ML20198F637

From kanterella
Jump to navigation Jump to search
Summary of 740314 Generic Meeting W/B&W Re Containment Peak Pressure Analysis.List of Meeting Attendees & Viewgraphs Encl
ML20198F637
Person / Time
Site: Bellefonte, 05000000, 05000452, 05000453, Washington Public Power Supply System
Issue date: 04/02/1974
From: Desiree Davis, Jensen W
US ATOMIC ENERGY COMMISSION (AEC)
To:
US ATOMIC ENERGY COMMISSION (AEC)
References
CON-WNP-0965, CON-WNP-965 NUDOCS 8605290029
Download: ML20198F637 (26)


Text

{{#Wiki_filter:/

sa 0 574 DCCZZr Nos.
50-433, 439, 452, 453 AND 460 tJPLICA2rIS : TECTESSRI VALLEY ACTEORITT, DETROIT EDISON COMPA5T AND WASHDiGTON PUBLIC POW 12 SUPPLY SYSTFlt 4

A. FACILITIES.: SEIl.3FONIE NCCLEAR PLANT, UNITS 1 AM3 2; CREENUDOD ENERCT CrfrER, UNITS 213; VASHINGTON HUCLEAR PROJECT-1 ~ SU:08 ART OF GZNERIC MEETING WITE BABCOCK 4 WILCO % (347) ON CO?rrAIh?GDir PEAI PRES 3URE ANALYSIS

  • ~,

A generic meeting was held March 14, 1974 to discuss the methods B&W used to predict the mass and energy release to the contaiz: ment as the result of a loss-of-coolant accident for all 205 fuel assembly plants. The affected applicanta for these pLmts were invited to attend this meeting. A list of attendees is enclosed; the Detroit Edison Company vas represented by Bechtel. n&W presented information addressing concerns that the staff had raised regarding the. conservatism of the C2 AFT code to predict mass and energy to the centzimient following the initial blowdown. The ~ slides-given in these presentations are attached. Sipificar[e points discussed are sumanrized below: 1. Cowperison of CEAFI and REFLOOD The REFIAOD code is used in 3&W's ECCS analysis to compute the inlet flow race to the core during the reflooding period. This ccde appears to be similar to the staff's FIh0D code that is used to predict mass - and energy ralmase to the containment during the reflooding period. D&W presented comparisons showiss that CHAFT code predicted a greater-mass and energy release than the REFLOO3 code. The staff noted that the inpac assumptions used in the EEFLOOD code were more typical of these for.ECC3 analysis and may not be conservative for containment anal sis." 7 t 2. Onenchine of Steam bv the FCCS Water Ihe staff had stated that the assumption of complete steam-water Mving uned by 34W reduced the stean flow into the containr:ent and did not appear to be conservative. This assumption reduces the peak containment pressure by about 2 psi and reduces the contair::nent decon:pression time. Ef V presented data from the Co+bustion En;;ineering sten-water mixing 8605290029 740402 PDR ADOCK 00000430 r/ a, A PDR f ;i

Mlaf onte 1/2, Greer.vood 2/3 & 'M-1 deating Guseary tests which indicate complete af ring c::ists if the liquid flow rate is sufficiently high. These tests were for cold leg ECCS injection whereas MW's ECCS (CFT and LPI) injects into the downcomer. B&W also presented mi: sing results for steam and feedwater in the NW once-through steam However, ny data were available for the geometry of the generator. 35W dowacomer. 9,; '. ~' Carryout Rate Fraction (CRArt vs. 7LECHT Data)_ s 3. ag ' The CRAFI code was stated to calculate a carryout rate fraction of staas and water leaving the core of about 90% compared to about 80% from an average ' core channel of the FLECHT data. The CRAFT analysis appears to be conservative in this calculation. 4. Ef fect of Mucleate Boiling Heat Transfsr in CRAFT The staff had stated that for heated surfaces exposed to the primary q coolmat such as the core piping and steam generator tubes, the assumption ...g" 2S of nucleate boiling heat transfer would be more realistic and would narisina heat flow to the containment. 3&W stated that they already 1.. ~.. considered nucleate boiling in the core and primary metal surfaces. . l. ~ They presented analysis showing that the heat-transfer coefficient in the steen generator tubes was sufficiently high so that a.further [/- increase.would not increase containment pressure. , h'; 5. Conclusions It appears that eithes the CRAFT code or the REFLOOD code with proper input can provide conservative mass and energy release data to the con-The staff stated that the assumption of complete steam-water Y....d tainment. mixing in the CRAFT code had yet not been fully justified and that the SM REFLOOD code should be used with assumptions conservative for containment For plants that have been analyzed i,'l J r analysis instead of ECCS analysis. during the reflood period using the CRAFI code the. staff will review the results ou a case-by-case basis and maks comparisons with the results -w

p..

of our FLOOD code, M % 1 tWih7 NQ teptal Srped 3y Con K. Davis, Project Manager ait Jensen, Project Manse;er 4 Light Fater Reactors Branch 2-3 Containment Systems Branch Directorate of Licensing Directorate of Licensing Er. closure: l 1. Ydst of \\ttandees 2, E11 des Shown at Presentation ......... r.t.u, ....... ~... cmc:,,e 2-3 /

CSB' 88pi%jb......WJenaen-mw D

"r'.c U /74 . ).. 3. 8..(. =/ 7.4..... 3/ A. ,,. c.u.. -m c.,... m

MEETING HELD MARCH 14. 1974 TVA. DEC AND WPPSS BELLEFONTE 1 & 2. GREENWD0D 2 & 3. WNF-1 LIST OF ATTENDEES Atomic Energy Commission United Engineers & Constructors D. Davis J. Daniel

  • A. Schwencer K. Niyogi
  • G. Lainas W. Strouguist T. Cox J. Shapaker Fortland General Electric W. Jensen T. Greene D. Herborn C. Anderson Babcock & Wilcox J. McFarland C. Parks G. Brazill R. Bybee I. Putney K. Shich B. Dunn M. Oren J. Mecca Washington Public Power Supply System J. Kemp Tennessee Valley Authority J. Carter, III G. Curtis Bechtel R. Boles, Jr.

J. Thiesing

  • Denotes Part-Time Attendance e

. acting Su r,ary - Tannessee 'l211ey Authority, Detroit Felsen f:onpany and Washington Public Power Supply System DISTRIBUTION: AEC PDR TNovak LPDR TIppolito Dockets (5) Dross L Reading WHouston LWR 2-3 Reading DDavis VAMoore TCox RDenise LEngle DSkovholt DKartalia RCDeYoung JCohen DRMuller WPaton RIreland CDomeck RAClark CDittman KKniel RLoose JStolz R0 (3) ASchwencer ECoulbourne KGoller RFraley, ACRS (16) DVassallo JShapaker WButler WJensen PCollins TCreene RSchemel CAnderson DZiemann CKnighton CDicker BYoungblood WRegan SVarga DEisenhut JHendrie HDenton RTedesco RMaccary VStello BCrimes UGamnill JKasnter RBallard MSpangler CLong CLainas RVollmer VBenaroya JKnight SPavlicki LShao O

y s- ^ ~/a J /W ]YrY- ,;+L _sf-j 7/5-PRESENTATION TOPICS I CRAFT - REFLOOD COMPARISON II JUSTIFICATION CF STEAM CONDENSATION -) .~ III-Cf RY-0UT RATE FRACTIONS. ~ IV EfJRGY SOURCES j O 1 g .O e ~ -... j

'\\ I>j, o REACTOR BUILOING PRE SSURE HISTORY FOR MASS X' ENERGY RELEASE CEVELOPED BY CRAFT AND REFLOOD 50 i 40 4 E 30 LSa CRAFT .[ REFLOOO [ _ PEAK 40.8 PSIG ' PEAK 39.5 PSIG 3 AT 111 SEC ~. AT 201 SEC U 20 ]> ' Jr a . 10 l e

iii, li>>i i l i n ni I>>..

0 i i e i i 0.1 Q1.0 10.0 100.0 p i 1000,0 g 4j 0 [ Time, c cp. 4l

/ ...----......-.-.-.-...._...h, .i \\ O o R .R 2-4 g a. a l l d .c ~. J. . 8 ~ l U .W I O i. w I - n I, = =* -- 4 .a v O Z V O N w a I H O Z b. J e O y <t u. CD ., O e w - O o = z O O l-P- O J a u. i m O W l o H M . m a 8 O m H O H W h. M Z <t H w C o X O <t A td w" / . 8 / O. r- { D A g C O O .8 8 8 O 8 8 8 8 9 8 8 8 ~ e. e m ~ ~- s/nig queu:utn uog'o1 AD.rsu3 weats l cA m j

g I '-Ml'k}/- CRAFT VS REFLOOD i COMPARISON OF REFLOOD RATES l 1]I Y J/ l g}h, I CRAFT 8 REFLOOD 'g/ u U N g x .h i ?' S 3 ? 0 e b\\ 4 s g p I O ~ f) - } &e i t D s ~ --- ---- i 2 -U ~ O i 30 50 70 90 110 130 150 170 190 210 230 250 Tin.e, s g j

..n_a....--.-----,....--~. s . FLOW SPLIT COMPARISON BETWEEN CRAFT AND REFLOOD 100 - 80 - 60 _ REFLOOD 1-40 _ 20 - 7 I Y t 0 L4 50,, ,3 100 150 250 1 Time, s Vent Broken Unbroken" 100 " l Valves Loop Loop i i 80 - I ~ 60 - CRAFT 40 _ 9 / 20 _ / / i i 0 Q- ' U 50 100 150 '250 Time, s } e

.k/ STORED ENERGY VERSES. TIME FOR VARIOUS .m ENERGY SOURCES

  • C

/ CRAFT, REFL000 ~ REACTOR COOLANT' ENERGY 40 38 - ~ s, , s,- 36. /, e. / 3. 34. [ x s 32.. 's ' / ~ a m 30 30 50 70 90,110 130 150 170 190 210 230 250 Time, sec r t. ENERGY STOR.ED IN CORE 7.5.. l ~~~~~~_ e b 6.5 1 ~ ~,, 5,5 _ o s T.= 260'F 4.5 4 O 9 3.5' 30 50 70 90 110 130 150 170 190 210 230 250 ---l

,e 1 RED ENERGY VERSES TIMr FOR T VARIOUS ENERGY SOURCI:.6 ,1;>J l / CRAFT REFLOOD { 140 _ PRIMARY METAL f NOTE: 250'F - 58.4 x 106 Btu 3 130 'N m 'I h j 120 l '~- 110 w 30 50 70 90 110 130~150 170 190 210 230 250 I i Time, Sec j i 40 ENERGY GENERATED IN CORE - e I b 30 x M ) { 3 20 l m 10 i o 30 50 70 90 110 130 150 170 190 210 230 250 i . Time, Sec i c W i I l SIDE ENERGY f6eNO b A - e 120 SEC. .b M +Ffwil.). 's ~ N x 110 N NOTE: '260*F - 53.0 x 106 Stu m 100 I 3 %s , h 90 w '80 3 30 50 70 90 110 130 150 170 190 210 230 250 j Time., Sec

) f, t 0 b hal ,> g" SECONDARY FLUID TEMPERATURE VS TIME i h -{\\ f 600 n 500 ~ l UN8ROKEN LOOP u. 400 s m BROKEN s $ 300 hc [ LOOP' = 5 T = 260*F W J 200 e e e 6 100 200 300 400 Time, sec )

[i ENERGY TO CONTAINMENT - CRAFT ---REFLOOD 460 / e.440 s' a ~ 420 x s - s' -3 y 400 / / / / 380 / / 360 30' 50 70 90 110.130 150 170 190. 210 230. 250 Tim'e, Sec ~ ~ t e O

N 3 \\* Y COMPARISON OF QUENCHING AND NON-QUENCHING IN CRAFT ^S 50 y gh { 4 P 'p-40 g. l ~ QUENCHING I &R$Fr --- NON-QUENCHING AAVL/I'5 l l 30 t l l 0 l 0 20 a. 10 e o' ,I,J., Ii,., l..., Ii.. o.1 1.0 10.0 100.0 . 1000.o Time, s

. n. ~... TEST SEC.T[od Ti{E?.Mo to LP LES I O i IJL hs t 't NJEfTiod 3 I 1 <.. -. x y l l i I l 1 l ? l u l T9 i STEAM t l i j is r.1 II . ii ii 1 -+ 3% l4 ' T5 To T T+ T3E [36 3 3-i l L. !__.] TIO4 I_ l l i l X =

22. Ilt !!ES FOR 1/3 St ALE TESTS
  • l l

14 II:::l!ES FOR 1/5 St t.lf TESTS d = l!i:::::iOCOUPi l.S 32 3G NOT l'iiEf ENT IN 1/5 SCALE TESTS ] "s

h SCALING OF FLOWS TYPICAL COLD LEG FLOWS STEAM 50 LBM/SEC HPIs 50 LBM/SEC t. 10 2 ~ SCALING FACTORS 1/3 TEST = (28) .13 = 6 2 1/5 TEST = (28 ) .05 = i, 1/3 1/5 I TYPICAL FLOWS SCALED l STEAM 6,5 LBM/SEC 2.5 LBM/SEC llPI 47-GPM 28 GPM TEST DATA AVAILABLE . DATE RUN # SCALE, INJECTION (GPM STEAM FLOW (LBM/SEC) I 4/24/72 3 1/5 116 3.9 8/8/72 4 1/5 110 ~2. 0 ~ 8/8/72 5 -1/5 90 4.0 2 4/25/72 4, 1/5 120 4.0 4/27/72 1 1/5 116 4.0 5/2/73 7 1/3 473 7.5 4/23/73 5 1/3 436 7.5 46 3% ~3

b ,(y 4/24/72 RUN 3 SCALE 1/5 INJECTION 116 GPM STEAM FLOW 3.9 LBM/SEC ll7*F 517*F PRESSURE 59 PSIA, TSAT. 292 ENERGY TO REMOVE SUPERHEAT 444 BTU /SEC ENERGY TO QUENCH STEAM '4014 BTU /SEC ENERGY SINK IN INJECTION 3000 BTU /SEC PERCENT FULL,;. INK, 75% T (Top T10(Center) T10A(Bottom) 9 600 O ./ ,i g S 400 L L +t m y 200 TSAT TSAT TSAT l .e ~ 0 ~^ t Time J \\ G4 = J9 9* C ~ ~,

  • w e

m., c DATA SUAMARY 5'. OATE RUN :/ SCALE INJECTION STEAM FLOW THERMOCOUPLE j GPM, F LBM/SEC,*F READINGS

  • F T

Tg T10 T10A SAT 4/24/72 3 1/5 116 117 3.9 517 292 280 290 280 8/8/72 4 1/5 lld 120' 2.0 510 274 280 270 270 8/8/72 5 1/5 90 120 4.0 510 274 290-500 280 4/25/72 4 1/5 120,125 4.0 513 293 290 290 290 4/27/73 1 1/5 116 126 - 4.0 515 '289 290 290 290 5[2/73 b# 1/3 473 117 7.5. 410 289 240 220 220 7* 4/23/73 5** 1/3 436 117 7.5 517 287 240 240-NF

  • PERCENT TOTAL SINK 160%
    • PERCENT TOTAL SINK 140%

i I I J gn asi 2 ,i

. ~. 9 \\ 8/8/72 RUN 5 SCALE 1/5 INJECTION 116 GPM STEAM FLOW 4.0 LBM/SEC i 120 F 517 F. PRESSURE 45 PSIA TSAT 274 ENERGY TO REMOVE SUPERHEAT 484 BTU /5EC ENERGY TO QUENCH STEAM 4200 BTU /SEC-4 ENERGY SINK IN INJECTION 2540 BTU /SEC PERCENT FULL SIllP)j 60% T (Toli) T o(Center) 9 1 'T10A:( 8.o t tom) p 600 f g 400 } u i G 200 Eo F 0 p p Time ar m - +

O a.** .-..-g-- t Ol i i t

d. \\.

t ad .e. s{ J h ^,. /* t. l ~%. - N :i Q sy s g ) 4 'v -Y. / '.\\g / N s - 7__ 1p* I. / l ,I,, t auu: -* 1 i _,V3 p, .. - - ~ s 6 y + .o 1-lN j.;' 'N ^ /

h. N5

[. '. - N N. N N \\ I t l l 'i L l \\% 3 \\ i w l. t II

7.,

d \\,h \\ li I dsA "i., E \\ ~ V M =s. s

A LSS SECTIO.N' CF 'UC!lAR I-IL M E-11G.C(JGH STE.Ut GENF3ATOR h [.i PRlWARY INLET NOZZLE s j %... t. ~ -u .c, 21 a ) ss e* l {t f;,; - s j4 1\\M s,- u a w ~ e f

  • ]

e w 4 =,i Q Feedwater He r W STEAM A.!,' . i.h ZZ e ccw OUTLET NOZZ& [ n. E 9(l- ! .s _ _ g..... - - - - - - ;.4 r (WI Feedwater Header .V.' - h> )-

b. I.

137fIDSHELL-i Annular Feedwater f Heating.Cha:.ber 1 , [ ' 1,' 0 0 121 4.: 9

u '

s L3 = o [ i lI ..il l W W l i E Shell N BROACHED PLATE d TUBE SUPPORTS - f'i'f;'',Ii; g . ll'@'.l hit.;ija l ? j OR:FsCE e ~ e. PLATES % s F, 1, 's; G> 's.,e j I d t' ti:.. - : e.:+.g ; - h Sleet PRtWARY OUTLET f NOZZLES .a )

a gy .J,/ d./ F ~'"'. 075q TEST n.e.ed. gorar / j g aa L i I { TK8f 3l(PPORT

  • ~ * * '

f FitDWRTER. j i <- - 3 7 -> P-e p1, /. \\\\ ,7 / 3 h. - T I - e u.: i E l i i fff ..... _4_M s/2.s/... li, p i E' 37 I

't, u'

' i 1Ti ( I 3 , 4,,.ccu r' i r -- f.n: - d.-. 4-T l EEDWATER I I.:..... V

  • 40 FT/SEC.. 'J L.

T: Q i o t I t.< m$ tE 6 N -

A ~ i t _ CORRGSPOADEACE AND SCALTHQ_ TEST ~ Wst =- 880 LBt-!/!!R l Qp, = 17 GPM LOOP +1 VENT VALVES tlIGHT HAVE A FLOW OF 440 000 LBM/$g 3 7"M.ING FAC:.?! IS.520' GIVING NEED: D INJECTION OL $f40jPN ALSO ACCOUN1 FOR DIFFERENCE JciI

l' !"/

TEST Ah = 93 LPI Ah *.191 GIVING FACT! :t OF.51 RESULTING It:JECTION FLOW NFfDZD IS 4500 qPM cn.-$ r 1 I ' wp

%0 i i E.$ 7086 O TSf TfS__( W 4 6 'A .sl.aw o1. (.ee dsaaY.u $/o w.' SOCO - 9000 l.C:1/HR h Kulwd.sr. twyda 400 - 460 "F l Fws*AA- - ? 300 - $00 PSIA fuAwd.u.sujane$**~) 30 - 150 L ' ' 'J. L ';M ? Sb FleaMy f-20 FT/SEC I, fMAau h Verbim A$t kee? /3-23 CI'Is ,I i li! ^: 1. C ^ ' ' :. ! i in'!ATCR IS S '. : l 'fi

."IXING CHAMBER i

i i Tt::w orsc i.s r CONFJ:; :Fl':

1. : r. ! i f ED 'M: a WOULD I

SATtillATE FOif 17% AND 50% LCM; WJ ~lli FLO'!.' IIATES AS 10 F1/G' r.. G i i ~. J

.s.. 1 .~. I ,s l ~ v l .',n.e.. ~~D O O O. r. ~ SHobu0 -- ;*1Q .M;' ~ -. I I.

g. ~9.,.....--. ;,,

.x w. .. f. s .c.....


e(

C;i i 1-I l !) TUSE I .r, SU.10;. E .,j CN 'l l r- .r-? f6'.',s s j i 1 / !@'./j .q > s I w _a .,.*/ r s .? 40 4 1 ,:U .~ w o> l 1 Ne t. .. -. ~. i c u, .._ 7 u.m., ..i -..... J

.. ~.,... N by/ , Q, g. COMPARISON OF TREATMENT OF SECONDARY SIDE ENERGY TRANSFER l / ANO MODELING OF STEAM GENERATOR TUBES - CRAFT 2 50 /hi -f A 7\\ G' f/ /.h>yle ~ 'd ~ 40 Xraq.# t-3 '( *> ' ' R.g e$- j[- cn 3 0 -- - NUCLEATE BOILING IN STEAM GENERATOR - TUBES"0N SECONDARY _ ~ SIDE. PEAK'39.68 PSIG.AT 140 SEC @ 20 NON-NUCLEATE BOILING IN STEAM m g GENERATOR - TUBES ON SECONDARY ~ SIDE. PEAK 40.8 PSIG AT 111 SEC-10 A f v NUCLEATE BOILING IN STEAM GENERATOR - TUBES ON PRIMARY SIDE. PEAK 39.69 PSIG AT 140 SEC l i n ii l i i ii i v i s il iiliiii 0 i i i i i i i i i 0.1 1.0 10.0 100.0 1000.0 Time, s -}}