ML20199E323

From kanterella
Jump to navigation Jump to search
Rev 0 to TMI-1 Cycle 12 Colr
ML20199E323
Person / Time
Site: Three Mile Island Constellation icon.png
Issue date: 10/08/1997
From: Jaffa R, Luoma J, Mccarthy J
GENERAL PUBLIC UTILITIES CORP.
To:
Shared Package
ML20199E315 List:
References
TR-110, TR-110-R, TR-110-R00, NUDOCS 9711210164
Download: ML20199E323 (33)


Text

{{#Wiki_filter:- - - - - - - - - - - - _ - - - - - O TMI-1 Cycle 12 Core Operating Limits Report TOPICAL REPORT 110 Rev.O BA Number 135400 TMI-1 Cycle 12 Reload Task Force October,1997 APPROVALS;

k. ~[kFFA-NS lo-G 97 Originator

/ V // Date Jb+1e Aerdy/[%7)us 'h eo[/6/1? .J, b. L, vo M A / A Ne- /* ' [97 c Cycle 12 Reload Yashforce Chair %tn Date &,2. Box.6 fk0 10l7l97 Manager, Nuclear Fuels Date E.7 OAwac/@ GJA "No Director, Engineeridg Support Date FM*C /0lf f2 / R.T.Eo ?asso TMCoacnostr PR61c lo/8/9~7 Plant Revi.ew Gro'up' I Da'te' ( ) fDR D 05 00 89 P PDR. ___-_--_______---____A

4 '.~ TR110 4 Rn.O l' age i of'32 ABSTRACT This Core Operating Limits Report (COLR) has been prepared in accordance with the requirements of TMI-1 Technical Specification 6.9.5. The core operating limits were generated using the methodologies described in References 1 through 13 and were documented in References 14 through 21. The Full Incore System (FIS) operability requirements contained within describe the number and location of Self Powered Neutron Detector (SPND) strings thai. must be operable in order to monitor imbalance and quadrant tilt using the FIS. Quadrant tilt limits for FIS, out of core detector [OCD] system and minimum incore system [ MIS) are given in Table 1. Table 2 is discussed below with Figure 7. Rod position limits are provided in Figures 1 to 3 to ensure that the safety criteria for DNBR protection, LOCA kw/ft limits, shutdown margin and ejected rod worth are met. Imbalance limits for FIS, OCD and MIS are given in Figures 4 to 6. COLR Figures 1 through 6 may have three distinctly defined regions: 1. Permissible Region 2. Restricted Region 3. Not Allowed Region (Operation in this region is not allowed) Inadvertent operation within the Restricted Region for a period not exceeding four (4) hours is not considered a violation of a limiting condition for operation. The limiting criteria within the Restricted Region are potential ejected rod worth and ECCS power peaking. Since the probability of these accidents is very low, especially in a four (4) hour time frame, inadvertent operation within the Restricted Region for a period not exceeding four (4) hours is allowed. COLR Figure 7 indicates the LOCA limited maximum allowable linear heat rates as a function of fuel rod burnup and fuel elevation for Mark B8 and Mark B9 fuel. Bounding values for monitoring these limits for the current cycle in terms of fuel batch, cycle burnup and axial detector levels are listed in Table 2. i

4' TR 110 Res. O Page 2 of 32 COLR Figure 8 provides the Axial Power Imbalance Protective Limits (APIPL) that preserve the DNBR and Centerline Fuel Melt design criteria. COLR Figure 9 provides the Protection System Maximum All sable Setpoints for Axial Power Imbalance which combine the power / flow ud error adjusted axial imbalance trip setpoints that ensure the APIPL of Figure 8 are not exceeded. Note: Figures 8 and 9 show the conservative generic limits and setpoints currently installed on the plant hardware. The cycle apecific values have been verified to be conservatively bounded by the generic values. - Enclosure 1 contains operating limits not required by TS. The core . minimum DNBR and the Maximum Allowable LOCA Linear Heat Rate limits are monitored by the Process Computer Nuclear Applications Software as part of the bases of the r equired limits and setpoints. The minimum boron volumes and concentrations for the Boric Acid Mix Tank (BAMT) and Reclaimed Boric Acid Storage Tanks (RBAST) are the boron levels needed to achieve cold shutdown conditions throughout the cycle using these tanks. contains the bases descriptions of the Power-to Flow Trip Setpoint to prevent violation of DNBR criteria and the Design Nuclear Power Peaking Factors for axial flux shape (F"z) and hot channel nuclear enthalpy rise (F"su) that define the reference design peaking condition in the core, s

t TR I10 Res. O Page 3 of 32 TABLE OF CONTENTS PAGE Abstract 1 References 4 Full Incore System (FIS) Operability Requirements 6 Table 1 Quadrant Tilt Limits 7 Table 2 Core Monitoring System Bounding Values for 8 LOCA Limited Maximum Allowable Linear Heat Rate Figure 1 Error Agusted Rod Insertion Limits 9 4 Pump Operation-Figure 2 Error Agusted Rod Insertion Limits 11 3 Pump Operation Figure 3 Error Adjusted Rod Insertion Limits 13 2 Pump Operation Figure 4 FullIncore System Error Adjusted 15 Imbalance Limits Figure 5 Out of Core Detector System Error Agusted 18 Imbalance Limits Figure 6 Minimum Incore System Error Adjusted 21 Imbalance Limits Figure 7 LOCA Limited Maximum Allowable Linear Heat Rate 24 Figure 8 Axial Power Imbalance Protective Limits 26 Figure 9 Protection System Maximum Allowable Setpoints 27 for Axial Power Imbalance Operating Limits Not Required by Technical 28 Specifications DNBR related Bases Descriptions 30 4 /

TRfin [ Rev. O l' age 4 of 32 -

References:

1. GPUN TR-092P A, Rev. O, "TMI-1 Reload Design and Setpoint Methodology," April 22,1997. 2. GPUN TR-087 A, Rev. O, "TMI-1 Core Thermal Hydraulic Methodology Using the VIPRE-01 Computer Code," December 19,1996. 3. GPUN TR-091-A, Rev. O, " Steady State Reactor Physics Methodology for TMI 1," March 12,1996. 4. BAW40179P A, Rev.1, " Safety Criteria and Methodology for Acceptable Cycle Reload Analyses," February 1996. 5. BWFC Doc. No 861172640 00, " Detector Lifetime Extension Final Report for TMI 1," September 1988. 6. BAW 10103A, Rev. 3, "ECCS Analysis of B&W's 177 FA Lowered Loop NSS," July 1977. 7. BAW 1915P-A, " Bounding Analytical Assessment of NUREG-0630 Models on LOCA kw/ft Limits with Use of FLECSET," November 1988. 8. BAW-10104P A, Rev. 5. "B&W ECCS Evaluation Model," November 1988. 9. BAW 10192P, Rev. O, "BWNT LOCA - BWNT Loss of-Coolant Accident Evaluation Model for Once Through Steam Generator Plants," February 1,994 (NRC SER dated 2/18/97). 10. BAW-10222P, Rev. O, "TMI1 2772 MWT LOCA Analysis with RELAP5/ MOD 2-B&W." March 1997, 11. BAW-10084P A, Rev. 3, " Program to Determine In Reactc,r Performance of s BWFC Fuel Cladding Creep Collapse," August 1995, 12. BAW-10186P-A, " Extended Burnup Evaluation," June 1997. 13. Letter from R.C. Jones to J.H. Taylor, Re: Extending Burnup Limit for TACO 3, January 11,1996, 14. BWFC Doc. No 51-1258040-01, " Fuel Design Licensing Report - TMI-1 Cycle 12," September 8,1997. 15. GPUN Calc. C-1101-202 5412-303, Rev. O, "TMI-1 Cycle 12 Final Fuel Cycle Design," November 22,1996. 16. GPUN Calc. C-1101-202 E620-312, Rev. O, "TMI-1 Cycle 12 Maneuvering Analysis," July 18,1997.

A TR llo Res O Page 5 of 32 References (cont.): 17. GPUN Calc. C 1101202 E620 302, Re r. O, "TMI 1 Cycle 12 Reload Core T. H Analysis," April 2,1997, 18. GPUN Calc. C 1101202 E620 326 Re-0, "TMI 1 Cycle 12 Core Parameters," May 19,1997, 19. GPUN Calc. C-1101202 E620-327 Rev. O, "TMI 1 Cycle 12 OLC LOCA-Limited Maximum Allowable LHRs," May 27,1997. 20. GPUN Calc. C-1101-202 E620 337, Rev. O, "TMI 1 Cycle 12 Boric Acid Storage Requirement," September 3,1997. 21. GPUN Calc. C-1101202 E620 338, Rev. O, "TMI-1 Cycle 12 Quadrant Tilt Setpoints," August 5,1997.

TR110 Rn.0 - Page 6 of 32 FullIncore System (FIS) Operability Requirements The Full Incore System (FIS) is operable for monitoring axial power innbalance provided the number of valid Self Powered Neutron Detector (SPND) signals in any one quadrant is not less than 75% of the total number of SPNDs in the quadrant. Quadrant SPNDs 75% WX 85.75 64.5 XY 99.75 75.0 YZ 89.25 67.0 ZW 89.25 67.0 The FullIncore System (FIS) is operable for monitoring quadrant tilt provided the number of valid symmetric string individual SPND signals in any one quadrant is not less than 75% (21) of the total number of SPNDs in the quadrant (28). Quadrant Symmetric Strings WX 7,9,32,35 XY 5,23,25,28 YZ 16,19,47,50 ZW 11,13,39,43 Source Doc.: B86W 86-1172640-00 Referred to by: Tech. Spec. 3.5.2.4.a and 3.5.2.7.a

.p 9-TR110 Rn.O l' age 7 of 3: 1 f TABLE 1 Quadrant Tilt Limits Steady State Limit Steady State Limit Maximum Limit 15% < Power s 50% Power > 50% Power > 15'A Full Incore System 6.83 4.33 16.8 (FIS) Minimum Incore System 2.8 1.9 9.5 (MIS) Referred to by: Tech. Spec. 3.5.2.4 4

h 4 Tu tio Res. O l' age il of' 32 TABLE 2 Core Monitoring System Bounding Values for LOCA Limited Maximum Allowable Linear Heat Rate (kW/ft) Batches 14A,B,C.D Batches 9E,12A,13A CMS O 678 CMS O-301 301 - 387 387 - 455 455 d47 547-678 LEVEL EFPD LEVEL EFPD EFPD EFPD EFPD EFFD 1 15.3 1 14.7 14.6 14.4 13.5 12.3 2 15.6 2 15.0 14.9 14.7 13.8 12.6 3 16.2 ? 15.7 15.5 15.2 14.3 13.0 4 16.7 4 16.1 15.9 15.2 14.3 13.0 5 16.8 5 16.1 15.9 15.2 14.3 13.0 6 16.3 6 15.9 15.5 15.2 14.3 13.0 7 15.7 7 15.1 15.0 14.8 13.9 12.7 i 8 15.3 8 14.7 14.6 14.4 13.5 12.3 Batches 12F,G Batches 13B,D E.F,H,1 CMS 0 678 CMS O - 311 311 - 396 396 - 478 478-561 561 - 678 LEVEL EFPD LEVEL EFPD EFPD EFPD EFPD EFPD 1 11.3 1 15.3 14.7 14.0 13.3 12.3 2 11.5 2 15.6 14.9 14.2 13.5 12.5 3 11.9 3 16.2 15.4 14.7 14.0 13.0 4 12.0 4 16.7 15.9 15.1 14.3 13.2 5 12.0 5 16.8 16.0 15.1 14.3 13.2 6 11.9 6 16.3 15.5 14.8 14.1 13.0 7 11.6 7 15.7 15.0 14.3 13.6 12.6 8 11.3 8 15.3 14.7 14.0 13.3 12.3 Center Assembly, Batch 10F CMS O-89 89-165 165 301 301-500 500 - 678 LEVEL EFPD EFPD EFPD EFPD EFPD 1 14.6 14.4 13.3 11.5 9.9 2 14.9 14.7 13.5 11.8 10.1 3 15.5 15.2 14.0 12.2 10.4 4 15.9 15.2 14.0 12.2 10.4 5 15.9 15.2 14.0 12.2 10.4 6 15.5 15.2 14.0 12.2 10.4 7 15.0 14.8 13.6 11.9 10.1 8 14.6 14.4 13.3 11.5 9.9 The maximum linear heat rate for each CMS level, as measured with the NAS Thermal Hydraulic Package (Display 4), should be less than the corresponding bounding value fro n Table 2 above. - m- - - - - - +- pr 7 7

TR110 R*v. 0 Pag 9er32 l l -BI i ! ' l i, i i ! ', ! ! ' !, ! ' ! - l i i ci ! 4 ;i! i i iiii r g-I~. ' ; i; i r i : iii ,;i; i i i i i i

^

=, J~ M i r-- 7 ii t~

i g-i.. t ; T i

y 4;,- g t r-9 ,, i r, m, _ - _. R _ g _; ; c, a 7 g_ g g q_7 7 t- $

77 -

_r g 7;i;p t-i 1 a - q J_ j ,._7 j ! ! _pj_p_ zw .-_S i i L 1,. ' b3 i t EE ._.O ! ! i i E N r! m i i 1 J ! ! ! N 8 _ g hi 5 I f N \\I ! i I m 7~j i x _ i .i p! I i X i o l N . 5 i .j [_+j;l[ Aj f]g E 7 ~a@ o +!!

h-h, - r i d i i

i 3 1 i i .-, 3 i i 1 -t-e -c N .o n. i \\ -T. g it otE i 3 .: g at r, i 1 7 1 1 M'.s$_+i e i st i -i =-H i a{ t~ t- ' i m-i i

n. 3 F

i-r\\j- ~T i ! i 3 t 7 goj i ii; o i ii A i i~ g " " ] u rTr b! z n i-t ,ri.~!1 oo ii i ii

g y g.m

! ! i ! i 3 ii \\ i. Ew

s e r ig

.\\, E 8 ! t _J. cn.E.o $2 e ! l-E'- l l\\ E *4 + 4 ---t ii, ,i i 1 i y it E i O to b- _+___t 1_, :i ;- 4 u g

Lt ;

3 j 1

j j q_-i 4

-- 1 gN gy e . [.i4l i 9

g q

WoHm t.- g = 7 m - t i 9 u \\,- g es .c 9 H-l t-hs! -h l ~ \\- =8 r

gp-S,

.__g

q_tr, 4

i a E P> g 2 4 \\

  • hz

!!I\\ i \\t E R ! w i \\ k Ew! ~-- i t-i i i i x si i,- da 4 m i, x..a_ ._;_ 2 g q 1-A. \\. o s g r i 4 i N __e_t b]mg;rrnlun'noli !nolnuhui ou nujan nul union no rm on on earnrrn,r,nTm~ o 2 i 8 8 8 R S S S R R J* mod P*leH 10 % P*leolpui

l Figure 1 (Page 2 of 2) Error Adjusted Rc1 Insertion Limits 75 +/- 10 to 678 EFPD; 4 Pump Operation 1'i i liIT T~" ! ~~~~~T~~ "' m,102 Tl +I-I-- i r ~T-110 - I a_.. 1.___ d_ ._4 _._ h_._____g jag I _ j._ 215,1o2_jt__. _ 270,saa,q_ J __i e e _ _1,/ l / go __._.r /_ 252,90,_.__ 11_ / I! 7 fa0-3 ALLOWED / f_ 242,78 j g{_ _ /. _.__ __.g E _4,__ l_ g 7o j REGION / E a0 1 --"l -./ REGION i _/ .._ _.__L = _.___A i / RESTRICTED [_ j E / E 50 b+ 123,4a,g-p/ l p ..J y 2ar,4s E g _._ m no 7-.- / y"-- -+ -- --j 3 g 30 ;; / c 2 Z_.-/ -+ PERMISSIBLE 5--- [-I-REGION ~- -- -i 20 4 ,p 37-_.- r-I ..__.~.. ._,. ] 10 * / a h / . p., wy,fq .g.r ' P'" l Fi l vi 5 Ei f e " r P mi" "i" 4 ;- 1 r e ' Fi ' rt FT O o 0 10 20 30 40 50 60 70 80 90 1001101201301401501601701801M 200 210 220 230 240 250 260 270 280 290 300 I?Y Indicated Rod index, % Withdrawn a ; :- e o 2. H Referred to by Tech Spec 3.5.2.5.b and 3 5.2.4.e.2 [ __-. ---

l 7 a

I

,c ? 5 ,3[= ' u" t. ,A 0 3 b 0 4 [..- y~W 9 3 0 ,i ~0 2 0i 3 . {. 7p!. 0 I t q 8 t- ~ { 7 2 2 4 ~

  • E 0

( 74% 2i g 7 L 2 -[L 5t ] Bn . j'a_

0 q

0 k! d1 T 7, - -J ~ 1 I f f7T 2 So .d_ r' 2 iI yj Sg 2 J / b Me i- -3 7 o ., 0 5 I 2 l 7 y/ Rn 40 E 2 P i 0 3 / 5 2 t 3 6 -., 2 3, 0 p 2 / n 2 0 ~ 0 3 o n2 1 2 si - E -i. 0 n t 0 t a 2 w mr i 0 a e L p I L_ g 9 r 9 i 1 T 7 d 0 h nO 8 ) t 2 1 i op 0 W fotim D 7 3 E 3 1 r k 0 eu a1~ TN 1 x g 6 1 sP A l4 CO 0 e o en I MG 0 5 d gI 3 1 n ad E i SR P o; E 94 d 1 R D ( R g 0 o ~ -., 3 R P 2dF 1 k j j. 0 d y e eE 2 e ~ r t 1 t u s0 ~ 0 a 7 o c u 7 - ~~ 1 . gj 1 i 1 7 d fl, A / h dL_h Ti'A[/ "2 e. Fid - 0 0 0 n ~8 r l 1 ' I + o5 2 7 r7 jid / AI 4 r 08 2 Eo /_ 5 ~ , 0 3 t + 7 d 0 p n N / { 0 a j 5 ~ 8 b p ~ 5 4 3 0 / -g 5 5 9 ^ 7 D 8 0 EN 4 3 3 TWO </ c 0 e I 7 3 p OOG f S k f 1 I NLE / 3 1 0 h r LR / i 2 c A e y ,g., T p0 1 y 7 b a o a==EE E =.. - ~ d $= E ;fE =5 g 0 t l q j-0 o 0 0 n 0 0 0 0 0 0 e 1 g 9 8 o 5 4 3 2 1 r oego.'E3y 3 r 1 i e fe n 3 O uC-R

i.l

!l i i)

!I

I t Figure 2 (Page 2 of 2) Error Adjusted Rod Insertion Limits 75 +/- 10 to 678 EFPD; 3 Pump Operation _,_ 7_ _ - +d, - i- "~- j_ 110-G J_-) I - - - - ~ . q _.. d_j _....._j _,.j .j-'---"_-._~_-__.. _._ b _... _ -~- -- b _ 100 - q-- -h-


t-

_-. _. _._7 ___f 90 j- + - -- -- b { + _y g,o y _ _L__{+,,,,y_._.__..---.._ 300 ,,,, y ; 0 4 ~ -{ - ;$- p, 7 m -- ---* Q. ?i l 7, NOT i i / ' --+-- ',_.[T 252,67 . _.j = ALLOWED -} 60 j REGION n: [ ]* 242,Se ~~~ '1 ._y a gM4 tr ~ - + --/ RESTRICTED ~-j b - .4_. ., 40 _ l_1-.- REGION m 1 / p /------- -- + - - - ---~- 8 E E _ _.._._ _.. _...___.123, 35.5. p/L i _._,__ l 2202,353 ---- - - + - ------ I IN "- 5 5 30 -s - 9_ _ ____._ F j 1I j_K_7 _.f7 m--- PERMISSIBLE --] 2n +, REGION T ~ ~ l ,._} g 4_._.. _ _.. __ ___,_ _j. a --L 4 ' L'"T~~~' i l _g y T -~~ 1 i["~ 10_g_ -"_ 79,12.3 - - _t_ 0

,g y g,

m .,p, 4 j,.g ;- .r-1. l T t ' r 1'S 1 ', l * " l" Tr' f1-~$*~'* D E q 77-r. i O 10 20 30 40 50 80 70 80 90 100 110.120 130 140 150 160 170 180 190 200 210 220 230 240 250 200 270 280 290 300 A*Y e *r Indicated Rod index, % Withdrawn

  • 7:;

2 Referred to by Tech Spec 3.5.2.5.b and 3.5.2.4.e.2

TR 110 Rev. 0 Page 13 or33 ~t r tm m., ; y-k LJ.___ e. r2,; e 7 c, j 7 7-r: r i ; i ; - - + J ..J _J L_4.__J_L ! F l L u _ al m ._L_ g ._ n_.4 ; 3. H;_a y..a _2 _ M L 4 g .;_J. _ ;.._l y ._4 4 pJ. 3.y m :. g v.;.. p. $.e5 u_z=_ R F_4 r j_ 4_ _q i -+ ; A 2..; d +a 2_4 i N L a _ a._.. - _ 4 ! ! L, __4 _. i._4 .) NiR ! - hi W q _ [. o i gm 2 i i, ., i i i i - T gi, i ; i ; ti , p \\_7 g __.i_._ T. - g 7. .i i w T-~n g-g H-i t-r '! : -+._d A_ L._.!__ ---+--+-_~4. r.. __.) = r 4-s i __, _.[ ;.f [ f h: :.- y - H._ m-_ r bHM ' -ti-- - R r --p ! l - __7 -_ -- : - !ii. b.l i -~t .i ._Q ~bt-b._ "o i N . > i t 1 i :, ii4 i t i i , i i i T -*--t N i t-i_ o. -L-4~i* * ; i i. i.: g

-.4 __I_ g

.__ - + r '- t ' i O i ' a i i

  1. 3 t_i i r r i !

i __ _ i ! To .1ll1 ml I- - i i ! i i l 1 i R E 5 r. 4 - L.- 3 m Eg i, t-- - !.a _L _J _y_Y M-b-- j $ 2 ii i-f li i l f'f F ^cO i ! i

i ~i i i i N

i. l 1 1= 1 I-C1. 1 ' i i ._o O Ew _ 7_ 3,. - +... _ r_ s 1 - H l !: fi I h - *E L-g = ri r i i n i, cl-t-N ' 3 v-i g i Q. i i; t r- = ,ge N I._ i _,i T.i 7 )i l ; g i !1 mV ( ! i ! ' !7 I. l I' i.~ a, E ". 3 4_. r _4 i - l ! ! >\\: i ! I r!i i i i O CL ' i i 0**L3ir'tm.' i ! ' O ~I i i > i i i i j.,1 P! z i i i i i g cc aC M 3 u,L i! i ! i i oo i vi1 t i i i.;- i i i.. t i-i. g1 = . lii o r' i ' H i ! h +:_._.H_! ;! go -.4 l { ~8 l u> g s ~. m 3 H"! - ! ! ! W-- - J m !\\.-L-1 " [SP 'O 4H,_y-j-p-f L_.j+t r---y_L_4 - "l l _.[ 8 ] .t,

- 7._4_.- -..

4-_ mmmi-w ,3 .L_t.e g f1 oe La--L, ! !a ! ! u a ;u L_! ! 1! L C+ ' l ! m{t F _g A t: N H-W o W l rl-F -i+!l l l r r i

-- ~

9 _ _ _.p_,._. g g___4_i__j._ _ *;i i tr+ g ] p.9 p. n o i i i

i t T-1

-t - -8 ig y! Q v; T-i Li t i i ii-tt'\\- i ti r-t-r S rrrr,i o i S q i i ! i ; L i \\ r

; ; --y g;

j_ j-- Q n 4_- Q L ! ui mz .r _., i i t Hgo j

t. J_g \\!_

8 t 1 1.__ Ooo L._L_J.13 q ! _:-_ E g m J z J uJ i 4 p. i I i Jm i , -i n s r J p.E.eQ =? o -4 l 4 1mptmmjmymmm-mm,.pm_mg744,mlmmmm mg4m4q r o s I. 8 8 8 R S S S 2 R g = l Jomod peney ;o % peleolpul ] 1 1 ~ ~ ~ - * ' '

'i TR 110 Rev 0 Page 14 of 32 -- l g ,,,-.,.7_., ~ _ _ - _.,_ _ 2 F"4 " ~~ r+ H I l i i ! f : - lF;;$ F-R 7 _.i - i.i ; t - l. t-r ,;it m- - g L i_ ; u ff l hg -f-y _--4 h -_l

- _t;iio

+t ,, u _,. a_ L_: c aw

i ! ; ! p a _;-

u 5.n.4. g _a_a _u_ _ g _a mm L.__-. a F-?--i++: 1 i_H ! t, 4-d_t -] E -.- 3 -t r7 l l't ! i lT-l-l ' "8 r1 t t-t j t - --+ i x i o t : ti i i -A _4 3_J i ~I M ___. A _g --.F_.L_{!-.ll I ---(g - r-a{b-l c i .g _;, m, _.e.7-t-i a t t-r =-l ,4, e rr; _t t r_ g y___7 E p u.7.._.7-_; y._. 7.. ~g _m.u a _ _,_._,._m g ]O~P,+ t++ 4 4 t- ! i '- g

t-H-

__-,__n.. -F r+t t-a r m71 E I ~ m h. k _d-,~d ! f! , bd_-.. g _k %.o s + H -t r_' F' -s c _ - -;"3 t-+ J at g g _.,_1-. j y .. q. _.._ v, _.-t m-- \\-1 \\ +- eeN -_a-a_A + _,_._J _t - ,s i g " g g..J._4._4__,_J_4_7 pp_4;_.,- ll r t-h-t --_. \\ J_. {_ e g I-t-o . y_.b Ii --S . r.., r_ _g _,t 1 , ; ; i,1 i c y, , g r7._;y, r _1_3.y 7 (9 g g t r,_t-T r_1,_-1 t i-

i. _,i - t --+

t-l-J. --~r ;g ] W b U r-N\\ I. 3 # N ._Lb I i ! ! 2 l U n.? e _ L. J- -F--{- J-j7 h' g _b f._- =_ g 1 Ee<.o uo ljj __(.9*_ t _g y O v-l- R --. .s t: 4 l ! I L-- 4- -8 N r - t_(7_u -. = 7 q_ ; _.s w s- _(.- g _ g g

} --y_.y

_.7_ N t3 -+--- wz g t-t w39 l 7 Qoo 1{- -S e aw e qm L2 .__g 4._ o g } _( _l 7 7 g .a L __C__.4_.a L__a _.4 4 i

o. _ o i_w 1

nimi,$mHmmHmmmpm,m$minnp$m,=wpnFrw_ s_ t I o 2 p, 2 8 8 8 R S S S R R 2 Jomod P848810 % peleolput i

TR 110 Rev.0 Page 15 of 33 Figure 4 (Page 1 of 3) Full Incore System Error Adjusted imbalance Limits 0 to 75 +/- 10 EFPD 110 - 110 i I I i l i i l l 25.9,102

i. l

! 16.2,102 l t t--- i-+ --j 100 RESTRICTED !~ RESTRICTED -100 l RE0lON REGION l j j ~ i i i j i -28.9,92 1 18.2,92 i i t 4_..._1 - . - 90 go i l t i ~ 80 - ' - - - - 31.,80 [ _ 21.3,80 _j_ j_. _. on 1 ) l j i yo l II l 1 l l . g .1_ p_J._ 4_.-_. - 76 z .0 + _u .. 0 I. D so _ J t, 38.2,s0 . g _ 28.4, 5$. i FERMISSIBLE E 40 -f--- REGION - !4 - 40 l o i i l i 3o ._4__t_ y .g _ 3o 3 !I 20 - i i I + - - - -- 20 10 - L 7 to I i 36.2,O l l 28.4,O { 0 " 1 -0 i e i e c i i e i i i i r i ii1 i 45 40 -35 30 25 20 -15 10 5 0 5 10 15 20 25 30 35 40 45 50 Indicated Axial Power imbalance, %FP Referred to by Tech Spec 3.5.2.7 and 3.5.2.4.e.3

-~ i TR I10 Rev.0 Page 16 of 33 Figure 4 (Page 2 of 3) Full Incore System Error Adjusted imbalance Limits 75 +/- 10 to 500, +/- 10 EFPD 110 - - 110 4 I f i 25.9,102 l l, 16.2,102 i i I i ! I 100 RESTRICTED r-RESTRICTED 1 100 REGION i REGION e 4 l 26.9,92 / 19.2,92 j i l i i 1 _g i i 1.9,80 _ I ,_ 20.3,80 [ 00 80 ll I d i n d! - 5 l. 70 r 70 b b 60 - --t --r -- i - 60 l l 1 _ 36;,2; 50 , 28.4.50 g ,, g I a PERMISSIBLE ] l l 4o L REGION - - E lM- - 40 1 I' O i 30 - - +- H - -) -- 30 o= 2 l g l 20 _ i

- 20 2

i l 10 - ! 10 l -3,6.2, 0 28.4,O 0 .,..,..,.,,..,..,..,.,..,..,~ 0 ,..,.y., .,..,. 45 35 30 -25 20 15 -10 5 0 5 10 15 20 25 30 35 40 45 50 Indicated Axlal Power Imbalance, %FP Referred to by Tech Spec 3.5.2.7 and 3.5.2.4.e.3

TR110 Rev. O Page 17 of 33 Figure 4 (Page 3 of 3) Full Incore System Error Adjusted imbalance Limits 500 +/- 10 to 678 EFPD 110 110 I l l l } I l l 25 9,102 l 2 0. ,.12 f 100 - RESTRIOTED L- ---4 RESTRICTED - - 100 REGION HEGION l h8.9,92 l j 21.1,92 i i go _..., _ L l l j_ -- go i l l 1.9,80 80 - 7 _ 25.1,60 _ 80 i li1 e i i 70 -- 70 i l m i 80 ~ 80 l l I 50 - 7 63,50_ g 28.4,50 _g I i g j PERMISSIBLE ] i - - - - + - --- I I REGION -- -E l ._- 40 40 li Y i 30 - -- ) 30 i 1 l j m-i .m 10 - _ 10 ^ l E 38.2,0 l 28.4,0 5 0 0 ,,.,;.j.., ,..,..;..g 50 40 35 30 20 15 10 5 0 5 10 15 20 25 30 35 40 45 50 Indicated Axlal Power imba!ance, %FP Referred to by Tech Spec 3.5.2.7 and 3.5.2.4.e.3

TRlto Rev.0 Page 18 of 32 Figure 5 (Page 1 of 3) Out-of Coro Detector System Error Adjusted imbalance Limits 0 to 75 A/- 10 EFPD 110 -- i 110 { 1 19.5,102 i10.2,102 100 RESTRICTED ) l RESTRICTED - - 100 3-I REGION j j l l l REGION l i I i l' j i 22.6,92 j i i go ) h.. !' 12.4,92 ~i s _.l__. go i j i i j i i a I l I } l I 1 i l l l l I i i i i I l i n i; i 25.8,80 80 -- i- - -l -- - L-t --'] g -l

- 15.6,80 '

[ ' i-- - 80 i g i i 4 i i i i I i 11 i i 70 --LLd ! -- d 5 2-4l- + b-i - k i- -- 70 l l I a i i x i I i l l l l i l I f! 3 i j i i 1 60 - l-4 ll -t---' I-h 1---F-- -Hk -- - 60 i j l I j l t ( l i i j i i i 30.5,50 i i { l 23.1,50 i 50 t- - 50 j i } i i I i { i t PERMISSIBLE 3 40 -g l REGION - -E - 40 i i t ( i O i I l l l 30 --t ~ j i 30 i i l I 20 j - 20 I h f 10 - -+ h 10 I I l 30.5,O l 23.1,0 0 -l l l i.0 i e r i-i c i m + e 1 3 -50 45 4 35 -30 25 -20 *15 10 -5 0 5 10 15 20 25 30 35 40 45 50 indicated Axial Power Imbalance, %FP Referrea to by Tech Spec ?3.2.7 and 3.5.2.4.e.3 I

TR 110 Rev.O i Pagt 19 or32 Figure 5 (Page 2 of 3) Out-of-Core Detector System Error Adjusted Imbalance Limits 75 +/- 10 to 500 +/- 10 EFPD 110 - 110 I l t i j j l i ,19.5,102 l 10.2,102 i i t 'i 100 - RESTRICTED RESTRICTED - 100 REQlON l l l ll REGION 6 l 22.6,92 l j l i 13.4,92 l 90 - l i - 90 3 i ( l ~ 25.6,80 . _ 14.7, 80 80 - t b l } } - 80 l l 4 i i l i + 4 l ) it 1 5 l ~- 70 -d--h-- g 70 j j m i i i l t i 60 - --- i -- 60 l L ll I i l 8l l l i ._[_3150,_ __., g; i 23.1,50 So 50 I t 1 i g I PERMISSIBLE ]i l 4o .L-I-- REGION - -E' -f l 4 -- 40 l 1 0 ~ j e ,il 30 - I- -- l j -+---+ k--d-l -- 30 E l 1 1 - 20 20 10 -- 10 -30.5,0 23.1,0 O 0 .g y g ,g .g .g .r p .g g., 50 45 35 30 25 20 15 10 -5 0 5 10 15 20 25 30 35 40 45 50 indicated Axlal Power imbalance, %FP Referred to by Tech Spec 3.5.2.7 and 3.5.2.4.e.3

TR110 Rev. 0 Paar 200f 32 Figure 5 (Page 3 of 3) Out-of Core Detector System Error Adjusted Imbalance Limits 500 +/- 10 to 678 EFPD 110 l l i j j I 110 i i j 19.5 102 i 13.9,102 l I 3 j 100 - - RESTRICTF.D I + - - RESTRICTED -- F100 REGION I l l REGION i i i i 22.6,92 15.2,92 l l 5 I g_ i _g l l i 4 i i 25.8,80 19.3,80 g_ _ go l l l e i I I i i u 70 - g !-70' l 3 i 60 -

60 e

, 3.5,50 23.1,50 i g i I a, PERMISSIBLE ] f 40 - REGION - E

- 40 j

15 5 j 30 - ) }-30 20 - } .- 20 + 10 10 -30.5,0 23.1,O 0 ,.,..,.,..,.,.y. .,-0 .,..,..,..,..,..,..c 50 45 40 -35 30 25 20 15 10 '-5 0 5 10 15 20 25 30 35 40 45 50 Indicated Axla! Power imbalance, %FP Referred to by Tech Spec 3.6.2.7 and 3.5.2A.e.3

TR I!O Rev.0 Page 31 of 33 Figure 6 (Page 1 of 3) Minimum incore System Error Adjusted imbalance Limits 0 to 75 +/- 10 EFPD 110 - - 110 4 i 17.2,102 l 8.8.102 i I i l l l 100 - RESTRICTED & l l RESTRICTED - --100 -+- - I REGION j l REGION l i l l 20.'1, S2 10.8,'92 l 2 go _ l .a _ _ go i I i i .0,80 80 - -j-- _ 13.8,80 . g i I ~ l d 1 l ~ --+4-l- g l l l II l 70 - - 70 m j l j i i i i + 60 i- -i i -i 60 i l l l l l I I l i ~ i !I a i I l I l 27.4,50 ! I 50 - - - + - - - + - - - 20.7,50 ! j i i - 50 l i l I i j g l PERMISSIBLE ] l 40 l p REGION - -Ej'. +- - 40 l [ o l 1 30 - _L_f_2__ !,l1 f i l 3 _ 30 l l i 3 i 20 -


J

- 20 i 10 - i 10 27.4,O l 20.7,O ~ 0 ,,.;[0 50 40 30 25 15 10 -5 0 5 10 15 20 25 30 35 40 45 50 Indicated Axlal Power imbalance, %FP Referred to by Tech Spec 3.5.2.7 and 3.5.2.4.e.3 e

e TR110 c-Rrv. 0 Page 22 of 32 Figure 6 (Page 2 of 3) Minimum incore System Error Adjusted imba:ence Limits 75 +/- 10 to 500 +/- 10 EFPD 110 - - 110 l l I l l l i I ~ j l l j 17.2,102 8.8,102 l i l l 100 - - RESTRICTED RESTRICTED 100 i REGION REGION i i i H _ ql 20.1,92 { 11.7,92 l l -_ ? i go a i _ go l l l r 80 - 23.0,80 l 12.9,80 - 80 1 u l l I I l I i l I H l b ^ 70, J -- 70 60 - j i r - 60 l l g -27.4,50 g 20.7, 50 i _g l { l 1 I g PERMISSIBLE } 3 l [ 40. 4_ REGION - -E, L -I - 40 l lii i i 30 - ). ! 30 ,8_ 20 -- f-20 l 10 - ~. 10 27.4,0 ,,~ 0 20.7 O T q 3 - .,.g 0 - 45 40 30 -25 20 15 10 -5 0 5 10 15 20 25 30 35 40 45 50 indicated Axlal Power Imbalance, %FP Referred to by Tech Spec 3.5.2.7 and 3.5.2.4.e.3 y

TR 110 e Res. O Page 23 of 32 Figure 6 (Page 3 of 3) Minimum incore System Error Adjusted imbalance Limits 500 +/- 10 to 678 EFPD 110 - 110 i 1 I i i i i t i j 17.2.102 l i 12.2,102 l l i l 100 -- - RESTRICTED 'Il RESTRICTED - b 100 REGION l l I REGION i i l l I I ! 20.1.92 i I ( 13.4,92 go _. __,_ j l l

_- go I

l l t i I i l 23 0,80,_ .j l l I i _ 17.1,80 j ign so _ f f l l i i f ' 70 70 - j l a i J i { l M- .M l l l 1 ( 1 l M- !-27.4,50 20.7, 50 4 ~ i l l _- M l PERMISSIBLE l l i REGION - g

40 40 pi o

Y l l 30 - -j i j j l 30 7 20 - 1 b 20 i i i l l 10 - J _ 10 1 i 27.4,O l 20.7.O f I 0 ,,0 50 45 -40 35 30 25 20' 15 10 5 0 5 10 15 20 25 30 35 40 45 50 Indicated Axial Power imbalance, %FP Referred to by Tech Spec 3.5.2.7 and 3.5.2.4.e.3 i l

I v l Figure 7 (Page 1 of 2) l. LOCA Limited Maximum Allowable Linear Heat Rates Mark-B8, Mark-B8V, Mark-84Z Fuel Types l 20 l l 19 { E 18 ile x ~ i 17 : 4- & 8-ft g h [ 16 m. 6-ft mj 2- & 10-ft j15 a32 14 4 .i 1 E 3 13 H Ey e2124 i 11 2$3 b '* 5 1t - i a 4 10 20 2 40 m g Referred to by Tech Spec 3.5.2.8

Figure 7 (Page 2 of 2) LOCA Limited Maximum Allowable Linear Heat Rates Mark-B9, Modified Mark-B9 Fuel Types 20 i i l l ? ^ E 18 -5 3: x = 6.021-ft i e 17 8 F 4264- & 7.719-ft g a 16 5 2.506- & 9.536-ft e = I E 15 -l e l i S 14 4 E F E E 3 10 i E E R E $ 12 i. = 11 -E 2 5'E 10

,=

I I i i w o o 10 20 30 40 so so Bumup, GWd/mtU n.#m.d no by Tech spec a.s.2.s 1

l TR 110 Res. 0 Page 26 ef 32 Figure 8 Axial Power imbalance Protective Limits Thermal Power Level, % 7 120 43.8,112 11) 37.8,112 g ACCEPTABLE \\ 4 PUMP OPERATION -- 100 1h) 43 8,89.7 37.8, 89.7 ACCEPTABLE 3 AND 4 PUMP e OPERATION -- 80 0 se 'n,80 4 530,804 43.8,82.4 I5) 37.8,62.4 ACCEPTABLE -- 60 58 5,57.8 2,3 AND 4 PUMP 63 o, 57.8 OPERATION -- 40 585,314 .3.0,30 4 -- to I I I I I I I i 1 1 I I 1 l 1 80 70 80 50 40 30 20 10 0 10 20 30 40 50 60 70 8C Axial Power imbalance, % EXPECTED MINIMUM CUR','E REACTOR COOLANT FLOW (Ib/hr) 1 139.8 x 10E+6 2 i04.7 x 10E+6 3 68.8 x 10E+6 e

TR 110 n,v, o ranan Figure 9 Protection System Maximum Allowable Setpoints for Axial Power imbalance Thermal Power Level, % - - 120 30o.10s.o 24 s,10s.0 l ACCEPTABLE l 4 PUMP i - 100 ! OPERATION mi = 1.900 i l m2 = 1.854 l 30 o,80 6 24.5,80.6 ! ! ACCEPTABLE 80 l 3 AND 4 PUMP so0.70o i OPERATION l 45 0,70.0 i -- 60 30.o, $3.1 24 S. 53,1 j i, ACCEPTABLE i '2,3 AND 4 PUMP so o,42 e l OPERATION 4s o,42.6 i -- 40 l i i l l \\ 20 i 50.0,15.1 i 45.0.15.1 o oi i h hi lq o E n u! ju u l E 8! 18 E l i i I l 1 l l 1i l l l 1 1 1 80 70 -60 50 40 -30 20 10 0 to 20 30 40 50 60 70 80 l Axial Power imbalance, % 1 e

~<* f TR l10 Rec. 0 Page 28 of 32 I t 1 i I r i Operating Limits Not Required by Technical Specifications 1 A 4 ) 6 - i -c.-__,,, ,,.---e-%e,w..-- -.,,e.,we--i .r-erw-,,,,a---- w -- H wme ww w rn t-- + -r


we-.--

-+t--.m--to ..,%e- -e-- - -, ,s-et--,-y. av-.., a y n

4 TH 110 Rn.O l' age 29 of 32 1. Core Minimum DNBR Operating Limit (

Reference:

BAW 2250) The core minimum DNBR value as measured with the NAS Thermal Hydraulic Package (Display 1 or 4) should not be less than 2.02 (102% ICDNBR). 2. Maximum Allowable Local _ Linear Heat Rate Limits (

Reference:

T.S. 2.1 Bases) The maximum allowable local linear heat rate limit is the minimum LHR that will cause centerline fuel melt in. the rod. This limit is the basis for the imbalance portions of the Axial Power Imbalance Protective Limits and Setpoints in Figures 8 and 9 of the COLR, respectively. The limit is fuel design specific; the value for the most limiting fuel design in the current core is used for monitoring as given below: BWFC Mark B8/B8V LHR to melt = 20.5 kW/ft 3. Minimum _ Boron Needed for Cold Shutdown The minimum boron levels needed in the BAMT and RBASTs to i achieve cold shutdown conditions throughout the cycle is the equivalent of at least 1052 ft.a of 8,700 ppm boron. l

~ 0 TR 110 i Res. O page 30 or 32 4 DNBR-Related Bases Descriptions

e* TR 110 Res. O l' age 31 of 32 1. Power to Flow Trio.Setpoints The nuclear overpower trip setpoint based on RCS flow (power / flow or flux / flow trip) for the current cycle is 1.08. This setpoint applies to four, three and two pump operation as described in T.S. Table 2.31 and Figure 9 of the COLR. The power / flow trip, in comSination with the axial power imbalance trip, provides steady state DNB protection for the Axial Power Imbalance Protective Limit (Figure 8). A reactor trip is initiated when the core power, axial power peaking and reactor coolant flow conditions indicate an approach to the DNBR limit. The, power / flow trip also provides transient protection for loss of reactor coolant flow events, such as loss of one RC pump from a four RC pump operating condition and a locked rotor accident. Power level and reactor flow rate combinations for four, three and two pump operating conditions are as follows: 1. Trip would occur when four reactor coolant pumps are operating if power level is 108 percent and flow rate is 100 percent, or power level is 100 percent and flow rate is 92.5 percent. 2. Trip would occur wl.en three reactor coolant pumps are operating if power level is 80.6 percent cud flow rate is 74.7 percent or power level is 75 percent and flow rate is 69.4 percent. 3. Trip would occur when one reactor coolant pump is operating in each loop (total of two pumps operating) if power level is 53.1 percent and flow rate is 49.2 percent or power level is 49 percent and flow rate is 45.4 percent. The power level trip and associated reactor poweriaxial power imbalance boundaries are reduced by the power-to flow ratio as a percent ('t.08 percent) for each one percent flow reduction. _ _ _ _ _ _ ~ _ _ _ _ _ _ _.. _ _,

TR110 f Rn.0

  • ege 32 of 32 2.

Design Nuclear Power Pesklug Factors (

Reference:

T.S. 2.1 Bases) The design nuclear power peaking factors given below define the ' reference design peaking condition in the core for operation at the maximum overpower. These peaking factors serve as the basis for the pressure / temperature core protection safety limits and the power-to flow limit that prevent claddlug failure due to DNB overheating. Nuclear Enthalpy Rise Hot Channel Factor (Radial Local Peaking F_actoII, F"an FN4g a },7}4 Axlal Flux Shape Peaking Factor. FNg FNz = 1.65 (cosine with tails) Total Nuclear Power Peaking Factor. F"q F"q = F"sn x F"z F"q = 2.828 _ _ _ - _ - _ - _ _ _ - - - _ _ - _ - - - - - - - - - - - - - - - -}}