatures, 25% FW Flow b h N
( RUN*ST9681 11/94/38 13:39:33 K CA 454 FM FLOW W/0 LINER COOLING PRIMARY SYSTEM PRESSURE 800-PHPSI O i 4 Q ~ 700 P _ S I A - 600--- " _i S00 = a , , , , 9 2 4 6 8 10 g TIME, HOURS 1 g Fig. A-2 Primary System Pressure, 25% FW Flow g%
RUN*ST9018 11e64/86 13:39:33 RECA 254 FW FLOW U/0 LINER C00LlHG CIRCULATOR HELIUM FLOU RATE 40 n n n -~
-v v " ' '
FLOHTX [
~ . O 30 -
L ~ B S
/ 20 S -
E -- C - 10-0 E O, O , , , , 0 2 4 6 8 10
- TIME, HOURS
% 4 g Fig. A-3 Circulator llelium Flow Rate, 25% FW Flow N
- g. k A %.
10 9//3-8
. r .
- c. \ .
-~ ~ , ** ,*',
- f,u.f. * ' k .= .
- g. ..-*
- . .. __,.~..: -~ ' Et ' ' # ' ' --~~ % A- '- * * * ~ ~ ~ ' ~ ~ ~
.. ..- E:::
150.0
> c -; , .- , ~ ~~~ ~~- ._l :-
- ^;;; ;; ... .. . .
1: f e y
... ... a f*
1 I 50.0
. l 8
d l
-. ..- - - .; ;;^;; ^^;:-^:-^:^^ ^^;^;: ^^: ^ ;;: ; ::::::::: :::::: ;;;:: .0 --!! !!!!!!!! 7 ! 0 7 0!!! !!!! !!'! :--" - 0 0 ;;;;!; T 7- ! ;( 0.0 t.0 04 2 0*04 3.0 04 4.0*04 5 0+04 T!PE. eglxpos CASE 25- FSV 1.5 HR DELAY, ONE RHTR, 1170 GPM FRWTR, NO EES ST1641 l 28.6% PWR, W/0 LINER CLG, FHT/THGH FROM RECA, 7.9% BYP 11/4/86 l FIGURE A4 FRAME A CURVE 1 : FWTOT - TOTAL FEEDWATER FLOW (PERCENT OF RATED 6401 CURVE 2 : FHT07 - TOTAL MELJun FLOW IPERCENT or RATED s 10061 CURVE 3 s PM - NELIUn PRE 33URE IPERCENT of RATED s 1001 1 CURVE 4 : PT - THROTTLE PRES 3URE (PERCENT OF RATED s 24121 l CURVE 5 s WC - REACTOR POWER (PERCENT of RATED s il l O f <f N
SVG9//3-8
~ ,.?- . ~ , ' . f,{ ,.[, . ' -= , . : .. . _ _ ...;.. ' .., .._.~....;.._.-_._- .
I
- .:.0; O'::
I 1 5+03 N fM % %_ m%%4
~' ~ - ,- ,.
O I 8 3' 5 - .. i 5 0 02 ~ -- kb: : : :: 22.::: :: ::: t
-- ---- -- t-- --- -- -
0.0 :
^
- ^ : ^ ^ ; - ^ ^ ^ ^
- : ^ : ;. :- ; ^ ^ ^ ^ ^ ^ ^
^ ^ : : :: ^ :^^:-^- :-^^^:: ::;:-
0.0 1.0 04 2.0+04 3.0*04 4.0+04 5 0+04
?!Pt. 9E0388 CASE 25- FSV 1.5 HR DELAY, ONE RHTR, 1170 GPM FRWTR, NO EES ST1641 28.6% PWR, W/O LINER CLG, FHT/THGH FROM RECA, 7.9% BYP 11/4/86 FIGURE A4 .eRAME 8 CURVE 1 : THM - CORE QUTLET PELIUM TEftPERATURE trl CURVE 2 :
CURVE 3 : TSRCA - STEAn TEMPERATURE AT ACTIVE RMTR QUTLET tri CURVE 4 : THC - CORE INLET MELIUM TEMPERATURE tri CURVE 5 : TrW - FEEDWATER TEMPERATURE tri CURVE 6 : T5RIA - STEAM. TEMPERATURE AT ACTIVE RHTR INLET trl I MAfb 80
9M//3-8
, .= , . . -.., s. , .i - .> . . - _ . . . . . ~ . . . - - . . . . . . . .__.
iCCC'O z::: i i , t I i 6 i e i
; e i e e i f i i l
l S00.0 6 , t t 600 0 , ,' i t i Q l i i g i e i g i t i i t t i I 6 i i ' i
! 6 I Q t = i s e s e 6
4 4 B a \ i t 400.0 l ', ' 8 , i 3 i 5
= !
r ' c - ,. - - - - = . - i ' l 200 0 f 8 4 f d 1
.0 ::::::::i::::::::: ::::::,::: :::::::: e ::
00 1 0*04 2 0+04 3.0+04 4.0*04 5.0+04
?!M. -
CASE 25- FSV 1.5 HR DELAY, ONE RHTR, 1170 GPM FRWTR, NO EES ST1641 i 28.6% PWR, W/O LINER CLG, FHT/THGH FROM RECA, 7.9% BYP 11/4/86 FIGURE A4 FRAME C CURVE t : CURVE 2 s CURVE 3 : P3tel - REHEAT STEAn PRESQURE (PSIAI CURVE o a FRf07 - REPEAT STEAM FLOW (10 TIMES PERCENT OF RATED z 6231 CURVE 5 77 - MAJN sfEAM THR0ffLE PLOW (10 1 PERCENT OF RATEU z 640I 1 -
-_ M98 J
9M//3-B
*d, ., :t-* *.s. :
t:::
- .:-0:
1.5+03
*\_
1.0+03
- -/ r__
. ...^^: ;~ ._^:' ;;; ;;'- ~-~ '- } -- o A-O I
3 I. M ui . I $ \ 5. G + 02 l i 00 ::: ;; ::::::::: ::: :::::: ;;::::p ::::: : :: ;;;;:: ::::::::::::::: :: ::: 0.0 1 0+04 2 0+04 3.0+04 4.0+04 5 0+34
?!Mt. Sec0NOS CASE 25- FSV 1,5 HR DELAY, ONE RHTR, 1170 GPM FRWTR, NO EES ST1641 28.6% PWR, W/0 LINER CLG, FHT/THGH FROM RECA, 7.9% BYP 11/4/86 FIGURE A4 FRAME D CURVE 1 : TTt20.21 - TUSE TEMPERATURE AT SHTR 1 QUTLET IF)
CURVE 2 : CURVE 3 TT(10.3 8 - TUBE TEMPERATURE AT ACTIVE SMTR QUTLET tra CURVE 4 s CURVE 5
~
hAqd k$
909//3 -8
~ * ' ~ ,i ~ . . .. . ......;...w. . .. : . . - -. - --.-. .-. - - . . . - - - . . .- ;. ",0 0:00 1.5+03 lL
- . : b :-[ g ( i g Y%m % t.0+03 l *^ '% ;~l b %: - ;
~- ~~-
fl/ -- . . . ; ; ; ; -- - -- _. __,,_ n Il l %% ... .__ l m' -- g
;- ;'; ;;.;f__ ___ __, _,
a 5 1; 3 I4 q 5.0+02 , ,,, ,,, 3' ' ;^: ;; ;; ;;; ;;; ;;; ;;; ;; 0.0 00 1 0+04 2.0+04 3.0+04 4 0+04 5.0+04 f tm. +=r=w CASE 25- FSV 1.5 HR DELAY, ONE RHTR, 1170 GPM FRWTR, NO EES ST1641 28.6% PWR, W/0 LINER CLG, FHT/THGH FROM RECA, 7.9% BYP 11/4/86 FIGURE A4 FRAME G CURVE 1 : VCONt 31 - MIXE0 MELIUM TEMPERATURE AT CORE QUTLET tri CURVE 2 s TNGH - NEL2Un TEMPERATURE AT REMEATER INLET tri CURVE 3 s TH0tel - MELIUM TEMPERATURE AT REMEATER QUTLET trl CURVE 4 : TMot31 - MELIUM TEMPERATURE AT SUPERNEATER 2 OUTLET trl CURVE S TM0(21 - MELIUM TEMPERATURE AT EVAPORATOR QUTLET trl CURVE 6 : TNGC - MELIUM TEMPERATURE AT STEAM GENERATOR QUTLET t ri
$$ 5
969 //2 -L'
., a . - .
h{ '
. n ._ . ._._._._L. _ _ _ . . . _ . - _ _ _ . . ._._____..____m_. . . _ _ _ _ , . . . _ ;. 0^ 3000 l 3 l l
t.5+03 N_ 1.s.03 l- %" t- m
/-'N %%w___ ' 4 ''2 2 M^;; ; ;_____ ___ __
5 ' 5 3
^^
s.0+02 ;,,, , , ,I 0.0 00 1.0+04 2 0+04 3.G*04 4.0+04 5.0 04 TIM. SECOMOS CASE 25- FSV 1.5 HR DELAY, ONE RHTR, 1170 GPM FRWTR, NO EES ST1641 28.6% PWR, W/O LINER CLG. FHT/THGH FROM RECA, 7.9% BYP 11/4/86 FIGURE A4 FRAME H CURVE 1 : TT(20.t l - TUBE TEMPERATURE AT ECONOMlZER QUTLET tfl CURYC 2 : TOUT (43 - NELJUN TEMPERATURE RT CIRCULATOR INLET (fl
?
_ _ . . _ . . __ S $__ _ __ __
_. . _ ~ . m SH/5 TH302775 03/U4/79 DATE 110586 PAGE 14 g
#EHE A TE R C00LDou3 252 - - - ~ - - -
n eeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeee e e n SUP"ARY OF SifAM GENERATOR UNIT PF# FORM 4NCE
- eeeeeeseeeeeeeeeeeeeeeeeseeeeeeeseeeeeeeeeeeseseeeeeeee 0 '
SECa TOTAL FL0w RATE 10T8L EttIClfNCV A V E R A GE S 1 E AM m NO OF DuiY STEAM HFLIUM C0 N D I T IO N $' AVERASE MELIUM MEAN -- ENTRANCE tulf HELIUM STE4M SIDE SIDF FNTH. TEMP. IEMPEPATURE TURE STEAM PRES. ENTH. TEMP. PRES. LOM/HR L9M/HO B lU /HR I 1 BTU /EBM OfG-F PSIA STU/EBM DEG-F INLif OUTLET TEMPe
- Po P$lA DEG-F DEG-F DEG-F PSI 1
2.65F*02 6.943*03 2.303*05 3.1 67.5 4P 80.1 130.4 81.5 113.2 ' 125.0 1143.0 212. t esee EN 1 I R E UN 1 1 **** 4...........................................................25.3 4 5. r 2.232'04 5.332+05 1.932'07 3.1 A7.5 4P.4 80.1 130.4 81.5 113.2 125.0
, 1143.0 425.3 212. 5.
1 m --. e n e l m - . . . . . o
#3 o
n . ._ -. f a 1 n _ . . a s I
= s -
r
'M i (
n p o,wh 4 Fig. A-5 SUPERHEAT Output, 25%* W Flow I
- s l
k q 1
'r i s.
O
b to 9
' o j $H/5 THSD2775 05/04/79 DATE 110586 PAGE 15 RENE ATE R COOLDOWN 25I J
STEAN PAF55URE DA0P (PSI) % j SEC. ACCELERATION FRICTION IN/0UT LO$$ NO ELEVATION TOTAL "P ' PSI PSI PSI PSI psg -W j 1 .00 3.20 1.43 .80 5.44 CVERAGE .00 3.20 w 1.43 .e0 5.44 o
-.-.. . tw b
en 0
%e J
- w 0
. _ . . . 9 w
3
. _ . W W
7
.... v w
)
.. - , .._ tur mW9 8MN +e. .m b.. . . U pu , OW m.
g e N_._. _ V
RUH=ST3469 11/05/06 12 06 13 RECA 354 FW FLOW W/0 LINER COOLING TEMPERATURES 2000 i TINPOS _ g C~'lQ ' TINPOS - Core Inlet Temperature O
~ 's ATOUTP - Average Core Outlet Temperature \,- TAVOTF - Average S.G. Inlet Temperature ATOUTP 1500 \, THAX - Maximum Core Temperature ----X------ 'N g D - ~~
TAVOTF fR .
;;:w - - s---
1000 ' y X-X-Ji M 9 __ _'I' 8 ---+ , - - -
- "" TMAX E ! i _c T r"- _ _ _.e _ _ _.
E - C S - F $:10 0 O see 0- i i i . . l g 0 2 4 6 8 10 g TIME, HOURS g% 4 N Fig. A-6 Primary System Temperatures, 357. FW Flow 4
I RUN*ST3469 11,Meu gases:13 MCA 354 FU FLOW U/0 LIER COOLING PRIMARY SYSTEM PRESSURE 900 PHPSI m 800-P S 700 ' I - A - j 600
^
M 500 , , , , ,
,b 0 2 4 6 8 10 M TIME, HOURS g Fig. A-7 Primary System Pressure, 35% M1 Flow k i
R81N'ST3469 11/05/86 12:08:13 RECA 3515 FU FLOU U/0 LlHER COOLING CIRCULATOR HELIUM FLOW RATE 40 FLOHTX LO O O o O 30 -- L B S -
/ 20 S -
E -- C -. 10 0 m-vi v , , , , g 0 2 4 6 8 10 b TIME, HOURS O @ Fig. A-8 Circulator llelium Flow Rate, 35% FW Flow k 4 E
fM//3-8 l l l l l
. I 5000
- ^0 0 l
153 3 i i I 133.3 u. . E ,i 4 E 1. 3 I SG.G
..'. .l _ ' . .j ! !..t '. 1 ..l.
t i ~ ~ ~ l ' l l l i t l9 l l l l l l l l j l l 37................ ......... G.3 1. 04 2 3 34 3.3 34 4.3 34 S.0 34 f ts. :recies CASE 35- FSV 1.5 HR DELAY, ONE RHTR, 1170 GPM FRWTR, NO EES ST5129 39.2% PWR, W/O LINER CLG, FHT/THGH FROM RECA, 7.9% BYP 11/5/86 FIGURE FRAME A CURVE 1 = FWT37 - TOTAL FEE 3 WATER FL3W (PERCENT 3r RATE 3 = 5408 CURVE 2 : FMf37 - TOTAL MELIUM FL3W IPERCENT Of RATED 10061 CURVE 3 : PM - HELJUN PRESSURE (PERCENT OF RATE 3 = 7001 CURVE 4 s PT - fMRC *fLE PREGGURE (PERCENT OF RATED z 24121 CURVE 5 : WC - REACTOR P3WER (PERCENT of RATED : il I I 1 l Pape A /6
90f//3-8 OIO l.5 33 V % m
/ P%M ,...,, W Ad TM- ,
Tll M 1i - $ I
.lif b $
1
- 5. .1
- 1
- 5. .32 W I e
ir(, ,,.,, ,, l I I I I I I I ' I I I I 3.3 + I I
- i i I 3.3 1.3+34 2.3 34 3.0 04 4.3 34 5.3 34 TIN. 2CM CASE 35- FSV 1.5 HR DELAY, ONE RHTR, 1170 GPM FRWTR, NO EES ST5129 39.2% PWR, W/O LINER CLG, FHT/THGH FROM RECA. 7.9% BYP 11/5/86 FIGURE FRAME B l CURVE 1 TMM - CDAE QUTLET HELJUN TCFPERATURE trl I CURVE 3 : TSRGA - STEAn TEPPERATURE AT ACf]VE RHfR QUfLET IFl CURVE 4 s THC - C3RE INLET MELIUM ICFPERATURE Ifl CURVE 5 : IFW - TEEDWATER TEPPCtRfuRE (F1 CURVE 5 s 73RIA - 3 FERN TEFFERATURE AT ACf]VE RHTR INLff (f)
Plnfje A/7 a
109//3 ~8 l
\ . 1 1
- ;-;; It:
l l 1.5-33 i I l l ln 1.3+G3 l i ~ s
= l l [ $ ] }
t l 5 l l l l \ l 2.: 1 i
' 5.0 32 !s l l E
E
= . . > . 1 ,
f I l l l l l l l l l l l l l i l I i l i l i l i l l I i l l l ,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . c.a l l[ l l l l l l l l l l l 'l 3 .1 1.3+04 2.3+34 3.G.34 4.G.34 5 0 34 ! T15. :rcows CASE 35- FSV 1.5 HR DELAY, ONE RHTR. 1170 GPM FRWTR. NO EES ST5129 39.2% PWR, W/0 LINER CLG, FHT/THGH FROM RECA, 7.9% BYP 11/5/86 FIGURE FRAME C CURVE 3 : P$t el - ret.ERT STge,n pggS$ gag r es:an 1 CURVE 4 : FRT3T - REHERT STERN FLOW t10 TINEO PERCENT OF RATED = $233 j l CURVE 5 : FT - FAIN 3 TEAM THROTTLE FLOW (10 X PERCENT OF RATED = $401 I l l l l Paga A/8 1
907//.7-B l l l
. .. ?I 2 i i l i I I i 1.s.23 i
l l l l l A' V 'M - ~ I
, ;,,, a : a:a,:J, l we u i i
i I il '
- ! I l l a
5 I i l a
! s.;.2:
I l l g i l l l G.3 l l l l l I 0.0 1.3 34 2.3 04 3 G.04 4334 5.3 04 f!M. CECCaes CASE 35- FSV 1.5 HR DELAY, ONE RHTR, 1170 GPM FRWTR, NO EES ST5129 39.2% PWR, W/0 LINER CLG, FHT/THGH FROM RECA, 7.9% SYP 11/5/86 FIGURE FRAME D CURVE 1 s 77420.21 - TURE TEf'fERATURE 47 3HTR I OUTLET trl CURVE 3 : TTt 10.31 - TURE T?'fERATURE AT ACTIVC HTR 3UTLET trl fAfd b/T
909N3 -8 i l l 6 'd"'d & i l l l : i 1.5-33 I ! l I i l i I l 3 :: - ! NV__ h/ %' %l ( I l
~~
l &l ^^ i i -- L!
- W::i :: h l y ..,o
= l $ i ti U l 3 ' i ! 5 l 5-3 32 W ..,
"*--C....;.;; ; ; ; ; ; ; - . g . . . . .' . . j . . ..j.
l 1 l i 2.3 l i 33 I.Q.34 2.3 34 3 3 34 4.3 34 5.3 34 784. CECONot CASE 35- FSV 1.5 HR DELAY, ONE RHTR, 1170 GPM FRWTR, NO EES ST5129 39.2% PWR, W/0 LINER CLG. FHT/THGH FROM RECA, 7.9% BYP 11/5/86 FIGURE FRAME G - CURVE 1 s VC3Nf33 - MIXED HELIUM TEPPERATURE AT CORE QUTLET IF) CURVE : s TNGN - MELJUM TEf*fERATURE AT REMEATER INLET (F) CURVE 3 : TN3tel - HELJUM TEPPERATURE AT REMEATER 3UTLET tri CURVE 4 : THQt 3) - HELJUM TEPPERATURE AT SUPERNEATER 2 OUTLET (fl CURVE 5 : TN3t:1 - MELJUM TCFPERAruRE AT EVAP3RATOR QUTLET tri CURVE 6 TNGC - MELJUM TEFFERATURE AT STEAM GE.NERATOR QUTLET (fl fdfd A20
909//3 ~ 8
- .;-0; 20:
1 i ! i I l 1.5-33 i l r4 I I
/ Ml "" i ~
y hALu I i 5 i
.I' ' ! 5 3-02 k;,,,,,1 33 , , .
I s 33 1 3 04 2.3 34 3 3 34 4.3+34
- 5 3-;4 nn. ace CASE 35- FSV 1.5 HR DELAY, ONE RHTR, 1170 GPM FRWTR. NO EES ST5129 39.2% PWR, W/0 LINER CLG, FHT/THGH FROM RECA, 7.9% BYP 11/5/86 FIGURE FRAME H CURVE I r 77t23.11 - TUSE TEPPERATURE AT CCQN0n!ZEM QUTLET trl CURvt z TOUitel - HELIUM TEMPERATURE AT CIRCULATOR INLET trl Pa.ge A2/
e w tup j $H/$ THSD2??5 02/04/79 DATE 110586 PAGE 14
- ' ' ~--
REME A TE R C00LDOWN 352 3
$UP4ARY Of STEAM GE NE k ATOR UNIT PERf0RM4NC '.
j
...............e................................E....... ~ $ E C.* TOTAL ~ FLOW RATE TOTAL' EfflCIENCV 6 to A V E R A'G E $ T E A M C0N D I TIO N $ # Of DUTY STEAM HFLIUM AVERAGE HELIUM MEAN ENTRANCE EXIT HELIUM STEAM $1DE $1DE ENTH. TEMPERATURE lure STEAM L6M/HR LBM/HR TEMP. PRES. ENTH. TEMP. PRES. INLET
- S Tu /NR I 1 BTU /L8M DEG-f CUTLET TEMP.
- P.
PSI 4 STU/L8M DFG-f PSIA DEG-f DEG-F
# DEG-f PSI 1 2.50F*02 6.943 03 2.437+05 3.0 68.9 4 80.1 130.4 81.5 115.2 125.0 1250 * --- --***. e mENe sT .IR. . E. . . .uN. . IT . . ..*. = = 443.6 221. . . . s s = = = = = = = = = = s s s = = = = = = = = = = = 2 . 4= = = = =ssses....massssemass==samas ===== = = =5.= = = = = = =
2 106 04 5.832+05 2.047*07 3.0 = 68.9 4P.4 8G.1 130.4 84.5 115.2 125.0 o 1250.0 443.6 221. 5.
. . . . . . = . . ~ - tw e
v b
. . . _ . . . _ . . . . . . u J
v 9
- . . . . . . _ _ . . . - . . -.- . v a
v 0
. . . . _ . _ . . . . v O
v 0 _ _ _ . . . _ . . . _ . . . . w 9
%e . . . _ . . %w ' D Fig. A-10 SUPERilEAT Output, 35% FW Flow 4 h* .n.. . . _ . _ .
4 b w H
i e 5H/S THSD2T75 03/04/79 DATE 110586 PAGE 15 . WEHEATER C0$LDSWN 352 m , STFAM PPES$URE DROP (PSI) m SEC. ACCELER4Tl0N FRICTION IN/0UT LO$$ NO PSI ELEVATION TOTAL *P PSI PSI . PSI PSI # { g 1 .00 3.20 5.43 .80 5.43 i AVERAGE
.00 3.20 1.43 .80 5.43 i M i
4 m . r 4 m i t e m (: 1 e m r. m . .. m f m t m v' 9
- q t
i = ' t h ff
.s % Fig. A-10 (cont.) SUPERilEAT Output, 35% FW Flow yr
. i i i e
^
RUN*ST4621 11/4t/06 49438 58 RECA 544 FW FLOW U/0 LINER COOLING TEMPERATURES 2000
, _ y. R- -[Ir' i \N TINPOS - Core Inlet Temperature ! ATOUTP - Average Core Outlet Temperature TINPOS n
1500 s\ 'n TAVOTF - Average S.G. . Inlet Temperature THAx - Maximum core Temperature _ . ATOUTP
...g D
s' E _ p *
,., TAVOTF ;f _,.
_._ 4._ R G
~
W . x .__ x iiG "
*M ..j;4-- .o._ Z 000 - ^
v
~~
24=!2:= TMAX C ----G E - S - F I OO O s00 0 j , , , , , 0 2 4 6 8 10 TIME, HOURS b @ t vis. i-11 erimery system Temperotures, soz vu vio. g ,h s
RtRI ST4621 11/04/86 49838458 RECA584FWFLOWU/0LkHERCOOLING CIRCULATOR HELIUM FLOU RATE 40 FLOHTX
.' fA C -
C a o 30 - L - B S
/ 20 -
S - E - C - 10 0 = 0,O , , , , 0 2 4 6 8 D 10 % D TIME, HOURS h g 4 , 4
%I h Fig. A-13 Circulator. IIelium Flow Rate, 50% FW Flow #h
RUHaST4628 11/04/3G 09:33158 RECA Set FU FLOW U/0 LlHER COOLING PRIMARY SYSTEM PRESSURE 900 PHPSI O 800= f I P S 700 - I - A - s00 ._ p 9-S 500 , , , , , 0 2 4 6 8 10 TIME, HOURS ( Fig. A-12 Primary System Pressure, 50% FW Flow h s
10 9 //3 - 8
~ ~ .',' s . . . , . . . m ... . ..'t'. . . " ^^;.; G;0 150 0 M % ^
100.0 ' - 1.
- , r 0
" '^ ' 3 1. I. E 50.0 i d
- : ^'3 $ 5 $i5 5 5$ b5 5b b b b I b b b.b b b b bb bb bb b b b .0 , ,,, . .
00 1 0+04 2 0+04 3.0+04 4.0+04 5.0+94
?!M. SECOMN CASE 50- FSV 1.5 HR DELAY, ONE RHTR, 1170 GPM FRWTR. NO EES ST8014 54.1% PWR, W/O LINER CLG, FHT/THGH FROM RECA, 7.9% BYP 11/2/86 FIGURE Al4 FRAME A CURYC 1 : FWT0f - TOTAL FCC0 HATER FLON (PCRCENT of RATCO s 5401 CURVC 2 s FHf07 - TOTAL MCL1Un FLOW IPCRCENT Of RATCO s 10068 CURYC 3 s !H - UCL1Un PRES 3URC tPERCCMT 07 RRICO s Tool CURVC 4 s PT - THR0ffLC PRC3GURE (PCRCENT OF RATCO 2412)
CURYC 5 s WC - RCACTOR POWCR !PERCCNT Of RA!CO s 11 Pagi A27
109//J-8
,, [-~'.. ,: ~. -,']-' .. ~ .,:, .y ,' - . . i . ._ L: . .~ . u. -... z . -. -- - n ^ :- -
s Ot0: t.5+03 vWh
%%u_
- M f t %% %
Ss / ^ s 1.0+03 m . t C I y ., I i j ~ wi g 5 0+02
\
r
! L- -- -- -. .. .. .. k, 0.0 : ^;^^ ,;;^^ : ;; ; , :^;^ - ^ -
00 1.0+04 2.0+04 3 0+04 4 0+04 5 0+04 f tM. MCthes CASE 50- FSV 1.5 HR DELAY, ONE RHTR, 1170 GPM FRWTR,.NO EES ST8014 54,1% PWR, W/0 LINER CLG, FHT/THGH FROM RECA, 7.9% BYP 11/2/86 FIGURE A14 FRAME B l CURVE 1 s IMH = CORE OUTLCf MEllun TEMPERRfuRE (FI CURVE 2 CURVE 3 s 73ROR - STEAM TEMPERATURE AT ACflVE RMTR QUTLET Ifl CURVE 4 s THC - CORE INLET HELIUM ICMPERATURE tri CURVE 5 : TFW - FEE 0 WATER TEMPERATURE (fl CURYC S TSRIA - STEAM TEMPERATURE Af ACflVE RMfR INLCf (f1 E
90WB -8 l
. ~. + .. .r- . .
Q.j' . ~ , ,
. ..;1,*; a , ,. . . ' - - ..: . .. L : ~... .'~ - '.-.6 '~~~'~
M
) ,
s I \ 4 l l l 500.0 I t SCO.0 t 6 5 ' O t e t 0 6 C i i d 400.0 3 3 E I
--- - -- S ,
l f ! { 200.0 f 75 I M. . . . . .. .. . . . . .. .. .. .. .. ._. l r l 0 : - : :::: : .: :: : : : :: : : : :::::: :::::::: : - : ;- 00 t.0 04 2 0 04 3 0 04 4 0*04 5.0+04 ftM. SECOSE CASE 50- FSV 1.5 HR DELAY, ONE RHTR. 1170 GPM FRWTR, NO EES ST8014 54.1% PWR, W/O LINER CLG, FHT/THGH FROM RECA, 7.9% BYP 11/2/86 FIGURE Al4 FRAME C CURVE I : CURVE 2 s CURVE 3 : P$tel - RENEAT STEAM PRES 3URE IPSIRI CURVE 4 s FRf07 RENCAT STEAM FLOW (10 flNES PER ENT Of RATED 6231 CURVE 5 s FT - NAIN STEAM fMR0f fLE FLOW t 10 X PER CNT OF RATED 6401 _ _ _ ._.Asye AM
~~
90 f//3-8
= > .? e . . '.J.,-,fql, ar ,e, 's. ' ' ._.... . ,u , .;-;; t10 t.5+03 T
f w
%+.._ - ~' ,) "" A ^ ^ ^ ^ - r I.0+03 3
3 8 8 5.0+02 l l 0.0 : : : 0-, : - : :: : - ; 0 0- - 0;;;;;- ; : 1 I Q.0 1 0*04 2.0 04 3 0*04 4.0*04 5004 ft w. secomes CASE 50- FSV 1.5 HR DELAY, ONE RHTR, 1170 GPM FRWTR, NO EES ST3014 54.1% PWR, W/0 LINER CLG, FHT/THGH FROM RECA, 7.9% BYP 11/2/86 FIGURE Al4 FRAME D CURVC 1 77120.21 - TUSC TEMPCRATURE Af $NTR 1 QUTLCf Iff CURVC 2 s CURVC 3 7f(10.31 - TUSC TEMPERATURE Af ACflVC SMTR QUTLCf tra CUAVE 4 s CURVC 5 s 9 - 408 $50
949//.3 -B l
=
l l l l l gg.,
; ;-0; '
t.5+03 t b : ' if b% Y+ R Nc+,++ ~ T["N 3 g m. ___; ,-- r l l - t.0+G1 -
- e. : ; ; t- -
l L 1 i I % H 3 H ~ 5.0+02 '
%w -
00 0.0 1 0+04 2 0 04 3.0+04 4.0 04 5.0+04 f!M. CECCNDS CASE 50- FSV 1.5 HR DELAY, ONE RHTR, 1170 GPM FRWTR, NO EES ST8014 54.1% PWR, W/O LINER CLG, FHT/THGH FROM RECA, 7.9% BYP 11/2/86 FIGURE Al4 FRAME G CURVE 1 s VCONt31 - MlXCD MCLjuM TEMPERafURE AT CCRC QUfLC7 (f) l CURVE 2 : fMGM - MCLIUM TCMPCRATURE A7 RCMCATER INLCf (f) CURVC 3 s TNotel - NCLJUN TCMPERATURE Af ACHCAfCR QUTLC7 (fl ' CURVC 4 s fHot38 - MCLJUN TCr'PCRATURE Af $UPCtHCATER 2 OUfLC! (fl CURVE 5 : THol23 - MCLIUM TCMPC.tATURE Af CVAPORRf0R QUTLC7 ifi ; CURVC 6 e fMCC - NCLJUN TCMPCRRfuRC AT STCAM GCNCtATOR QUfLC7 ffl ; Pqt /131 l
9M// 7-8
~ - ' ;* ^
_., ,i. l
~ . - - _
i 1
;.;-;; 3500 t.5+03 1
T l s
'f F 7 w 7 / h- %m- .%..
t.0+03 %" - I
. c I
5 5 f I ( " 5.0+02 ' . , ,! 0.0 0.0 t.0+04 2 0*04 3 0 04 4.0*04 5 0*04 TIM. SECases CASE 50- FSV 1.5 HR DELAY, ONE RHTR, 1170 GPM FRWTR, NO EES ST8014 54.1% PWR, W/0 LINER CLG, FHT/THGH FROM RECA, 7.9% BYP- 11/2/86 FIGURE Al4 FRAME H CURVE L s TTt20.ll - TU8E T!MPERATURE AT ECONon!ZER QUTLET tri CURVE 2 : TOUf t el - NEllun TEMPERATURE AT CIROULATOR INLET tfl
+ -
k
0 u O
%s s SH/5 TMSD2775 03/04/F9 DATE 110486 PAGE 15 - ~ ~ ~ ~ ~~
Q} 2 REME ATER COOLDOWN 50t /27 68/Y) easeee eeeeeeee eeeee eee eee eeeeee ee eeeee eeeeeeee eee ee ee ee u j
SUMMARY
Of $7EA4 GENERATOR UNIT PERf0RMANCE e e eeeee ee ee ee e e egeee ee e eee eeeeee eeeee ee eeeeeeee eee eee e ne w
$ff. TOTAL FLOW R AT E' TF. LL' EffitsEMCV .s h0 Of A V E R A GE 5i E A M C0ND I T ION $ AVERAGE HELIUM MEAN 6.TV STEAM HELIUM ENTRANCE HELIUM STEAM EXIT TEMPERATURE TUSE S ID E SIDE ENTH. TEMP. PRES. ENTH. TEMP. PRES.
STEAM gg LbM/HR LSM/HR 3 3 BTU /L8M INLET GUTLET TEMP.
- P.
S TU /HR, DEG-f PS14 STU/L8M DEG-f PSIA DEG-f DE6-f DEG-f PSI 1 2.45 3.0 69 7 48.4 80 130.4 86.2 118.0 125.0 1356.0 e.e .... 0+02 6.943e03 2.627+05................................................ 1....e ............................................ 66.9 4 232. 5.
, eeee Ek i I aE ung i eees .....................
s' 2.058e04 5.832e05 2.20F+0F 3.0 49.7 48.4 30.1 130.4 86.2 113.0 125 0 2 1356 0 466.9 232. 5. O b u o
. . . . . ~ . . - - 44 J
J s
- - _ . v v8 o
V e
%k ..~ %r O \* %s a Fig. A-15 SUPERilEAT Output, 50% FW Flow, 1129 GPM a4 s y* "k i % %w L4 %b
l
' $H/$ THSD2775 01/04tf9 DATE 110486 ~ ' ' ~ ~ PAst 16 l SEME ATE R C00LDowu 501 /2.7 6/N) - "" - $1 EAR PAf$5Utt 340P (PSI) . % SEC. ACCELERATION FRICTION IN/0UT LOSS ELEVATI09 TOTAL "P ho _ _ P 51 PSI PSI PSI PSI f % 1 .00 3.20 1.43 .80 5.43 i
( AVERAGE .00 3.20 1.43
% .80 5.43 . . . _. I S . _ . . .. (
( 9 .
. . - , _ I
] g .. , i 4 i <0
.. t f
m _ ( ! 3 _ _ . . i i f 9
- =
o Fig. A-15 (cont.) SUPERilEAT Output, 50% FW Flow, 1129 GPM
,,% w i
i 9 4 , 1 ' l l'
- e
_ _ _ .. . . . . = . .- _ . --.. s D o '. I e
, 5H/5 TH502775 03/04/79 DATE 110586 PAGE 15 b
REMEATER COOL 00wN- 502 [//78 6PN)
...eee.ees.e.ee.ee....ee.eeeee .. ...... e..eeseeeeeee.
- G SUMMARV Of STEAM GENERATOR UNIT PERFORMANCE e o e ene ee s e e.e ee e ee e...e e e e n e n ese s ee ee e e e see e ee ee een ee e e e e to
- 5ECOC. - TO T AL- f LOW RATE - TOT AL - Eff!E!ENCV - A V E EA 6E 5T E A M C0N D I T IO N 5 AWERAGE HELIUM MEAN of DUIV STEAM HFLluM # ENTRANCE Euli HELIUM STEAM SIDE SIDE TEMPERATURE TueE STEAM ENTH. TEMP. PRES. ENTH. TEMP. PRES. INLET "
Lat/HR L8M/HR RTU/HR 1 CUTLET TEMP.
- P.
2 GTU/tBM DEG-f P5IA BTU /LBM DEG-f PSIA DEG-f DEG-f DEG-f PSI 1 2.450+02 6.7G5efl3 2.425+05 3.1 69.6 48.4 80.1 130.1 87 119.3
.-........................................e.................................. ***e i I A E U N I T eeen 5 125.0 1356.0 467.6 234 5.
~o E .h " 2.058e04 5.633e05 2.205+0F 3.1 v 69.6 42.4 80.1 130.1 47.5 119.3 125.0 1356.0 467.6
.s 234. 5.
V b v
<B V
U i
._s. .
V V D _. - v U D V b b d g . _. . _ . . _ _ _ _ _ . . . . Fig. A-16 SUPERilEAT Output, 507. FW Flow, 1170 CPM o4 g, e k _ _ _ _ _ . v 3
e jI O swis enSozrrs o!iosite I Dave isosse Past se ,
! 9tHE ait A cCottogw 50s
[/70 6PM) - - - - - - - - - 3 I s t r a'9 PR'sSURE DROP (PSI) i ' O. sec. accetenarios rascrion iwiour toss etevation ho Psi veint P PSI PSI PSI PSI , O i .00 3. t.ss .an s.13 avtaaGE .00 3.00 1.33 .80 5.13 .t O t; - 1 O J a 4
- O 4
4 O f ". O <
! e
+ O t; ! O " I (
- O t e
1 PO i e. O
- f,
! O T-O -
= f O
i a !O ~ ~ ~ ~ ~ - - , f og hq q y Og , Fig. A-16 (cont.) SUPERilEAT Output, 50% IN Flow, 1170 CPM i g o4 ) 4 O e ._. _ _ ___ __ _. _ I l
909113/B APPB4 DIX B HOT MODULE ANALYSIS AND RESULTS Page B-1
909113/B Appendix B Bot MMnle Analysis Plethodoloov Discimaion As discussed in Section 3.4, the gas temperature profile at the inlet to the econcmizer tube tundle is esentially flat at the stem generator modale average inlet tagrature. A sc: hematic of the f1w path through a typical P module is shcwn in Figure B-1. %e gas exits the various core regions into an exit plena and ficws through a maze of core support posts before entering the stem generatcc inlet duct. It then flows pst the reheater, suprheater 2, superheater 1, evaEorator 2, evaporatcc 1, and econcnizer tube tundles before entering a bottcm plena where it is taken in by the circuitor. 2e gas exiting the circulator f1ms up through the piens between the core barrel and PCRV liner refore entering the core. Although not shown in Figure B-1, there is a mall bypss ficw of cold helim that enters the core exit plena directly and mixes with the hot coro exit gas. Bis tends to lower the average core exit plene temperature somewhat. %e average inlet tagrature for a given mochle is distributed about the average core exit plene temprature che to ficw and teprature imbalances mong the various core regions and the relative location of a given mochle to spcific cDre regions. A map of the core regions and mochle locations is shcwn in Ficpre B-5. Test results frcm Ref. B-1 for a half scale model were available and were used to determine-the fraction of ficw frcm a spcific core region to a given mochle. his data, as impleented into the IOKE code (Ref. B-2), is shcwn in Table B-1. For the reheater cocicbwn analysis only one loop is assmed to be operating. %e average inlet temperature for a givm stem generator modale is I calculated as follcus: Tsgj = B Aij Mi Ti / 5 + (1-B ) Tplen (Bl) ij Mi / II , where Tsgj = average inlet taprature for modile j Ajl = flow fraction for region i to module j (from able B-1) Mi = region i mass flow rate (fra RECA) Ei = average region mass ficw rate = 1 / 38 Ti = region outlet temprature (frcm RECA) B
= weicAting factcc = JAij Mi
[.Mi/6 Tplen = aver cold core exit plena teprature, including as flow (frca RECA) Re.gt 82
4 909113/B 1 Bauntion B1 utilizes the Ref. IF1 data with additioral wei@ ting for f1w ! rate distritution for regions in the active loop and assmes that flw fra l regions in the inactive loop is well mixed before entering mo&les in the ' active loop. Pbr calculation purposes regions 1,13, and 19 are assmed to be part of both loops. A anall computer progr a (BOTeMODULE) was developed to utilize the i-transient core region exit flow rates and temperature distributions as i alculated by the rem code and the ficw fraction data in Table B-1. Se code
- consists of a main gogra which processes input and output and two sub-routiras, IUD 0D and SMI9tD. Se BODOD routire is called for every time point and is essentially a programmed version of Itjustion Bl. De SIN 19tD routine is called only once and serves to generate the f1cw fraction array shown in Table B-1. OLiculations are performed only for conditions of forced flow, since the
, hot gas will reain in the core exit plenum & ring natural circulation i conditions due to bouyancy. 1 Se rmstrean for esecuting the BOT *pOEULE progra is cortained in elenent leR*RUN.HD0Q/KTN. Se-input fran Ram is assumed to be on a file assiped to i logical mit 8. he first line of this file contains information on the date, i time, and job nunber of the REG Im in A6 format. Se renaining lines contain i the transient time, region flows, region temperatures, and average core exit j plenun tangerature for end time pint in birary format. Plot file &ta is written to a file assigned to logical mit 7 in 3 sequential array format, whid allows for easy processing with the SUPER *PLor j plotting progran. 'Ibe first array consists of the transient time pints. Se i next twelve arrays contain the average inlet temperatures at each time pint i for and of the twelve mo&les, beginning with mo&le 38. Se next array 4 contains the average core exit pianun temperature at each time pint. Se last ~ array contains the maximun mosle temperature. Se time is in hours and the tamperatures are in degrees F. Se line ilsnediately gooseding ead array j indicates the neber of array values, i.e., the rumberof time pints.
- Basults I
2e hot mo&le aralysis was performed for 25%, 354, and 50% feedtater flw ! levels, whi& correspnd to 28.6%, 39.24 and 54.1% thermal power levels. Liner j moling was not considered fu this analysis.
'Iransient temperature profiles for both an average and hot mo&le for the
- three power levels are shown in Figs. IF2 through B-4. Pipres B-5 through B-10 pewide a map of region outlet temperatures and stem generatcc inlet temperatures at the time of peak momie inlet tanparature. Since the active loop is arbitrary, calculations were performed considering that either loop 1
, (nio&les 38 - 43) or loop 2 (mosles 44 - 49) is the active loop. 1~ Befarances i l 1. Walker, W. E. , "PSC Region I Flcw Model (Series 2) 'Mst Repet," USAEC
- Informal Report GAfD 8625, Gulf General Atmic, July 8,1968.
- 2. Pfeiffer, W., et. al. "PoltE, A Gae-Oooled Reactor Flow and 'Ihermal
- Analysis Q)de," GA Report GA-10226, July 16,1970.
i I Age 8.9
fot//3-8 l l [This page intentionally left blank]
70w3 -8 l l 1
-c !& d-d. ~'
P
~"~ 1'Ok~hEAdi!ONS 702 REGION I TO M00ULE J C77&t 68-lGM70V MCDULE5 Resiev 38 3, 40 4, 42 43 44 45 44 47 48 4, 1
2
.0833 .0833 .0833 .0833 0833.. 0833 .0833 . 0833 .0833 .0833 .083* .0833
_,3__. .3700 .3700 .f300 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .1300 4 0000 .1300 _.3700_ .37.00 _.1300 _.0000_ .0000 _.0000 _.0000__.0000 _.0000 0000 _. 5
.0000 .0000 .0000 .1300 .3700 .3700 .1300 .0000 .0000 .0000 .0000 .0000 6 .0000 .0000 .0000 .0000 .0000 .f300 .3700 .3700 .1300 .0000 .0000 .0000 7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .1300 .3700 .3700 .1300 .0000 8 .1300 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .1300 .3700 .3700 9 .4700 .5700 .0300 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0300 .0300 4700 . 4700__.0300__.0000__. 0000__.0000 .0000 .0000 .0000 .0000 .0000 TO .0000 .3300 4700 4700 .0300 .0000 .0000 .0000 .0000 .0000 .0000 .0000 _
11 .0000 .0000 .0300 12 .0000 .0000 .0000 .0300 4700.4700
.4700 .0300 .0000 .0000 .0000 .0000 .0000 .0000 T3 14 .0000 .0000 .0000 .0000 .0300 4700 .0300 .0000 .0000 .0000 .0000 .0000 4700 .4700 .3300 .0000 .0000 .0000 .0000 15 .0000 .0000 .0000 .0000 .0000 .0300 .4700 4700 .0300 .0000 .0000 .0000 .0000 .0000 .0000__.0000__.0000__.0000 .0300 .4700 .4700 .030C .0000 .0000 16 T7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0300 .4700 4700 .0300 .0000 18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0300 .4700 .4700 .0300 19 .0300 .0300 .4700 .0000.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0300 .4700 .4700 0000 .0000~ .0000 .0000 .0000 .0000 .0000 .0300 .4700 20 .4300 .4600 .0200 .0000 .0000 .0000 ".0000 .0000 .0000 .0000 .0000 .0200 21__
22
.0000_. 78 00_ .2200__t0000 a 0000a 0000__.0000 .0000 .0000 .0000 .0000 .0000 23 .0000 .2200 .7800 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0200 24 4800. 4800 . 0200 0000...DJSO .0000_.0000 .0000 .0000 .0000 25 .0000 .0000 .0000 .0000 .0000 .0000 .7800 .2200 .0000 .0000 .0000 .0000 .0000 .0000 .0000 26 .0000 .0000 .0000 .0200 2200.4800
_.7800 . 0000 _.0000 . 0000 .0000 .0000 .0000 .0000 4E00 .0200 .0000 .0000 .0000 .0000 .0000 27 28 _ .0000 _.0000__.0000__.0000 .0000 .7800 .2200__.0000 .0000 .0000 .0000 .0000.__ 2, .0000 .0000 .0000 .0000 .0000 .2200 .7800 .0000 .0000 .0000 .0000 .0000 30
.0000 .0000 .0000 .0000 .0000 .0200 .4800 4800 .3200 .0000 .0000 .0000 31 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .7800 .2200 .0000 .0000 .0000 .0000 .0000 .0000 .0000.. 0000 .0000 _.0000 .2200 .7800 .0000 .0000 .0000 32 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0200 4800 4800 .0200 .0000 33..._ .0000 . 0000 _.0000_ .0000 a 0000 a 0000_.0000 _.0000 _.0000 _.7800 .2200 34 .0000__
35
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .2200 .7500 .0000 36 .0200 .0000 .0000 .1200 .0000 .0000.0000 .0000.0000 .0000 .0000 .0000 .0000 .0000 .0200 .4800 .4800 37 0000 .0000 .0000 .0000 .0000 .0000 .7300 J/44 .7800 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .2200 MFARTbg.0833 _ .3833 .0833 .0833 .0833 .0533 .0833 .3533 .0333 .0833 .0333 .3333 Ap Bf
90 9//3 - 8 w Q {l [ L Q O, [ L I4
-- )
[ I { l g l l [- llI , i! - -- li 4
. t i ! t i . -
l 8 8 L l Ill t W4r ur Yar WITer %m.cr Sw Til Til li llllil i
,, h h l h I lll ll ll '
hhh
$10=6U j sqp " ?hy ke h) i{a ? ;?
17.t
% y
- I
? ' %.w- ?? ..y h;
[l < l [j! 6 1= 20.5 FT.
' I ll 11 9 ! l i
F l , I f-
'T lRHP '
1.5 = 6; l 2.0=61 SH2 l 2.2 = 64 1.5 = 6
- t/ l[
\ t lSH1:.l 2.S=65 l llEvz! l l 1.4 = c " EV11l 1.5 = 6q i r-- .
ECONA 2.4 = So m ip y b;
~ $.U >
a
"_ l { d b ' Am IM' f l
a - I
- - fj/4' '
l LEGEN0 HOT HEllUM
" COLD HElluM Fig. B-1 Primary Coolant Flow Path i I
l Pa ge 8 4
169// 3 - 3 1
= : = .
O o .O
= = := .
a a. *g,on , y, m w o Z a . O w C
! o ,
x : -
=
o .
- a C *
; a :
A wt
- e.*- -
; o w . .s.
1 l 0 Z M , e m . - m . m .. s-
,G.
w J-.* . , i-w ...- a ,.* - . z t , x .
. m
- e. --
m i i I I f f I f f f I t f I t t t t t I g
. o .
. m m - . r e . an u .s u . ... w a Fig. B-2 S.G. Inlet Temperatures 25% Feedwater Flow i i
- _ . - - _ . _ . _ _ . - - . . . . - - _ . . . . . - . - _ ._. . _ _ _ - _ _ - - _ . ~ _ - - - - - , --..- &e 87 --
909?/.7- 8 e
,,, e, = , : .
s .3 C. . .
= := .ee ,,2 =8 z<
m l i 1 e
.i t :
x : s l - 5 i 3 / m s l l
\
l _ g .
~ : =
0 i l
- Z m
a a n l - n n ' a w l
/..'.- ... ~ _
s ( ... I % N __- =.............. i t I t t t t t t t t t t t t t t t t t t g e e e e e o e e o e e . v m m - e m 1
*
- w we e res .u. =u. ... u.
A ' Fig. B-3 S.G. Inlet Temperatures 35% Feedwater Flow Are so'
i
- 3 S.G. INLET TEMkS. 504 FU FLOW - RH COOLING ts00 -
Legend I ~ Hot Module T ~~~~~~~~~~~~
- rj , 1400 Avg Module u) m p '
I e -
# r 1. '.
! $U) a 1300 [ ", t No L . Ph e a ', l '., an e . Ey o2 1200 l- '.
- e3 D -
l 3] 08 e 9 g ;s-F 1100
' . ,x ,i l 1000 8 a i 0 2 4 6 8 10 12 g Tlee, Hours .g w
w I k l
709//3~A e
. u !
3
's o a !!
2 Q d d i 10
;\ a l/' Q! !.
a
- ay\s "/ ,e\,
_s - i 5! s ni D . l i / \ / i\ ; Q 87
' '/ o % Q i.
i O *=6 Y i\vs/a\sA ,1\ y Y s 'V W ii
,y\
t;
.c N =5y o Q@\s" s =
v .."3 o .
- D es =
@b &/ T h "a e / 'C \ 1- si b
_, i;, ^ s s s
~ 3, s
m7 N r p*4 + ;\ "/ \ 3 "o e
}-
3 '1
/ y\ ";/ cgN ! ,
ya es N \ Page B/0 \
18 9//.7-8 l I l
. La 3
IT g
- Ei 3 =x ,
! 1 ,
l t
. 8 =.
M
<at <
6 s
-a " y,\
_3 r w v- l N= : 8 it ~ t u 8 , se,N ~,1x, J
'J' b
7 gg s .: x a: * , 7 gg e a
/ !"/ a\ * ~ 5/ mf\ " Y a al l = ,z\ V ,2 \ '
4
' */ "=
n e a YA-YA s
"/
m . _ il 'Te"*i\'/ /.'s\ j/\ s\ , A ' */ d"~ 11 Q O sh Y 5/zA 4
- s\ L O !"
i "/ 3Q no .% ;/ \ _'s\ n
. :/ d \" '"/ Q m i o
s Ov~ a. a Pan 2nn
109//3-8 u b
.e =
Q Q 51 i O O Q Nu 4 Q! i i
'i Q \i"/ # 0 i 3 e ' / ~ A ' */ s\ ",s i Q % Q !.
s*/,JN'/m\'/a/a O m b */ A f ,i\ e W ii eg\_ t/ s_g. _ a,g\ e -. jj a: w:\ : se "E $/ : m; /
\
G
$ dG 3E 1 \ *O *2 iu\'/_s\"Yms\ b
.s f
$kk t iy ~ 37 2 _5 3 ??s 1 13 4
e/_=e\ m y\ ;\a k i w n 1 , Aa.pt? 8/2
107//.7~ B l 14 3
= "o -
El 3 '
* #s i
a o d % a 3 aby-} s,O\p
, e kN -
3i , 5 o O %
- D .
' h 31 .
2
"/ N, / o-\ n =s t O
e ;n
\ D! kt2 5 =e- c / Im \ / n? - ?v - \ \
sc w _ i '; ,a as ,s :, -, n 6 5 nc la
ss s m5 :~
*e/ " A 'y i e;\'S/
9 O Y . : \ _/ *i,\ s 5/ 1;\ 85 Q !! 1 s\'*/a\"/o\ 5 c\ 'a/ ~ W 5 b d il 3 Q .*/ yp u \ */'ad*O \\ 4 c g - l l
~ n n -,,
90 9//3-3
- La 3
=
3 Q a !! W d ' i IV 9 a\ W
,a\"3/ aN 9
_ Q i : ~ a = s/ s
~ e/
n,d i,
'e \
3 9 O
*f ;/\ \'Y /\ a? a\"g [~
ei o ! d\/ J ' / a @ ji
% -\ q/ s_; , A e, a,
OE
,, e sg ~~~ g3 # p Q* ~ . $ % h$ $C 83 ,h\ 5 *J 4 M E4 91 ag 3,,4 % t$ m} R .2\ -/e\
1 na
..p m- e m t :
m e .
- ! Q D me\
s/gy**\ / -: - , 1 , . l l
90 9//3- 8 l l 1
. Es B.
U - 2 Et
.f -
Ei to Z b
= > 0 u
e 4 aa
- e. 2 1 g\
nt u ve t i, ; o . O ]
~*
9 O g o .-
$64 %
3 o
- dG E-a ~\b >$
Wo e"s,\ ' %2 %. i m O we Y s/s\m\~? s 9
> N= /
O
,A 1 =3 = _
is 5*
/ O >N\ ~ -A 2 , % &/ "-\ x ,-/ - A 'y e si Q \ 5/ >\ "/ z_\ " Q i!
O
~ T %\ o*/ a~.\ "/
s a z s1 _\,.
%s G i! .
t g \ / 47\ /9% I h .
!lR3\ /Eg O $
h d/ El # ' OvW n n n
~~
909113/B APPENDIX C PRESSURE DROP ANALYSIS Page C-1
709//3 ~ B
,,3,, ,, ,,, CALCULATION SHEET CALCULATIONS FOR RENEATER. 0 0 f- / 0 6 EQUIP. N O. PROJ. C A LC. N O.
gg,06 PAGE OF PREPARED BY g DATE glglg RE F. DO CUM ENTS: CHECKED BY DATE {7 g 1 2
\L okk M ca k h % & uAK 1 3 q kk y /p__as- dayk L w
s p&nu s +( 5 6 Mt ' e VM . n 7 h 'o *N a
.:kh y 2b AuJti (It29 cpn M m
AQ kL & & /4 / p ta M
%h ~ *& d aaQ % & M Ack 'L3 M ' 'TL J % w t h 14 's fA w, .&-4 Mb db &
_*1~._ m % d M 16 g 4 *@g'A JM E m 17 - 18 Th '
& km A (4r A q s n 11 m. TL ~l a sL i ,s G fP mMm coackm &f 4 @Ar 73 m n 23 fL p( 3.2 % g% gyt,,,% ) g 4 ,yg .Acae .w .>-{W n As SUPEANCA r 2s 33 4f4 A, y , jg p4___
wy .%W O & 112-7 c-tm. & y 76 y/t, 27 28 7n, {g h , g g ,_j g , SU PER HEAT IJATER FLoU {AL C u ( ATEO 00T1-cr ble TenP 3a gog gjo 31 33 ST 4 l 0 4- , IIz9 Hm 4G7 f*F 35 ST(17I I I 70 W!h 4(o (o , 9 'f 1 36 heet
fd7/J.7-B PROTO POWER CORPORATION ^ 5 gogo; CC APC A A TICN 591 POCUONNOCK ROAD GROTON. CONNECTICUT 06340 (203) 446-9725 File: 7511482 1 October 24, 1986 Mr. Jack Kennedy General Atomic Technology 10955 John Jay Hopkins Drive San Diego, CA 92121
Dear Mr. Kennedy:
Enclosed is Proto-Power Corporation Calculation No. 82-06 and 82-07. The purposes of these calculations are as follows: o 82 Determine the fire water flow rate from one fire water pump, through one RH module of one steam generator and out one hot reheat power operated relief valve. This analysis assumed 200*F water leaving the steam generator. A flow resistance diagram is included as an attachment to this calculation, o 82 Determine the fire water flow rate from one fire water pump, through the six EES modules of one steam generator, and out the new vent valve off the flash tank. Steam generator outlet pressure is also determined. This analysis assumes 300*F water leaving the steam generator. A flow resistance diagram is included as an attachment to this calculation. l l If you have any questions, please call me at (203) 446-9725. l Sincerely, G. W. Geaney, Manager Engineering Services MJF: mas Encl. cc: P. Tilson, PSC l A ge c3
909/B-8 l CALCULATION COVER SHEET PROTO-P0tlER CORPORATION TITLE: RH SAFE SHUTDOWN COOLING FOR PSC - FORT ST. VRAIN CALCULATION NO.: 82-06 FILE NO.: 7511482 l l CALCULATED BY s_ mnmhaci DATE i n-9 4-a s ' l CHECKED BY M.J. Fekete DATE i n_? a-as 1
~
90903-8 ' CALC NO .g g REV PAGE / j PROTO POWER CORPORATIOff GROTON, CONNECTICUT ema.NATCa S YDidF8II-OATE
/o/2y d 6 l l
REVIEWED 7 gg . JC B NO 7 i CUENT PROJECT p{ _ T E K f7 ER- 29FFCAN<'7M11rl & cocia/G, >=te is l CONTENTS
- 1. PURPOSE
- 2. METHOD
- 3. RESULTS
- 4. REFERENCES ATTACHMENTS - A. COMPUTER INPUT FILE AND PRINTOUT B. DRAWING 7511482-PF-02 l
l A fe
909/B-8 aev cac m/2 -0 G PAGE 2- CF L PROTO POWER CORPORATION GROTON, CONNECTICUT caiGurca p7 cars , g sce e , nevueo 4 7p CUENT PROJECT g,g SUBJECTggggggyz y r 3 n;yg,j ( 0u p(p y 3 ] PURPOSE To determine fire water flow rate through one reheater module and out of one hot reheat PORV (PCV-5221-2 or PCV-5 221-1) , assuming sub-cooled water throughout (200*F or less). 3 METHOD l The computer program and approach of Reference 1 were used. ' The flow path and associated hydraulic resistances are detailed 3 in Attachment B, i.e., Drawing 7511482-PF-02, and also in Drawing 3 7511482-PF-01, Sht. 1 (Ref. 2, Attachment B). This information was used to create the computer input file "FWTHRURH.DAT", in Attachment A. The results of the analysis can also be found in Attachment A. Notice that the fire water is taken as flowing through only one module, since testing has indicated this to be the case. For conservatism, the longest path (through the farthest module) was taken. The pressure drop in the common outlet pipe (pt 110 to pt 111) is found anyway to be quite small. RESULTS The flow through the reheater is: QRH = 1129 GPM REFERENCES
- 1. PPC Calculation 82-01, "EES Safe Shutdown Cooling for PSC -
Fort St. Vrain", dated 9-11-86 (also Appendix B of GA DOC 6909030).
- 2. PPC Calc. 82-03, "EES Safe Shutdown Cooling for PSC - Fort St. Vrain (3. Main Steam Vent Flow Path)", dated 10-17-86.
Opdf (d,
W3 ~I__cm 82 - o b l ATramueur A i t*C FILE: FWTHRURH.0AT **$ i SEC TIorJ WOIV- laFIX)- KCVAR)- EPS - EL -FL.- IF - MilJ - MAX ' 14 I : 1-4 ,10.020, 0.5, 12.3, 522.1,1.5000-4, 1.2, 1, 80.0, f1A , IJA 2: 4-5(100), 6.065, 0.5, 5.3, 120.9,1.5000-4, 26.8, 1, 60.0, IJA , IJA 3: 100-101 , 6.065, 1, 14.6, 196.9,1.5000-4, -16.2, 1, 80.0, NA , IJA 4 : 101-102 , 5.761, 1, 13.6, 62.5,1.5000-4, -14.7, 1, 80.0, IJA , IJA 5: 102-103 ,24.324, 1, 0.7, 4.3,1.5000-4, 0.8, 1, 80.0, NA , NA i 6: 103-104 ,24.324, i, 0.7, 2.3.1.5000-4, 0.0, 1, 80.0, NA , NA 7: 104-105 ,24.324, 1, 0.5, 12.0,1.5000-4, 0.0, 1, 80.0, NA , NA t 8: 105-106 ,11.374, 1, 1.0, 13.3,1.5000-4, -1.5, 1, 80.0, (JA , f4A 9: 106-107 , 9.562, 1, 0.5, 0.2,1.5000-4, -6.5, 1, 80.0, NA , NA l 10: 107-108 ,11.374, 1, 1.3, 47.9,1.5000-4, -23.9, 1, 80.0, NA , MA 11: RH MODL. 10.020, 1, 36.3, 0.0,1.5000-4, -2.8, 1, 140.0, NA , f1A 12: 109-110 , 9.400, 1, 3.6, 122.7,1.5000-4, 51.7, 1, 200.0, NA , IJA 13: 110-111 .18.822, 1, 2.9, 64.9.1.5000-4, 0.0, 1, 200.0, NA , NA 14: 111-112 ,20.110, 1, 1.2, 4.0,1.5000-4, 0.0, 1, 200.0, iJA , IJA 15: 112-113 .30.978, 1, 1.1, 12.0,1.5000-4, 0.0, 1, 200.0, IJA , IJA 16: 113-114 , 7.652, 1, 1.5, 10.1,1.5000-4, 6.4, 1, 200.0, l'A , f14 ! 17: 114-115 ,10.010, 1, 30.8, 0.0,1.5000-4, 2.5, 1, 200.0, NA , IJA 18: 115-116 , 7.813, 1, 0.5, 6.1,1.5000-4, 4.1, 1, 200.0, NA , NA 19: 116-117 .13.250, 1, 1.6, 108.7,1.5000-4, 119.0, 1, 200.0, f1A , NA FLOW = 1128.5 GFM Ar 100F? USE FUt1P CURVE [OR EtJTER FRE55URE3 (Y/N):Y? FIRE VATER (=1), CONDEf15 A TE( =2) OR IACM(=3) PUMP: 17 F Ut1P( S) ARRAfJ6EMEfJT (ONE=0 - PARALLEL =1 - SERIES =2): 0? FELTON VHEEL FLOW = 200 GFM? FL OU 4 FUf1P =1328.50 GFM AT 100F FUMP HEAD = 99.43 FT/ STAGE FILE: FUThRURH.DAT -- TOTAL NUMBER OF SECTIONS = 19 SECIION 10 K FLOW P(IN) P(GUT) 1 : 1-4 10.020 20.3 664,250 141.2 136.7 2: 4-5(100) 6.065 7.2 664,250 136.7 114.5 3: 100-101 6.065 17.7 564,250 114.5 102.8 4 : 101-102 5.761 14.6 564,250 102.8 90.1 5: 102-103 24.324 0.8 564,250 90.1 86.3 6: 103-104 24.324 0.7 SF 250 86.3 86.3 7: 104-105 24.324 0.7 56' 150 86.3 86.3 8: 105-106 11.374 1.2 SEs 50 86.3 86.9 9: 106-107 9.562 0.6 56 9 86.9 89.6 10: 107-108 11.374 2.0 56 0 89.6 99.7 11: RH M00L. 10.010 36.3 56 0 99.7 95.7 12: 109-110 9.400 5.4 56 io 95.7 73.1
** FRESS 4.CR) TO CONTINUE **
SECf10N 10 K FLOW PCIN) P(OUT) 13: 110-111 18.822 3.0 564,250 73.1 73.1 14: 111-112 20.110 1.3 564,250 73.1 73.0 15: 112-113 30.978 1.3 564,250 73.0 73.0 16: 113-114 7.652 1.6 564,250 73.0 69.7 17: 114-115 10.020 30.8 564,250 69.7 64.1 18: 115-116 7.813 0.6 564,250 64.1 62.1 19: 11E.-117 13.250 3.1 564,250 62.1 12.3 4 t FRESSU;tE AT END OF SYSIEM = 12.3 PSIA REPEAT WITH NEW CONDITIONS (Y/N)? ____ _ _ _ _ ^## #7
..- ' ' RJO s ' Pti t to. kEisidCE 'fum*%A" 9 Fatma ,o (- ) cotsrsc.eti41 (n) l 7. 10.0L H M
- 4.4 + 1.4 3 E C 0L 4 N *!.8 *6.t
- f. 4 10. 0 1. 30L1(
- 7.9 s.. t d d 4 S v4to+
D<: v4571 N v4Li v4sA v4we d:><1-v4sart w%ss D 4.o s slo.9f *is + 2s..a k AA o 1%2r + 3 o o
, v4me 6 nai y s.iet , t.s *o.i, A *eis r a ist 'tSw so o S 9 9. Side 4.8.ef ,3fLb + 4.s v4S7B V45EW.
1 80 1. alt BAST ,Z.1 m
'..- W45#e 80 si Salt 94.ZF.3.3 . o.3 g3 . Finc-WATER R aes '*M*" Q -
Il il 3m sot.H ,its e.o 4 v4M2 A _c,o_ v34DS te3nrag 13 IOL'E 41.Sf*la 994 O A i v4h ; v 13 84 sOct 40.1590.8
- l.3 14 IS ' O.DL SitJef e l.i.
- l.3 ee+ ZZ51 ur-ZZ38 IS feo 10,0 1 kot + 0.4 o P-4 Sol 5 ~ '
~- -- It. n- ro.cz c+t es.3 o -
W1257 WC6
~g 1l de 7.986 11f.f'S.D *l l.t l , F v-220*> 4 T203 FE-770(a F N'22O(,
NottS-
) 1.FtoN REs STANCC CotFFILige4T* k wa+ERE bg ekw%
b D12II-I FL'UU"I E l.1 6.Ll 2 k es Tear rosea or 7ut suwi or To.E ratn 3 R'll211 wt12B1 FtosW RG.5 57ANCE AND THE VARIABLE f' LOW REM 57hNCE. 4 IS Tu FtsCT eDeJ FACTot og l Tus. poteautA he4tu /ot3. b.l.L S.I.1 3 E.tivaisena c.4ancas is rHE
. Te t221-t FEllI2.t re. DiFFERLp4LE BETw&&ft TMg AF % arTE E1.LVATwmG a wtI1sH.
ofp yQ asao
- Fw cALCatAtm m=15.
1 b t.S B.I.3 . WZrt S et 1712.1 rt-EtI2-1 wttia-s B.lA B24 iv ZZZM FE-2ZZZ 4 re Z1122 TV-2rm-4 B t.S Er.S - PacToPowEn componAfices
-, TV 2Z21S FE IZZl-S ~ ~'"
FI-ZZZ1la 7t11Z6-$
"dd'" " M- Resimcr CoerriosasT D _-e h wmm e un.g b.LL 6.2.L ^ ** Lt n Fisca maa Sverty to EE.5 Magnu um ,1 1. mm - ,m,a.
Jos wo a c~._ s stw
%ww onmuc wousen lasy /hpe cB
o s . j '- h'.#s;ly g "-[D gi ff k b c o U 0 0 0 'j r f $. 1 ;s 0i k-
' + t - $+ '1 I .. 43Y :-
S 3 ' 3, e ! g 5 gg 1 3 d yj 4 3 g e e o , . s e . _ , , o o 1 1 L ta ? ? ? i i t i i 8 1 o 5 h *>? E h9 I
$ f_a. $ ;4 ;{ .i .n e *.
- t * * : .t M 1 3 tg Sl s?n g e9 3A 2 g g. ]
g
*s g g s < s e e = v g 4 e v e g. . c-O;3 p g ],
3 g = g N g e a se a g
- e 5 2
21 7, g jo r a a i e _
$ l_'
LL) g ? )g 8 -
.7 4
8 4 4 e e$a e e a n a : e i J . a $ af g
- e $ 9a a . 6 e s a g r ea s e ; o ,gcglM l-o gg g
g j #g a 8 2 O _ ga*h '
=-
E i 3 E n 8 d 5 8 5 2 E W E !
- d E E l%
e {jsf'h _ Il { { (1
$ i e, 3 F, j g a_ g
_ s_s_s _e : 8_ s_ s
= .e
_ e_ s_ e_ s _ _e ( rg r ,3 *g E
$ l ',"
g, g a kkk
. .e ,
N- 1 , m .
< g <g<4 e g'3-2 , ,
1]g$ ;u j, t- . v . d4 - - - - n ig ,, i g g h ! l ' l ' !,' I l
!- <g
- ltM: r- j -
9 1
@ <$ - H <, <, <, ,, < , <, F p
- _hg -( ) > ~;c.
<g Mr 1 ; uuuuuuige, 3 t______r______!w]5 7 EE l_j 0 <$ 9 . I,. . . @ A 4y ., 't .
A 7 d NI c' & <s 4 3 e - j l h w? * ~ & < a
+ ,
E b uf <g <A 4 h -a i k~~ l l t
909113/s l l l l l l APPENDIX D MISCELLANEOUS CALCULATIONS l l l 1 i Page D-1
o m m y .,,3, CALCULATION SHEET CALCULATIONS FOR dad &C <~ddUA 6 MODf/ E d uA770AJ f EQUIP. N O. PROJ. gg CA LC. N O. fgf//f-B PAGE / OF f DATE PREPARED BY g p j fj R EF. DOCUMENTS: CHECKED BY DATE 1 2
?u n< 56*/o AEcf O>e c.o-a L S79757 3 @ C = .2. 903 h c.eu & Y= //c6*F co-u O 7~= /3/4 *n 5
SG M 7~ = /277'P m4 Y = ///3 0F' 8 u a = 37: 9.f6/m 9 10 IN
ArfweTDM YEMP5 12 /0 65 - /0 8S"/= 747*F ' 7_:w *F .
14 re ygg pgep
. F/-l 8D9"F 18 p, _t f57op 17 1s FI 72f*p 19 20 b NS E 21 22 f3 l0 O 23 24 l f 25 28 PS MH 'F 27 28 BA ll #
29 3 f 30 SB lN'? I'; 31 1 32 33 k 34 35 Ed9d O2
/
o . u m ev. c.2, CALCULATION SHEET CALCULATIONS FOR 4 /A/fA' CdOL/AAG MoDF/- MdW7~/0^ /.s* E'1UIP. N O. PROJ. gg CA LC. N O. pgy//J g PAGE 2. OF f PREPARED BY g, gg DATE yg REF. DOCUMENTS: CHECKED BY DATE 1 2 3
--- - - ---- ~ -
p' %9 ' f/$$g
, g,,,L,so.6.~o'-2.*'""
6 .. ._ .. I o / l y . . . . - _ .. l 9 ..._ ___ . . . . _ ._. . - . 10 2-_...-.. - - - - . - - . - - - . - - p,$' .
-erQ=L.S3",M'+)1.09
_ ,,S_ o; 3 6 > o ' J 12
, 4gg og. _
13 14
-+ % .
15
~ ~ ~ ~
16 ge,,4L c W , s.'
+
17 g 18 N
.. .. G4 . . . . - . . . - . _ . . . .. .
ig _ _. . ._ j
,g .- . . . .~ ---gf5,9yz.es-2.09ha' 22 ,,,,,,o 23 -- -- - - - ~~ "~ - - - " -
24 [ 25 1 7; =ms l 26 _ . _ . . .. 'r ~ 27 - - 29
% .7S < 31 =. 15 oy f hedle N 2 /00 % fW--
30 - krG 3 9 th t 3: 49 =7/ +4
. ao f m) s tok4 Yq W/&
TA.We- d f-/ MA/- 31 - i
~ ^
33 Gr= NA HTl-ToO 34 f 79 35 36 Apt #.7
G A 268 (CEV. 0/83, CALCULATION SHEET CALCULATIONS FOR us/EA? ccouA.4 MODEL. Bd2 W 77CA/S ( EQUtP. N O. PROJ. gg CALC. N O. 907/g _8 PAGE J OF f ' PREPARED BY g DATE gj R EF. DO CUMENTS: CHECKED BY DATE 1 2 4 5 _ Q,, 8 h1) *lf 0& . Y 8
' * ~' ' * ...0,y, A by Of MM M M N Ad $ ~~~- '~ -]
10
,y . _ . ._ . '. y A . _ _. _ . _. . .. . _ . _
12
-. _k,., .* __0.N!' A* L . M.. > #/06 _ - _ . .
13 - - - - - . - - - - -- - - - - - - - WY ~/#I - g . __. - _ . . _ _ _ _ .. . . .__ ...
.g 9 . . . .
16
- - Q
- l$'D</O f J . O. 99 ( Ta -lof)
. _ _ . _ . . . _ . . . . T/ Vie - 6't4 ..
17 . _ _ _ . _ _ . . . . _ _ _ _ _ . _ _ _ . _ . _ . . _ _ _ . _ _ _ . _ .. _. . __ 20 _ 21 _ _ _ _ ._ _ _ _ _ _ . . . . ._ .. _ . 22 -
~_ . . . _ _ _ . _. . _. . . . . . . _ .
l l 25 _ _ _. __
- ---- - -- ~
26
.c..N *.._ga w_..e. 4 . . . m .ge. . ee e .
29 . . _ _ . . _ _ _ _ _ _ _ _ _ _ . _ . . . ..._ . 30 - - - 32 33 34 35 36 # W
G A 368 m.O. CALCULATION SHEET CALCULATIONS FOR 4/A/f/ C'004./A/G mom 2. MM47JdA/f
/' EQUIP. NO. PROJ.
gy CALC. N O. 9#f//3 -g PAGE 4 0F f PREPARED BY CHECKED BY ggy DATE DATE
/dMM REF. DOCUM ENTS:
l 1 l 2 3 Q y = f,Yx/o' L 7, - toS) 4 Ot3&-/oS) 5 l
' ' ~
6 (75't r'oS) . ! 7 8 g . l}e ). Y u<.
- ~ ' ~ ~ ~ ~ ~ - - - -
10 _-. . . --. &, 2 0,, . +.Go s. .. . . . .. -"...
.. .~
12 ... .
&so * ?SllV. _Idf.
___ lld " 0 bf /0* Skl [
- l!V ?
13 14 f
~- 's ~~
16 d,,);.= 9A-rg; .r.;) 17
- . - - } &g
- ISY ? ' l%lY S -
_ __ A .= . G55 g
'8 . P: .e .
6 * /7/ 3 N /o '..I 20 * #
- 4 Ta
- 74 v 'P' I? o Y 'i t- Cla,), s . Wo"'O 21 .
** Q > h A or - . q h = to n Q= .o66"o* kKO& h ... h = So-
- G. ~ . 32 9 m .' . .
24 25 de
$ hfS b !' ^ ~ 4 # Y ~
26
.'r q r,07p*Fs? f^
- sS'30 *&
3' M.J 4 y af >r.7h 3-f ud1 & fQ 9,, d. C J n at
- 2. , nzzo > p- 1% w:a ,M.
- 2. . .
g Q,, 5 . 6 93/o /g\ '6 7 /L/Y N 1-(7s*n)) 32 G K I63 E p 'A. 9 Q,, * ,/ 3 */0 b 33 34
~
35 36 N l
m,,,,,,,, CALCULATION SHEET CALCULATIONS FOR A /A/fA l'ddd /Nd M C A r t. Eggg/s97pgwg EQU u'. N O. PR OJ. gy CALC. N O. fgr9//J _g PAGE 5"' 0F g-PREPARED BY g DATE g g R E F. DO CUM ENTS: CHECKED BY DATE 1 3 . . - _ . . ... _...-_.u..____...- _ 4
' ^
Sua.T& 4 M f'M_ k d ._ _. Ts 6 . .__. L ._ add __ m I _ I r ? & .. & . 5 .. ~Q+15D
. . . . . .M . g
- 8 . _.._ . - . . - _ . - . _ . . . . . . . - - _ . _ . . _ . . . . . . _. . . - . . . _
9 3~- -
. _ _ . . _. _ _ __ ___ _ W 1 .
10 11 _ . . _ _ . . . . _ __ _____ .._ _ _ . . _ 12 . . _ _ _ . _ _ _ . _ _ _ ._. i3 ._ . . _ .
. - . .4 . . _ . . _ . . . _ _ _ . . . . _ _ . ._ _ . . _ _ . . _ . _ . . . . _ h ?. '" . $ hj 15 ~ ^
18 _
... Q ' . 'M vio'.JJ1L2 . .f. + l3. 07 wo_Q b- toc + 1.5/o_'(To -ioD LTs + % 0) .--_ -._ -. -_
b41 -.. . . . -._._--- . n z$
' ~ ~ '~ 'S .-. __ . ; A ls.iv M &~L '.: *5 ? _. . .. _ l 20 T, 21 >o M .-. Q & LJi m )s.'F. _ _ _ _ . . _ . . _ .. ._ _ _..__. _ ._ - - - - . - - . . . . - _ . - - . - _ - -. -- .. .. -_--- . _ _ _ . - - . - - - l 23 -......Q = ._]!I's*3 .___.__ _._Ta - IoS __ ..
24 _ _ . ._. .__. .. . _ 6Y1 ' . . _ _ . _ . . . _ . . _ . 25 - - - - -- -- ----- - --- --- -- -- - - - - -
~ ~ ~ ~ ~ ~ - ~ ~ " ~ - - ~ ~ -
26 ~ ~ ~ ~ ~ ~ ' - - - ' - - ' ~ ~ ' ~ 4 27 28 _ _ 29 - - - - - - - - - - - - - - y .- ._. _-. .__._ . _ _ . _ . . . _ . . . _ . - . . . _ . . _ .. 31 32 . 33 - 34 35 Sfd OS
, l o 3,, ,, ,, ,, CALCULATION SHEET CALCULATIONS FOR l
ME4/uM M/k/ Add CAL CULA7?64) R2 7??P CCDE < EQUIP. NO. PROJ. gy CALC. N O. 7p7jjg 8 PAGE / OF PREPARED BY DATE j ,gg RE F. DOCUMENTS: CHECKE0 BY DATE 1 l 2
, r aor .wwar (//)
4 RH ZES W s TNo(4) M 6
#? -- MK, 9 ! # #### '
10 11 W - M
'I Mh? /UM /~2dk) D//tGAAM TA P 2/ &
15 YNGM 7pg 3 uS
,, ,, is g g(
TNo(s) a its /s - h A.L / < <> m W Nf oss-c,- s s ~ s ~y h b y4m A aw4c z den W h y $08 o h ' M lWL wQuy
.b dnM - mp .2o- M W d-. cts ss.c 5& '
Ja sJu u &jfK. o1 )N ,,YA l SES O t 35 26 2
.2. A/o coo L./Nd /D EEC 28 30 67 h W .&_An4 L
s P = AtlJ .<- & sP = p ama p w = W, /A /w p = p s. r Q , jf / p 3 35 2 = .,h % s- / & 36 Pa.g < D7
u 2 < m v. a.2, CALCULATION SHEET CALCULATIONS FOR h'EL/un Mix /s./G tntcut 47/sAj p47,4 p ppp cepg-EQUIP. N O. PROJ. gy CA LC. N O. 949//J -8 - PAGE g GF PREPARED BY DATE REF. DOCUM ENTS: CHECKED BY DATE I i k p/s=s.r &pK ' 4 s s=PA.r \ s&=sPz = . - -
= 2.Lfa af o/
4 a s ym asngw 2 w,?, 4. w 2 - - La k' 11 A ).,_ A
'I
(.A.), y%2. _- LElg g l /2 4 14 M 0* Wo V ko M p
" O, Y7^ _ &*/ T& _ . . = &lK;ri r, a_ a 19 20
- 21 m f, o=P.o 1 =
= fc 23 Q,
[ = W[ Q = - - - -
* = /A./ [ /
T.Ad WW m #k u1x 7~ r2 o c _ r. 28 (w q
~
5
& /WY 31 e l- E M . 4 ,Zf@ M & n A s D-32 l UL
_ & Tu,a + 7*no vr-33 - - 6.)g
~
Tg M 35 Yw &7'c our _ 36 g
aa..me.cm, CALCULATION SHEET CALCULATIONS FOR hlEl/UM /f///A.6 CALCt/2A770A/ RQ TAP MODAL EQUIP. NO. PROJ. y CALC. N O. ppyj/J 8 PAGE g 0F PREPARED BY j DATE jggg RE F. DOCUMENTS: CHECKED DY DA1E { 2
/-cr7 $ EES S CA 4 2 r c.c,., = rn -a 5
AfNY To M vi krl.1 , 6 ghe _7p,,,p f ,~,y g 7,,y
' ~
Oy Tyis,1+-Tiour 75>>.s7'-72our 8
$- Tmu 10 fjpg ), q/q yl7,,y p 7),u,.
11
'2 as,.
n a.
~ 's 14 c 707 /> +- Q" ( 7 .s. A n) 15 's 17 - M sp s rst J A 18 -
7 y gg),o p qf p, 20 7~eour = 7Mo(4) -/- 960-1 AyaA sf.n.ut J.A A & s caJ ~LA 23
' 4/A~.707/,.,raor<)+#so rass + %c 26 Gj % M n & m ~qs-28 7, - e - rr>p. pm sn ws * .4 m 9 ,$ b -tA r Y .x &<Ae $ 1 4 ,m A ua + >Ja 32 34 rxxG,3) = 6Msa +d.-><) emoG) s x) A.
b $ a4 36 fYY.4+'NM$4 p g7
1 m,, ,, y. ,,, , CALCULATION SHEET CALouLATIONS FOR ffEL /l//-f /f/X/AJ6 CALC /JLA770Al fdd ~7?9A CAM E QUIP. N O. PROJ. C A LC. N O. PREPARED BY 9 74 7//3 ,8 PAGE g 0F DATE j ,g j g R E F. DO CUMENTS: CHECKE0 BY DATE 1 N d M # 1W l 4 [, , = 4y 7 f . . . . p& 7-5 6
& $ 7 :: y, + + . s. +&
7 0
, X & N.1. 5 & * * * * -t 4; Q 9
y f7 = p, py p , , , , p 10 n 12 A 5M M crQ- J& \ 13 m o b y ,.s
'S .'. Tr = rOn r4.,- / Uc rco'v ,.
16 54w
- te c.
17 r=s(Ya.u r e , M,-+ W / r e/.u,- zo g f(y) +- i. f7'i a #F 21 22 m _ g A m4 g Lg4 m c y 2* &&u . Unio c & ,m 3 - 25 26
"' f $707hl /& Y /n$ar f.72sur r= r 30 r(2n) /it T + / '# ='
r ca.,,.= rwo6)+ e.o l l 33 r'anar = rm6) ; v-np 7~nia = 77M M t %Q 35 i 36 THour
- TU6M fayg p,g 1
- o. .. m v. u.2, CALCULATION SHEET CALCULATIONS FOR MEL /UM M/XJA/6 CAL Cul/97~/CA/ e
/=~f M/'CdL)2 EQUIP. NO. PR OJ.
l g C A LC. N O. 9/9//J -8 PAGE f 0F PREPARE 0 8Y g DATE jgg, R E F. DOCUMENTS:
~~
CHECKED BY OATE 1 JL n99 m & 3 5 frexn == s. 53r+sdA>rG. +(racG) +sso.Y(rssa +no.D 7 ran(f g) = (frenn,k rwse + rxo(+))/(wxn +i.) Y&Y ff5 Y N 6 c ~~- T N k /> I
'o E w rir .ro m coounc as ecs 11 k'Ww MY& ?e- &
Els - s)) 6 A" 4r ey M.c .esg i
-t??L ct8M cA> +f tf., .
u n _u, 4 4 ,
-bLe cd.i.cd- M w AA' a m E' ses A A & r& a.a 20 w+AI" 4. .
hum kS ES m A P ~/> % a &bM9J Zr-26 rnao=rn b caw % ;di N be2 h ess J s4-4 M
*l "D s TM-c 33 -> * + n =
Yc Y 34 ._._. _ttZAJ &Imur- - 35 # ## 36 ldyC O//
o , . . . ,, CALCULATION SHEET CALCULATIONS FO R , NEL /UM ff/ X/A.AG CALC 4/L./07/0A) 8 2 TMP C M EQUIP. N O. PROJ. p CALC. N O. f#f/8 PAGE 6 0F PREPARED BY g g j DATE jg jg REF. 00CUMENTS: CHECKE0 BY DATE 1 i I 3 f & [Y &'"!%
& 7%ur = 7"N6< (p.Lo-Trysa = TNCrN 4
c^ ds] I h 4;lhtbLah *We dlD Tczy= TN6N 7
& 7~cour = 7~M(4.)
f$4AA A.4 M f y'y' &,M
.:2h EES w A As -bu%a-l;Q &A e2"O *l p a & s Q. m"4M &Ae m p' r w l.e y n , ,.
S m m ,a n awA 2c-- R .As-r. 13 g
-=
16 W c. 766 H t%Q /- Y/MC ff(o o Q*O f- , 20 - s c m : . a :. , 21 &# 22 24 7A Q ,&i rn s K sec ~ z W = 8 $$l2A [7W6-N #960, f7Weh)fM (7)h56Me &7,4Gd& Hie,)
'; n rm ~ + my 2, n u = c - - - e r - o n a n n .)
30 31 32 33 34 35 Age A/2
u m m.cm, CALCULATION SHEET CALCULATIONS FOR Nor/ cold MEl./uM -72r1pf DuAeJA 6- ll4 A&uA CS/.,4W ( EQUIP. N O. PROJ. gp CALC.NO. 787//J-g PREPARED BY ~" PAGE / OF 7 DATE jg R EF. DOCUMENTS: ld2CKE0 BY DATE ' ' 1 desecne : & LW7~swa cad A AAM M by&
- b(.J. / % . A.*- u./> xa MW L Ms~
& & m}
6 yit -
' V - ut. & n //d #/o LOFC /6AL73HM M /9/// d&A 70 t e.. /S?76 7'EMMAFAt7us?B's (*F) 'a pi, e (s) e,,,e 6d am e xoor > wrz r " 0 0 frof 607 6/> '2 *Q .7 //73~ 5 96 '3 Md 403 1&yke- & ~0 //7y S95 4o2.
20 ^O //63 59'/ 400
" 30 ^O //S:2, 373 579 ' 330 *09 fo/r 592. Se2 4 50 /1 997 do9 " 5 99 950 .1 & 977 43.2. 32 7 /.1.50 35* /002 637 E/F /5 50 , 93 /cos- 682. Fo&
8'
/350 3/ '2 /o07 70 7 497 2/50 40 732.
foo9 995 2930 6f /0// 757 49/ 2750 . 7fo /0/2. 771 2' +10 JoSo . ff" /o/3 got 997 3350 93 /0/9 82 2. +'fy
?hoo /* 00 fo/f- $90 f90 3900 /. 0f /0/S' f60 f"?/
92.0 0 /./ 7 /0/5' (70
# 9 92.
G000 /* 6 7 /0/2 Vf3 for 31 g 32 _ w
, n ,, m.Kp -- r p as a p . ,< a s
f o 3 m y. , CALCULATION SHEET CALCULATIONS FOR No r/ cold /AE2xx1 W&J DWM / V.2 NouAl' AfD"W (' EQUIP. N O. PR OJ. gy CALC. N O. ppp/jy-8 PAGE 20F7 l PREPARED BY l DATE g g ' REF. DOCUMENTS: CHECKE0 BY DATE ' 1 3
$0 lo #
AAMM AJ0D)4L M004!~l. 4 5 TOP ! 6 A3"#4 f 7 ) ) l l l 0 8 i 9 I_ l_ coM
\ 1 I 4 ourts 10 1 /o A"**"8 Eb CdA%lrf 2 .96Au!R:7Det 0 tol 12 .7 NOL:lEr se '3 7 l .t l > >] 13 14 P 12. "' .' 'S 16 a
f km Aswurs ? na gp i gj-17 a S- l l I 18 ~ 19 Sl& g, 4 20 21 22 23 24 25 j 26 ! 27 28 29 30 31 32 I i j 35 l l lAff Off
.= --
o ,,, ,,,, ,,, CALCULATION SHEET CALCULATIONS FOR pff 7~/cdLD Mf~liVM 7 E//AS Dr./A///6 /lb Adddd DF/AY f'~ EQUIP. NO. PROJ. g CALC. NO. fgf/jy-g_ PAGE $ OF 7 PREPARED BY DATE EF. DOCUMENTS: CHECKE0BY DATE
/080M _
1 l 2 3 4 fi & /c5 f AA7~S/9/1 / fAtl. ' E /J 6 /. dru A & 1 8 TNG-C = EWP(-A 02 x /0 u Tx ts&)+500, af &=0 7WGc= 770 9 g :,poo ,.p g _ yg
'O g:Spoo TNGC = Co /
11
- 2. 6 1L &W D.iC] = A 7sxJo'* 7r -t//37.
att=0 7rA.26) = //3K - C=/C00 7'Z.A/6) ~ //S7
$~ =S100 71^.49)= /.2 39 17 18 WA ./ ,d.A W. & b f0"/o & /OSVo em 7Ln 35', 90, 45, .50 , 7s', 85 % W l
7~C) YOYo - TH Cr C e k? T&y / t= o moc= se :
& = 5900 7NG< = f 90 36 W LW Wsowex m i.zw.-
25 35 90 95 fo 7C /Oc MS C= 0 3 77 40/ 6/3 GAT 637 G18' 73 7 770 t = / 850 919 4 14 f41 502. 504 S23 540 ~ TV3 C=5Y00 ff7 939 f94 as 9 90 t91 972 500 ^ 50/ l i 35 4
l
, 1 o , _ , ,,, CALCL 'tATION SHEET CALCULATIONS FOR ^ //07"/t'dLD N E/.///M 72c"/1:05 d)4/d/A/d l b5. /#0t)K D64)4W EQUIP. N O. PROJ.
gg CALC. N O. fgf//J-8 PAGE g 0F 7 PREPARED BY g g DATE ,g REF. DOCUMENTS: CHECKED BY DATE 1 ' 2 7,%sc~ C &C yhr? fu /a FA 3 w =v pHgc a r ^ O [8y & J 2'=n00 ' w- Q c & 77g, = 490 5 6 y . [ b .f qqn 1 db= /3.3 b= k /13 8 9 b = f f/x gg=/fgo
'O //99 = C'gron + V.912.-/- f9o' \
is f aroo. M.* 2. _9
/8T0 a. t 9. 7/2 = e%. 9 =- 2. /9 7 14 O. = 2.4/S//950 = - /, 9/X/O'I YHdC. = EXP(-/.y/E-3+727Z -/- 9f/2,,) 7' 970 17 cJ. u.-l2 0.? t =- 2 3 o TNGc = 56~7 ds M 36J' 8
wM 2~.r M J & .e g us MS & i 20
.df.,_ - y h4 a <.4 l .2 5 35 90 Y5 50 75~ /d0 /05 O ~ 2.0 1 E -3 'A S & 3 -/.9/E-3 'AWF3 -/27E-3 ~/etE.E ~/.0/E .T -/.C) E-3' b 'i!SO 4! 72. 4.8/ 9.To 9 97 3'3/ S5F .M C 977 981 990 ff/ 9 72. 496 500 d 0' 0 25 26 27 28 29 30 31 32 l
i 33 34 35 I 36
?did 0 / 49-
o , m n ,y. ,, CALCULATION SHEET CALCULATIONS FOR HG7~/do LD /!'E 4/t.//1 TE'JP5' Ds/^2/M6 / k Heof D504J ' EQUIP. N O. PROJ. gy CALC.NO. 9df/g _8 PAGE g 0F 7 PREPARED BYp pg g DATE pg R EF. DOCUMENTS: CHECKED BY DATE 1 YO7 M ,_ 3
&/05% rru 6) =. i. 7.S~x/o + 7r t//37 atC=0 rz/>6_) = //39 ,
5 6 a.t C= 5900 g rzsJ6) = /.239 (% =WW
- 7h O M
& strsm & ,ln A .c(up 4 M TOF Q dL 9 .
Rif f ,pj y , , Asen & aprr.4n) 11
'2 & & l5al<, &M & uLL M .v"M 4/o'/o J4 ,1. w A b d N J / 6 S ~ "/s Q 21 3 As.m _-
pf f/0 */o
't = 0 77A/6)= 790 C=- SYm TZsJ6) =/0/5 & NA cu A- /, ( M 230 < s e y Wp4 = en-_Y &p fn 21 no a ze- 999 )
Y M I.A.J. A hw '4 MN M'W MM pu 25 26 rzu6J = a. + rx + s 2S~ 35 90 9S So 7,5~ /co /oS~
- a. /.44E-3 3 M E -3 AtGE-3 CM) A4/E~f /,UE-7_ /.4fE-2 475E-L
" 1 30 b 934 9 79 970 /00/ /o/3 /070 //2 8* //37 31 32 33 34 25 ',
, ,,, ,, ,,, _ CALCULATION SHEET _
CALCULATIONS FO R A WACMMEAJ7~ [/
) EQUIP. N O. PROJ. CALC. N O.
PAGE g 0F 7 PREPARED BY DATE tl / g g r, REF. DOCUMENTS:
- CHECKED BY DATE b NII3j N C . s ., m -. k 3l977 a i i ducve fit R_9tT5AM 2 h*f ecaE m in. lower ca vih (com. T 9.e5 kr R:
kc.tia h%pe .~she a-4 'e.co n.o m i 2.er- o v+ led d e . $ l 3 k\ pen col . s T - e. a:t + b+ C- T 6 T' - h oe' $ cc - 7 T%9em b ,F ' s E) A -{. u L.( T = SD o .'. C = 500 8 b) 4 4 - o i = ~770 10 g n 770 = e + soo 12 0 7 0 = e_ b 13 14 b: A 2.'7O k = s . <. Or is . 16 C) d i - IT 00 I = S'4 3 po 4 s.c 18 541=e + soo 18
'4 3 = e # * '
20 18 Oca_-- E.6 :- A (4 3 21 ifoot- 3 .~% - s . 6 22 23 (: -t.8 9 I?co 2<
- a. = - I . o z. E -3 25 26 g) , ' , 7 ey,g (-l, og e-3 t +.g , y e g o a 27 2a -t RATsAm I coru M s/g yes G -
" o 770 770 so 9oo /co o 60% ~ '7/
31 lEco SS3 S 43 (_ &n+m L o w e t c # n y 7e m p_ h32 a. goo El~l SI "] IF (TIT Z . LE. 5700. ) as 36co SD3 EO7 3" 7#G.c = EX P (-/.O 2.5-3 it E400 503 5~O I T*I T1 + S. 6 ) +E00. 35 Adfll'_O/8
A77ACMh'EAJr E/ l i 9tt?l)
>Ms 37 ~8 6a 7 i
s !) .-
-74.Ln. @m
' '&a EMtllE G7C,;77 , t l G h N-N
= -
x- - w-.
~ 9'
__a - T M
, [ i_-
L - f - M E 7 -- m ._ _2
-N - "
a
= ___
c - z -
- ~
_L
' ^
m C
' ~ *" ^
m N _ _ m
-; M i : 'T ]M ~_ _ - -,= -= 'm Z -
T 1 _ e - S = 1 - m I
- e. . +--
u - fB I T e* ^ C , te ,
=a ,' - , a $ as f *f J' " - %-e ! .2 # $ 's E .
5
^~ - m M ,
5 - -- 2, M -
- w. g M
A h - em , 1 _ g _n i
~
I i Y b d O* W_ . 3 4'A B.'s-Arti N1 . - l
909113/B APPENDIX E STORAGE OF COMPUTER ANALYSIS l Page E-1 i
909113/B APPENDIX E , STORAGE OF COMPUTER ANALYSIS The results presented in Appendix A were generated with the TAP, RECA and SUPERHEAT codes. The SUPERHEAT code is stored in production file GA* PROD. SINGLE /2777FSV2. The basic TAP code is stored in the archive file SYSD1619. The RECA code, the -TAP plot code, the HOT
- MODULE code, and the runstreams (contained code changes and data changes) for all the computer runs described in this study are stored in archive file SYSD 4051. The computer runs made for this study are identified as follows:
TAP RECA SUPERHEAT HOT
- MODULE 25% Case ST1641 ST9011 ST7121 ST4390 35% Case ST5129 ST3469 ST7186 ST1802 50% Case ST8014 ST4621 ST1371 ST4302 4
l Page E-2 I
4 ATTACHMENT 5 _-}}