ML20205L103

From kanterella
Jump to navigation Jump to search
Forwards marked-up Pages from FSAR Sections 3.9.B.3.2, 3.9.N.3 & 3.10.N.2.2 Re Pump & Valve Operability Assurance.Revs Clarify Types of Testing to Be Performed on Pumps & Valves.Info Will Be Included in Next FSAR Amend
ML20205L103
Person / Time
Site: Vogtle  Southern Nuclear icon.png
Issue date: 03/26/1986
From: Bailey J
GEORGIA POWER CO.
To: Youngblood B
Office of Nuclear Reactor Regulation
References
GN-844, NUDOCS 8604030111
Download: ML20205L103 (23)


Text

f~

g-Georgia Power Comoany Route 2. Box 299A O-Waynesboro, Georgit 30830 Telephone 404 554 9961 404 724-8114 Southem Company Services,Inc.

Post Office Box 2625 Birmingham, Alabama 35202 Telephone 205 870-6011 Vogtle Project March 26, 1986 Director of Nuclea-D~ tor Regulation File: X4A204 Attention: - Mr. B. J. Youngblood X7N03.9 PWR Project Directorate #4 Log:

GN-844 Division of PWR Licensing A U. S. Nuclear Regulatory Commission Washington, D.C.

20555 NRC DOCKET NUMBERS 50-424 AND 50-425 CONSTRUCTION PERMIT NUMBERS CPPR-108 AND CPPR-109 V0GTLE ELECTRIC GENERATING PIANT - UNITS 1 AND 2 PUMP AND VALVE' OPERABILITY ASSURANCE

Dear Mr. Denton:

Attached for your staff's review are marked-up pages from FSAR Sections 3.9.B.3.2, 3.9.N.3, and 3.10.N.2.2.

Section'3.9.6 of the VEGP SER states that all safety-related pumps and valves will be tested in accordance with Section XI of the ASME Code. However, it is not our intention to include all of the pumps and valves discussed in these sections of the FSAR in our Inservice Testing Program (ASME Code,Section XI). The attached revisions are provided in an effort to clarify the types of testing which will be performed on these pumps and valves. These revisions will be reflected in the next amendment to the FSAR.

If your staff requires any ~ additional information, please do not hesitate to contact me.

Sincerely, b'

J. A. Bailey Project-Licensing Manager JAB /sm Attachment x:

R. E. Conway G. Bockhold, Jr.

R. A. Thomas NRC Resident Inspector J. E. Joiner, Esquire D. C. Teper q

B. W. Churchill, Esquire W. C. Ramsey M. A. Miller (2)

L. T. Gucwa B. Jones, Esquire Vogtle Project File v

)k 0412V

\\

B604030111 860326

(

PDR ADOCK 05000424 A

PDR L:

-=

i

'X VEGP-FSAR-3

( E 4

D.

Faulted Con ition (Code Case 1606)

.The sum of the stresses produced by the loading combinations shown in-table 3.9.B.3-1 for the faulted condition shall not exceed 2.4 times the allowable stress. values given in Tables I-7.1, I-7.2, and I-7.3 of the AEME Code,Section III, Appendix I.. Under-l faulted. conditions, Equation.(9) of NC-3650 shall be Equations (8),

met using a stress limit of 2.4 Sh.

~

(10),~and (11) shall not be considered.

The permissible pressure shall not exceed.2.0 times the design pressure-(P) calculated in accordance with Equation (4) of NC-3641.1.

r i -

3.9.B.3.1.6.3 ASME Code Class 2 and 3 Components.

Stress

~

limits on vessels, valves and pumps are given in tables 3.9.B.3-3, 3.9.B.3-4,.and 3.9.B.3-5, respectively.

4 3.9.B.3.2' Pump and Valve Operability Assurance

~

3.9.B.3.2.1 Pumps The balance of-plant (BOP) safety-related active pumps are listed-in' table 3.9.B.5-8.

Safety-related active pumps are subj.ected to.inshop tests which include hydrostatic tests of casing to 150 percent of the design pressure, and performance tests to determine the following:

e Total developed head.

e Minimum and maximum head.

. O,' -

o Net positive suction head (NPSH) requirements except as noted below.

e Other pump / motor characteristics.

Whov-Where'. applicable, bearin temperature and vibration are monitored during the pe formance tests.

(For the diesel fuel

. oil transfer pumps, th NPSH data is developed by actual yad developmental testing f pumps of the same size.)

After i

. pump is installed, it undergoes cold hydrostatic testing, mot i

functional testin g applicablej periodic inservice i:

inspection and testing to verify and assure the functional

J'

~ ability and reliabili of the pump for the design life of the plant'. Excpf a: nsfeof -//ipst. emf})s /isfec/is M/e 3.9. B. 3-8 tail / foe t %

//1clKb'W /1 Ne. ?d 1 er ti C. [5s

&J M E Code s\\cnorr XT. Fv - /Aau y 3 wirid; tog 74/71{/& tad in fl6/L 3 9,B.)3-6 /he d' d are art-not truchded 14 /K Trisun5;e Te.sfuy3. 9 n

'// be deme

/,njeg ga,g,iy ef,,,,,, y, /

/,g.

mawemee payrhs,e/4 fed't cHon per&ren ptr/r.seN r

pagp nede Ayer meg speet iceton.v.

1 ste c<till

(

t

-...- -,- ---.....~.-.--.- -.- -...

VEGP-FSAR-3 3.9.B.3.2.2-Valves The BOP safety-related-active valves are listed in table 3.9.B.3-9.

Safety-related active valves are subjected to

~ '

the following tests:

e Hydrostatic. test in accordance with ASME Code,Section III requirements.

e Main' seat leakage tests, o

Functional tests to verify that the valve will.open and close within the specified time limits when subjected to the design pressure.

operability qualification of motor. operators for the e

environmental conditions over the installed life (i.e.,

aging, radiation,. accident, environment simulation, etc.) in accordance with the general format and qualification procedure of IEEE 382-1972, IEEE 323-1974,- and IEEE 344-1975.

In addition, static deflection tests on active. valve assemblies C'

are performed to ensure that valve internals will-not bind because of loads experienced during an SSE.

Normal'and abnormal environmental conditions to which the valves are subjected are listed in section.3.11.B.

~ -0e.Vahts uncle / a WbVL 900h*N GOW j

y After installation, old hydrostatic alification tests ot functional qualification testag omd-eriodic inservice tests are performed to verify and ensure the functional ability of the valve.

These tests demonstrate reliability of the valve

'7Dk 3 9. e,3-7 will& fnc/voed' et die $cej7/-a5 /70M /4At6 /d/W /dM/'7s I

for the design life of the plant.8 scruce 72.r$ws Pay (described r

The valves are designed using either stress a'nalysis by ASME Code,Section III) or standard design rules for' minimum O,

wall thickness requirements.

On rigid (natural frequency above 33 Hz) active valves with extended top works, an analysis is also performed for static equivalent SSE loads applied at the center of gravity of the extended structure.

The maximum stress limits allowed in the analyses are those recommended by the ASME for the particular ASME class of valve analyzed.

In addition to these tests and analyses, the operability of the valve during SSE is demonstrated by satisfying the following criteria:

jz,, p r x g /res al/th*// Grt !!0l'# l" EJWi'i NN)kf Md' art i,rkd R 724/e 3,9. B.34 & y"1"? h$ N Av1 ll* sd/ nIdcd'lY'<rc/iri,

~

d l

7

(

j still be. c{emw-/raha' /4rkb M

'1 h/

kirf m4h/ ederce,0mm%

giff,stsces'ertl, arcffer TrA,1/w/ 3,deci s'4fisns, c

j 3.9.B.3-7

-e 4

.m

VEGP-FSAR-3 frequency.of the valve and the frequency. content of the appli-cable plant floor response spectra.

The equivalent acceler-ation is then used in the static analysis and the valve seismic

. operability test.

The static deflection test applies only to valves with overhanging structures, e.g.,

the operator.

The testing is-conducted on a representative number of valves.

Valves from

_ c each of the primary safety-related design types (e.g.s motor-

~

operated valve', solenoid-operated valve) are. tested.

Valve

~.

sizes that cover the range of sizes in service are qualified by the tests, and the-results are used to qualify all valves within the intermediate range of sizes.

Stress and deformation i

analyses are used.to support the interpolation.

Safety-related valves that can be classified as not having an overhanging structure, such as some check valves, are considered below.

With the exceptions of counterweighted check valves, which have overhung structures, check valves are char-L acteristically simple in design.

The effects from seismic accelerations or the maximum applied nozzle loads on their operation are negligible.

The check valve design is compact,

, - (.

and there are no extended structures or masses whose motion can

.(

cause distortions'that can restrict operation of the valve.

The nozzle. loads due to' maximum seismic excitation will not affect the functional ability of the valve, since the valve disc is designed to be isolated from the casing wall.'

The clearance supplied around the disc by the design ~ prevents the disc from becoming bound or restricted because of any casing 1

1

-distortions caused by nozzle loads.

Therefore, the design of these valves is assured by standard design or analysis methods, and the ability of the valve to operate is ensured by the design features.

In addition to these design consideration >.,

I the valve also undergoes the following tests and analyses:

t e

Stress analysis as a part of the piping system

{j

)

including the SSE loads.

e Inshop hydrostatic test.

l o

Inshop seat leakage test.

i

[

c Periodic in situ valve exercising and insp [ection tom //e/er/U/ NdI M.d d-f, a

e ensure the functional ability of the valve

[

t Conformance to Regulatory Guide 1.148 is addressed in table 3.9.B.3-lO.

3.9.B.3-9

- = - -

' VEGP-FSAR-3 C

TABLE 3.9.B.3-8 (SHEET 1 OF 2)

BOP ACTIVE PU G G

~

Equipment FSAR Pump Tag Number Figure Nuclear service cooling water 1-1202-P4-001 9.2.1-1 I

(NSCW) pump 1-1202-P4-002 9.2'.1-1 NSCW pump 1 1202-P4-003 9.2.1-1 5

NSCW pump

\\

1-1202-P4-004 9.2.1-1 NSCW pump 1-1202-P4-005 9.2.1-1 p

NSCW pump 1-1202-P4-006 9.2.1 NSCW pump NSCW transfer pump 1-1202-P4-007 9.N.1-1

[

~'- 9.2.1-1 NSCW transfer pump 1-1202-P4-008 Component cooling water (CCW) pump 1-1203-P4-OO1 9.2.2-1 1-1203-P4-002 9.2.2-1 l

CCW pump 1-1203-P4-003 9.2.2-1 CCW pump 1-1203-P4-004 9.2.2-1 CCW pump s

CCW pump 1-1203-P4-005 9.2.2-1 s

1-1203-P4-006 9.2.2-1 CCW pump Auxiliary feedwater turbine-driven 1-1302-P4-001 10.4.9-1 Pump Auxiliary feedwater turbine-driven 1-1302-P4-002 10.4.9 1 Pump CT..

Auxiliary feedwater motor-driven 1-1302-P4-003 10.4.9-1 Pump i

  • Diesel fuel oil storage tank pump 1-2403-P4-001 9.5.4-1 l

4tDiesel fuel oil storage tank pump 1-2403-P4-002 9.5.4-1 4 Diesel fuel oil storage tank pump 1-2403-P4-003 9.5.4-1 l

l l(

VEGP-FSAR-3 I

TABLE 3.9.B.3-8 (SHEET 2 OF 2)

Equipment FSAR Pump Tag Number-Figure

( Diesel fuel oil storage tank pump 1-2403-P4-OO4 9.5.4-1

(

Control building ESF chilled 1-1592-P7-001 9.2.9-1, water pump Control building chilled 1-1592-P7-002 9.2.9-1 water pump nw-oviaw any achin,n px/ namfeessap<yssu,o f M Ren Phnf prscedcru, gngj+p, 7;c4ntw/ SpecHk;46u Jfe InsuMce 7e my Payrs.

nV Q

L

~

VEGP-FSAR-3 i

TABLE 3.9.B.3-9 (SHEET 1 OF 6)

BOP ACTIVE VALVES Active FSAR Valve No.

System Function <a>

Figure HV-10950 SIS (1) 6.3.2-1 HV-10951 SIS (1) 6.3.2-1 HV-10952 SIS (1) 6.3.2-1 HV-10953 SIS (1) 6.3.2-1 HV-10957 SIS 6.3.2-1 HV-10958 SIS

)

6.3.2-1 262 SIS (2) 6.3.2-1 263 SIS (2) 6.3.2 44)-(g^3) 9.2.1-1 HV-1668A NSCW HV-1668B NSCW

-(4}-&

)

9.2.1-1 a

CV-9446 NSCW 9.2.1-1 025 NSCW

-(+){2)(a 9.2.1-1

-(4h' (3) 9.2.1-1 031 NSCW.

-{4V (3) 9.2.1-1 035 NSCW

(--

155 NSCW

-(4

)(3) 9.2.1-1 l3 156 NSCW

-(4}(2)(3) 9.2.1-1 g 3-172 NSCW

-(4}(s.)(3) 9.2.1-1 HV-1669B NSCW

-(-4-) (z) (3) 9.2.1-1

-(4} (2)((3)

HV-1669A NSCW 9.2.1-1 f4-)-(2) 3) 9.2.1-1 CV-9447 NCCW 027 NSCW

-(4} (2) Ca) 9.2.1-1 033 NSCW

-(4) (2)(3) 9.2.1-1

'037 NSCW

44) (2) 9.2.1-1 l3 167 NSCW

-(4-)- (

9.2.1-1 4

168 NSCW

-(4) (

9.2.1-1 g g

173 NSCW

{4-) (

9.2.1-1 y

257 NSCW

-(4)- (Z 9.2.1-1 4

258 NSCW

-(4) (_

9.2.1-1 y

259 NSCW f4-)- (

C3 9.2.1-1 l

t 424 NSCW f4-}-(

(3 9.2.1-1 3) 9.2.1-1 t4.}((

c 425 NSCW 2

(4)-

3) 9.2.1-1 k

426 NSCW 463 NSCW

-(4}- (

3)3 9.2.1-1 3

C' di 3

9.2.1-1 464 NSCW f4). (,

465 NSCW

-(4} L 9.2.1-1 u

466 NSCW 44-)- (2) 9.2.1-1 l

M 467 NSCW

-(4)- (2) 9.2.1-1 l

'468 FSCW f4} (2) 9.2.1-1 44)- (,2) O) 9.2.1-1 l

469 NSCW 8

470 NSCW

-(4-} (2.) O) 9.2.1-1

(

4 471 NSCW

-(4) ((.1)(3) 9.2.1-1

{4). 2) 9.2.1-1 i

g 472 NSCW Amend. 3 1/84 9

(

VEGP-FSAR-3 TABLE 3.9.B.3-9 (SHEET 2 OF 6) fk Active FSAR Valve No.

System Function Figure 473 NSCW 1 HEP (ZX3) 9.2.1-1 474 NSCW

-(-4-)- (~E)CO 9.2.1-1 NSCW F&P UV 9.2.1-1 fw) E HV-1806

(

% HV-1808 NSCW f+t 9.2.1-1

~

& HV-1822 NSCW f4t 9.2.1-1

-(4-)-

9.2.1-1

$ HV-2134 NSCW

-(-1-)- (Z 9.2.1-1 A HV-2138 NSCW

{-1-)- 2 9.2.1-1

  • %FV-1807 NSCW tit 9.2.1-1
  • HV-1809 NSCW 143-9.2.1-1

{4t (3) 9.2.1-1

{-1-t(.(lN 9.2.1-1 W HV-1831 NSCW tFt1)3) 9.2.1-1

$ HV-2135 NSCW JhMV-2139 NSCW fit (2 L4) 9.2.1-1 HV-1975 ACCW

-tit-(4 9.2.8-1 HV-1979 ACCW

-(-1-)-(4 9.2.8-1 HV-1974 ACCW 9.2.8-1

(-

(4t ( )

HV-1978 ACCW

(-1-) (4 9.2.8-1 i

% HV-19051 ACCW (4) 9.2.8-1 i HV-19053 ACCW (4) 9.2.8-1

% HV-19055 ACCW (4) 9.2.8-1

% HV-19057 ACCW (4) 9.2.8-1 113 ACCW (1) 9.2.8-1 084 ACCW (4) 9.2.8-1 085 ACCW (4) 9.2.8-1 086 ACCW (4) 9.2.8-1 087 ACCW.

(4) 9.2.8-1 HV-3502 Normal sampling (1) 9.3.2-1 HV-3507 Normal sampling (1) 9.3.2-1 HV-3508 Normal sampling (1) 9.3.2-1 HV-3513 Normal sampling (1) 9.3.2-1 l)

HV-3514 Normal sampling (1) 9.3.2-1 HV-3548.

Normal campling (1) 9.3.2-1 HV-780 Drains (1) 9.3.3-2 HV-781 Drains (1) 9.3.3-2l3

'.HV-8208 PASS (1) 9.3.2-4 g HV-8209 PASS (1) 9.3.2-4

()

.HV-8211 PASS (1) 9.3.2-4 HV-8212 PASS (1) 9.3.2-4 HV-8220 PASS (1) 9.3.2-1

/ 02:1 rA;S (4) 3.4.0-2 tit (N 5.4.7-1 A HV-8986A PASS

(

$ HV-8986B PASS tit (4) 5.4.7-1

-: J 102 A/C/C/0/C C ckflueLebl.

(4) 11.4.2 0 filter:

Amend. 3 1/84

(

VEGP-FSAR-3 TABLE 3.9.B.3-9 (SHEET 3 0F 6)

((}.

Active FSAR Valve No.

System Function Figure

ri-1;2;A/;/c/;/;

2 mizi L.L1.

(4) 11.0.2

-nJ 700;c n_ n. s t;....

(1) 10.0.2 1 -

('sl n'1 75 000 n;in st;;;.

(1) 10.3.2 1

\\l HV-9453 Main steam

-t13 (4) 10.3.2 HV-9454 Main steam tFF 10.3.2-1 HV-5280-Main steam tit 10.3.2-1 HV-5281 Main steam tit-9) 10.3.2-1 HV-15212C Main steam (4) 10.3.2-1 HV-15212D Main steam (4) 10.3.2-1 029 Main steam

-NEr (4 10.3.2-1 031 Main steam 14d- (4 10.3.2-1 HV-3006A/B Main steam

-PF) (4 10.3.2-1 HV-3016A/B Main steam f4t (4 10.3.2-1 HV-3026A/B Main steam t43- (

10.3.2-1 HV-3036A/B Main steam (4t (4 10.3.2-1 HV-3009 Main steam (2) 10.3.2-1 C

HV-3019 Main steam (2) 10.3.2-1 P $V-3000 Main steam (3) 10.3.2-1 PHM-3010 Main steam (3) 10.3.2-1 FK@V-3020 Main steam (3) 10.3.2-1 pp -3030 Main steam (3) 10.3.2-1 006 Main steam (2) 10.3.2-1

.-=

008 Main steam (2) 10.3.2-1 PSV-3001 Main steam f3} (g)

(G3(4 10.3.2-1 PSV-3002 Main steam 10.3.2-1 PSV-3003 Main steam t&t(L4 fat 4 10.3.2-1 PSV-3004 Main steam 10.3.2-1 PSV-3005 Main steam fat (4 10.3.2-1 PSV-3011 Main steam tGy (

10.3.2-1 0,

PSV-3012 Main steam tat 4 10.3.2-1 PSV-3013 Main steam tSt 4 10.3.2-1 PSV-3014 Main steam t&t 4 10.3.2-1 PSV-3015 Main steam tst 10.3.2-1

-PSV-3021 Main steam TSt 10.3.2-1 PSV-3022 Main steam

-44 4 10.3.2 '

4 PSV-3023 Main steam 143 10.3.2-1 PSV-3024 Main steam ist 4 10.3.2-1 PSV-3025 Main steam t49 10.3.2-1 PSV-3031 Main steam ist-20.3.2-1 PSV-3032 Main steam tat 1C4 3.2-1 PSV-3033 Main steam t&P 10.3.2-1 PSV-3034 Main steam 4) 10.3.2-1

(

i PSV-3035 Main steam

%(Z) 4) 10737Fll 10.3.2-1

'H//04 MQ/n 5fean1 Amend. 3 1/84 l

l O

'{

VEGP-FSAR-3 TABLE 3.9.B.3-9 (SHEET 4 OF 6) l'd Active FSAR

' Valve No.

System Function Figure

!!? 7022.'.,'O Main etcaa.

'1) 10.2.2 1 HV-9451 Main steam 443-(4) 10.3.2-1 HV-9452 Main steam 14dr en 10.3.2-1 7g 4) 10.3.2-1 44d-(4) i)

HV-5278 Main steam HV-5279 Main steam f43-(

10.3.2-1 HV-15212A.

Main steam (4) 10.3.2-1 HV-15212B

' Main steam (4) 10.3.2-1 043 Main steam f43-(4) 10.3.2-1 044 Main steam f4t(4) 10.3.2-1

.HV-5113 AFW (2)(3) 10.4.9-1 HV-5118 AEW (2)(3) 10.4.9-1 HV-5119 AEW

-FLt(2 ) (3 )

10.4.9-1 HV-5120 AFW 443-(2 ) ( 3 )

10.4.9-1

-HV-5122 AFW 444-(2 ) ( 3 )

10.4.9-1 HV-5125 AEW f44-(2 ) (3 )

10.4.9-1 HV-5127 AFW

-FFt( 2 ) (3 )

10.4.9-1 HV-5132 AEW 14y-(2 ) ( 3 )

10.4.9-1 C_

HV-5134 AEW f44-(2 ) (3 )

10.4.9-1 j

i HV-5137 AEW f4t(2)(3) 10.4.9-1 HV-5139 AFW

-Fkt(2 ) (3 )

10.4.9-1 i F MV-5154 AFW (2) 10.4.9-1 S F #V-5155 AFW (2) 10.4.9-1 013 AEW (2)(3) 10.4.9-1 014 AEW (2)(3) 10.4.9-1 001 AEW (2)(3) 10.4.9-1 002 AFW (2)(3) 10.4.9-1 L

017 AFW (2)(3) 10.4.9-1 020 AEW (2)(3) 10.4.9-1 023 AEW (2)(3) 10.4.9-1 026 AEW (2)(3) 10.4.9-1 033 AEW (2)(3) 10.4.9-1 037 AFW (2)(3) 10.4.9-1 040 AFW (2)(3) 10.4.9-1 043 AFW (2)(3) 10.4.9-1 046 AEW (2)(3) 10.4.9-1 i

051 AEW (2)(3) 10.4.9-1

~'3 052 AEW (2)(3) 10.4.9-1

- 058 AFW (2)(3) 10.4.9-1 R'-5106 AFW (2)(3) 10.4.9 V

$ PV-15129 AFW (2)(3) 10.4.9-1 9(SV-15133 AFW (2)(3) 10.4.9-1 F7 510 F;;i;;tcr

'4) 10,4,4,

l (-

4'Y-520.

Feedwatem.

(4) 10r+-1-1-a

[

--FV-SSC Feedvatet -

( 4 ).

-1074-1-1~

()M AFW (ZX3) 10 4 'l-l Amend. 3 1/84

h VEGP-FSAR-3 i

TABLE 3.9.B.3-9 (SHEET 5 OF 6) h Active FSAR Valve No.

System Function Figure 540 resdwaici (4) 10.4.1-1 4N-6242 Emedwat.mi (4) 10.4.1-1 LV-5240 readwater (4) 10.0.1 1-ql

-fW-5244 re m dw a t.o.

(4) 10.4.1-1 s"

-LV 5245 Feedwatei-(+)

IC. 4.1 -- I IIV-5104 Ecadwater (1) 10.0.1 1

-HV-519 Feedwater

(+)

10.0.1 1 -

-HV-&l90 Feedwatei

(+)

=10. 4.1 1-I"1 5107 Feedwater (4) 10d--1=1=-

HV-5227 Feedwater

-(+)- (4) 10.4.1-1 HV-5228 Feedwater 14 )- M)

-(-1-)- (4 10.4.1-1 HV-5229 Feedwater 10.4.1-1 HV-5230 Feedwater

-(+)-

10.4.1-1 3

071 Feedwe.4,er

-(-It 9 10.4.1-1 073 Feedwater tl-)- 4 10.4.1-1 075 Feedwater f1--)- 4 10.4.1-1 C

077 Feedwater

-(-1-)-

10.4.1-1 113 AFW

-(-1-)-( 2 ) ( 3 )

10.4.1-1 114 AFW

-(-1-)-( 2 ) ( 3 )

10.4.1-1 115 AFW

-(-1-)-( 2 ) ( 3 )

10.4.1-1 116 AFW 10.4.1-1 117 rccdwater /FW

{-It(2 ) (@3 )

t

+1-)-

10.4.1-1 118 Fceducter AFW

-(-1-)-

10.4.1-1 119 Eccdwat+r. AF W

+1-)

10.4.1-1 120

-Feedwater AFW

+1-)

10.4.1-1 21 1.rW

1)(2)(2) 10.4.1 1 l

-122 AFW

(-1-) (-2-) (-3-)

--1C.1.1 1 23 A F's (1)(2)(3) 10.0.1 1 3

-+2 0 1.FW (1)(2}(0) 10.1.1 1 125 AFW

-(-1-)-( 2 ) ( 3 )

10.4.1-1

h 126 AFW t1-)-( 2 ) ( 3 )

10.4.1-1 l

127 AFW

-(-1-)-( 2 ) ( 3 )

10.4.1-1 128-AEW

-(-1-)-( 2 ) ( 3 )

10.4.1-1 33 Ecedwater (1) 10.0.1-1 430 rccdwater (1)-

10M--l-1

- 135 rccdwater (1) 10r4,-1,

-130 rccdwster (1) 10.4.1-1 HV-15196 Eccdwater /)FW

+14 (

10.4 1-1 l

HV-15197

-Feedwater-/}fW tit 10.4.1-1

-HV-15198 Ec cdwater-4FW

(-1-)-(

10.4.1-1 HV-15199

-Feedwater--/)FW tl-)- (

10.4.1-1

"'O'l 1000 0 Oiccol gcnerator-(4)

- 9 +5+4-&r-

' (

"1 0060A/B-Diesel--generator (0)

O.5.0 1 l

!"1 0070?./0 Diweel= generator-(4)-- - --9 : 5A l 044 Diesel generator (4) 9.5.4-1 I

i Amend. 3 1/84 l

i (

VEGP-FSAR-3 TABLE 3.9.B.3-9 (SHEET 6 OF 6) h Active FSAR Valve No.

System Function Figure 047 Diesel generator (4) 9.5.4-1 072 01.

r....

o,

-072 Oic;;? ;;ncretor

'0)

O.5.01-(mJ-

-- 7 0 Dic;;l g;.. crater (0) 0.5.I 1 -

^

-TO'? 10007 Oi;;;l raciator (4) 0.0.0 1

' ~J 0 0 0 0.'.,'2 Oi;;;l ;;ncreto;

'0) 0.5.0 1

"" 0 071.".,'S Oi;;;l ;;n;reter (4) 9 4 44=-

050 Diesel generator (4) 9.5.4-1 053 Diesel generator (4) 9.5.4-1 07; Diesel venuratvi-(4) 0.5.I 1

^7i Diese-1-generatoi (4-)

0. Gr4-1=--

07' "ric;;l generator H-;

^" M -

HV-270012.790/

Fire protection (1) 9.5.1-1 036 Fire protection (1) 9.5.1-1

% HV-19722 Waste evaporator (4) steam supply R HV-19723

(~

Waste evaporator (4) steam supply HV-9385 Service air (1) 9.3.1-1 i

034 Service air (1) 9.3.1-1 1885 Service air (1) 9.3.1-1 HV-9378 Instrument air (1) 9.3.1-1 049 Instrument air (1) 9.3.1-1 038 Demineralized (1) 9.2.3-1 water

$ TV-12124 ESF chilled (4) water

-$ TV-12740 ESF chilled (4) water

$. TV-1212 ESF chilled (4) water 4iTV-12725 ESF chilled (4) water IMerf a. Active Function (1) Containment isolation -(2) Emergency cooling operation { (3) Safety-grade cold shutdown (4) Miscellaneous safety-related operations fImfproccerrJ \\ A 1%rfliese m/rn, -Me e/xb dj/us/wtlope& M'k '"Ny f(I"l# E*#*'I "1l\\ i be destortsfrafed 44th, <> c M plan / Amend. 3 1/84 Tolkp_riryts_st:____-____ ___ _______ /or 7?c/in/w/ spec /flMf /0' 1 M lih oc/ t of Mt IMemk rnat<rfenyxc picy274, n

~ Pcg3 8 of 8 1 In.ser/ A Active FSAR Valve No. System Function Figure 030 CCW (2) (3) 9.2.2-1 032 CCW (2) (3) 9.2.2-1 034 CCW (2) (3) 9.2.2-1 055 CCW (2) (3) _9.2.2-1 057 - CCW (2) (3) 9.2.2-1 059 CCW (2) (3) 9.2.2-1 '186 - ESF Chilled Water (4) 9.2.9-1 187 ESF Chilled Water (4) 9.2.9-9 188 ESF Chilled Water (4) 9.2. -l ~d 192 ESF Chilled Water (4) 9.2.9-1 HV-15214-CVCS (4) 9.3.4-1 HV-15216A/B/C/D Main Steam (4) 10.3.2-1 HV-13005-A/B Main-Steam (4) 10.3.2-1 HV-13006 A/B Main Steam (4) 10.3.2-1 HV-13007 A/B Main Steam (4) 10.3.2-1 I HV-13008 A/B Main Steam (4) 10.3.2-1 G HV-2041 ACCW (4) 9.2.8-1 itHV-11600 NSCW (2) (3) 9.2.1-1 1 >tHV-11605 NSCW (2) (3) 9.2.1-1 AtHV-11606 NSCW (2) (3) 9.2.1-1 A HV-11607 NSCW (2) (3) 9.2.1-1 i 4 KV-11612 NSCW (2) (3) 9.2.1-1 4 HV-ll613 NSCW (2) (3) 9.2.1-1 4kTV-11675 NSCW - (2) (3) 9.2.1-1 de TV-11740 NSCW (2) (3) 9.2.1-1 O i e y --e---.---,-----m--+ e , - -,- ~.---.. -. - -. - - - -

VEGP-FSAR-3 { 3.lO.N.2.2.1 Nuclear Steam Supply System Pumps All active pumps listed in table 3.ll.N.1-1 are qualified for operability by first being subjected to rigid tests both prior to installation in the plant and after installation in the plant. The in-shop tests include: A. Hydrostatic tests of pressure-retaining parts to 150 percent of the design pressure times the ratio of ,q material allowable stress at room temperature to the V. allowable stress value at the design temperature. B. Seal leakage tests. C. Performance tests to determine total developed head, mirimum and maximum head, net positive suction head (NPSH) requirements, and other pump parameters. Also monitored during thdse opera)ere afylicalle, w/ ting tests are bearing temperatures and vibrat'on levels. Bearing temperature. limits are determined by the anufacturer based on the bearing. material, clearances, il type, and rotational speed. These limits are approved b Westinghouse. After the pump is installed in the plan, it undergoes the cold hydro tests, hot functional tests, an th-requir:d periodic inservice inspection and opera ion. These tests demonstrate that the pump will function.as required during all normal operating conditions for the design life of the plant. Sxug<u noku WoM a<"yOfch&)g l r j j ksfdin 746% 3.'). A/. 3-/ Mt// be archcAz/ O1/Ile Zhte.Wer hlAy /rqrsni,(ASVE6 2 y In addition to these tests, the safety-related active punips are qualified for operability by assuring that the pump will start, continue operating, and not be damaged during the faulted condition. The pump manufacturer is required to show by analysis correlated by tests, prototype tests, or existing documented data that the pump will perform its safety function when O subjected to loads imposed by the maximum seismic accelerations U and the maximum faulted nozzle loads. It is required that test or dynamic analysis be used to show that the lowest natural { frequency of the pump is greater than 33 Hz. The pump, when having a natural frequency above 33 Hz, is considered essentially rigid. This' frequency is sufficiently high to 4 avoid problems with amplification between the component and structure for all seismic areas. A' static shaft deflection analysis of the rotor is performed with the conservative safe shutdown earthquake (SSE) accelerations of 2.1 g in two orthogonal horizontal directions and 2.1 g vertical acting simultaneously. The deflections determined from the static li ( shaft analysis are compared to the allowable rotor clearances. f A. The nature of seismic disturbances dictates that the maximum Fw 14eue jwmos uthk,) gre nofMciuc/das/dg.Zhrudet 7Ev5'i /% rm +ddM lISfC'{ 6 msw% n ya!9f.g.b!'" + mea &! M~nM/ 3 kyi was i,1,s/w asweaupyx, pwpeese, and/o&&ialpewfzr,

9 [ VEGP-FSAR-3 conditions and postfaulted conditions are limited by the magnitudes of the normal condition nozzle loads. The. postfaulted-condition ability of the pumps to function under ' these-applied loads is proven'during the normal operating plant conditions for. active pumps.- 3.10.N.2.2.2 Nuclear; Steam Supply System Valves . h Safety-related active valves, listed in table 3.ll.N.1-1, must 'd perform their mechanical motion in times of an accident. -Assurance is supplied that.thesefvalves will operate during a- ' seismic event. Tests and analyses are conducted to qualify

  • $$"*a)*dabk,.

4%fiO/0//a//% M' h/m '*Wef -The safety-related'va:.ves are subjected to a series of stringent tests prior to ervice and during the plant life. Prior to installation, t following tests are performed: shell hydrostatic-tes : tc7 American Society of Mechanical Engineers (ASME) Section III requirements, back-seat and main seat. leakage tests, disc hydrostatic tests, and operational tests to verify that the valve will open and close. For the qualification of motc r operators for environmental conditions g ~(. refer to section 3.11.N." gold hydro tests [Thot functional qualification' tests (pVperiodic inservice inspections [, and periodic inservice operations are performed in situ to verify ,e and assure the function'al ability of the valve. These. tests guarantee reliability of the valve for the-design life of the plant. The valves are constructed in accordance with the ASME Boiler and Pressure Vessel Code, Section III~. On active valve, an analysis of the extended structure is performed for l stati equivalent seismic SSE loads. applied at the center of gravi y of the extended structure. The maximum stress limits-used for active Class 1, 2, and 3 valves are shown in

  • "b* j ** ' 3
  • 9 B,* 3);' redim hg um,'a

/N M w///&/>>c/uN omIherte tests an ana yses, 1su la ive valves e cw cocre in .In additi o eprese Lof each design type are tested for verification of operability during a simulated plant faulted-condition event by demonstrating operational capabilities within the specified limits. A representative valve of a specific-design type is identified.for this testing by the specification (e.g., globe valve, motor-operated valve, etc.) for-that particular type of valve. A stratification of design is further made based upon the valve size, pressure rating, type of operator, and previous operability testing to evaluate the need for additional testing of a particular. design type. The testing procedures are described below. ]$( The valve is mounted in a manner which conservatively f represents typical valve installations. The valve includes the /*,, f);ne : rYkes etNell are stofl as H 'm"s ek/&c hSh$th 75Me 3,9 N.3-2, f'li Gy*16'*yhc/WMl'ht 311&Yic 73 W N.2 52NH' f /4N't AMSort M2ll5 I nswM numb sic / van Ni,sw mx/uea m,w, pg pvceakn% asff, Redela/ Jfn/HWNd-

} TABLE 3.9.N.3-1 ACTIVE. PUMPS ANS . item Safety Normal Post-Accident' Pump Number ly.gm Ciass Mode Mode Basis Centrifugal cha rg ing APCH CVCS 2 On/Off On (1) (2) pumps 1 and 2 & Boric acid transfer APBA CVCS 2 On/Off-On/Off (2) pumps 1 and 2 Residual heat removal APRH RHRS 2 Off On' (1) (2) pumps 1 and 2 Safety injection APSI SIS 2 Off On (1) pumps 1 and 2 Containment spray APCS CSS 2 Off On (3) pumps 1 and 2 je Spent fuel pool APSF SFPCS 3 On On " Spent fuel h decay heat C)- pumos 1 and 2 removal } M t.n>lc I W .( h)W/0fm dh*//* 14/2/y ft'/d/W kWMb& JA//// h*- fumj], 4)]e yb'Ely /t/1/ dst,57 fppf g,yfygg, prj matt, d4:q/lO/~ N (l/ MO13/m/Bd /fr/V /7 ytc fiBff af Me Tyrevicr ~)%/M9 fryr4m. TkAnim/ yec/f/@fN/73

  • t4
i. Emergency core cooling system safeguards operation.

2. Safety grade cold shutdown operation. 3. Containment spray system safeguards operation.

O O n C t a '^ TABLE 3.9.N.3-2 (SHEET 1 OF 6) ACTIVE VALVES Type /ANS Normal Valve Number System Actuated By-Size fin.) }afety Class Position Basis 1-8010A/B/C RCS Self-actuated 6 Safety /1 Closed '(1) 1-PV-455A RCS Solenoid. 3 Globe /1 Closed (1) (4) 1-PV-4564 RCS Solenoid 3 Globe /1 Closed .(1) (4) 1-8000A/B RCS Motor 3 Gate /1 Open (1) (4)- 1-802R RCS Air 3 Diaphragm /2 Closed (2) 1-8033 RCS Air 1 Diaphragm /2 Closed (2) ( l 1-8046 (112) RCS AP 3 Check /2 NA (2) 1-8047 RCS Air 1 D ia ph ragm/2 NA (2) 1-8095A/B RCS Solenoid 1 Globe /1 Close,d (1) (4) h 1-8096A/B RCS Solenoid 1 Globe /1 Closed (1) (4) ki 1-HV-40 *./B RCS Solenoid 1 Globe /2 Closed (4) 3 1-8100 CVCS Motor 2 . Globe /2 Open ( 2 )' y 4 1-8103A/B/C/D CVCS Motor 1 1/2 Globe Open (2) (4) b ( 4 1-8104 CVCS Motor 2 Globe /2 Closed (4) 1-8105 CVCS Motor 3 Cate/2 Open (2) (3) (4) 1-8106 CVCS Motor 3 Cate/2 Open (3) (4) f 1-8110 CVCS Motor 2 Globe /2 Open (3) (4) I 1-8111A/B CVCS Motor 2 Globe /2 Open (3) (4) l 1-8112 CVCS Motor 2 Globe /2 Open (2) 1-8113 (021) CVCS AP-3/4 Check /2 NA (2) 1-8116 CVCS Solenoid 1 Globe /2 Closed (4) i .K -8145 CVCS Air 2 Globe /1 Closed (1)' { 1 l A1-8146 CVCS Hotor 3 Cate/2 Open/ Closed (4) l-g1-8147 CVCS Motor 3 Cate/2 Open/ Closed (4) 1-8152 CVCS Air 3 Globe /2 Open (2) i

^ TABLE 3.9.N.3-2 (SHEET 2 OF,6) Valve Type /AHS Normal Number. System Acttisted By Size fin.1 . Safety Class Position Basis f1-8153 CVCS Air 1 Clobe/1 Closed (1) $ 1-8154 CVCS Air 1 Clobe/1 Closed (1) 1-8160 CVCS Air 3 Clobe/2 Open (2) $ 1-8366A/B/C/D CVCS AP 1 1/2 Check /1 NA (1) (3) (4) (437-440) $.1-8367A/B/C/D CVCS AP 1 1/2 Check /1 NA (1) (3) (4) (006.359,360,361) $1-8368A/B/C/D CVCS AP 1 1/2 Check /2 NA (2) (3) (4) (004,353,354,355) O $1-8377 (033) CVCS AP 2 Cneck/1 NA (1) %1-8378A/B CVCS AP 3 Check /1 NA (1) (4) (035,036) y 4 %1-8379A/B CVCS AP .3 Check /1 NA (1) (4) W (037,038) 1-8381 (032) CVCS AP 3 Check /2 NA (2) (4) 41-841'4 (499) CVCS AP 1 Check /2 NA (4) $1-8438 CVCS Motor 4 Cate/2 Open (3) (4) %1-8439 CVCS Solenoid 1 Clobe/2 Closed (4) $1-8440 (124) CVCS AP 4 Check /2 NA (4) '42 (185) CVCS AP 2 Check /2 hA (4) I 4,1-8473 (299) CVCS AP 2 Oneck/3 NA (4) 1-8480A/B CVCS AP 2 Check /2 NA (4) (140,147) 9 1-8481A/B CVCS AP 4 Check /2 NA (3) {4) g (142,149) 41-8471A/B CVCS Moto r 6 Cate/2 Open' (4) Operd (3) (4) 1-8485A/B CVCS Motor 4 Cate/2 E' 11-8487 (284) CVCS AP 2 Check /3 NA (4) ) Al-84g7(129) dVCS AP 3 Check /2 NA (3) (4) 20 9 4

O-TABLE 3.9.N.3-2 (SHEET; 2a OF, 6) Valve Type /ANS Normal 1, ILumber System Actuated By Size fin.) Safety Cin3.3 Position Basis 1-3508A/B CVCS Motor 2 Globe /2 Closed /open (3) '1-8510A/B CVCS Self-actuated 1 1/2 Relief angle /2 Closed .(3) 20 i i 1 i ha 4 in -a l a 4 a i U .D. N O H M \\ 4 to i e

i h~ g ] %j TABLE 3.9.N.3-2 (SHEET 3 OF 6) Type /ANd No rma l Valve Number System Actuated By Size fin.1 _S_a_f.e ty_ r,l a s s. Position Basis hi-8509A/B 'CVCS Motor 2 G8sbe/2 Closed /Open (3) 1-8546 (189) CVCS AP 8 Check /2-NA (3) (4) 1-HV-190A/B CVCS Solenoid 1 Globe /2 Open/ Closed (4) 1-LV-112B/C CVCS Motor 4 Cate/2 Open (3) (4) 1-LV-112D/E CVCS Motor 8 Cate/2 Closed (3) (4) 1-LV-459 CVCS Air 3 Globe /1 Open (1) 1-LV-460 CVCS Air 3-Globe /1 Open (1) 1-8701A RHRS Motor 12 Cate/1 Closed (1) (2) (4) 1-8701B RHRS Motor 12 Cate/1 Closed (1) (4) 1-8702A RHRS Motor 12 Cate/1 Closed (1) (2) (4) tn 1-87028 RHRS Motor 12 Cate/1 C!osed (1) (4) V1-8704A/B RHRS AP 3/4 Check /2 NA (4) k rn (251,252) 1-8716A/B RHRS Motor 8 Cate/2 Open (3) (4) y 1-8730A/B RHRS AP 8 Check /2 NA (31 (4) (009,010) K1-FV-610 RHRS Motor 3 Cate/2 Open/ Closed (3) (4) 41-FV-611 RHRS Motor 3 Cate/2 Open/ Closed (3) (4) 1-8801A/B SIS Moto r 4 Cate/2 closed (2) (3) (4) 1-8802A/B SIS Motor 4-Gate /2 Closed (2) (3) gn _,7 c.; g .. ; i n. ) s. cae 1-8804A/B SIS Motor 8 Gate /2 Closed (3) 1-8806 SIS Motor 8 Gate /2 Open (3) 1-8807A/B SIS Motor 6 Cate/2 Closed (3) 11-8808A/B/C/D SIS Motor 10 Cate/2 Open (3) (4) ?-8809A/B SIS Motor 8 Gate /2 Open (2) (3) (4) 1-8811A/B SIS Motor 14 Gate /2 Closed (3)

'O b' ( TABLE 3.9.N.3-2 (SHEET 4'OP 6) Valve Type /ANS No rma l Number Sistem Actuated By Size fin.1 Saroty Class Position Basis 1-8812A/B SIS Motor 12 Cate/2 Open (3) (4) 1-8813 Sis. Motor 2 Globe /2 Open (3) 1-8814 SIS Motor 1 1/2 Globe /2 Open (3) 1-8815 (013) SIS AP 3 Check /1 NA (1) (2) (3) (4) 1-8818A/B/C/D SIS AP 6 Check /1 NA (1) (2) (3) (4) (147-150) 1-8819A/B/C/D Sl? AP 2 Check /1 NA (1) (2) (3) (143-146) i 1-8820A/B SIS AP 14 Check /2 NA (3) (122,123) 1-8821A/B SIS Motor 4 Cate/2 Open (3) 1-8823 SIS Air 3/4 Globe /2 Closed (2) M 1-8824 SIS Air 3/4 Globe /2 Closed (2) Q j 1-8825 SIS Air 3 /'s Clobe/2 Closed (2) k in 1-8835 SIS Motor 4 Cate/2 Open (2) (3) lp' ld 1-8840 SIS Motor 12 Cate/2 Closed (2) (3) [ 1-8841A/B SIS AP 8 Check /1 NA (1) (2) (3) .(128,129) 1-8843 SIS Air 3/4 Globe /2 Closed (2) 2070."/C S:0 0::1:/0 0, ' t)-f4 H ^'- 1-8871 SIS Air 3/4 Globe /2 Closed (2) 1-8875A/B/C/0/ SIS Solenoid 1 Clobe/2 Closed (4) E/F/G/H 1-8880 SIS Air 1 Clobe/2 Closed (2) 1-8881 SIS Air 3/4 Globe /2 Closed (2) ^^^2 ?- 0:: :/0 0,:n ' ! ; ' '- l ^'-

  • 1-8888 SIS Air 3/4 Globe /2 Closed (2) 1-8890A/B SlS Air.

3/4 Globe /2 Closed (2)

[ j TABLE 3.9.N.3-2 (SHEET 5 OF'6) Type /ANS Normal Number System - Actuated By Size fin.) Safety Class Position Sasip Valve 1-8900A/B/C/D SIS AP 1 1/2 Check /1 NA (1) (3) (4)- (026-029) 1-8905A/B/C/D SIS AP 2 Check /1 NA (1) (2) (3)' (120-123) 1-8919A/B SIS AP 1 1/2 Check /2 NA (3) (093,094) 1-8922A/B SIS AP 4 Check /2 NA (3) (098.099) 1-8923A/B SIS Motor 6 Cate/2 Open (3) 1-8920 SIS Motor 1 1/2 Clobe/2 Open (3) 1-8924 SIS Motor 6 Cate/2 Open (3) 1-8926 (090) SIS AP 8 Check /2 NA (3)- S6& 6P 1 C4took/2 E^. (3f h 1-8948A/B/C/D SIS AP 10 Check /1 NA (1) (3) 8 ] (083-086) 1-8949A/B/C/D SIS AP 6 Check /1 NA (1) (3) y i (124-127) 1-8956A/B/C/D SIS AP 10 Check /1 NA (1) (3) (079-082) 1-8958A/B SIS AP 12 Check /2 NA (3) (4) (001.002) 1-8964 SIS Air 3/4 Clobe/2 Closed (2) 1-8968 (017) SIS AP 1 CT.eck/2 NA (2) 1-8969A/B SIS AP 8 Check /2 NA (3) (163,436) 1-HV-943A/B SIS Solenoid 1 Clobe/2 Closed (4) 1-7126 WPS Air 3/4 Diaphragm /2 Open (2) 1-7136 WPS Air 3 0'laphrage/2 Open (2) 1-7150 WPS Air 3/4 Diaph ragm/2 Open (2) 1-7699 WPS Air 3 Diaphragm /2 Open (2)

.[, 'f ~~' %. + s w 'u %/ TABLE 3.9.N.3-2'(SHEET'6 OF.6). Normal Valve . Type /ANS. Pesition. Basis Number' System Actuated By Size fin.1 Safety Class 1-9001A/B CSS Motor 8 Gate /2 Closed (2) (5)- 1-9002A/B CSS Motor 10 G.ite/2 . Closed (2) (5) 1-9003A/B CSS Motor 10

C.ite/2 Closed (5) 1-9011A/B CSS AP 8

Check /2 NA (2) (5) (015,016) 9017A/B- ' CSS Motor 10 Gate /2 Open (5) 1-9018A/B CSS AP 10 Cneck/2-NA (5) (001.008) 1-8994A/B CSS Motor 3 Gate /3 Closed (5) 1-8998A/B CSS AP 3 Check /2~ NA (5) f (037,038) 1-7603A/B/C/D SGBD Air _ 3 Globe /2 Open (2) (3). g N t.n> .? pe a m Mew aNy re4;&c/ hem ant &

  • & me plus, & capabimye+phiit sww/eorafryampp/adpoc<c/wa, w/w o'wsafaM Mroupl/mwns e

7;ch e a t sp u m catise. Reactor coolant system pressure boundary isolation. 3 2. Containment isolation. 3. ECCS safeguards operations. 4. Safety grade cold shutdown operation. 5. CSS safeguards operations.}}