ML20155H169
ML20155H169 | |
Person / Time | |
---|---|
Site: | Vogtle |
Issue date: | 01/16/1985 |
From: | Whitesell J FISHER CONTROLS CO., INC. (SUBS. OF MONSANTO CO.) |
To: | |
Shared Package | |
ML20155H119 | List: |
References | |
FQP-11AB-5, FQP-11AB-5-RA, NUDOCS 8605130354 | |
Download: ML20155H169 (138) | |
Text
751Nsh:tiSIGO40th61 1 0%lSHER QUALIFICATION REPORT FQP-11AB-S
[
Revision A
, , Alvin W. Vogtle Nuclear Plant January 16,198!
Georgia Power FISHER' > Bechtel Power Corporation Page 1 of 10
( -
CFisher Controls QUALIFICATION REPORT FQP-11AB-S Group V Control Valves for ALVIN W. V0GTLE NUCLEAR PLANT UNITS 1 & 2 GEORGIA POWER
%a IMPORTANT NOTE
, THE REVISION LEVEL OF THIS DOCUMENT IS SHOWN AT THE TOP OF EACH PAGE OF l THE DOCUMENT. PLEASE SPECIFY THIS REVISION LEVEL WHEN REFERRING TO THIS DOCUMENT.
l THIS REVISION LEVEL WILL BE INCREASED WHEN ANY PAGE OF THE DOCUMENT IS
( REVISED. A SEPARATE REVISION HISTORY, DETAILING SPECIFIC CHANGES, WILL BE SUBMITTED WITH ANY DOCUMENT REVISION.
i; 24 DR ADO K O O p l
E ,
~\
Is l N28-11/ 1
951Fishezco;trala61- 1 OMSHERQUALIFICATIONREPORT FQP-11AB-5 Revision A
, Alvin W. Vogtle Nuclear Plant January 16,198!
FISHER
- Georgia Power Bechtel Power Corporation Page
/..- 2 CFisner Controls Control Valve Assemblies per FQP-11AB Alvin W. Vogtle Nuclear Power Plant, Units 1 & 2 Georgia Power Company Bechtel Power Corp. Purchase Order No.: PAV-206, PAV 2-34 Design Specification No.: X5AC03, Rev. 9, App. EA, Rev. 3, & App. QG, Rev. O Seismic Category / Class: Seismic Category I, Nuclear Class 3 Fisher Representative Order No.: 22B-X5AC03-N1P & 22B-X5AC03-N2P
- Qualification Group: V Environmental Designator: VIII-R-C83 Order Items: 155, 156, 165, 166 Serial Numbers: 8342938-41 Tag Numbers: 1 & 2-HV-12596 8 97 Bechtel Data Sheets: CX5DL-187 8 188 This is to certify that, to the best of my knowledge and belief, the quali-fication information listed in the Table of Contents (Page 3) or refer-enced in the following qualification sumary i*s complete and accurate. The information meets the requirements and intent of the above design specifica-
. tion, as interpreted by the applicable Fisher Qualification Plan, F P-11 AB.
SW, Jon Whitesell Qualification Analyst l
I certify that I accept responsibility for the adequacy of this document, which was prepared by others, to the same degree that I would if I had pre-pared it, and that I am a duly Registered Professional Engineer under the laws of the State of lowa.
ofESS/O DL k Johff Dresser Reg. No: 754/ w 9g g g gg g g ;
Registered Professional Engineer M g y' Date: I - l(o - 85~ & h
- /OWA
- Cer ed and Approved by:
A Nlcv Floyd D Jury, Ma er
( ~
Engine ing Quali :ati Analysis
, H28-11/ 2 l.
I V- . _ _ . . _ _ _ _ . _ _ - - __ _
9510Fi'herCarstrals61- 1 0 0@1 SHER QUALIFICATION REPOR's FQP-11AB-5 Revision A
, Alvin K. Vogtle Nuclear Plant January 16,198!
, l"l$i)ll"[g' Georgia Power l Bechtel Power Corporation Page 3 4
CRsher controts
- TABLE OF CONTENTS PAGE T i tl e /C h a n g e P a g e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 C e rti fi ca te of C ompl i a nce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 w
T abl e o f C o n te n ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 L i s t o f A t t a c Nn e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.0 Purpose and Scope.............................................. 5 2.0 Val ve As sembly De sc ri p ti on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.0 Requirements.............................'...................... 5 4.0 Results........................................................ 6 km . 9 5.0 Mai ntenance and Qual i fi ed Li fe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
i 6.0 S tatemen t o f Qu al i fi c a ti on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 l
l l
l
- N28-11/ 3 c
r L
9510- NshetC ctrotat- 1 00e' FISHER QUALIFICATION REPORT FQP-11AB-5 Revision A
, , Alvin W. Vogtle Nuclear Plant January 16,198!
. 5"]!i)ll(({* Georgia Power
( Bechtel Power Corporation Page 4
. cFisher Controls LIST OF ATTACHMENTS
- 1. Resonant Frequency Test Report - Fisher Lab Problem 1667, Report 188A
- 2. ES 117, Rev. F Seismic Analysis and Seismic Certification dated 2-6-84
- 3. Pressure Retaining Parts Stress Calculation: NA-134, Rev. A
- 4. Static Side load Test of the Vogtle Item 165 - 10" 9280 Butterfly Valve with Bettis N521C-SR80-12 Actuator, Fisher Lab Problem 1662, Report 72
- 5. Certificates of Compliance and Related Documentation - Bettis Actuators for Group V Valves
- 6. Arrhenius Rate Equation Calculation
[
Note: Report F0P-11A, a separate related volume entitled "Vogtle Environmental Qualification Report for Type 9200 Butterfly Control Valve Assembly" has been previously hJrnished under separate cover.
(
N28-11/ 4 1
/
951 FishM.S90ko$5161 - 1 OpihHERQUALIFICATIONREPORT FQP-11AB-5 Revision A
, , Alvin W. Vogtle Nuclear Plant January 16,19E
_ FISHER' Georgia Power Bechtel Power Corporation Page 5 CFisher Controls 1.0 PURPOSE AND SCOPE 1.1 This Qualification Summary is submitted to verify qualification of the following Nuclear Code Class 3 active control valve assemblies for Seismic Category I service. Information presented and referencec in this report is in accordance with the specification listed above, as interpreted by Fisher Qualification Plan: FQP-11AB.
> 1.2 The valves covered by this report are designated active valves, Nuclear Safety Class 3, Nuclear Code Class 3, and Seismic Category I (Bechtel Project Class 313). The valves are located outside containment.
2.0 VALVE ASSEMBLY DESCRIPTION The v;1ves shown to be qualified by this report are 10" ANSI Class 150, Type 9280, butterfly valve assemblies. Actuators are Bettis cN521C-SR80-12 pneumatic actuators. Speci'fic production valves covered by this report are as follows:
(' Item Unit 1 Unit 1 Item Unit 2 Unit 2 No. Serial No. Tag No. No. Serial No. Tag No.
155 8342938 1-HV-12596 165 8342940 2-HV-12596 156 8342939 1-HV-12597 166 8342941 2-HV-12597 3.0 REQUIREMENTS The requirements for Group V valves are as follows:
3.1 Rigid Valve Reauirement -- The lowest resonant frequency of these valves must be shown to be greater than or equal to 33 Hz (see FQP-11AB, Paragraph 2.3.2.).
3.2 Structural Integrity Requirements -- It must he shown that extended structure stress levels meet the acceptance criteria of Fisher Engineering Standard ES 117, Rev. F ( Attachment 3, FQP-11AB ),
when the assemblies are loaded with a 4.5 g triaxial load (see FQP-11AB Paragraphs 2.2 and 3.3.1; also see Paragraph 3.5 for pressure-retaining part stress calculation procedure, per SAG 1034).
3.3 Environmental Requirements -- It must be shown that the environ-mental conditions in Appendices EA-15, EA-65, and EA-67 of Bechtel O
N28-11/ 5 b
9010 FhitterceMend31- 1 0 0h! SHER QUALIFICATION REPORT
~
FQP-11AB-5 Revision A Alvin W. Vogtle Nuclear Plant ,
January 16, 1985 Ge rgia Power
[ FISHER =' Bechtel Power Corporation Page 6 OFisher Controls Specificaton X5AC03, Rev. 9 for Environnental Designator VIII-R-C83, can be met by the subject valves without affecting the pressure retaining integrity of the valve assembites or interfering with the safety-related function (see FQP-11AB, Para. 6.3).
3.4 Operability Requirements -< Capability.of the subject " active" valves to perform the designated safety-related function must be shown in keeping with the FQP-11AB, Paragraph 5.0, requirements.
The safety-related function of these Bettis actuator valve assemblies is to provide a " fail-closed" disc position upon loss of air pressure to the cylinder.
4.0 RESULTS The ability of the subject valves to satisfy the requirements listed in Section 3 above is demonstrated in the following manner:
4.1 The lowest resonant frequency of the' valve extended structure (actuator and mounting bracket) has been detemined by impulsive excitation test and by analysis. The testing was done in the Fisher Laboratory as reported in Lab Problem 1667, Report 188A.
The correlation analysis for the corresponding extended structure was done (2-6-84) according to Fisher Engineering Standard, ES 117, Rev. F ( Attactnent 3, FQP-11 AB). ES 136, Rev. D is an algorithm verification of ES 117 Rev. F and is included as Attachment 4, FQP-11AB. The lowest resonant frequency for the extended structure as detemined by test is 81.5 Hz in the X axis, and the calculated lowest resonant frequency is 81.3 Hz in the X axis. These values are within 0.3% (see Attachment 1).
The lowest calculated resonant frequency for the valve assembly is 77.7 Hz in the X axis. Even with the correlation factor (0.3%)
- taken into account, the lowest resonant of the the valve assembly
! is well above 33Hz as required. The resonant frequency test report L and ES 117, Rev. F analyses are included as Attachments 1 and 2 to this final report.
! 4.2 The seismic analyses (done at 10.0 g) and certifications are l included as Attachment 2 to this report. The analysis printou*.s provided are for a horizontal shaft orientation in a horizontal pipeline. This orientation has been determined to be the r%st s l highly stressed orientation possible (by comparison of maximun ,
stresses for the other possible orientations). These ant. lyses verify that this valve assembly is qualified for any orientation, L
(t .
N28-11/ 6 t
9G10Fhherc;otrong.1- 1 00flSHER QUAL.IFICATION REPORT FQP-11AB-5 Revision A
, , Alvin W. Vogtle Nuclear Plant January 16,198 FISHER
- Georgia Power
(
Bechtel Power Corporation Page 7 cFisher Controls with respect to seismic stresses, per Paragraph 4.1.1, Part 5 of the X5AC03 Specification. Supplementary stress calculations for pressure retaining valve parts are included as Attachnent 3 to this report (see FQP-11AB, Paragraph 3.5). All stress levels are shown to be acceptable. Actuators are being qualifled by Bettis in accordance with Section 2.6 of FQP-11AB.
4.3 The maximum environmental requirements (per Attachnent EA-15, Rev. 3) for Normal / Abnormal conditions are as follows:
Temperature: 104/30*F Pressure: Atmospheric Radiation: 1X10J Rads Relative Hunidity: 60%
These levels are within the conditions considered during valve design and can be met without exception. Valve design is in accordance with Section III of the ASME Boiler and Pressure Vessel Code and body pipeline connections mate with standard ANSI Class 150 flanges.
The DBA/ Post-DBA temperature requirements illustrated on Figure 4 (EA-79) show a maximum temperature of 180'F for about 4 minutes, which can easily be met. The DBA/ Post-DBA pressure requirements illustrated on Figure 6A (EA-81) show a maximum pressure of 3.5 psig for 14 seconds, which can also easily be met. The DBA/
Post-DBA maximum radiation and relative humidity conditions are 1X103 rads and 100%, respectively. Both of these requirements can be met without exception.
t 4.3.1 Similarity between the Vogtle production valves, covered in this report, and the environmental test valve discussed l in FQP-11A, permits applying the elastomer test results to l
the valves of this Vogtle group. Attachment A-3 of F0P-11A discusses modifications and exceptions to the environmenta test program that adapt it to the Vogtle project.
4.3.2 The elastomer T-ring disc seal in these Vogtle valves is made of EPDM (ethylene propylene) material suitable for i the design temperature of 200*F. EPDH T-ring seals are
, satisfactory without significapt loss of function for l radiation dosages up to 1 x 10 rads, but these seals
- j. should be replaced, along with other elastomeric parts, l
at intervals of four years or less.
~
l l' w h N28-11/ 7 1
s
9G10- ShherCettleols 1 000 FISHER ~ QUALIFICATION REPORT FQP-11AB-5 Revisien A Alvin W. Vogtle Nuclear Plant January 16, 1985 Ge egf a Power FISHER * >
Bechtel Power Corporation Page 8
( - -
CFisher Controls 4.3.3 The shaft packing used in these production valves consists of grafoil ribbon and filament rings. The packing is suitable for the design pressures and temperatures involved (100 psig, 200*F) and for the environmental conditions spect fled for Environmental Designator VIII-R-C83.
4.4 Margin allowances are addressed as follows:
r 4.4.1 Temperature - The maximum Normal / Abnormal external envi-ronmental temperature is 104*F, and the maximum internal temperature is 65*F. The valve internal design temperature is 200*F so margin is 96*F.
The maximun DBA/ Post-DBA temperature is 180*F so the margin is at least 20*F, which exceeds the 15'F margin suggested in IEEE 323-1974.
4.4.2 Pressure -- The maximun Normal / Abnormal /DBA/ Post-DBA external environnental pressure is 3.5 psig, and the maximum internal pressure (at shutoff) is 50 psig. These are well below the valve internal design pressure of 100 psig, providing
( .' a margin of at least 50 psi.
4.4.3 Frequency -- As shown in Paragraph 4.1 above, the margin provided regarding resonant frequency is at least 44.7 Hz above the required 33 Hz.
4.4.4 Vibration -- The level of seismic loading included in the static side load test was 10.0 g uniaxial (5.8 g triaxial equivalent), furnishing a margin of 1.3 g seismic excitation over the required 4.5 g triaxial.
4.5 Copies of the Certificates of Compliance for the ASCO solenoids and NAMC0 limit switches are included in Attachment 5 of this report for reference.
4.6 Operability Results 4.6.1 Operability tests were performed before, during, and after each application of side load force to evaluate performance of the valve under similated seismic conditions, in accordanct with the requirements of test procedure FTP-33, Rev. D
( Attachment 11 to FQP-11AB).
l I
(
N28-11/ 8
9G10- AXNsiceContrpl3 009 -
FISHER QUALIFICATION REPORT FQP-11AB-5 Revision A
, Alvin W. Vogtle Nuclear Plant January 16,198 FISHER' Georgia Power
(. -
Bechtel Power Corporation Page 9
. cFisher Controls 4.6.2 Functional tests consisted of packing leakaage tests, bi-directional seat leakage tests, stroking time tests, and verification of the safety-related function (fail-closed).
Complete procedures followed during the operability tests are presented in Fisher Lab Problem 1662, Report 72 included as Attachent 4 of this report.
4.6.3 The side load applied at the center-of-gravity of the extended structure was the equivalent of a 10.0 g uniaxial load (2915 lbs) applied in the weakest direction. This load level corresponds to a 5.8 9 triaxial load, which is more than 1.0 g above the required 4.5 g triaxial; therefore, the operability test qualifies the valve assembly for any orientation.
Average close-to-open stroking time was 3.2 seconds, and average open-to-close stroking time was:1.4 seconds. All closing times were under the ' required time of 5 seconds.
4.6.4 No packing leakage was noted during any of the functional testing. Packing leakage tests were run at 180 psig.
4.6.5 Seat Leakage was not detected in either flow direction during the functional tests. A 50 psig pressure drop was maintained during the seat leakage testing.
4.6.6 The test unit showed no structural damage after the tests and maintained the required " fail-safe" (fail-closed) position without deviation.
! 5.0 MAINTENANCE AND OUALIFIED LIFE l 5.1 Qualified Life of these Vogtle project valves is limited by the elastomeric parts. To address this, Fisher has conducted an
, activation energy testing program as reported in Attachment A-7 l of Report FQP-11A. That data covers common elastomeric materials, including those used for 0-rings, T-ring seals, packing components, and gaskets for the valve-assemblies in this qualification group.
These elastomeric parts, gaskets, and packing components are all t identified as recommended spare parts on the valve-asssembly Bill-of-Material Drawings for the Group V Valves (48A8927 and 48A8928).
N28-11/ 9
9310. Kjahgg AprisW1 1 010 ~
FISHER QUALIFICATION REPORT FQP-11AB-5 Revision A Alvin W. Vogtle Nuclear Plant January 16,196 '
I. . FISHER" Georgia Power Bechtel Power Corporation Page 10
( .
cFisher Controls 5.2 The lowest activation energy for any of the elastomeric materials was found to be 0.79 eV. Based on the results of a prior environ-mental test program, it is recommended that all elastomeric parts be replaced on a regular four-year cycle. This would ensure the valve a qualified life of at least 5 years at 126*F (see the calculation in AttacMent A-8 of Report FQP-11A). This ensures a qualified 11fe of 4 years normal service at 126*F plus a one year post-DBE li fe. The conditions are less severe than this for the Group V valve assemblies because the maximum Nonnal/ Abnormal i temperature is 104'F, and the maximum internal temperature is 65'F, providing substantial margin.
5.3 The normal-service qualified li fe for Fisher equipment can be renewed for another period by replacement of all elastomeric components listed in Paragraph 5.1 above, in accordance with the procedures provided in Fisher instruction manuals. Successive renewals of qualified life can be attained in increments up to the intended life of the plant or to 41 years, whichever is less.
5.3.1 Each time the valve-assembly is disassembled, new packing f and gaskets should be used upon re-assembly, i
5.3.2 Replacement of the elastomeric parts in the Bettis actuator should comply with the specified Bettis procedures and schedules furnished from Bettis.
5.4 Even though the specified orientation (shaft horizontal, pipeline horizontal) has been primarily considered in the qualification documentation provided in this report, there are no qualification restrictions for any orientation.
5.5 Additional calculations and further qualification rationale are provided in FQP-11A.
6.0 STATEMENT OF QUALIFIED LIFE The qualification data presented herein for the Group V valves meet the requirements and intent of Bechtel Power Corp., Specification No.
X5AC03, Rev. 9, including Appendices EA, Rev. 3, and QG, Rev. O, as interpreted by Fisher Qualification Plan FQP-11AB.
3 MJ
("
( -
Jogi Dresser Engineering Reviewer Jon Whitesell Qualification Analyst N28-11/ 10 t
b
9010- AXGACO3- 5161- 1 011 ,
(
ATTACIMENT 1 FQP-11AB-5 1-I i Resonant Frequency Test Report Fisher Lab Problem 1667, Report 188A
~
1 4
E 6
3 l
l l
l I
N28-12/ 1 l- .
9 e s;c ,a ncu s arc,A- A uAe Projcct 78EC07 prm Fisher Controls 1667
- 188A Laboratory Report ,,,,
( [ FISHER;, 1
. January 7, 1985 e r e erC e m PRODUCTION RESONANT FREQUENCY TEST OF V0GTLE ITEM 165 - EXTENDED STRUCTURE PROJECT NtNBER: 78EC07 PROJECT NAME: Vogtle '
- PROJECT ENGINEER: J. Dresser TEST ENGINEER: J. Milliken ITEM: 16E - Extended Structure ORDER NtNBER: 0228-X5AC03-N2P SERIAL NtNBER: 82-9022-1 (Actuator)
EM/FS NtNBER:
BILL OF MATERIALS DWG.: 48A8928 Rev. A DIMENSIONE0 ASSEMBLY DWG.:
ACTUATOR TYPE: Bettis ACTUATOR SIZE: N521-SR80 ACTUATOR BRACKET: 48A0025 APPURTENANCES:
Asco Solenoid 67FR was removed to accomodate fixturing.
OTHER SPECIAL IDENTIFICATION:
. PURPOSE: Mocel verification.
LCWEST CALCULATED RESONANT FREQUENCY OF TEST : TEM: E81.3 H TEST PROCEDURE: Production testing per FTP-5 RESULTS: x-Axis 1 81.5 Hz.
Y-Axi s f118.2 Hz.
Z- Axi s 5E.5 Hz.
CONCLUS!ONS AND RECOMMENDATIONS: The calculated lowest resonant frequency of 813 Hz (X-axis) is 0 3% lower than the measured resonant frequency of 81.5 Hz (X-axis). This is acceptable.
F Jon Whitesell Qualification Analyst f
l.
- 77 h. y Don,Winnike l
i Qualification Engineer e.= in L
9G10 AXGACO3- $161- 1 013 ,
ATTACHMENT 2 FQP-11AB-5 ES 117 Analysis and Seismic Certification a) Seismic Certification Letter for Group V Vogtle Valves dated February 6,1984 b) Analysis Model Drawings for Group V Valves Extended Structure c) Assembly Drawings 48A8927, Rev.*A; 48A8928 Rev. A; 38A7939, Rev. A; and 38A7940, Rev. A
( d) ES 117, Rev. F Computer Printouts for Group V Vogtle Valves dated February 6,1984 3
s T
a
! (')
3 N28-12/ 2 I .
?
Fisher Controls infomational, Inc 9510- AXGACO3- 5161- 1 019 "
, ,,, g Phone 515/754 3011
(
i31 5 .12 Fisher Controls February 6,1984 Seismic Certification for:
Representative Order: 228-X5AC03-N1P, N2P
' Customer Order: PAV-206, PAV-2-34 Georgia Power Company Vogtle NuclearPlant - Units 1 & 2 Active Butterfly Valve Assemblies per FQP-11AB Item Number Tag Number Serial Number Description 155 1-HV-12596 8342938 10" Type 9280 Valve Body 156 1-HV-12597 8342939 N521C-SR80-12 Bettis 165 2-HV-12596 8342940
- Actuator 166 2-HV-12597 8342941 Enclosed are the stresses and resonant frequency calculations for the above items. In accordance with Bechtel Specification X5AC03, Fisher Qualification Plan (FQP-11AB), and Paragraph VIII of Fisher Engineering Standard 117, the items are considered capable of maintaining their structural integrity when submitted to a triaxial load of 10.0 g's.
Acceptable stress limits for materials are based on allowable stresses found in ASME Boiler and Pressure Vessel Code,Section III, for Code Class 3, per the Winter 75 Addenda. Active valve acceptance criteria are used as listed in Section VIII.A of ES-117.
The second analysis is for correlation of tested resonant frequency.
This analysis and test is for the extended structure only (actuator and mounting bracket). The same model is used as the first analysis with the exception that the bracket is now grounded (joint #23) instead of the body being grounded (joint #26). The resonant frequencies are well above the acceptable-limit (33 Hz), and verified by test (see
, Attactaient 1 of this report).
W Jon Whitesell ltl Don Winnike
- a. _
s Qualification Analyst Qualification Engineer i
i
[ N28-3/ 1
%10. /WGAr0 3- 5161 - 1 01 5
~
I ' \ ' \ . '\ /
/ \ / \ /\./ f \ . '\/_\.,.._.. f_1... /\.. I._ / \
. . , .._ . . . .. . .. . .f, ... \../. .\. .,.. ..l..._.s . 7. .
.._\.r./. \..,
.+k/\ ._\,._/ \v, .
./ +\ \../../. .\.+. '
. f.._\ /. .\.. 's . 'N \ s. . /\ / /\.. .
/'
s.'
~ /k[\/'/\/ ,/' _.[' .'\ /\ /
f /\ .
\/\/ '/\'
/i I
\ .-s
/
_ j \.,/ \ ' \ f....
./\/\ _\.../ \.,/ \/ ~ \ . \/\<
.. . \. . \... . -. /..' \./ ' .\ . \..
.\ ...s['..\./4............_.. /._.'
..._'\
\ /
. .3/\_ .
\/
... . .\ _ \.../.._ . _\../.... \. .
\ / \./_ / \ . .. / \_..._ .. ._. _.'. .s.N. ,' .\.j_ . /\ \ ., ._'_\.\../\/ ' . . . . . ,/ /
/ <
/O' s' . ./
A...\ / \ / \'/ ' \. / \ / \. . ' \ / \/.._[. ..............
\/ \/\/\/ .G /\ '\ ~ ./\
\/ \7 \./ \. \/ \./_ \./ \
/\_/\./. \/ /._\ _
/
_\./. _\_./..._\. T. _\. ~ ..
...\.,.. _ /.._ / \,/.
. /.. '
/ / \[' \/\/\/\ 3,
\ \/\ \ - -\/g- -./ /\/\ ' / \,/ \....r- .\/\ .
.- .-3;-
\./\/ \/_,\,. \./\a s . .
.s
\/. \ \x / \/ 's s s
_\,/ \ < ./ /_ \. . ,,_
/ \ /\ /\
\ /\ /\ /' f .,/ /N \ '\ / /\ ./ ,\._ ' /J_ \ ./\\ .(9)
\ / \/\/ _. / \ . ' \ /\. ' \ . ' \
/ /
\ /_\ . _. ' \ /\ / [\ '..\
/
. /\. ' ' ' ' ...' '.. . . .. . . ' 7
\[\ /k[ . , ' . .. "\ [\ / \ [ \.
s/ / _\.,/_g \ /\ \f .
./ /.
~
_.;f \;/ \ '.
/i
\ '\ /\ / g g ,
7.g.
s
' . ./ i .: ... . .:.' , N ,. .
'a.
-' ' ['7\/s N T P _'
'\ /\ ~\ '\ , j
'\ @ '\
3 9 $.._ \/
......./.
.. . N /\ .. /\ 7./. \ 1/\.. f~ \/
,.O['. \
j s .['
,/ \ J Ql/
3-~,p -
,I 5: ... _. .,.- ,
_?
\..;_;- G. ', .,._ f
. N/' .\ ...... l.,. .. ;..-.' : _ . Q.. :d.
- . . . , . _ . , . 4.
f)..... . _ \/
' ' \ /q ~ /\ .\,
~_. \ /\
% /s /s t
Y /. \ , s. / \ /. T . / \ .. . _ . . /\. '*/ A
[_1<,/. 8/ * .. - \.g._......_.
_ /\"s.' . . _ ..-jgj
.. r
- -r. m.t ,
q\3f /\_ . .
.g . j _9
\ d
%/ \.. . ..... \ .
./ \. ....,._. / \./_ _ x '
.. . _'_\q. .... /._\.e .... s _.. . . .. ..
- 7. . . . . . _ . . . _ . _ . . . . . . _ .. . . . . .
k hi,.
(
[ \ f ,! \
/\ ,
T. ,
f *
- O _/*
'm Y* ^ ~
, .. . ., l gj % \ ,
'.e - . . . . . + . . - .. . . .
,9 .. ...e. . . . . . . . . . -. . - - .
g * \- .. . \. E, s! , ,[\
._._..f..._, .
" /\ , /t '
/\ ^ '. h. ... .
.+'
< \ : / o . .. .. p /==.s_e._-.~
'N - \ ~ l
! . '/\/\f /X. / \ / /\ .. /.. .._ s./\,. \/s/(g /\/ .
A/
.~~~ _~~
A. -- -*~~~.A ~~ ~
""? ,
w ._ - ,_ ..
..._p
.._,.......,_..h...
N T' ,
t
\ / / /.\ . ~./ ,
. _ - . - -\r e /
l g : .. . . . . . . ...... J4...\. / \ . . . = N.._ ,,_. .O
\/' '
l g * ' \/ /\ W4. b /\ 1 '
f' '\
l
$j ._.._....__. ._ .
. . . b_. /+ .. _ , Y E b ', .
4[\_
C 1
_._. ._; ; _q i . ...
\.
d
'\.'/\/
U ** - -
. . . _ . . i....:,._..._ .
.......l e
_/\./..
/ \ /
H_
y .r.
. . . . . . , /._0.._ y ....\.,.../ .. ,,
'k. /
g ' / / M_ -~' p '
/\/ /\ /
3 <s .
f o '. i '
.X .y...' .
y, .
- ~~ -
s.. . _. -.
s..
l, 5 s.[ .._... <._. e__ ._.....,-.- ..
Q . . s.._...
l g . .
g \ \ ., / i _
- l. ,
.f s.
g
...../......,.....,..
op l
/\ '\/ . . . .... , .../..:....l'_.-...._s__..e_...s_.-.-.--
x \ ' s/ ,-=. _ g\ a \/
L N. .
.. lg".
/
. . . . _ . .\..s.
,\.. ~
.i .~. /
/\ .7 _N ~h 1
T /y,"G 77 X ? '
/\. . .
C
...y.._e......
.y ...,.-.._......_s--- \. ,;p.,
L..
. . . s' \. .~. . -
...-..+..
i /
./ ,x
.n v ip\../. . . . .
..............:...\./. ' 5- ' @ s/' \.. \......:,/. .L ;
p- ' \ /\
~
-\/' ,; G W /x .' /
.. .._\. .. \ , . ...... . _\ . , . _ . . . . . . - _ ' . . . . #._\,,
../ ,._._. .
. ." it ) / \.. . . . t..
. . . - ' N.__ / ._
..a
}.
. . . . . . . ~ . /.. ... / f. .. .. . .
. . . ..... - . ...n /_-. . ....A._.- .!
,/.. .
- '\ .
\,/ ' . /
. \ j'\ .f' /' / ' . ./ \ .e \/' -_'. ./N, \.. k--_. . /k. ...
./ \ \'\/ \./ \.\/ \ ' ' /,g_ A/( '
l l-m
9510-gg'ne.C0 3- 5161- 1 016 -
g . -
@~ i l-
- n s '
.et e :
YG. .
6ms y . ,
., .: . a ,
me
% l
' ' s qm x g .,&>
(Il
- (
N. N
- (
n \ .h i
i \,9 \- 3 -1
- g \
, @ ~
- 5
\ \
/
l m 9m $ o m
\% \
~
t-v / IU
~
CC C E
, , W
~
k .
2)
- A* . ! :
~_
o .
i 9-g@e f >- 's b
~
S s:~ 5; k O /\
O /
m *; % e-c m ii N('
a
$5II h: I, i
4 v3 a w z _J -
(.
er -
y l1
/ I
N I N /
b l 7 9510 AXGACO3- 5161" 1* i 17 l h ,
=
.:N
( . .
.A
~
e- ,
I 11 A
en y Yg T. -
QQ $
'a
$ $14 k
- ea w ;
< > 't h Sw j
]
_4_
l .
l 3 !
I L I J l 11 i< x i <, 9 il ~
a . , a s u m m ,__
s !
1 I
c
\ww _
Y h Y
m' V ' I w '
t I
8 1
j *
$( .A 1 , a l . . >*
F.- . a-
- i .j , 7 s
} O . ? . * . 9 ~. 4 . 3 e 9 . .
I I I I I I I I I I I I raa'neer/ r
/. a 1
l
.I.
j
.. . . -. - . . o l.
j b M . !--c , ' . ! lL":::". :::.'.;;"'""" ...o W "E,. w -g -i
' : l ::::::::::: :: .: ::'::.* ':*.;;::' "- f.0 j ar mm, ! .'::",:::::: ".:r """" lllll7.3.'"r::.!? "
_ QV s .. @ @ 8 8 @ @ (!T r i sEs m::--
";;Z.2.- ~
i 32 47 53 41 42 45 54 !. .'".""." :.:...
. . ".'T.**** %. -
i 2 ':T ! !=:::::: : l"'."l. :::::..:f.lll"ii --.. r l
! 21 23 22 14 8 1 2 30 .y . . : r,==:
- ".:." ::::::"':$.~.':::3 .
-.=. =,: .- -
. i a .
~ f l,
l -
. . -. o
// t-9 ::
,.. .:. =. = =..:: . o
~
==.
. = - ,
a i my 9 .
~ ,
OO . . ."..' . ."' . . - a.'.'.: a - '-"-
) ,
i ; I ::. !. :.:.:.':.::.:::.,: ":: lllll"""~'"
_I in *'. .. -. .-- .
. l I yJ C, e, y [
n=.='. ::::-
, , _._ nsa k 1. = 'l "'. =.".
{ b Z I -
-,. 3 3."=T= U.I.
t
~
q} m . . -
n ] i .E. !. i::::::ll:.
.m m.
1 l
7 .
- ._- .- " z - - .
1
- s -
NAMCO LIMIT SWITCH NO.EAl80-SISCE. h-leNPT %-IS NPT patL NpMg334Aty f ,
l
, FLANGE ORILLiteG PER YENTCONN MMT CONNm 3/4 CONOulTCONN
'q ANSI BIC.S CLASS ISO- ,
I > ",
p gf ' 25 p q_. <
l!
l r oJ v-4' j
- a- bb'1'S z.so@ '
! c y *i *-di o j O i,qf) [_,i3,1 Lg '- /_ c iy- io g Q , -
(
.4 . C ., T
.. i I
- t 75tt0%
f= _
L CO
. C.i w
-- S 88 -=- ,' -
l, *
'*- E.S6 e 50% .
- . 4 i ,
,. 22.00 -
130G -
7.13 : 38,oo g3m _ ,
1*ll /gl NPT A 3
! /4-84 NPT I '. e l CONOUIT SUSHING *
. . t-ONE PER SwlTCH e .
3 SANNTATION AND ACCESSORT MOUNTING VIEWS -
8
- ACCESSe# ifs WEL Bf PIPfD PER THE i AGOVE INSTALLATI0le SCHEMAlec ,,
.- ,DeSC CHORDAL SwlNG $ AT THE VALVE FACE IS 3.50 4
TOTAL VALVE WElGHT SIS LSStlO*/.
l, j * ~
esinses ensensues speewese-l , asusteresemenes necesse
~ ~ enweises essmonosome ame a Je y
- _ caerwies commoct I av h 4 / _- ' 't oats se- 5 -se.
l (
9 _
3 2 'vaava reess /reesp aavine ANSI ans.34-eS7 7 CLASS ISO i
g cuot 80** 8 0 0W ij A . . ' J. 3= lomeen.
Po me:PAV-10G GEORGI soo : EZB-RSACO3-NIP A power VOGTd UNIT I CaesPANY N52 C-SR80-lE-SZ80
, tas soo : S HV-l zSsG , IHV-12SS 7 BETTIS ACTUATED A I , CONTROL WLVE I e , SOLD 00sQ T AG NO.: I HV-IES*3G, I HY-lESS7 CW TO CLOSE. veLLVf. SHAFT
' . 3 , sement mo : 834 2338 -339 ROTAT60N
]* ,
. . . r., m iSs, w
- ,,,,,,, - n ... s.me -
) , , , _ _ _ . _ . . , . , + - - -
m A- A
,..s.-.-- .
- O .
fs .
.I I.
.o t . . . , .
. , a. _ :
- IIIIIIIIIIIl 7 .
'*lq
- , . '." 2. :"." ..
- - - - - d
. . :. . = . = :.f.-=..
5 .. . . . . . -
. o >
,, ..w,,,.,.,,- - .
. o .
ra
.T !. 0.. :.:.::::.: 7= . . . - . i
. _ . _ . . . . - - +.
5 ll'.Y * - F' 32 47 53 4I 42 45 54 . ! "'= '
E ": .--:: => . T 2
. , + ! !=.s"5:E= ::. ="."
.. 21 22 14 8 I 2. 30 / [f
.. : =._=.:. : ..
- =..=,.=;.::,/:.:
.. . 46. .=
i a ,, . . . . - . . . .
- b. ... -. .rr.:
- [i r ::'. . ".
_P ,::... :. = = ,: . =-.. . = . . . - .. . . .. .... o !. '
. . ,. N
. m - - * - ' = ' " " -
OO '
e
...'" .:: "::':t=T
=
.ci . . . . .gr.-' .. . . . :";' .m.
J n -
.. - ...m. - .. .
m g
aus 9.d C. .
.~J s ,L ,i [ : : ::=:l=
+ --
r ! !=. .:::: =': =. . :"' .! .
b_
.f.- g- M_ i I i ": :
- ".;r:: -
.r.,= -
E p %i C*
( D 7 i ss
- : :== :=
1 uf-- N (
s OO . . . . . .... . . ~ ~. .- .. .- .
e o
/
1 \ i-
- I .= .= =.". .
- 2. .".2 ., =.=.
-==
1 1 :-
= c=' , 7,; - .=== .t ,
J -.
i 7 ,
}
I.
12 15 24 16 7 35 42
=*
.. . "". :.:":::::ll:.
26 ..
51 49 d . .
=:.:r: =. .::'- " " - .
- . / ..
t
- ' espit Ice ensuuses WSWW W
' ' mat sessmriamos man, i
- O y _
ym... .to Gu ni g o..t .. e. p. u.= J # _ ' N
....o a no .e,y c as. .so T 6g tva e os ..e j $ ,
. 3 : cvs. w owe.cos.as.v vor.vu U m
.o%3.oov.3944 c3 3133 i . -
L s
- t g- so.g.o we.seo are- sacos-.Eea N T g, (c.t.y.s.on, et ac riareo
,T e.. ne. o v-. ass t r. m
\ ,, j I SQ 01as O 2 4t.tss,t Mts.
s l 3 ; m.L.E.No L o es rs.oa.a t v-.r.ssr..t.
m t '5' g 9 -l l e 1 I l' l
.I .
1 (es,w]e s.c4Eir * * ^ '*
D
- . --
- ; " O 'L ' "' 4BAFM8lA s.croe a,* .
.. . . . ~
-l .
s6se - - .?b5 i: T t ::4 ?v i - ' <
q LL p -
o $
d O 4
g e. e o
( L$ gaj g
fe fl i
$ h 3 ys cd -
a -
, S 9
0 o
b a I--n -
a E!gu
- i E gYN!
E a 5_e
~ e
!ll 5
SE Ba --s _IE!Ci i
- y gia Ib
, y la. s 9fe!52 d i Ne l 2
$gy E8 -
w8
' g, Il d, -
g fili
_t 4 e a ,
b- NI '
n N , I *h;d 'g )!
o.' "%#) _
5" i c i Ija0~-
$s e-a f to 3
e s
o3
,Mqt . _
!. ! ;2p~i;
__ _m o ww = {r t
- v =a 0 S o w_!$ a
.i l ((.5 A
R$
su
!: [ h_.;u-ex 620 ___
E.
g csE ,' .
I *8i 83 a t pupe ---
s
!"W gg L_
LV [f vi I ! Jg~gg
! ' frgs5:
i i ! .5:s_!_s_i_ . .j
- Wa
,i. ar a . ,,
> , n . om . I m.v -
- lg C Og g a --
(. o e
~3 9 ]
uz E c t @*
a lazM e y
e g#W =t rn g: s d
y5 %u e y, u
.Lo-o
) g-
,%f *
, E a c
l v5 2 a=S '
42E - - - 5 -w 2 3 2 7;; ' l -
[" "' ! [ 55 3 pdd ? f m EE o.
ee Iod
- n
- $1
,ot5
=
- Nw o o pjI U NE E ,_ _
s !!sa s s 8 hE I._
-p
_ i ;dg(
5 s ~8 e--u /
7 a
(({
- z. 8
! l" !
!l i
4 i y 8
2 s
'3-
'4 %
e- -
}5 E:gg*
g g
(, i t
- . u . .. . . . . . . .
+ - - ~ ---- , , ,--
9510- AXGAC03- 0161- 1 0??
O 1
F I S t-EQ COATROLS COMPAleY SEISPIC-4 SEISNIC AraALYSIS OF CorTAOL VALVE ASSEMuLIES (HEV F) 1 I
l h
as I .
L I.
00 "#/# #M 9G10- AXGACO3- 3161- 1 023 QUAL. GROUP V PAGE 1
( GEORGIA POWER COMPANY
- FISHER CONTROLS COMPANY **
ASSEMBLY 48A8927, 48A8928 ORIENTATION 38A7939, 38A7940 REP ORDER 228-X5AC03-N1P,N2P CODE CLASS 3 CUSTOMER ORDER PAV-206,PAV-2-34 SEPIAL NO. 8342938 TAG NO. 1HV-12596 ITEM NO. 155 8342939 1HV-12597 156 8342940 2MV-12596 165 8342941 2HV-12597 166
- VALVE DESCRIPTION **
10 INCH N521-SR80-12-9280 CODE CLASS 3 BRACKET 48A0025 BETTIS SPRING RETURN PISTON ACTUATOR
> ACCESSORIES : EA180 NAMCO LIMIT SWITCHES (2) 67FR PRESSURE REGULATOR NPK8321A2V ASCO SOLENOID VALVE 1000 S ASHCROFT GAUGE DESIGN CONDITIONS : 100 PSIG AT 200 CEG F ACTUATOR TORQUE : 1471.0 IN-LB REQUIRED FREQUENCY : 33 HERTZ 10.0 TRIAXIAL G LOADING
- DATE OF THIS REPORT / FEBRUARY 6, 1984 C0NTR0L INPUT 0A TA MANUAL INPUT GENERATION FOR VALVE ANALYSIS SEISMIC STRESSES ARE SUPERIMPOSED BY SQUARE ROOT OF SUM OF SQUARES STRESS ALLOWABLES ARE COMPARED TO MAXIMUM PRINCIPAL STRESS
' MASS, STIFFNESS. LOAD AND STRESS MATRICES ARE NOT PRINTED STATIC SEISMIC ANALYSIS TO BE PERFORMED OPERATIONAL LOAD ANALYSIS TO BE PERFORMED DYNAMIC MODAL ANALYSIS TO BE PERFORMED WITH EVALUATION CR0SS-SECTION DATA a
EL. CROSS-SECTION NO. DESCRIPTION PARAMETERS 1 TUBE A= 5.375 , T= .1650 ,
'2 TUBE A= 5.375 , T= .1650 ,
' 3 TUBE A= 5.938 . T= .3600 ,
A= T= .3000 B= .9400
( TEE-SHAPED 3.600 ,
4 , ,
T1= .8750 , R1= .1250 ,
t
Ye. $$SCM 9510- AXU AC03- 5161- 1 024 [oMf /e OUAL, G 00P V PAGE 2 5 TEE-SHAPED A= 3.600 , T= .3000 , B= .9400 ,
T1= .8750 , R1= .1250 ,
6 TEE-SHAPED A = 3.600 , T= .3000 , B= .9400 ,
(
T1= .8750 , R1= .1250 ,
7 TEE-SHAPED A= 3.600 , T= .3000 , B= .9400 ,
T1= .2500 , R1= .1250 ,
8 RECTANG. BOX A= 3.000 , T= .5900 , 9= .3.000 ,
T1= .5900 , R1= .0 ,
9 RECTANG.80x A= 4.000 , T= .3750 . 8= 5.500 ,
T1= .3750 , R1= .0 ,
10 RECTANG.80x A= 3.000 , T= .5900 , B= 3 000 ,
T1= .5900 , R1= .0 ,
11 RECTANG.80x A= 8.000 , T= .3750 , E= 4.500 ,
T1= .3750 , R1= .0 ,
12 RECTANG.80x A= 8 000 , T= .3750 , B= 4.500 ,
T1= .3750 , R1= .0 ,
13 RECTANG.80x A= 8.000 , T= .3750 , B= 4.500 ,
T1= .3750 , R1= .0 ,
a 14 RECTANG. BOX A= 7.500 , T= .3750 , B= 4.500 ,
T1= .3750 , R1= .0 ,
15 RECTANG. BOX A = 4 000 , T= .3750 , E= 5.500 ,
T1= .3750 , R1= .0 ,
16 RECTANG.80X A = 3.000 , T= .5900 , 0= 3.000 ,
T1= .5900 , Al= .0 ,
17 SOLID CIRCLE A = 1.500 ,
18 SOLID CIRCLE A = 1 125 ,
19 SOLID CIRCLE A = 1 125 e 20 RECTANGULAR A = 3.500 , T= .8750 ,
21 RECTANGULAR A = 9.000 , T = .8750 ,
22 RECTANGULAR A= 9.000 , T= .8750 ,
23 RECTANGULAR A = 9.000 , T= .8750 ,
('
24 CNANNEL A = 8.000 , T= 4870 , E= 2.527 ,
T1= .3900 , R1= .0 ,
25 CHANNEL A = 8.000 , T= 4670 , 8= 2.527 ,
T1= .3900 , Al= .0 ,
26 RLCTANGULAR A= .8750 , T= .9600 e 27 RECTANGULAR A= .8750 , T= .9800 ,
28 RECTANGULAR A = .8750 , T= .9800 ,
29 RECTANGULAR A = .8750 , T= .9800 ,
30 RECTANGULAR A= .8750 , T= .9800 ,
31 RECTANGULAR A= .8750 , T= .9800 ,
, 32 RECTANGULAR A = .8750 , T= .9800 ,
33 RECTANGULAR A= .8750 , T= .9000 ,
34 RECTANGULAR A= .8750 , T = .9800 ,
35 RECTANGULAR A= 3.750 , T= 4.625 ,
36 RECTANGULAR A= 3.750 , T= 4.625 ,
37 RECTANG.50x A= 3.000 , T = .2500 , 8= 3.000 ,
T1= .2500 , R1= .1250 ,
38 RECTANG.E0X A = 3.000 , T= .2500 , B= 3.000 .
.T 1 = .2500 , R1= .1250 ,
39 RECTANGULAR A= 3.875 , T= .7500 ,
40 RECTANGULAR A = 3.875 , T= .7500 ,
41 RECTANGULAR A = 1 750 , T= .7500 ,
42 RECTANGULAR A= 1.750 . T= .7500 ,
43 SOLID CIRCLE A = 2.000 ,
44 SOLID CIRCLE A = 1 500 ,
45 SOLID CIRCLE A = 1 500 ,
46 SOLID CIRCLE A = .7500 ,
47 RECTANGULAR A= 3.500 T= .6750
(".
48 SOLID CIRCLE A = 2.000 ,
49 SQLLO CIRCLE A= 2.000 , -
50 SOLID CIRCLE A= 2.000 ,
51 SULID CIRCLE A = 2.000 ,
- 52 RECTANGULAR A = 9.750 , T = '4.000 ,
53 RECTANGULAR A = 9.750 , T= 4.000 ,
54 RECTANGULAR A = 9.753 , T= 4.000 ,
. ._ . _ . _ _ _ _ . . _ . +
9510- AXGAC03-5161- 1 025 CW GUAL. GROUP V PAGE 3 J0 INT C00RD1NATE DATA JOINT X Y Z No. -
1 3.250000 2.500000 26.690002 2 3.250000 2.500000 20.690002 3 3.250000 2.500000 7.500000 4 3.250000 2.500000 6.500000 5 3.250000 2.500000 6.500000 e 3.250000 2.500000 5.560000 7 3.250000 2.500000 4.600000 8 3.250000 2.500000 3.000000 9 2.250000 2.500000 1.750000 i
10 -0.438000 0.0 0.0 11 2 250000 2.500000 -1.750000 12 3.250000 2.500000 -3.000000 13 3.250000 2.500000 -4.600000 14 3.250000 2.500000 -5.560000 15 3.250000 2.500000 -13.750000 16 3.250000 2.500000 -15.e00000 17 3.250000 2.500000 -25.05900o 18 -0.438000 0.875000 0.0 .
19 -0.438000 3.070000 0.0 20 -0.438000 -3.070000 0.0
( 21 22 23 5.938000
-5.938000
-6.375000 3.070000
-3.070000 0.0 0.0 0.0 0.0 24 -6.625000 0.0 0.0 25 -6.875000 0.0 0.0 26 -10 375000 0.0 0.0 27 -2.813000 3.e75000 4.000000 28 -2.813000 -3.875000 4.000000 29 -2.813000 3.875000 4.500000 30 -2 813000 -3.875000 4.500000
, 31 -2.813000 3.875000 15.375000 32 -2.813000 -3.e75000 15.375000 33 2.312000 5.625000 16 125000 i 34 2.312000 -2.250000 16.125000 35 2.312000 5.625000 20.690002 36 2.312000 -2.250000 20.690002 37 4.841000 4.091000 6.500000 38 4.641000 0.909000 6.500070 39 1.659000 0.909000 6.5000y0 40 1.659000 4.091000 6.500000
, 41 2.250000 2.500000 4.500000 42 2.250000 2.500000 1.593000 43 2.250000 2.500000 -1.593000
+
44 2.250000 2.500000 -4.500000 45 -0.438000 4.250000 -3.610000 q ao -0.4J8000 4.250000 3.610000
)
47 -0.436000 -4.250000 -3.610000
- 4e -0.436000 -4.250000 3.610000 4
4
MN 9510- AXUACO3- 5161- 1 076 OM/ !>
CUAL. GRGUP V pagg 4 49 -0.438000 1.750000 0.0 50 -0.436000 -1.750000 0.0 51 -5.938000 2.967000 0.0 52 -5.938000 2.500000 0.0
. 53 -5.938000 -2.500000 0.0 54 -5.936000 -2.987000 0.0 55 -5.938000 4.125000 -3.610000 56 -5.938000 4.125000 3.610000 57 -5.938000 -4.125000 -3.610000 58 -5.938000 -4.125000 3.610000 59 -2 813000 5.625000 16.125000 60 -2.813000 2.375000 15.375000 61 -2.813000 -2.375000 15.375000 62 -2.813000 -2.250000 16.125000 63 -5.938000 4.125000 -1.375000 3
64 -5.938000 4.125000 1.375000 65 -5.938000 -4.125000 -1.375000 66 -5.938000 -4.1d5000 1.375000 60UNDAHY. 5PH IAG & 50LT JG IN T DAT a JCINT TYPE-MAT PLANE-CIRECTION SPRING & UCLT JOINT PARAMETELS t* 0 . / FIXITY OR DESCRIPTION 26 111111 o00Y 10 CIRC 4 A -X +Y N.T= 4 13 ,D/A= 0.5000, D= 4.5000 YSe= 0.0 ,ZSH= 0.0 ,STC= 1.0000 FG= (.
23 PAD 4 8 +X -Y N.T= 2.10 ,D/A= 0.7500, YE: 0.7500 YO= 2.7500,YSM= 00 , S= 8.2500 ZT= 0.7500, ZB= 00 ,75h= 0.0 CONCENTRA TED M A55 DA TA JOINT LUMPED FOR SHIFT DISTANCE OR MOMENT OF INERTIA
~
NO. MASS DIA. X Y Z l 0.168219 XYZ 0.0 0.0 -12.500000 6 0.006470 XYZ 0.0 0.0 0.0 6 0.006470 AYZ 0.0 0.0 0.0 12 0.010352 XYZ 0.0 00 0.0 CONCENTRA TED L0AD DATA JOINT . . . . FORCES. . . . . . . .dowENTS. . . .
t NO. X ,
Y Z X Y Z 10 00 00 0.0 1471.0 0.0 0.0 O
1 L _ _ _
9510- AX5AC03 5161- 1 027 Co7!3f8 N NN UUAL. GROUP V PAuE 5
( ELEMENT INPUT DA T A EL. JOINTS LENGTH ANGLE AREA MOMENTS OF INERTIA MATERIAL NO. / RADIUS 1-11 I-22 I-33 DESCRIPTION 1 1 2 6.000 2.7007 9.1726 18.3453 9.1726 STEEL 2 2 3 13.190 2.7007 9.1726 18.3453 9.1726 STEEL 3 3 4 1.000 6.3086 24.6379 49.2758 2*.6379 DUCTILE IRON 4 40 4 2.250 1.6400 1.2021 0.1517 0.1087 DUCTILt IRON 5 37 4 2.250 1.6400 1.2021 0.1517 u.1087 DUCTILE IRON 6 38 4 2.250 1.6400 1.2021 0.1517 0.1087 DUCTILE IRON 7 39 4 2.250 1.2400 1.1672 0.0383 0.0943 DUCTILE IRON 6 6 7 0.960 5.e87o 5.8357 8.3225 5.8357 CuCTILE IPON 9 7 8 1.600 6.5625 15.7451 29.5944 26.4326 DUCTILE IRON 10 9 41 2.750 5.6676 5.8357 8.3225 5.6357 DUCTILE IRON 11 9 42 0.157 8.6125 72.9131 e3.1571 29.8d9e DUCTILE IRON 12 42 43 3.18e e.6125 72.9131 o3.1571 e6.8896 UUCTILE IRON 13 43 11 0.157 8.el25 72.9131 63 1571 2e.e3E96 00CTILE IRON 1* 11 44 ?.750 8.4375 62.0947 S7.5977 27.2900 DUCTILE ICON 15 12 13 1.Cc0 6.5625 15.7451 29.5944 2b.4326 OUCTILL IRON 16 13 14 0.9e0 5.6o76 5.8357 8.3225 5.8357 DUCTILL IRON 17 1* 15 8.190 1.7671 0.2465 0.4970 c.2465 STEEL 18 15 16 1.650 0.9940 0.0766 0 1573 c.0786 STEEL 19 16 17 9.459 0.9940 0.07E6 0 1573 u.07P6 STLEL 20 45 46 7.220 3.0625 0.1954 0.656S 3.1263 STEEL 21 10 18 0 675 7.8750 0.502* 1.6667 53.1563 STELL C- 22 10 50 1.750 7.6750 0.502* 1.6667 53.1563 STEEL 23 18 49 0.e75 7.6750 0.5024 1.8867 53.1563 STEEL 24 19 21 6.376 5.4872 43.6363 0.3665 2.4J24 STLEL 25 20 22 5.500 5.4672 *3.6363 0.3b65 2.*324 3TLEL 26 63 55 2.235 0.6575 0.0666 0.1023 0.0547 STEEL 27 64 56 2.235 0.8575 0.06e6 0.1023 0.0547 STEEL 28 57 65 2 235 0.8575 0.0686 0.1023 0.0547 STEEL 29 58 66 2.235 0.6575 0.0666 0.1023 0.0547 STEEL 30 63 51 1 765 0.8575 0.0686 0 1023 0.0547 STEEL 31 6* 51 1.765 0.dS75 0.0666 0.1023 0.05*7 STEEL 32 65 54 1.765 0.e575 0.0686 0.1023 0.0547 STEEL 33 66 54 1 785 0 8575 0.0606 0.1023 0.0547 STEEL 34 52 53 5.000 0.8575 0.0686 0.1023 0.0547 STEEL 35 27 29 0.500 17.3438 30.9161 41 2662 20.3247 STtEL 36 28 30 0.500 17.3438 30.9161 41 2662 20.3247 STEEL 37 29 31 10.875 2.7500 3.4948 5.2c47 3.4948 STEEL 38 30 32 10.d75 2.7500 3.4948 5.2047 3.4946 sitEL 39 33 59 5.125 2.9063 0.1362 0.476S 3.6366 STEEL 40 3* 62 5.125 2.9063 0.1362 0 4765 3.6366 STEtt 41 33 35 4.565 1.3125 0.0615 0.1798 0.3350 STEtt 42 34 36 4.565 1.3125 0.0615 0.1798 u.33SO STEtt 43 14 16 10.040 3.1416 0.7854 1.5706 0.7654 STEEL 4,4 14 6 11.120 1.7671 0.2485 0.4970 0.2465 STELL l 45 5 6 0.940 1.7671 0.2485 0.4970 0.2485 STEEL
- o 5 2 14.190 0.441e 0.0165 0 0311 0 0155 STELL
) 47 47 *o 7.220 3.0625 0.1954 0.65E5 3.1263 STEEL 48 56 27 3 159 3.1416 0.7854 1.570o 0.7E54 ST1FF ELEMENT
9510- AXGAC03- G3 61- 1 020 #Y OuAL. GdOUP V PAGE 6 49 46 27 2 436 3.1416 0.7654 1.5708 0.7e54 ST1FF ELEMENT g 50 58 26 3.159 3.1*1e 0.785* 1.5708 0.7654 STIFF ELEMENT
( 51 48 28 2.436 3.1416 0.7654 1.5708 0.765* STIFF ELEMENT 52 23 24 0.250 39.0 52.C 154.4 309.0 SA-515-70
. 53 24 25 0.250 39.0 52.0 15*.4 309.0 SA-515-70 54 25 26 3.500 39.0 52.0 154.4 309.0 SA-515-70 37 6 RIGID LINN 38- 6 RIGID LINK 39 6 RIGID LINK 40 6 RIGIO LINK 41 8 HIGID LINK 44 12 RIGID LINK 35 2 RIGID LINK 36 2 RIGID LINK 43 10 RIGID LINK
- 2 10 RIGID LINK 45 19 RIGID LINK 46 19 RIGIO LINK 47 20 RI6IC LINK 48 20 R101D LINA 55 21 RIGIO LINK 56 21 rib!D LINn 57 22 RIGID LINK 56 22 RIGID LINK 54 22 RIGID LINK ,
53 22 RIGID LINK 52 21 RIGID LINK
( 51 21 e3 64 23 23 RIGID LINK RIGID LINK RIGID LINK 65 23 RIGID LINK 66 23 RIGID LINK 59 31 RIGID LINK 60 31 RIGIO LINK 61 32 . RIGID LINK 62 32 RIGID LINK 49 19 RIGID LINK 50 20 RIGIb LINK 1
s R
L
9510- AX5AC03-5161- 1 029 OT GUAL. G40UP V PAGE 7
(, STA TIC ANALYS I5 DEFORMATION RESPONSE TO 1 G GRAVITATIONAL LOAD IN VALVE SYSTEM x DIP.
JOINT . . . DEFLECTION . . . . . . ROTATION . . .
NO. A Y Z X Y Z l 0.001583 -0.000098 -0.000436 0.000003 0.000041 -0.000012 2 0.001269 -0.000082 -0.000436 0.000003 0.000054 -0.000012 3 0.000467 -0.0000*5 -0.000431 0.000003 0.000062 -0.000011 4 0.000404 -0.000042 -0.000431 0.000003 0.000062 -0.000011 5 0.000404 -0.000042 -0.000420 0.000000 0.000056 -0 000011 6 0.000351 -0.000042 -0.000426 0.000000 0.000056 -0.000011 7 0.000296 -0.000042 -0.0004d5 -0.000000 0.000055 -0.000011 8 0.000205 -0.0000*2 -0.000*25 -0.000000 0.000054 -0.000011 9 0.000137 -0.000032 -0 000370 -0.000001 0.000050 -0.000010 10 0.000022 -0.000005 -0 000234 -0.000001 0.000050 -0.000010 11 -0.000039 -0.00003* -0.000370 -0.000001 0.000050 -0.000010 12 -0.000099 -0.000045 -0.00u*21 -0.000001 0.000050 -0.000010 13 -0.000176 -0.000046 -0 000*21 -0.000001 0.000049 -0.000010 14 -0.000222 -0.000047 -0.000*21 -0.000001 0.000048 -0.000010 15 -0.00054J -0.000051 -0 000421 -0.000a01 0.000035 -0.000010 16 -0.00060= -0.000052 -0.000*21 -0.000001 0.000033 -0.000010 17 -0.000796 -0.00005e -0.000*21 -0.000001 0.000016 -0.000010
[, 18 0.000027 -0.000005 -0.00023* -0 000001 0.00004e -0.000003
%. 19 0.000027 -0.000005 -u.000235 -0.000000 0.000041 -0.000000 20 0.000010 -0.000005 -0 000232 -0.000001 0.000040 -0.000001 21 0.000u27 -0.000008 -0.000495 -0.000000 0.000041 -0.000001 22 0.000011 0.000000 -0.000010 -0.000001 0.000040 -0.00J001 23 0.000001 -0.000000 -0 000008 0.000000 0.000004 -0.000000 24 0.000001 -0.000000 -0.000007 0.000000 0.000004 -0.000000 25 0.000001 -0.000000 -0.000006 0.000000 0.000004 -0.000000 26 0.0 0.0 0.0 0.0 0.0 0.0 27 0.000191 -0.000002 -0.000136 -0.000000 0.000041 -0 000000 28 0.000170 -0.000000 -0.000135 -0.000001 0.000040 -0.000001 29 0.000212 -0.000002 -0.00013e -0.000000 0.000042 -0.000001 30 0.000191 0.000000 -0.000135 -0.000001 0.000041 -0.000001 31 0.000834 -0.000011 -0 000135 0.000003 0.000060 -0.000010 32 0.000779 -0.000008 -0.000133 0.000002 0.000057 -0.000010 33 0.000699 -0.000064 -0.000379 0.000001 0.000064 -0.000010 34 0.000839 -0.0000S9 -0 000400 0.000003 0.000066 -0.000010 35 0.001305 -0.000071 -0.000377 0.000003 0.000054 -0.000012 36 0.001215 -0.000071 -0.000398 0.000003 0.000054 -0.000012 37 0.000421 -0.000060 -0.000514 0.000000 0.000056 -0.000011 38 0.000386 -0.000060 -0 00051* 0.000000 0.000056 -0.000011 39 0.000380 -0.000025 -0 000337 0.000000 0.0000S6 -0.000011 40 0.000421 -0.000025 -0.000337 0.000000 0.000056 -0.000011 41 0.000287 -0.000031 -0.000371 -0.000000 0.000054 -0.000011 42 0.000126 -0.000032 -0.000370 -0.000001 0.000050 -0.000010 43 -0.000032 -0.000034 -0.000370 -0.000001 0.000050 -0.003010 C,.) 4* -0.000173 -0.000036 -0.0uu371 -0.000001 0.000060 -0.000010 45 -0.000120 -0.000007 -0 000d36 -u.000000 U.000041 -0.000000 1.
t
7510- AXGACO3- G161- 1 030 O '
' b8M LUAL. GROUF V PAGE d
- e 0.000175 -0.000003 -0 000236 -0.000000 0.000041 -0.000000
( 47 -0.000137 -0.000007 -0.000231 -0.000001 0.000040 -0.000001 '
48 0.000154 -0.000003 -0.000231 -0.000001 0.000040 -0.000001 49 0.000027 -0.000005 -0.000d34 -0.000000 0.000041 -0.000000
~
50 0.000012 -0.000005 -0.000232 -0.000001 0.000040 -0.000001 51 0.000026 -0.000001 -0.000009 -0.000000 0.000041 -0.000001 52 0.000026 -0.000001 -0.000009 -0.000000 0.000041 -0 000001 53 0.000012 0.000000 -0.000011 -0.000001 0.0000*0 -0.000001 54 0.000011 0.000000 -0.000011 -0.000001 0.000040 -0.000001 55 -0.000121 -0.000002 -0.000010 -0.0u0000 0.000041 -0.000001 56 0.000175 -0.000001 -0.000010 -0.000000 0.000041 -0 000001 57 -0.000134 -0.000002 -0.000010 -0.000001 0.000040 -0.000001 58 0.000154 0.000003 -0 000010 -0.000001 0.000040 -0 000001 59 0.000897 -0.000013 -0.000130 0.000003 0.000060 -0.000010 60 0.000819 -0.000011 -0.000139 0.000003 U.000060 -0.000010 61 0.000793 -0.000008 -0.000130 0.000002 0.000057 -0.000010 62 0.000837 -0.000010 -0.000130 0.000002 0.000057 -0.000010 63 -0.000004 -0.000000 -0 000010 0.000C0u C.000004 -0.000000 64 0.000007 -0.000000 -0.000010 0.000000 0.000004 -0.000000 65 -0.000005 -0.000000 -0.000010 0.000000 0.000004 -0.000000 6o 0.000006 -0.000000 -0.000010 0.000000 0.000004 -0.000000 L.
3 s
t.
L I
L
9510- AX5AC03-5161- 1 031 OY GUAL. Gh0bP V PAGE 9
( DEFORMATION RESPONSE To 1 G GRAVITATIONAL LCAO IN VALVE SYSTEM Y DIR.
JOINT . . .0EFLECTION . . . . . . ROTATION . . .
NO. X Y Z X Y Z
1 -0.000133 0 001044 -0 000034 -0 000020 -0.000005 0.000008 2 -0.000103 0.000e54 -0 000034 -0.000033 -0.000005 0.000008 3 -0.000041 0.000307 -0.000032 -0.000041 -0.000004 0.000011 4 -0.000037 0.000264 -0.000032 -0.000041 -0.000004 0.000011 5 -0.000037 0.000264 -0 000033 -0.000023 -0.000001 0.000012 6 -0.000036 0.000243 -0c000033 -0.000022 -0.000001 0.000012 7 -0.000034 0.000220 -0.000033 -0.000021 -0.000001 0.000013 8 -0.000032 0.000164 -0.000033 -0.000020 -0.000001 0.000013 9 -0.000032 0.000147 -0 000034 -0.000014 -0.000000 0 000012 10 0.000000 0 000089 0.000000 -0.000014 -0.000000 0.000012 11 -0.000030 0.00009e -0.000034 -0.00001e -0.000000 0.000013 12 -0.000030 0.000094 -0.000033 -0.000014 -0.000000 0.000013 13 -0.000029 0.000074 -0.000033 -0.000013 -0.000000 0.000013 14 -0.000029 0.000062 -0.000033 -0.000013 -0.000000 0.000013 15 -0.000025 0.000034 -0.000033 0.000001 -0.000000 0.000013 16 -0.00002* 0.00003d -0.000033 0.000003 -0.000000 0.000013 17 -0.000020 0.000164 -0.000033 0.000019 -0.000000 0.000013 16 -0.00000e 0.000069 -0.000011 -0.000a14 0.000003 0.00000e 19 -0.000030 0.000088 -0.000041 -0.000014 0.000007 0.000013
_ 20 0.000030 0.000068 0 000042 -0.000014 -0.000007 0.000013
(, 21 22
-0.000027 0.000027 0.000177 0.000012
-0.00007d 0.000006
-0.000014
-0.000014 0.000006
-0.000006 0.000014 0.000014 23 -0.000000 0.000005 0 000000 -0.000003 -0.000000 0.000001 24 -0.000000 0.000005 0.000000 -0.000003 -0.000000 0.000001 25 -0.000000 0.000004 0.000000 -0.000003 -u.000000 0.000001 26 0.0 0.0 0.0 0.0 0.0 0.0 27 -0.000014 0.000112 -0.000037 -0.000014 0.000006 0.000014 28 0.000013 0.000113 0 000038 -0.000014 -0.000007 0.000016 29 -0.000011 0.000119 -0.000037 -0.000014 0.000000 0.000014 30 0.000010 0.000120 0.000038 -0.000015 -0.000006 0.000014 31 0.000004 0.000433 -0.000039 -0.000034 0.000001 U.000035 32 -0.000020 0.000435 0.000041 -0.000032 -0.00000* 0.000031 33 -0.000057 0.000646 -0 000141 -0.000046 0.000001 0.000036 34 -0.000073 0.000632 0.000117 -0.000049 -0.000022 0.00003*
35 -0.000128 0.000847 -0 000142 -0.000033 -0.000005 0.000008 36 -0.000066 0.000847 0.000120 -0.000033 -0.000005 0.000008 37 -0.000056 0.000282 -0.000066 -0.000022 -0.000001 u.000012 36 -0.0000le 0.000262 0.000004 -0.000022 -0.000001 0.000012 39 -0.000018 0.000244 0.000000 -0.000022 -0.000001 0.000012 40 -0.000056 0.000244 -0.000070 -0.000022 -0.000001 0.000012 41 -0.000034 0.000202 -0.000034 -0.000020 -0.000001 0.000013 42 -0.000032 0.000145 -0.000034 -0.000014 -0.000000 0.000012 43 -0.000030 0.000100 -0.000034 -0.000014 -0.000000 0.00001E 44 -0.000029 0.000061 -0.000034 -0.000014 -0.000000 0.000013 i 45 -0.000069 0.00003e -0.00005e -0.000014 0.000007 0.000013 u (6 -0.000022 0.000139 -0.0000Se -0.000014 0.000007 0.000013 C~J 47 0.000070 0.000034 0.000059 -0.000014 -0.000007 0.000013 46 0.000021 0.000139 0 000059 -0.000014 -0.000007 0.000013
5'G10- AXDAC03-5162 - 1 03? / b" QUAL. GR0UP V pAGE 10 49 -0.000012 0.00006u -0.000023 -0.000014 0.000007 0.000013 p' 50 0 000013 0.000068 0 000u24 -0.000014 -0.000007 0.000013
\~ 51 -0 000026 0.000012 -0.000005 -0.00001* 0.000006 0.000014 52 -0.000019 0.000012 0.000002 -0.000014 0.000006 0.000014 53 0.000019 0.000012 -0.000002 -0.000014 -0.000006 0.000014 0.000014 54 0.000026 0.000012 0.000005 -0.000014 -0.000006 55 -0.000064 -0.000040 -0.000021 -0.000014 0.000006 0.000014 56 -0.000020 0.000063 -0.000021 -0.000014 0.000006 0.000014 57 0.00006* -0.000040 0.000021 -0.000014 -0.000006 0.000014 58 0.000019 0.000064 0.000021 -0.000014 -0.000006 0 000014 59 -0 000056 0.000456 -0 000099 -0 000034 0.000001 0.000035 60 0.000056 0.000*33 0 000013 -0.000034 0.000001 0.000035 61 -0.000067 0.000435 -0 000006 -0.000032 -0.000004 0.000031 62 -0 000074 0.000*59 -0 000012 -0 000032 -0.000004 0 000031 63 -0 000004 0.000001 -0 000014 -0.000003 -0.000000 0.000001 64 -0.000004 0.000010 -0.000014 -0.000003 -0.000000 0.000001 65 0.000004 0 000001 0 000014 -0.000003 -0.000000 0.000001 66 0.00000% 0.000010 0.000014 -0.000003 -0.000000 0.000001 8
+
~
A
b#/ 8550" 9510- AXDACO3- 5161- 1 033 GUAL. GRCUF V PAGE 11
( ,
DEFORMATION RESPONSE TO 16 GRAvlTATIONAL LOAD lh VALVE SYSTEM Z DIR.
. JOINT . . .0EFLECTION . . . . . . ROTATION . . .
NO. X Y Z A Y Z l -0.001434 -0.000096 0.000574 0.000003 -0.000051 0.000003 2 -0.001130 -0.000076 0.000569 0.000003 -0.000051 0.000003 3 -0.000460 -0.000033 0.000561 0.000003 -0.000051 0.000001 4 -0.000415 -0.000030 0 000560 0.000003 -0.0000S1 0.000001 5 -0.000415 -0.000030 0.000547 0.000005 -0.000063 0.000001 6 -0.000355 -0.000025 0 000546 0.000005 -0.000064 0 000001 7 -0.000294 -0.000021 0.000546 0.000005 -0.000064 0 000001 8 -0.000191 -0.000013 0.000545 0.000005 -0.000065 0.000000 9 -0.000112 -0.000008 0 000478 0.000005 -0.000062 -0.000000 10 0.000001 0.000001 0 000293 0.000003 -U.000065 -0 000000 11 0.000115 0.000008 0.000476 0.000005 -0.000065 -0.000000 12 0.000195 0.000014 0.000544 0.00000d -0.000065 -0.000000 13 0.000299 0.000021 0 00054* 0.000005 -0.000065 -0 000000 14 0.000361 0.000026 0.000544 0.000005 -0.000063 -0.000000 15 0.000892 0.000063 0.000545 0.000005 -0.0000o5 -0.000000 16 0.001012 0.000072 0.000545 0.000005 -0.000065 -0.000000 17 0.001625 0.000115 0.000545 0.00000d -0.000005 -0.0000u0 13 0.000001 0.000001 0 00029e 0.0000.04 -0.0000ao -0.000000 19 0.000001 0.000001 0.000304 0.000004 -u.000061 -0 000000
- 20 0.000000 0.000001 0 000276 0.000005 -0.0000*7 -0.000000 21 -0.000000 0.000001 0.000627 0.000004 -0.000051 0.000000 22 -0.000001 0.000000 0.000020 0.00000* -0.000046 -0.000000 23 -0.000000 -0.000000 0.000016 0 000001 -0.000006 -u.000000 24 -0.000000 -0.000000 0 000014 0.000001 -0.000006 -0 000000 2a -0.000000 -0.000000 0.000013 0 000001 -0.0000u6 -0 000000 26 0.0 0.0 0.0 0.0 0.0 0.0 27 -0.000204 -0.000010 0.000166 0.00000* -0.000051 0 000000 28 -0.000167 -0.000017 0 000163 0.000004 -0.0000*7 -0.000000 29 -0.000229 -0.000018 0 000186 0.000004 -0.000051 0.000000 30 -0.000210 -0.000020 0.000163 0.000004 -0.000047 -0.000000
=
31 -0.000615 -0.000067 0 000187 0 000005 -0.000056 0 000001 32 -0.000769 -0.000071 0.000164 0 000005 -0.000054 0.000002 33 -0.000859 -0.000064 0 000531 0.000004 -0.000066 0.000001 34 -0.000813 -0.000064 0.000506 0.000004 -0.000011 0.000002 35 -0.001138 -0.000079 0.000531 0.000003 -0.000051 0.000003 36 -0.00111o -0.000079 0.000506 0.000003 -0.000051 0.000003 37 -0.000416 -0.000029 0.000655 0.000005 -0.000064 0.00000; 38 -0.000414 -0.000029 0.000640 0.00000S -0.000064 0.000001 39 -0.000414 -0.000031 0.000437 0.000005 -0.000064 0.000001 40 -0.000416 -0.000031 0.000*53 0.000005 -0.000064 0.000001 41 -0.000286 -0.000021 0 000480 0.000005 -0.000065 0.000000 42 -0.000101 -0.0000u7 0.000*76 0.e00005 -0.000065 -0.000000 43 0.000104 0.00000d u.000476 0.000005 -0.000065 -0.000000
- 05000293 0.000021 0.000479 0.000005 -0.000065 -0.000000 45 0.000186 0.000016 0.000309 0.060004 -0.000051 -0.000000
- e -0.000184 -0.000014 0.000309 0.000004 -0.000051 -0.000000 7
(>/
\_ 47 0.000169 0.000018 0.000472 0.000005 -0.000047 -0.000000
? 48 -0.000169 -0.000016 0.000272 0.000005 -0.000047 -0.000000 i
9510- AXUACO3- $161- 1 03'l T GLAL. G400F V PAGE 12 49 0.000001 0.000001 0.000299 0.000004 -0.000051 -0.000000
{ 50 0.000000 0.000001 0 000284 0.000005 -0.000047 -0.000000 L 51 -
0.000000 -0.000000 0.000023 0.000004 -0.000051 0.000000 0.000004 -0.000051 0.000000 52 -
0.000000 -0.000000 0.000021
- 53 -
0.000001 0.000000 0.000023 0.000004 -0.000046 -0.000000 54 -
0.000001 0.000000 0.000021 0.000004 -0.000046 -0.000000 55 0.000183 0.000014 0 000027 0.000004 -0.000051 0.000000 56 -
0.000184 -0 000014 0 000027 0.000004 -0.000051 0 000000 57 0 000166 0.000016 0 000016 0.000004 -0.000046 -0.000000 58 -
0.000169 -0.000015 0 000016 0.000004 -0.0000*6 -0.000000 59 -
0 000859 -0.000071 0.00019b 0.000005 -0.000056 0.000001 60 -
0.000813 -0 000067 0 000160 0.000005 -0.000056 0.000001 61 -
0.000772 -0.000071 0 000174 0 000005 -0.000054 0.000002 62 -
0.000813 -0.000075 0 000172 0.000005 -0.000054 0 000002 63 0.000009 0.000001 0 000023 0.000001 -0.000000 -0.000000 3
64 -
0.000009 -0.000001 0 000023 0 000001 -0.000006 -0.000000 65 0.000009 0.000001 0.000015 0.000001 -0.000006 -0.000000 e6 -
0.000009 -0.000001 0 000015 0 000001 -0.000006 -0.000000 M
m h a
752 0- AXDAC03- G161 1 035 b bM GUAL. GROUP V PAGE 13 f
( DEFORMATION HLSPONSE TO OPERATluNAL LOADS (NOT INCLUDING DEADwEIGnT)
JOINT . . . DEFLECTION . . . . . . A0TATION . . .
NO. X Y Z x Y -
Z l .-0.000012 -0.000383 0.000041 0.000013 -0.000000 0.000009 2 -0.000009 -0.000302 0.000041 0.000013 -0.000000 0.000004 3 -0.000004 -0.000115 0.000042 0.000015 -0.000000 0.000006 4 -0.000004 -0.000101 0.000042 0.000015 -0.000000 0.000005 5 -0.000004 -0.000101 0.000041 0.000017 0.000000 0.000005 6 -0.000004 -0.000065 0.000041 0.000017 0.000000 0.000005 7 -0.000004 -0.000069 0.000041 0.000017 0.000000 0.000004 8 -0.000004 -0.000041 0.000041 0.000017 0.000000 0.00000*
9 -0.000004 -0.000023 0.000042 0.000017 0.000000 0.000002 i
10 0.000000 0.000002 -0.000001 0.000017 0.000000 0.000002 11 -0.000003 0.000037 0.000042 0.000017 0.000000 0.000002 12 -0.000003 0.000060 0.000041 0.000017 0.000000 0.000002 13 -0.000005 0.0000e7 0 000041 0.000017 0.000000 0.000002 1* -0.000005 0.00010* 0.0000*1 0.000017 0.000000 0.000002 15 -0.00000o 0.0002*5 0.0000-1 0.000017 0.000000 0.000002 16 -0.000006 0.000276 0.000061 0.00.0017 0.000000 0.000002 17 -0.000007 0.000439 0.0000*1 0.000017 0.000000 0.000002 lo -0.000001 0.000002 0.000013 0.0000.17 -0.00000' O.000000 19 -0.000000 0.000002 0.000046 0.000016 -0.000006 -0.000000 20 0.0000uo 0.000002 -0.000051 0.000016 0.000008 -0.000000 21 -0.000000 -0.00000* 0.000099 0.000015 -0.00000d -0.000000 22 0.000000 -0.000000 -0 000006 0.u00016 0.000006 -0.000000 23 0.000000 -0.000000 -0.000000 0.000004 0.000000 0.000000 24 0.000000 -0.000000 -u.000000 0 000003 u.000000 0.000000 26 0.000000 -0.000000 -0 000000 0.000003 0.000000 0.000000 26 0.0 0.0 0.0 0.0 0.0 00 27 -0.000031 -0.000063 0.0000*3 0.000016 -0.000006 -0 000000 28 0.000033 -0.000063 -0.000044 0.000016 0.000008 -0.000000 29 -0.000035 -0.000071 0.000043 0.000016 -0.000006 -0.000000 30 0.000037 -0.000071 -0.000044 0.000016 0.000008 -0.000000 i 31 -0.0000d2 -0.000239 0.000043 0.000015 -0.000003 -0.000001 32 0.000086 -0.000245 -0.000045 0.000016 0.000003 0.000002 33 -0.000062 -0.000252 0.000083 0.000013 0.000004 -0.000000 3* 0.000064 -0.0002*6 -0.000023 0.000016 -0.000006 0.000002 35 -0.000037 -0.000311 0.000083 0.000013 -0.000000 0.000009 36 0.000033 -0.000311 -0.000023 0.000013 -0.000000 0.000009 37 -0.000011 -0.000093 0.000066 0.000017 0.000000 0.000005 38 0.000003 -0.000093 0.000015 0.000017 0.000000 0.000005 39 0.000003 -0.000108 0.000015 0.000017 0.000000 0.000005 40 -0.000011 -0.000108 0.000068 0.000017 0.000000 0.000005 41 -0.000004 -0.000071 0.0000*2 0.000017 0.000000 0.000004 42 -0.000004 -0.000021 0.000042 0.000017 0.000000 0.000002 43 -0.000005 0.000034 0.000042 0.000017 0.000000 0.000002 44 -0.000003 0.000064 0.000042 0.000017 0.000000 0.000002
'5 4 0.000029 0.000061 0.00006e 0.000016 -0.000006 -0.000000 46 -0.00002d -0.000056 0.0000te 0.000016 -0.000008 -0.000000 47 -0.000030 0.000061 -0.000070 0.000016 0.00000n -0.000000
' (6 46 0.000030 -0.00005e -0.000070 0.000016 0.000006 -0.000000 i ,
- . ~ . . . _
9G10- AXG ACO3- 5161-- 1 036 O*"/0Ie /Syen GLAL. GR'OUP y p39t 49 -0.000001 0.000002 0 000027 0.000016 -0.000006 -0.000000 g 50 0.000001 0.000002 -0 000029 0.000016 0.00000s -0.000000 K
51 -0.000000 0.000000 0.000004 0.000015 -0.000008 -0.000000 52 -0.000001 0.000000 -0.000003 0.000015 -0.000006 -0.000000
. 53 0.000001 -0.000000 0.000003 0.000016 0.000008 -0.000000 54 0.000001 -0.000000 -0.000005 0.000016 0.00000S -0.000000 55 0.000028 0.000056 0.000022 0.000015 -0 000008 -0.000000 56 -0.000028 -0.000056 0 000022 0.000015 -0 000006 -0.000000 57 -0.000030 0.000056 -0 000022 0.000016 0 000006 -0 000000 SB 0.000030 -0.000056 -0 000022 0.000016 0 000008 -0.000000 59 -0.000083 -0.000250 0.000071 0.000015 -0.000003 -0.000001 60 -0.000082 -0.000239 0.000020 0.000015 -0.000003 -0.000001 61 0.000083 -0.000245 -0.000021 0.000016 0.000003 0.000002 62 0.000065 -0.000257 -0.000019 0.000016 0.000003 0.000002 63 -0.000000 0.000005 0.000015 0.000004 0.000000 0.000000 64 0.000000 -0.000005 0.000015 0.000004 0.000000 0.000000 65 -0.000000 0.000005 -0.000015 0.000004 0.000000 0.000000 66 0.000000 -0.000005 -0 00001S 0.00000* 0.000000 0.000000 b
4
9010- AX5AC03-5161- 1 037 uuAL. G'ROUP V PAuE 15
( 0YNAM IC ANA L T SIS HESONANT FREQUENCY =]hijkZ (IN X-DIRtCTION OR Y-ROTATION)
- * *
- h0RMALIZED EIGENVECTOR * ***
JOINT . . .bEFLECTION . . . . . . ROTATION . . .
NO. X Y Z x Y Z l 0.834622 -0.031058 -0.269605 0.001152 0.024665 -0.002511 2 0.663803 -0.023423 -0.266776 0.001288 0.028981 -0.002510 3 0.255962 -0.004479 -0.2659d2 0.001350 0.031607 -0.001796 4 0.224131 -0.003101 -0 26585e 0.0013*0 0.031629 -0.001772 5 0.223920 -0.003161 -0.261726 -0.000418 0.03387e -0.001606 6 0.1920e4 -0.003569 -0.261607 -0.000453 0.033831 -0.00le02 7 0.159307 -0.0039o9 -0.261454 -0.000509 0.033623 -0.001470 8 0.104580 -0.004770 -0.2elc26 -0.000534 0.033770 -0 001407 9 0.062460 -0.00-le3 -0.2itydv -0.000742 0.032950 -0 000986 10 0.002290 -0.002d31 -u.136577 -0.000743 0.032938 -0 00u965 11 -0.052930 -0.006779 -u.226v79 -0.0007*3 0.03295* -0.000955 12 -0.094769 -0.008708 -0.2o0J25 -0 000746 0.033204 -0.000968 13 -0.148420 -0.009913 -0.2o0*di -0.000750 0.033397 -0.000990 1* -0.180760 -0.010643 -0.2o0487 -0.000759 0.033666 -0.000993 15 -0.465062 -0.017e39 -0.2e0575 -0.0009*2 0.039055 -0.000994 le -0.556256 -0.019612 -u.2c0e91 -0.000969 0.039691 -0 000994 s 17 -1.000000 -0.030e07 -0.2o0659 -0.001254 0.04d962 -0 0009v5 16 0.002732 -0.002326 -0 136982 -0.000694 0.028426 -0.000405 19 0.003417 -0.002820 -0.136c12 -0.000655 0.023906 -0.000363 20 0.000791 -0.002632 -0.13392e -0.000731 0.023159 -0 000*69 21 0.003997 -0.005527 -0 2e8705 -0.000570 0.023730 -0 000452 22 0.001692 -0.000125 -0 006ebd -0 000e93 0.022906 -0 000424 23 0.000129 -0.0000o4 -0.005439 -0.000109 0.002496 -0.000033 24 0.000121 -0.000075 -0 004612 -0.000103 0.002351 -0.000031 25 0.000113 -0.0000o6 -0.004d22 -0.000096 0.002203 -0.000029 l
2o 0.0 0.0 00 0.0 0.0 0.0 27 0.0993*2 0.000761 -0.061923 -0.000615 0.023937 -0.000427 28 0.093043 0.001266 -0.076309 -0.000719 0.023154 -0 0004e0
( 29 0.111384 0.001068 -0 0e1917 -0.000011 0.024060 -0.00044n 30 0.104e87 0.001624 -0.078306 -0.000714 0.023270 -0.000480 31 0.437649 0.003327 -0 081115 0.000326 0.031415 -0 003962
~
13 2 0.420069 0.004404 -u.077e61 0.000132 0.0306/1 -0.003655 33 0.469095 -0.017021 -0.238363 0.000689 0.037549 -0.003906 l 34 0.449966 -0.015511 -0.246192 0.001046 0.040153 -0.003853 35 0.671648 -0.0210e6 -0.23756e 0.001288 0.0269h1 -u.002510 36 0.651880 -0.02106e -0.247712 0.001286 0.028981 -0.002510
. 37 0.226435 -0.005692 -0.316153 -0.000453 0.033831 -0.001602 i 36 0.221337 -0.005e92 -0.314713 -0.000453 0.033831 -u.001e02 39 0.221337 -0.000594 -0.207061 -0.000453 0.033631 -0.001602 40 0.226435 -0.000594 -u.208501 -0.0004d3 0.033631 -0.001602 41 0.155235 -0.002562 -u.227*5o -0.000534 0.033770 -0.001407
[ (~) 42 0.057223 -0.004296 -0.226v71
-0.04771e -0.006662 -0.226971
-0.000743 0.032936 -0.000985 43 0.032938 -0.0009:5
~
-0.000743 i
i
9510- AXGAC03-5161- 1 038 GUAL. GkOUP V PAGE 16 44 -0.144575 -0.008639 -0 227121 -0.00074o 0.033204 -0.000986 45 -0.082432 -0.005185 -0.138965 -0.000655 0.023906 -0.0003e3 46 0.090171 -0.000455 -0.138965 -0.000o55 0.023906 -0.000383
- 7 -0.083367 -0.005544 -0 133041 -0.000761 0.023159 -0.000469 48 0.083d43 -0.000121 -0.133041 -0.000751 0.023159 -0.000469 49 0.002911 -0.002620 -0.137347 -0.000655 0.023906 -0.000383 50 0.001410 -0.002e32 -0 134919 -0.000751 0.023159 -0.000469 51 0.003960 -0.000157 -0 006918 -0 000570 0.023730 -0.000452 52 0.003740 -0.000157 -0 006640 -0.000570 0 023730 -0 000452 53 0.001934 -0.000125 -0 007263 -0.000693 0.022906 -0.000424 54 0.001728 -0.000125 -0.006925 -0.000693 0.022906 -0.000424 55 -0.081192 -0.002214 -0 007566 -0.000570 0.023730 -0.000452 So 0.090140 0.001901 -0 007566 -0.000570 0.023730 -0 000452 57 -0.081446 -0.002626 -0.006137 -0.000693 0.022906 -0.00042*
58 0.083936 0.002376 -0 00ol37 -0.000o93 0.022906 -0.000424 59 0.468379 0.003063 -0.060544 0.000326 0.031415 -0.003962 60 0.431875 0.003327 -0.08160* 0.000326 0.031415 -0.003962 61 0.425672 0.004*04 -0 0776c3 0.000132 0.030o71 -0.003655 62 0.449356 0.00*305 -0 077647 0.000132 0.030671 -0 003P55 63 -0.003170 -0.0002*e -0 006962 -0.000109 0 002476 -u.000033 6* 0.003699 0.000053 -0 00e9di -0.000109 0.002*96 -0 000033 65 -0.0034*1 -0.00024o -0 00o080 -0.000109 0.002498 -0.000033 bo 0.003*26 'O.000063 -0.00o0E0 -0.000109 0.002496 -0.000033 s
?
(i i ,
r 87 O IM 9510- AXGACO3- 5141- 1 039 GUAL. GROUP v PAGE 17 STA T IC SEI SM 1C ANAL Y SIS TME VALVE AAIS IS POSIT 10NEC Y-UP ACCELERATION OF GRAVITY, G = 386.400 DIRECTION OF NO. COMPONENTS OF UNIT ACCELERATION SEISMIC OF IN VALVE COORDINATE SYSTEM ACCELERATION G'S X-COMP. Y-COMP. Z-COMP.
HORIZONT AL (1) 10.000 0.0 0.0 -1.0000 HORIZONTAL (2) 10.000 1 0000 0.0 00 VERTICAL 10 000 00 -1.0000 00 t
t 4
V a
L r
l a
! (l')
i t
I
9510- AXG AC03-5161- 1 0 '. 0 00AL. GROUP V PAGE le b'
k REACTION RESPONSE TO STATIC SEISMIC LOAD IN h0RIZ(1) DIRECTION ELT. JNT. . . ELEMENT FORCES. . . LLEMENT MOMENTS .
NO. NO. F1 F2 F3 M1 M2 -
N3 1 1 -0. -650. -0. -0. O. -0.
2 0. 695. O. O. -0. -0.
2 2 9. -467. -69. 332. -215. 42.
3 -9. 567. 69. 576 215. 72.
3 3 9. -563. -70. -576 -215. -72.
4 -9. 560. 70. 6*d. 215. 81.
4 40 -343. 3. 35 -62. 71. -301.
4 334 -3. -35. 4 -71. -461.
5 37 -48 -33. 27 -7*. 53. -100.
i 4 39 33. -77 13. -53. 62.
6 38 -91. -3. -67. J2. -76. -131.
4 82. 3. 67. 119. 7o. -14 7 39 -135. 25. -33. -4 -14 -105.
4 128. -25. 33. uo. 1*. -192.
6 6 v. -794 -73. -71*. -210. -61.
7 -9. 808. 73. 7o4 210. 90.
9 7 9. -809. -72. -763. -210. -90.
6 -9. d36. 72. . o99 210. 105.
lu 9 72. -903. -9. 117 -201. 126.
41 -72. 662. 9. -91. 201. 73.
['
t 11 42 9 -73.
73.
-879.
882.
-9.
9.
-116.
116,
-201.
201.
135,
-14o.
12 42 0. 36. . -0. U. O. O.
43 -0. 36. O. O. O. -0.
13 43 -1. 453. -1. 7 o. 361.
11 1. -449. 1. -7 -o. -382.
14 11 -1. 427. -1. 1. e. 364 44 1. -367. 1. 2. -o. -3e6.
15 12 1. 328. -1. 2. 5. -1.
13 -1. -301. 1. O. -5. 2.
, 16 13 1. 303. O. O. s. c.
14 -1. -289. -0. -0. -5. 3.
17 14 -0. 56. O. -0. O. -0.
15 0. -16. -0. -0. -J. O.
16 15 0. 16. O. -0. -0. O.
16 -0. -11. -0. -0. O. O.
19 16 0. 26. O. -0. -0. O.
17 -0. -0. -0. -0. O. O.
20 45 0. -31. O. -0. O. O.
46 -0. -31. '0.
- -0. O. O.
, 21 10 -863. -10. -13. 27. -166*. -6421.
16 832. 16. 13. -16. 1664. 3658.
i c2 10 -543. -7. 58. -33. 2242. -736.
50 SBc. 7. -58. -e9 -2242. -246.
23 18 -865. -16. -13. 16. -1666. -a659.
49 905. 16. 13. -4 1685. 2976.
(' )._
24 21 19 -8.
d.
372.
-372.
-125.
223.
1349.
-2*2.
-17s.
178.
-14
-35.
{
i i
- e i
\
7 bM 9510- AXGACO3- 5161- 1 041 QUAL. GkOUP V PAGE 19 25 20 28. -467. -Sa. -866. -107. 66.
22 -26. 487. 142. 1418. 107. 89.
( '
26 63 55 1328.
-1328.
516. -105.
105.
143 89 O.
-0.
1811.
1156.
-511.
. 27 64 -1336. -516. -106. 14c. -0. -1821.
56 1336. 511. 106. 90. 0 .- -116e.
26 57 -1184 67 -119 101. -0. -1028.
65 1164 -72. 119. 16*. 3. -1617.
29 58 1213. -67. -117. 99. O. 1061.
66 -1213. 72. 117. 162. -0. 1650.
30 63 604 -117 76 -32. -191. 223.
51 -604 114 -73. -101. 191. 854 31 64 -617 110. 78 -33. -190. -234 51 617 -106. -75. -103. 190. -867.
32 65 526 -503. 4 J5. 172. 185.
54 -526. 500. -6. -*4 -172. 753.
33 66 -573. 493. 2. 37. 171. -226.
54 573. -490. -5. -42. -171 -796.
34 52 -1. 5. 4e. -104 11. -3.
53 1. -5. -34 -97. -11. -2.
35 27 -23. -169. 4 71. -ed. -548.
29 23. 165. -4 -73. 68. 537.
36 26 -e3. -174 *. 42. -123. -1035.
30 63. 149. -4 -**. 123. 1003.
37 29 4 -164 23. 1-53c. -66. -73.
. 31 -4 ol. -23. 269. 66. 121.
3B 30 *. -149. 63. -1003. -123. -44 32 -*. 65. -63. 319 123. 86 39 33 -4 23. 39. -35. 17. 6.
59 4 -23. -81. -271. -17. -26.
40 34 -4 63. 2*. 49 17. 2.
62 4 -63. -65. -272. -17. -22.
41 33 4 -38. 15. 35. -6. 17.
35 -4. 22. -15. -106. 6. 3.
42 34 4 -23. 55. -44 -1. 17.
36 -4 7. -55. -209. 1. 1.
43 14 -0. 104. O. -0. -0. -0.
16 0. -16. -0. -0. O. v.
44 14 1. -123. 1. O. -5. 3.
6 -1. 68. -1. -15. 5. 7.
l 45 5 -0. -217. -2. -17. -0. 2.
6 0. 222. 2. 19 O. -2.
46 5 0. -218. -2. 17. -0. 2.
. 2 -0. 200. 2. 9. O. 1.
47 47 0. -31. O. -0. O. O.
48 -0. -31. -0. -0. 3. O.
48 56 -40. 246. 1085. -4726 -1304 -566.
27 40. -246. -1085. 1299 1304 440.
49 46 -53. 496. 752. -607 -1063. -241.
27 53. -496. -752. -1025. 1063. 162.
.50 58 23. 449. 842. -*671. -1121. 269 28 -23. -*49. -542. 2010. 1121. -195.
(1 51 48 107. 576. *9o. -5*3. -1269. 683.
(> 28 -107. -576. -498. -672. 1269. -422.
52 23 -3. 96. 2212. 17d06 -3716. -206.
24 3. -98. -2239 -183o2. 3716. 205.
i t
a u
9510 AXGACO3- 5161- 1 092 GUAL. GROUP V PAGE 20 53 24 -3. 98. 2240. 183bl. -3718. -206.
25 3. -98. -2267 -18924 3716. 205.
(~ 54 25 26
-3.
3.
98.
-98.
2268.
-2650.
18925
-27531.
-3718.
3716.
-205.
195.
JNT. . 80VNDARY OR JUNCTION REACTION .
TYPE . . .. ... . .
NO. FA FY FZ ax gy g7 BODY 26 -98 3. 2650. 3718 -27531. -195.
A -X+Y 10 -71. 9. -1406. -36o5. 3927. -6.
0 +X-Y 23 98. -3. -2212. -3718. 1780o. 206.
t 9
. .c ... . . . - ,.-- -. _ _ _ - - . . - - . . . . . _ . _ _ _ - _ _ . - . _ - . - .
953 0- AXGAC03- 5161- 1 0 . 3 GUAL. 6500P V PAGE 21
( REACTION RESPONSE TO STATIC SEISMIC LOAD IN HORIZ(2) DIRECTION
. ELT. JNT. . . ELEMENT FORCES. . . ELEMENT MOMENTS .
NO. NO. F1 F2 F3 M1 M2 M3 1 1 0. O. 650. -8125. O. -0.
2 -0. -0. -695. 4089 O. O.
2 2 -16. -294. 204 -3209 -83. -76.
3 16. 294. -304 -139 83. -139.
3 3 -16. -291. 303. 135 -d3. 139.
4 16. 291. -319. -450. 63. -156.
4 40 25. 83. -44. 36. -23. -40.
4 -25. -77. 37. 55, 23. 95.
5 37 -123. -91. -63. SE. -49. -110.
4 123. 64 56. 7e. 49. -167.
6 38 -183. -83. 3e. -49. 22. -139.
4 163. 77. -29. -25. -22. -273.
7 39 -12. 69. 33. -45. 12. -25.
4 12. -64 -28. -23. -12. -2.
e 6 -18. -164 427. 710. -83. le6 7 16. le4 -441. -1126. 83. -183.
9 7 -18. -le5. 441. 1127. -e3. 183.
6 18. 165. -4e8. ,16S4 83. -211.
10 9 -534 -165. 18. -233. -101 -2693.
41 493. 165. -18. le5. 101. 1280.
11 9 534 -144 17. 233. -100. -2685.
42 -537. 144. -17. -23o. 100. 2769.
12 42 -36. O. -0. O. O. -19.
43 -3c. O. O. 0. O. 19.
13 43 -329. 223. 1. 1. 3. -1711.
11 326. -223. -1. -1. -3. 1559.
14 11 -326. 221. 1. -2. 2. -1677.
44 265. -221. -1. -0. -2. 865.
15 12 -1. 223. -225. 1464 3. -1.
13 1. -223. 198. -114e. -3. -0.
i 16 13 -1. 226. -193. 114c. 2. s.
14 1. -226, 184 -963. -2. -1.
17 14 -0. -0. -50. 276. O. -0.
15 O. O. 10. -33. -0. o.
18 15 0. O. -10. 30. -0. O.
16 -0. -0. 5. -17. O. O.
19 16 0. O. -26. 124 O. O.
17 -0. -0. -0. -0. O. O.
20 45 -0. O. 31. -37. O. -0.
46 0. O. 31. 37. O. O.
l 21 10 -181. 267. 950. -1715. -1180. -916.
la 181. -267. -964 875. 11bo. 756, 22 10 -206. 250. 11. -787. 1262. -196.
. 50 206. -250. 2e. 802. -1262. -164 23 Id -182. 2e7. 970. -875. -1161. -760.
/ 49 182. -267. -969. Id. 1161. 500.
(_)
~
24 19 S. -42. -11. '
-1. 47.
21 -5. 140. 11. 38 9. -15.
i t
9510- AXGACO3-5161- 1 099 / b8M CUAL. GROUP V PAGE 22 25 20 -13. -328. -32. -650. -32. -60.
22 13. 2*4 32. 820 32. -11.
( 26 63 55 794
-799.
-4 4
-21.
21.
25.
21.
2.
-2.
1160.
620.
27 64 -1410. 4. 5 -3 -2. -1845.
1405. 2.-
~
56 -4. -5. -7 -1301.
28 57 -957. -19. -12. 7. 5. -804 65 952. 19 12. 20. -5. -1330.
29 58 1190. 19. -37. 35. -S. 1068.
66 -1195. -19. 37. 46. 5. 1598.
30 63 -0. 116. 16. -12. -160. -258.
51 -4 -116. -16. -17. 160. 262.
31 64 -1010. 51. -15. 16. -156. -637 51 1006. -51. 15. 11. 156. -1163.
32 65 282. 10. -10. 17 149. -7.
54 -286. -10. 10. 1. -149. 514 33 66 -702. 153. 20. -10. 156. -376.
54 696 -153. -20. -26. -153. -673.
34 52 9. -93. 7. -15. 2. 34.
53 -21. 93. -7. -19. -2. 40.
35 27 -460. 234 -18. -163. -533. -*206.
29 435. -234. 16. 191. 533. 3962.
36 28 -386. 151. 1. -2o6. -466. -3563.
30 362. -151. -1. 265. 46o. 3376.
37 29 -18. 235. 436. -3961. -533. 191.
31 Id. -235. -352. -302. 533. -364 38 30 1. 152. 362. -3375. -466. 265.
32 -1. -152. -279. -110. 466. -254 39 33 le. 311. -235. 637. -13. 3.
59 -16. -352. 235. 56b. 13. 63.
40 34 -1. 236. -152. 463. 5. 9.
62 1. -276. 152. 318. -5. -l*.
41 33 -18. 235. 303. -637 -o. -13.
35 18. -235. -286. -707. d. -66.
42 34 1. 153. 229. -462. -9. 5.
36 -1. -153. -212. -546. 9. -0.
43 14 -0. O. -110. 70e. -0. -0.
i 16 0. -0. 22. -106. O. O.
44 14 -1. -221. 24 -61. -2. -1.
6 1. 221. 31. 120. 2. -9.
45 5 -0. -93. 10. 32. -0. 4 6 0. 93. -15. -43. O. -4 46 5 0. -94 10. -32. -0. 4 2 -0. 94 7. 6 O. 2.
47 47 0. O. 31. -37. O. -0.
48 -0. O. 31. 37 O. O.
48 56 137. 1485. 140. -20*3. -11o6. -510.
27 -137. -1465. -140. 1601. 1166. 9*2.
49 46 -427. 970. 5. -2235. -1669. -2147.
27 427. -970. -5. 22d3. 1889. 1108, 50 58 -163. 959. 144. -31e3. 786. 519, 28 163. -959. -144 2727 -786. -1035.
' y 51 46 308. 459. 107. -901. 61o. 1164
! 28 -306. -459. -107. 700. -616. -414 52 23 -4 2291. 8. 1446J. 115. 3671.
24 4. -2318. -d. -1*464 -115. -3672.
l c
9510- AXGAC03-5161- 1 0q3 7 e gWpMy GUAL. GROUP V PAGE 23 53 24 -4 2318. 3. 144e*. 115. 3672.
/ 25 4 -2345. -B. -144e6. -115. -3673.
( 54 25 26
-4 4 -2728.
2346. 8
-6.
144ee.
-1*515.
115.
-115.
3673.
-3668 TYPE JNT. . . . . . BOUNDARY OR JUNCTION REACTION . .. . .
NO. FX FY FZ MX f4Y MZ BODY 26 -272d. 4. 8. -115. -14515. 3688.
A -X+Y 10 940. -16. -387 -720. 2442. -2501.
b +X-Y 23 2291. -4 -8. 115. 14463. -3671.
t i
h p,
Y
_ _ _ . . _ _ _ _ -.. - ~__ _ . . _ . . . _ _ _ _ _ _ _ _ _._-_ __.___-_
9510- AX5AC03-5161- 1 0 ':6 CUAL. GROUP V PAGE 24 REACTION RESPONSE TO STATIC SEISMIC LOAD IN VERTICAL DIRECTION
~
ELT. JNT. . . ELEMENT FORCES. . . ELEMENT MOMENTS .
NO. NO. F1 F2 F3 M1 M2 . M3 1 1 -650. -0. -0. -0. O. -8125.
2 695. O. O. O. O. 4089.
2 2 -312. 83. 15. 93. 507. -3963.
3 411. -83. -15. -289. -507. -804.
3 3 -411. 82. 15. 289 507. 804 4 427. -82. -15. -304 -507. -1223.
4 40 250. 82. 128. -41. 96. 110.
4 -250. -75. -122. -2*0. -96. 452.
5 37 184 77. -77. 165. -114 79.
- 4 -184 -70. 70. -19 114 335.
6 36 -276. -82. -53. 15c. -64. -142.
4 276. 75. 46. -46 64 -483.
7 39 -73. -58. 97. -10. 32. -30.
4 73. 53. -92. -203. -32. -135.
8 6 -541. 93. 17. 306 503. 1565.
7 556. -93. -17. -323. -503. -2091.
9 7 -$56. 93. 17. 323. 503. 2091.
8 583. -93. -17. .-350. -503. -3002.
10 9 -17. 93. 649. -3616. -105. -276.
41 17. -93. -608. 2090. 105. 231.
( 11 9 17. 91. 649. 3817. -104 -278.
42 -17. -91. -652. -3920. 10*. 281.
12 42 0. O. -36. 19. O. O.
43 -0. O. -36. -19. O. -0.
13 43 2. 7. -325. 1945. 264. 9.
11 -2. -7. 322. -1895. -262. -9.
14 11 2. 6. -321. 1895. d58. 9.
44 -2. -6. 261. -1044 -256. -4 15 12 221. 6. 2. -0. -3. 1486.
13 -194 -6. -2. -2. 3. -1154
, 16 13 194 6. 2. 2. -3. 115 .
14 -180. -6. -2. -4 3. -975.
17 14 50. O. -0. O. O. 276.
l 15 -10. -0. O. O. -0. -30.
18 15 10. -0. -0. O. -0. 30.
16 -5. O. O. O. O. -17.
19 16 26. -0. -0. O. -0. 124 17 0. O. O. O. O. O.
20 45 31. O. -0. O. O. 37.
46 31. O. O. -0. O. -37.
. 21 10 649. 477. 1929. -1613. -883. 1675.
18 -649. -496. -1929. -75. 883. -1107.
22 10 -561. -573. 1914 -1615. -799. -1040.
50 561. 611 -1914 -1734 799. 58.
, 23 18 e49. 500. 1929. 75. -B63. 1107.
l (N 49 -649. -519. -1929. -17e3. 883. -539.
1 (j 24 19 61. -709. 245. -1912. 255. 224 c 21 16. 709. -245. 352. -255. -16.
F s
o
9510 AX5AC03- 5162 - 1 047 bMM7 QUAL. GROUP V PAGE 25 25 20 8. -892. -73. -1288. -79. 174 22 -92. 892. 73. 1691. 79. 103.
(' 2e 63 55
-631.
631.
-610.
810.
285.
-290.
-440.
-223.
69.
-69.
-749.
-660.
27 64 -271. 810. 461. -613. -69. -258.
271.
~
56 -810. -456. -*12. 69.. -347.
28 57 -630. 821. 290. -221. 63. -659.
65 630. -821. -285. -421. -68. -750.
29 58 -263. -021. 470. -426. -e8. -339.
66 263 821. -475 -630. e8. -249 30 63 -685 -13. -33. -94 -41. -493.
51 685. 15. 36 156 *1. -729 31 64 -520. 1146. -250. 96 92. -431.
51 520 -11*3. 247 3*5 -92. -497 32 65 662. -19 -27 -102. -39. 491.
54 -662. 16. 30. 152. 39. 727.
+
33 66 514 -1205. -261. 105. 92. 428.
54 -514 1203. 257. 357 -92. 490.
3* 52 -44 31. -133. 333. -29. -111.
53 44 -19 133. 33*. 29. -110.
35 27 -134 128. 334 -3592. -1153. -1295.
29 134 -128. -309. 3431. 1153. 1229.
36 28 148. -215. 388. -3737 -972. 1102.
30 -148. 215. -364 3549. 972. -102e.
37 29 309. 128. 134 .1229. -1154. 3431.
31 -226. -128. -136 -226 1154 -521.
38 30 36*. -214.- -l*S. 102S. -972. 35*9 32 -280. 214 146. 561. 972. -*4
( 39 33 -184 134 -128. 326. 126. -131.
59 22e. -134 128. 32o. -128. -920.
40 34 -239. -148. 214 -404. 162. -118.
e2 281. 148. -214 -692. 8 2 . -1213.
41 33 184 128. 133. -326. 131 126.
35 -167. -128. -133. -2ou. -131. 673.
42 34 238. -214. -149 408 118. 182.
36 -222. 214. 149 271. -116. b64.
43 14 110. -0. -0. O. O. 762.
. 16 -22. O. O. O. -0. -10E.
44 14 19. -6. -2. 4 3. ov.
6 36. 6. 2. 16. -3. -159 45 5 -12. 4. O. 4 1. 51.
6 17. -4 -0. -4 -1. -o4 46 5 13. 4. O. -4 1. 51.
2 5. -4. -0. -2. -1. 2.
47 47 31. O. O. -0. O. 37.
48 31. O. -0. O. O. -37.
48 56 888. 1489. -361. 2807 976. 550.
27 -88o. -1468. 361. -1665. -978. 2254 49 46 -628. 1014 -595. -996. -3986. -497o.
27 628. -1014 595. 2448. 3966. 2957.
50 58 95d. -1319. 555 -37v7 525. 701.
28 -956. 1314 -555. 1953. -525. 2326.
51 48 -e00. -796. 6*5. 8*0. -4576. -4639 C^J 4 26 800. 796. -645. -2412. 4576. 2690.
52 23 -2217 15. 3. 25. 14313. 17576.
24 224*. -15. -3. -26 -14313. -18133.
t t
9510- AXG ACO3-5161- 1 048 b## h CUAL. GROOF y PAGE 26 53 24 -2244 15. 3. 26 14313. 18133.
( 54 25 25 26 2272.
-2272.
2654
-15.
15.
-15.
-3.
3.
-3.
-26 26
-36
-1431J.
14314
-14314
-18697 18701.
-27322.
TYPE JNT. . . . . . BOUNDARY OR JUNCTION REACTION . .' . ..
NO. FA Ff FZ Mx MY MZ BODY 26 -15 2654 3. -14314 -36. 27322.
A -X+Y 10 15. -1050. 87. 2715. 84. -3228.
B +X-Y 23 15. -2217. -3. 14313. 25. -17576.
t e
M i
- M 9510- AX5AC03- 5161- 1 099 GUAL. GROUP V PAGE 27 REACTION RESPONSE TO OPERATIONAL LOADS (INCLUDING DEADwElGHT)
ELT. JNT. . . ELEMENT FORCES. . . ELEMENT MOMENTS .
NO. NO. F1 F2 F3 M1 M2 - M3 1 1 -65. -0. -0. -0. O. -812.
2 70. O. O. O. O. 409.
2 2 -32. 7. 1. 6. 107. -427.
3 42. -7. -1. -25. -107. -65.
3 3 -42. 7. 1. 25. 107. 65.
4 44 -7. -1. -27. -107. -108.
4 40 22. 9. 16. 2. 9. 10.
4 -22. -3. -15. -37 -9. 40.
5 37 16. 9. -3. 23. -10. 7.
) 4 -le. -8. 2. -17. 10. 30.
6 36 -25. -9. -1. 21. -7. -13, 4 25. S. O. -19. 7. -43.
7 39 -e. -7. 13. S. 3. -3.
4 c. 6. -13. -3*. -3. -12.
3 e -55. S. 2. 27. 106. 1*3.
7 57. -6. -2. -26. -106. -197.
9 7 -57. 8. 2. 28. ICb. 197.
6 59. -8. -2. .-31. -106. -290.
10 9 -2. 8. 66. -373. **. -25.
41 2. -6. -02. 197 -*4 20.
11 9 1. 371. **. -24
(.
. 42 -1.
8.
-S.
66.
-66. -382. -44 25.
12 42 0. O. -4 2. O. O.
43 -0. O. -4 -2. O. -0.
13 43 0. 1. -33. 194 25. 1.
11 -0. -1. 32. 189. -25. -1.
14 11 0. 1. -32. 190. 2*. 1.
44 -0. -1. 26. -110. -24 -0.
15 12 22. 1. O. -0. -2. 149.
13 -19. -1. -0. -0. 2. -116.
, le 13 19. 1. O. O. -2. 116.
14 -ld. -1. -0. -0. 2. -96.
17 14 5. O. -0. O. O. 28.
15 -1. -0. O. O. -0. -3.
18 15 1. -0. -0. O. -0. 3.
16 -0. O. O. O. O. -2.
19 16 3. -0. -0. O. -0. 12.
17 0. O. O. O. O. -0.
20 45 3. O. O. -0. O. 4 46 3. O. O. -0. O. -4 21 10 133. 47 184 -134 -169. 907.
18 -133. -49. -1du. -27 169. -791.
22 10 -125. -59. 183. -136. -102. -625.
L 50 125. 63. -183. -104 162. 607.
23 16 133. 50. 184 27 -les. 791.
l -
49 -133. -52. -164 -lbe. 189. -674 a 24 19 14 -74 17 -179 17. 39
! ~'
21 -4 74 -17. 72. -17. 17.
r 1
l
9510- AX5AC03-5161- 1 050 NSc"MM/
QUAL. GROUP V PAGE 28 25 20 -7. -89 3. -159 4 -5.
22 -1. 69. -3. 141. -4 -12.
26 63 -87. -167. 70. -99 7. -107, 55 87 167 -70. -57 -7. -87.
~
27 64 -4 le7. 87 -116. -7. 6.
56 4 -167. -87 -76. 7.- -14 28 57 -87 169. 70. -57. 7. -87 65 87 -169. -70. -99. -7. -108.
29 58 -2. -169. 89. -7d. -7. -12.
66 2. 169. -69. -121. 7. 9.
30 63 -79. -69. -19. -9. -1. -53.
51 79. 69. 19. 43. 1. -88.
31 64 -41. 162. -40. 10. 13. -39.
51 41. -181. 40. e2. -13. -34 32 65 79. 65. -18. -10. -1. 53.
5* -79. -ee. 16. *3. 1. 88.
? 33 66 40. -169. -42. 10 13. 38.
5* -40. 189. 41. c3. -13. 33.
34 52 -5. 4 -26. 70. -7. -12.
53 5. -3. 28. 70. 7. -12.
35 27 -21. 17. 32. -344 -117. -221.
29 21. -17. -29. 329. 117. 210.
36 28 23. -25. 39. -374 -64 204 30 -23. 25. -37. 355. 64. -193.
37 29 29. 17. 21. -210. -117. 329.
31 -21. -17. -21. -22. 117. -56.
38 30 37. -25. -23. 193. -84 354 32 -29. 25. 23. 53. e4. 2.
~ 39 33 -17. 21. -17. 50. 10. -17.
59 21. -21. 17. 36. -10. -79.
40 3* -24 -23. 25. -57 17. -15.
62 29. 23. -25. -70. -1/. -121.
41 33 17. 17. 21. -50. 17. 10.
35 -15. -17. -21. -46. -17. 62.
42 34 24 -25. -23. 57 15. 17, 36 -23. 25. 23. *7. -15. 96.
43 14 11. -0. -0. 6. O. 77.
i 16 -2. O. O. O. -0. -14.
44 14 2. -1. -0. O. 2. 7.
6 4 1. O. 1. -2. -16.
45 5 -1. O. O. O. O. 5.
6 2. -0. -0. -0. -0. -6 46 5 1. O. O. -0. O. 5.
2 1. -0. -0. -0. -0. O.
47 47 3. O. O. O. O. 4 48 3. O. O. O. O. -4 48 56 92.. 155. -116, 453. 509. 15E.
27 -92. -155. 116. -86. -509. 133.
L 49 46 -65. 77. -132. -34 30. -535.
27 E5. -77. 132. 356. -30. 329.
50 58 105. -141. 139. -529. 4*l. 142.
, 28 -105. 1*l. -139. 92. -441. 191.
48 142. -536.
- 51 -66. -55. -23. -72.
' / 26 66. 55. -142. -323, 72. 328.
- 52 23 -222. 3. 1. 10. 2910. 1752.
- 24 225. -3. -1. -10. -2910. -160e.
i ,
s 7
e
9510- AX5AC03-5161- 1 051 [
QUAL. 0900P V PAGE 29
~
53 24 -225. 3. 1. 10. 2910. 1807.
25 228. -3. -1. -10. -2910. -le64
(~ 54 25 26
-226.
266.
3.
-3.
1.
-1.
10.
-13.
2910.
-2910.
1864
-2726.
TYPE JNT. . . . . . 60UNDARY OR JUNCTION REACTION . .. . . .
NO. Fx FY FZ MX MY MZ BODY 26 -3. 266. 1. -2910. -13. 2728.
A -X+Y 10 1. -106. 8. 1732. 7. -270.
B +x-Y 23 3. -222. -1. 2910. 10. -1752.
e 8
I P
t
[
c OG2 Y b#
9510 AXGAC03- 5161- 1 QUAL. GROUP V P=GE 30 k OEFORMATION RESPONSE TO STATIC SEISMIC LOAD IN H0HIZ(1) DIRECTION JOINT . . .OEFLECTION . . . . . . ROTATION . . .
ISO . A Y Z y Y ,
Z l ,0.014344 0.000956 -0.005739 -0.000032 0.000508 -0.000025 2 0.011296 0.000764 -0.005o89 -0.000032 0.000508 -0 000025 3 0.004662 0.000333 -0 005605 -0.000031 0.000514 -0 000012 4 0.004150 0.000302 -0 005601 -0.000031 0.000515 -0.000012 5 0.004147 0.000300 -0 005466 -0.000049 0.000634 -0.000006 6 0.003550 0.000254 -0 005462 -0.000049 0.000637 -0.000006 7 0.002939 0.000207 -0.005456 -0.000048 0.000642 -0.000006 6 0.001915 0.000130 -0.005447 -0.000046 0.000646 -0.000005 9 0.001115 0.000076 -0.004783 -0.000046 0.000646 0.000002 1
10 -0.000009 -0.000010 -0.002931 -0.000046 0.000646 0.000002 11 -0.001146 -0.00C064 -0.004763 -0.00C046 0.000646 0.0000C2 12 -0.001953 -0.000139 -0.005436 -0.0000*6 0.000646 0.000002 13 -0.002990 -0.000213 -0.005*40 .-0.000046 0.000o4o 0.000002 14 -0.003612 -0.C00257 -0.005442 -0.000046 0.000b*e 0.000302 15 -0.00e916 -0.00;t32 -0.005447 -0.000046 0.000646 0.000002 16 -0.010117 -0.00071c -0.005446 -0.000046 0.0006*e 0.00000e 17 -0.016245 -0.001150 -0.005452 -0.000046 0.00064o 0.000002 18 -0.000011 -0.000010 -0 002960 -0.0000A4 0.00c579 0 0000u1 19 -0.000011 -0.000010 -0 003042 -0.000042 0.000513 0 000000 20 -0.000004 -0.000010 -0.002776 -0.000046 0.00046d 0.000000 21 0.000003 -0.000006 -0 006267 -0.000039 0.00050e -0.000001
(~.
22 0.000012 -0.000000 -0.000204 -0.000043 0.0004e* 0.000001 23 0.00C000 0.000000 -0 00C162 -0.000009 0.000063 0.00C000 24 0.000000 0.000000 -0.000145 -0 000000 0.000059 0.000000 25 0.000000 0.000000 -0.000129 -0.000006 0 00005o 0.000000 26 0.0 0.0 0.0 0.0 0.0 0.0 27 0.002036 0.000157 -0.00165a -0 000041 0.000513 -0 000000 28 0.00le69 0.000174 -0 001627 -0.0000*5 0.000468 0.000000 29 0.002295 0.000177 -0 001e58 -0.000041 0.000513 -0.000000 30 0.002103 0.000196 -0.001e27 -0.000045 0.000469 0.000000 31 0.006146 0.000666 -0.001o74 -0.000051 0.0005So -0.000012 32 0.0076e9 0.000712 -0.00le41 -0.000051 0.000537 -0.000022 33 0.008568 0.000639 -0.005309 -0.000035 0.0006b2 -0.000013 34 0.006131 0.00063e -0.005059 -0.000036 0.000713 -0.000022 35 0.011375 0.000788 -0 005313 -0.00C032 0.00050e -0.000025 36 0.011176 0.000766 -0.005061 -0.000032 0.00050o -0.000025 37 0.004162 0.000287 -0 006552 -0.000049 0.000637 -0.000006 38 0.004136 0.000267 -0.006397 -0.000049 0.000637 -0.000006
[ 0.000637 -0.000006 39 0.004136 0.000313 -0.004371 -0.000049 40 0.004162 0.000313 -0 004527 -0 000049 0.000637 -0.000006 41 0.002683 0.000207 -0.004602 -0.000046 0.000646 -0.000006 42 0.001015 0.00C069 -0.004762 -0.000046 0.000646 0 00000d i 43 -0.00104* -0.000077 -0 004762 -0.00C046 0.000646 0.00CGC2 L
44 -0.002925 -0.000210 -0 004766 -0.000046 0.00064o 0.000002
, 45 -0.001662 -0.000161 -0 003092 -0.00004d 0.000513 C.000000 46 0.001836 0.000141 -0.003092 -0.000042 0.000513 L.000000 l
(j. 47 48
-0.001695 -0.000176 -0.002722 0.0016e6 0.000157 -u.002722
-0.000046
-0.00C046 0.000466 0.0004ee 0.0000C0 0.00C000 t
l i
_ - - - _ _ _ ~ - -_
- IfJfM 952 0- AXGAC03- 5161- 1 003 7 QUAL. GAGUP V PAGE 31
~
49 -0.000011 -0.000010 -0.002967 -0.000042 0.000513 0.000000 50 -0.000004 -0.000010 -0.002837 -0.000046 0.000466 0.000000
(_ 51 52 0.000003 0.000001 -0.000226 0.000003 0.000001 -0.000207
-0.000039
-0.000039 0.000508 -0.000001 0,000506 -0.000001 53 0.000011 -0.000000 -0.000228 -0 000043 0.000464 0.000001 54 0.000012 -0.000000 -0.000207 -0.000043 C.000464 0.000001 55 -0.001632 -0.000141 -0.000271 -0.000039 0.000508 -0.000001 56 0.001839 0.000142 -0.000271 -0.000039 0.000508 -0.000001 57 -0.001661 -0.000155 -0.000158 -0.000043 0.000464 0.000001 58 0.001687 0.000155 -0.000158 -0.000043 0.00046* 0.000001 59 0.008587 0.000706 -0.001963 -0.000051 0.000556 -0.000012 60 0.008130 0.000668 -0.001798 -0.000051 0.000556 -0.000Cl2 61 0.007722 0.000712 -0.001718 -0.000051 0.000537 -0.000022 62 0.008126 0.000751 -0.001725 -0.000051 0.000537 -0.000022 63 -0.0000e6 -0.000012 -0.000226 -0.000009 0.000063 0.000000 64 0.000086 0.000012 -0.000226 -0.000009 U.000063 0.000000 65 -0.000065 -0.000012 -0.000152 -0.000009 0.000063 0.000000 66 0.0000e7 0.000012 -0.000152 -0.00C0e9 0.000063 0.000000 t
i r .
I
9G10- AXGAC03-5161- 1 054 bV QUAL. 690UF V PAGE 32 DEFORMATION RESPO.45E TO ST ATIC SLISPIC LOA 0 IN h0hlZ(2) DIRECTION JOINT . . . DEFLECTION . . . . . . ROTATION . . .
NO. X Y Z A Y -
Z l 0.015831 -0.000983 -0.004357 0.000027 0.000406 -0.000115 2 0.012695 -0.000821 -0 004357 0.000027 0.000540 -0.000115 3 0 004669 -0.000450 -0 004309 0 000026 0 000618 -0 000110 4 0.004041 -0.000424 -0 004307 0 000025 0.000618 -0.000110 5 0.004037 -0.000424 -0 004257 0.000001 0.000562 -0.000109 6 0.003510 -0.000424 -0 004255 0.000000 0.000557 -0.000109 7 0.002962 -0.000423 -0.004254 -0.000001 0.000551 -0.00010e 8 0.002051 -0.000424 -0 004252 -0.000001 0.009544 -0.000107 9 0.001367 -0.000322 -0 003705 -0.000006 0.000504 -0 000104
)
10 0.000222 -0.000052 -0.002339 -0 000006 0 000503 -0 000104 11 -0.000395 -0.000341 -0.003705 -0.000000 0.000502 -0.000104 12 -0.000986 -0.000452 -U.004205 -0.000006 0.000497 -0.000104 13 -0.001760 -0.000461 -0.004207 -0.000006 0.000491 -0.000104 1* -0.002221 -0.000467 -0.004209 -0.000006 0.0004o4 -0.C00104 15 -0.005421 -0.000513 -0.004209 -0.000006 0.000340 -0 000104 46 -0.006042 -0.000523 -0.004209 -0.000006 0.000326 -0.000104 17 -0.007958 -0.000576 -0.004209 -0.000006 0.000162 -0.000104 lo 0.000266 -0.000051 -0.002342 -0.000G05 0.000456 -0.000029 19 0.000269 -0.000050 -0.002350 -0.000005 0.000409 -0.000003 20 0.000103 -0.000054 -0.002317 -0.000006 0.000403 -0.000013 21 0.000265 -0.000080 -0.004955 -0.000002 0.000409 -0.000006 C 22 0.000113 0.000005 -0 000105 -0.000007 0.000400 -c.000011 23 0.000009 -0.000003 -0.000061 0.000000 0.000640 -0.G000C2 24 0.000009 -0.000003 -0 000071 0 000000 0.000036 -0 000002 25 0.000006 -0.000003 -0.000062 0.000000 0.000035 -0.000002 26 0.0 0.0 0.0 0.0 0.0 0.0 27 0.001908 -0.000022 -0.001379 -0.000003 0.000412 -0.000005 28 0.001704 -0.000003 -0.001355 -0.000006 0.000404 -0.000012 29 0 002116 -0.000020 -0 001379 -0.000003 0.000415 -0.000005 30 0.001906 0.000000 -0 001355 -0.000006 0.000407 -0 000012 e
31 0.008343 -0.000113 -0 001346 0 000026 0.000596 -0 000101 32 0 007790 -0.000085 -0 001335 0 000021 0.000566 -0 000095 33 0.008967 -0.000e39 -0 003794 0.000015 0.000642 -0 000099 34 0 008387 -0.000592 -0 003997 0.000026 0 000656 -0 000096 35 0.013054 -0.000713 -0 003766 0.000027 0.000540 -0 000115 36 0.012146 -0.000713 -0 003979 0 000027 0.000540 -0 000115 37 0.004207 -0.000597 -0 005141 0 000000 0.000557 -0.000109 4 38 0.003660 -0.000597 -0 005142 0.000000 0.000557 -0.000109 39 0.003660 -0.000251 -0 003370 0.000000 0.000557 -0.000109 40 0 004207 -0.000251 -0 00330s 0 000000 0 000557 -0.000109 41 0 002867 -0.000315 -0 003708 -0.000001 0.000544 -0 000107 42 0.001284 -0.000323 -0 003705 -0 00000b 0.000503 -0.000104 43 -0 000318 -0.000341 -U.003705 -0.000006 0.000503 -0 000106 44 -0.001732 -0 000357 -0 00370o -0 00000o 0 000497 -0.000104
- 46 -0 001205 -0.000067 -0 00235e -0.000005 0 000409 -0.000003 r 46 0 001750 -0.000033 -0 002350 -0 00000s 0 000409 -0.000003 l (%) 47 -0.001365 -0.000074 -0.bO2J10 -0 000006 0.000403 -0 000013 0.001542 -0 000033 -0 002310 0.000403 -0.000013 4
48 -0.000006 I
, , . - . , . , _ m ,, , . . . . _ _ . . , .. - _ _ . _ -_ .__ - -- _
5'G10 J AXGACO 3- 5161- 1 OGG U M M[
GUAL. GkOUF V PAGE 33 49 0.000265 -0.000050 -0 002344 -0.000005 0.000409 -0.000003 50 0.000120 -0.000054 -0 002324 -0.000006 0.000403 -0.000013
(- 51 52 0.000265 -0.000013 -0 000094 0.000262 -0.000013 -0.000094
-0.000002
-0.000002 0.000409 -0.000006 0.000409 -0.000006 53 0.000119 0.000005 -0 000109 -0.000007 0.000400 -0.000011 5* 0.000114 0.000005 -0.000105 -0.000007 0.000400 -0.000011 55 -0.001206 -0.000021 -0.000097 -0.000002 0.000409 -0.000006 56 0.001749 -0.000006 -0.000097 -0.000002 0.000409 -0.000006 57 -0.001341 -0.000020 -0.000096 -0.000007 0.000400 -0.000011 58 0.001544 0.000029 -0.000098 -0.000007 0.000400 -0.000011 59 0.008967 -0.000133 -0.001302 0.000026 0.000598 -0.000101 60 0.008192 -0.000113 -0 001366 0.000026 0.000598 -0.000101 61 0.007934 -0.000065 -U.001303 0.000021 0.000568 -0.000095 62 0.008371 -0.000101 -0.001300 0.000021 0.000566 -0.000095 63 -0.000039 -0.000004 -0.000097 0.000000 0.000040 -0.000002 64 0.000072 -0.000005 -0.000097 0.000000 0.000040 -0.000002 65 -0.000053 -0.000004 -0.000099 0.000C00 0.000040 -0.000002 60 0.000056 -0.000005 -0.000099 0.000000 0.000040 -0.000002 1
e f
j ,
U
. - , . . . _.- - -- . _ . . ~ - , , , - , , , - , .
7G10 AXGAC03-5161-1 006 68 *b UW GUAL. 640VP V PAGE 34 OEFORMATION RESPONSE TO STarlC SEISMIC LOAD IN VtRTICAL DIAECTIO.N
. JOINT . . . DEFLECTION . . . . . . ROTATION . . .
NO. X Y Z A Y 2
1 0.001333 -0.010438 0.000336 0.000199 0.000050 -0.000079 2 0.001033 -0.008543 0.'00336 0.000333 0.000050 -0.000079 3 0.000409 -0.003067 0 30322 0.000414 0 000041 -0.000111 4 0.000368 -0.002640 0 000322 0 000412 0.000040 -0 000112 5 0.000368 -0 002638 0 000331 0 000229 0.000014 -0 000120 6 0.000355 -0.002426 0.000331 0.000222 0 000013 -0 000120 7 0.000343 -0 002199 0 000330 0 000208 0.000011 -0.000126 8 0.000325 -0.001e44 0 000329 0 000202 0.000010 -0.000128 9 0.000318 -0.001472 0.000337 0 000141 0.000004 -0.000125 10 -0.0000C2 -0.000866 -0 000004 0.000141 0.000004 -0.000125 11 0.000J02 -0.000978 0.000337 0.000141 0.000004 -0.000125 12 0.000297 -C.000944 U.000332 0.000136 0.000004 -0.000126 13 0.000290 -0.000736 0 000332 0.000135 0.000004 -0.000126 14 0.000265 -0.00C617 0.000332 0.000127 0.000004 -0.000126 15 0.0002*9 -0.000336 0.000332 -0.000011 0.000004 -0.000126 16 0.000241 -0.000377 0.000332 -0.000026 0.000004 -0.000126 17 0.000200 -0.001835 c.0003J2 -0.000194 0.000004 -0.000126 18 0.000056 -0.000866 0 000112 0.0001A0 -0.000031 -0.00C060 19 0.000299 -0.000864 0 000411 0 000140 -0.000006 -0 000134 20 -0.000301 -0.000e63 -0.000423 0.00C140 0.000066 -0.000132 21 0.000272 -0.001773 0 000777 0.000142 -0.000060 -0.000140 22 -0.000271 -0.000121 -0.000061 0.000144 0.000C62 -0.00el37 23 0.000000 -0.000050 -0.000000 0.000034 0.000000 -0.06J010 24 0.000000 -0.000046 -0.000000 0.000032 0.000000 -0.000010 25 0.000000 -0.000042 -0 000000 0 000030 0.000000 -0 000009 26 0.0 0.0 0.0 0.0 0.0 0.0 27 0.000143 -0.001120 0.000370 0.000143 -0.000063 -0.000136 26 -0.000135 -C.001127 -0.000377 0.000144 0.000065 -0.000136 29 0.000112 -0.001193 0.000370 0.000145 -0.000062 -0.000139 30 -0.000103 -0.001200 -0.000377 0.000146 0.000064 -0.000137 31 -0.000036 -0.004328 0.000387 0.000342 -0.00001u -0.00034o 32 0.000203 -0.004346 -0 000405 0.000325 0.000041 -0.000311 33 0.000567 -C.006459 0 001408 0.000459 -0.000009 -0.000363 34 0.000731 -0.006323 -u.001173 0.000492 0.000219 -0.00C33f, 35 0.001261 -0.00e466 0.001423 0.000333 0.000050 -0.000079 36 0.000655 -0.008466 -0.001196 0.000333 0.000050 -0.000079 r
37 0.000559 -0.002825 0.000662 0.000222 0.000013 -0.000120 38 0.000177 -0.002825 -0.000093 0.000222 0.000013 -0.000120 39 0.000177 -0.002443 -0.000000 0.000222 0.000013 -0.000120 40 0.000559 -0.002443 0.000705 0.000222 0.000013 -0.000120 41 0.000339 -0.002016 0 000339 0.000202 0.000010 -0 000128 i 42 0.000317 -0.001448 0.0003J7 0.000141 0.000004 -0.000125 43 0.000303 -0.000999 0 000337 0 000141 0.00000* -0.000125 4* 0.000290 -0.000611 0 000337 0 000136 0.000004 -0.00.126 45 0.000694 -0.000379 u.000577 0.000140 -0.000066 -0 000134 46 0.000220 -0.001389 0.000577 0.0001*0 -0.000066 -0.C0Cl34
()\
L 47 -0.000701 -0.000376 -0.000369 0.000140 0.000066 -0 00013c i 4e -0.000212 -0.001390 -0 000569 0.000140 0.0000be -c.00cl32 h
0 9510- AX5AC03- 5161- 1 007 855'Mdf GUAL. GROUP V PAGE 35 49 0.000123 -0.000864 0 000227 0.000140 -0.000066 -0.000134 50 -0.000127 -0.000863 -0.000236 0.000140 0.000068 -0.000132
(~ 51 52 0.000260 -0.000116 0.000050 0.000192 -0.000116 -0.000019 0.000142 -0.000060 -0.000160 0.000142 -0.000060 -0.000140 53 -0.000192 -0.000121 0.000021 0.000144 0.000062 -0.000137 54 -0.000259 -0.000121 -0.000049 0.000144 0.000062 -0.000137 55 0.000636 0.000397 0.000212 0 000l* -0.000060 -0.000140 56 0.000202 -0.000629 0.000212 0.000142 -0.000060 -0.000140 57 -0.000638 0.000399 -0.000213 0.00C144 0.000062 -0.000137 58 -0.000194 -0.000641 -0.000213 0.000144 0.000062 -0.000137 59 0.000559 -0.004584 0.000985 0.000342 -0.000010 -0.000346 60 -0.000557 -0.004328 -0.000126 0.00C342 -0.000010 -0.000346 61 0.000670 -0.004348 0.000082 0.000325 0.000041 -0.000311 62 0.000740 -0.004591 0.000123 0.000325 0.000041 -0.00C311 63 0.000043 -0.000007 0.000141 0.000034 0.000000 -0.000010 64 0.000043 -0.000102 0 000141 0.0000J4 0.000000 -0.000010
) 65 -0.000043 -0.000007 -0 000142 0.0000J4 0.000000 -0.000010 66 -0.000043 -0.00010E -0.00ulac 0.000034 0.000000 -0.000010 L
J f
e t
a w
9G10- AXGACO3- $161- 1 000 7 00AL. G40UP V FAGE 36
, DEFORMATION RESPONSE TC OPEFATIONAL LOADS (INCLUJlrJG CEA04EIGHT)
. JOINT . . . DEFLECTION . . . . . . ROTATION . . .
NO. A Y Z A Y Z
l 0.000122 -0.001427 0 000075 0.000033 0.000005 0.000001 2 0.000094 -0.001156 0 000075 0.000047 0.000005 0.000001 3 0.000036 -0 000422 0 000074 0.000056 0.000004 -0.000006 4 0.000033 -0.00C365 0 000074 0 000056 0.000004 -0.000006 5 0.000033 -0.000364 0.000075 0.000040 0.000001 -0.000007 6 0.000031 -0.000327 0 000075 0.000039 0.000001 -0.000007 7 0.000030 -0.000288 0.000075 0.000036 0.000001 -0.000009 8 0.000028 -0.000226 0.000074 0.000037 0.000001 -0.000009 9 0.000027 -0.000171 0.000075 0.000031 0.000001 -0.000011 10 -0.000000 -0.000067 -0.000001 0.00C031 0.000001 -0.000011 11 0.000025 -0.00C061 0.000075 0.000031 0.000001 -0.000011 12 0.000025 -0.000034 0.000075 0.000031 0.000001 -0.000011 13 0.000024 0.000014 0.000075 0.000031 0.00000) -0.000011 14 0.000023 0.00C0*2 0.000075 0.000030 0.000001 -0.000011 15 0.000019 0.C00211 0.000075 0.000016 0.000001 -0.000011 le 0.00001e 0.000239 0.000075 0 000014 0.000001 -0.000011 17 0.000013 0.000255 0 000075 -0.000002 0.000001 -0 000011 18 0.0000C5 -0.000087 0.000024 0.000631 -0.J00007 -0.000006 19 0.000030 -0.000067 0.000090 0.0000J0 -0.000014 -0.000014 20 -0.000030 -0.000067 -0 000093 0.0u0031 0.000015 -0.000013 21 0.000027 -0.000161 0 00017e 0 000030 -0.00001* o.0000l*
C 22 -0.000027 -0.000012 -0.000012 0.000030 0.0000l* -0.000014 23 0.000000 -0.000005 -0.000000 0.000007 0.000000 -0.000001 24 0.000060 -0.000005 -0 000000 0.000007 0.000000 -0.000001 25 0.000000 -0.000004 -0.000000 0.000006 0.00000u v.000001 26 0.0 0.0 0.0 0.0 0.0 0.0 27 -0.000017 -0.00C175 0.000060 0.000030 -0.000014 -0.000014 28 0.000020 -0.000176 -0.000002 0.000030 0.000015 -0.000014 29 -0.000024 -0.000190 0.000000 0.000030 -0.000014 -0.000014 30 0.000027 -0.000191 -0.000002 0.000031 0.000015 -0.0000l*
' 31 -0.000065 -0.000072 0 000062 0.000050 -0.000004 -0.000036 32 0.000106 -0.000660 -0.000085 0.000046 0.0000e7 -0.000029 33 -0.000026 -0.00C898 0.000223 0.000059 0.000003 -0.000037 34 0.000158 -0.000878 -0 000140 0.000064 0.000016 -0.000031 35 0.000091 -0.001157 0 000225 0.000047 0.000005 0.000001 36 0.000099 -0.001157 -0 000143 0.000047 0.000005 0.000001 37 0.000044 -0.000376 0.000134 0.000039 0.000001 -0.000007 38 0.000021 -0.000376 0.000010 0.000039 0.000001 -0.0000C7 39 0.000021 -0.000352 0.000015 0.000039 0.000001 -0.000007 40 0.000044 -0.000352 0 000139 0 000039 0.000001 -0.000007 41 0.000030 -0.000272 v.000075 0.000037 0.000001 -0.000009 42 0.000027 -0.000lte 0 000075 0.000031 0.000001 -0.000011 43 0.000026 -0.0000ee 0 000075 0 0000J1 0.000001 -0.000011 44 0.000024 0.000023 6.C00075 0.000031 0.000001 -0.000011 45 0.000098 0.00C023 0.C00126 0.000030 -0.000014 -0.000014
- (1 4e -0.000006 -0.00019e 0 000126 0.000030 -0.0000!* -0.000014
~
5,) 47 -0.000100 0.000024 -0.000129 0.000031 0.000015 -0.v0C013 4e 0.000009 -0.000197 -0.000129 0.0600J1 0.000015 -0.000013 i
L
9510- AXDACO3-5161- 1 059 #'" #
A##NOf OUAL. GROUP V FAGE 37 49 0.000012 -0.000067 0.000049 0.000030 -0.000014 -0.000014
( 50 -0.000012 -0.000087 -0.00uG53 0.000031 0.000015 -0.000013
( 51 0.000026 -0.000012 0.000009 0.000030 -0.000014 -0.000014 52 0.000019 -0.000012 -0.000005 0.000030 -0.000014 -0.000014 53 -0.000019 -0.000012 0.000005 0.000030 0.000014 -0 000014
-0.000025 -0.000012 -0.000009 0.000030 0.000014 -0.000014
^
54 55 0.000092 0.000095 0.000043 0.000030 -0.000014 -0.000014 56 -0.000008 -0.000119 0.000043 0.000030 -0.000014 -0.000014 57 -0.000093 0.000096 -0.000044 0.000030 0.000014 -0.0000l*
58 0.000010 -0.000120 -0.000044 0.000030 0.000014 -0.000014 59 -0.000027 -0.000709 0.000169 0.000050 -0.000004 -0.000035 60 -0.000138 -0.000672 0.000006 0.000050 -0.000004 -0.000035 61 0.000150 -0.000680 -0.000013 0.000048 0.000007 -0.000029 62 0.000159 -0.00071e -0.000007 0.0000*b 0.000007 -0.000029 63 0.000004 0.000004 0.000029 0.000007 0.000000 -0.000001 64 0.000004 -0.000015 0.000029 0.000007 0.000000 -0.000001 0
65 -0.000004 0.000004 -0.000029 0.000007 0.000000 -0.000001 66 -0.000004 -0.000015 -0.000029 0.000007 0.000000 -0.000001 t
r y
6 9
m - . _ _ _ _
_ ~ _ _ _ _ _ . . _ _ . .
9510- AX5AC03-5161t 1 060 0 A UN I
QLAL.-GROOF'V FAGE 38 EVALUATION OF VALVE
. zi .
DEFORMATION RESPONSE OF COMBINED STATIC SElse!C *ND OPERATIONAL LOADS JOINT . . . DEFLECTION ... . . . ROTATION . . .
NO. X Y Z A Y Z l .0.021526 -0.011955 0 007286 0.000237 0.000657 0.000143 2 0.017118 -0.009773 0 007249 0.000382 0.000747 0.000143 3 0.006647 -0.003539 0 007151 0 000472 0.000809 -0 000162 4 0.005837 -0.003056 0 007147 0 000470 0.000809 -0 000163 5 0.005832 -0.003053 0.007010 0.000274 0.000649 -0.000169 6 0.005036 -0.002803 0.007006 0.000266 0.000847 -0.000170 7 0.00*217 -u.002537 0.007001 0.000252 0.0008*7 -0 000174 8 0.002853 -0.002122 0.00e993 0.000245 0.000845 -0.000177 9 0.001620 -0.001e00 0.006135 0.000180 0.000620 -0 000173 10 -0.000223 -0.00097e -u.003151 0.000160 0.000819 -0 00u173 11 0.001275 -0.001100 0.006134 0.000180 0.000819 -0.000173 12 0.002233 -0.001091 0 00t9S5 0.000177 0.000817 -0.000174 13 0.003505 0.000908 0.00e9c0 0.000173 0.000814 -0.000174 1* 0.004273 0.000857 v.00e9c2 0. 000 L65 0.000809 -0 000174 15 0.010458 0.001092 0 00c9c7 0.000063 0.000735 -0.000174 16 0.011604 0.001202 0.0069c7 0.000066 0.000727 -0.000174 17 0.018103 0.002*96 0 006971 -0.000202 0.00066L -0.C00174 18 0.000278 -0.000974 0.003o00 0.000178 -011007*5 -0.000093 19 0.000432 -0.000972 0.003956 0.000177 -De000674 -0.000147 20 -0.000347 -0.000972 -o.00373* 0.000176 0 000636 -0 00ul46 21 0.000407 -0.00195e 0.006203 0 000177 -0.000669 -0 00015*
22 -0.000320 -0.000133 -0 0002*9 0.000180 0.000630 -0 000152 0.000009 -0.000055 -0 000161 0.000074 -0.000012
~~
23 0.0000*2 24 0.000009 -0.000051 -0 000161 0.0000*0 0.000070 -0.000011 25 0.000008 -0.0000*b -0.000l? 3 0.000037 0.000066 -0.000010 26 0.0 0.0 0.0 0.0 0.0 0.0 i
27 -0.002813 -0.001307 0 002423 0.000179 -0.000675 -0.000153 e 28 0.002552 -0.001316 -0 002232 J.000182 0.000636 -0.000151 29 -0.003146 -0.001397 0 002423 0.000161 -0.000e77 -0.00015*
L 30 0.002866 -0.00l*0e -0.002232 0.000184 0.000639 -0.000152
- 31 -0.011747 -0.005052 0.002*23 0.000396 -0.000821 -0.000395 3 32 0.011054 -0.005086 -0.002239 0.000376 0.000790 -0.000355 i 33 -0.012*69 -0.007420 0.006e99 0.000520 0.000940 -0.000*13 -
9- 34 0.011862 -0.007261 -0.006693 0.000557 0.001011 -0.0003b2 .
B 35 0.017453 -0.009092 0 006691 0.0003d2 0.000747 0.000143 s 36 0.016619 -0.009692 -0 006691 0.000362 0.000747 0.000l*3 l' 37 0.005988 -0.003277 0.000469 0 000266 0.000847 -0 000170 -
i 38 0.0056P1 -0.003277 0.008218 0.0002ee 0 000847 -0 000170 39 0.005681 -0.002828 0 006534 0.00026e 0.'000847 -0.00c!70 4 40 0.005988 -0.002e26 0 005e25 0 000266 0.000847 -0.000170 4 41 0.004110 -0.002325 0 006152 0.0002*S 0.000845 -0.000177 42 0.001694 -0.001651 0.00b13* 0.000160 0.000819 -0.000173 l
I
) 43 44 0.001159 -0.001124 0.003435 0.000761 0 00613*
0 000l*1 0.0001d0 0.000177 0.000819 -0.000173 0.000o17 -0.00017*
9510- AXGACD3-5161- 1 061 CM/b 4ffNd//
QUAL. GROUP V PAGE 39 45 0.002422 0.000440 0.004055 0.000177 -0.000674 -0.000l*7 46 -0.002554 -0.001593 0.004055 0.000177 -0.000674 -0.000147
(* '
47 48
-0.002386 0.000445 -0.003748 0.002304 -0.001596 -0.003748 0.000176 0.000176 0.000636 -0.000146 0.000636 -0.000146 49 0.000304 -0.000972 u.003653 0.000177 -0.000674 -0.000147 50 -0.000126 -0.000972 -0.003726 0.000176 0.000636 -0 0001*6 51 0.000397 -0.000129 0.000259 0.000177 -0.000669 -0.000154 52 0.000344 -0.000129 -0.000233 0.000177 -0.000669 -0.000154 53 -0.0002*5 -0.000133 0.0002$9 0.000180 0.000630 -0.000152 54 -0.000309 -0.000133 -0.000247 0.000180 0.000630 -0.000152 55 0.002376 0.000517 0.000400 0.000177 -0.000669 -0.000154 56 -0.002554 -0.000764 0.000400 0.000177 -0.000669 -0.000154 57 -0.002321 0.000524 -0.000327 0.000180 0.000630 -0.000152 58 0.002306 -0.000780 -0.000327 0.000160 0.000630 -0.000152 59 -0.012455 -0.005349 0.002722 0.000396 -0.000621 -0.000395 60 -0.011693 -0.005052 0 0022e2 0.000396 -0.000821 -0.000395 61 0.0112*1 -0.005066 -0 002171 0.000378 0.000790 -0.000355 62 0.011650 -0.005369 -0.3021/0 0.00037o 0.000790 -0.000355 63 0.00010e 0.000019 0.000312 0.0000*2 0.000074 -0.000012 64 0.000124 -0.000lle 0 000312 0.0000*2 0.000074 -0.000012 65 -0.00011* 0.000019 -0.0002eu 0.000042 0.000074 -0.000012 66 -0.000117 -0.000116 -0 00C2c0 0.000042 0.000074 -0.00vC12 g
I k
a - _ _ _ _ _ _ _ _
9510- AXUACO3- 5161-1 062 S'
- GUAL. GHOUP V PAGE Ar, 7
j BEAM STRESS FOR COMB!NEL STATIC AND GPERATIONAL LOADS ELM JNT SPT C1 C2 C3 STRESS /10(3) HATEklAL SHAX NO. NO. NO. K FACI FAC3/2 SHAX SAL CESCRIPTION / SAL 20 45 3 -1 75 00 -0.44 01 27.0 STEEL 0 00 00 1.00 1.00 21 10 5 00 00 0.44 3.0 27.0 STEEL 0.11 0.87 1 50 1 00 22 50 5 00 00 0.44 2.8 27.0 STEEL 0.10 0.87 1 50 1.00 23 49 6 00 00 -0.44 2.6 27.0 STEEL 0.10 0 67 1.50 1.00 24 19 11 -0.35 0.0 -4.00 06 27.0 STEEL 0.03 0.52 4.13 1.00 25 22 11 -0.35 0.0 -4.00 0.o 27.0 STLEt 0.02 0.52 4.13 1.00 2o 63 4 0 44 0.0 -0.49 23.1 27.0 S1 EEL 0.86 00 1 00 .l.00 '
157" 6k f"' i.44' ~ 0.0 0.49 23.5 ~27.0 5 TEEL 4
4247' 1.00
' ~
' " 0. 0 1.00 '
26 65 4 0 44 0.0 -0.49 20.7 27.0 STEEL 0.77 00 1 00 1.00 .
29 66 2 -0 44 0.0 0.*9 22 0 27.0 STEEL 0.81 00 1 00 1 00 30 51 3 -0 44 0.0 -0.49 11.7 27.0 STEEL 0.43 h'- O.0 1.00 1.00 31 51 1 0 44 00 0.49 14.9 27.0 STEEL 0.55 00 1 00 1 00 32 54 4 0 44 00 -0.49 11.3 27.0 STEEL 0.42 0.0 1 00 1.00 33 54 4 0 44 0.0 -0.49 14.0 27.0 STEEL 0.52 0.0 1.00 1.00 34 52 3 -0 44 0.0 -0.49 4.0 27.0 STEEL 0.15 00 1.00 1 00
. 35 27 2 -1 86 0.0 2.31 06 27.0 STEEL 0.02 00 1 00 1 00 36 28 3 -1.dB 00 -2.31 0.6 27.0 STEEL 0.02 0.0 1.00 1.00 37 29 1 1 50 0.0 1.50 3.0 27.0 STEEL 0.11 00 1.00 1.00 38 30 4 -1 50 0.0 1.50 28 27.0 STEEL 0.10 00 1 00 1 00 39 59 1 1 94 0.0 0.3e 2.5 27.0 STEEL 0.09 00 1 00 1 00 40 62 2 -1 94 0.0 0 3e 31 27.0 STEEL 0.12 0.0 1 00 1.00 41 35 3 -0 88 0.0 -0.3e e.1 27.0 STEtt 0.23 00 1 00 1.00 42 36 4 0.86 00 -0.3a o.0 27.0 STEEL 0.22 gg 00 1 00 1.00
,y 47 47 3 -1 75 0.0 -0.44 01 27.0 STEEL 0.00 00 1 00 1.00 t
W 8 %F '3' M. [
9530 AX50C03-5161-1 063 Cca//*M 485WM)'
GbAL. GEOLP V PAGE 41 52 24 6 00 0.0 -2.00 1.2 26.3 SA-515-70 0.0*
3.70 1.50 1.00
(' 53 25 6 0.0 3.70 0.0 1 50
-2.00 1 00 1.2 26.3 SA-515-70 0.0S 54 26 6 00 0.0 -2.00 1.* 26.3 SA-515-70 0.00
- 3.70 1 50 1.00 ,
BOLTED J0lNT STRESS FOR CCMBINED STATIC AND OPERATIONAL LOADS (N= NUMBER OF 60LTS, AREAzAREA PER BOLT)
BOLT JOINT DESCRIPTION,WOLT STRESS /10(3) FA1ERIAL SMAX NOTE JNT LOC. TYPt N AREA NO. SMAX SAL DESCRIPTION / SAL 10 A .1 CIRC 4 0.13 4 15.1 62.8 SAL GR S 0 16 23 0 PAD 4 0.31 4 13.1 82.8 SAE 04 5 0 16
)
TPIS EQUIPMENT IS ACCEPT AELL FOR ThE SPECIFIED StlSIC PISTJPeahCE THIS REPORT HAS eEEN DREPARtu BY /
' BARRY L OAAADEk SENIOR ORAFTSMAN FISHER CONT *0LS COMPANY VERSION 04/22/e2 i
i i
s 4
9510- AX5AC03-5161- 1 069 IN "
l QUAL. GROUP V PAGE 1
- FISHER CONTROLS COMPANY **
GEORGIA POWER COMPANY ASSEMBLY 48A8927, 48A8928 ORIENTATION 38A7939, 38A7940 REP ORDER 228-X5AC03-N1P,N2P CODE CLASS 3 -
CUSTOMER ORDER PAV-206,PAV-2-34 SERIAL NO. 8342938 TAG NO. 1HV-12596 ITEM NO. 155 8342939 1HV-12597 156 8342940 2HV-12596 165 8342941 2HV-12597 166
- VALVE DESCRIPTION **
10 INCH N521-SR80-12-9280 CODE CLASS 3 BRACKET 48A0025 BETTIS SPRING RETURN PISTON ACTUATOR ACCESSORIES : EA180 NAMCO LIMIT SWITCHES (2) 67FR PRESSURE REGULATOR NPK8321A2V ASCO SOLENOID VALVE 1000 S ASHCROFT GAUGE DESIGN CONDITIONS : 100 PSIG AT 200 DEG F ACTUATOR TOROUE : 1471.0 IN-LB REQUIRED FREQUENCY : 33 HERTZ 10.0 TRIAXIAL G LOADING DYNAMIC ANALYSIS, ACTUATOR ONLY
- DATE OF THIS REPORT / FEBRUARY 6, 1984 C0NTR0L INPUT DATA MANUAL INPUT GENERATION FOR VALVE ANALYSIS
, SEISMIC STRESSES ARE SUPERIMPOSED BY SOUARE ROOT OF SUM OF SOUARES STRESS ALLOWABLES ARE COMPARED TO MAXIMUM PRINCIPAL STRESS MASS, STIFFNESS. LOAD ANC STRESS MATRICES ARE NOT PRINTED DYNAMIC MODAL ANALYSIS TO BE PERFORMED WITH EVALUATION CR05S-SECTION DATA EL. CROSS-SECTION NO. DESCRIPTION PARAMETERS 1 TUBE A= 5.375 ', T= .1650 ,
2 TUBE A= 5.375 , T= .1650 ,
3 TUBE A= 5.938 , T= .3600 ,
4 TEE-SHAPED A= 3.600 , T= .3000 , B= .9400 ,
T1= .8750 , R1= .1250 ,
5 TEE-SHAPED A= 3 600 , T= .3000 , B= .9400 ,
1 T1= .8750 , R1= .1250 ,
{l 6 TEE-SHAPED A= 3.600 , T= .3000 , B= .9400 .
. T1= .8750 , R1= .1250 ,
L 7 TEE-SHAPED A= 3.600 , T= .3000 , B= .9400 ,
T1= .2500 , Rla .1250 ,
1 9G10- AXUAC03-G161- 1 065 IX O" 0
- bO CUAL. GROUP V PAGE 2 6 RECTANG. BOA A= 3.000 , T= .5900 . B= 3 000 ,
[( T1= .5900 , R1= .0 ,
9 RECTANG.80x A= 4 000 , T= .3750 , E= 5.500 ,
T1= .3750 , R1= .0 ,
10 RECTANG.80x A= 3 000 , T= .5900 , E= 3 000 ,
T1= .5900 , Rl= .0 , -
11 RECTANG.60x A= 0.000 , T= .3750 , 9= 4.500 ,
T1= .3750 , Rl= .0 ,
12 RECTANG. BOX A= 8.000 , T= .3750 , B= 4.500 .
Tl= .3750 , Rl= .0 ,
13 RECTANG. BOA A= 8.000 , T= .3750 , H= 4.500 ,
Tl= .3750 , Rl= .0 .
14 RECTANG. BOX A= 7.500 , T= .3750 , e= 4.500 ,
T1= .3750 , R1= .0 .
15 RECTANG.dox A = 4 000 , T= .3750 . B= 5.500 ,
Tl= .3750 , H1= .0 .
16 RECTANG.80A A= 3.000 , T = .590C , B= 3 000 .
T1= .5900 , Pl= .0 e 17 SOLID CIRCLi A = 1 500 ,
18 SOLID CIRCLE A = 1.125 .
19 SOLID CIRCLE A = 1 125 .
20 PECTANGULAm A = 3.500 , T= .8750 .
21 RECTANGULAW A= 9.000 , T = .6750 ,
22 RECTANGULAR A = 9.000 , T = .8750 .
23 RtCTANGULAR A= 9.000 . T= .875a ,
24 CHANNEL A = 8.000 . T = 4870 . E= 2.527 .
T1= .3900 . Rl= .0 ,
[L 25 CnANNEL A= 8 000 , T = .4670 . 6= 2 527 .
T1= .3900 , R1= .0 ,
26 RECTANGULAR A = .6750 . T= .9800 .
27 RECTANGULAA A = .8750 . T = .9800 ,
2e RECTANGLLAR A = .e750 . T = 9600 ,
29 RECTANGULAR A = .8750 . T= .9800 ,
30 HtCTANGULAR A= .8750 , T= .9600 ,
31 RECTANGULAR A= .8750 . T= .9800 ,
32 RECTANGULAR A= .8750 , T = .9800 ,
33 RECTANGULAR A= .8750 , T= .9600 ,
. 34 RECTANGULAR A= .8750 . T= .9800 ,
35 RECTANGULAR A = 3.750 . T= 4.625 ,
36 RECTANGULAR A= 3.750 . T= 4.625 ,
37 RECTANG.80x A= 3 000 . T= .2500 , b= 3.000 .
Tl= .2500 , R1= .1250 ,
38 RECTANG.60x A = 3.000 , T = .2500 , B= 3.000 .
T1= .2500 , Rl= .1250 .
39 RECTANGULAR A= 3.875 , T = .7500 ,
40 RECTANGULAR A= 3.875 , T= .7500 ,
41 RECTANGULAR A= 1.750 , T= .7500 ,
42 RECTANGULAR A= 1.750 , T= .7500 .
43 SOLID CIRCLE A = 2.000 ,
44 5*) LID CIRCLE A= 1.500 ,
- 5 5'LIO O CIFCLE A = 1 500 .
46 SOLID CIRCLE A = .7500 .
. *7 RECTANGULAR A= 3.500 , T= .8750 .
48 SOLID CIRCLE A =
'] 2.000 ,
49- SOLID CIPCLE A= 2.000 ,
50 SOLID CIRCLE A = 2.000 ,
i 51 SULID CIRCLE A= 2 000 ,
52 RECTANGULAR A= 9.750 , T= 4.000 .
53 RECTANGULAR A = 9.750 , T= 4 000 ,
54 RECTANGULAR A= 9.750 , Y= 4.000 .
s . ._
9510-AX5AC03-5161-1 066 Mended Synn.fum QUAL. GR00P V FAGE 3 J0 INT C00POIA ATE DATA JOINT x Y Z NO. .
1 3.250000 2.500000 26.640002 2 3.250000 2.500000 20.690002 3 3.250000 2.500000 7.500000 4 3.250000 2.500000 6.500000 5 3.250000 2.500000 6.500000 6 3.250000 2.500000 5.560000 7 3.250000 2.500000 4.600000 8 3.250000 2.500000 3.000000 9 -2.250000 2.500000 1.750000 0 0.0 10 -0.438000 0.0 11 2.250000 2.500000 -1.750000 12 3.250000 2.500000 -3.000000 13 3.250000 2.500000 -4.600000 14 3 250000 2.500000 -5.'560000 15 3.250000 2.500000 -13.750000 16 3.250000 2.500000 -15.600000 17 3.250000 2.500000 -25.05900o 18 -0.438000 0.875000 0.0 .
19 -0.436000 3.070000 0.0 20 -0.436000 -3.070000 0.0 21 5.938000 3.070000 0.0 0' 22 -5.938000 -3.070000 0.0 23 -6.375000 0.0 0.0 24 -6.625000 0.0 0.0 25 -6.875000 0.0 0.0 26 -10.375000 0.0 0.0 27 -2.813000 3.875000 4.000000 28 -2.813000 -3.875000 4.000000 29 -2.813000 3.875000 4.500000 30 -2.813000 -3.875000 4.500000
. 31 -2.813000 3.875000 15.375000 32 -2.813000 -3.875000 15.375000 33 2.312000 5.625000 16.125000 34 2.312000 -2.250000 16.125000 35 2.312000 5.625000 20.690002 36 2 312000 -2.250000 20.690002 37 4.841000 4.091000 6.500000 36 4.841000 0.909000 6.500000 39 1.659000 0.909000 6.500000 40 1.659000 4.091000 6.500000 41 2.250000 2.500000 4.500000 42 2.250000 2.500000 1.593000 43 2.250000 2.500000 -1.593000 44 2.250000 2.500000 -4.500000
, 45 -0.438000 4.250000 -3.610000 4o -0.438000 4.250000 3.610000
' ('. -
47 48
-0.438000
-0.438000
-4.250000
-4.250000
-3.610000 3.610000 l
1
_ m e or .,c- er .* ,
9510-AXGACO3-5161-1 067 f#NM NW N"O CUAL. GROUP V PAGE 4 49 -0.638000 1.750000 0.0 50 -0.430000 -1.750000 0.0
(' 51 52
-5.93S000
-5.438000 2.987000 2.500000 0.0 0.0
, 53 -5.936000 -2.500000 0.0 54 -5.938000 -2.987000 0.0 -
55 -5.938000 4.125000 -3.e10000 56 -5.938000 4.125000 3.610000 57 -5.936000 -4.125000 -3.610000 58 -5.938000 -4.125000 3.610000 59 -2.813000 5.625000 16.125000 60 -2.613000 2.375000 15.375000 61 -2.813000 -2.375000 15.375000 62 -2.813000 -2.250000 16.125000 63 -5.930000 4.125000 -1.375000 64 -5.938000 4.125000 1 375000 65 -5.938000 -4.125000 -1.375000 6e -5.930000 -4.125000 1.375000 80UNDA x Y. SD R I t. G & S0LT J0 I t: T 0ATA JOINT TYPE-VAT PLANE-DIRECTIOr, SPRING & UOLT JOINT PARAVETEPS NO. / FIXITY 09 DESCRIPTION 23 111111 60DY 10 CIRC
- A -A +Y N.T= 4.13 .D/A= 0 5000, u= 4.5000 YSF= 0.0 .ZSh= 00 ,STD= 1.0000 FG= 0.
23 PAD 4 E +x -Y N.T= 2.10 .D/A= 0.7500 YL: 0.7500 10= 2.7500,YSh= 00 , S= 8.2500 ZT= 0.7500, Ze= 0.0 ,2Sh= 0.0 C0N CENTRA TED HASS DA TA JOINT LUMPED FOR SblFT CISTANCE OR MOMENT OF INEFTIA
> NO. MASS DIP. X Y 2 1 0.166219 XYZ 0.0 0.0 -12.500000 6 0.006470 XYZ 0.0 0.0 0.0 l 8 0.006470 XYZ 0.0 0.0 0.0 12 0.010352 XYZ 0.0 0.0 0.0 i
C0NCENTR A TEC L0AD DA T A JOINT . . . . FORCES. . . . . . . .MOPENTS. . . .
< f40. / Y Z A Y l
,10 00 0.0 0.0 1471.0 0.0 0.0 L.
4 i
s 5
S'510 AXGACO3- 5161- 1 068 M4*M IOMW*
GUAL. GfOUP V PAGE 5
,- ELEMENT INPUT DATA
'. EL. JOINTS LENGTH uhGLE AREA POMENTS OF INERTIA MATERIAL NO. / RADIUS I-11 1-22 I-33 DESCRIPTION 1 1- 2 6.000 2.7007 9.1726 18.3*53 9.1726 STEEL 2 2 3 13.190 2.7007 9.1726 le.3453 9.1726 STEEL 3 3 4 1 000. 6.30P6 24.6379 49.2758 24.6379 OUCTILE IRON 4 40 4 2 250 1.6400 1.2021 0.1517 0.1087 OUCTILE IRON 5 37 4 2.250 1.6400 1.2C21 0 1517 0.1087 OUCTILE Ikou 6 38 4 2.250 1 6400 1 2021 0 1517 0 1087 00CTILE IRON 7 39 4 2.250 1.2400 1.1672 0 0383 0.0443 DUCTILE IRON 8 6 7 0.960 5.6876 5.6357 8.3225 5.8357 OUCTILE IRON 9 7 8 1 600 6.5625 15.7*51 29.5944 26.4326 DUCTILE IRON 10 9 41 2 750 5.6876 5.E357 6.3225 5.6357 CUCTILE IRON 11 9 42 0.157 8.0125 72.9131 63.1571 26.8696 OUCTILE IRON 12 42 43 3.186 8.e125 72.9131 e3 1571 26.8896 DUCTILE IRON 13 43 11 0.157 8.6125 72.9131 63.1571 28.8896 DUCTILE IRON 14 11 44 2.750 8.4375 62.0947 57.5977 27.2900 DUC1ILE 1 R 0.4 15 12 13 1.600 6.5625 15.7451 29.594* 2o.4326 DUCTILE Io0N 16 13 1* 0.960 5.ea76 5.8357 8.3225 5.8357 OuCTILE IAGN 17 14 15 8.190 1.7671 0.2465 0.6970 0.24t5 STEEL 18 15 16 1.850 0.9940 0.07F6 0.1573 0.07P6 STEEL 19 16 17 9.459 0.9940 0 0786 0 1573 0.07E6 STEEL 20 45 46 7.220 3.0625 0 1954 0.65F5 3.1263 STEEL 21 10 18 0.875 7.8750 0.5024 1.6667 53.1563 STEEL 22 10 50 1 750 7.9750 0.5024 1.e667 53.1563 STEEL 23 16 49 0.875 7.e750 0.502* 1.48t 7 53.1563 STEEL 24 19 21 6.376 5.4972 43.e363 0.3ee5 2.4324 STEEL 25 20 22 5.500 5.4672 ~3.e363 0.3665 2.4324 STEEL 26 63 55 2.235 0.e575 0.0o66 0 1023 0.0547 STELL 27 64 56 2 235 0.5575 0.0666 0.1023 0.0547 STEEL 28 57 65 2.235 0.2575 0.0666 0.1023 0.0547 STEEL 29 56 66 2.235 0.e575 0.0666 0.1C23 0.0547 STEEL 30 63 51 1.785 0.8575 0.06E6 0.1023 0.0547 STEtt 31 64 51 1.765 0.9575 0.0666 0.1023 u.0547 STEEL 32 65 54 1.785 0.E575 0.06?6 c.1023 0.0547 STEEL 33 66 54 1.785 0.6575 0.0686 0.1023 0.0547 STEEL 34 52 53 5.000 0.8575 0.0666 0.1023 0.0547 STEEL 35 27 29 0.500 17.3439 30.9161 41.2662 20.3247 STEEL
., 36 28 30 0.500- 17.3438 30.9161 41.26b2 2C.3247 STEEL-
. 37 29 31 10.875 2.7500 3 4948 5.2047 3.4948 STEEL f 38 30 32 10 875 2.7500 3.4948 5.2047 3.4948 STEEL 39 33 59 5.125 2.9063 0.1362 0 4785 3.6366 STEEL
. 40 34 62 5.125 2.9063 0.1362 0.4765 3.6366 STEEL
- el 33 35 4.565 1.3125 0.0615 0.1793 0.3350 STEEL
^ 42 34 36 4.565 1.3125 0.0615 0.179S 0 3350 STEEL 63 14 16 10.060 3.1416 0.7854 1.5703 0.785* STEEL j 44 14 6 11 120 1.7671 0.2485 0.4970 0.24a5 STEEL 45 5 6 0.940 1.7671 0.2485 0.4970 0.2465 STtEL
- s 46 5 2 14.190 0.441d 0.0355 0.0311 0.0155 STEtL El *7 47 48 7.220 3.0625 0.1954 0.65e5 3.1263 STEEL i 4e 56 27 3.159 3.1416 0.7654 1.5708 0.7e54 511FF ELEMENT i
l 3
953 0- AXGAC03-5161- 1 069 D M CI MwMG GUAL. GROUP V PAGE 6 49 46 27 2.436 3.1416 0.7854 1.5708 0.7d54 STIFF ELEMENT f~ 50 58 28 3.159 3.1416 0.7654 1 5708 0.7654 STIFF ELEMENT
(
51 48 28 2.436 3.1416 0.7854 1.5708 0.7E54 STIFF ELEMENT 52 23 24 0.250 39.0 52.0 154.4 309.0 SA-515-70
~
53 24 25 0.250 39.0 52.0 154.4 309.0 SA-515-70 54 25 26 3.500 39.0 52.0 154.* 309.0 SA-515-70 37 6 RIGIO LINK 38 6 RIGIO LINK 39 6 RIGIO LINK 40 6 RIGID LINK 41 8 RIGIC LINK 44 12 RIGIC LINK 35 2 RIGIO LINK 36 2 RIGID LINK 43 10 41GIC LIhn 42 10 RIGIC LINr
)
45 19 RIGI3 LINK 46 19 RIGIL LINK 47 20 RIGIJ LIhK 46 20 RIGIO LII.K 55 21 ;IGIC LINK 56 21 RIGIO LINK 57 22 RIGIC LIhK 59 22 RIGIC LINK 54 22 RIGIO LINK .
53 22 AIGIO LIi4K 52 21 RIGIO LINK 51 21 RIGIC LIhh C- 63 23 41GIC LINK 64 23 RIGIC LINK 65 23 RIGIC LINK 66 23 RIGIC LINK 59 31 RIGIO LINK 60 31 RIGIC LIhn 61 32 RIGID LINA 62 32 RIGIC LIhn l 49 19 RIGIC LINK j , SC 20 RIGIC LIh6 r
l l
l l
i V -
i h
e l*
9510- AXGACO3-5161 ~ 1 070 hb M*d8d'6 CL'AL. GdGUP V pAGE 7 DYNAM IC AN ALY5I5 n
RESONANT FREQUENCY = f_81 3 HERTZ ;(IN X-DIPECTIOF. CR Y-ROTATIONI t
v
- * *
- NORMALIZED EIGEhvECTOR ****
JOINT . . .0EFLECTION . . . . . . ROTATIOh . . .
NO. X Y Z & Y Z 1 -0.816283 0.040290 0.254039 -0.001443 -0.023426 0.002688 2 -0.650872 0.030564 0.253166 -0.00164* -0.028127 0.002687 3 -0.251951 0.006362 0.250245 -0 001740 -0.030960 0.001932
> 4 -0.220725 0.004587 0.250114 -0.001727 -0.031003 0.001906 5 -0.220496 0.004651 0.245759 0.000235 -0.033341 0.001731 6 -0.189168 0.004866 0.245633 0.000274 -0.033289 0.001727 7 -0.156885 0.005132 0.P45470 0.000341 -0.033275 0 001567 8 -0.102979 0.005e36 0.245232 0.000370 -0.03321* 0 00lb21 9 -0.061553 0.004752 n.211525 0.00061e -0.032326 0.001071 10 -0.002266 0.002962 0 123104 0.000619 -0.032312 0.001067 11 0.051657 0.006915 0.211515 0.000t19 -0.032329 0.001067 12 0.092765 0.008772 0.P44265 0.00C622 -0.032596 0.001070 13 0.145490 0.009779 0.244363 0.000626 -0.032806 0.001072 14 0.177308 0.010390 0.2 *29 u.000635 -0.033099 0.001076 15 0.479422 0.016583 0 244521 0.000820 -0.03B959 0.001077 0.55252* 0.018130 0.244534 0.000B*7 -0.039870 0 001077
(= -
16 17 1.000000 0.028172 0.244603 0.001132 -0.049779 0.001078 13 -0.002735 0.002456 0.123345 0.000564 -0.027476 0.000429 19 -0.003465 0.002949 0 124362 0.000523 -0.022634 0.00041*
20 -0.000659 0.002963 0.120o05 0.000629 -0.021904 0.000507 21 -0.004072 0.005883 0.266714 0.00043E -0.022449 0.0004e9 22 -0.001e26 0.000040 0.000679 0.000566 -0.021632 0.000461 I
23 0.0 0.0 0.0 0.0 0.0 0.0 24 0.0 0.000000 0.0 0.0 0.0 -0.000000 25 0.0 0.000000 0.0 0.0 0.0 -0.000000 26 0.0 0.000000 0.0 0.0 0.0 -0.000000 P7 -0.094326 -0.000203 0.070970 0.000485 -0.0Pd667 0.000*62 PB -0.087658 -0.000736 0.068267 0.000595 -0.o?1897 0.000499 29 -0.105736 -0.000445 0.070963 0.0004eo -0.072799 0.0004e5 30 -0.099678 -0.001031 0.060264 0.00c5e9 -0.022021 0.000520 31 -0.423346 -0.000275 0.070078 -0.000619 -0.030695 0.00*369 0.067785 -0.000400 -0.029921 0.004220 32 -0.404846 -0.001424 33 -0.454788 0.02P299 0 222529 -0.001056 -0.037299 0.004295 34 -0.434818 0.020621 0.235119 -0.001452 -0.040185 0.004226 35 -0.659269 0.028044 0.221665 -0 0016*4 -0.028127 0.002687 36 -0.638109 0.028044 0.234611 -0 001644 -0.026127 0.002687 2
37 -0.223200 0.007378 0 299033 0.000274 -0.0332c4 0.001727 38 -0.217712 0.007378 0.298160 0.000274 -0.033289 0.001727 39 -0.217712 0.001882 0 192233 0.000274 -0.033269 0.001727 40 -0.223206 0.001662 0.193106 0.000274 -0.0332o9 0.001727
- 41 -0.152801 0.003559 0.212017 0.00G370 -0.033214 0.0015el
} 42 -0.056407 0.004845 0.211507 0.000t19 -0.032312 0.001067 43 0.046539 0.006817 0.211507 0.000614 -0.032312 0.C010o7 1
i l
Y
S'510- AX5AC03- 5161- 1 071 N Da*MO QUAL. GE0tN V PAGE 6 44 0.141663 0.008635 0.2116e6 0.060622 -0.032598 0.001070 f 45 0.077755 0.004656 0.124965 0.000528 -0.0F2634 0.000414
( '
46 47
-0.085663 0.079012 0.001042 0.00523'c 0.124965 0.120064 0.000526 -0.022634 a.000629 -0.021904 0.000414 0.000507 48 -0.079133 0.000693 0 120064 0.000629 -0.021904 0.000507 49 -0.002918 0.002949 0 123644 0.000528 -0.022634 ~0.000414 50 -0.001328 0.002963 0.121635 0.000629 -0.021904 0.000507 51 -0.004031 0.000075 0.000069 0.000438 -0.022449 0.000469 52 -0.003793 0.000075 -0.000144 0.000436 -0.022449 0.000489 53 -0.001891 0.000040 0.001003 0.000568 -0.021o32 0.000461 54 -0 001666 0 000040 0 000727 0.000566 -0 021632 0 000461 55 0.076454 0 001657 0.n00566 0.000438 -0.022449 0 0004S9 56 -0 085629 -0.001507 0 000566 0 00043e -0 022449 0.000489 57 0 076950 0 002091 0 000060 0 0005e8 -0 021632 0 0004el 58 -0.079234 -0.002012 0.000080 0 000566 -0.021632 0.000461 59 -0.454014 0.000190 0.n69994 -0.000619 -0.030695 0.004369 3 60 -0.416792 -0.000275 0.071007 -0.000619 -0.030695 0.004369 61 -0.411176 -0.001424 0.067165 -0.00t-00 -0.029921 0.00*220 62 -0.43414* -0.001124 0.ro7135 -0.000400 -0.029921 0.004220 63 0.0 n.0 0.0 0.0 0.0 0.0 64 0.0 0.0 n.n 0.0 0.0 0.0 65 0.0 0.0 6.o 0.0 0.0 0.0 66 0.0 0.0 0.0 0.0 0.0 0.0
. TFIS REPORT HAS eEtil PREPARED SY /
- 6APRY L GAARDER 5EAIch L.R A F T SP A.*:
FISHER CONT 40LS C0"PANY VERSION 04/22/92 E
a i
t O
i .
I I
i - - - - - - - . ---- - --
9510 AXGAC03-3161- 1 072 ATTAC MENT 3 FQP-11AB-5 a
Pressure Retaining Parts Stress Calculations for 10-inch Type 9280 Valves Vogtle Group V NA-134 L
1 1
{fy' t N28-12/ 3
t 9310- AXGAC03-3161- 1 073 BUITERFLY VALVE TYPE 9280 "O*
SAG 1034 (
Calculation Procedure "8LC, iG-23-9 ressure Retaining Parts for g gg,gg MARSHALLTOWN, ICWA PAGE 1 0F 15 l lAD Following are stress calculations to determine:
- 1. Valve body hoop and bending stress
- Pap _L ' kv. A-
- 2. Retaining ring hoop stress
- 3. Shaft torsional, bending, and shear stress
, 4. Disc bending stress These calculations are for a Type 9280 Butterfly Valve constructed of the following caterials:
- 1. Body 5 A-Els -70
- 2. Disc 5A-351 - C.FBM
- 3. Retaining ring SA-EI 5 ~70
- 4. Shaft 6A-5 M H lO75
Reference:
Order No. 22 6-X5Aco3- N 19, N 2.9 P.O. EAY-lot, , PAY-2 Item No. 155,15(o, Ib5, I b(o i Category b8 $ 6m's C, 8 Oyy Type 10" NE11c-SR50-12 -92.OO Valve Tag No's. Serial No's.
I HV-12s3(o 0342930 l I HV- 12.59'l 0362939 L 2HY- 1253(o 03429to l 2.HV-115C37 034294l
,,- + - - - , - - - - - , _ .-- - - - - -- - - - - -
-r----,w,,n- - - - ,
9310- AXGAC03-3161- 1 0 7 '.
BUTTERFLY VALVE TYPE 9280 SAG 1034 (
h I.t Calculation Procedure I*
~
l l l l*
Design Conditions: g.135., Paje 1-, RW A
- 1. Service Pressure lN PSIG
- 2. Pressure Drop W PSI
- 3. Service Temperature 200 P
- 4. Actuator Torque 3310 aa / u sev>! <f/><oafed in-:.3 [Tohuga af rstoj.
k'Wfor Allowable Design Stresses for Materials of Construction:
fc rs is'r, p te35'4fC /
- 1. Body 7(0250 PSI
- 2. Disc M750 PSI
- 3. Retaining Ring M250 PSI
- 4. Shaft % 300 PSI (Torsion)
Tit 50 PS1 (Suear)
Order of Calculations:
- 1. Body hoop and bending stress
- 2. Retaining ring hoop stress i
- 3. Shaft torsional, bending, and shear stress
- 4. Disc bending stress following the calculations is a summary of allowable stresses vs.
calculated stresses.
- 5. Code Case 1635-1 E
9510- AXGACO3 G161- 1 075 ,
BUTTERFLY VALVE TYPE 9280 SAG 1034 C w
MVJ,er$ ' #
Calculation Procedure U SL6 i 9-23-6:-
(- MAR 5HALLTCWN. IOWA Pressure Retaining Parts W PA*.'
10s*C7 8~2 3 0F 15 RE:4 l l l
- 1. Body Hoop & Bending Stress g I
7
/
ID= 11.030 (Max) / _ t ._ . /(M/ m) fffff/
k _
b O D = 12. .M (g;n) c = P(2a) f r thin cylinder 3 2t
=
+
for thick cylinder (b -a)
. __ ioo(c,.3,s% s. sis *) *"
P = Internal pressure (PSIG) = LN (a.315 * ~ 5.sist 2a = Inside diameter (In) 2b = Outside diameter (In) t = Wall thickness (In) l 7 @$ pi c h= Hoop stress in Body (PSI) l Sr = -?
l
=
-lOC PSI l (. NOTE: The body is considered to be a 7,fjek walled cylinder since b/t < 10.
l l
9510 - AXG ACO.3- 5161- 1 076 BUTTERFLY VALVE TYRE 9280 SAG 1034 C j h
- Calculations Procedure 2YSLG, ie 23 '
Pressure Ret ining Parts '
I MARSHALLTCWN.10WA PAGE 4 0F 15 1
! Ii I"" l
' Hoop Stress at Shaft Hole g, g g i ,M. A .
l -
a gh O' S 1
, n--
- C
.2 T -
f -y Y
.a 2a=4.oo (4 y V
a =_o.s _
i
= e
.I96
~
l.436_~
- l. 75 L = 4.02h
(
o-aw ,= ;
g ,p d (1-21) + D (1 + A)
- D -d Where 2
r - Internal pressure (rSlG) g lo.5 *]- 2(.3)]+ 19:15 (3+.3) 7d
( gg,.T5* - 10 5* /
" '"**d" "****" ('")
l D = Outside Diameter (In)
A = Poissons Ratio (0.3 for Steel) l : \ 97 psi o = xaximum enit Stress (PSI) 1 ..
i p
- Clavarinos formula f or thick walled cylinder d/(2t) < 10), King, R. C.
j ) and Crocker, " riping Handbook", Pages 3-13. Fif th Edition, McGraw-Hill, New York, 1967.
t
_om e m -,e e,w.e+
9510- AX5 AC03-5161- 1 077 BUTTERFLY VALVE TYPE 9280 SAG 1034 h h3W I Calculation Procedure f'
8YsLC, !9-nN
(~ Pressure Retaining Parts RBE Ilo.z7 8?
MARSHALLTCWN. IOWA PAGE 5 0F 15 AU l l l g._df, Page 5 , ha. A--
To conservatively allow for shaft hole, unit stress for solid block (L by 2a) should be multipled by the ratio of the face to face dimension (2a) over that value minus the packing hole diameter.
2a 4.00 % .
s" ( 2a - 2b) 440- g,4 ):352. p* i (This expression includes a ratio of the cross-sectional areas
- e .p a 2+b2 available to carry the hoop stress load.)
h 2,32 3 Where:
g g a = Outside Radius of Shaft Hole (In)
-(g ~
b = Inside Radius of Shaf t Eole (In)(Largest) c = Hoop Stress of Shaft Hole (PSI) h
= 140 esi Body bending stress at weakest supporting section:
///////, 4d C k x\ s a
/
f
\y l
G /
/ Jl
\, , / /.
\Nr / //I//// v 1
n :-
l l
l l; Bending Mocient Section X-X Bending Moment l M=W(GT.oad + }
G = Seismic Acceleration in g's Load W = Weight of Extended Structure (Lb)
, ig g (4.5 t Q l2,33
=
%(pQ In-Lb
I 9510 f.X 5 f.C ,0 51 ' * *0m BUTTERFLY VALVE TYPE 9280 NO. SAG 1034 - l f a* Calculation Procedure e'-
-'SL.(y $.13. g 2
'E
~
Pressure Ret ning Parts an
. l a U\1.\ W ' a 4
a - 4 00 NA_dd,Page_6_,Rev.4__.
f
\\ d - 2.4 6%
x
_v bc h .\ -
x b d e c - 42 6 d = 4.h 6 6
\x
\
h -
7 y
e - 8. (e
'"d*e -
4 (,Q>O y A .(A 2 3.32'1-sxxx,xxxx -
4 4
y' a .i
., m 3 a(*-d)3 2 d I
xx "I 'g)4 +2 2 +(*i)(a)cf)2 ,
4.cos..<,eef sia .p -
5,
(,:+ * '
2.
- t 2. 3 s.6-4.6e6 3 e4 -+ 2 5.szt 12.
103.80 In' - ,
(e/2)
Bending Stress (- )=
xx (Based upon f.6 G Load) 1 B'S.80 o -
1-T5 PSI xx Assume weight of extended structure acts 90* from previous calculation:
(b) (a) Ie-d)(*)3' 2
7 , _ s(c)0 4 yy 12 64 12 L g.ese6.wf w,..y +2 78.<,-4.aag,,gl z
e
- n. _
e
~ s , 4. ,
~ u o ...
i f = 34 8ta In*
. MC1017
9=y n Aynor n% n1 A1- 1 079
- no.
BUTTERFLY VALVE TYPE 9280 SAG 1034 C Calculation Procedure D6L.G S-23-9 3 bM for pgigs l go,77,gg
(- NARSHALLTOWN.10WA 888 *
- 8I"I"I 8I 8 PAGE 7 0F 15 REV Bending Stress (based on a i E G load)
, . sca/2) NA-/ 94, Page 7 , Rev..d_,,
" I n
1%0( )
s4.ew 1
- 428 PS1 Consider an accident condition with bending about the xx and yy axes simultaneously:
a = a +a
- 175 + 428
=
603 PSI This value is conservative because it includes the 1G load (weight) of the actuator and bracket in the yy axis However, the stress is significantly below the allowable stress of %(0150 PSI.
Torsional Shear Stress i Conservatively omitting the load carrying capacity of material on outside of bolt holes and modeling shaft hole as a rectangle.
4T T1 " 2 2 (a - c )(b + c) e 4h320)
= 0.='- vo2e*) (2.6es + uns)
L 12%)n; i 4T 4 hMO)
(b - c )(a + c) (7..le9 M- 1.62S 4,00t lla2B)
=
51(o Psl .
901 o- AxUnc o a- :.,16] -1 uuu
_BurrERR.y VALVE _ TYPE 9280 H. SAG 1034
, j h L3* calculation Procedure fr 6Y gL(, jg.,n.gj Pressure Retaining Parts RBE i)o.z7.5:
(. MARSHALLTOWN.10WA PAGE 8 0F 15 REY
- 2. Retaining Ri.ng Hoop Stress hM , fg1, b.b N
4
[O r 2a : : I 214; t --+ %
- 10. Q : 2d : '
Hoop Stress (Sg) = P(2a) f 2 2
=
) r thick rin;;
(. 2 ~ 2 (1 +
- S g
at o = a loo (to) 202i9
=
133] PSI P = Internal Pressure i
2a = Inside Diameter t = Min. Wall Thickness i 2b = Outside Diameter .
Note: The ring is considered to be a O'n walled cylinder since a/t > 10.
l-L i I.
MC7621 .
B l
9010- AX5AC03-3161- 1 081 50.
BUTTERFLY VALVE TiPE 9280 SAG 1034 C
[ he Calculatio rocedure 5$Q jg.13 g3 Pressure Retaining Parts RBF llosZ7 87
[V MAltSMALLTOWN. ICWA PAGE 9 0F 15 AE(
i l l
- 3. Shaft Torsional, Bending, & Shear Stresses
- QS ' kY.
Maximum Torsional Shear Stress (Ss) = T(d/2) J J = nd Where 32 T = T rque e J = Tr(i.2.5p d = Shaf t Diameter
- 1.7- 6 J = Polar moment of inertia 3
, T(d/2) s J S = -
s S,= $(.0%(O PSI Bending Stress (a )
- B I Force (F) = t.P. A Where A is area of disc e78.5 Where d is dia. of shaf t cl.26 i
Q, fj l ,
I=[ Where L is the distance from outer edge of bushing
= ;t5 t edge of disc i
Moment (M) = (F/2)L 1=
Tr(!.2sf = .113 6 4 y (o4 r = 100 (r6.50):'7650 F/g ,_,,,g-3 I M= eso)lI6279" 2.
3 og . = (ax ) = 29 4 + (._T)11555btsi
,IISS Cs.
L
- ~ . . - . . - - . , . . ,,, _
t =* **- .,er-.-,*,s,=,-;
95:L id5i.C G C L 1 J,1 1 C 2 no. g g U Calculation Procedure U6k6p l9-13-93 for p!B6 l10'"2"7 8-(-. MARSHALLTOWN. IOWA
- "#* * * "I#E 8I 8 PAGE 10 0F 15 REV Max. Shear Stress at neutral axis due to shear load:
- b ' b.
2F T
m
= 1.38 2 fr m experimental results uo
= 136 M 79EO Tr 125'
=
4 4 Ik ?SI.
Combine max. tersional shear an:. v.ax. shear stresses:
+T comb " S s m
= p% + 4414
(- =l M OPSI Combine max. torsional shear and bending stress using maximum shear '
stress theory of failure:
, o =c " bI x B l '
c =0 PSI i
T xy =S,=h[pi[pFSI Principal stresses
- +# #
x ~ + [( x - "y)2 + T v 2
, 1" a 2 xy l! 15MS+ O 2
+[r85559-02+ Blo %
~
l-z 1 b
J c - 132 49 PSI 0 1 1,.
l.
t' .
l+ ___
952 n- nayuus uior *
f_7. .ngrERFLY VALVEJYPE 9280. _ _ "O*
SAC 1034 A
YN Can & d calculation Procedure SY SL6p 19 "13-9'f
- for gg,e ho 2.7 8
( MARSHALLTOWN ICWA ressure Retaining Parts PAGE 11 0F 15 REV e
x
+o y o x
-c 2 c
2" 2
~
C 2 y) + ('n)2 163Esto
!5359-o)1 9 ggf.
- E , NV-2
= 'N PSI c -c 1 2
"" I
- a max 2 1
max = is244-(-sess9
' max = 11EG 5 rS1 The factor of safety by the maximum shear stress theory is:
S
- N=2 Where N = Factor of safety
= Maximum code allowable stress
('
S 7'
, _E4315 7-6:565)
N = 2 ,"f(p 1
i 4
I.
, MC72785 o . . . . . . _ _ _ _ _ . _ . . .. . . . . _.
[_ -
9510- AXG AC03-G161- 1 084 ,
no. .
BUTTERFLY VALVE TYPE 9280 SAC 1034 '
h
- CenZhoth y - --
Calculation Procedure for 5?g Q Lg.4p p- y,g.
MARSHALLTOWN. ICWA PAGE 12 M 15 l RP l
'4. Disc Bending Stress ' s -
M(hy /2)
(A) Bending stress (o ) = @ Sect AA Bending Moment (M) = 0.083(AP)(D )
A A h h ~
,Dh ,
23 12 12 k'here yh = Total width r 2 b 8 0 h = Diameter of hole 1,7.6 y
D = Diameter of disc to 7_,
y / AP = Pressure drop 8'10 0
/
M = .0%h00)lo r 6300
- 1. ion.we-i.2s')u4.ss,
\
/ t'3.
( Sec.[ ion " '* M = *M(hN' /2)
I q.gg7 y A-A (B) Bending stress (g) =
7
@ Sect BB Bending moment (M) = 0.3927 D AP [LO+ . D[
Dh y wh I " 12 ~ 64 k'her e hy = Total width l h2 = Diameter of hole l
l D = Diameter of disc L = Distance from center of the O
^
bushing to the edge of disc =l,376 x = .3927 Go.of IOo D.375 + .26700 oD p n = IM 02.
b ..
.- 6 1.tDD.600 M(l.25
~
L l l l2. c,4 L
c l(,,065 O'
See Appendix 1 for derivation.
l l _.
1 - . .-
6 951 0 - A X n N' n q = s 161 - 1 O BEs N0* SAG 1036 BUTTERFLY VALVE IYPE 9280 c Calculation Procedure 8'5L(, 18-15-95 fr RflE l LOT 18
(.-
MARSHALLTOWN.10WA Pressure Retaining Parts PAGE 13 0F 15 I l l
.B iem (n.. ) 2.
~
/ l(o .o & (
2 l338 psi b ' ' NV b Section r BB I
l MC727S1 ,
l .
i l D
\. . -
A (3
IE [
t.
x Nb x v $,
f SUllMARY OF STRESSES O W b
.c ki W
! MATERIAL STRESS ALLOWABLE (DESIGN) 05 Edle 0
I CALCULATED (ACTUAL) 5, h COMPONENT SPECIFICATION CALCULATION STRESS (PSI) STRESS (PSI) > w 1, ,
1100P Q Q';;t gg [p)h BODY SA-515-70 n00P e SHAFT g(gg gg )gg g
"'" Ato AG O coo 3 m
[
3S i
RETAINING RING SA-515 - 70 auso lloor 23p c n 3
_ so 1
. m ww.-
TORSIONAL SilEAR Mg $O %h _
a n <
l [ BENDING
$Q300 [$~333 -
gp@ %
1 ', SA-5G4 Hlo75 -
smn F"* A a,yga tso(,o -
g;3
- I MAX S!! EAR BY
- a m
' M l
FAILURE T11EORY 2 115o IlSGE -
3$
- 3 l
BENDINC @ SilAFT 2050 7p p _
DISC S A-351- &M BENDING PERPEN % _
! 2 ilbO
' I SilAFT \39 6 W
-A -
4
- i. #
7 N
. _ s
- o. e g u m
6 y S $w i ___
951-0 AXCaCO2 5111-1 nm
- 0*
BUTTERFLY VALVE TVPE 9280 SAG 1034 g Calculation Procedure USLb M-M-83 fr RBE ID-Z7_6;
(- MARSHALLTOWN. IOWA Pressure Retaining Parts PAGE 15 0F 15
- 5. ASME CODE CASE 1635-1 g g gj Section Modulus of Piping:
Pipe Size lh ' Seedule A C O.D. = IOel6
+
I.D. = !O'N 4 4 r(d g -d) p 32 d W{\0.'15 -10 02 3 2 Qo.7.'O 3
-29.9o In .
Sectional Modulus of Valve Body:
O.D. = [2.*T 5 l
1.D. a
* 0 4 4 w(d, - d )
f v 32 d
, M l2. 5 4 - II.doh l
32 ca.,s) l '
h .62.
es,s2.
l Ratio = zv= q,934 i
1 z
P 29.90 Allowable Stress for #sA-106 GR$ Piping = 15000 PSI Allowable Stress forSA-Sf 5-7o Body = 3(,2.5 0 PSI I.
ll Based upon this infor:::ation, this valve meets the conditions set forth in Code Case 1635-1.
L O
f i
' ' ' ~ ~ ~ ~ ' '
._ . _ . . _ . _ . - , . 1 J. ,__ _. l ~ ~ ~ ~~'.._',,~~'T_' . . _ . _ _ , _ _ _ . _ _ _ _ . , _ . , _ . _ _
9010- AXGAC03- 5161- 1 008 .
NA-JM, Pagel4_ , Rev.L 3
APPENDIX A EQUATION DERIVATION 1
l O
s e
r.
1 9!
s
- l -
955L i.X G /.C ^ 3 51 m',1 1 O ?
BUTTERFLY VALVE TY15E 9280 "O' SAG 103l. A Calculation Procedure EISL4 N 93 M h0-23. -8?
(^.
MARSHALLTOWN. ICWA Pressure Retaining Parts PAGE Al 0F 15 AEV l l s
Derivation of disc bending coment equations gg , pm f_7_ , pg((__
Fq p___________..;
p___________a Av +A L_J
- 8 '~ ~' ~ ~ ' " ~ ~ '
-Section "AA" IMg = P Where: P = Load on Disc = (LPA)
+_k P e = Distance to Centroid P+' O
= .2122D = 2o l % Y2 P IMg = LP (.2122D)
= .083 APD i
l
[
l
~.
l .
l MC3228 l 3
~*- -
. - . . . . - - - - . . . . . - . . . . .. ~ ..
9510 < MT.,2 -5161 -- 1 " "
r "O' SAG 1034
. BNTTERFLY VALVE TYPE 9280 A Calculation Procedure fr I16 !S-D-43 Pressure Retaining Parts RBE ho-27.e:
MAftSHALLTOWN. IOWA PAGE A2 CF 15
~
l l l REV
'g SECTION "BB" b* * * "' * --
I.bB
=
( D + L,) - V (e) 4 ] WHERE: P = Load on disc = (APA)
D = Disc Diar.eter 1/2 P e = Distance to Centroid 0 - - 'o = Hub e Bushinz Length M C '/2 t' M
EB =h D AP (hD + L ) is f D AP (.2122D) l'
=1
- D AP (L + .2878 D)
.gh KZ
= .3927 D' AP (L + .2878 D)
Calculations prepared by .
Title be h$dr FdkWA.h Calculations Checked by S
~
Title bk3tdd b,MGsNGT-Q f
9510- AX5AC03- 5161- 1 091 0
ATTACHMENT 4 FQP-11AB-5 3
Static Side Load Test of Vogtle Item 165 10" Type 9280 Butterfly Valve with Bettis N521C-SR80-12 Actuator Fisher Lab Problem 1662, Report 72 8
': c;a j; N28-12/ 4 n -- _ _ - - _ _ _ _ _
.9 Project 78EC07 .-6 5 3 1 6 A x 3 6 C 6 3 - U l i,1- 1 G72 proed "
1662 O Fisher Controls Laboratory Report p.,,
(
3 FISHER' '
12-5-84 1984 ersner conms Cte,$ -nenar-hla s .mU.s *i t2 STATIC SIDELOAD TEST OF A 10" 9280 BFV WITH A
- 0* BETTIS TYPE N521C-SR80-12 ACTUATOR, V0GTLE TEST ITEM 165
.0.C"3 i n.t"r:
vsuaP 3}'
o h5 uw ABSTRACT f-A static sideload test was perfonned on a 10" Type 9280 BFV with Bettis N521C-SR80-12 actuator. This valve was a production valve intended for service in the Vogtle Nuclear Power Plant (Rep. Order No. 228-X5AC03-N2P; Item No.165; S/N 8342940; Project No. 78EC07) . A sideload force equivalent to 109 acceleration was applied near the center-of-gravity of the extended structure of the valve assembly. This load was applied along the axis of least rigidity as determined by an earlier resonant frequency test (Problem 1667, Report 188). The static sideload was intended to conservatively simulate dynamic loads encountered in a seismic event as specified by Bechtel (A&E for the Vogtle Project). Operability
[ tests were performed before, during and after application of
( the sideload as a means of evaluating performance of the valve assembly during a simulated seismic event. Testing was perfonned according to FTP-33, Rev. D and the results of the tests successfully satisfied all criteria required by this procedure and the associated requirements in the Test Valve Data Sheet.
l REP 28/8 Ig t
(i ,
f am 72S
--ow..,
sUiD'nXUhGud-ale.1-1 uve Roblem 1662 Fisher Controls
- 72
, , Laboratory Report g,,,
2 FISHER' C. '
Dat 12-5-84
~
CFisher Conds }gg4 ,
TABLE OF CONTENTS Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table of Contents ...................... 2 Section Page Introduction ........................ 3 Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . 4-Results ........................... 7 Conclusions ......................... 12 List of Instrumentation & Test Equipment . . ......... 13 Test Valve Data Sheet . . . . . . . . . . . . . . . . . . . 15 Test Request Letter ..................... 16 Tables, Sketches and Photos Table 1; Sideload Test Results . . . . . . . . . . . . . . . . 8
(~ Table 2; Sideload Test Results . . . . . . . . . . . . . . . . 9
( Table 3; Sideload Test Results . . . . . . . . . . . . . . . . 11 Sketch 1, Mechanical Test Setup ............... 17 Sketch 2, Limit Switch Wiring Schematic ........... 18 Photo 1, Overall Test Setup A ................ 19 Photo 2, Overall Test Setup B ................ 20
- Photo 3, Point of Sideload Application . . . . . . . . . . . . 21 1
Photo 4, Dial Indicator Location on Limit Switch . . . . . . . 22 r
l l
REP 28/8 l
l L
L l!
l l
Is a
t v
Fem 735 P"d
- U I #
9ulu- nAunt.ue alol- 1 uyi prowm 1662 Fich;r CcntrcI3
% 72 Laboratory Report e.,, 3
{ [ FISHER'[
12-5-84 CFisher Controts 1984 .
INTRODUCTION The test of Item ISS, Vogtle Project, wes aequested by the Nuclear Qualification Group via the test request letter included in this report. The purpose of this report is to evaluate the operability of the valve assembly when subjected to a e sideload of the magnitude specified in the Test Valve Data Sheet included in this report. The test valve was in a fully operational mode with the valve body in a pressurized test fixture. A baseline series of functional tests were performed prior to the application of the sideload. The sideload was then applied in increments of 50%, 75% and 100%. At 100% ,sideload functional tests were then again conducted and recorded. The sideload was then incrementally
( removed in reverse sequence. At zero sideload a final series of functional tests was performed. Every functional test consisted of a packing leakage test, a bidirectional seat leakage test, limit switch trip point test, and a series of stroking time tests which included verification of the " lock-in-last-position" j or " fail-safe" mode. Deflection measurements of the extended structure were made during the incremental application and incremental release of the sideload.
This series of before, during and after tests provided a method of comparing normal operation under no sideload to operation during sideload. This test also l
L allowed a comparison of before and after performance to see the detrimental L effects, if any, caused by the sideload. Structural yield, binding of internal components, and loss of pressure retaining ability would be revealed, if present, by this test. A full evaluation of the valve assembly is presented in the Conclusion to this report.
a l;
,i REP 28/R
- ~5^
, ,3
9510- AxD Acca- 5161- 1 0Y0 aceaem Fich;r C:ntr:13 1662
, , Laboratory Report g,,,
FISHER'
(. >
Dam 12-5-RA CFisrer Contrces }gg4 TEST PROCEDURE The detailed test procedure is presented in FTP-33, Rev. D. A brief sum-mary of the test procedure, aided by Sketches 1 & 2, is presented in this section.
The pre-functional and post-functional tests consisted of the same procedure.
The packing leakage test was perfonned first at a pressure of 180 psi with tap water as the test fluid. The valve disc was open during this test. The test pressure was held for 5 minutes and all gasketing and packing was checked for leaks. ,
Next a bidirectional seat leakage was performed with tap water. First the inlet was pressurized to 50 psig with the valve disc closed and the outlet at atmcspheric pressure. The test fixture was previously filled with water to evacuate all air pockets. The vertical fittings shown in Sketch I were used to observe any leakage to atmosphere. After a period of 10 minutes at these r conditions a 2 minute period followed for measurement of seat leakage. This l test was then repeated with the outlet at 50 psig and the inlet at atmospheric pressure.
Finally, a stroking time test was conducted. The actuation signal (0-125 VDC) and direct stem movement were recorded on adjacent channels of a strip I
chart recorder. An RVDT was used to record the true stem position.
REP 28/8 l
i r
l li l % n, % .ausa
val u- axUnuu a-s161- 1 uv6 prosem 1662 Fi hcrGcntrol3 *
, Laboratory Report ,,
5 FISHER *
(~
U* **
12-5-Ra OFsher Corttrois }g84 The following sequence of operational cycles were recorded on the strip chart recorder *:
Cycle 1; CLOSE TO OPEN OPEN TO CLOSE
, Cycle 2; CLOSE TO OPEN OPEN TO CLOSE Cycle 3; CLOSE TO OPEN OPEN TO CLOSE Cycle 4; CLOSE TO OPEN ,
OPEN TO CLOSE Each half cycle stroking time was recorded to make sure that the required stroking time (Test Valve Data Sheet) was never exceeded. Average stroking times were computed for each half cycle (CL+0P and OP+CL).
Stroking time constants (time required to travel from the closed or open position to 63.2% of full travel in the direction opposite of the starting position) were also determined so that changes in stroking speed could be evaluated throughout the testing.
I l,
o
- Closed is the fail-safe position for the test valve.
, REP 28/8
(
O W muSA
~ . - . . - . _ , - , . . . . - - . . .
5510 AX5650 3- Lic,i- i 697 , p' b*
1662 Fisher Controls
, , Laboratory Report g,,,
6 FISHER' (e '
Dam 12-5-84
~
OFrsher Contr$ 19g4 .
The overall testing sequence was as follows: Pre-Functional +Sideload+ Post-Functional. In the previously described functional tests, packing leakage, bidirectional seat leakage and operational cycles were done for each of the three portions of the test, however, the sideload portion had the following additional test steps for measurement of deflection due to the sideload application:
- 1) Measurement of deflections with disc closed at 50%, 75% and 100% of the sideload.
- 2) Functionals as previously described.
- 3) Measurement of deflection with the disc at Fail-Safe position for 100%, 75%, 50% and 0% of the sideload.
During application and release of the sideload the valve body was not pressurized.
The magnitude of the sideload force equivalent to 10g at the center-of-gravity of the extended structure was determined as 2915 lb. (100% sideload).
The distance from the matchline (actuator / valve body interface) to the center-of-gravity was 6.63 inches as given in the Test Valve Data Sheet. The actual point of application of the sideload was 6.63 inches from the matchline represent-t ing a moment arm of 6.63 inches. Since the X axis of the actuator was in the
- vertical direction and the sideload was applied in the vertical direction, the g sideload magnitude was determined by S=RW+W from FTP-33 where S was the sideload u
force at the c.g., R was the resultant g load, and W was the weight of the extended structure.
r Ok REP 28/8 t
i Fore 735
7316- AXG ACG3- Dii,1- 1 GiB ,
Prot w n 1662 Fisher Controls
, , Laboratory Report go 7
(' FISHER' 12-5-84
@Faher Contrce 1934 S = RW + W S = [(10g)(265 lb) + (265 lb) = 2915 lb The values for R and W are given in the Test Valve Data Sheet.
[ RESULTS 3 The results of all tests described in the previous section are presented in Tables 1, 2 and 3. Table 1 gives the results of the Pre-Functional Tests.
Table 2 gives the results of the Sideload Tests. Table 3 gives the results of the Post-Functional Tests.
At no time during any of the tests did any packing or seat leakage occur.
All stroking times were less than the required 5 seconds. The average close-to-open stroking time was 3.2 seconds. The average open-to-close stroking time was 1.40 seconds. All stroking time constants deviations were well within the +20%
criteria. No yielding or any other structural damage was observed. Ideally, the dial indicator readings should have been returned to zero inches after release of the sideload. However, due to all the bolted and gasketed joints in the test fixture this requirement was not met. Gage 5 located at the bottom (see Table 3) registered .0002 deflection which indicates that the whole fixture moved slightly thus affecting the other gage readings. When fail-safe operation was required, it was maintained without deviation during all operational cycle testing and during the incremental release of the sideload. The maximum limit switch deviation was less than l'.
Il l:
REP 28/8 l0
('
y, m Phas.d m U S A
9G15- AXGACG3- Dic,1- i G77 ,
Proeiem 1662 Fisher Controls Laboratory Report g, ,
Date 12-5-84 OFsher Conws }gg4 -
Rep. 72 / Item 165 TABLE 1 SIDELOAD TEST RESULTS PRE-FUNCTIONAL TEST RESULTS
- 1) PACKING LEAKAGE 9 180 psi: CRITERIA No Leakage TEST No Leakage
- 2) BIDIRECTIONAL SEAT LEAKAGE O 50 APSI: CRITERIA No Leakage DIRECTION OF FLOW TEST No Leakage REVERSE FLOW TEST No Leakage
, 3) STR0 KING TIMES & STROKING TIME CONSTANTS: CRITERIA S.T. <5 Sec; S.T.C. Change
<20%
. STROKING TIME STROKING TIME CONSTANT
( A) CYCLE 1, AP=
P=
50 50
, CL+ FAIL
, OP+CL 3.2 1.4 1.75 0.95 B) CYCLE 2, AP= 50 , CL+0P 3.15 1.75 P= 50 , OP+CL _
l.4 0.95 C) CYCLE 3, AP= 50 , CL+0P 3.2 1.75 P= 50 , OP+CL 1.4 0.95 D) CYCLE 4, AP= 50 , CL+0P 3.2 1.75 P= 50 , OP+CL 1.4 0.95 E) AVG TIME AP= 50 , CL+0P 3.19 1.75 P= 50 , OP+CL 1.4 0.95 F) MAXIMUM STROKING TIME CONSTANT CHANGE O %0F INITIAL VALUE**
- TEST FLUID Water
- INITIAL VALUE s
Form 735 % en U $ &
vul u- axuauus- ul61- 1 luu . prcoem 1662 Fisher Controls
' ' Laboratory Report go 9
FISHER' _
l'-
"' U*'*
12-5-84 CFisher Controls }gg4 Rep. 72 / Item 165 TABLE 2 SIDELOAD TEST RESULTS SIDELOAD TEST RESULTS (1-3 0 100% SIDELOAD ONLY)*
, 1) PACKING LEAKAGE @ 180 psi: CRITERIA No Leskage TEST No Leakage
- 2) BIDIRECTIONAL SEAT LEAKAGE @ 50 APSI: CRITERIA No Leakage DIRECTION OF FLOW TEST No Leakage REVERSE FLOW TEST No Leakage
- 3) STR0 KING TIMES & STR0 KING TIME CONSTANTS: CRITERIA S.T. <5 Sec; S.T.C. Change
<207.
STR0 KING TIME STR0 KING TIME CONSTANT A) CYCLE 1, AP= 50 , CL+ FAIL 3.2 1.75 P= 50 , OP+CL 1.4 0.95 B) CYCLE 2, AP= 50 , CL+0P 3.2 1.75 P= 50 , OP+CL 1.4 0.95 C) CYCLE 3, AP= 50 , CL+0P 3.2 1.70 P= 50 , OP+CL 1.4 0.95 D) CYCLE 4, AP= 50 , CL+0P 3.2 1.75 P= 50 , OP+CL 1.4 0.95 E) AVG TIME AP= 50 , CL+0P 3.2 1.74 P= 50 , OP+CL 1.4 0.95 F) MAXIMUM STR0 KING TIME CONSTANT CHANGE -2.9 % OF INITIAL VALUE**
l t
p, g hwnes
- U S A
val u- exuncua- ul61- 1 lui promem 1662 Fi:hcr Gcntr:13 ***" 72
-, baboratory Report y, FISHER' 1
{ ' ' ~ ~
12-5-84 cre w cones 19g4 .
Rep. 72 / Item 165 TABLE 2 (CONTINUED)
- 4) DEFLECTION MEASUREMENTS: CRITERIA No Structural Damage TEST No Damage
- % Side Load Force Gage 1 Gage 2 Gage 3 Gage 4 Gage 5 Disc 0 265 0 0 0 0 0 CLOSED 50 T4T6 .003 .001 .002 .008 0 CLOSED 75 YIT6 .000b .0018 .0032 .014 0 CLOSED 100 YflT TQTI T076 .0049 .019 .0006 CLOSED 75 IIF6 TOT- M M .016 M FAIL-SAFE 50 T4T6 .004 .0019 .0025 .011 .0002 FAIL-SAFE O W .0005 .001 .001 .003 .0002 FAIL-SAFE DIAL INDICATOR LOCATIONS #1(-14-5/8); #2(+2-5/8); #3(6-5//8"); #4(27-1/4);
- 5(on Limit Switch Plate);LRef. Shaft Axis]
- 5) FAIL-SAFE OPERATION DURING DECREASING SIDELOAD Maintained Fail-safe Position without Measureable Deviation
- Test Fluid Water
- See Table 1 for Initial Stroking Time Constants l
l
,, 73 W auSA
~. .-. - ~.-.------ - - = - - - -- - - - -
~
9510- AXU ACO3- bl61- 1 10Z
- Rm 1662 Fisher Controls
, Laboratory Report ,
2 ,-
FISHER' (c < >
Date oFar Contros igg 4 -
Rep. 72 / Item 165 TABLE 3 SIDELOAD TEST RESULTS POST-FUNCTIONAL TEST RESULTS* ,
- 1) PACKING LEAKAGE 9 180 psi: CRITERIA No Leakage TEST No Leakage
- 2) BIDIRECTIONAL SEAT LEAKAGE @ 50 APSI: CRITERIA No Leakage DIRECTION OF FLOW TEST No Leakage REVERSE FLOW TEST No Leakage
- 3) STR0 KING TIMES & STR0 KING TIME CONSTANTS: CRITERIA S.T. <5 Sec.; S.T.C. Change
, <20%
STR0 KING TIME CONSTANT A) CYCLE 1, A P= 50 , CL+0P 3.2 1.75 P= 50 , OP+CL 1.4 0.95 B) CYCLE 2, AP= 50 , CL+0P 3.2 1.75 P= 50 , OP+CL 1.4 0.90 C) CYCLE 3, AP= 50 , CL+0P 3.2 1.75 P= 50 , OP+CL 1.35 0.90 t
D) CYCLE 4, AP= 50 , CL+0P 3.2 1.75 P= 50 , OP+CL 1.4 0.96 E) AVG. TIME AP= 50 , CL+0P 3.2 1.75 P= 50 , OP+CL 1.39 0.91 F) MAXIMUM STR0 KING TIME CONSTANT CHANGE -5.3 % OF INITIAL VALUE**
- TEST FLUID Water
- SEE TABLE 1 FOR INITIAL STR0 KING TIME CONSTANTS r-k..i '
Farm F36 Pane.e et U $ A
va r u- nxascu s- d161- 1 lus , a* 1662 Fisher Controls Rem 7g 7
Laboratory Report ,,
~
12-5-84 CFcsher Controis 1gg4 .
CONCLUSION All applicable criteria given in FTP-33 and in the Test Valve Data Sheet have been successfully met without exception by Vogtle Item 165.
' .b k J.B. Milliken Evaluation & Analysis Department BaR.W. Roe Evaluation & Analysis Department L
REP 28/8 Pnm.4 m U S A Form 736
..__mm - . --. .. -_m ...
-- -m r ^ ;
i 1
n- -
i INSTRUMENTATION EQUIPMENT SHEET DATE 11-14-83 PROBLEM NO. 1662 REPORT NO. 72 TEST AREA Seismic 3 .
a t
' TECHNICIAN Bob Roe TEST ENGINEER Jon Milliken TEST DESCRIPTION Static sideload @ ',
$ 1 8 '
N0 0 INSTRUMENT MANUFACTURER o CD ROL , ACCURACY h o- -
l 1 Power Supply Instant InstrumentsLDS.2 None None +5V T :!
l " " " " " " "
2 LD15.2 15V f m t, 3 RVDT 600-000 C-7 l
4 Oscillograph Gould 22005 01103 7514-2 7-84 1-85 'l DC Preamp " -4615-5 00 01568 7521-6 7-84 1-85 ,
6 ]-4615- 09217 7521-8 9-84 3-85
" " " - " ~
7 fo 09214 7521-4 9-84 3-85 8 Bridge Amp-4615- 00827 7522-4 9-84 3-85 i 9 Power Supply Hewlett Packard 6443B None 2049-1 0-125 V 8-84 8-85 j i 10 Force Gage Dillon X-CT 9412 9405-1 +5000 lb 9-17-84 9-85 A " j
. o m !
i 11 3/4" Turmbuckle None None None None m r- .
-a m r 12 I-Beam None None None None j
z 13 Bell Flanges Ladish " " " o z D i
-
- o i
" i.
i 14 Bookend Pair Fabricated " " r l 15 Pressure Tank " "
. y % f
- N 16 Pressure Gage "
0-300 psi l Marsh 2358 9609-2 1% F.S. 2-83 2-84 I l 17 Pressure Gage " " " 9608-2 0-160 psi 1% F.S. 2-83 2-84 18 Dial Indicator Starrett 25-3041 None 9902-6 0-2.25 10.001 1-84 1-85 CALIBRATION GUIDELINES PER FTP-26 CHECKED BY v M/d*b
n-n 'm , INSTRUMENTATION EQUIPMENT SHEET s! - 7 DATE 11-14-83 PROBLEM NO. 1662 REPORT NO.72 TEST AREA Seismic 3 TECHNICIAN Bob Roe TEST ENGINEER Jon Milliken TEST DESCRIPTION Static Sideload S 0 ;. y ( g pg F$ ' NOo INSTRUNENT MANUFACTURER C T U BE ACCURACY 19 Dial Indicator Starrett 25-3041 None 9902-4 0-3" 0.001 1-84 1-85 :! h 20 " 9902-5 0-3" " " "
" " u g
21 9902-2 0-3" " " " 3 22 25-441 9901-2 0-1" " " " 'I - 23 Pressure Transducer C.E.C. 4-326-00 10932 - 0-100 psi Ndhr$ ,pquN.fMih!!F.S.) , 24 Box Beam Fabricated None None None 25 Pressure Gage " Marsh 2358 9609-1 0-300 psi 1% F.S. . m 'U ! mm i
'O O . . Om m r- .! -1 m
- 2 ;.
z ... O Z .
- O e
- 1,
?
g CALIBRATION GUIDELINES PER FTP-26 CHECKED BY w ME
I 7;u ; c.xs;.cas-slol- i Ice p,.em 1662 - Fisher Controls % J Laboratory Report ,,, 25 FISHER' ( 12-5-84 eFrsher Controls 1984 - TEST VALVE DATA SHEET ltem No. 165 S/N 8342940 Assembly Drwg. 48A8928 y Order No. 228-X5ACO3-N2P Installation Drwg. 38A7940 Valve Body: Actuator: Appurtenances: 10" Type 9280 Bettis N521C SR30-12 Namco EA 180-31302/32302 (Wafer Type) (per 18A0028) ASCO NPK8321A2V Fisher 67AFR Regulator ANSI B16.34 Body Class Class 150 Rated Pressure at 100*F 285 Psig Nominal Valve Stroke 90* Valve Closure Time 5 Seconds Nominal Actuator Supply 80 Psig Allowable Seat Leakage 0 Seat Leak Test Pressure 50 Psid/1 Min. Service Condition Pressure 3.00 Inches W.C. Service Pressure Drop 0.25 Inches W.C. Yalve Safety Related Function Spring to Close 1 Measured Extended Structure Weight 265 Pounds Measured Extended Structure C.G. (From Shaf t Axis) 6.63 Inches Extended Structure Uniaxial G-load 10.0 g Calculated Lowest Natural Frequency / Axis 77.7 Hz/X PB (Shaf t Packing) 180 Psig PL (Seat Leak) 50 Psid Ps (Body Pressure for Stroking Tests) 50 Psid Test Fluid Water l
/'t N11-13/ 1 .
I (: l , 1 Fr* 72s
. . ...- . ~.. ...,.- . . . . . ~ .
9' , 0 ^ M C .^.0 0 0 5161- 1
. 1G7 -
p,oeg,
. 1662 ~
Fisher Controls
, , , Laboratory Report p,,,
16 R5ER' " cate 12-5-84
~
oFisher Conros 1984 EAL bdEM4Ar a f- 7 .13-2 z-FISHER Memorandum 1h M Tom Buresh From: Cynthia Alexander Q'4 cate: July 23,1982 cc Floyd Jury subject Natural Frequency and Static Sideload Testing b Q,m,_a., 700 hitt.inq0
Reference:
Vogtle 18EC07
/CC-$ flbV.17-Z-Ac./.tsr)
Tom, ROi Since the time I submitted my request for lab work for the Vogtle project, several valves have been released from customer hold. A current list of . required testing is attached. Please forward this list to the test engineer. Thank you, ad & . Cynthia Alexander ! CA/ew l l
.l
'I e Phs.ted M i
.. f *'* I$$ ._.
9N1 n. ov ar,ns :141 1 yng ' Prosem Fisher Controls Fkoori 72 ( boratory Report ( g 17 FISHER Daw 12-5-84 CFeher Contros
@ ~
N >= / a
@ 1 1 3.. \ , i $5.5 e, O i 5:
L
~ $ } -
- i g @h U \
et 5 '
- "4 j/
(i-w z g C O,g,< 3 _[g %
-I I
c 3 k , e u g y Tn4 x cg> ' y
. 7 V)
I,s "" h }b 1 g (@ p s
! i @& ! l 43 5 f
gi a g
-> ' = 3 4 C c{
o J I % gn a ~ ~' O y l (g t
--ie -pg w d
y -! O
.__ gs 1 ,e e
e O 6
9 0.1,u-(;Aat1L,u a a lo A A Av7 - g Fisher Controls 1662 , n.=n 72 Laboratory Report ( FISHEP/ 18
- . D" , 12-5-84 oFener Contros 1984 L mer S'w n cu w ie,~. 5-.m c_
6 T.D A
+ -
Y 'd c . & e "x o
/ . m To OuAu. # 4 BCccRDER, n
O e
, _ _ _ _ _ _ _ , , _ _ _ _ _ . . - . _ _ _ ***#',._8,
- .:. . _ __ . , . ". J.;~. . _ .;_ . _ ' ~ ~ ~ ' - - -
E ^ '. . ~ ~ . l. _l . T -~ - - i
- Prob. 1662 8E* 7 901Q- AXGACO3- 0161- 1 110 .
,g 3f Date 12-5-84 Photo 1 .
Overall Test Setup A
.W' ]F ., , h , -
ea w l yfl 6;: 7 sk , nr l . cP 'l y M h-e ' b **Gi. . l . l i I
~%
{' -
,..: n<
h.
.g . n.~ ..
p.. NN
., l A . d 'e ' ,.
l I l p i , i
. ~. . . , , . . . . . . . . . - . . . . - . -
Prod. A002 Rep. 72 9510 AXG ACO3- G161- 1 ill Page 20 Date 12-5-84 , Photo 2 l- Overall Test Setup B . l l _ . , t e-C' l [ 4 ** l} ..
- =
ci . . . ..e .-
! 4, l -
k'; n,... ~ - w ... .- ...
):**,
1.y ag:
. ) *-
y y v%.; r* ',; o , ,
'hd gg a ; . c= * . .? , ~ * '
O 9
--~,-v----m,--w-n-,--r.
L. : . . . : . .. ..- . .a. . . . .. . . . . .z . .--- 4 Prob. 166? l R'
- 9510 AXG AC0 3- 5161- 1 112 -
p, l Date 12-5-84 Photo 3
- l. Dial Indicators and Sideload Locations I
I
" 88 fI l I ?
e / i .- , (
+::
- s . , - a i j
F p @ l i ,J ..I ---- y Q
~ ~ .Le, J. . n W * .{
jj . [ uss, a
- g '
rw- . ,
~ ~
L Ea i,A. .
# l7 %
- a
.a .i,*
4
-: le a.,=%.. 9.' ..'w d- .
x., . . ,- .. *l 14b e: 4Accy p j l
%/ ' -
lM. : $w;:
. _g W ?. '.% :.'. : . :. ;, .N j'4* .%'.*.k7C N~4~1 , ,g
- 2 ?iiG; Z h ~5 ,
s l l l
= _ . . - . - _ , . - - . - - _ - .
[.. .- -- . Prob. 1662 Rep. 72 953 0- AX5AC03-G161- 1 113 . Page 22 i Date 12-5-84 i (,- Photo 4 l Dial Indicator Locations on Limit Switch Plate I y . .l , .7, ;.. , . m ' ' . ':' ,. . . y ';q-. [ .j 3, r ' gij;, ;.:; y ..:Q Q X.) 3-l_. : . . .gi
. b,y. .- ._. _ ;'. n.s
- 3. :. .*fs_. ? ' . m ==~ , 4u
~R y ~ ~_.;.,,q a.-;c.: - :- ._ ;-
w.,
- w. . ..# s$. :. .v.a g.;
.: ._..s., a'. :;.4 .::. . P
- e.-.-
, . '. . , .r -- .. . , .. .. :' .. .- .Cs,l. 4.y ',* 1 ._
l.' ;. ; '. : '. .,;- ., l
~[ ,, ..v ...t : . _ ', . . , . y, .g + :- . s .,y .: : .. . ... e -
mhg ,.- .- , , , , . , b .*;;:;,. - \ t x 'g . ? sws J -' .
'l.'s,4. ',? ,~ c g' ;9 Q ,_ - . . - , ? M;: j ' '. .. "s,' ,
t.*' ?*h.
- l. ; ' :'
.- ..y .-l ? .l. .
( q@j :-.;;T,' i -:.:[...'. .
" :... '.~, l' ., -is-:L s . L .; ;.: 2 ) 4G..:.;,,;;, :
n';4 s l l -
.L:'.'. e .s -..: .. . ,} %s . Y y &.. *:. . . . . . . .. - }* . ;-j ' * . . " . . . - =. 5:l . . :, h4.;,;. :. .' j . ; .' . .. . . . . :' ,n.' . ' m.: ,4. -t- , . - - .
a .
~
v.{, l l y\ ,:. o?;r:j.. ..;'1,.'~,~."...-1 i -
' - '. . r. '-' J:- ', .M,:. % ib . ' . , (*d,;;- f '... ., .: , , . .,n . . . , . . gg r,hj- ., d; 7. : .
t . .
- s. .g
( .,y;.:{;... f .} l'.:' .. ; . , + .; " . v.].. .
-. Ic .' j;i ';Y ' }0 ,gg. p,.-g, JP N ,l :- , ./ :l .; . I . ; :. '_,, ll E
r l. w;*x
- 7. .
a, . . . : ... ~. . . .;.. + _.. . . . cc,. m .. .. &, .
, _ ; .l:!. ' _ l. 3 .
{ f *y . f _ * ) . . ' ,.g.l' s
,'y. f.:., ' .' :-- -_^*^' . > ' W: . , 4 ,.3' )g. . . I y; -,.;, .. :.,v. :. r..p,. ^
l ...h..... .? ; ' . s . ; w.A ^ . . .: -\_ ,
. .: - g C L .g. **f _. ,. s *>y', - ,g_ --,y .' ,
e e # 4 s- ..
'#{ -..fd .' . ,- , ; * ., ,- ' , . ; - gS Q :_.- y*j ! *
- _ ' . , ; '-/'( + '
f f* sm w" g A N : - d.._ .. < - c j@a c I Wgg3g A.-
- -si .a
_!w - M_$h_.d
- 3. ., , . . ,. .t .. .
h_&R:, a..? y %w@
.,...f,.. ., .- s, . . . . . . . .
n.; . .1 %
, ';s - . a .
z..,.:-
- . W -
.n .7 : .; M,. .j.[1. . . l Q U j @)-Q, [g {:-(.%,.. , [.;.j f ;{l.
1
,.'y nW@X,! f % w;T M 3C*
- WTm +p 9.A
;
- sy ' .f' ' ,ft$ n n
i U .
> .- . 7 o
h l t l i O i I l l i l
! r
. . t . ...:.,. .-.-.- - .9510- AXGACO3- 5161- 1 l i e. .
ATTAC K NT 5 FQP-11AB-5 Certificates of Compliance and Related Documentation Bettis Actuators for Group *V Valves O
! N28-12/ 5 L
fYY its E h
' J' ,
9010- AxsAcoa-s 61-1 Q 4 - 3 O:
- Q hD al5
(. h) N I
! t.t !ll' -
4% 3 I L I a
. a s; c N s M b k -
- w kh rq hA $ i D k kE d- N oc Eg
<.2 iq I i
I e j . <* 3 ., TS n g a o ' C U .* 40 3 h SN 9 e w :- s - s . a b g <*q ' E t d, %s -
. ==>
g Nl bI $ l t h -
= ' a m i N ? x '
, 4 b E i '", Io
" ls .* ) : : :
S EN"%a: r ,=i= a-d a
<! s (a; =
g* L f(k esg r= sE
=
3 v *E s Tj
- fg 6r g5- -o E
z.m4 9 wi, st - e , c g
= % E < rA % ws = u < - ~ N' n o u E9 $,61 8 i >
5 4 Q z . < e r.
, _ . a s d W *'
l O l l k (_ E
- 84; >. = v77>
o _= .
=lt
- I h h $
Vie penn ab . 8 s u 4 g
- <ls 91 =
i
= . .
q _E s . . 2= E
!=ku* 5:
o o f 54 1 y c A4 3 r e U S 2 4 4 4 3 5
% *d %
N c 5 4 M g gg4g) o s
)
g i
> N .s >.
N N g o g g ,s 4 j . d
/v s $ [ \ ! $5 5 !e %
- r $
8 = mi i E q s - g s < e <
=t 5 T o=
M h-t N = 5 4 e on 6 e ..t e e - E h : :i . g ig s .s s
=
M
< y- * , :- s : 2 = s c a 3 = = ~- s = = a su s a r a - g v g;h,e oy1 3 as J c m j se a d w s a s n -
i lD E e h= W 2 1 h ils w*g an
;a a'3 e: r , -
g 9y:b2 d
, m m -
p _.i - O o h T O ~ iMM 'MNn'ises NC I C I ji ! !> E d ; pe ,
"T r ak g
l E y E e " a b d y\ J <
% d=>h a
- Wa%
l- l i> *d
- 5 2
> = 5 z 4 @ n 3, 3 -- ,
t 36, 3 3
_ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ = _ _ _ _ -
<> ~
9510- AX5AC0 3- 5161- 1 116 ffA'/ [742 97 Y Casco controls An Acme-Cleveland Company i 1300 Burris Road (P.O. Box 730)
~ Newton, NC 28658 QUALITY CONTROL PROCEDURE CERTIFICATION OF COMPLIANCE a
Fisher Controls Comoany 205 south center street w.arshallten. Towa 50150 Attn: Q. C. Documentation Dept. PURCHASE ORDER NUMBER s 181170 ITEM NUMBER 000 CUSTOMER PART NUMBER 15A4157x022 NAMCO PART NUMBER EA18 0-31302 B/M REV. K QTY. 6 I4T NUMBER 31119 DATE CODE 4682 MAME LIMIT SWITCH NAMCO SHIPPER NUMBER E-40380 DATE SHIPPED 11/19/82 1 NAMCO CONTROLS CERTIFIES THAT SWITCHES FURNISHED HAVE BEEN MANUFACTURED, INSPECTED, TESTED, AND FOUND TO MEET APPLICABLE B/M AND DRAWING SPECIFICATIONS. NAMCO QUALITY ASSURANCE MANUAL, REV. " F" , INCORPORATES 10CFR50(B) AND ANSI 45.2 AS APPLICABLE. NAMCO FURTHER CERTIFIES THAT THESE SWITCHES WERE MANUFACTURED TO THE SAME SPECIFICATIONS AS SWITCH MODEL EA180-ll302, REV. H, WHICH WAS QUALIFIED-TO IEEE STANDARDS 323 (1974), 344 (1975), AND 382 (1972), PER REPORT NO. OTR-lOS. f O ya gy
/ / DATE
- \
}n QUALITY % ITR6L J4AGER
. ,I l . )I I l ,' ii i ,* - > -
gg P J h ng ? 3 3 0h{7& /T /'s
/J-e , /
6 2
"I , e q ) -
o an i n v o ~ P S N SO 8 - k -
- M. I R A~ 1 M $' ,'2 ~ - M y<
L ., M
/
D * v
'4' o . t t
i S
' 1 - A )- / s Y
r a 3 a J I H 2' .W n/
/ /
F ( J , c Tl / A f s.s oD e sQ e v e n, ~J fM
~ , y
[ n R ~ , .
> E Y / ,
o. 1 k t 8
- 'a M #- _
N q a w 1 ' ! f v e t f. t s 1 J f J S u V ) l bl /, 1-(' S A i b $* o r c m P S ( l gJ - __ /- T u n e m-o na . L U S h /u g N s
.e t
s e_ E
!' E j O o
s
/ R 'l S ti t
T e O m R l E o . a A P s s : 4 G 't n 3 o A o - K [f ua /i n.%. l o xM c_ v. . A O O , rj/; o a c
- a.
a E L [/ j/M o wg s w S, Ao an L ) IN '% N / / iv 2ac . L S / E f a n 5 o . 2.
- a O
t
- T M f
( P i N L n s J U E o J 7 s
.a .i -
c 3 OTA I TE AH NbQ st s; R, k
}
E S E R D R U S S
) ~l ~0 4_
n i l E 1 O C o r E X
-A /
g lNIFR I nf J N A R P V ' A M ) oW a l
- G V &
a7
- c. o 1_
r S VN/ E I 1 N l i E R [/ O __ S e g a p yu E /. S T f l,a yea Y4 SS o _ 1 o1 y - . E N - T R EC
- 4. g g C ~ m T E i 2 _,
Is C AE a Dg
- n. , K o O
M d. 8
- l t I D -
PI P S ~ N t ADMgS 1N t ? C.n _ o tf D KI $ E f
/
h
. o E S. P. 7 $
E M A c m L A e r L2ddg V C O V t o O w T ga R n R E R j3 ~ O a n u R o I
/ L E s O n s n5Ls NT 7 1 A R ,
A g 6 a a G $ gO $/ I P OR U 4 , CAP Y i g i C / e y E o u pT E D n A gj g [ g , r ei n o Qt EXV P E R R /2 C wd T S
. - #M v /
WOg/yiSw t O R P j i, . W gg j s g A f t r i j t v o o t t
/
E T io PgM W s W L.
. C ~ y . * / s y J
[
. b onve Y c o F ) o n.
O. A NyIS T O 3 1 ff r a 9 T - L 2 o~ ns. .o s s i N T A o
- W a w
w O I T T S E S S E T T S E R O G N N O I T S 3 3 M n E s 7 6.
9 P E
T D A L A T IR I N C P
- M 9 E H n I n C N S 7- P E M G s 7 e * / R ' K D
T I S , GY A S P r o S c t C A OS O G E O h N et c S os o s i S E v H TE I T E R f f NB L N l C N M? I me ooe s. A s u At -
- E Dm L
y A C H P K T A R E T S y N M I AE I T N L A E L A l l? A b A K ts u mo sm
- / N I - E S AA E P Y g E S I A N E p C cf p
pCALS A i
IE e e . tr: zed to maximum operating pressure and conunuously energized fer 4 hours prior to the first transic.m .o produce coil saturstion s. They w ere de-ener;ized w hen the temperature or the first transient reached 2WF.to show satisis tory shiftini for demonstration of safety function. The valves were kept pressunzed and w cre cyc!cd durin; the 30-day esposure. as suggested in IE EE-3 S2-1972.
to demonstrate their ability to operate on demand during the LOCA or HELB.
Test report AQS 2167S/TR. Rev. A. is on file at Automatic Switch Company in Florham Park. New Jersey, and is available for customer perussi.
CBased on the results of testing conducted subsequent to this program, ASCO has determined that use of the subject valves incorporating Viton olastomers should be limited to those applications where no shifting of position will be required following exposure to total gamma radiation doses in excess of 20 megarads. However, the sub]ect valves are capable of maintaining a safety position after exposure to doses up to 200 megarads.
} ~
Dated _ DECEMBER 17, 1982_.. ..._ . Authorized Signature _ ~. . .; . . _ . . .. . g QUALITY CONTROL MANAGER
#3 Form VE 2026 R4
O' .@, )
+.- 9 NOTE: IN ORDER TO MAINTAIN OUALIFICATION, CATALOG _
NP 1 VALVES SHOULD BE REBUILT USING THE ", , APPROPRI ATE SPARE PARTS WHENEVER INDICATED . 60 fly Tile PERIODIC INSPECTION OF VALVE COMPONhTS , OR WilENEVER ANY OF THE FOLLOWING LEVELS, Q . SIMULATED DURING OUALIFICATION TESTING, n (' ARE REACllED: a 40
- 1. WEAR AGING - 40.000 CYCLES e .
g 2. RADI ATION AGING - 5 X 10' RAD " g 30 % 3. THERMAL AGING - THE MAXIMUM S l w SERVICE PERIOD INDICATED FOR TME D D APPLICABLE SERVICE AMBIENT $ TEMPERATURE. f 0 5 h\ b fl
$ 15 F
2 5 n e ; u s 10 E 3 g u E x 8 2 . 6 5 $ 40*C 50"C 60*C 70* C 20"C 30*C (104* F) (122* F) (140' F) (158* F) % (68* F) (86* F) % SERVICE AMBIENT TEMPERATURE g b FIGURE 1 Q l % MAXIMUM SERVICE PERIODS FOR ELASTOMERIC COMPONENTS AND SOLENOID COILS }' IN ASCO CATALOG NP-1 VALVES 1 l
9510- $X 9 m,,,
- o Son 14689 Howston.Tenas 770:1
(?'3)7441143 Tege 742713 e a c,*uen%sma cro.3 August 2, 1982 , Fisher Control P. O. Box 190 Marshalltown. Iowa 50158~ Attention: Ms. Judy Evans
Subject:
Certification of Co=pliance for the Fisher Control
< Purchase Order 180752; G.H. Bettis Sales Order 78-1741-OE Ms. Evans:
This letter is to certify that the equipnent furnished on line number 01A our sales order, iten 000 your purchase order, reference RMM2089, were refurbished in accordance with written G.H. Bettis Engineering Specifications and Standards. Units Shipped: . Qty. Model Serial ber 2 N521C-SR-80-12 78-1741( &5 (- Cordially, G.H. Bettis Co:pany Anthony 7 A. Locascio Quality Assurance Manager ATL:jv cc: File i l i 9
l' .
* ' 3 , 1 ' } , ' +t fi !\'I l8 f;i .I{ )
y %. h 4 4 % e 4r n ; x { j )r,__' ,. . ' '
' - *jA t ~ )
f e "f t s 2 7 w a a a B P / d oh pW S N M
/ 9 9 8- /ss g4 /s n
g
/ 2 I
f _ 8 R y._ s M e to E
/ @
R J 6
.- 3 n g . Y v
a o/ o H S I F g, m 0 j
- M f )/ r.
9 j o H.g otSH S l 4 e _ / 1 l N t o Tf f t Ap up S e,vF/. n 4 R E L T L, - o M 5 ' L B s eg w M6 E 1 M E 6 y l' a &g% n i t 0 S S 6 ~ M &g f h g n_ t A / g 7 _ o g e V S T / dO s e N- L L U / g s
=
se S - j g 3 co T R A
- u "R E
E G 0 1 g E S O L s%M j n e o g og o45 N P d.
.e i
A M o t w u a n
.g'<
w nX nev A a o o mg m o - s i n o A ^L F 3' _ v o6 n 3 I e* n P . a c n O 5*
* ] IN%/6 E v
i e n o n Mn t N N 1
* ~
y S"IM T L F lt s s O TA % 3- f o U S E R C, O R y_ A t e 3 I T E M 0 $* g . E R U S - o R A l - h E g, %S O C N I F l M MB$ 5 9 3 D N A
'ES A "P R S X.
A u3jj AI ag O I R G V
]f o
M a r a o e S V /N E N l E R y7 O _ - v e a N V- mE S S 1 l l i S T s n A ( Y T - - - E N C oM s A I
> R A
E C E 1 3 7 N, 2 7 g o ee T G. E M D (. g 7 2 P PI 0 e o IN N y 7 Co o a D E 9 S d g - S 3 - S S E E M f, j g y A 4 v e m L LyJV4/v C A r o O O V sc. T c n R E j J a f a R P R n R O 3 S T p u O N n 4/ M N T to d p L A I E R U /. G 2 3 p g s s a _ P E o3Pis CO A ? t R S m C E D f / y 4 d A. g g v r R ak t-f4T n P f
' e- , P E e, z Z d z e di ODg/u S S C , p
_ 1 i n i O p /t g T i R g ,, M p t t e o
'f g / .ts S
Y E T M f U C oI V-LW SNfr/ W n o O - 3 er s ri o. a s P
'v T
S
./
T j s
/
O
/
A g q_
'A f
s s 'v h %
'T r.
p e v o c a L i N 4 N S T - t 4-E E T N - 4 s o s T A ^ A. O I T C S T E T S E n-R O G N O I j M F 0 S T P I T E
/ S A
L A T A I R T (4 /7 0 C P E H l. C I T A 1 C N S F P NI E l R K ' T I A S M a . o S G LY P _ t C T A D OS O SE G E D S A N i B' lT ar ,o_ o,e c. s. s S g
/
I s E Y S i S O H TE T R / NB N L C N N, l A 80& E D R D A L T C i T K A R E T I NM AE I T N L. E L l l ,wo m S A E S ES a. A A . p Y E gi ES. I
/r N P Y A N N s% se 1 t E
P T 1 7/ / S 1 P H S o D H c LS CA P I F S FI MW*A c. ,o.doi
/ k@
l o M" A 7 E 7 C l' S S . . h. wo A E 6 T N P j f L t 0 e:o ct - P 40 I I b/ . c e E 2 t S 1 o e c s _ S Y D H L O u T l M w S . p l.
.oe s
oO gJ B H A
/
k-($b .nd . e r r.~ " snW D y _ l f . i S f .
\
t a E FI T P S P k ' d g
# f h]$
a u i f 4y6" - T L l l N . n E TI I ka e R T P V sM A E E S W T W W S l'
/
4j _ a P Y N v o 5 D U S [ l V . w T _ m aB t w 0 0 N O B A iu L v S u i N R A P L O C H VJ Mv ; I! y s G M v N T O i 4
. sp (1## f#p W
S'U10- Ax3ncoa-gite,1 1 123 Automa ic Switch Co. ce,= = e- 54nce 1888 3 l ( FLORNAM PARK.NEW JERSEY 07932 N uroc see roooin v wv2'su 27ss CERTIFICATE OF COMPLI ANCE Date n~41 9' loo 9 Customer Fish'er Controls Intern'l Inc. Customer P.O. No. S 19 06 0 5 Consignee Consignee P.O. No. . ASCO Shop Order No. 59150F ASCO Part No. u-p 3 2iA Quantity 2 This is to certify that we have supplied the above item ordered and it was manufactured in accordance with ASCO Quality Control procedures, specifications and drawings on file which also include manufacturing free from mercury contamination. M ~
.A m / ,/v ./ JL .'NW # '/ Authorized Signature B. J. Sampson bjs/tm Valve Sales Department cc: ASCO-Chicago Form V. Sis. 2725
,M U 9510- AXGAC03-5101- 1 126 - . ,
tulomatic Swilch Co. .=m;m. Sis:e 1655 __ , 4 C Av DARK,NEW JE::SEY 37932 % v to aes reec = = sta 2 4 3?es CERTIFICATE OF COMPLI ANCE FISHER CONTROLS INTERNATIONAL. INC. Customer Name Customer P.O. No. S181203 Consignee Consignee P.O. No-ASCO Shop Order No- 96169K 3 ASCO Part No NP K S321^-2-7 Quantity Voltage 125'OC Eng. Job No-(D.'!.isand to cenify that the sute:t . sh e: s i meet the rerformance recu:rements ofIEEE 323-1974. lEEE-344 IEEE-3S2-1972. as substantiated by test:np ah es of ;enerically equal 15.1978. The designfollow m;intestaccordance w ah ASCO Qualification SpeciScatien AQS.:!6 5 Reunon "B". dated February levels were included in this qualiS:stion test pro;mn -
~ Aging Simulat on Phases:
A. Thermal Aging Simuistien-Me: Faar !! sq s T. ef e a;: .; parameters u ere dete mined by Arrhen.u, calculations to simula:e a . :.- mu rerJham:n aWF continuous ambient. Refer to Figure I for addnional informanen regardm; sen: : ::r c:! :er elas:0meric components and solenoid :cus. B. Radia:ien Aging Sim.dade . -!O me;am:3 4 ;2 ma radiat:on at a rate not exceeding I me;arad per hour to simulate expected non.2::::ent rad.n::: esposure. C. Wear Agin; Simu!auen 40.000 oper=: ens a mas: mum operating pressure ditierential and nomm voltage. D. Vibration Aging simulation - I million cycles, distributed equally among the three orthogonal ases, between 50 and 100 Hz. at an input acceleration les el oiO.75 g. The vab es w ere cycled on:e es e minutes during the test. The tab es w ere atta:hed to the shaker table by rigid test Sxtures using the sta dard valve mounting provisions with the solenoids s enical and upright. Flesible hoses w ere used on ports: therefore, the set.up did not atTect the rigidity or mass of the valves being tested. E. Seismic Aging (OBE) Simulation The s ahes w ere mounted to the shaker table as described for th vibration aging simulation and u ere exposed to tu o sinusoidal su eeps from i to 33 to I Hz. uith a p acceleration les el of 3g u ithin machine limits. in es:h of three orthogonal axes at a rate of I octas e per minute. One su eep in es:h axis u as condu:tec u tth the s sh es energized and the other with the vah
~
de energ: zed. These finusoidal sueeps are considered to proside the equivalent dynamic etTe Page 1 of 3 M 94
- - - ~ ' " ~ ~ ~ ~ ' ............~...s.. - - ~~ ' * = " = - - -
o, . 9G10- AX5AC03-5161- 1
~ sg l'.3 4 74 0 ASCO SHOP ORDER NO. 1Q168K
- 1. Design Basis Event (DBE) Phases:
A. Seismic DB E (SSE) Simulation -The vals es were mounted to the shaker table as described for the vibra-tion aging simuistion and were exposed to single frequency sinusoidst tests at b oc tave frequ:ncy inter. valdwell points from I-40 Hz. At each test frequency.the peak input acceleration was increased and the 3-levels were recorded at w hich the cylinder port pressure (zero w hen de-energized and full inlet pressure when energized for a normally closed valve, opposite for a normally open valve) differed from the ' nominal by 0% 5% and 10% orinlet pressure (up to 10g maximum). The valves are considered to func-tion properly up to a 10% change in cylinder port pressure. This level was selected as being sutTiciently low to prevent spurious shifting of the customer's main valve or other equipment. Motion was applied at . the same frequency and accelerstion limits in esch of the three orthogonal axes separately. Based on this testing and/or additional testing conducted by ASCO (after consideration of margin as suggested in ' IEEE-323-1974), the following acceptable maximum accelerstion levels have been determined: 13.5g B. Radiation DBE Simulatien - 150 megarsds'of gamma radiation at a rate not exceeding 1 megarsd per hour to simulate (after censid:rstion of margin as suggested m IEEE 3231974) at least 136 megarads of accident radistien expcsure. C. Environments! DBE t LOCA.HELB) Simuistion The valses were installed in a pressure vessel and subjected to a 30 day exposure of steam and ch:mi:s! spray following the suggestions ofIE EE-3S2-1972 (chemical spray per Table lib) and test chsmber temperature pro 61e per Figure I and Table 2L The vs!ves had been pressurized to maximum operatin; pressure and continuous!) energized for 4 hours prior to the Grst transient (to produce coil saturstion).They w ere de ener;ized w hen the temperature of the Grst transient reached 2S0'F.to show satisfactory shiftmg for demonstration ofssfety function. The l valves were kept pressurized and w cre cycled dunn; the 30-day e sposure. as suggested in IE E E-3S2 1972, to demonstrate their sbility to operate on demand during the LOCA or HELB. Test report 'Aav. A.is on file at Automatic Switch Companyin Florham Park.New Jersey. and is available for customer perussi. CBased on the results of testing conducted subsequent to this program, ' ASCO has determined that use of the subject valves incorporating Viton olastomers should be limited to those applications where no shifting of i position will be required following exposure to total gamma radiation l doses in excess of 20 megarads. However, the sub]oct valves are capable of l aintaining a safety position after exposure to doses up to 200 megarads.
? '
Dated DECD!!ER 17, 1982_... . Authorved Signature
~ ~
QUALITY CONTROL MANAGER ( m. w a _,
^ D O NOTE: IN ORDER TO MAINTAIN OUALIFICATION, CATALOM NP-1 VALVES SHOULD BE REBUILT USING THE $ ,
APPfH)Pfll ATE SPARE PARTS WHENEVER INDICATED] 60 RY Till PElllODIC INSPECTION OF VALVE COMPONEstTS , Oil WilENEVER ANY OF THE FOLLOWING LEVELS, $ i SIMULATED DURING OUAllFICATION TESTING, Q 40 AIIE REACHED: Y
- 1. WE AR AGING - 40.000 CYCLES e g 2. RADI ATION AGING - 5 X 10' RAD $
g 30 - 3 3. THERMAL AGING - THE MAXIMUM *" w SERVICE PERIOD INDICATED FOR THE t 25 APPLICABLE SERVICE AMBIENT TEMPERATURE. g \ N "J w T
\
U 15 5 y e u 7 10 8 3 $ - p 8 7
$.c 6 -
5 _ 4 20* C 30* C 40'C 50*C 60*C 70* C (68* F) (86* F) (104*F) (122' F) (140' F) (158* F) SERVICE AMBIENT TEMPEIIATURE FIGURE 1 MAXIMUM SERVICE PERIODS FOR ELASTOMERIC COMPONENTS AND SOLENOID COILS IN ~ASCO CATALOG NP-1 VALVES
m e .a - *
- es a nu.ncoa-s m17 1 in
- g. g g K,gx m.e I o g%
ic C i . E
.g *ng N - n 4,b 2
I g-
>,I
( N
'l ,k . '$ = ! 2.5 a
U E M 6 t k Y u{ zd ih jsQ:. ja'sl 171 3 % i li) 8
~x:q <we \
i
= , 8 o s e =
y l )n '! 5,k.a h., , s
- 5, l h I
- 5:
- ,M - %
m w s t we s ENd E
?
T@ %j
% 36 i i i *JM r 3' .
s tE 75 i _d $ NN . ze E taie u o
'g 3
o
; gg; .s -v g i e w- h u er % e -ownG<j ~ a w ( ,
N c 00 5 %* / 1 2- I >j khEbI
._i % , 3, ,h N 1
W
-a _E ,l ra' s am z \ s j
N'. C * 's et z g,z; q a Q T - -o = 9 k '2 3 N D s_T) __ w e gie:Eis' %2s . s'st.w o a sdc E:= =' d a g a
.. E a
eu r s ez
== -
gi
< , - ,,1 3 H, 'o l l O 2
e e (h 9 m
,, > M'M $z w ~ ng ,e *a 7
n gl e se .,, g-l l f I TX E!Oi et OEEIt ]y si 3 Q N s a
@'r xo D w g 6r. .cl-i z, e z
t - e
< '3!
e w V4 (! V1 W El s*
.i<
ak s j' T 5 -::> e m ;
- Tj $ S e fi $ IH9. l - ll ll l lll i 8 : Si m.@.l E_ . L. c : <
- e !
- c. w, a = v' d U'U t;i J oi= ,2 z -
W Y W Fi c Edl
= w %y nox 3 ,3 E O m u o
4s % s N D . Q . p a 8 g $~ y4 g 4 v c
' ^ Ny Ab x*,lNs $ !ckcpk3]t ) .g E \
ox vv>>
.N 3, g! ,_ q , , 36 , >. 3 4g o, t* - -
m e m ^~ 8
- z e z $ - z %
I: s - ;j s 9 - M - m - 8 e 9 A W E 7@% ~
$ w t Y: e 2 2 - 8 E i G E $, k - . *d 8M. E eG 6 ! '-
2 .t e, 3 8 c = %. %Ee [I. w z re y
- g* .
wu .e *- < m
. j gg ;- w -
e z
, ,A z m a e 'e - - m<j e - - x= #y1 h ; - qh - a i
4 3 .i y te l ,
! .4 E S
T E E E i e N 9 5 1-
. ' ~ .~ c! E m S 3 3. , i \\ .h.4). ~
kN) l l l l ** 9." / e c h c,w; . i , i n- r , ,7 m ,
' -s+c, x- j, ? -l f(.--
E m e % e 2 e n. e ,.
"+ )
g - t j,y e->s n] i; :!2 d .111 \- Dfd E g ~5
,]:s d' i ;2
- f >.
8 8 5 8 . a 5 e a g
" 'i ' - ~
( 4 Q A tp- CD, i
* **>m z c- :.p> i 's ) i - 3i , 3 w, ; 3; ,;z j
, fjg f349 W 9G10-AXGAC03-G161 1 130 'Namco Controla ,
An Acme-Cleveland Company 149 Cucumber Street hfferson, Ohio 44047 QUALITY CONTROL PROCEDURE CERTIFICATION OF COMPLIANCE , Fisher Controls Intl. Inc. Center S t. Plant Marshalltown. Iowa 50158 PURCHASE ORDER NUMBER S-180699 ITEM NUMDER 000 71STO:CR PART ::UMEER 15A4157X022
- h. 4CO PART NUMBER EA180-31302 B/M REV. H OTY. 2
~
LOT NUMBER 28094 DATE CODE 0882 NA.vI LIMIT SWITCH NAMCO SHIPPER liUMBER E-35072-00 DATE SHIPPED 5/7/82 NAMCO CO:'TRCLS CERTIFIES THAT SUITCI!ES FU22:ISHED !! AVE 3EE:: !'Jd:UTACTUP.ED , INSPECTED, TESTED, AND TOUND TO ::ECT APPLICABLE B/ : A::D DRAUI::G SPECIPICATIO:iS. ::AMCO QUALITY ASS'JI'aNCE MA::UAL, PIV . "C", I:CORPORATES 10CrR50(3) A::D ANSI 45.2 AS APPLICA3LE. NA :CO FURT!!CR CERTIFIES THAT THE.:n SWITCHES WERE !!ANUTACTURED TO THE SAME SPECIPICATIC::S AS SUITCH MODEL CA180-ll302, PIV. If , WHICl! WAS CUALIFIEC_. TO IEEE STA:iDARCS 323 (1974), 344 (1975), A::D 302 (1972), PER REPORT NO. OTR-105. THESE SWITCI!ES HAVE: Stvle 2 MOUMTI::G CW POTATIO! 10 DECPrn TPIP 6 17 t-DATU
! I dwhk ObALITY CO.TROi,!!ANAGi:H
yp r3+s 74/ Namg pgnR*Mt 03- 5161- 1 131 - An Acme-Cleveland Company 149 Cucumber Street J;fferson, Ohio 44047 QUALITY CONTROL PROCEDU_RE , CERTIFICATION OF COMPLIANCE Fisher Controls Intl., Inc. Center St. plant Marshalltown, IA 50158 PURCHASE ORDER NUMBER s-190627 ITEM NUMBER 000 CUSTOMER PART NUMEER 15A5650X392
!( .O PART NUMBER EA190-32302 B/M REV. K QTY. 2 LOT NUMBER 29067 DATE CODE 2092
(-NAME LIMIT SWITCH I l NAMCO SHIPPER NUMBER E-35073-00 DATE SHIPPED 5/11/82 L NAMCO CO: TECLS CERT!?!ES THAT SWITCHES FC:U:!SHED HAVE BEE:* ::A;!CFACTURED, INSPECT D, TESTE , AND FOU::D TO ::EET APPLICABLE B/ : A :D C TJ.W I;;3 SPECIFICATIC!S. NAMCO QUALITY ASSUPaNCE MANUAL, REV. "C", INCCRPORATES 10CFR50(D) AND ANSI 45.2 AS APPLICADLE. NAMCO FURTHER CE?.TIFIES THAT THESE SWITCHES WERE MA !UFACTURED TO THE SAME SPECIFICATIONS AS SWITCH MODEL CA180-ll302, REV. II , Wi!ICH WAS QUALIFIED TO IEEE STANDARDS 323 (1974), 344 (1975), A:!D 382 (1972), PER REPORT NO. OTR-105. THESE SWITCIIES !! AVE: Style 2 MOUNTING CCW poTAT!cM 10 nEcpEE Tpip 3 4 5" ll- SO *
/WJS m DATE QUALITY CO!JT!!OL NAI.AL:M
.6 5
f/ N ff42ff/ L,.10' AXG AC0 3- 5161- 1 13g i F
. .._ .. m m ,
cE = m.u. AltlOlllmlC Switch to. Smco'!!! sa4 3 os
- s..m4V
. P ARK.NEW JERSEY C7932 . metoit see reco a t :
CERTIFICATE OF COMPLIANCE FISP.ER Com01.5 ImRNATIONAI., INC-Customer Name Customer P.O. No s181203 Consignee Consignee P.O. No-ASCO Shop Order No- 98168K NP K S321A-2 't Quantity 3 ASCO Part No. Voltage 125/DC Eng. Job No-
- is is to ce-tify that the subject s sh et s) meet the performance requirements ofIE EE-3 :3 19'4. lE E k .4'5. and IEEE 3 S -1972. as substantiated by testm; 5 ah es of genencally eq.c ce3.gn ; . a:::r:ce:e w an 2: ion Specification AQS-2167S. Resisien"B". dated Fecruary I!. I3'!. The foHowte; test ASCO Qua!!S:
few!s w ere meluded m this qualifiest:on test program:
- 1. A;: ; S:mulat:en Phases:
A. T: e- ai A;ing Simulat.cn- 263'F for 1 da> s.These agm; parameters were deter med n A- r en=s ed:alations to simulate a mirumum of 10 years m a 140'F contmuous amrient Refer te F.;.re I fer a:itional inicemat.cn reprding senice penods for elastomen: :omponents and sciene:.: :a::!. B. Ra:iation Aging Simulation 50 me;arads of gamma radiation at a rate not es:ecing 1 :e;arad :er nour to simulate espe:ted non a:: dent radiation exposure. C. Wear A;mg Simulation 40.000 operations at maximum operating pressure 4:fferential and nem s oltage. D. Vibration Aging Simulation I million cycles. distnbuted equally among the three crthogonal ates. between 50 and 100 Hz.at an input a::eleration les el of 0.75g. The vah es w ere ey:!ed onee es minutes during the test. The valves were attached to the shakertable by rigid test thtures using the sta dard vahe mounting prosisions with the solenoids s ertical and upright. Flexible hoses w ere use portst therefore, the set-up did not atTect the rigidity or mass of the vahes bem; tested. E. Seismic Aging (OBE) Simulation - The sahes were mounted to the shaker table as d: scribed vibration agm; simulation and w ere exposed to tw o sinusoidal su eeps from I to 33 to I Hz. wit a: eleration les el of 3g uithin ma: hine limits.in ea:h of three orthogonal axes at a rate of I oetas e per minute. One sw eep in es:h axis u as condu:ted with the s akes energized and the other witn the s de energi:e1 These sinusoidal sueeps are considered to proside the equis a!cnt d.namie e ( Page 1 of 3 Farm No VE 2926A4
F g ggggg,1 1395168K . l l l , II. Design Basis Esent (DBE) Phases: i \' l A. Seismic DBE ISSE) Simuistion -The s sh es wcre mounted to the shaker tab!c as described for the ubra-l tien aging simulation and wcre esposed to single f requency sinusciJat tests at 's octas e frequen;y inter. val dwell points from I-40 Hz. At cach test frequeney, the peak input secclerstion w as incressed and the g les els w cre recorded at a hich the cylinder port pressure t zero w hen de energized and full inlet pressure when energized for a normally closed vshe. opposite for a normally open vshe) differed from the nom:nst by Ok 5"b and 10% ofinlet pressure l up to 10g masimum). The valves are considered in func. tion properly up to a 10% change in cy linder pon pressure. This les el was selected as bein; suff:ciently low to prevent spurious shiftin; of the customer's main valve or other equipment. Motion w as applied at the same frequency and a::cieration limits in each of the three orthogonal ases separately. Based on this testng and/or additional testing conducted by ASCO (after consideratien of mars:n as suggested in l IEEE 3231974), the following acceptable maximum accelerstion lesels base been determined: L 13.5g i l l ( B. Radiation DBE Simu!stien 150 me;s sds cf gsmma rsdistion at a rate not exceeding I megarsd p:r hour to simu!ste (siter cens.derst:en cf mar;in as su;;e>te: m IEEE 3:31974 at least 136 me;:. rads cf l accident radisticr. espesure. C. Environments! DBE a LOCA HELB Sima!stion - The s shes were installed in a pressure sessel ar.d subjected to a 30-d:.3 espesure of > team snd :nemi:al spray rellou mg the su;;:stions ofIEEE 3C 19': (chemiesi spray per Tab:: libs and t:st :h2=cer tem:ersture prae per Figure I and Table Oi. T: e
- vahes had been pressurizec to maumum operst
- n; pre >sure and contmuously energized for t hours prior to the first transient ito produce coil saturstien s. They w ere de.ener;ized w hen the temperature or the first transient res:hed S0'F.to show sat;siscwy shiftm;for demonstration of safety function. Tne valves were kept pressur: zed and wcre eye!:d durm;the 30-day esposure.as suggestedin IEEE 3S 197:.
to demonstrate their sbility to operate on demand during the LOCA or HELB. Test report AQS 2167S/TR. Rev. A. is on fi!c at Automatic Switch Company in Florham Park.New Jersey, and is as silable for customer perussi.
- Based on the results of testing conducted subsequent to this program, ASCO has determined that use of the subject valves incorporating Viton elastomers should be limited to those applications where no shsfting of position will be requ:. red following exposure to total gamma radiatier doses ~in excess of 20 megarads. However, the sub] art valves cro capable of maintaining a safety position after exposure to doses up to 200 negar:ds.
I\ Dated DECDIBER 17,, 1982. . . . Authori/ed Signature .. . .m . QUA1.ITY CONTROL M. GAGER Form VE 2026 R4
l
" ( ,P NOT E: IN OllDEli 1O MAINTAIN OUALIFICATION, CATALOd NP 1 VALVES SHOULD BE REBUILT USING THE 5",
Al'PflOPill ATE SPARE PARTS WHENEVER IN()lCATEg . 60 IlY Tile PElllODIC INSPECTION OF VALVE COMPONgTS 9 Oil WilENEVER SIMULATED DURINGANY OF THE FOLLOWING OUALIFICATION TESTING, LEVELS. AllE l1C ACilED: T 40 U
- 1. WEAR AGING - 40.000 CYCLES g 2. RADIATION AGING -5 X 10' RAO $
THERMAL AGING - THE M AXIMUM 7 g 30 3. m -
~
SERVICE PElllOD INDICATED FOR THE , t 25 APPLICABLE SERVICE AMBIENT T EMPE R AT URE. y
\s M
5
$ 15 5 % oc T $
u y 10 0 h p 8 y 7 6 4 4 60*C 70"C *' 20"C 30"C 40*C 50* C . (104* F) (122" F) (140* F) (158' FI (68*F) (86* F) SEllVICE AMBIENT TEMPERATURE D FIGURE 1 A b I ' MAXIMUM SERVICE PERIODS FOR ELASTOMERIC COMPONENTS AND SOLENOID COILS IN ASCO CATALOG NP-1 VALVES P
r 1 9510- A f/W 04294 (
,:3, S.,,%
8'o Son t4649 sHNaron T.sas 7702i ittsir a vie, t. . w is {' A ca.wv--e i :- c: c . August 2, 1982 Fisher Control P. O. Box 190 Marshalltown. Iowa 50158 Attention: Ms. Judy Evans
Subject:
Certification of Cc=pliance for the Fisher Control Purchase Order 180752; G.H. Bettis Sales Order 78-1741-0E
!!s. Evans:
This letter is te certify that the equip =ent furnished on line nu:ber 01A our sales crder, iten 000 your purchase order, ref erence RMA#2089 were refurbished in acccrdance with written G.H. Bettis Engineering Specifications and Standards. Units Shipped: . Qty. Model Serial Nu:ber 7 2 N521C-SR-80-12 75-1741-3 & 5 Ccrdially, G.H. Bettis Cc=pany
,Antheny/w-ly (i f .. Lccascio Quality Assurance .v.anager ATL:jv cc: File
i 9310- AX!iAC03- $161 1 136 - ATTACHMENT 6 FQP-11AB-5 Arrhenius Rate Equation Calculation h m N28-12/ 6
F, l r . 9010 A ADAC03- U161- 1 137 REV. B 10-3-83 Arrhenius Rate Equation Calculations The Arrhenius rate equation as referenced in IEEE 382 can be expressed as follows: I ~ t t 1.e 2 where: e = service life 3 c2 = test duration T = service temperature g t**E*##*"#* T2"t***
$ = activation energy ~
K = Boltzman's constant = 0.8617 x 10 ' eV/K 45088-1, Values determined by the aging segment of the Wyle Test Report No. Fisher Lab Problem ifSS-3, Report 11, and Bechtel Specification X5AC03, Appendix EA, result in the following numbers: t = 28.5 days 2 Tg = 126 F = 325 K T2 = 227.8 F = 382 K
$ = 0.79 eV hence:
1 ( 1.1 ) 2 t g = (t y) e 1 (0.79)eV !! I l (0.8617 x 10 )eV/K (325)K (382)Kj t = (28.5 days) e f - g t g= 1918 days = 5 years 93 days
1
.~
851o- AMAdO3-SIl.l-. & /39 . F FISHER Certification of Applicabilty Alvin W. Vogtle Nuclear Power Plant, Units 1 & 2 Georgia Power Company Bechtel Power Corp. Purchase Order No.: PAV-206, PAV 2-34 Seismic Category / Class: Seismic Category I, Nuclear Class 3 Fisher Representative Order No.: 228-X5AC03-N1P & 228-X5AC03-N2P Qualification Group: Y Environmental Designator: VI II-R-C 83 Order Items: 155, 156, 165, 166 Serial Numbers: 8342938-41 Tag Numbers: 1 & 2-HV-12596 8 97 Bechtel Data Sheets: CX5DL-187 & 188 r This is to certify that, to the best of my knowledge and belief, the previously l submitted Fisher Qualification Report (FQP-11AB-5, Rev. A) which was provided < per Rev. 9 of Design Specification No. X5ACO3, App. EA, Rev. 3, & App. 0G, Rev. 0 (as interpreted by Fisher Qualification Plan F0P-11AB) is also applicable to Rev.11 of the same X5AC03 Specification and Appendices. I 1
/rru U I Jon Whitesell Qualification Analyst i
I certify that I accept responsibility for the ariequacy of this document, which was prepared by others, to the same degree that I would if I had prepared it, and that I am a duly Registered Professional Engineer under the laws of the State of Iowa. 9 Jogh Dresser Reg. No: 7547 4 g Registered Professional Engineer $g g,g - Date: 4 Jr 7547 /7
/OWA M
Approv : l P %I Q h* i"~~~ qsj (() Floyd D. Jpry , Ma nag f Engineeriry Qualific ' l- I f on & h ag-l y s tg;5f,y'-' neoc . y cc., m,.,g, y,,,,.g,,,
~,~r-~+. . . ,,t,,, ,., *'# * = b'JfDbb>Cf?*)* ) f3p, ,Gp ,
N2-6/ 5 s}}