ML20205K235
| ML20205K235 | |
| Person / Time | |
|---|---|
| Site: | North Anna |
| Issue date: | 03/15/1999 |
| From: | EQE ENGINEERING CONSULTANTS (FORMERLY EQE ENGINEERING |
| To: | |
| Shared Package | |
| ML20205K224 | List: |
| References | |
| REF-GTECI-A-46, REF-GTECI-SC, TASK-A-46, TASK-OR 52308.04-C-003, 52308.04-C-003-R01, 52308.04-C-3, 52308.04-C-3-R1, NUDOCS 9904130052 | |
| Download: ML20205K235 (29) | |
Text
a t
(NU CALCULATION COVER SHEET i,-
ENGINEERING CONSULTANTS S
nu m nsstusm o w n m m e.r: w,
67 3 c#.04-C-Oel Calculation No:
Pro}ect:
\\ll'}. w lc On w e !
Ale N A A n ou A Calcuir"on
Title:
44L F ve 1-a $ /e,-
/,,__
8 fordeesa4e
$ t e << a e Tan k Ts a AJe. / -C N-TM - /. 2 - c N-Tk - o
/
S e e-
- >. lb
References:
O q.D, h CShD 4
Attachments:
Total Number of Pages (including Cover Sheet):
D WS SM* c kNe~t i Revision Approval Numt er Date Description of Revision Originator Checker Approver u
"** *W 6r.'r.neI T 6 S v e-m u g, cem.'sU E Cland& SM MTT0h
/4tV Ji'e v
)(gp l
5'$f puTaTiny Tdxt aed.
c,14cetZyps a fys s(13 i
i l
m h
990413o052 990401 PDR ADOCK 05000338 P
1 O
CALCUIJLTION COVT.R SHEET Type Sub Station Unit Status System Code (s)
[ CALC) [
]
[ NAPS)
[1&2] [
]
[1/2-CN-TK-1]
Calc. Number Rev.
QA Cat.
[ EQE Calc. No. 52308.04-C-003 )
[1)
[ SR ]
C:lc Title (Subject) : USI A-46 Evaluation of Cor[nsate Storage Storage Tanks (CST) at Ncrth Anna i
K y Words: USI A-46, Seismic, CST Reference Numbers:
IR No.:
N/A Job No. N/A 1
Initiating Document:
(Response to Request for Additional Information (RAI) in NRC's Letter dated January 6, 1999 regarding USI A-46 Submittal in May 1997)
Originator:
[X) Virginia Power Discipline:
NUCLEAR ENGINEERING l
[ ] Other Firm Name:
Vendor Code:
EDS Mark Number
References:
Station Unit System Prefix Sequence Comp. Code Sufi9.x
[khg[01]
[CN
]
[TK-1]
(
)
[
]
[
]
[M
[02)
[CM
]
[TK-1)
[
]
I
]
[
]
[_)
[_)
[
)
[
]
[
]
[
]
[
]
[_]
[_]
[
]
[
]
[
]
[
]
-[
_]
[
]
[_)
[
]
[
]
[
]
[
]
[
]
[Y) Additional Mark Numbers?
(Check if "yes").
Objective:
R0v*se the EQE Calculation No. 52308.04-C-003, Rev. O, A-46 Evaluation of Condensate Storage Tank Mark Nos. 1-CN-TK-1 and 2-CN-TK-1, dated 12-28-95. The revision is made to clcrify some text provided in the calculation, and correct some typos. This is in response to the FRC's Request for Additional Information (RAI), on Virginia Power's USI A-46 oubmittal, specifically for the question #8 related to CST,
==
Conclusions:==
Sco page 12 of this calculation.
Superseded Cales:
EQE Calculation No. 52308.04-C-003, Rev.
O, Dated 12/28/95.
Prcpared By (Print Name)
Signature P t.ta
, I~ N T. W.
Hsu Reviewed By (Print Name)
Signature g
Dato K.
K.
Dwivedy 1
Approved By (Print Name)
Signature Date M.
F. WALKER J-/5-ff
M EQE MERNAnONAL
$p!$
tor _ v, SHEET NO.
D
~~~
JOB NO. S 2 MS JOB UCW*
BY M *v %
DATE '2'lr* /w CALC. NO. C- 003 SUBJECT
('T-
/4*44 Es a l
- 1/c e CHKD N DATE 4 M W Table of Contents Item Page No.
S 1.0 Purpose.........................................................................
S 2.0 M ethodol ogy................................................................
' 3. 0 R e fe re n c e s......................................................................
S 4.0 General Description............................................................ 1 4
5.0 R es po nse Due to S S E..........................................................
'E 6.0 Fluid Hold Down Forces.........................................................
'O 7.0 M om e nt Capacity...............................................................
n
- ~.,
8.0 S h e ar C apacity.................................................................
9.0 Freeboard Clearance (Sloshing Capacity)......................................... u 10.0 Demand to Capacity Ratios.................................................
4 1 1. 0 S urnm ary......................................................................
- 12 Re fere nce s................................................................... G k e h u t s-+
Pr
'EL:9 e ~s.t. Cmy.4%
I &ta W 6 he.re C n*y= c.
t 1
l l
l
ENGINEERING WORK SHEET Cric Nzaber: EQE Ctic. Ns. 52308.04-C-003 Rev.I Add.N/A Sheet: 3 cf 14 Prepared By: T. W. Hsu p/g Date: 3d-99 M Reviewed By: K. K. Dwivedy K#o Date: 3M-99Y A-46 Evaluation of Condensate Storage Tank (CST) at North Anna 1.0 Purpose The purpose of this calculation is to assess the capability of the Condensate Storage Tank (CST) to withstand SSE level ground motion.
2.0 Methodology The response of the CST to SSE ground motion is calculated. The tank capacity is determined by following the A-46 methodology presented in the GIP, Reference 1. The EPRI report NP-5228, Guidelines on Tanks and Heat Exchangers, Reference 2, which is the basis of the GIP, Ref.
1, was used to perform the tank anchorage calculations with the following exceptions: This CST is an unanchored tank and is enclosed in a concrete missile barrier. There are no guidelines in the GIP for evaluating this type of tank. It is an outlier per GIP. Therefore, the approaches provided in the reports, EPRI NP-6041, Reference 3,
and BNL-52361, Reference 4, were used to resolve the outlier tank.
Reference 2 notes that for resolution of the outlier, the methodology provided in the report, EPRI NP-6041, Reference 3,
may be followed.
The detailed calculations are provided in Attachment A.
The MATHCAD template computes the parameters for Diamond-buckling
- capacity, compressive buckling capacity or elephant's foot buckling, which were needed for analyzing the response of the tank. This template may be also used in A-46 evaluations when the appropriate changes are made to these parameters to. meet A-46 criteria. This computation is performed assuming the tank is fixed at its base.
For the analysis of unanchored tank, the report, BNL-52361 (Ref. 4) was used. The approaches for determining the frequency shift, fluid-hold down forces, and the permissible up-lift of the base plate for unanchored tank were applied to determine moment capacity of the CST (Attachment B).
From the analyses described above, the demand and capacity ratios for moment, sliding, and fluid sloshing were determined.
3.0 References A list of the references is provided on page 13.
4.0 General Description The Condensate Storage Tank (CST) is a large flat bottom tank that is mounted in the yard. The foundation of the tank consists of reinforced concrete that has been poured to bedrock (DWG. Il715-FC-1B-13). The strength of the concrete is called out as 3000 psi (DWG. 11715FC-19B).
Anchorage of the tank to the foundation could not be
y a mmon (K M
~. - - '
SHEET NO. t JOB NO. 'f7 3 c6 Ys VG&c gy ofsv4 DATE 12/2, M CALC. NO. Cr 00} SUBJECT d 6 7, 4 - 4 c, p v. I vm 4/ee CHK'D N DAfE Lt-M5 verified. In drawing 11715-FV-43A-1 a total of four support lugs with anchor bolts to the foundation are shown, in revision 4 of that same drawing, the anchor bolt chairs have been removed. Field verification of anchorage was not possi,ble since this tank is protected from missiles by a reinforced concrete barrier. He barrier surrounds the entire tank. The tank is approximately 26 feet tall, and has a radius of 14 feet. He tank was manufactured by Nooter Corp. It has a nominal capacity of 110,000 gallons. The weight of the tank when empty is 36,300 lbs, and it is 1,048,000 lbs when full.
Calculations determine the most likely failure mode, or limiting capacity of the SCS to seismic input motion. This limiting capacity is controlled by the buckling of the tank shell on the compressive side, and a permissible uplift on the tensile side. The overturning of the tank is resisted by the fluid hold down forces, and the weight of the tank. A sketch of the tank is included.
~
i
EQE INTERNAflONAL
' rig E.
SHEET NO. I
~ ' " " ' " "
3-JOB NO. 52 3 O 8
- B Y2Pf6 O A N^3 tl 9nh5 BY Mwb DATE l?l2'I"I CALC. NO._C -065 SUBJECT d*7 A '4 O E de Isd *&"
CHK'D h 4 DATE it.Lt.8 s L
I du et s a il TGes k.
Tinn en b lost %
an b m efessq \\
nice g. n
p n
G
,/
T
=
- f. Z'1 x 2'Iz a Stig, 2
als '
j w
~
w met.e.at:
Ghati d2 6 G, Gd C.
L v G 6 (,7. )
A 2 G 3,' 6d. de de A 3c, 4
i n-O'~.
.e.o.
'e
?>
Gl: c' g.'
kleg h t E~pty
'a (.,, E co 16 Tu + c. t
/ean J guer L e.g d 1, 0 4 5,2 c o th.
l Took ts unanese ed!
F/e tel ve//.ca+/oo cosla noy be-made es
%4 ts enetased
,' n conc re t e k nete e.
5 EQE NTERNADONAL
-t SHEET NO. f4
'"~~~
7,,
JOB NO. C'2 W *bB YR PC'C' -
At. Annn 7 Antes By w as s DATE efri/er
~
CALC. NO. CrM SUBJECT d *S T A-4t, Eis. l u m + / ;,,-
CHKD ha DATE R-tt-T l
1 5.0 da lea lk + tr I?c.s pon $ a
%e to SsE fhe g o,,.,p s tn //a e of At/n chm ers t A
f r e s.c n f s SSE
/-ve/
to
-Inc 0./2 taar k
/<syen$e 7
m e r ien.
h1n derts /
P<sp e rs te s -
6 h eif,.
A y g g, 4d. &
B o k s.',
(I'v : Go - 7 e 4 s.'
(7, E=
2*) x ic o y o.'
So Ms:
nica e
~
)
/r t -
Th e kir k Io nom Inat/y kef He 'g% af caja ef 4 ( caua,,. via,n fivrd 9/A wem
- 4. t y/c.oe r.f
,e +,e5)
C. 914 ( Ild,000 ga l) : n' E'h w ha e 2 l.7 t
7h e-st orm a l w s 4.c r leve t l*, # e t en ks Is kep t at 29 7 5 '.'
The 1an k botto m /s at 372'
//9 S-f C - Jz 6 -15 )
( Ow G-
/
2 9 7 ' 5 " - 2, y - 2 5 '- 3 "
f use w& lav e,I :
2 s ' - 3.'
j)
Arts en m an-1 7ie+ a <i i e s,p,,,s e e /<a/n1/en.
1s 4h -
6 m m rsq
+he te<n Ic
/s
// red a+
dh
- lurse-Th e lre f vency d'.e /cJlA f*eC-l 45 :
l e 'z ea fra + e rp
[re ;
15.4 7 h 3
c-EQE WTERNATONAL
$M Q?
~ ~ ~
SHEET NO. 7
\\lbIld ;
JOBNO. 623O G*
B
^/ Ao,j A T A,0 /r 6 BY WW 6 DATE /7/Fi/H CALC. NO. C-DO}
SUBJECT d 6 7~
' 4 - 4 c, Es, /s.1/on s CHK'D N DATE t~t4t Af h hi O
V C C d sv1p>1 g g h b VA4 Y (C
glau t4C f
b e p cie cn ra
- 1. a s u,,,,,
vec
/ues wse r
Je c o e pid e<<d in c, des fa acecas+
for Yhe 7
una neh a<c s es,,si+/--
~7 E ls y 6 l
f f( L, y Mi en e nc /gd 7her ped 6,7 e c +m I a c c e lem f/ae
{s sE ) ac co, s b
-t w - e.,,
a bes+
2 h -?
a r, d noha.
h G */o d w,yry,
S4-6 3zg
.)
At Z */o do m ia,
% : 6 42 ng 4%
da.,,p re,g
/s I c 5 Y/*,"q + o:d to %:
a b e.i r C ~5 5,.*
)
.sz
/
To M 8aa p/eg
, "5 (4 Q _lcs (.tr)
~,
l leg I o
\\=5 (.azi 1 -g (z%> - ig (s%)
t c5 ( e i =5 (5)
$(.4zi-to3(.tz) l l e,; (4)- l e5 (c),
I leg (x) - 15l.tz)
=
5 z)- t ey(5) i l
1 l eg ( x) =
,cz sa 4 1a5 (.1z5 e c.4 co u l
.wus d*
10
- 0.b h
E EQE INTERNATONAL
,.g,
""" ~
SHEET NO. T JOB NO. s 2 5 cA.MB VE PEO BY MW$
DATE IT/78 N CALC. NO. C'005 SUBJECT
- C67, A-4(, Esa [ va. 4/c a CHKD DM DATE i t.-u 5 F< o -
g,e n, n m. o t A,
- re sp,,s 4,.d m o m,,3 t
%+
+ h / S.
l ae v o I o [
e c e l e-/ % f /c e
/5 '
a 2 L 77 /t.jc;p,
M g, i
1 24 i<
\\(g g,
i L.. e F/v'd h /d - Dou ro<ee s
\\
~
6"./2 2 i
1 for
/ e l.
4, S er e t/e n
.Z f r o.itd es a me,hertsm mp.s f*e f/* n c$
fluid hols' down foscaS fn ee n do 1
.un a n - n o<ri + <,4 :
7 S. 3 p, ( m, + M eF [,
he/. 4, e Tl:
2 p
p,y g
,, 6 2
l I
f, = fic> ca ble W h e.' c '
ml.n i m a m.
f re s sarc ps, - a.4
- v3 7
=
l0. tG a
- t (sce H. 4) i sN-L Es+r o.a t )
m e.S l
r.11 g 5,
- 4. t ee o
=
H1 y =
0*y e}* ;
{ 5 e} l* 3 /15)
- 7 5 2 '" k,'n f
p Li N
l 3 o )(. ? g) 2 C 449 I"'A/ra, 2
M O
PW 7'f.
4 A
Sp-ha<r z o ta l e e.,,paa,., a,9 a l ma,, p reis e
+,nuon In
'th e hase f.'es / 4 h
I Y'
1 PW 2k rz i s c)l ZG)
(4M)k F
Zk
/t Bin
E EQE MERNADONA1 a7
.?.
SHEET NO. 9
"'"~
JOB NO. 5 2 3 0 ff-B VEP(d BY D1 k/ 6 DATE T2/7:N CALC. NO. U 00} SUBJECT d 6 Ti A - 4 6-Eda loc 4/Ed CHK'D h DATE '1 -M -U Flui d hid-Dowa l~a rc e s (con.)
~
- ig b/O)i3(l4) 2
/< =
m *I G. t s 3 (c.=) t)
)
l 33.3 Cg - c. 2 st F lu td h ab/ - do a n foi e a.
4 -t C=c,e-G Tg-m
(, tu a w H a. I a x /s )
b t er. zoc (c))} i I
2
=
2 (so.sssh (p.,3 2 f 6. 4 c,, *)
0-IS to h/in fc l'Isid he /d. alows fa <c a T
a.- 1 5' G4 c=o'
= {z ( E.nt.vib (c. 752 r c. 4c,9 t c. ? ar (C)f C. /S *l. f f. *2 E 4. ? 6 to S )
.=~
~T g(
i.a" n
O 15"L- [ t,"LO r, 0.'14fe l.t-D O.V1& %
"I'.pe' 5
O. \\*14 t, ~
w*
' /,,,
. O. cot'lV'
- t*',
.j i
R cr le ren e o-A ra e com n, en och &
// m r iin =j Yhe
+ o fa /
vf llt I
het h4 to fe ss than 0./ l,
& ere L. / $
yl!l t e d lwe f s'h a f Y/'c h er 6 *- pin fe.
l- *'5 j
+h e
- c. / ('LO) : 7..*O :o,,
r/aw en c.s, e Mo*m z; ig J ya be
/r.sto,
/&
w ///
& e-c on s e-<v!cs WJg. ly l/syyif p al 4"O he AbeJ+
'l2 c$
4his ar 0
- 6 to, % c.assa M <dt% LLA 0 9%% vs's L h
F M
gg,, EQE MERNATONAL SHEET NO.
It
~ ' ' ' ~
. '? \\
JOB NO. G Z E o E>-NB VEPc6 BY he ws DATE 1z178/9e CALC. NO. C-OD3 SUBJECT d67e
/f -4G F4 /va f/cd CHKD hH DATE G-4 -t Pf at d ho /d de. so
/a/ee a-l,$~c.60 /n
'T, = C.is 2 { I. 7o +.zo e (.rs))
f T.fg.
- 5. /C 4 l'// n A94; d./ G 4 - d /5(p : ~.O.co t 4 //n
'1.O da les la 4
/r1os cro -f de ya et J.,
A tla chm e n -1 8
pr sen15 6t e-m o m e,,+
c apa esdy for Ylfe f Mn k /rp 9 ft e unct ne/sc;we c)
C C mfJ-fx f/"o n $
u f e rm / 5 s / b i o-vf/'l+
Gf4tw.
Th e sn o,u / m a m
/s
//m i + d ter C-80in.
offs y /e e e m a n t-c l +/re ten k 6h t1, c/rol the
\\
'Th -
w e / g /r t m /cJfnfec) lo !(cwM uplil&
Jo/c es, e
/sa sa y e an
/,re u deal, j
(2.e l 4 7 a /dm //nes ts,
//m / 4 ed -t c fta e41/y ccfn er$.,
T/s e e
o{
JJa e a o np > 1 ea bJe 4 l/Mp S Nm3 7z%
/n a e e a <dene a-w i 9, 2e / /.
\\
See n, Ar/n e-/snr en t 8:
/Vicy=
2 wz.
le-k<p.
l l
Y l -
t i
E EQE INTERNATONAL
$s v7
' " ~ " "
SHEET NO.
IL JOB NO. 6 2 E CS 03OB
\\/F Pld BY /+f ^> $
DATE / 7/ ~//4-CALC. NO. MOO} SUBJECT d67, A -4 G E w / sa V /, e CHK'D DM DATE ITA E #5 L
80 Ce lea Inte Shea<
Cepa eth 6 ll dia,9 n
/s kud 6hea<
c faca7 c <,
~' n r llvid honzen do I made e l 'c.sfan o :
(ccF)fP,(k(Z')
( Gzp)
\\l eg m
{ o.S s-) f 10.1 Sj (tr /46to,*)\\
=
so. >
494,990 /6
)
495 x cf. o da les la d o
,c,,,,,,tca,g c j a a sa,,ce
{ S lo sisig )
s
~Th e lrcebca<d e lea san e e
's
/'rhen as he dis fence
+he llvtd
$ssl ace 1 es 4h - f ose f-w h ese h.e f us e e e
'h e so o l 6J'lmee-is a t ex cfnfesee e l 0 9 /z a
[r c<n y n.e
+arsk e.rn M r//ne.
He: 2, ces(sh,~'{-cas{ sin.n{.) cas (sin ~'f 7 ))-cas(sin ~'(hg) 26 l H 5.'156' ~ e Ilus
- 0. valla ble it etybi he /ra de> <>, e : 26 '-2S L3"= 9 '
l S~l ft.
- l-I n ilal,j, :
. 7 '5G
- 1. 7 6 c
~ a
O - - ---- eweiweeniuo woax sweet CeIc Nxmber: EQE Calc. Na. 52308.04-C-003 Rev.I Add. N/A Sheet: fl. cf 14 Date: 3- -99 Y Prepared By: T. W. Hsu 7/f/[ Reviewed By: K. K. Dwivedy ///# Date: 3$-99" A-46 Evaluation of Condensate Storage Tank (CST) at North Anna l l 10. Compute Demand / Capacity Ratios at the SSE 1.evel 10.1 Moment (Overturning) D/C = 2677 ft-kip /2672 = 1.00 (OK) 10.2 Sliding D/C = 261 k/495 k = 0.50 (OK) l 10.3 Fluid Sloshing i l D/C = 0.586 ft/1.5 ft = 0.39 (OK) 11. Summary The CST is acceptable for sustaining a SSE level earthquake using USI A-46 criteria, provided certain minor programmatic deviations listed below are used: (1) Credits were taken for some minor frequency shift and fluid hold-down forces to determine overturning moment capacity for the unanchored tank. Fluid hold-down forces were conservatively estimated. (2) A minor up-lift of the unanchored base of the tank was used while determining overturning moment capacity. The above two approaches, (1) and (2), were taken from Reference 4, because no such guidelines are available for unanchored tank in the GIP.
M EQE MERNATONAL C$ ~ ~ " ~ ~ SHEET NO. G JOB NO. 62 346 Ob8 V Ek(I BY W6 DATE 2 /7M ' CALC. NO. UD SUBJECT M T. ' 4 - 4 c. Eila Iu4 f/* A CHK'D %K DATE tLM*Y 12 References j ~ 1 SQUG,1991, " Generic Implementation Procedure (GIP) for Seismic Verification of Nuclear Plant Equipment," Rev. 2, Corrected 6/28/1991. 2 EPRI,1991, " Seismic Verification of Nuclear Plant Equipment Anchorage (Revision 1), j Volume 4: Guidelines on Tanks and Heat Exchangers," Revision 1, Volume 4, EPRI NP-5228-SL, Electric Power Research Institute, Palo Alto, CA, Final Report, June 1991 3 EPRI, "A Methodology for Assessment of Nuclear Plant Seismic Margin (Rev.1)," EPRI NP-6041 SL, August,1991. 4 Brookhaven National Laboratories, " Seismic Design and Evaluation Guidelines for the Department of Ener4 gh-I aste Storage Tanks and Appurtenances," BNL-52361, Hi W SNfob w 19 % j 5 EPRI,1994, " Methodology for Developing Seismic Fragilities," EPRI TR-103959, Electric Power Research Institute, Palo Alto, CA, Final Report, June,1994. O 6 EPRI, " Add-on Seismic IPE Training Course," Course Workshop Notes, Dallas, TX, December 1,1992. 2 Stone and Webster drawings as noted in the calculations 8 American Iron and Steel Institute,1979, "Useful INformatin on the Design of Plate i [O Structures," AISI Plate Engineering, Data - Vol. 2, Part VII, Anchor Bolt Chairs,1979. l 9 Galambos, T.V.,1988, " Guide to Stability Design criteria for Metal Structures, " 4th Edition, ve c:-ta John Wiley and Sons, New York, New York,1988.
- 1. Manos, George,1987, " Earthquake Tank-Wall Stability of Unanchored Tanks," Journal of 0
w O'A Structural Engineering, Vol. I12, No. 8, Aug.1986. H Kennedy, Short, and Tong, " Midland Seismic Margin Earthquake Structural Evaluation, e.w Volume VI, Borated Water Storage Tank and Foundation," for Consumers Power Company, November.,1982. H Stone and Webster Corp., " Specification for Field Fabricated Storage Tanks, for North Anna Power Statoin, Virginia Electria and Power Company, Richmond, Virginia," Revised, June 22,1978. .,J j
f M 9, EQE INTERNKIONAL SHEET NO. it ""'~ c,3 l
- 5.
- JOB NO.52 E d#MB d E PC C
- BY MVS DATE /r/ir/e CALC. NO. C-003-SUBJECT d67.
A - 4 (, E v'e / v4 h"^ CHKD hw DATE R 4"% l To Ya l fagas 0 /f. R ac sforss e Compa fa %s str,n e,,1 tapactiy c--ps +a n os g-8, o o J l 1 l e
+ Condensate Storage Tank, -Response Computations GIPRSP.MCD 12/27/95 A-46 Evaluation g,p Page 1/9 l CST A 46 Evaluation: This MATHCAD tempic computes the response parameters which are needed in performing a tank evaluation per EPhi.NP 6041 methodology for vertical tanks. This template may also be used in A-46 evaluations when the appropnate changes are made. For A 46 evaluations, no fluid hold forces should be neglected, and the buckling capacity should knoced down by an addtional factor of safety of 1.25. Inputs required are an assumed earthquake, and the necessary tank parameters. Two non-dimensional parameters are also needed for the calculation of the diamond-buckling capacity, and for the calculation of the compressive buckling capacity (elephant's foot buckling). Base units are feet, seconds, and pounds. The computations in this template incorporate the latest recommendations given in EPRI TR-103959. l Derived Units: kips 1000 lbf hzs1 sec-3 ksin1000 psi Define Tank Geometry: R := 14 A NominalInner Tank Radius Rd.= 28 A Dome Radius (estimated) H :=25.25 A Height to Water Elevation tb := 0.3125 in Bottom Plate thickness j t d := 0.25 in Dome thickness f f f R m' d I I Clearance between peak of dome to spring line d := R '.1 - cos asin pdm h a i t nrings = t Number of different diameter rings composing the tank shell t, = 0.25 in Shell Thickness at each ring from bottom of the tank to the top. Hr = 26.0 A - Height of each ring measured from the bottom of the tank to the top. 3 Define Anchorage Details: n := 0 Number of equally spaced anchor bolts $ = 0 in Anchor bolt diameter
I l { ~ l Condensate Storage Tank, Response Computations GIPRSP.MCD 12/27/95 l A-46 Evaluation m, A. Page 2/9 Define Material Pronerties: l E, := 2910' psi Young's Modulus for Shell Material (A285 Gd. C) 6 Eb :=2910 psi Youn0's Moduluis for Bolt Materia (A 325)I 3 ye := 3010 psi Effective yield stress for shell material, GIP procedure uses minimum specified of o 30, IPEEE approach uses effective yield of 45. y i := 62.4 Ibf Unit Weight forliquid y ft Y s := 490 Ibf Unit Weight for shell material y ft 5 x g = 3.2510 psi Bulk Modulus of fiuid,3.25x10"5 psi for water 4 l l r l
Condensate Storage Tank, . Response Computations GIPRSP.MCD 12/27/95 g, g Page 3/9 A-46 Evaluation Comnute averaae shell thickness. effective thickners. and total shell helaht ) i := 1.. nrings H, := { Hr, H, = 26 A t Hr, tsyg = 0.25 *in t,yg := H, tavg + min (t) tefy:= 2 t gy = 0.25 *in e Define Dimensionless Parameters from Refs. 2 and 4: Obtain Cwi from Reference 2, Table 7.4: Parameters needed for table 7.4: j H Ieff g =1.804 7 = 0.0015 Read-off value for Cwi: C wg = 0.10 Tank Weicht and C.G. Components: Note that the distance to the component C.G. is measured from the bottom of the tank. (Shell) (Bottom Plate) .i = 1..nrings 2 Wb := (n R ) tb'T s W, = 2 x R 7 s Hr t; g Wb =7.857 kip s = { W, W i tb X W = 23.347 kip b: 2 s Hr Xb = 0.013 A l cg, '= { Hr,-(i 5j) 7 i {W cg, i Xs w, X, = 13 A l t [.
II Condensate Storage Tank, . Response Computations GIPRSP MCD 12/27/95 l A-46 Evaluation p, y Page 4/9 (Liquid) (Dome) f 2 w :: R Hyg Wh:(2sR'h)td'Y s d d W = 970.179 kip Wh =6.737 kip Xw*- \\ a := asin L / Xw = 12.625 A 'W I Xh.= H t h d-R* I-1~ s d 3a R* teff { ~ R j* X * - 28.469 A Fluid Hydrostatic Pressure: P,g := y j H Maximum fluid pressure occurs at base of tank P, = 10.942* psi i l 1 l I i I i i
i l Condensate Storage Tank, . Response Computations GIPRSP.MCD 12/27/95 A-46 Evaluation gg Page 5/9 l Compute Horizontalimpulsive Mode Response l impulsive Mode Frequency: '0.127 y, C g := C wg-(Reference 1, equatior} H-2) t Cg Eg L s I :* 2 x H\\(Ts) I I fg = 10.423 hz Shift frequency Per. Ref. 7 to account for the unanchored condition of the tank fmin := 0.75 fg fmax : 1.05 fi fmin =7.817 hz f = 10.944 hz max InDut Spectral Acceleration at this frequency, damping for the impulsive mode is taken as 4% in accordance with GIP rules. From the design response spectrum, at 5% damping the spectral acceleration is about 0.32. At 2% damping, the spectral acceleration is abouut 0.42. Using log-log interpolation between these known values gives a spectral acceleration of about 0.34g: Sah:=034g Compute Weight of fluid effective in the impulsive Mode, and its corresponding C.G.: I* _H 3 R W ;.= if (e., gn. 3500-1,-2,-3,4) 5, ^ 7 R 'H - w 1.732g (e., gn. 00-1,-2 -3,4) X g.= i - 52,0.375,0.5 - 0.188-H W g = 735.646 kip X ; = 9.993 A Compute Impulsive Mode Base Shear and Overturning Moment: S V g:= a ( Wh + W, + W g). (Ref.1. Eqn. H-3) 1 l Ss l' M g := g -(W Xh t W gX,+ W; X;) (Ref.1 Eqn. H-4) h V g = 260348 kip 3 M g = 2.66810 kip A l l )
p l l Condensate Storage Tank, Response Computations GIPRSP.MCD 12/27/95 A-46 Evaluation p, & Page 6/9 Estimate hydrodynamic fluid pressure on the tank at the bottom plate Sah Wg Xg I P g :: (Ref.1, eqn. H-8: Note this is conservative at fluid 2 136 R H de ths less than about 0.15'H) P g = 1.43 psi Comnute Horizontal Convective (Sloshina) Mode Resnonse: Convective Mode frequency 1 3 1 a) f := e R f = 0327 hz e 102ut Spectral Acceleration at this frequency, damping for the convective mode is taken as 0.5% in accordance with GlP rules. From the design response spectrum, at 0.5% damping the spectral acceleration is about 0.05g. Sse.: 0.05 g Compute Weight of Fluid acting in the convective mode and its C.G. location We := 0.46-tanh 1.835 W* (Ref.1. eqn. H-13) cosh 1.835- - 1.0
- 9"'"
1.835 sinh 1.835-We = 246.784 kip Xe = 18.158 ft Compute Convective Mode Base Shear and Overtuming Moment: Ve: -W (Ref.1, egn. H-13) e 8 i M e.= WX (Ref.1, egn. H 14) e e 8 Ve = 12339 kip M =224.06 Akip e i
Condensate Storage Tank, Response Computations GlPRSP.MCD 12/27/95 A-46 Evaluation m, pc Page 7/9 Compute Hydroufnamic Convective Pressure at fluid depth "y" y := H This maximizes the hydrodynamic convective pressure coe(l.835H-y) 0.267 W S e \\ R / w Pc: g.R H cosh 1.835 H ( e., eqn. H-16) R a P e = 0.019 osi Compute the fundamental mode fluid slosh height h, := 0.837 R (Ref.1, eqn. H-17) S h, = 0.586 ft Compute Vertical Fluid Mode Response. Compute the vertical fluid mode fundamental frequency i
- 3 1
71 / 2 R I f :: FH' ( e., eqn. C3500-13) tgE,%J y g e car.e.w 's %, h ye.- g muosi sc. f = 12.136 hz
- M % - uns,,sme, M sS u em 'a y
sw Input the horizontal spectral acceleration at 4% damping (for the fluid response in the vertical mode), and compute the corrresponding vertical spectral acceleration as 2/3 of the horizontal response. Note that the North Anna Design Basis curves are at a maximum acceleration between about 2 and 10 bz. S,y := 2S 3 ah Compute the hydrodynamic vertical fluid response mode pressure, based on a tank on a rigid foundation, note this pressure is also at y=H which maximizes p. S rx /H-y[ Py := 0.8 y g H ay-ceg-(H/, Py = 1.984 psi
r l Condensate Storage Tank, -Pesponse Computations GIPRSP MCD 12/27/95 A-46 Evaluation g,g Page 8/9 Combine Individual Mode Responses to get Total Seismic Demand Base Shear: tot :=}(V g yc) 2 V Vtot = 260.64 kip Overtuming Moment 2 M tot: (M i+Mc) 3 M tot =2.67710 kip A Fluid Pressures: sh ::jPj, p Total Horizontal Seismic Response 2 P c P cmax := Pst + Psh + 0.4 Py Maximum and minimum compression zone pressures at the time of maximum base moment. (Ref.1, eqn. H-22) P cmin ::Pst + Psh - 0.4 P y Maximum and minimum tension zone fluid pressure at the time of Ptmin := Pst - Psh - 0.4 P y maximum base moment (Ref.1, eqn. H-23) Ptmax ::Pst - Psh + 0.4 P y Minimum average fluid presssure on the base plate Pavg::Pst - 0.4 Py at the time of max: mum base shear (Ref.1. eqn H-14) P cmax = 13.165
- psi Ptmin " 8 718 *p53 Pcmin = 11.578 psi Ptmax = 10.305 psi P
= 10.148 psi ayg Expected minimum total effect weight of the tank shell acting on the base at the time of the maximum moment and base shear-Wte : (Wh + W )-(1 - 0.4 y.12 g 20 (Ref.1, eqn. H-26) Wte = 29.122 kip Wh =6.737 kip W, = 23.347 kip ~ 7 t/
Condensate Storage Tank, Response Computations GIPRSP.MCD 12/27/95 A-46 Evaluation
- p. A Page 9/9
References:
~
- 1. A Methodology for Assessm'ont of Nuclear Power Plant Seismi Margin (Revision 1),
EPRI NP 6041-SL, Fin 61 Report, Electric Power Research Institute, Palo Alto, CA, August, 1921.
- 2. A.S. Veletsos, " Seismic Response and Design of Liquid Storage Tanks", Chapter 7, Guidelines for the Seismic Desian of Oil and Gas Pioeline Sylitml. ASCE,1984.
- 3. ASCE Standard and Commentary - Seismic Analysis of Safety-Related Nuclear Structures, ASCE 4-86, ASCE, September 1986.
- 4. Buck!ina of Thin-Walled Circular cylinders. NASA SP-8007, National Aeronautics and Space Administration, August 1986.
- 5. Newmark, N.M., and Hall, W.J., Develooment of Criteria for Seismic Review of Selected Nuclear Power Plants. NUREG-CR 0098, U.S. Nuclear Regulatory Commission,1978.
- 6. Methodology for Developing Seismic Fragilities, EPRI TR-103959, Project 2722-23, Final Report, Electric Power Research Institute, Palo Alto, CA, June 1994.
- 7. Bandyopadhyay, te. al., Seismic Design and Evaluation Guidelines for the Department of Energy High-LevelWaste Storage Tanks and Appurtenances, BNL 52631, Brookhaven National Laboratory, January.1993 i
i l 1 l l
\\ Condensate Storage Tank Moment Capacity CSTMCAP.MCD 12/27/95 1 CN-TK-1,2-CN-TK-1 Attachment B, Page il 5 Aw=ahment 4. North Anna HCLPF e=lenI=+Iana Condensate Storage Tank (1 CN-TK-1; 2-CN-TK-1)- Moment Capacity Computations Overturning Moment Caoacrty ~ The overtuming moment capacity of an;hored tanks is computed in an iterative process. EPRI NP-6041, A Methadainav for A===== ment of Nurimmr Power Plant Seismic Marain (Revision it appendix H, contains procedure for calculating the overtuming moment capacity of anchored tanks. The procedure in EPRI NP-6041 was extended in BNL 52361, Seismic Desian and Evaluation Guidelines for the Daaartment of Enemy Hiah-Leve!Wasta Storane Tanks and Anourtenances to I include a methodology which accounts for an unanchored tank. The Condensate Storage Tank is unanchored; however, it is partially enclosed by a concrete missile shield. The concrete missile barrier will prevent displacements on the order of feet, however, it will not prevent uplift of the tank, nor wi:t it preclude sliding. This Mathcad template follows the procedure in BNL 52361 for determining the overtuming moment capacity of unanchored tanks. This template also computes fluid hold-down forces for unanchored tanks. The moment capacity is sensitive to the permissible uplift, d. caution should be used in selecting d, especially when attached piping may rupture due to tank uplift. Derived Units: kip 1000 Ibf hze l sec-3 ksin1000 psi l Define Tank Parameters R := 14 ft Tank Radius ts := 0.250 in Tank wall thickness at tank shell to baseplate weld tb := 0.3125 in Tank baseplate thickness at tank shell 3 i E, = 2910 ksi Young's Modulus for the Tank Material 9, = 30M Effective yield stress for tank material v. 0.30 Poisson's Ratio Define Fluid Pressure Parameters (from resoonse calculation) Pcmin := II.6 psi Minimum pressure in compression zone at the time of maximum moment Pcmax := 13.2 psi Maximum pressure in compression zoae at the time of maximum moment Pavs := 10.15 psi .. Average pressure on the base plate at the time of maximum moment Ptmin.= 8.72 psi Minimum pressure on the base plate at the time of maximum moment WTE := 29.12 kip Expected Minimum Total Effective Tank Weight I l
Tank Moment Capacity CSTMCAP.MCD 12/27/95 N TK 2 N Attachment B, Page 2/ 5 Calculate Flud Hold Down Forces icl cwing derivation in Ref. 2. Section 5.10.2 1 1 2 '3 f ye ,2 o,tb) t 8 R y d3-(1 - v ) y= 2 x :: 4 4 ) 1 i ) Note that the moment capacity of the tank shell to baseplate may also control y *,,;ggy f the plastic mome'nt capacity of the lower shell to baseplate connection. This should be checked. For a double fillet weld (weld on both sides of the tank), 2 i O ye b that is at least as large as the tank shell, the weld will not control. g M wx o,t: y p Fh: 2x R + Tfn d2 P yg-(Mpb + M w) Y '""""Qension hold-down force at the neutral axis a p Tension hold-down force at the point of.naximum uplift. T f 6).=}2 Ptmin*(Mpb + M, + F 6) as a function of the upJift displacemen' d. p 3 1 1
r-l l Condensate Storage Tank Moment Capacity CSTMCAP.MCD 12/27/95 1-CN-TK-1, 2-CN-TK-1 Attachment B, Page 3/ 5 Comanta the Buc4rlina 6-ity of the Tank Shelt axial stress limit at the onnet'of elephant's foot buckling: S g:= Ri f 1 S 3 = 1.68 p400 I U ye I 2 S 0.6 E, fPcmax R1 } 3, 1-(Ref.1, egn. H-27) 1-p := f i o 1 o ye, j l.12 + S g "j ( S 1+1 j
- sj o = 1.54410 psi p
Obtain diamond bucklino coi#,cient from Reference 3. Fiaure 6: Parameter needed for Figure 6: 2 cmin f R1 E, { 0.181 Ay.= 0.13 Read-off value for delta-gatima diamond buckling capacity based on NASA SP-8007: 1 R +=gg 4 y = 1 - 0.73-(1 - e ) E t, s o b = (0.6 y q)- c R 8 o b = 1.63410 psi c Compressive shell capacity, factor the computed buckling factor by an additional factor of safety of 1.25 in accordance with Ref.4: F ;p :1.25 g t: cb<(0.9 o ),o b.(0.9 o )] p i B II[0 C p c p SP l C B = 2.779* t 1 l
i Condensate Storage Tank Moment Capacity CSTMCAP.MCD 12/27/95 1 CN-TK-1,2-CN-TK-1 Attachment B, Page 4/ 5 Comnnte dimensionla== narameters for solutinn scheme Note: the angle Beta represents the angle to the neutral axis, it is assumed prior to the start of the algorithm. + ~ C (p) := sin (p) + (x-p) cos(p) C (@): ' 1 2 I + cos(p) ~ C (p).: C (p) :: sm. (p) + (x-p) cos(p) 1 - cos(p) 4 3 1 - cos(p) Comoute Maximum Comorensive Stress in the Tank Wall as a Function of Unkft Disolacement d. and the anale to the neutral axis b AT f 6) ::T f 6)- Tfn AT f 1.6 in = +7 (OK, See p. 7) WTE C g(p) Cm(E.0) : +Tfn p C g(p) + ATf 6) C (p) ) 3 2R 2 2 2 m(p,6) C (p) R + Tfn R 2 sin (p) t AT f 6) C (p) R M SC(p.6) ::C 2 4 Assume a beta value. and define a oermis==hle unhft disniacment to bacin solution: l Ps 2.855 Su 0.8 in j ( = 1,1,1. 3.1 R(,5).: Cm(G,6)- C B $ := 2.855 talo? angle : root (($,5),$) I angle = 2.855 uI (C.) in) 6 , C,2 in) 5 go ~ ( Einal Results: Eq 12 b) Moment Capacity. kip 0 g 3 T M SC(angle,5) = 2.67210 kip ft Uphft Length: -$'10', Ibf C T f 6) = 154324 7 Tf6) L :P L = 17.698 in tmin Uplift Displacement Should Be Limited to: 6 max := 0.1 L Reference 2, eqn. 5.19 6 max " l 77'in
l Condensate Storage Tank Moment Capacdy CSTMCAP.MCD 12/27/95 1-CN-TK-1, 2-CN-TK-1 Attachment B, Page 5/ 5
References:
- 1. A Methodology for Assessment of Nucioar Power Plant Seismic Margin (revision 1),
EPRI-NP-6041-SL, Final Report, Electic Power Research Institute, Palo Alto, CA August,1991.
- 2. Bandyopadhyay, et. al, Seismic Design and Evaluation Guidelines for the Department of Ene7y High-Level Waste Storage Tanks and Appurtenances, BNL 52361, Brookhaven National Laboratory, Associated Universities, Inc., Upton, New York, January,1993.
- 3. Bneklina of Thin-W "H Cirentar Cvlinders. NASA SP-8007, National Aeronautics and Space Administration, August 1986.
- 4. SQUG, " Generic Procedure (GIP) for Seismic Venfication of Nuclear Plant Equipment " Rev. 2, Torrected 6/28,1991.
b l l l l '}}