ML20148Q949

From kanterella
Jump to navigation Jump to search
Application for Amends to Licenses DPR-42 & DPR-60,providing Suppl 9 to LAR Re Amend of CWS Emergency Intake Design Bases
ML20148Q949
Person / Time
Site: Prairie Island  Xcel Energy icon.png
Issue date: 06/30/1997
From: Sorensen J
NORTHERN STATES POWER CO.
To:
Shared Package
ML20148Q936 List:
References
NUDOCS 9707070264
Download: ML20148Q949 (2)


Text

.

[

l

{

i UNITED STATES NUCLEAR REGULATORY COMMISSION l

I l NORTHERN STATES POWER COMPANY PRAIRIE ISLAND NUCLEAR GENERATING PLANT DOCKET Nos. 50-282 50-306 REQUEST FOR AMENDMENT TO OPERATING LICENSES DPR-42 & DPR-60 LICENSE AMENDMENT REQUEST DATED January 29,1997 Amendment of Coolina Water System Emeraency intake Desian Bases Northern States Power Company, a Minnesota corporation, by this letter dated June 30,1997, with Attachments 1 and 2 provides supplemental information in support of I the subject license amendment request dated January 29,1997. Attachment 1 l contains the executive summary, descriptive text and conclusions (the first 59 pages of the report) of the Prairie Island intake canal liquefaction analysis report.

Attachment 2 contains the complete report including all appendices.

This letter and its attachments contain no restricted or other defense information.

NORTHERN STATES POWER COMPANY By wee  !

Joq5F. Sorensen ' I Plant Manager Prairie Island Nuclear Generating Plant 1

On this 3 0 day of lu h t I97'7 before me a notary public in and for said County, personally appeared, Joel P. Sorensen, Plant Manager, Prairie Island Nuclear Generating Plant, and being first duly sworn I acknowledged that he is authorized to execute this document on behalf of Northern I States Power Company, that he knows the contents thereof, and that to the best of i his knowledge, information, and belief the statements made in it are true and that it is not interposed for delay.

A i AA~A_[

"^^^^^^zzzz.z: ::.:: _.. ._

l DALE M. VINCEgf 40fAny pyguC kl4NE80TA I DAKOTA COUNTY V ^^ - ^ ^:: --Y:*:.???!.d**];?@"

9707070264 970630 PDR ADOCK 05000282 P PDR ,

I ATTACHMENT 1 l SUPPLEMENT 9 to LICENSE AMENDMENT REQUEST DATED January 29,1997 Amendment of Coolina Water System Emeraency intake Desian Bases Intake Canal Liquefaction Analysis Report, Executive Summary, Descriptive Text and Conclusions, Dated June 24,1997 i (Cover Page, Table of Contents and First 59 Pages of the Report) l I I

l l

i i

J i  !

I i

l i

. I I

l i

l a

e

~

l I

l I

l INTAKE CANAL LIQUEFACTION ANALYSIS REPORT 1

l PRAIRIE ISLAND NUCLEAR GENERATING PLANT WELCH, MINNESOTA NORTHERN STATES POWER COMPANY 1717 WAKONADE DRIVE, EAST WELCH, MINNESOTA 55089-9642 VOLUME I OF II 28723-A JUNE 24,1997 i

790?>A7Mr"

. . - . - ._ .~, -. . , ~ . ..~. ..-_ . .. , _ . .. . -

1

  • 1 l

l:

u o

i L

E l

1 TABLE OF CONTENTS .

k I VOLUME I PAGE NO.

1.0 EXEC UTIV E S UM M ARY ... . .. ... ........... ...................... ..... ......... .......... ... . .. ....... 1 2.0 INTR O D UCTI O N . ..... ........ ........ .... .... . . ...... ......... ... .. ..... ........ ...... .. 4 2.1 Proj e c t D e scri pti o n....................... ............ . ..... .......................... . ................... ...... ... 4 2.2 Previo u s STS Work .... .. ................... .. ..... . ........ ......... ... ... .... . ... . .. . . 5 2.3 Cu rre n t Sc o pe of Work .. ....................... .. ..................................... ............................... . 7 3.0 FI E L D EXPL OR ATI O N S ...... ..... ................ ...... .............................. ............. ............. 11 1

l 3.1 Standard Penetration Test Borings ........ ... ... ..... .... .................. ..... ........... ... 11  :

3.2 Piezoco ne Penetro meter Tests ........ ..... .. .... ........ ...... ... ...... ............... ... ...12 3.3TestPits........................................................................................................13 3.4 Spectral Analysis of Surface Waves (S ASW) Testing.......... . ....... ..........................14

)

3.5 D e s i gn Wa t e r L ev e l .. ....... ...................... . ........... ............... . ....... .... .. .. .. ...... 16 )

4 i

1 4.0 L AB ORATO RY TESTIN G ... ....................... .... ....... ..... .. ....... .................. ....... . 18 4.1 In d ex Property Te sting ........ ................. .. .. . .. . ....... .... ......... .................. ...... 18 j 4.1.1 G rain S iz e Analyses. .. . .... ...... ......... ..... . ..... .. ... ......... ... .. ... .. ..... 18 4.1.2 S pecific G ravity Testing ........... ....... . ...... .......... ........ ... ............ .............. ..19 4.1.3 Relative Den sity Testing ........ ........ .......... ... .......... .... .......... ... ...... .. 19 4.1.4 Proctor Density Testing ... ........... ........... .... ..... ....... .... ... ...... .. ..... .... 19 4.1.6 Triaxial Permeability Test . .. .................... . . ............. . ..................................... 20 4.1.7 S a n d M icro scopy .......... ................... ... ......... ............. ............................... .. .... 20 4.2 Triaxial Shear Strength Testing.... ......... .. ........... ...... .. ... . .. ....... .... ... 21 4.2.1 S ta tic Angle of Internal Friction... ............ ....................... ........ ... ......... .. ..... 21 4.2.2 Steady-State Shear Strength Testing................ .......... . . ....... .. . . . .... 23 1

1

{

l l

4 1

1 l

l

__ 4

l.

l i .

l i  :

l l

I  !

1 l

TABLE OF CONTENTS CONTINUED L

l l 5.0 PIN G P SOI L PR O FIL E.. ......... ...... ....... ..... ... .. . .. .......... . . ........ ........ ... 24 l 1

l. 6.0 STATIC STRES S AN ALYSIS ....... ........ ....... .... .... ........ ......... ......... . . ........ ..... . 28 l 7.0 D ES IG N EARTH Q U AKE....... . ................. .. .... ................ . ............ ... .. ... . 30 i.

8.0 S HAK E88 ANA LYSIS .... ... ...... . .. . . .. .. ................ . . .. .... ..... .. . . 32 I 9.0 DYN AMIC STRES S AN ALYSIS . .......... ... .. ... . .. ....... ................. .... ...... ........ 35 10.0 LIQUEFACTICJJ GIG G ERING .......... . .... . .... . ............ . . .......... .. . ..... 38 10.1 Comparative Liquefaction Analysis...... . .... ... .... . . ...... .. ....... .. ............. 38 10.2 Empirical Liquefaction Analysis by the Seed and Harder Approach....... .......... 39 10.2.1 M e t h o d o l o gy .. ................. ................... ..................... .................. .... .............. . 3 9 10.2.2 Results of Triggering Analysis ................. .............. ........ . ......... . ........ ........ 40 11.0 RESIDUAL OR STEADY STATE SHEAR STRENGTH.............. ............ .. ...... ...... 43 11.1 Residual Shear Strength Parameters for Seed and Harder (1990) Method. ......... 43 11.2 Steady-State Shear Strength Based on Field and Laboratory Testing.................. .. 47 12.0 PO ST E ARTH Q U AK E STA B I LITY .................. .... ............................ ..................... ...... 51 13.0 PERM ANENT DEFORM ATION ANALYSIS. .. ........ .......... ...... ................. . 53 14.0 CO N C L U S I O N S ................... .......... .............. . ..... . .................................. .... ... . .. 5 5 i 15.0 R E F ER EN C ES .. ....... ............... ..... .................... ....... .. .................... ..... .... .... 5 7  :

APPENDIX A

SUMMARY

TABLES APPENDIX B

SUMMARY

FIGURES APPENDIX C PHOTOGRAPHS APPENDIX D SIT BORING LOGS APPENDIX E LABORATORY & FIELD TEST RESULTS APPENDIX F FEADAM84 ANALYSIS I

I H

i TABLE OF CONTENTS CONTINUED VOLUME II APPENDIX G SHAKE 88 ANALYSIS l

APPENDIX H QUAD 4M ANALYSIS APPENDIX I SFT STRENGTH

SUMMARY

APPENDIX J LIQUEFACTION TRIGGERING APPENDIX K RESIDUAL STRENGTH ,

APPENDIX L POST EARTHQUAKE STABILITY i

! APPENDIX M PERMANENT DEFORMATION ANALYSIS l

APPENDIX N CONSTRUCTION RECORDS l l

APPENDIX O SASW FIELD TESTING l

APPENDIX P DBE TIME HISTORY DERIVATION l

APPENDIX Q SPT HAMMER CALIBRATION APPENDIX R INDEPENDENT REVIEW i DR. GONZALO CASTRO i APPENDIX S INDEPENDENT REVIEW l DR. I. M. IDRISS M

l iii l

l

1 l

l I

l

  • INTAKE CANAL LIQUEFACTION ANALYSIS FOR THE )

PRAIRIE ISLAND NUCLEAR GENERATING PLANT (PINGP) l WELCH, MINNESOTA l

l 1.0 EXECUTIVE SUMM ARY I l

In response to the NRC's February 24,1997 request, a two-dimensional, dynamic finib l l

element, stress and liquefaction analysis of the Design Class III intake canal slopes and base at the Prairie Island Nuclear Generating Plant (PlNGP) has been completed. 1 A study was performed utilizing the computer code FEADAM84 to determine static stress conditions. SHAKE 88 and QUAD 4M were used for predicting the Design Basis Earthquake (DBE) dynamic stresses. The DBE input motions for the dynamic analyses were derived, from site specific re.sponse spectra and were scaled to give a horizontal l acceleration of 0.12g peak and a vertical acceleration of 0.08g peak. The DBE is also l 1

represented by a Richter Magnitude 5.0 earthquake occurring 15 kilometers from the site. l Input parameters for the dynamic analysis were based upon additional subsurface exploration at the site, including thirteen (13) new Standard Penetration Test (SI*T) borings performed along the crest, mid-slope and floor of the mtake canal. Shear wave velocity data for soils surrounding the intake canal were determined based on four (4) deep penetrating Spectral Analysis of Surface Wave (SASW) tests. The in-situ void ratios and relative density of the previously identified critical fine sandy soil layer between elevations (El.) 674 and 671 were evaluated by excavating three (3) test pits along the north side of the canal and measuring soil in-situ densities by the sand cone method.

The two-dimensional finite element analysis was used to compute the maximum cyclic shear stress (tcyc) resulting from the DBE. The computed cyclic stress ratio was compared to the limiting cyclic stress ratio based upon energy and overburden corrected SFT blow i

Prairie Island Nuclear Generating Plant S'IS Project No. 28723-A June 24,1997 count data (Ni)eo in general accordance with the liquefaction triggering analysis method proposed by Seed and Harder (1990).

Based on this analysis, limited liquefaction triggering was computed in isolated shallow zones of soil along the submerged face of the intake canal slope between El. 664 and 674.

l Conservative residual shear strength parameters were assigned to liquefied soil elements and reduced drained strength parameters were assigned to elements which exhibited i excess pore water pressure increases but did not liquefy. Post earthquake slope stability analyses performed with the computer program XSTABL, using seismically reduced shear strength parameters, indicate that a liquefaction flow slide failure does not occur. The minimum computed factor of safety against sliding was 1.3 for a shallow failure surface.

The factor of safety for a representative deep failure surface was 2.2. l A second liquefaction analysis was performed utilizing the steady-state shear strength  !

l concepts proposed by Poulos, Castro and France (1985). For this method, undrained triaxial compression tests were performed on reconstituted sand samples from the critical ]

loose fine sand layer at void ratios greater than or equal to the measured field void ratios. l l Based upon this information, the Steady State Line (SSL) and residual undrained shear 1 1

strengths of the loosest soil stratum were determined. Combined static shear stresses from l FEADAM84 and cyclic shear stresses from the QUAD 4M analysis were found to be lower than minimum values of residual undrained shear strengths for fine sandy soil elements below the intake canal slope. Based upon this analysis, it is concluded that liquefaction and flow slide failures will not occur.

l l

i Since liquefaction flow slides of project soils do not occur, a permanent deformation l analysis was performed utilizing residual shear strength parameters based on the Seed and l l

l Harder (1990) liquefaction triggering analysis method and the correspondingly highest ,

1 DBE acceleration time history generated from the QUAD 4M finite element analysis.

l Results of this deformation analysis indicate that calculated down slope permanent 2 kproj. 28723-A/r123a003. doc l

l l

_, - . . ~ --- . .-- . . -

. ~ . - .. .- .- . . - - . - . .

L 4 4

i Prairie Island Nuclear Generating Plant i STS Project No. 28723-A June 24,1997 i

deformation or movement of the canal slopes would be less than one inch for the DBE event.

Thus, it is concluded that the intake canal slopes will not flow or deform significantly into the intake canal or screen house. The base of the intake canal consists of dense compacted sands which will not liquefy or " boil" as a result of the DBE. Therefore, the intake canal slopes and base under DBE loading will not adversely impact the intended functions of the j l

Design Class I Screen House. Remediation of the intake canal slopes is not required and j the intake canal meets the criteria for a Design Class 1* structure as defined in the Prairie Island Updated Safety Analysis Report (USAR).

)

l i The dynamic stress analysis, liquefaction triggering analysis, and post-earthquake stability I

analysis presented in this report were independently reviewed by Dr. Gonzalo Castro of J l GEI Consultants and Dr. I. M. Idriss of the University of California - Davis. These independent reviews confirm the conservative nature of this analysis and concur with the conclusions that the canal slopes and base are stable under DBE loading conditions. These independent reviews are presented in Appendix R and S of this report, respectively.

1 1

1 I

I l

[

3 k:Proj. 28723-A/r123a003. doc

Prairie Island Nuclear Generating Plant STS Project No. 28723-A ,

June 24,1997  !

1 I

2.0 INTRODUCTION

l 2.1 Project Description The Prairie Island Nuclear Generating Plant (PINGP) site is located adjacent to and west of the Mississippi River in Goodhue County, approximately 40 miles southeast of the  !

Minneapolis-St. Paul area, approximately six miles northwest of Red Wing, Minnesota. A detailed description of site geology, topography and seismology is presented within the Final Safety Analysis Report (FSAR) prepared by Dames and Moore in 1967 and is incorporated herein by reference.

This project deals with the stability of the Class III intake canal slopes for the postulated Design Basis Earthquake (DBE). The slopes of the intake canal consist predominantly of naturally occurring alluvial sands. These soils were excavated in 1970 for the construction of the intake canalin the dry through the use of a well point dewatering system. The canal excavation was extended down to El. 635 for installation of a 36-inch diameter emergency intake cooling line. The excavation was then backfilled to El. 664 with non-liquefiable gravel or compacted sand fill. Temporary side slopes from El. 664 to the pmsent ground  ;

surface, approximately El. 694, were then flattened from a one horizontal to one vertical (1H:1V) to (3H:1V). The existing intake canal slopes, from El. 664 up to El. 683, are covered with a 1 to 2 foot thick blanket of riprap and crushed gravel with a layer of geotextile over the sand. The remainder of the slope from El. 683 to 694 is vegetated with a cover of grass and brush. The south, north, and west slope of the intake canal are shown in Photographs 1 through 4 in Appendix C. A site plan of the study area is shown in Figure 1.

l Construction photographs are shown in Appendix N.

l l

It is our understanding that the original FSAR for the power plant was based on the assumption that the 36-inch diameter emergency intake line was designed as a Class I l 4 k:proj. 28723-A/r123a003. doc l

l

Prairie Island Nuclear Generating Plant STS Project No. 28723-A June 24,1997 structure and would provide sufficient cooling water for safe shut-down of the plant in the event of a DBE. The slopes of the intake canal were designed and classified as a Design Class III structure since their stability was not relied upon to supply cooling water.

However, tests performed in 1995 on the actual capacity of the emergency intake line 1

showed that operator action would be needed to manage cooling water loads to within the l

capacity of the emergency intake line. Thus, some portion of cooling water from the intake l canal would be required to augment the emergency intake line to allow sufficient time for the operators to implement appropriate procedures. Based upon this information, STS i

Consultants, Ltd. (STS) was contracted by Northern States Power Company (NSP) to perform a dynamic finite element, liquefaction triggering, and stability analysis of the intake canal slopes under DBE loading conditions.

2.2 Previous STS Work STS performed an initial liquefaction study between March and June of 1996. This program included performing eight, (8) Cone Penetration Tests (C17TU) with pore pressure measurements, three (3) Standard Penetration Test (SPT) soil borings and laboratory testing. Eight (8) CPTU tests were performed along the crest of the south, north and west intake canal slopes. CFT tip resistance values were correlated to adjacent SFT borings based on published correlations. These equivalent SPT blowcount (N) values were subsequently used to determine the factor of safety against liquefaction in accordance with methods proposed by Seed and DeAlba (1986). Results of the 1996 STS analysis indicated that a factor of safety of 1.5 or greater existed against liquefaction. Since the CPTU based liquefaction analysis indicated that the project soils would not loose strength during the DBE, a pseudo-static slope stability analysis was performed using the peak DBE horizontal acceleration multiplied by a sustained energy factor of 0.65 in conjunction with using conservative soil shear strength parameters. This analysis indicated that a minimum factor of safety of 1.25 existed for the slope under pseudo-static earthquake leading conditions.

5 k Pmj.28723-A/r12h003. doc

Prairie Island Nuclear Generating Plant STS Project No. 28723-A June 24,1997 Based on this information, STS recommended in the July 1996 report that no remediation of the canal slopes would be required.

t l

The Nuclear Regulatory Commission (NRC) responded to the original STS report with a Request for Additional hiformation (RAI) letter dated February 21, 1997. The questions -

submitted at that time resulted in a detailed STS response which was submitted to NSP on I

February 28,1997. The STS response discussed the correlation between the CPTU and SIrr, l discussed correction factors that were used for overburden pressure (Cn), performed a liquefaction analysis for the crest and mid-slope of the intake canal walls utthzmg SPT data j generated by STS in 1996 and Dames and Moore in 1967, performed a one-dimensional dynamic analysis using the computer program SHAKE 88 to more accurately model the DBE ground motions, and re-analyzed the pseudo-static stability utilizing the full 0.12 g horizontal acceleration in conjunction with an upward 0.08 g vertical acceleration for deep and shallow, circular and wedge block type failure surface geometries.

These analyses indicated that the factor of safety against liquefaction at the mid-slope and crest of the intake canal slopes, based upon available SIrr data, was greater than unity.

Thus, liquefaction of the slopes was not indicated. Re-analysis of the pseudo-static slope stability with full horizontal and vertical ground motions resulted in a calculated factor of safety of 1.02. Based upon this subsequent information, STS concluded that given the l conservative nature of the S17T data and the low magnitude earthquake motion, that I liquefaction at the site and flow slide of the canal slopes would not occur.

The February 21,1997 NRC RAI requested that a two-dimensional finite element dynamic analysis of the canal cross section be performed. This analysis could not be completed at the time of our February 28,1997 STS response to NSP. It is the purpose of this report to present the results of the two-dimensional dynamic analysis and updated liquefaction analysis.

l 6 k Pai2sm A/r123a003. doc

~

t.

t Prairie Island Nuclear Generating Plant STS Project No. 28723-A June 24,1997 2.3 Current Scope of Work r

SIS was requested by NSP to perform a two-dimensional finite element dynamic analysis of the intake canal slopes and canal base. STS performed this task utilizing the computer code QUAD 4M. Further, NSP requested that additional SFT borings be performed along the side slopes and base of the intake canal and that the DBE for the site should be modeled l using a Richter Magnitude 5.0 event.

Thus, the purpose of the current scope of work was to answer four main questions:

1. Will the intake canal slopes or base liquefy during the postulated DBE? In this ,

report the term " liquefy" refers to seismically induced pore pressure increases in the soil that momentarily causes states of near zero effective stress. ,

2. If the slope or base materials liquefy, will there be a stability type (flow) failure, and if not, what will be the magnitude of seismically induced permanent deformation? . I l

I l .

! 3. To what extent will soil movement, if any, block the intake canal or screen house?

i

4. Can the Design Classification of the intake canal (currently Class III) be revised to Class 1* as defined in the PINGP Updated Safety Analysis Report (USAR)?

The current scope of work and analysis methodology used to answer these questions is summarized below: I l

l 1. Existing data, construction photographs, the original FSAR report and Corps of i l

l Engineers river flow data were reviewed.

i e

i 7 kpmj. 28723-A/r123a003. doc

Prairie Island Nuclear Generating Plant STS Project No. 28723-A June 24,1997

2. Additional SFT soil borings were performed at the crest, mid-slopes and base of the intake canal ta provide additional in-situ shear strength parameters and confirm the compacted nature of fill soils along the base of the intake canal.
3. Three test pits were excavated near El. 675 on the north canal slopes to measure in-situ densities and obtain bulk samples of the criticalloose soillayer for laboratory testing. l l

1

4. Geophysical tests consisting of Spectral Analysis of Surface Wave (SASW) were l performed at four locations surrounding the intake canal to provide shear wave velocity data suitable for input into the dynamic analysis.
5. A laboratory testing program including triaxial shear strength testing, relative density tests, grain size analysis, permeability and routine index testing was performed on bulk 1

samples obtained from the test pits. The laboratory testing program provided drained I and undrained friction angles and residual strength parameters of the project sels for I post earthquake stability analysis.

6. A two-dimensional static finite element analysis was performed with the computer program FEADAM84 to evaluate the initial static shear stresses and vertical effective stresses throughout the soil profile.
7. Independent artificial acceleration time histories were generated for the DBE horizontal and vertical motions from site specific response spectra. The time histories were selected to provide a horizontal acceleration of 0.12g peak and a vertical acceleration of 0.08g peak.
8. A one-dimensional wave propagation analysis was performed with the computer program SHAKE 88 to model the soil profile free field conditions and provide parametric sensitivity analyses. Horizontal and vertical components of the DBE were g k proj. 28723-A/r123a003. doc i

i

~ .

i L

Prairie Island Nuclear Generating Plant

- STS Project No. 28723-A June 24,1997 entered at an outcrop of the weathered sandstone bedrock at El. 515. The resulting motions at El. 620 were used as input to the two-dimensional, finite element QUAD 4M dynamic analysis.

9. A two-dimensional, dynamic finite element analysis was performed using the  !

QUAD 4M computer code to determine peak cyclic shear stresses, horizontal accelerations and vertical accelerations throughout the soil profile. The base of the finite i element mesh was established at El. 620 within the medium dense to dense sand and gravel. Peak cyclic shear stresses in the free field condition resulting from QUAD 4M ,

runs were compared to SHAKE 88 results to confirm compatibility of the computer l models and to provide computer code verification and validation.

10. Liquefaction triggering analysis was performed by two complementary methods: 1) historical comparison of earthquake magnitude to other sites that have and have not j liquefied, and 2) the Seed and Harder (1990) method utilizing corrected SPT blow count data. Site specific cyclic stress ratio limit lines were generated for the DBE and were compared to the cyclic stress ratio resulting from the QUAD 4M analysis. The factor of safety (FSt) against liquefaction triggering for each soil element was computed.

l

11. Elements of soil which exhibited a FSt less than 1.1 were assigned residual shear l strength parameters based upon (Ni)6o corrected SI7T blow count data. Elements of soil I with FSt greater than 1.1 but which exhibited some pore pressure development were assigned reduced friction angles. Elements of soil with sufficiently high FSL were assigned full drained shear strengths. Residual strengths of the soil were also evaluated using the steady state methods proposed by Poulos et. al. (1985) utilizing the laboratory triaxial test data.

j 12. Post earthquake stability analyses utilizing the computer program XSTABL were performed on the intake canal slopes using degraded soil strength properties resulting l

9 kT roj.28723-A/r123a003. doc

i .

I ...

Prairie Island Nuclear Generating Plant STS Project No. 28723-A June'24,1997 l

from the DBE. Factors of safety against the flow slide failure of the slopes were then-computed. Where the factor of safety against slope failure was greater than unity, the corresponding yield acceleration was computed for use in a permanent deformation analysis.

l. 13. A permanent deformation analysis was performed utilizing the computer program l DISPLMT utilizing the Newmark type sliding block analysis for slopes which were l stable. Resulting downslope permanent deformation of the most critical failure surface was computed.
14. Based upon the results of the dynamic analysis, conclusions regarding the seismic stability the intake canal slopes and canal base were made.
15. Independent reviews of the analyses presented in this report were performed by Dr.

Gonzalo Castro of GEI Consultants and Dr. I. M. Idriss of the University of California, j Davis.

1 l

l.

l 10 k:P' j.28723-A/r123a003. doc

m . ._ .- ._ __ ._ _ _ . _ _ . _ . _ ___ . ._

l i

. Prairie Island Nuclear Generating Plant l STS Project No. 28723-A June 24,1997 l

3.0 FIELD EXPLORATIONS  !

t 3.1 Standard Penetration Test Borings

' A total of 23 Standard Penetration Test (SFT), split-spoon sampled soil borings were used to characterize the soilin the general vicinity of the intake canal. STS reviewed seven (7) historic SFT borings which used rotary drilhng techniques which were located closest to the canal.

This work was done for plant design during October 1967 for Dames & Moore. Three SPT test borings were made by SIS on April 18 and 19,1996 and thirteen (13) SPT test borings were completed between May I and 14,1997 along the canal crest, side slopes and floor. SPT ' )

drilling at Boring B-7 is shown in Photo 5. The locations of all borings are shown on Figure 1. I Table 1 summarizes the location, surface elevation, project grid coordinates, e.nd date of completion for each of the STS borings. Copies of STS and Dames & Moore boring logs are attached in Appendix D.

STS performed the SPT borings using a Central Mine Equipment (CME-750), all terrain l

l vehicle drill rig for both land and barge borings. We used 3.25-inch, inside-diameter, hollow l stem augers above the ground water table to maintain hole stability. Bentonite and water drilling fluid was used to maintain hole stability below the water table. A 3-inch diameter, side discharge, tricone roller bit was used to advance the hole through submerged sands.

l Borings were extended to El. 635 to 620. The SFT drilling and sampling was performed in accordance with ASTM D-1586.

S15 used a CME automatic trip hammer to obtain SFT blowcounts. The STS automatic trip hammer energy was calibrated by Goble Rausche Likms and Associates, Inc. (GRL) at the LTV Steel Mining Company's iron ore tailings facility on June 17, 1996 in northeastern Minnesota. For the depths of interest, i.e. from 5 to 67 feet, an average energy factor (ER) of 69 percent was measured. A copy of the GRL SPT energy measurements is presented in i.

11 kpr i.:8723 A/r123a003. doc

(

{

l L

\

L Prairie Island Nuclear Generating Plant STS Project No. 28723-A June 24,1997 i l

l Appendix Q. Based on the measured energy, all STS blowcounts were increased by an  ;

energy correction factor of 1.15 to convert from Na to Nw. It was assumed that the 1%7 i l

Dames & Moore borings were performed with a donut hammer as was typical of that period. i Therefore, a conservative correction factor of 0.75 was used to convert No to Nw (Skempton, 1996).

I STS used the standard 2-inch outside-diameter split-spoon sampler with and without 1.375- l inch inside diameter liners. When no liner was used, a median correction factor of 1.2 was I applied per Terzaghi, Peck and Mesri (1996). STS corrected all measured SPT blowcounts to I ton per square foot (tsf) effective overburden stress using the correction factor presented by Liao and Whitman (1986) and supported by Seed and Harder (1990). The correction factor was conservatively limited to 2.0 for confunng stresses less than 0.25 tsf. Finally, a short rod correction factor of 0.75 was used for portions of the borings where the drill rod was less than l 10 feet in length (Seed et al; 1985). Standard penetration test data on samples collected below the ground water table (El. 674) were converted to (N2)w corrected blowcounts. This l

conversion is presented on 23 individual tables presented in Appendix 1.

3.2 Piezocone Penetrometer Tests STS performed eight (8) piezocone penetrometer (Cl TU) tests during April 1996 along the crest of the canal alignment at locations shown on Figure 1. Tabulated exploration elevations and grid locations are shown in Table 1. The CFTU test provided a continuous profile of tip resistance and pore pressure which clearly delineated strata of varying relative density. The CI'TU tests were extended to refusal in medium dense to dense gravelly sand soil from El.

650 to 646. The CI'TU has historically been used to develop detailed stratigraphy of a site while recent advances have been made in correlating cone tip resistance with cyclic stress ratio at sites which have and have not liquefied. STS presented a liquefaction analysis based on CPTU data in the STS report to NSP titled, " Intake Canal Liquefaction Analysis for the I

12 ' Tai.28723 A/r123a003. doc

Prairie Island Nuclear Generating Plant l

STS Project No. 28723-A I June 24,1997 Prairie Island Nuclear Generating Plant" dated July 10,1996. The CPTU data is presented in the 1996 STS report.

Based on consistent stratigraphic data obtained in the CFTU tests and SPT tests, as well as existing survey data and construction records, general soil profiles of the project site were i

prepared approximately perpendicular and parallel to the canal alignment. These cross-sections are presented in Figures 2 and 3, respectively.

3.3 Test Pits STS and NSP excavated three (3) test pits on the north slope of the intake canal over two time periods in March 1997. Test Pits TP-1 and TP-2 were first opened on the north slope of the canal immediately above the pool level on March 19,1997 to obtain bulk soil samples for relative density, triaxial shear strength testing, grain size, specific gravity, water content and visualinspection of the loose sand strata immediately above the water level. Unfortunately, the test pits were performed during a snow storm and only bulk samples could be obtained; therefore, it was decided to re-excavate the pits during less severe weather. Test Pits TP-1 and TP-2 were reopened and a third test pit was added on March 27,1997 to facilitate bulk j soil sampling, water content measurements, and in-situ density testing using sand cone and nuclear test methods. l Test Pit TP-1 was located immediately down slope of Boring B-104 and CFTU-4 and up slope of water boring CS-102. Test Pit TP-2 was located down slope of canal crest boring B-3 and l CPTU-3, and up slope of water boring CS-101. TP-3 was excavated up slope of water boring l CS-102 midway between test pits TP-1 and TP-2. Locations are shown on the site plan in Figure 1.

l i SIS also performed dynamic cone penetration tests within the test pits using a 1-1/8 inch diameter,90-degree cone and a 10-pound hammer falling 24 inches. Testing also included modified SFT tests in TP-1 and TP-2 with an 89 pound hammer falling 18 inches. The

! 13 k:Proj. 28723-A/r123a003. doc l

I

Prairie Island Nuclear Generating Plant

STS Project No. 28723-A June 24,1997 purpose of the penetration testing was to confirm the depth of the loose sand layer. Figures 4, 5, and 6 present plans and sections for test pits TP-1 through TP-3, respectively. Photos 6 thru 12 document the test pit testing procedures and provide a visual record of the natural sand layering. Appendix E presents the results of the field and laboratory tests performed on soil samples collected in the three test pits.

The primary purposes of the test pits were to determine the relative density, water content, specific gravity and void ratio for the loose fine sand layer. Thus after bulk samples were collected from the test pits, a testing program was initiated to determine the relative density and triaxial shear strength of the material. Table 2 summarizes the sand cone density test, water content, specific gravity, gradation indices and relative density estimates for the three test pitlocations.

The lowest measured relative densities were 56.9,59.7, and 56.2 percent based on tests in test pits TP-1, TP-2 and TP-3, respectively. Thus, all of the in-situ measured relative densities are greater than the 1967 defined muumum relative density of 46 percent as shown on Figure. 4.1 ,

in the FSAR, Dames & Moore (1967) report.

3.4 Spectral Analysis of Surface Waves (SASW) Testing Shear wave velocity data presented within the FSAR report prepared by Dames and Moore in 1967 was based on refraction seismic methods. These procedures were suitable for locating the bedrock surface; however, review of the data by STS indicates that the velocities reported below the water table level (approximately El. 674) were likely indicative of the compression wave velocity of water rather than of the soil. For this reason, a site specific determination of shear wave velocity data based upon 1997 methods was performed. STS elected to perform Spectral Analysis of Surface Wave Tests (SASW) due to the fact that a large volume of soil could be tested rather than using cross-hole testing techniques at isolated locations.

14 k proj. 28723-A/r123a003.dx I

I

l Prairie Island Nuclear Generating Plant STS Project No. 28723-A June 24,1997 i Geophysical testing was performed between March 10 and 11,1997 by Dr. Kenneth H.

Stokoe, P.E. and his technical associates from the University of Texas at Austin. Testing was performed along four alignments adjacent to the intake canal. Data was obtained to maximum depths of T/5 feet. The testing was performed by laying out a series of geophones along a linear alignment. Then, a 1,000 pound weight was dropped from a crane using various heights to act as an energy source. SASW testing at Alignment No.1 is shown in Photo 13.

Resulting shear wave velocity determmations for the four alignments is summarized in Figure 7. This figure demonstrates the close agreement that was measured at the four test i

locations indicating the consistency of the site soils. Figure 7 also includes the average shear  !

l wave velocity with depth that was adopted by STS for use in the dynamic analysis. Dr.

Stokoe's report, which details his SASW test results, procedures, calibration checks and j several case study comparisons between SASW and cross-hole shear wave data, is presented in Appendix 0.

S'IS also reviewed existing empirical studies which correlate SI'r blowcount to shear wave  !

velocity data. Estimated shear wave velocities from blowcounts are presented in Figure 8, using procedures by the U.S. Army Corps of Engineers as published in Miscellaneous Paper GL-87-22, by David W. Sykora (1983). The shear wave velocity is correlated with SFT blowcounts corrected for energy effects (Noo), but not with overburden. Ti.e average shear wave velocity envelope adopted from the SASW testing is also shown on Figure 8. Clearly, the SASW envelope has a higher, but parallel velocity trend when compared with the empirically predicted shear wave velocities. The agreement is considered reasonable given the large scatter of the empirical data. The empirical procedure was used to predict shear wave velocity values within fill materials underlying the base of the canal and adjacent to the existing structures where acNal geophysical tests could not be performed.

I 15 k:Proi 287'3-^/'123' U3 d c

Prairie Island Nuclear Generating Plant STS Project No. 28723-A June 24,1997 3.5 Design Water Level Between May I and June 3,1997 STS and NSP measured ground water elevations in two wells at the site. STS monitored water levels on the north canal crest at Boring B-104 located approximately 60 feet from the canal water line and at an NSP piezometer PZ-7 located about 130 feet south of the canal water edge. Figure 9 illustrates the ground water well levels and canal / river elevation versus time during the receding spring flood. It is noteworthy that the slope of the canal / river recession rate is nearly equal to the ground water recession rate.

Based on the plotted data, it appears the ground water levels trail the canal / river levels less than one foot in the sandy soils within 75 feet of the canal edge. Since rates of ground water recession nearly equal the canal / river water recessional rates it would be reasonable to assume that river levels and stabilized ground water levels 60 to 100 feet away from the canal water line match within 0.3 to 0.5 feet since the sands are very permeable and have less than I five percent passing the No. 200 sieve. Further, the electric piezocone measured water levels in the cone probes closely matched the river levels measured during April 1996. The piezocone data is presented in our July 10,1996 report to NSP.

Based upon moisture contents and observations from the three test pits, it is apparent that the maximum height of capillary rise at the site is limited to approximately 0.5 feet. This value is consistent with the height of capillary rise that could be expected for the fine to medium sand .

1 that exists near the water table level at the PINGP site.

The initial analysis by STS in July 1996 was based on an assumed normal operating pool level of El. 673.5. This value has subsequently raised to El. 674 for the SIS analyses presented in February 1997. To choose the appropriate water level for seismic analysis design, S15 reviewed the September 1997 NRC regulatory guide 1.135, Section B for guidance. This document states the following:

l l

16 k Pmj M23-Ah123aW3. doc

. . ,. -. -. - ~ . - . _ - . - . - _ . - . ~ _ .- . . -

!

  • f L i l ...

Prairie Island Nuclear Generating Plant  ;

- STS Project No. 28723-A -

June 24,1997 i

"Since the design basis events have a very low probability of occurrence, the water table (or discharge) used'in combination with the design basis event need not i l-represent a condition with low probability of occurrence. As used in this guide, the term normal water level (or discharge) means that water level (or discharge) that has a probability of approximately 0.5 of occurrence at the time of interest." .

t

. Based upon this information, STS reviewed historical Mississippi River level data at Lock and Dam No. 3 available from the Corps of Engineers. This information is summarized on Figure f
10. Based upon historical data, the water level with a 50 percent probability of occurrence is i.

equal to approximately 673.9 feet. For simplicity sake STS adjusted this value to El. 674.

Thus, the El,674 is met 55 percent of the year. The use of a higher water table level is not warranted, since the p obability of a higher water table occurrence decreases rapidly. The use -

of a low probability occurrence flood level in conjunction with the very low probability :

occurrence of the DBE is not warranted based upon the previously referenced regulation i

guide.

The Prairie Island USAR is not specific in terms of the actual river level versus time. The USAR states a normal river of 674.5 feet. However, there is no supporting information on fluctuations, other than that fluctuations do occur. For this evaluation (the finite element I

analysis), it is appropriate to use the guidance of Reg Guide 1.135. Although the time frame evaluated does not meet the 50 years stated in Section C.2(a), the time frame evaluated does exceed the mimmum of 12 years stated in Section C.1(b). Therefore, using a normL1 river level of 674 feet is appropriate for the static and dynamic stress analysis.

To be conservative, however, for post-earthquake stability analysis, a higher water table elevation of 675 was used to account for the combined effect of capillary rise and water level rise due to pore pressure increases during shakmg.

8' 17 k P428Nh123aM3. doe

, - -- - . _ . . . . ~ . . - - - . . ~ - . -.- -. . - ,

4 L

Prairie Island Nuclear Generating Plant STS Project No. 28723-A June 24,1997 .

l l

4.0 LABORATORY TESTING l

This section describes the laboratory testing that was performed on soil samples obtained and l tested during the winter and spring of 1997. Laboratory testing was performed by STS  :

l Consultants, Ltd. (STS) in Northbrook, Illinois and in Minneapolis, Minnesota; and by gel Consultants, Inc. (GEI) in Winchester, Massachusetts. Complete laboratory test data and

i. results are presented in Appendix E.

?

I 4.1 Index Property Testing l

I i 4.1.1 Grain Size Analyses l

l STS and gel performed a total of 18 grain size analyses in accordance with ASTM D-422 on I

six soil samples taken from test pits TP-1, TP-2 and TP-3 between El. 674 and 675. Bulk samples and all sand cone density soil samples were analyzed. Figures 11,12 and 13 illustrate the grain size curves for the samples collected from the tluee test pits. Test results j generally show the material to a be a uniform fine sand, with trace silt, and trace fine gravel-(SP). The close match in grain size of all test pit samples indicates the uniform horizontal nature of the sand deposits.

l l

Grain size analyses were also performed as a function of depth on samples obtained from the -

SFT soil borings. These grain size tests (shown in Figure 14) indicate that the materials ,

become coarser and more well graded with depth. The maximum fines (material passing the No. 200 sieve) content in all samples tested was approximately 5 percent.

l' i

I

]g k;proj. 28723-A/r123a003. doc l-e

l.

. Prairie Island Nuclear Generating Plant .

STS Project No. 28723-A

. June 24,1997 V

4.1.2 Specific Gravity Testing i

l STS performed three specific gravity tests on bulk samples from test pits TP-1, TP-2 and TP-3 )

j in accordance with ASTM D-824 procedures. . Tests yielded specific gravity results of 2.68,  ;

1 2.64 and 2.70 for bulk samples from TP-1, TP-2 and TP-3, respectively. Specific gravity tests ~

l

! were performed to provide the fundamental properties necessary to calculate the material )

void ratio.

, 1 l  !

4.1.3 Relative Density Testing STS retained GE1 to perform maximum and minimum dry density testing on bulk soil samples from test pit TP-1, TP-2 and TP-3 so that relative densities for each of the in-situ sand cone density tests could be computed. GEI followed ASTM D-4253 wet and dry methods to compute maximum dry densities and.used ASTM D-4254 procedures to compute mimmum dry density. Test results are presented in Table 3.

i I

!. 4.1.4 ' Proctor Density Testing STS also performed two Modified Proctor tests (ASTM D-1557, A) to compute the maximum dry density on bulk sand samples from test pits TP-1 and TP-2 in an effort to gage the difference in the maximum density test results using ASTM D-1557, Method A, versus ASTM l D-4253 procedures. The Modified Proctor tests resulted in higher maximum density values  !

as shown in Table 3. The optimum moisture density relationships are shown on exhibits in Appendix E. Testing was performed in accordance with ASTM D-1557, Method A, l procedures.

t.

19 LTm).287D-A/r123a003. doc

Prairie Island Nuclear Generating Plant STS Project No. 28723-A June 24,1997 4.1.5 Consolidation Test A one-dimensional consolitlation test was performed on a relatively loose sand specimen fabricated to represent loose sand from test pit TP-2. The test was performed to obtain the recompression index for sand under less than 2,300 psf vertical overburden stress. STS used ASTM D-2435 test method for the consolidation test. The consolidation test was performed to estimate the potential height of water table rise as a result of seismic shakmg.

4.1.6 Triaxial Permeability Test Two vertical triaxial permeability tests were performed on reconstituted specimens to determine' the permeability of the sand. The computed permeability was 1.3 x 10-3 and 8.4 x 10 -4 centimeters per second for void ratios of 0.686 and 0.725 on specimens from TP-1 and TP-2, respectively. STS used ASTM D-5084, Method C procedure using the triaxial cell as the-equipment to facilitate the testing.

4.1.7 Sand Microscopy l

STS observed and photographed sand particles from bulk samples from test pits TP-1, TP-2 l and TP-3 to examine mineralogy and angularity. The sands under a microscope magnification power of 40x to 50x appear uniform in size on background grid paper marked with 50 lines per inch. The sand was sub-rounded to sub-angular with the majority of sample j a hard, light brown, to clear, quartz sand. The sand specimens are shown in Photos 14 through19 in Appendix C.

20 kT r4 28723-A/r123a003. doc I

l

, ~ . - . - - . - . - _. . ._-.- . . . - . - . _. . . - . - - .- - - ._ -

!. Prairie Ishnd Nuclear Generating Plant l STS Project No. 28723-A

! June 24,1997 s

l. .

4.2 Triaxial Shear Strength Testing i

STS obtained bulk samples from Test Pit No. I and 2 located in the relatively loose zone of  ;

l natural fine sand, trace silt between El. 673 and 674.2 feet along the north side of the canal.

I Samples'were collected to obtain grain size, relative densities, specific gravity and stability .

analysis shear' strength parameters for the layer of concern. STS pe'r formed a total of 12 l l isotropically consolidated, undrained tnaxial compression tests (CIU) with pore pressure measurements and two isotropically consolidated drained triaxial compression tests (CID) on reconstituted sand samples. The strain controlled triaxial testing was performed in -

.accordance with procedures described in ASTM D-4767, U.S. Army Corps of Engineers (EM i

.1110-2-1906, Appendix X). .

p 1 The goal of the program was to obtain site-specific drained and undrained angles of internal friction for reconstituted sand at varying confining stress and void ratio for the known loose fine sand layer at the site. The program also allowed us to establish undrained residual or steady-state shear strength versus void ratio for the range of measured in-situ void ratios from sand cone density testing in excavated test pits along the canal.

l L 4.2.1 Static Angle of Internal Friction j

S'IS performed 12 CIU' tests and two CID tests. The results of these tests are presented in  !

Tables 4 and 5 which present the summary strengths and test information for the undrained and drained triaxial tests, respectively. Selected tests for a range of void ratios are shown in )

terms of Mohr-Coulomb, effective stress, shear strength failure envelopes and are presented l

l on Figures 15,16,17 and 18. A summary of the effective stress friction angle measurements at maximum obliquity or maximum principal stress ratio (or '/o3') are presented in the table j below for the loon natural sands above El. 671:

l I

i 21 k mi.

P 28723.A/r123a003. doc 1

Prairie Island Nuclear Generating Plant STS ."roject No. 28723-A June 24,1997 Type of . No. of Lowest Highest Average Analysis TriaxialTest Tests # # # #a.

degrees degrees degrees degrees -

TP -1 CIU' 3 31.1 37.0 33.8 31 Undrained TP-2 CIU' 9 . 27.3 36.9 33.1 31 Undrained TP-2 CID 2 30.6 32.1 31.4 31 Drained Based on this information, a friction angle of 31 degrees was selected for use in the st stic i stress and slope stability models for the loose fine sand layer between El. 686 and 671. The adopted value is conservative. However, it exceeds the 30 degree value originally used by .l Dames & Moore in 1%7 and used by STS in our previous July.1996 and February 1997 analyses. Figure 19 illustrates the similarity of gradations for the materials tested for relative density at GEI Consultants, Inc. and for triaxial strength at S15.

r Although no triaxial tests were performed by STS on sand samples below El. 671, a static friction angle of 32 degrees was adopted for the medium dense sands between EL M7 and 671 ,

and 33 degrees for dense sands below El. 647. The increase in strength is based on increased i relative density of the more well graded materials at depth. These deeper sand layer shear strength parameters match previous STS adopted friction angles and are less than the 1%7

. Dames & Moore recommended shear strength parameters (e.g., see Plate 5.7 in the FSAR which recommends 35 degrees from El. 669 to 640 and 39 degrees below El. M0). We also adopted a friction angle of 33 degrees for all compacted structural fills next to the l powerhouse and beneath the canal bottom.

i-  !

I 22 k'Proj. 28723-A/r123a003. doc

- . - - . - . . . .- - - . . - . _ - - - -.-. _ . - . - - .~....- -. - ..

Prairie Island Nuclear Generating Plant STS Project No. 28723-A  :

June 24,1997; l

L 4.2.2 Steady-State Shear Strength Testing

[

Two fine sand samples were collected from test pits TP-1 and 'IP-2 and reconstituted using l moist tamp methods at void ratios spanrung the range of in-situ measured void ratios I-j computed from field sand cone density, and laboratory measured moisture content and specific gravity tests. Twelve CIU' and two CID, strain controlled, triaxial tests were sheared .

to deformations generally equal to 20 percent vertical strain to establish steady-state or j j residual shear strength versus void ratio relationships for the loose sands. Steady-state shear strength testing generally followed the procedures outlined in Poulos (1981); Poulos, Castro -  ;

~2 l and France (1985); and Castro, Keller and Boynton (1989).

The vast majority of the tests demonstrated early or low strain contractive (positive pore  !

pressure development during undrained shear) behavior, but nearly all of the samples became strongly dilative (negative pore pressure development) at high strain, even at high' void ratios above measured in-situ conditions. Figures 20 and 21 illustrate the measured steady-state undrained or drained shear strength results at high strain. Tables 4 and 5 also i i

summarize the end-of-shear void ratio and steady-state shear strengths. In general, for void j l

ratios in excess of 0.7 for TP-1 and 0.8 for TP-2 fine sand material, the measured steady-state, -

So or residual undrained shear strength, Sr,is in excess of 2,000 pounds per square foot (psf),

with definite dilative behavior at high strain. Appendix E presents individual triaxial shear l

test results with stress paths and pore pressure response versus vertical strain. l l . Tnaxial shear strength tests were not performed on material from Test Pit TP-3 since the grain size analysis for these samples were very similar to Test Pit TP-2. However, a graph was prepared for the void ratios measured in TP-3 using the steady state strengths measured in Test Pit TP-2. This graph is shown in Figure 22.

t

?

l 23 k:Proj. 28723-A/r123a003. doc l

l

1 i Prairie Island Nuclear Generating Plant

! STS Project No. 28723-A i June 24,1997 i l 5.0 PINGP SOIL PROFILE Based on consistent stratigraphic data obtained in the eight (8) CPTU tests and twenty-three

! (23) SPT tests, as well as existing survey data and construction records, general soil profiles of the project site were prepared approximately perpendicular and parallel to the canal alignment. These cross-sections were presented in Figures 2 and 3, respectively. These soil profiles show the stratigraphy at the site is essentially horizontal. Four main soil units were encountered consisting of compacted sand fill below the bottom of the canal; loose fine to medium sand trace silt from El. 687 to 671; medium dense, fine to coarse, more widely graded sand, trace silt, from El. 671 to 647; and coarser medium dense to dense gravelly sand from El. M7 to 515. Weathered sandstone bedrock was encountered in the 1%7 borings from approximately El. 515 to 495 with intact sandstone below.

The sta'.ic and dynamic soil parameters used for the main soil units identified above are summarized in Figure 23, while a discussion of the geotechnical parameters assigned to each soil unitis presented below:

l Compacted Sand Fill Compacted sand fill was encountered at locations and elevations shown in Figures 2 and 3.

Typically, the fill consisted of dense sand with variable quantities of fine gravel. The fill was encountered from the surface at El. 694 to approximate El. 686 at locations near the intake canal. Based upon SI7r borings performed in the base of the canal, dense compacted sand fill was encountered from EL 6M to El. 645. Construction records shown in Appendix N established that compacted sand fill or uncompacted non-li.luefiable gravel was utilized l from El. M5 to El. 635. Sand and gravel fill encountered within Boring B-6 confirmed the extent of foundation excavation and backfilling adjacent to the power plant structure.

24 KP roi.28723-A/riz3aco3.aoe l

_ . _ _ . _ _ . _ . . _ . . _ _ . _ . . . ~ _ _ _ _ _ _ . _ . _ . _ . . - . . - - . .

Prairie Island Nucitar Generating Plant i STS Project No. 28723-A -  !

June 24,1997 -

l A moist unit weight of 120 pounds per cubic foot was adopted for sand fill above El. 674. A I saturated unit weight of 125 pcf was utilized below El. 674. Though not specifically tested, l a conservative drained friction angle $'a, = 33' was adopted for all zones of compacted '

sand fill. The median corrected SI7 blowcount (Ni 60) was 49.3 indicating the dense  !

. condition of the material.

l L Loose Sand, Elevation 686 to Elevation 671 l

~

h The CIU tests, sly tests and test pits performed at the site confirm that loose sand layer ]

exists at the site and extends to a depth of approximately El. 670 to 672. El. 671 was adopted for the computer modeling. Most of the laboratory index testing and strength I testing was concentrated within this layer since the borings and Cli test clearly indicated

. that it is the loosest sand layer at the site. Based upon the laboratory and in-situ density-

j. tests, a moist unit weight for the loose sand of 110 pcf was adopted above El. 674 and a l saturated unit weight of 115 pcf was adopted below El. 674. A conservative' drained friction angle $'a, = 31' was adopted for this zone based upon laboratory triaxial tests performed at low confining pressures, consistent with the overburden stress existing in the field. Relative density, D,, computed from the field sand cone density tests were greater l

than 56 percent. However, to be conservative a relative density value of 45 percent was i assigned to this soillayer. The median corrected (Ni)6o and blowcount for the loose sand below El. 674 was computed to be 6.1 blows per foot.

Medium Dense Sand, Elevation 671 to Elevation 647 t

Typically medium dense, fine to coarse sand was encountered from El. 671 to 647. Grain size analyses performed on soil samples from this zone indicated generally more well 1 graded material and a higher gravel content than existed above El. 671.  ;

i 25 K:Proj.28723-A/t:23a003. doc I:

~ - - - , . - , . -

L . Prairie Island Nuclear Generating Plant  !

j STS Project No. 28723-A I

June 24,1997 i

A total unit weight of 125 pcf was adopted for this material. A friction angle $'s = to 32' I was adopted. The increase above the 31' measured for the loose soil layer was based upon the increased (Ni).o bicwcounts with depth. The relative density adopted for this layer was 55 percent which is conservative considering that the lowest measured relative density for

j. the loose sand at approximately El. 675 was 56 percent. The median (Ni).o blowcount within this soil unit was 12.6 blows per foot.  ;

l  ;

Medium Dense to Denw Gravelly Sand, Elevation 647 to Elevation 515  !

I From elevation 647 to the surface of weathered sandstone at elevation 515, typically j t

medium dense to dense sandy gravel or gravelly sand .was encountered. All CPTU tests performed 'at the site in 1996 met refusal at the surface of this layer due to its density and ,

L gravel content. A drained friction angle, $'a = 33* was adopted for this material zone. A [

soil unit weight of 130 pcf was used. A conservative relative density value of 55 percent i was adopted for the triggering analysis. The median (N )6o corrected blowcount was 16.0 from El. 647 to El. 620, and slightly higher at 17.6 from El. 620 to El. 515. , . .

I s

Sandstone, Elevation 515 and Below

)

l 1

1

- Based upon 1%7 Dames and Moore soil borings, sandstone bedrock was modeled at El.'

515. Approximately the upper 20 feet of the sandstone was weathered based upon low core

. recoveries which averaged 36 percent for twenty-one (21) core runs and ranged between 0 and 85 percent. The unit weight of the sandstone was estimated to be 155 pcf. The shear wave velocity of the weathered sandstone was estimated to be 2,500 feet per second (fps) based upon SASW testing. A shear wave velocity of 5,000 fps was used for solid sandstone bedrock below elevation 495 based on 1%7 seismic refraction data presented in the FSAR.

L I- The above described idealized profile was generally supported by all of the CPTU tests and soil borings which were performed with the exception of Boring B-100. Within Boring B-26 K Proj28mh12MB. doe

[ ,  ; -. . - . - ~ - -

I Prairie Island Nuclear Generating Plant

,. STS Project No. 28723-A -

l - June 24,1997

! 100, very loose to loose sand was encountered from the ground surface extending to El. 645.

Boring B-100 was placed within 10 feet of CM-1A as shown on Figure 1. Due to the uncharacteristically low blowcounts and differing soil conditions found at this one location, two additional soil Borings B-101 and B-102 were extended on either side of and within 10 -

feet of Boring B-100. Boring B-101 and B-102 encountered loose sand extending only to El. .

671 to 674 typical of the general PINGP site profile. Below El. 6/1, SPT blowcounts of 11 to

l. 20 were measured within Boring B-101 and B-102 in comparison to blowcounts of 3 which  :

were, measured within Boring B-100 in the same depth interval. Based upon this

information it seemed clear that the soil at the location of Boring B-100 was disturbed and is l

\ 1 l likely the location of a previously existing 12 inch diameter pumping well which was used  ;

i l at the site for construction dewatering. - Performing the additional soil borings surrounding i

! B-100 indicated that the low blowcounts are an isolated phenomenon which at most l l t j comprises a cylinder of soil perhaps 10 to 15 feet in diameter.

l Despite the fact that the low blowcounts are not indicative'of the entire PINGP site, the data was not excluded from the liquefaction analysis. Rather, the low blowcounts were utilized ,

l with equal weight in the determination of median (Ni)w values within the various soil l units. Use of this anomalous SM data within the data population to determine the median (Ni)w blowcount for the entire site is conservative.

l i l

l l l l l

j 27 K pro [28723-A/r123a003. doc

~ _ __ .-. . _. _ _ ., . _ _ - - - . , - . - - , _

l .

Prairie Island Nuclear Generating Plant ,

STS Project No. 28723-A .
June 24,1997 i 6.0 STATIC STRESS ANALYSIS The first step in performing the dynamic analysis for the project site was to determine the  ;

static stresses which exist throughout the soil profile prior to the earthquake. Specifically, vertical effective stress, c'v, and horizontal shear stress, Thy, Were required. These l l parameters were estimated utili7ing the computer code FEADAM84, (Duncan, et al.,1984)

Version 1.3 which is available from Engineering Computer Software. FEADAM84 is a two-  !

! dimensional finite element program which can.be used for determuung stresses and 1

displacements within soil masses. Both non-linear soil properties and linear elastic soil  !

l properties can be modeled. The purpose of the static analysis for this study was to .

L determine initial stresses only and thus, the elastic soil model was used. Soil parameters used in the analysis are summarized in Figure 23. Soil strength parameters were based on l laboratory triaxial testing and in-situ SPT blow count data. Soil moduli were similarly- .

l estimated from Sl4 blow count data. Soil unit weights were estimated from field density  !

tests and adjusted throughout the soil profile based on depth and relative density estimated .

!~ from SIU blow count data.

i A representative essentially north / south section of the intake canal was modeled as shown in Figure 23. The idealized cross-section was based on construction records of excavation u

and fill boundaries, expanded existing survey data and stratigraphic information obtained by STS in the 1996 and 1997 soil explorations. The finite element mesh was extended to a distance of 900 feet north and south of the intake canal to model free field conditions for the subsequent dynamic analysis. Fill zones at the base of the intake canal and at the south bank of the canal which represent excavation and compacted fill replacement beneath the powerhouse were modeled. Similarly, a portion of the model was assigned high stiffness values to represent the rigid powerhouse structure. The finite element mesh utilized in this ]

study is shown in Figure 24. The base of the finite element mesh was extended to El. 620 I i within dense gravelly sand. This depth was judged to be sufficiently deep below the j 28 K:proj.28723-A/r123a003. doc l' l

.. - . . - - - ~ . . . . . ~ , _ . _

i

' Prairie Island Nuclear Generating Plant STS Project No. 28723-A June 24,1997 surface of previously identified zones of non-liquefiable material while providing an adequate number of nodes and elements to define the problem geometry.

l Contours of the computed vertical effective stress, o'v, from the FEADAM84 analysis are shown in Figure 25. The computed shear stresses on horizontal / vertical planes, thy, are  ;

shown in Figure 26. The ratio, a, of the shear stress to vertical effective stress, a = thv/o'y is shown in Figure 27. The value of a thus computed was utilized to determine values of K.,

{

the correction factor from Seed and Harder (1990) for sloping ground conditions in subsequent portions of the liquefaction triggering analysis. The vertical effective stress, c'v, was used in computations of cyclic stress ratio.

i Complete results of the FEADAM84 analysis are presented in Appendix F. l l

l l

'l i

j 29 K;Proj.28723-A/r123a0(Edoc

7 ..

~

l:

i-Prairie Island Nuclear Generating Plant  :

STS Project No. 28723-A

- June 24,1997 -

7.0 DESIGN EARTHOUAKE l

r l The Design . Basis Earthquake (DBE) event for the PINGP site was defined in the FSAR l prepared by Dames and Moore in 1967. The FSAR defined the DBE as a Richter Magnitude 1 -

l 4.5 earthquake occurrmg at an unknown fault immediately below the site. Based on subsequent review by the NRC,it was determined that the DBE for this dynamic analysis would be represented by a Richter Magnitude 5.0 earthquake occurring approximately 15 kilometers from the site. The peak free field horizontal ground acceleration was selected as '  :

being 0.12g defined at the surface of a " firm" site. The peak vertical acceleration was defined as 67 percent of the horizontal acceleration or 0.08g. The duration of the event was estimated as 10 seconds.

The DBE input motions for the dynamic analyses were derived from the Operating Basis  ;

Earthquake (OBE) response spectra. Two independent time histories for the OBE level [

were developed by Stevenson and Associates, Inc. (1997) to match the 5% damped response spectrum shown on Plate 4.5 of Appendix A of the FSAR. Guidance provided in the  !

NUREG 0800, Standard Review Plan (SRP), Section 3.7.1, Revision 2 was utilized for the i

\

time history parameters. The response spectra of the OBE motions and the time histones are shown in Figure 28 and 29, respectively. Power spectral densities, calculated m accordance with Appendix A of the SRP, showed acceptable power content in the frequency range of interest. The power spectral density curves are shown in Figure 30. The OBE motions were scaled appropriately to provide a peak horizontal acceleration of 0.12 g  !

and a peak vertical acceleration of 0.08 g to represent DBE motions. The assumptions and

  • derivation of the synthetic time histories is discussed in Appendix P.

L L In our opinion, it is conservative to use synthetic earthquakes rather than actual records for soilliquefaction studies. This is due to the fact that actual recorded earthquakes typically j l

L 30 KP428m/r12wn. doc fg - - - -mui=-- v 3, - e e c' --- m-: t v- w- - '-v-- w-

w .

Prairie Island Nuclear Generating Plant .  !

STS Project No. 28723-A  ;

June 24,1997 display considerably narrower frequency content and less energy than is required to fully I match an envelope type site response spectrum. Dynamic analyses performed in the f i

original FSAR for the PINGP site were performed utilizing the Taft =and El Centro, ,

California earthquake records.  :

e k

i i

I i

'i i

l I-i  !

)

31 Kpm).28723-A/r123e003. doc

- ~ . .. n --- . . . . . . - - .. . . - .. - -. - . . . - - .- . . _ -

i Prairie Island Nuclear Generating Plant STS Project No. 28723-A  ;

_ June 24,1997 <

)

8.0 SHAKE 88 ANALYSIS ,

l 1 t

e I '

l Due to the constraints imposed by some of the finite element computer codes, the entire l PINGP site from the ground surface to the bedrock surface was not modeled by finite

!' element procedures. Rather, a one dimensional wave propagation analysis utilizing the ,

. SHAKE 88 computer program, (Schnabel et al.,1972) was used'to propagate the design earthquake from the bedrock level at El. 515 up to El. 620 which was established as the base l

level for the static and dynamic finite element analyses. The SHAKE 88 analysis was also .

]

used to estimate peak cyclic shear stresses for the free field condition which were ),

i .

subsequently compared with the shear stresses obtained from QUAD 4M to confirm the  ;

L

I agreement of the two computer models.

i l

l The free field condition at the PINGP site was modeled based upon parameters shown in l Table 6. Shear wave velocity parameters and resulting dynamic shear moduli were based upon the site specific SASW testing. Based upon a review of the deep borehole data and .

geophysical refraction data performed by Dames and Moore within the original FSAR, the i

surface of weathered sandstone was modeled at El. 515. The SASW testing indicated that  !

the shear wave velocity of this layer could be on the order of 2,200 feet per second (fps).

This velocity is consistent with the 1967 Dames & Moore boring logs B-3 through B-12 1

which show the sandstone to be weathered with low core recoveries. The average recovery was 36 percent based on 21 core runs and ranged between zero and 85 percent. A conservatively higher value of 2,500 fps was utilized in the analysis. The thickness of the weathered rock zone was estimated at 20 feet based on existing borehole data from borings i B-3 and B-12. A shear wave velocity of 5,000 fps was utilized for sound sandstone below El. 495. The idealized PINGP free field conditions were shown in Figure 23.

I Analysis of the horizontal and vertical components of the DBE earthquake records were

performed using separate SHAKE 88 runs. The horizontal component was modeled with a 32 Kpr428MA/rmaWidoc

t

(

!i Prairie Island Nuclear Generating Plant STS Project No. 28723-A June 24,1997 peak acceleration of 0.12 g and was applied at a rock outcrop of the weathered sandstone at  !

-El. 515. Thus, no deconvolution of the motion was performed. This motion was 1 propagated up through the free field column and the resulting acceleration time history at El. 620 was computed utilizing strain compatible properties for soil moduli and damping  !

' factors. The resulting acceleration time history with a peak value of 0.084g was entered into the QUAD 4M analysis. Horizontal accelerations at the rock outcrop, at El. 620 and at the surface of the free field condition are shown in Figure 31. Peak cyclic shear stresses from - l the horizontal SHAKE 88 analysis for the free field condition as a function of depth are shown in Figure 32.

The vertical components of the DBE motion were modeled in the SHAKE 88 analysis as I

vertically propagating compressional waves. For this analysis, the strain compatible values L of shear modulus and damping were extracted from the final iteration of the horizontal acceleration analysis. The strain compatible shear modulus values were utilized to calculate a constrained modulus for the vertical motion above the water level. Below the water level, a constrained modulus consistent with the dilatational wave velocity of water .

l was used. The final strain compatible damping values from the horizontal analysis were l

divided by 3.0 to represent the lower damping associated with the vertical propagation based on consultations with Drs. Idriss and Castro. The vertical component of the DBE was scaled to 0.08 g and was entered as a rock outcrop motion at the surface of the weathered l

sandstone. This motion was propagated up in a manner similar to that previously described for the horizontal motions, but without further iterations for strain compatibility.

I The resulting vertical acceleration time history at El. 620 with a peak value of 0.081g was used as input to the QUAD 4M analysis. The resulting vertical accelerations at the rock l

l- outcrop, at El. 620 and at the surface of the free field site are shown in Figure 33.

l:

The SHAKE 88 program was also used to perform a sensitivity study where the parameters of shear wave velocity were varied by plus or minus 20 percent to determine the effect on the resulting cyclic shear stresses. This analysis was performed for the horizontal 33 K mj.28723.A/r123a0(B.

P doc

. . - - - -.- .- - . . - . . . - . . . . - ~ . ~ . . _ . - . - - . . . . . .

t O

~ Prairie Island Nuclear Generating Plant i

STS Project No. 28723-A June 24,1997 l component of the DBE and the resulting variation in peak cyclic shear stresses as a function of depth is shown in Figure 32. This analysis indicates that a plus or minus 20 percent t -

j difference in measured site shear wave velocity results in negligible increases in cyclic shear stresses within the critical soil layers between El. 664 and El. 674.

i i

l Complete results of the SHAKE 88 analysis are presented in Appendix G.

i l

t l

1 l

l l

l l

l I

l l

l l

l l' l

I I '

i l

l 34 K:proj.28723-A/r123a003. doc l

l l

r L .

Prairie Island Nuclear Generating Plant L S'IS Project No. 28723-A June 24,1997 i-9.0 DYNAMIC STRESS ANALYSIS A two dimensional dynamic finite element analysis was performed utilizing the computer L code QUAD 4M (Hudson, Idriss and Beikae,1994) available from the . University 'of California at Davis. The purpose of the dynamic analysis was to model the geometry and l varying soil conditions at the PINGP site. The idealized soil profile was shown in Figure

{ 23. As can be seen in this figure, fill zones below the intake canal and adjacent to the power I plant structures at the south side of the canal were modeled. The finite element mesh was extended approximately 900 feet on either side of the center line of the intake canal so that free field conditions could be modeled properly on the north side of the canal. At the south-

j. side of the canal high stiffness values were assumed for portions of the finite element mesh which represent the power plant structures. The base of the finite element ' mesh was
- established at El. 620 within the zone of dense sand and gravel, below all previously defined liquefaction susceptible soil zones.

l One of the most important soil parameters entered into a dynamic analysis is the. soil stiffness as defined by shear modulus. Shear modulus values for the dynamic analysis  !

i were determined from the site specific SASW shear wave testing. The majority of the l SASW testing results were obtained approximately 60 feet north or west of the crest of the intake canal. At these locations, the SASW test results represent free field conditions where  ;

the ground surface elevation is approximately El. 693. It was necessary to adjust these free j i'

field shear wave values, b to be consistent with the level of overburden existing beneath l~

the slopes and bottom of the intake canal. The shear wave velocity adjustment for overburden stress was performed for each element of the finite element mesh within the l calculation spreadsheet presented in Appendix H. The existing vertical effective stress, o'v, in all elements was obtained from the FEADAM84 analysis. Thus, the effective vertical L-stress, o'vo, obtained 60 feet from the north crest of the intake canal was representative of l the overburden stresses existing at the time and location where the SASW testing was 35 KPmj.28723-A/r123a0(D doc l:

. l 1

Prairie Island Nuclear Generating Plant STS Project No. 28723-A t' June 24,1997 i

l l

performed. The 6 ear. wave velocities for each soil element were adjusted for overburden effects based on the formula V. = W x (o'v/o'vo) 1/4 l

l Also, appropriate shear wave velocity parameters were selected for the zones of fill material below the base of the intake canal and adjacent to the power house where shear wave velocity testing was not possible. The initial or free field value of shear wave velocity within fill zones was determined based on the formula presented by Sykora'(1987) as

shown in Figure 8. Based upon this formula and suitable adjustment for site specific l conditions, appropriate shear wave velocities were generated for the fill zones based upon -

- SPT N6a blowcount data. Stiffness values were suitably increased and kept constant within l portions of the finite element mesh which represent locations occupied by building

j. . structures.
The resulting horizontal peak accelerations within each element of the finite element mesh were contoured and are shown in Figure 34. Contours of peak vertical acceleration are l shown in Figure 35. These figures indicate that the peak horizontal and vertical ground l . acceleration at the base and sides of the power plant foundation are approximately 0.12 g L

L and 0.08 g, respectively, These values match the definition of the DBE and indicates the suitability of the analytical model. The peak horizontal acceleration at the surface of the free field condition is approximately 0.13 g. This value compares well with the peak

. horizontal acceleration obtained within the SHAKE 88 runs for the free field conditions as l shown in Figure 36. The peak computed horizontal acceleration at the slope of the intake i

canal is approximately 0.16 g. Horizontal and vertical acceleration time histories from

! selected nodes are shown in Figures 37 and 38.

The main purpose of the QUAD 4M analysis was to compute peak cyclic shear stresses  !

resulting from the combined effects of the horizontal and vertical DBE accelerations.

l Contours of the peak cyclic shear stress are presented in Figure 39. A plot of the peak cyclic

!. shear stress for the free field condition as a function of depth is plotted in Figure 36 with the i i

l d

36 K:proj.2872FA/t123a003. doc l1

. , . ~ ,. _-. - . - - . . .-

_ . . - . ~ . - . . . . . . .- . . . . - . . -

i Prairie Island Nuclear Generating Plant ..

STS Project No. 28723-A June 24,1997 '

peak cyclic shear stresses computed by the previous SHAKE 88 runs. This figure indicates that excellent agreement between the two methods was achieved for the free field conditions. Figures 40 and 41 show the computed peak cyclic shear stress, tyc, and .

effective cyclic stress ratio, CSReq = 0.65 n r e/o'v, on horizontal planes at El. 672.5 and El.

662, respectively.

+

Complete results of the QUAD 4M analysis are presented in Appendix H.

l l

)

i i

i l

l L

i I

J 37 KraiN^n123.co3.aoc

4-l p

Prairie Island Nuclear Generating Plant

, STS Project No.' 28723-A .

June 24,1997.

i l

10.0 LIOUEFACTION TRIGGERING r

I I

In the context of this report liquefaction triggering refers _ to the development of seismically

! induced pore pressures in a specific zone of the saturated sands at the site, in such a manner

!~

that momentarily the effective normal stresses become close to zero. For the current scope of j work, liquefaction triggering was assessed by two independent methods. 'Ihese methods i

L consisted of:

1. Comparing the magnitude of the DBE with known sites that have and have not
liquefied.
2. Assessing the cyclic strength of the project soils based upon SPT blowcount data and a method proposed by Seed and Harder (1990).

10.1 Comparative Liouefaction Analysis The DBE for the PINGP site is represented as a Richter Magnitude 5.0 earthquake occurring l on an unknown fault located 15 kilometers from the site. A' literature review was l performed by the U.S. Bureau of Reclamation to determine the potential for liquefaction to l

occur based upon earthquake magnitude and epicentral distance. Figure 42 summarizes l this information based upon the U.S. Bureau of Reclamation, " Design Standards, Embankment Dams, No.13, Chapter 13, Seismic Design and Analysis", (1989). The postulated Richter Magnitude 5.0 DBE near the PINGP site has been plotted on this graph  !

l 1

m addition to a Richter Magnitude 5.0 earthquake postulated to occur in the Beloit, )

Wisconsin area as discussed in the FSAR. The Bureau of Reclamation defines a lower bound below which no liquefaction at a site should occur as shown on Figure 42. The postulated DBE for the site is well below this no liquefaction limit line. Further, the chart  !

l J

i 38 Kproj.287D-A/r123a003. doc l

t I

-- .. - . _ - - . .. - . - _ .-. . - ~ . - _ - - - . - . . . . . _ -

i p- . Prairie Island Nuclear Generating Plant l STS Project No. 28723-A June 24,1997 l  !

l I

does not indicate any known sites which have liquefied as a result of an earthquake with the Richter Magnitude less than 5.25.

l 10.2 Empirical Liauefaction Analysis by the Seed and Harder Approach l

10.2.1 Methodology Observations of manifestation of pore pressure increases in saturated sand sites (or lack of such manifestations) have been made at many earthquake sites. The observations have ,

t l been correlated to SFT blowcounts, e.g., Seed, Idriss and Arango, (1983), in such a manner

]

that a boundary line between " liquefaction" and no liquefaction has been drawn in a chart l l

l of blowcount versus estimated seismic shear stresses.

I I STS adopted the principles of Seed and Harder (1990) for the evaluation of liquefaction l l triggering beneath the crest, slope and base of the intake canal. Seed and Harders' t

procedures were followed with modifications developed by Dr. I. M. Idriss and Dr. Gonzalo Castro as noted below:

1. Determine the peak cyclic shear stress resulting from the DBE using the program QUAD 4M in accordance with the methods presented in the previous sections of this report. Correct the peak cyclic shear strength by factors & and N based on sloping ground conditions and overburden, respectively. Multiply the peak stress by 0.65 to determine an average or " effective" shear stress. j i

l,

2. Determine the cyclic strength for each element of soil by assigning a median corrected SFT l blowcount (N2)e.

f I 39 K P=i283^/r2::3a003 doc

i ' Proirie Island Nuclear Generating Plant STS Project No. 28723-A L

June 24,1997 ~

l

3. Determine the liquefaction boundary line for the PINGP site by adjusting the published magnitude 7.5, cyclic stress ratio, CSR, versus (Ni)<e blowcount chart presented by Seed, j Idriss, and Arango (1983) as modified by Idriss and Castro (1997). A Magnitude Scaling Factor (MSF) of 1.62 was used to define the liquefaction limit line for the magnitude 5.0 ,

l DBE based onIdriss (1997).

4. Define a second liquefaction limit line for the PINGP site based on peak cyclic shear stress occurring for only one significant cycle of DBE earthquake shaking in accordance with recent work performed by Idriss (1997).

l'

5. Compute the factor of safety against liquefaction, FSt. , by dividing the cyclic stress ratio from the appropriate liquefaction limit line by the corrected cyclic shear stress ratio from .

the QUAD 4M analysis. Define triggering of potentialliquefaction for those elements with FSt. less than 1.1. l e

L i:

10.2.2 Results of Triggering Analysis ~

SIS used a common finite element mesh for prediction of static shear stresses (FEADAM84) and dynamic shear stresses (QUAD 4M) to provide input to a spread sheet program to compute the factor of safety against liquefaction, FSt. for each of the 888 mesh elements used to model the intake canal. Values of effective overburden stress, o'v, and shear stress, w, resulted from FEADAM84, while values of peak cyclic shear stress, tcye, resulted from l

. QUAD 4M. Other input parameters included the estimated or measured relative density, D,,

l E and drained friction angle,4'a..

l Measured values of D, within the three test pits indicated that the loosest sand layers at the site (based on CFr and SFT stratigraphy) exceeded a relative density of 55 percent. This value is higher than the values determined by Dames & Moore testing in 1%7 based on I

disturbed hammer driven soil samples. Based on current information, SIS asaigned a

! l l

40 Kpwj.28723-A/r123a003. doc

Prairie Island Nuclear Generating Plant STS Project No. 28723-A June 24,1997 conservative relative density of 45 percent to the loose sand layer above El. 671. A relative density value of 55 percent was selected for medium dense to dense sand below El. 671. A relative density value of 70 percent was adopted for compacted fill zones.

An impcrtant parameter for the empirical analysis was defining the value of the corrected blowcount, (Ni)w to use as the resisting cyclic strength for each element of soil. STS used a total population of 23 SPT soil borings in and around the intake canal. Based on the geologic strata shown in Figures 2 and 3, corrected (Ni)w blowcounts were summarized for five different soil units below the water table as shown on Figures 43 and 44. The soil units included natural sand zones and compacted sand fill zones. The median value of (Ni)w was used for each zone as summarized below:

Soil Unit Elevation (Ni)a Number of Ft. Median Tests Compacted StructuralSand Varies Fill 49.3 42 Natural Loose Fine Sand 674 to 671 6.1 16 Natural Medium Dense 671 to 647 Sand 12.6 130 Natural Medium Dense 617 to 620 Sand, with GravelSeams 16.0 117 Natural Medium Dense to Below Dense Gravelly Sand 620 17.6 51 Based on discussions with Dr.'s Idriss and Castro, STS concluded that Seed's original CSR versus SPT blowcount charts were developed on the basis of average or median corrected SI'T blowcounts. Therefore, to be consistent with previous state-of-the-practice liquefaction investigations at Lower San Fernando Dam by Castro, Seed, Keller and Seed (1992), the median (Ni)w values were adopted for use at PINGP.

Kproj.28723.A/r123a003. doc 4}

l

t i l Prairie Island Nuclear Generating Plant l STS Project No. 28723-A June 24,1997 -

Another important parameter for the triggering analysis are the limiting liquefaction boundary lines or cyclic stress ratio (CSR) versus (Ni)e curves. Figure 45 illustrates the i adopted curves for the PINGP site based on the recent work of Dr. Idriss and Dr. Castro. The basis for these curves is presented in Appendix J. These curves illustrate lirrdting (Ni)w versus CSR for a Magnitude 5.0 earthquake (estimated at 10 cycles) and one significant cycle of peak acceleration of the DBE. ,

l \

l The presented curves in Figure 45 define the boundary between liquefaction and no liquefaction. Since the limit line for one significant cycle of shaking is at all points above the i line for the magnitude 5.0 earthquake, it is expected that the factor of safety from the Magnitude 5.0 line (FSu) will always be less than the factor of safety computed from the single cycle line (FSu).

l Computations of the factor of safety against liquefaction are detailed in the computation j spreadsheet in Appendix J. Detailed fonnulas and references used to arrive at the FSL are described at the end of the spreadsheet.

l Figure 45 also presents the specific cyclic stress ratios, (CSR).pa, computed for all 888 elements of the soil profile. This figure shows that 4 of the 888 elements are above the l

liquefaction limit line while the remaming 884 elements are in the zone of no liquefaction.

However, since liquefaction was conservatively defined to trigger for FStless than 1.1 and the limit lines represent a FSt equal to 1.0, a total of five elements were judged to trigger i

liquefaction. The five elements which trigger liquefaction are located at the slope face on both 1 l sides of the canal between El. 664 and 674. These elements are shown in Figure 46. The computed contours of factor of safety against liquefaction are shown in Figure 47.

42 K'Proj.28723.A/r123a003. doc

Prairie Island Nuclear Generating Plant STS Project No. 28723-A June 24,1997 11.0 RESIDUAL OR STEADY STATE SHEAR STRENGTH 11.1 Residual Shear Strength Parameters for Seed and Harder (1990) Method SIS reviewed the relationship between (Ni)60 and residual shear strength published in Seed (1987), U. S. Bureau of Reclamation in their Seismic Design and Analysis Standard, DS-13 (13),

dated 1989, Seed and Harder (1990) and Castro (1995). Copies of these curves are presented in Appendix K. These curves are based on a number of case histories where static and seismic liquefaction have been studied and where there were available SPT blowcount data to back calculate the undrained shear strength. There is considerable debate on how to interpret case histories and on how to select a reasonable average estimate of undrained residual shear strength. STS requested Dr.'s Idriss and Castro review the residual shear strength versus (Ni)eo data and then develop a "best estimate curve" through the historic data for use at ,

PINGP. Figure 48 illustrates Dr. Idriss' 1997 best-fit curve for predicting residual shear strength versus (Ni)60 A copy of Dr. Idriss' memorandum dated March 26,1997 is attached in Appendix K. The best estimate curve through the data can be expressed as an exponential power function with limitations: I S, = 5. = 49.51en tw3y , pst, Note that since the case history data correspond to failures, and non-failures are not represented, the case histories are representative of lower bound shear strengths.  ;

i Both Dr.'s Idriss and Castro expl&ed that the Seed and Harder (1990) envelope was based on median (Ni)eo data and thus, for consistency, should be used with median (Ni)eo data to predict a lower bound residual shear strength for specific soils at a site.

43 K Proi28723-^/r223' o3 doc

g - Prtirie Island Nuclear Generating Plant  !

l STS Project No. 28723-A f

1 June 24,1997 i i-l -- . i l The appropriate use and application of undrained residual strength, full drained strength l l or reduced drained strength for stability evaluation is dependent on a number of factors as l l' described below. The soils in question are fine sands both below and above the water table. -l i

The sands above the water table have a low degree of saturation and thus the applicable >

l l strength is their full drained strength. Sands below the water table consist of loose fine i sands, typically with a depth of about 3 feet below the ground water table (El. 674 to 671) l' and medium dense sands at greater depths (below El. 671).  ;

I i

The project sands were assumed to have relatively low values of undrained steady state i 1

(residual) strengths, S, based on the formula presented above. Thus, generally the residual .)4 l .

strength, S, is lower than the drained strength, Sa This case is illustrated in Figure 49A,

.)

.~ .  :

j. which shows the monotonic stress strain behavior for both the drained and undrained l

~

cases. For the drained case the curve does not have a peak. For the undrained case there is

a peak and two strengths are defined, namely the peak undrained strength, S.p, and the l

steady state or residual undrained strength, Sr. ]

l l l The undrained strength, Sr, is a function only of void ratio (or normalized blowcount (Ni) o) which is approximately independent of confming pressure. On the other hand the drained l l

-l l strength is directly proportional to confining pressure. Thus near the slope, under low l1 confming pressures, Sr is higher than Su as shown in Figure 49B. This case occurs for 1 depths below the canal slope shallower than 3 to 8 feet, depending on whether the sand is loose or medium dense and generally includes the first two rows of elements beneath the slope.

l l

The strength selection in the saturated sand depends on whether the sand is shallow (Figure 49B applies), or the more general case in which Figure 49A applies. For the shallow i case, the drained strength should be selected, since it would not be prudent to count on the 44 K: pro [28723-A/r123a0(B. doc l

Prairie Island Nuclear Generating Plant STS Project No. 28723-A June 24,1997 negative pore pressures that are required to mobilize Sr. Further, at shallow depths below the slope it is quite likely that the behavior actually would be drained given the proximity of the sand to the free drainage surface represented by the canal slope and riprap.

The selection of the appropriate strength elsewhere in the saturated sands where the behavior shown in Figure 49A applies is more complex. In this case, the most critical behavior for the sand is undrained and the question becomes whether the peak, Sup, or the residual or steady state value, S,, should be used. If the effects of earthquake shaking are sufficiently severe, pore pressures would develop, the strain at peak would be exceeded and the strength Sup would not be available, and thus the appropriate strength would be Sr.

This process is referred to as triggering of an undrained liquefaction failure. However, if l

the earthquake effects are not severe enough the peak would not be overcome. Even I though qualitatively the concept is straightforward its quantification is not. i A procedure proposed by Seed and Harder (1990) and by others was followed for this  ;

l  ;

investigation. In this procedure, whether triggering oc, urs or not is based on an empirical chart that relates observations of the development of pore pressures at actual earthquake sites to the magnitude of cyclic seismic shear stresses induced by the earthquakes, and to l corrected blowcounts. The seismic stresses were estimated from a two-dimensional dynamic analysis using the QUAD 4M program and the empirical chart was entered with l appropriate corrections for earthquake magnitude, confming pressure and static shear stress. A factor of safety against liquefaction, FSu was then computed for each element as j the ratio of the seismic stresses required to develop 100 percent pore pressure for the l blowcount assigned to the element to the stresses computed from QUAD 4M. The strength 1 selection for post earthquake stability analysis (SsrAB and h# STAB) Was then made for each i l element depending on the value of the computed factor of safety, FSu as follows:

l i

45 Kpmj.283A/r123a003. doc l

l

Prairie Island Nuclear Generating Plant STS Project No. 28723-A' June 24,1997 FSt<1.1, Residual Shear Streneth Model:  ;

SsTAB " Sr = 49.51eo.1654(N1M, psf; and $' STAB = 0*; or SsTAB = 0; and $' STAB = &#ds , if the resulting residual strength Sr is greater than the drained strength, Sa..

1.1 <= FSt <= 1.8; Reduced Friction Angle Model:

SsrA:: =0; and &'srAB = tan 2((1-Ru) tan &'a.)

However, there are other limits to the value of the strength computed in this manner: ,

l When Sr < Sa,, the lower limit for the strength is Sr, thus  !

SsTAB = 0; and 4' STAB = arCtan (Sr[o'v)

When Sa, < Sr, Ru should be used as zero, thus SsTAB =0; and $' STAB = &#ds FSt > 1.8; Drained Friction Angle Model:

SsrAB = 0; and $' STAB" $'d, This model assumed the following:

1 I

l

. Sr = Idriss formula shown above (See Appendix K for Idriss' Sr vs (N1)60  !

relationship). i

. Sa, = o,' tan (4'a.)

. 4'd, = 31' to 33*, depending on the soil type and elevation noted in the table below l

46 K roj28723-A/r123a003.

P doc

-, .- , - . _- .. - . . ._ - . - - . -~ .. _ . - ..- _-

Pr: iris Island Nuclear Generating Plant j STS Project No. 28723-A l- - June 24,1997 -

I

. Ru = FS62, computed for each element in the FEM model based on the best fit line .

.. from Figure 10 in Seed and Harder (1990) for " sand material" tested by Tokunatsu . ]

l ,-

i and Yoshimi (1983) which is included in Appendix K.

I i

SoilType Elevation $'d.

(feet) (degrees)

Compacted Fill Varies -33* )

Loose Fine Sand 671 to 686 31*

Medium Dense Sand M7 to 671 32

l
j. Medium Dense to Dense Below M7 33 j Sand and Gravel l Values of S5rAB and h# STAB were calculated in the spread sheet shown in Appendix J. l l

1 i

These undrained shear strength parameters were then input into XSTABL, a conventional slope stability analysis program, to compute post-earthquake slope stability of the canal.

l i Application of this approach to post-earthquake liquefaction stability is conservative and i

consistent with the empirical approach presented in Seed and Harder (1990) which is based on lower bound values of Sr. This approach does not include the results of a site specific laboratory testing program performed to assess the residual or steady-state shear strength from triaxial shear tests on the loose fine sand zone between El. 674 and 671, which are discussed in the next section of this report.  ;

l l

11.2 Steady-State Shear Strength Based on Field and Laboratory Testing

S15 evaluated liquefaction by another approach developed by Poulos (1981) and advanced by Poulos, Castro and France (1985). To do this analysis, it was necessary to measure the in-situ

! void ratios of the potentially loosest fine sand layers at the site and then determine the

! i 47 K Pmj.28%A/r123a0(D. doc i

'. 8 Prriria Island Nuclear Generating Plant STS Project No. 28723-A June 24,1997 undrained steady-state or residual shear strength of that material at void ratios equal to or greater than in-situ conditions. Three test pits were excavated along the north slope of the ~

intake canal between March 19 and 27,1997 at locations shown on Figure 1. The goal of the field and laboratory testing program was to gather the following information:

1. Define Site-Specific Geoloey - Observe the stratification and geology between El. 675 and 672 of the loosest sand layer at the site.
2. Establish the Boundaries of The Critical Laver - Confinn the continuity of the loose, fine sand layer along the canal alignment by excavating several test pits and advancmg several new borings (CS-100 series) along the canal slope and top of slope (series CliU-1, B-3 and B-100 series).
3. Obtain Samples of The Critical I. aver - Obtain bulk soil samples for moisture content, specific gravity, gradation, Proctor density, maximum /mirumum density and tnaxial shear strength testing.
4. Determine In-Situ Void Ratios in the Critical Laver - Measure in-situ dry densities using calibrated sand cone, nuclear density tests and moisture contents with specific gravity measurements to determine the range of in-situ void ratios and relative densities in the criticalloose sand layer.
5. Test the Samples using Triaxial Test Methods at In-situ Void Ratios to Obtain Steady-State Line - Gather bulk samples to allow fabrication of sand specimens for monotonic, undrained triaxial shear strength testing over the range of void ratios measured in the field. The triaxial testing program allowed for measurement of friction angle and determmation of site-specific, steady-state shear strength (Sr) versus void ratio.

48 K:Proj.28723-A/r 23a003. doc l _ _ __ _ _____ _

. . _. - _ . . _ _ . _ . . . . ~ . . . . . _ . _ _

Pr irie Island Nuclear Generating Plant STS Project No. 28723-A June 24,1997 -

6. Compare Seismic Driving Stresses with Available Steadv-State Strengths - Compute static

. and seismic stresses that load the canal slopes. If computed driving stresses are less than the available resisting steady-state or residual shear strengths, then a liquefaction or flow  ;

slide type of failure cannot occur.

l  :

L Three reconstituted sand samples from three test pits containmg the critical fine sand layer i

l were extensively tested to establish friction angle, maximum and muumum densities, and

! steady-state shear strengths over a range of void ratios measured in the field using calibrated -l l sand cone density tests. Gradation of the soil samples between the three tests are similar as

! shown on Figure 19. The soil samples from the critical soil layer obtained from the three test

, pits are predommantly a fine uniform sand with less than 5 percent fines, with the samples I. from TP-1 containmg a small percentage of coarser grained soils. A comparison of the -

gradation curves in Figure 19 with those shown in Figures 11,12, and 13 indicates that the -

1 range of gradation for the samples from the'same test pit is very narrow.

l l l .

1 Figures 20,21 and 22 illustrate the results of the steady-state aralysis of the loose sand layer in TP-1, TP-2 and TP-3 between El. 674 to 671, respectively. The figures show the range of in-situ void ratios measured in the test pits. These data points are plotted along the left axis of I l l the charts since the sample are shallow and in-situ static shear stresses are low (i.e., less than 1

)

100 psf per FEADAM84 results). The maximum and mimmum void ratio limits from the  !

relative density tests are also shown as horizontal dashed lines on the charts. Individual triaxial test results are plotted showing the observed steady-state or residual shear strengths, S.or Sr, for each of the sand specimens tested. All but one of the test specimens showed strong dilative behavior at the end of the test and thus the test result is plotted at the end of the test, with an arrow to indicate the direction in which the shear stress or the void ratio was

)

changing. Thus the steady-state lines shown in Figures 20,21 and 22 are lower bounds for the actual steady-state lines. The steady-state line in Figure 22 for the soil from TP-3 was assumed to be the same as for the soil from TP-2 based on the similarity of particle size )

I gradation between the two soils, as shown on Figure 19.

. l 1

49 K:proj.28723-A/r123a003. doc I

l

l. _. . _ . . . . , , - _ , . . .

i 1 I

  • l l

p4 )

Prairie Island Nuclear Generating Plant '

STS Project No. 28723-A June 24,1997 l

I The range of predicted static and dynamic streses from the FEADAM84 and QUAD 4M analysis are also shown in the three figures. The sustained DBE seismic stresses combined  ;

with static shear stresses are between 340 and 1,000 psf. The steady-state strengths for the in- j I

situ values of void ratio measured in the test pits, are at least 2,000 psf, well above the ,

i l computed static and DBE seismic stress combinations, as shown on Figures 20,21 and 22.

I I

Therefore the factor of safety against a liquefaction failure is greater than 2 for the loose fine sandy soil. The factor of safety against liquefaction for the medium dense sands at greater depth would be even higher. e 1

2 i

When the sands are subjected to cyclic undrained shear, the material may develop positive pore water pressure build-up. However, high Sr strengths are still available, since upon straming, the soil will dilate and hold itself against the tendency for a flow (instability) type of

! failure. Actually for the soils adjacent to the canal at the PINGP site the pore pressures l induced by the DBE cyclic loading are modest as discussed in se Section 10.0 Liquefaction Triggering. Further, as discussed in a subsequent section, the seismically induced l deformations will be insignificant. q l

.I I

l I

I

. i l

l 1

K Pmj3723-A/r123a003. doc l 50

l i .

[ Prairie Island Nuclear Generating Plant STS Project No. 28723-A June 24,1997 l

l 12.0 POST EARTHOUAKE STABILITY The purpose of the post earthquake stability analysis was to determine whether an instability type failure is possible. The results of an analysis of stability using the site specific undrained steady state (residual) strengths determined from the testing performed in the test pits, indicated a high factor of safety against instability as discussed in the previous section. Thus, in this section we deal only with an evaluation of stability based on the lower bound strength values obtained from case history information and the selection of strength parameters presented in Section 11.1.

Residual soil strengths, Ssus and reduced drained strengths, &'sne, for elements which exhibited pore pressure build-up were utilized in a post earthquake stability analysis.

These values were computed in Table J of Appendix J. This analysis was performed with the XSTABL computer program Version 5.2. Circular and wedge searching techniques using the Bishop and Janbu method of slices, respectively, were used to search the entire .

canal profile for the most critical failure surfaces.

The adjusted strengths were assigned to each individual element of soil. Post earthquake strengths computed for the north slope of the intake canal were lowest and those values l were used in the analysis to be conservative. In addition, the beneficial effect of the 1 to 2 foot thick non-liquefiable rip-rap and gravel bedding layer which exists on the slope was ignored.

A discussion on the design water level (El 674) was presented in Section 3.5 of this report.

For post-earthquake stability, the water level was raised one foot to El. 675 in the soil profile to account for the effects of capillary rise and potential water level rise due to earthquake shaking. Calculations presented in Appendix L show that the one-foot rise in water level is

! conservative.

l 51 K;Prg.28723.A/r123a003. doc

Prairie Island Nucle'ar Generating Plant  !

STS Project No. 28723-A >

June 24,1997

{

I Results of the stability analysis are shown in Figures 50 and 51. Using the conservative residual strength parameters resulting from the Seed and Harder Analysis, the minimum  ;

computed factor of safety was 1.3. This factor of safety was computed without inertial earthquake forces applied since these forces were accounted for in the dynamic analysis  :

which resulted in the reduced post-earthquake soil strengths. The computed factor of  ;

safety indicates that the slope is stable even though isolated elements of soil at the face of the slope liquefy. Further, the location of the most critical slip surface is within a few feet of the slope face indicating that the most critical failure surface is close to an infmite type -

slope failure. Thus, even if the factor of safety were to drop below unity, the resulting soil volume displaced would be very small. Factors of safety for representative larger slip circles and wedges which extend farther into the slope, result in even higher factors of j l'

safety in the range of 1.6 to 2.2 and greater stability as shown on Figures 52 and 53. I Since the slope is stable, the most critical failure surface (FS = 1.3) was used to back calculate a horizontal yield acceleration for use in a permanent deformation analysis to ,

determine whether any permanent displacements of the slope occur as a result of the DBE motions, i

I l Results of the slope stability analysis are included in Appendix L.

L l

I 4

i

! 52 K P mpsmAhWm. doc

  • l Prairia Island Nuclear Generating Plant

- STS Project No. 28723-A '

June 24,1997. '  ;

i 13.0 PERMANENT DEFORMATION ANALYSIS Even though the results of the previous section indicate that the intake canal slopes at the

{

PINGP site are stable, it was still desirable to perform a permanent deformation analysis to  !

evaluate permanent displacements in the slope as a result of the DBE. Thus, a permanent deformation analysis was performed to evaluate the potential for movement of the canal slopes at the location of the slip surface with lowest calculated factor of safety. This I

analysis consists of three steps:

1. Determine the critical slip surface from the slope stability analysis and calculate the yield acceleration for the surface.  !

?

2. Determine the ground acceleration time history at the base of the critical slip surface ,

i i

from QUAD 4M.

3. Calculate the permanent displacement by the Newmark type sliding block analysis ,

with the computer program DISPLMT.

1 The post earthquake stability analysis identified a critical slip circle with a factor of safety of 1.3. The corresponding horizontally yield acceleration for this surface was back calculated for a factor of safety equal to 1.0. Values of factor of safety for larger slip surfaces and the 1

resulting yield accelerations would be higher with less resulting permanent deformation.

Computations of yield acceleration are shown in Appendix L The resulting ground motion at the base of the slip circle was computed within the computer program QUAD 4M for the DBE. The horizontal acceleration time history was conservatively selected from Node 640 from the finite element mesh as shown in Figure 46.

Tris time' history is shown in Figure 37. This acceleration time history was entered into the 53 KT42amh123.m3.aoe

Prairie Island Nuclear Generating Plant S15 Project No. 28723-A June 24,1997 ,

DSPLMT program. DISPLMT compares the acceleration time history to the yield acceleration derived from the slope stability calculation. Those areas of the acceleration time history which exceed the yield acceleration are double integrated to calculate permanent displacements.

The computed permanent displacement was less than one inch as shown in Figure 54.  :

Results of the permanent deformation analysis including a discussion of the technique are included in Appendix M.  ;

P b

I I

r 54 K'Proj.29723-A/r123a003. doc

_ _ . . . . . - ~

1 i.6, -

Prairie Island Nuclear Generating Plant

' STS Project No. 28723-A '

l-  !

i June 24,1997 '

i V l l

l

14.0 CONCLUSION

S

1. Field (Ni)w blowcount data from 23 SPT borings, were utilized to characterize the seismic l

strength of project soils by the methods published by Seed ~and Harder (1990). Two-

! dimensional, computer dynamic stress modeling using .the DBE motions representing a 1 Richter Magnitude 5.0 earthquake, resulted in no predicted flow slide failure of the intake canal slopes or base, and seismically induced permanent deformations will be insignificant.

- 2. Static and dynamic finite element stress analyses were performed on an 888 element mesh, 1798-foot-long by 74-foot-deep model of the canal, foundation and adjacent power plant i

using FEADAM84 and QUAD 4M. Liquefaction triggering analysis using the approach presented in Seed and Harder (1990) resulted in only 5 elements that exhibited factors of safety less than 1.1 against liquefaction. These impacted elements were in isolated shallow ,

. 1 zones of soil along the submerged face of the canal as shown on Figure 46.

l -

(

3. Post earthquake stability analyses using conservative residual undrained strength and

!. degraded drained strength parameters resulted in a muumum factor of safety of 1.3 against a shallow flow-type slide failure. Thus, the intake canal slopes are stable. Permanent deformations of the most critical potential slip surface were computed to be less than one inch. The computed factors of safety for deeper slip surfaces wer. higher and are the more stable. i

4. The measured steady-state strength of the loose sand layer ir at taast 2,000 psf when determined using triaxial shear strength tests at void ratios greater than measured in-situ.

J The measured steady-state strength is an order of magnitude higher than the empirically defmed lower bound residual shear strengths from a limited number of case histories. These l case histories do not address specific in-situ conditions such as density, sand mineralogy, 1

1 l.

55 KP roj.28723-A/r123a003. doc

(

i

. i it

, s .

Prairis Island Nuclear Generating Plant  !

STS Project No. 28723-A l June 24,1997 '

l angularity, uniformity and gradation. Based on steady-state principles, liquefaction and flow slides of the intake canal slopes and base should not occur.

F

- 5. Measured relative densities in three test pits along the canal' slope in the loosest natural sand layer at the site yielded a muumum relative density of 56 percent which is greater than ,

the minimum relative density of 46 percent identified by Dames & Moore in 1%7 as the threshold above which liquefaction would not occur. Thus, liquefaction of the project soils is not predicted by the 1%7 analysis methods.  !

6. The base of the canal will not liquefy or " boil" under DBE loading conditions since the soil immediately beneath the canal consists of compacted structural fills with a median (Nt)e .

blowcount greater than 49 blows per foot. Appendix N contains the NSP drawing, photographs, and specification which document the intake canal excavation and backfilling.

7. Based on this analysis, it is concluded that the Class III intake canal slopes will not flow or

, deform significantly into the intake canal or screen house under DBE loading conditions.  ;

Therefore, the intake canal slopes and base will not adversely affect the intended functions of the Design Class I Screen House. Remediation involving structural improvements of the ~l canal slopes or base is not required to support the DBE earthquake loading. The intake canal meets the Design Classification for Class I* for structures, as defined in the PINGP USAR. ,

This new classification requires no remediation as stated above.

l i l

l l

I t

i k

i 56 Kyr j.23723-A/r123a003. doc

. . . ~. . - -. .. .

i .

e Prtirie Island Nuclear Generating Plant l STS Project No. 28723-A June 24,1997 l-

15.0 REFERENCES

American Society for Testing and Materials (1997). " Soil and Rock, Dimension Stone; Geosynthetics," Section 4 Construction, Volume GLO8, Philadelphia Castro, G.; Keller, T.O.; and Boynton, S.S. (1989). "Re-evaluation of the Lower San Fernando Dam, Report 1, An Investigation of the February. 9,1971 Slide," 2 Vols., gel Consultants, Inc., U.S. Army Corps of Engineers Contract Report GL-89-2, September.

l l Dames & Moore (1967) Appendix A-1 of Final Safety Analysis Report (FSAR), Report of l l Environmental Studies, Geology, Hydrology and Seismology, Proposed Nuclear Power  !

l Plant, Prairie Island Site, Near Red Wing, Minnesota, for Northern States Power Company.

l Duncan, J.M., Seed, R.B., Wong, K.S., and Ozawa, Y., (1984) "FEADAM84: A computer i

program for finite element analysis of dams.", Research Report No. SU/GT/84-03, )

Department of Civil Engineering, Stanford University, November.

l _ Houston, S.L., Houston, W.N., and Padilla, J.M., (1987). "DISPLMT Micrxomputer-Aided Evaluation of Earthquake Induced Permanent Slope Displacements.",  ;

l Microcomputers in Civil Engmeermg. l l

Hudson, M., Idriss, I.M., and Beikae, M. (1994). " QUAD 4M: A computer program to l evaluate the seismic response of soil structures using finite element procedures and

( incorporating a compliant base.", Sponsored by the National Science Foundation, Center l for Geotechnical Modeling, Department of Civil and Environmental Engineering, l University of California, Davis, May.

I l_ Liao, S.C. and Whitman, R.V. (1986). " Overburden Correction Factors for DPI' in Sand,"

i Journal of Geotechnical Engineer, ASCE, Vol.112, No. 3, March.

Northern States Power Company, Selected Historical Information from
Fnal Safety l Analysis Report (FSAR).

l Northern States Power Company; Updated Safety Analysis Report (USAR)

Poulos, S. J. (1981). "The Steady State of Deformation," Journal of the Geoteclu ical Engineering Division, ASCE, Vol.107, No. GT5, pp. 553-562, May.

Poulos, S.J.; Castro, G.; and France, J.W. (1985). " Liquefaction Evaluation Procedure."

Journal of Geotechnical Engineering, ASCE, Vol. III, No. 6, pp. 772-791 57 K proj.28723.A/r123a003. doc

_ - . - - - - = . . . .- - - - - . -.

c Preirie Island Nuclear Generating Plant STS Project No. 28723-A j June 24,1997 Richart, F.E., Hall, J.R., and Woods, R.D., Vibrations of Soils and Foundations, Prentice Hall,1970, pp. 353-354 STS Consultants, Ltd. (1996) " Intake Canal Liquefaction Analysis for the Prairie Island i Nuclear Generating Plant," Welch, Minnesota, July 10,19%.

STS Consultants, Ltd. (1997). " Response to NRC Additional Information Request, Intake Canal Liquefaction Analysis, Prairie Island Nuclear Generating Plant, " Welch, Minnesota, February 28,1997.

. Schnabel, P.B., Lysmer, J., and Seed, H.B., (1972) " SHAKE: A computer program for earthquake response analysis of horizontally layered soils.", Report No. EERC 71-12, University of California, Berkeley, December.

Seed, H.B.,1987. " Design Problems in Soil Liquefaction", Journal of Geotechnical
Engineering, ASCE,113 (8),826-845.

Seed, H.B., and Idriss, I.M. " Analysis of the Slides in the San Fernando Dams During the

Earthquake of Feb. 9,1971", Report to Ca. Dept. of Water Resources, Univ. of California.-

Berkeley, Jtme,1973.

Seed, H. B. Idriss, I.M., and Arango, I. (1983) " Evaluation of Liquefaction Potential Using Field Performance Data," J. Geotech Engrg. Div., ASCE,109(3),458-482.

Seed, H.B., K Tokimatsu, L. F. Harder, and Chung, R.M. (1985), " Influence of SFT Procedures in Soil Liquefaction Resistance Evaluations." Journal of Geotechnical Engineering, Vol.111, No.12, pp.1425-1445 Seed, R.B., and Harder, L.F.,1990. "SFT-Based Analysis of Cyclic Pore Pressure Generation -

and Undrained Residual Strength," H. Bolton Seed Volume 2 Memorial Symposium Proceedings, J. Michael Duncan, ed., BiTech Publishers Ltd., Vancouver, B.C., Canada.

Sharma, S. (1990). "XSTABL: An integrated slope stability analysis program for personal computers.", Reference Manual, Version 5, Interactive Software Designs, Inc.

Skempton, A.W. (1986) " Standard Penetration Test procedures and the Effects in Sands of Overburden Pressure, Relative Density, Particle 5.2, Aging and Overconsolidation,"

Geotechniques,36, No. 3, pp. 415-442 Sykora, David W. (1987) " Examination of Existing Shear Wave Velocity and Shear Modulus Correlations in %ils," Department of the Army, Waterways Experiment Station, vs. Corps of Engineers, Miscellaneous Paper GL-87-22, September.

58 Kproj.28'/23-A/r123a003. doc

I. ..

Prairie Island Nuclear Generating Plant STS Project No. 28723-A ]

- June 24,1997 i l

' Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Enemeertne Practice, New  !

York, John Wiley and Sons,549 pp.-

i,

, - Tokimatsu,' K., and Yoshimi, Y. (1983). " Empirical Correlation of Soil Liquefaction Based on SPT N-Value and Fines Content." Soils and Found.,23 (4),. 56-74 i U.S. Army Corps of Engineers (1970) " Laboratory Soils Testing Engineering Manual EM i 1110-2-1906, November 30.

i I

J h

4 1

e i

I 59 KP roj.28723-Afr123a003. doc

I O

INTAKE CANAL LIQUEFACTION ANALYSIS REPORT PRAIRIE ISLAND NUCLEAR GENERATING PLANT WELCH, MINNESOTA  !

i i

j O NORTHERN STATES POWER COMPANY i

l l

l 1717 WAKONADE DRIVE, EAST

, WELCH, MINNESOTA 55089-9642 l

l l

l VOLUME II OF II l

l l

28723-A JUNE 24,1997 lO

v l

?

I j

TABLE OF CONTENTS VOLUME I PAGE l NO.

1.0 EXECUTIV E S U M M ARY .............................................. .. ...... .................. .... ....... ....... .. 1 2.0 INTR O D U CTIO N ........ .... ........ .. ................................. ....... . ..... .............. ..... .. 4 2.1 Proj ect Descripti on.......... ............................................................. ....................................... 4 2.2 Previ o u s STS Work ....................... ................. ......................... .. ....................................... 5 2.3 Curre nt Scope of Work.......................................................................................... ............ . 7 1

3.0 FI ELD EXPLORATI ON S ........ ................... .............. ...................... .... .... ..................... 11 l

1 3.1 Stan dard Penetration Test Borings ............................. ....... ........................... ............11 p 3.2 Piezoc on e Pe n etro me t er Te st s ................................................................................ . .... 12

(. 3.3TestPits...........................................................................................................................13 3.4 Spectral Analysis of Surface Waves (SASW) Testing............ ... .. .............................14 3.5 De s i g n Wa t er Le v el ...................................................................... .............. .... ................ . 16 4.0 LAB O R ATORY TESTI N G .......................................... ... ..................................................... 18 t

4.1 I n d ex Property Te stin g ......................................................................................................... 18 4.1.1 G rain S ize Analyse s ........ ................ ................................ ................... .. . ......... .. 18 4.1.2 Specific Gravity Testing ........... ................................. ............................................... 19 4.1.3 Relative Dens ity Testing ................... ................................... .. ...................... ...... 19 4.1.4 Proctor Den s ity Te sting ............................................................ .. ............... ..... ...... 19 4.1.6 Triaxial Permeability Test .............. ............. ........... .......... ..... ....... . ..... ........ 20 4.1.7 Sa n d M icroscopy .. ............................................................................ ....... ............... 20 4.2 Triaxial Shear Strength Testing.................................. ........................ ................ .......... 21 4.2.1 Static Angle of Internal Friction................................................. . .. ............ ........ 21 4.2.2 Steady-State Shear Strength Testing....... ... .......................................... ................ 23 t

i i

L.

\

1

i i

l TABLE OF CONTENTS CONTINUED l

l 5.0 PI N G P S O I L PROFI L E...... ...................................... ........................... .. .......................... 24 6.0 STATI C STRES S AN ALYSI S .... ....................... ................ ................................................ 28 l 7.0 D ES I G N E ARTH QU AK E........................................................................................................ 30 8.0 S H A K E88 AN A LY S I S ............. ..................... .......... .............. ..... ......... ............... .......... .......... ... 3 2 1 l 1 I

9.0 DYN AM IC STR ES S AN ALYS I S .................................... ..... .................... .............. ........ 35 l

i 10.0 LIQUE FACTION TRI G G ERIN G ........................................................................................ 38 1

i 10.1 Compara tive Liqu efaction Analysis .......................................................................... .... 38 l 10.2 Empirical Liquefaction Analysis by the Seed and Harder Approach........ ............ 39 l 10.2.1 M e t h o d ol ogy .............................. ..... .................................. ....... .. .. ........... ........ 3 9 10.2.2 Results of Triggering Analysis .................................................................................. 40 11.0 RESIDUAL OR STEADY STATE SHEAR STRENGTH.......................................... ..... 43 I O

11.1 Residual Shear Strength Parameters for Seed and Harder (1990) Method.............. 43 l Q 11.2 Steady-State Shear Strength Based on Field and Laboratory Testing...................... 47 i

l 12.0 POST EARTH Q U AK E STA B ILITY .................................................................................... 51 13.0 PERM ANENT DEFORM ATION AN ALYSIS................................................................... 53 l l

14.0 CO N C L U S I O N S . .................. ..................... ............................. ...................................... ....... 55 15.0 RE FE R EN C ES ....................... ............................................ ............................ ........................... 5 7 APPENDIX A

SUMMARY

TABLES APPENDIX B

SUMMARY

FIGURES APPENDIX C PHOTOGRAPHS APPENDIX D SPT BORING LOGS l

l i

APPENDIX E LABORATORY ac FIELD TEST RESULTS l

l APPENDIX F FEADAM84 ANALYSIS O

l V i

i l

11

] 'O V TABLE OF CONTENTS CONTINUED 1

l VOLUME II l APPENDIX G SHAKE 88 ANALYSIS APPENDIX H QUAD 4M ANALYSIS ,

. \

. APPENDIX I SPT STRENGTH

SUMMARY

APPENDIXJ LIQUEFACTION TRIGGERING i ,
APPENDIX K RESIDUAL STRENGTH I APPENDIX L POST EARTHQUAKE STABILITY l APPENDIX M PERMANENT DEFORMATION ANALYSIS APPENDIX N CONSTRUCTION RECORDS APPENDIX O SASW FIELD TESTING APPENDIX P DBE TIME HISTORY DERIVATION APPENDIX Q SPT HAMMER CALIBRATION APPENDIX R INDEPENDENT REVIEW DR. GONZALO CASTRO APPENDIX S INDEPENDENT REVIEW DR. I. M. IDRISS iii

4 i1

)

s 1

l I

i 4

i J

4, i

4 APPENDIX G i

)

SHAKE 88 ANALYSIS e

l

?

l d.

J 4

4 i

3 t

i

1 l

CALCULATION COVER SHEET

( ') A PROJECT PINGP LIOUEFACTION ANALYSIS

. v Jon No. 28723A l SUBJECT CHECK OF COMPUTER PROGRAM SHAKE 88  !

ORIGINATOR: D.ABERNATHY i

CHECKED BY: T. KIEFER DATE . 6/23/97 DATE . 6/23/97 NO. OF SHEETS 73 APPROVED BY: B. WALTON DATE _ 6/23/97 CALC. NO.

l RECORD OF ISSUES NO. DESCRIPTION BY DATE CHKD DATE APPRD DATE PRELIMINARY CALC.

SUPERSEDED CALC. FINAL CALC. X i

SUMMARY

I p A one dimensional wave propagation analysis utilizing the SHAKE 88 computer program,

( j et al.,1972) was used to propagate the design eanhquake from the bedrock level at E 620 which was established as the base level for the static and dynamic finite element a SHAKE 88 analysis was also used to estimate peak cyclic shear stresses for the free field Shear wave velocity parameters and resulting dynamic shear moduli were based upon t specific SASW testing.

Analysis of the horizontal and vertical components of the DBE earthquake records were using separate SHAKE 88 runs. The horizontal component was modeled with a peak accele l

0.12 g and was applied at a rock outcrop of the weathered sandstone found at El. 515. Thu deconvolution of the motion was performed. This motion was propagated up through the free column and the resulting acceleration time history at El. 620 was computed utilizing strai compatible properties for soil moduli and damping factors. The resulting acceleration ti1l with a peak value of 0.084g was entered into the QUAD 4M analysis. Horizontal accelerations rock outcrop, El. 620 and at the surface of the free field condition are shown in Figure 31. Pea cyclic shear stresses from the horizontal SHAKE 88 analysis for the free field condition as a func of depth are shown in Figure 32.

The vertical components of the DBE motion were modeled in the SHAKE 88 analysis as propagating compressional waves. For this analysis, the strain compatible values of shear modulus and damping were extracted from the final iteration of the horizontal acceleration Theanalysis.

! strain compatible shear modulus values were utilized to calculate a constrained modulus for the vertical motion above the water level. Below the water level, a constrained modulus consistent w l

(V) the dilatational wave velocity of water was used. The final strain compatible damping values f G-1 rite: shakess. doc

, CALCULATION COVER SHEET V A PROJECT PINOP LIOUEFACTION ANALYSIS JosNo. 28723A SUILIECT CHECK OF COMPLITER PROGRAM SHAKE 88 ORIGINATOR: D. ABERNATHY DATE 6/23/97 CHECKED BY: T. KIEFER DATE 6/23/97 No.of SHEETS 73 APPROVED BY: B. WALTON DATE 6/23/97 CALC. No.

the horizontal analysis were divided by 3.0 to represent the lower damping associated with the vertical propagation based on consultations with Drs. Idriss and Castro. The vertical component of the DBE was scaled to 0.08 g and was entered as a rock outcrop motion at the surface of the weathered sandstone. This motion was propagated up in a manner similar to that previously described for the horizontal motions, but without further iterations for stain compatibility. The resulting vertical acceleration time history at El. 620 with a peak value of 0.081g was used as input to the QUAD 4M analysis. The resulting vertical accelerations at the rock outcrop, at El. 620 and at the surface of the free field site are shown in Figure 33.

The SHAKE 88 program was also used to perform a sensitivity study where the parameters of shear wave velocity were varied by plus or minus 20 percent to determine the effect on the resulting cyclic 1 shear stresses. This analysis was performed for the horizontal component of the DBE and the resulting variation in peak cyclic shear stresses as a function of depth is shown in Figure 32. This analysis indicates that a plus or minus 20 percent difference in measured site shear wave velocity

/ results in negligible increases in cyclic shea stresses within the critical soil layers between El. 664 D and El. 674.

REST 1LTS The results of this analysis are displayed as figures to this repon while input and output files have been provided in the attachments to this page.

"within" Max. Cyclic Max. Cyclic Case Filename Acceleration Shear Stress Shear Strain (g) T,y, (psf) Scy, (%)

Ah DBE @ Vs Ah @ EL.6941 nsph009e.* 0.14510 34.72 0.00246 Ah @ EL.674 nsph009e.* 0.11735 312.10 0.02834 Ah @ EL.620i nsph009e.* O.08400 808.28 0.02349 Ah @ EL.51Si nsph009e.* 0.08015 1436.62 0.00486 Av DBE @ Vs Av @ EL.694t nspv008a.* 0.09332 21.45 0.00036 Av (al EL.674i nspv008a.* 0.07543 189.04 0.00021 Av @ EL.6201 nspv008a.* 0.06918 722.65 0.00072 Av @ EL.5151 nspv008a.* 0.06278 1488.83 0.00124

/

? 1 V

G-2 File: shakc88. doc

1 ( \

q CALCULATION COVER SHEET l \ ) 1 PROJECT PINGP LIOUEFACTION ANALYSIS JOs No. 28723A SUBJECT CHECK OF COMPUTER PROGRAM SHAKE 88 ORIGINATOR: D.ABERNATHY DATE 6/23/97 CHECKED BY: T. KIEFER DATE 6/23/97 NO. OF SHEETS 73 APPROVED BY: B. WALTON DATE 6/23/97 CALC. NO.

"within" Max. Cyclic Max. Cyclic Case Filename Acceleration Shear Stress Shear Strain (E) Tey, (psf) Eey,(%)

Ah D BE (d) Vs-:!0%

Ah @ EL 694i nsph009f.* 0.12659 30.64 0.00348 Ah @ EL.674i nsph009f.* 0.09848 273.32 0.04218 Ah @ EL.620i nsph009f.* 0.07835 663.37 0.03132 Ah @ EL.515 nsph009f.* 0.08385 1081.41 0.00576 Ah DBE

@ Vs+20%

Ah @ EL.6941 nsph009g.* 0.15185 36.09 0.00173 cs Ah @ EL.6741 nsph009g

  • 0.12358 330.66 0.01936 l Q Ah @ EL.620i Ah @ EL.5151 nsph009g.*

nsph009g.*

0.10270 0.08429 878.04 1434.43 0.01699  ;

0.00336 '

Reference SHAKE 88 - A Comnuter Procram for Earthauake Response Analysis of Horizontally Lavered Sites, by P.B. Schnabel, J. Lysmer, and H.B. Seed, Report No. EERC 71-12, University of California, Berkeley, December,1988.

Table of Contents:

Figure 23 - Idealized Soil Profile Used in Computer Models Shear Modulus reduction curves used Damping Factor curves used Figure of SHAKE 88 Horizontal Free Field Acceleration.

File "Nsph009e. opt"- Computer file of horizontal SHAKE 88 output results.

File "Nsph009e.ipt"- Computer file of horizontal SHAKE 88 input data.

Figure of SHAKE 88 Vertical Free-Field Acceleration File " Modulus.xis - Excel spreadsheet file for SHAKE 88 vertical parameter calculations.

File "Nspv008a. opt" - Computer file of vertical SHAKE 88 output results.

File "Nspv008a.ipt" - Computer file of vertical SHAKE 88 input data.

File " Modulus.xis"- Excel spreadsheet file for SHAKE 88 horizontal parameter calculations.

l File "Nsph009.xis"- Excel spreadsheet file for graphing V, 20% values.

File "Nsph009f. opt"- Computer file of horizontal SHAKE 88 output results for V,-20%.

- File "Nsph009g. opt"- Computer file of horizontal SHAKE 88 output results for V,+20%.

. l\s j File " Calc 009. doc" Hand Calculation check of" Modulus.xis" spreadsheeet.

G-3 File: shakc88. doc

. - - - - _ ~ . - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ - _ _ -_--___- ____- ____-_-_-_ - -__-_ ______ ______ .-________ _ -___ _____-_ __ __ - _. - _ _ _ - . _ _ _ - _ - _ _ - - _ _ - _ - _

/* h rx x

\

Free Field Shake Column 2

\1\ 1 PLANT STRUCTURES EL 674 7 ,4,,

EL 671 \ EL664 / 3 4 4 6

EL 647 EL635 5 Finite Elcrnent Models EL 620 Extend to El. 620 Only EL 515 EL 495 8 W/ 9 S// w// W//

9 290 SCALE IN FEET Note: Vertical Scale is 5x Horizontal Scale FEADAM84 QUAD 4M & SHARE 88 TRIOGERING STATIC PARAMETERS DYNAMIC PARAMETERS PARAMETERS Soil Description # f C $ K K= L L yr.e v G Acrit V. Dr Median (Pcf) (Paf) (deg) (pcf) (fPs) (%) (N1)60 Moist Sand Fill 1 120 0 33 550 1100 600 0.50 120 0.35 V 0.07 V 70 49.3 Moist loose Sand 2 110 0 31 250 500 275 0.45 110 0.35 A 0.12 A 45 6.1 Saturated loose Sand 3 52.6 0 31 250 500 275 0.45 115 varies R 0.12 R 45 6.1 Medium Dense Sand 4 62.6 0 32 400 800 450 0.50 125 varies I 0.10 I 55 12.6 Medium Dense Sand 5 67.6 0 33 700 1400 775 0.50 130 vanes E 0.07 E 55 16.0 Saturated Sand Fill 6 62.6 0 33 550 1100 600 0.50 125 varies S 0.07 S 70 49.3 Dense Gravelly Sand 7 67.6 0 33 - - - -

130 0.35 -

0.07 varies 55 17.6 Weathered Sandstone 8 -- - - - - -- -

155 - -

0.07 2500 - -

Sandstone Bedmck 9 - - - - - - -

155 - -

0.00 5000 - --

IDEALIZED SOIL PROFILE DRAM BY DTA 6-19-97 g > a rn g

k "m z 1

, [

~

y nu USED IN COMPUTER MODELS CHECKED BY TAK 6-19-97 9 o jy {y PRAIRIE ISLAND NUCLEAR GENERATING PLANT APPROVED BY WHW 6-19-97 U  ? 6 srs con.un.nts, tea. WELCH, MINNESOTA FILE

  • Consutting Engineers V U u MMW Ppt

Shear Modulus Reduction Curves for Clay O Clay Curves

() May 1972 y Pl=0-10 Pl=ll-20 PI-2140 Pl=41-80 Pl>81

(%) G/G., G/G,,o G/G., G/G,no G/G.,

0.0001 1 1 1 1 1 0.000316 0.001 0.974 0.997 0.999 0.995 1 0.00316 0.915 0.974 0.98 0.982 0.979 0.01 0.786 0.881 0.92 0.934 0.937 l 0.0316 0.574 0.674 0.78 0.819 0.85 0.1 0.312 0.425 0.532 0.61 0.713 0.316 0.16 0.22 0.293 0.41 0.545 1 0.06 0.076 0.137 0.202 0.336 3.16 0.02 0.03 0.075 0.118 0.18 10 0.006 0.01 0.025 0.035 0.06 I.

Shear Modulus Reduction Curves Sands and Clays 1:=

l l h }

O.9 ~ ' l i

'e'.'.

5'r-0.8 -

a  ! -

0.7 -

l

, f.,

l( ,f 0.6 *

,,' ,  ! ---g---Cp-0.25 kse Sun 88 15 ' '

Cp=0.5 ksc Sun 88

) 03 . ' , ' ,,4

  • 0  !,

, . j /,.

Cp-1.0 ksc Sun 88 l h 0.4 . S '. ---e--Cp-2.0 ksc Sun 88 l

]

70.3 i

' , '[

---Irr---Cp=3.0 ksc Sun 88 I

l.5 Pl=0-10

  • 0.2 . . + . .p]= l l.20 l j

! ' l , , - dr - Pl=21-40 0.1 ',

, i' - @ - Pl=4180

! l l ,a ,;; - Pl>BI 0.0001 0.001 0.01 0.1 1 10 Cyclic Shear Strala (%)

l ,

I i

6/24/97 i Shearcrv.xts I

l l

t

m O O .O.

i All Clays Are The Same Cyclic Str Clay Sh Sand Sq Rock Clay PI,0- Clay Pl 1 Clay Pl,2 Clay Pl,4 Clay Pi, > Sand Cp=0.2 Sand Cp=0.5 Sand Cp=1. Sand Cp=2 Sand Cp=3.0 ksc (Same as 1 (Same as 1.0 ksc)  ;

0.0001 2 1 0.4 2 2 2 2 2 2 1 1 1 1 0.001 2.5 1.6 08 2.5 2.5 2.5 2.5 2.5 2.5 1.6 1.6 1.6 1.6 0.00316 3.5 3.12 3.5 3.5 3.5 3.5 3.5 3.5 3.12 3.12 3.12 3.12 0.01 4.75 5.8 1.5 4.75 4.75 4.75 4.75 4.75 4.75 5.8 5.8 5.8 5.8 '

O.0316 6.5 9.5 6.5 6.5 6.5 6.5 6.5 6.5 9.5 9.5 9.5 9.5 0.1 9.25 15.4 3 9.25 9.25 9.25 9.25 9.25 9.25 15.4 15.4 15.4 15.4 0.316 13.75 20.9 13.75 13.75 13.75 13.75 13.75 13.75 20.9 20.9 20.9 20.9 1 20 25 4.6 20 20 20 20 20 20

}

25 25 25 25 3.16 26 26 26 26 26 26 26 10 29 25.5 29 29 29 29 29 29 25.5 25.5 25.5 25.5

- - . . - - . . - . ...- ~ . - - - - - . -.

Damping Ratio Curves i l

30 - - - - - - -

-+-Gay Shear Modulu's

-G-Sand SqRt Ret j

25 -

- - 1I + Rock

-M-Day P!,0-10 {

20

-W-Cay PI,10-20 t 7

Cay Pl. 20-40

[ , Cay PI,40-80 E 15 ---- - Oay Pt >80

.f_ -+-Sand Cp=0.25 kse  !

E

-+-Sand Cp=0.5 kse ca 10 - -

--G-Sand Cp=1.0 ksc

+ Sand Cp=2.0 ksc 5 ndCp}=0ksc A - _

A

! ^ I O ' l  !

0.000I 0.001 0.01 0.1 I to  !

Cyclic S'a cer Strale (%)

t 6/24/97 Curves.xis

,,-~.

( )

v Surface Motion @ EL.694 ft.

.15 Peak value* .1451 p

$ .1- I e i , I I r J. } la l ) , m, i I '

{ ' ]

[i i I' y }' l */ V 0 .1-

.15-5 1'O l'S Time (secsl Input Motion to OUAD4M @ EL.620 ft.

.15-

~ .1- Peak value- .ced

, m MIh 1. d i ka i Ihl A _

_ ,,__ mn\}Wjf"yp my'V~

-~ S .1-

, .15-5 1'O l'5 Time (secs)

DBE Outcropping Motion @ EL.515 ft.

g Peak value= .22

_0 .1-0

^* I-  ! d I- *

"v " " '

v"

~

. ,,. ' ( [q'l yi'v y'; lypl Tj 0 .1-

.15-

~

5 i0 15 Time (secsl DRAWN BY DTA 6-2-97 l

SHAKE 88 HORIZONTAL FREE-FIELD ACCELERATION CHECKED By TAK 6-2-97 APPROVED BY WHW 6-2-97 INTAKE CANAL LIQUEFACTION ANALYSIS p 1 PRAIRIE ISLAND NUCLEAR GENERATING PLANT FIG 31. PPT NTS STS PROJECT NO. FIGURE NO.

(/ STS Consultants, Ltd.

Consuttina Enoineers WELCH, MINNESOTA 28723 A 31 l

l

I I

q l

I i

l 1

l I

i l

i SIIAKE88 i OUPUT FILE Nsph009e. opt i

i r

r l

t i

I i

I l

l l

f i

L t

t l  !

. SHAKE 88 I

.........**.. l h

+

A program for: 1 r

Earthquake Response Analysis ..

of Horizontally Layered Sites i Version of February 1988 Originally authored by [

4 Schnabel. Lysmer. 6 Seed i Modified by J. Sun 6 S. Lai t University of California - Berkeley [

t IRM-PC version by .

Geotech International ,

(312) 939-7162 ,

i May 1991

[

Input file name = NSPH009E.IPT l Output file name = NSFH009E. OPT i Punch file name = NSPH009E. PUN I

Date and time of run = 3/27/1997 11:42 MAX. NUMBER OF TERMS IN FOURIER TRANSFORM = 2048 NECESSARY LENGTH OF BLANK COMMON X = 12819 [

EARTH PRESSURE AT REST FOR SAND = .450  ?

1****** *** I OPTION 1 READ INFUT MOTION  :

EARTHQUAKE - DBE THil 3/1/97 Ah 1024 ACCELERATION VALUES AT TIME INTERVAL .0100 THE VALUES ARE LISTED ROW BY ROW AS READ FROM CARDS TRAILING 2EPOS ARE ADDED TO GIVE A TOTAL OF 2049 VALUES 1

MAXIMUM ACCELERATION =

.06000 AT TIME =

3.44 SEC f i

THE VALUES WILL BE MULTIPLIED BY A FACTOR = 2.000  !

TO GIVE NEW MAXIMUM ACCELERATION =

.12000 .

MEAN SOUARE FREQUENCY = 3.65 C/SEC. +

I i

i 3/27/974?II 45 AM Pax 1 of 12 NSPh009E. doc i i

_ _ _ . _ _ _ . _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ . _ _ _ __.___ _ _ _ _ _ _ _ . _ _ _ _ _ . _ ____ _ ._ _ _I

--.~.--.-s.w .~.-n.

N

[% l 4

w \m)I --

t I

i 1****** OPTION 2 *** PEAD SOIL PROFILE f,

NEW SOIL PROFILE NO. 1 IDENTIFICATION - NSP-PINGP DBE 9 EL.515 COL.1 199' t NUMBER OF LAYFRS 20 DEPTH TO BEDROCK 199.00 'f NUMBER OF FIRST SUBMEPGED LAYER 5 DEPTH TO WATER LEVEL 20.00 t LAYER TYPE FACTOR THICENESS DEPTH EFF. PPESS. MODULUS DAMPING UNIT WEIGHT SHEAR VEL 'f MOD. DAMP. FT FT KSF KSF KCF FT/3EC  !

1 9 1.00 1.46 4.00 2.0.0 .24 1575. .070 .1200 650, 2 10 1.00 1.24 4.00 6.00 72 1575. .070 .1200 650.

3 10 1.00 1.13 6.00 11.00 1.32 1575. .070 .1200 650.

4 11 1.00 1.04 6.00 17.00 2.01 1443. .120 .1100 650. i 5 11 1.00 1.01 3.00 21.50 2.42 1509. .120 .1150 650. i 6 11 1.00 .99 6.00 26.00 2.69 2610. .100 .1250 820. i 7 11 1.00 .96 6.00 32.00 3.06 2610. .100 .1250 820. t 8 12 1.00 .94 6.00 38.00 3.44 2610. .100 .1250 820.  !

9 12 1.00 .92 6.00 44.00 3.81 2610. .100 .1250 820.

10 12 1.00 .89 9.00 51.50 4.30 4037. .070 .1300 1000.

'[

11 12 1.00 .87 9.00 60.50 4.91 4037. .070 .1300 1000.

12 13 1.00 .85 9.00 69.50 5.52 4037. .070 .1300 1000.

13 13 1.00 .82 17.50 82.75 6.42 4037 .070 .1300 1000.

14 13 1.00 .78 17.50 100.25 7.60 4037. .070 .1300 1000.

15 13 1.00 .76 17.50 117.75 8.78 5155. .070 .1300 1130.

16 13 1.00 .73 17.50 135.25 9.97 6058. .070 .1300 1225.

17 13 1.00 .71 17.50 152.75 11.15 10207. .070 .1300 1590.

18 13 1.00 .69 17.50 170.25 12.33 15352. .070 .1300 1950.

19 7 1.00 .67 20.00 189.00 13.85 30085. .070 .1550 2500.

20 BASE 120342. .000 .1550 5000.

PERIOD = .63 FROM AVERAGE SitEAR VELOCITY = 1255. FT/SEC MAXIMUM AMPLIFICATION = 9.64 FOR FPEQUENCY =

1.67 C/SEC.

PERIOD = .60 SEC.

1****** OPTION 3 *** READ WHERE OBJECT MOTION IS GIVEN OBJECT MOTION IN LAYER NUMBER 19 OUTCROPPING 3/27/97 Page 2 or 12 NSPh009E. doc

4 .

V s) J 1****** OPTION 8 *** READ RELATION BETWEEN SOIL PROPERTIES AND STRAIN CURVES FOR RELATION OF STRAIN VEPJSUS SHEAR MODULUS AND DAMPING MODULUS AND DAMPING VALUES ARE SCALED FOR PLOTTING SHEAR MODULUS CLAY - MAY 1972 MULTIPLICATION FACTOR = .01000 DAMPING CLAY - MAY 24, 1972 HULTITLICATION FACTOR = 1.00000 SHEAR MODULUS SAND SQ, ROOT REL. - MAY 1972 MULTIPLICATION FACTOR = .50000 DAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACTOR = 1.00000 ATT'.NUATION s OF ROCK AVERAGE MULTIPLICATION FACTOR = .01000 DAMPING IN ROCK AVEPAGE 9/4 MULTIPLICATION FACTOR = 1.00000 C1 (CLAY PI = 0-10) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING CLAY - MAY 24, 1972 MULTIPLICATION FACTOR = 1.00000 C2 (CLAY PI =10-20) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING CLAY - MAY 24, 1972 MULTIPLICATION FACTCR = 1.00000 C3 (CLAY PI =20-40} MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING CLAY - MAY 24, 1972 MULTIPLICATION FACTOR = 1.00000 C4 (CLAY PI =40-80) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING CLAY - MAY 24, 1972 MULTIPLICATION FAsTOR = 1.00000 C5 (CLAY PI > 80 ) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING CLAY - MAY 24, 1972 MULTIPLICATION FACTOR = 1.00000 51 (SAND CP=.25 KSC) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING SAND - FEBPUARY 1971 MULTIPLICATION FACTOR = 1.00000 S2 (SAND CP=.50 KSC) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACTOR = 1.00000 S3 (SAND CP=1.0 KSC) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACTOR

  • 1.00000 S4 (SAND CP=2.0 KSC) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACTOR = 1.00000 55 (5AND CP=3.0 KSC) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING SAND - FEBRUARY 1971 MULTIPLICATICN FACTOI: = 1.00000 1****** OPTION 4 *** OBTAIN STRAIN COMPATIBLE SOIL PROPEPTIES MAXIMUM NUMBER OF ITERATIONS = 10 MAXIMUM ERROR IN PERCENT = .50 FACTOR FOR EFFECTIVE STRAIN IN TIME DOMAIN = .65 3/27/97 Page 3 or 12 NSPh009E. doc

g . m I \

.i EARTHQUAKE' - DBE TH41 3/1/97 Ah SOIL PROFILE - NSP-FINGP DBE 9 EL.515 COL.1 199*

ITEPATION NUMBER 1 THE CALCULATION HAS BEEN CARRIED OUT IN THE TIME DOMAIN WITH EFF. STPAIN = .65* MAX. STRAIN LAYER TYPE DEPTH EFF. STRAIN NEW DAMP. DAMP USED EPROR NEW G G USED EPROR FT PPCNT PPCNT KSF FSF PP.CNT 1 9 2.0 .00125 .028 .070 -151.7 1440.094 1574.534 -9.3 2 10 6.0 .00367 .044 .070 -57.6 1376.667 1574.534 -14.4 3 10 11.0 .00648 .054 .070 -28.6 1283.429 1574.534 -22.7 4 11 17.0 .01035 .062 .120 -94.4 1176.175 1443.323 -22.7 5 11 21.5 .01198 .065 .120 -85.9 1196.986 1508.929 -26.1 6 11 26.0 .00815' .053 .100 -89.6 2186.809 2610.248 -19.4 7 11 32.0 .00980 .055 .100 -80.7 2144.906 2610.248 -21.7 8 12 38.0 .01137 .058 .100 -70.9 2201.195 -2610.248 -18.6 9 12 44.0 .01279 .061 .100 -64.2 2161.014 2610,248 -20.8 10 12 51.5 .00932 .050 .070 -38.6 3491.836 4037.267 -15.6 11 12 60.5 .01042 .052 .070 -35.7 3450.584 4037.267 -17.0 12 13 69.5 .01135 .053 .070 -32.9 3575.873 4037.267 -12.9 13 13 82.8 .01267 .054 .070 -29.9 3525.673 4037.267 -14.5 14 13 100.3 .01447 .055 .070 -26.8 3464.873 4037.267 -16.5 15 13 117.8 .01272 .050 .070 -40.2 4499.335 5155.186 -14.6 16 13 135.3 .01161 .046 .070 -52.0 5350.155 6058.423 -13.2 17 13 152.8 .00727 .036 .070 -94.1 9384.017 10206.610 -8.8 18 13 170.3 .00527 .030 .070 -132.2 14413.670 15351.710 -6.5 19 7 189.0 .00292 .023 .070 -206.2 29570.75J 30085.400 -1.7 VALUES IN TIME DOMAIN LAYER TYPE THICENESS DEPTH MAX STRAIN MAX STPESS TIME FT FT PRCNT PSF SEC 1 9 4.0 2.0 .00192 27.64 3.62 2 10 4.0 6.0 .00565 77.79 3.62 3 10 6.0 11.0 .00998 128.04 3.62 4 11 6.0 17.0 .01592 187.30 3.62 5 11 3.0 21.5 .01844 220.67 3.62 6 11 6.0 26.0 .01254 274.13 3.62 7 11 6.0 .01508 323.49 32.0 3.61 8 12 6.0 38.0 .01749 384.96 3.61 9 12 6.0 44.0 .01968 425.30 3.61 10 12 9.0 51.5 .01434 500.60 3.60 11 12 9.0 60.5 .01603 552.96 3.60 12 13 9.0 69.5 .01746 624.27 3.61 13 13 17.5 82.8 .01949 687.11 3.61 14 13 17.5 100.3 .02227 771.54 5.82 15 13 17.5 117.8 .01958 800.78 6.90 16 13 17.5 135.3 .01787 955.95 6.90 17 13 17.5 152.8 .01118 -1049.01 5.88 18 13 17.5 170.3 .00011 1169.11 5.88 19 7 20.0 189.0 .00449 1328.12 5.90 1

3!27M7 Page 4 of 12 NSPh009E. doc

[

)

EARTHQUAKE - DBE THet 3/1/97 Ah SOIL PROFILE - NSP-PINGP DBE 9 EL.515 COL.1 199' ITERATION NUMBER 2 THE CALCULATION HAS BEEN CARRIED OUT IN THE TIME DOMAIN WITH EFF. STRAIN = .65* MAX. STRAIN LAYER TYPE DEPTH EFF. STRAIN NEW DAMP. DAMP USED ERROR NEW G G USED ERROR FT PRCNT PPCNT ESF FSF PRCNT 1 9 2.0 .00163 .033 .028 16.3 1410.739 1440.094 -2.1 2 10 6.0 .00495 .053 .044 15.7 1327.568 1376.667 -3.7 3 10 11.0 .00918 .063 .054 13.8 1226.510 1283.429 -4 e 4 11 17.0 .01442 .C73 .062 15.9 1105.488 1176.175 -'.*

5 11 21.5 .01708 .077 .065 15.7 1117.979 1196.986 7. .

6 11 26.0 .01101 .060 .053 12.7 2103.395 2186.808 -e.0 7 11 32.0 .01340 .065 .055 15.2 2027.433 2144.906 ~5.8 8 12 38.0 .01501 .067 .058 13.1 2106.586 2201.195 -4.5 9 12 44.0 .01703 .070 .061 12.7 2063.621 2161.014 -4.7 10 12 51.5 .01165 .057 .050 10.6 3391.515 3491.836 -3.0 11 12 60.5 .01296 .058 .052 11.0 3335.683 3450.584 -3.4 12 13 64.5 .01356 .058 .053 8.8 3494.743 3575.873 -2.3 13 13 82.8 .01523 .059 .054- 8.6 3441.682 3525.673 -2.4 14 13 100.3 .01785 .061 .055 9.1 3369.356 3464.873 -2.8 15 13 117.8 .01516 .054 .050 8.2 4397.258 4499.335 -2.3 16 13 135.3 .01380 .050 .046 8.4 5232.159 5350.155 -2.3 17 13 152.8 .00863 .039 .036 7.0 9277.292 9384.017 -1.2 18 13 170.3 .00604 .032 .030 6.5 14286.130 14413.670 .9 19 7 189.0 .00319 .023 .023 2.3 29531.930 29570.790 .1 i

VALUES IN TIME DOMAIN LAYER TYPE THICKNESS DEPTH MAX STRAIN MAX STPESS TIME FT FT PRCNT PSF SEC 1 9 4.0 2.0 .00251 35.41 3.63 2 10 4.0 6.0 .00762 101.20 3.63 3 10 6.0 11.0 .01412 173.13 3.63 [

4 11 6.0 17.0 .02218 245.22 3.63 5 11 3.0 21.5 .02628 293.76 3.63 6 11 6.0 26.0 .01693 356.19 3.62 7 11 6.0 32.0 .02062 418.07 3.62 8 12 6.0 38.0 .02309 486.49 3.62 9 12 6.0 44.0 .02620 540.70 3.62 10 12 9.0 51.5 .01793 600.04 3.62 11 12 9.0 60.5 .01993 664.95 3.62 12 13 9.0 69.5 .02006 728.06 3.63 13 13 17.5 82.8 .02343 806.34 5.83 14 13 17.5 100.3 .02745 925.03 6.92 15 13 17.5 117.8 .02333 1025.68 6.91 16 13 17.5 135.3 .02123 1110.74 5.89 17 13 17.5 152.8 .01328 1231.82 5.89 18 13 17.5 170.3 .00930 1328.53 5.91 19 7 20.0 189.0 .00491 1449.44 5.91 1

L 3/27/97 Page 5 or 12 NSPh009E. doc r

t

- ._ m. _ _ . m_.____.____________.__________________________1_____..____.__-_______.mm_ _ _ . . _ _ _ . _____ __ _ _.__ _____ ____.___.____..__________.___._____m.__________ - _ _ _ . _

/ ) h V V U EARTHQUAKE - DBE THil 3/1/97 Ah SOIL FROFILE - NSP-PINGP DBE 9 EL.515 COL.1 199' ITERATION NUMBER 3 THF CALCULATION HAS BEEN CARRIED OUT IN THE TIME DOMAIN WITH EFF. STRAIN = .65* MAX. STRAIN LAYER TYPE DEPTH EFF. STRAIN NEW DAMP. DAMP USED ERROR NEW G G USED ERPOR FT PRCNT PRCNT ESF KSF FRCNT 1 9 2.0 .00161 .033 .033 -1.0 1412.475 1410.739 .1 2 10 6.0 .00499 .053 .053 .4 1326.255 1327.568 .1 3 10 11.0 .00946 .064 .063 1.2 1221.464 1226.510 .4 4 11 17.0 .01521 .075 .073 2.5 1094.104 1105.488 -1.0 5 11 21.5 .01817 .079 .077 2.7 1104.202 1117.979 -1.2 6 11 26.0 .C1132 .061 .060 1.5 2092.495 2103.395 .5 7 11 32.0 .01398 .067 .065 2.1 2011.102 2027.433 .8 8 12 39.0 .01539 .068 .067 1.2 2097.998 2106.586 .4 9 12 44.0 .01750 .071 .070 1.2 2054.373 2063.621 .5 10 12 51.5 .01178 .057 .057 .6 3385.910 3391.515 .2 11 12 60.5 .01318 .058 .058 .8 3326.897 3335.683 .3 12 13 69.5 .01366 .058 .058 .4 3491.150 3494.743 .1 13 13 82.8 .01528 .059 .059 .2 3440.113 3441.682 .0 14 13 100.3 .01814 .061 .061 .7 3362.001 3369.356 .2 15 13 117.8 .01516 .054 .054 .0 4397.431 4397.258 .0 16 13 135.3 .01400 .051 .050 .7 5222.481 5232.159 .2 17 13 152.8 .00860 .039 .039 .1 9279.365 9277.292 .0 18 13 170.3 .00607 .032 .032 .2 14282.770 14286.130 .0 19 7 189.0 .00316 .023 .023 .2 29541.970 29531.930 .0 VALUES IN TIME DOMAIN LAYER TYPE THICENESS DEPTH MAX STRAIN MAX STRESS TIME FT FT FRCNT PSF SEC 1 9 4.0 2.0 .00247 34.89 3.63 2 10 4.0 6.0 .00768 101.91 3.63 3 10 6.0 11.0 .01456 177.80 3.63 4 11 6.0 17.0 .02340 256.01 3.63 5 11 3.0 21.5 .02795 308.64 3.63 6 '11 6.0 26.0 01742 364.50 3.63 7 11 6.0 32.0 .02151 432.64 3.63 8 12 6.0 38.0 .02368 496.89 3.62 9 12 6.0 44.0 .02692 553.11 3.62 10 12 9.0 51.5 .01812 613.52 3.62 11 12 9.0 60.5 .02027 674.36 3.63 12 13 9.0 69.5 .02102 733.87 3.63 13 13 17.5 82.8 .02351 808.75 5.84 14 13 17.5 100.3 .02790 938.01 6.92 15 13 17.5 117.8 .02332 1025.41 6.92 16 13 17.5 135.3 .02153 1124.47 5.90 17 13 17.5 152.8 .01323 1227.98 5.90 18 13 17.5 170.3 .00933 1333.01 5.91 19 7 20.0 189.0 .00487 1438.37 5.91 1

3/27N7 Page 6 or 12 NSPh009E. doc

_ . - _ _ . ..._._____.,m._ _ . . _ _ _ . _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ . -____._______m____ _ _ _ _ _ _ - _ _ _ _ _

f% .  % ')

EARTHQUAKE - DBE TH41 3/1/97 Ah SOIL PROFILE - NSP-PINGP DBE 6 EL.515 COL.1 199' ITERATION NUMBER 4 THE CALCULATION MAS BEEN CARRIED OUT IN THE TIME DOMAIN WITH EFF. STRAIN = .65* MAX. STRAIN LAYER TYPE DE PTH EFF. STRAIN NEW DAMP. DAMP USED ERROR NEW G G USED ERROR FT PRCNT PRCNT KSF KSF PRCNT 1 9 2.0 .00160 .033 .033 .3 1412.993 1412.475 .0 2 10 6.0 .00499 .053 .053 .1 1326.526 1326.255 .0 3 10 11.0 .00950 .064 .064 .2 1220.757 1221.464 .1 4 11 17.0 .01536 .076 .075 .4 1092.069 1094.104 .2 5 11 21.5 .01838 .079 .079 .5 1101.601 1104.202 .2 6 11 26.0 .01137 .062 .061 .2 2090.732 2092.495 .1 7 11 32.0 .01409 .067 .067 .4 2008.301 2011.102 .1 8 12 38.0 .01542 .068 .068 .1 2097.330 2097.998 .0 l

^

9 12 44.0 .01754 .071 .071 .1 2053.590 2054.373 .0 10 12 51.5 .01177 .057 .057 .0 3386.174 3385.918 .0 11 12 60.5 .01319 .058 .058 .1 3326.354 3326.897 .0 12 13 69.5 .01365 .058 .058 .0 3491.467 3491.150 .0 13 13 82.0 .01527 .059 .059 .0 3440.360 3440.113 .0 14 13 100.3 .01816 .061 .061 .1 3361.298 3362.001 .0 15 13 117.8 .01513 .054 .054 .1 4398.285 4397.431 .0 16 13 135.3 .01402 .051 .051 .1 5221.383 5222.481 .0 17 13 152.8 .00859 .039 .039 .0 9279.992 9279.365 .0 18 13 170.3 .00607 .032 .032 .0 14282.990 14282.770 .0 19 7 189.0 .00316 .023 .023 .0 29543.390 29541.970 .0

  • VALUES IN TIME DOMAIN LAYER TYPE THICKNESS DEPTH MAX STRAIN HAX STRESS TIME FT FT PRCNT PSF SEC 1 9 4.0 2.0 .00246 34.74 3.63 2 10 40. 6.0 .00767 101.76 3.63 3 10 6.0 11.0 .01462 178.47 3.64 4 11 6.0 17.0 .02362 257.98 3.63  !

5 11 3.0 21.5 .02828 311.52 3.63 6 11 6.0 26.0 .01750 365.86 3.63 7 11 6.0 32.0 .02167 435.18 3.63 8 12 6.0 38.0 .02373 497.11 3.62 9 12 6.0 44.0 .02699 554.17 3.62 10 12 9.0 51.5 .01011 613.27 3.62 11 12 9.0 E0 5

. .02029 674.95 3.63 12 13 9.0 69.5 .02101 733.43 3.63 13 13 17.5 82.8 .02350 808.37 5.84 f 14 13 17.5 100.3 .02794 939.26 6.92 15 13 17.5 117.8 .02328 1024.11 6.92 16 13 17.5 135.3 .02157 1126.04 5.90 17 13 17.5 152.8 .01322 1226.82 5.90 18 13 17.5 170.3 .00933 1332.72 5.91 19 7 20.0 189.0 .00486 1436.81 5.91 1 ,

3/27M7 Page 7 or 12 NSPh009E. doc

) G v EARTHOUAFE - DBE TH91 3/1/97 Ah SOIL PROFILE - NSP-PINGP DBE 8 EL.515 COL.1 199' ITERATION NUMBER S THE CALCULATION HAS BEEN CAPRIED OUT IN THE TIME DOMAIN WITH EFF. STRAIN = .65* MAX. STRAIN LAYER TYPE DEPTH EFF. STRAIN NEW DAMP. DAMP USED EPROR NEW G G USED EPROR FT PRCNT PRCNT KSF KSF PRCNT I 9 2.0 .00160 .033 .033 .0 '1413.071- 1412.993 .0 2 10 6.0 .00498 .053 .053 .0 1326.599 1326.526 .0 3 10 11.0 .00951 .064 .064 .0 1220.638 1220.757 .0 4 11 17.0 .01538 .076 .076 .1 1091.682 1092.064 .0 5 11 21.5 .01842 .079 .079 .1 1101.085 1101.601 .0 6 11 26.0 .01138 .062 .062 .0 2090.425 2090.732 .0 7 11 32.0 .01410 .067 .067 .1 2007.797 2000.301 .0 ,

8 12 38.0 .01543 .068 .068 .0 2097.312 2097.330 .0 9 12 44.0 .01754 .071 .071 .0 2053.556 2053.590 .0 10 12 51.5 .01177 .057 .057 .0 3386.363 3386.174 .0 11 12 60.5 .01319 .058 .058 .0 3326.386 3326.354 .0 12 13 69.5 . 01365 . 058 .058 .0 3491.616 3491.467 .0 13 13 82.8 .01527 .059 .059 .0 3440.417 3440.360 .0 14 13 100.3 .01A17 .061 .061 .0 3361.211 3361.298 .0 15 13 117.8 .01513 .054 .054 .0 4398.484 4398.285 .0 16 13 135.3 .01402 .051 .051 .0 5221.251 5221.303 .0 17 13 152.8 .00859 .039 .039 .0 9280.090 9279.992~ .0 18 13 170.3 .00606 .032 .032 .0 14283.050 14282.990 .0 19 7 189.0 .00316 .023 .023 .0 29543.560 29543.390 .0 VALUES IN TIME DOMAIN LAYER TYPE THICENESS DEPTH MAX STRAIN MAX STRESS TIME FT FT PRCNT PSF SEC 1 9 4.0 2.0 .00246 34.72 3.63 2 10 4.0 6.0 .00767 101.72 3.63 3 10 6.0 11.0 .01463 178.58 3.64 4 11 6.0 17.0 .02367 258.36 3.63 5 11 3.0 21.5 .02034 312.10 3.63 6 11 6.0 26.0 .01751 366.10 3.63 7 11 6.0 32.0 .02170 435.64 3.63 8 12 6.0 38.0 .02373 497.73 3.62 9 12 6.0 44.0 .02699 554.22 3.62 10 12 9.0 51.5 .01810 613.09 3.62 11 12 9.0 60.5 .02029 674.92 3.63-12 13 9.0 69.5 .02100 733.22 3.63 13 13 17.5 82.8 .02349 808.28 5.84 14 13 17.5 100.3 .02795 939.41 6.92 15 13 17.5 117.8 .02328 1023.81 6.92 16 13 17.5 135.3 .02157 1126.23 5.90 17 13 17.5 152.8 .01322 1226.64 5.90 18 13 17.5 170.3 .00933 1332.63 5.91 19 7 20.0 189.0 .00486 1436.62 5.91 3/27/97 Page a of 12 NSPh009E. doc

..__ _ _ __m. _ _ _ _ . _ . _ _ _ _ _ _ _ _ _ _ . _ _ _ _ . _ _ . _ _ _ _ _ m_____a - v.- -- w c, - _ ____._-_.a-_a___ w__-

-- %-....__s. . .m.-m-- u. - - - - - - - - - - - - . - ~ . - - . . . . . - - m--...~.-. ---4 ..--- --- m m...---.---o,- . . _ . - ..-

L i

i PERIOD = .67 FROM AVERAGE SHEAR VELOCITY = 1180. FT/SEC i a

2 MAXIMUM AMPLIFICATION = 13.19 -

FOR FREQUENCY = 1.56 C/SEC.

PERIOD = .64 SEC.

1****' OPTION 5 *** COMPUTE MOTION IN NEW SUBLAYERS {

EARTHQUAKE - DBE THti 3/1/97 Ah SO!L DEPOSIT - NSP-FINGP DBE 8 EL.515 COL.1 199'  !

t

. LAYER DEPTH MAX, ACC. TIME MEAN S0. FR. ACC. PATIO PUNCHED CAPDS  !

d FT G $EC C/SEC CUIET ZONE ACC, P.ECOR D OUTCR. .0 .14510 3.63 2.81 .000 256 WITHIN 4.0 .13962 3.63 2.74 .000 1 i WITHIN 8.0 .13202 3.62 2.58 .000 1  ;

WITHIN 14.0 .12792 3.61 2.33 .000 1 l

f WITHIN 20.0 .11735 3.60 2.14 .000 1 WITHIN 23.0 .10924 3.60 2.10 .000 1  !

WITHIN 29.0 .09918 3.59 2.06 .000 1 WITHIN 35.0 .09637 5.86 2.06 .000 1 ,

WITHIN 41.0 .09507 5.85 2.10 .000 1 t

WITHIN 47.0 .09474 5.84 2.18 .000 1 i i

i WITHIN 56.0 .09202 5.84 2.25 .000 1 i t

WIIttIN 65.0 .08608 6.92 2.35 .000 1 l t

WITHIN 74.0 .08400 3.53 2.47 .000 1 f

WITHIN 91.5 .08443 3.51 2.70 .000 1 f

WITHIN 109.0 .08136 5.91 3.19 .000 1 I

t

.. t l

af 6

i i

i i

(

3/27/97 Page 9 or i2 NSPh009E. doc j i

i b

h O J C' h

1****** OPTION 5 ***' COMPUTE MOTION IN NEW SUBLAYERS {

f I

EARTHQUAFE - DBE TH91 3/1/97 Ah >

SOIL DEPOSIT - NSP-PINGP DBE @ EL.515 COL.1 199' [

I

. LAYER DEPTH MAX. ACC. TIME MEAN SQ. FR. ACC. RATIO PUNCHED CARDS I FT G SEC C/SEC QUIET ZONE ACC. RECORD WITHIN 126.5 .07940 3.48 3.38 .000 1 WITHIN 144.0 .08622 3.46 3.36 .000 1 WITHIN 161.5 .08393 3.45 3.10 .000 1 WITHIN 179.0 .00015 3.44 2.94' .000' 1 f

WITHIN 199.0 .06956 3.43 2.68 .000 1 OUTCR. 199.0 .09334 3.43 3.28 .000 0 f

f 1****** OPTION 9 *** COMPUTE RESPONSE SPECTRUM i i i COMPUTE RESPONSE SPECTRUM IN LAYER 13 RESPONSE SPECTRUM ANALYSIS FOR LAYER NUMBER 13 s

i CALCULATED FOR DAMPING .050

, TIMES AT WHICH MAX. SPECTRAL VALUES OCCUR l TD = TIME FOR MAX. RELATIVE DISP.

TV = TIME FOR MAX. RELATIVE VEL. ,

TA = TIME FOR MAX. ABSOLUTE ACC.

{t DAMPING RATIO = .05

{

6 PERIOD TIMES FOR MAXIMA TD TV TA '

! .00 3.5200 3.5200 3.5200 t

.06 5.8300 5.4900' 5.8300 l j .06 5.7900 5.7700 5.7900 l .07 8.2000 .2.1400 8.2000  !

j .08 6.9000 4.3900 6.9000

.08 6.9200 4.0700 l'

'6.9100

, .09 8.6500 8.6800 8.6500 l'

, .10 8.2100 8.6900 8.2100

.11 7.6100 7.5800 7.6100 i

.12 5.8400 7.0600 5.8400 l

.13 6.8700 7.0700 5.8400

.14 5.8500 7.3800 5.8400-

, .16 2.6700 2.7100 2.6600 J .17 7.7400 7.7800 7.7300 l

.19 5.8800 8.0100 5.8800

.21 6.9400 7.2100 6.9400 j

.23 3.5400 8.0600 7.7700 j .25 3.5900 3.0500 3.5900 i

347N7 Paip 10 er l2 ftSPh009ELdoc l t

g- m -

4 4

%/ %J'

.28 6.1300 6.0700 6.1300

.30 4.5300 4.4600 4.5300

.33 3.6000 5.7000 3.6000

.36 3.6200 7.0400 3.5100

.40 3.6400 7.0500 3.6300

.44- 8.5200 2.5100 8.5200

.40 2.7200 2.8400 2.7100

.52 5.9500 6.0900 5.9400

.58 6.3200 6.1700 6.3?00

.63 8.6400 4.8600 0.6300

.69 8.7200 8.5500 8.7100

.76 6.4200 6.9600 6.4100

.83 6.5000 6.6000 6.4900

.91 8.8200 8.6400 8.8100 1.00 8.9200 8.6800 8.9100 1.10 6.6100 6.3500 6.6000 1.20 6.7500 6.4700 6.7300 1.32 9.0300 8.6900 9.0000 1.45 9.9400 9.6100 9.9200 1.58 3.8900 4.1800 3.8700 1.74 9 3900 9.7500 9.3600 i 1.91 7.0700 8.4000 7.0300 2.09 7.2000 7.9500 7.2300 2.29 7.5000 7.9800 7.4700 2.51 9.1900 9.7500 9.1500 2.75 9.3000 9.8700 9.3400 3.02 9.4600 10.2200 9.4100 3.31 9.5100 10.3100 9.4500 3.63 9.5800 10.3800 9.5200 3.98 9.6900 10.6600 9.6200 4.37 9.9200 9.1700 9.8500 4.79 10.1300 9.1900 10.0500 5.25 10.3300 9.3000 10.2400 1 SPECTRAL VALUES--

DBE TH#1 3/1/97 Ah NSP-PINGP DBE 8 EL.515 COL.1 1 DAMPING PATIO = .05 NO. PERIOD PEL. DISP. REL. VEL. PSU.REL. VEL. ABS. ACC. PSU. ABS.ACC. FREQ.

SEC. FT. FT./SEC. FT./SEC. G. G. C/SEC.

1 .00 00000 .00000 .00043 .08400 .08397 1000.00 2 .06 .00025 .01279 .02680 .09112 .09087 17.38 3 .06 .00033 .02145 .03277 .10114 .10133 15.85 4 .07 .00045 .02160 .04045 .11350 .11410 14.45 5 .08 .00049 .02173 .04046 .10455 .10408 13.18 6 .00 .00063 .01983 .04734 .11142 .11107 12.02 7 .09 .00075 .02764 .05192 .11156 .11110 10.96 8 .10 .00114 .04697 .07165 .13993 .13981 10.00 9 .11 .00131 .06340 .07515 .13233 .13373 9.12 10 .12 .00144 .05518 .07514 .12143 .12195 8.32 11 .13 .00163 .05791 .07745 .11464 .11465 7.59 12 .14 .00208 .05743 .09059 .12338 .12229 6 92 13 .16 .00323 .08912 .12793 .15803 .15751 6.31 14 .17 .00449 .14440 .16231 .18347 .18225 5.75 15 .19 .00598 .15189 .19706 .20245 .20180 5.25 16 .21 .00652 .19577 .19594 .13340 .18299 4.79 17 .23 .00080 .22162 .24145 .20001 .20566 4.37 18 .25 .01141 .24762 .28553 .22339 .22181 3.98 19 .28 .00956 .20038 .21807 .15493 .15450 3.63 3/27N7 Page !I or 12 NSPh009E. doc

't

\.) G G 20 .30 .00756 .14122 .15732 .10218 .10165 3.31 21 .33 .00846 .13913 .16061 .09490 .09465 3.02 22 .36 .01122 .16133 .19424 .10474 .10439 2.75 23 .40 .01333 .19767 .21033 .10332 .10309 2.51 24 .44 .02193 26173 .31568 .14177 .14112 2.29 25 .48 .03086 .39584 .40513 .16567 .16517 2.09 26 .52 .04066 .47649 .48685 .18170 .18102 1.91 27 .58 .06367 .63030 .69519 .23674 .23574 1.74 28 .63 .07584 .71003 75525 .23444 .23357 1.58 29 .69 .09256 74950 .84067 .23837 .23711 1.45 30 .76 .09684 .84240 .60215 .20726 .20E34 1.32 31 .83 .09963 .72665 75258 .17730 .17655 1.20 32 .91 .10719 .67988 73850 .15879 .15P01 1.10 33 1.00 .11261 .71285 70757 .13864 .13807 1.00 34 1.10 .14699 .81670 .84228 .15073 .34989 .91 35 1.20 .13563 .77631 .70882 .11555 .11504 .83 36 1.32 .15262 70803 .72742 .10812 .10767 .76 37 1.45 .16716 .77862 .72663 .09862 .09809 .69 38 1.59 .15545 .62347 .61629 .07652 .07588 .63 39 1.74 .18662 .70004 .67474 .07621 .07576 .58 40 1.91 .24516 -,78885 .80842 .08317 .08279 .52 41 2.09 .29935 .88758 .90025 .08451 .08408 .48 42 2.29 .29050 .89617 .79676 .06822 .06787 .44 43 2.51 .29277 .80456 .73233 .05708 .05689 .40 44 2.75 .32939 .71489 75144 .05355 .05324 .36 45 3.02 .34329 .67087 .71423 .04650 .04615 .33 46 3.31 .38232 .71051 .72545 .04307 .04275 .30 47 3.63 .44560 .74176 .77112 .04176 .04144 .28 48 3.98 .50801 74366 .80177 .03955 .03930 .25 49 4.37 .56054 .84348 .80684 .03618 .03607 .23 50 4.79 .60986 .90975 .79927 .03279 .03259 .21 51 5.25 .63311 .93865 .75799 .02836 .02818 .19 VALUES IN PERIOD PANGE .1 TO 2.5 SEC.

AREA OF ACC. PESPONSE SPECTRUM = .291 APEA OF VEL. RESPONSE SPECTRUM = 1.603 MAX. ACCELERATION PESPONSE VALUE = .238 MAX. VELOCITY RESPONSE VALUE = .896 Total execution time = .3 mins 3/27/97 Page 12 or 12 NSPh009E. doc

4 i

)

a i

i i

4 4

i t

?

I.

SIIAKE88 4

' INPUT FILE Nsph009e.ipt f

l e

k

i l

t

- 2048 .45 2

ls_>

s 1024 2048 2

.01DBE Thel 3/1/97 Ah 0 100000 l

.000000 .000091 .000193 .000321 .000597' .000951 .001302 .001426 1

.001473 .001228 .000899 .000755 .000776 .000554 .000114 ,000163 2

.000168 .000216 .000260 000202 .000311 .000375 .000319 .000176 3 i

l .000081 .000132 l 000398 .000936 .000265 .001961 .003557 .004574 4 1

L .005592 .005648. 006206 .006223 .006422 .005909 .005270 .004736 5 l .003654 .003513 .003933 .002125 .000173 .000681 .000428 .000704 6

! .001276 .000171 .000478 .000030 .001120 .000702 .001309 .002848 7 i

.003924 .004424 4004041 .006237 .006903 .005796 .004732 .002356 8

.001740 .005345 .006944 .005304 .003792 .005175 .003969 .000313 9

.003321 .004266 .002914 .002166 .001456 .000611 .000908 .000550 10 i

.001292 .000369' .000508 .000051 .001729 .003580 .002591 .002543

.006022 .007556 .007550 .005465 004679 .007661 .010132 .009925 11 12

! .011514 .012960 ,012094 .010142 .008752 .009258 .011408 .014098 13

! .015394 .016351 .013400 .007428 .004201 .001980 .000352 .002443 14

.000408 .006544 .011598 .012999 .007738 .003592 .006457 .006a37 15 .

.009083. 013009 .014345 .014238 .014132 .014640 .011632 .005742 16 i

.003918 .001359 .010166 .009204 .009299 .011229 .007274 .000484 17

.005553

,001678-

,007184 .008815 .010535 .009336 .005074 .004969 .006199 18 l .003969 .006985 .007504 .014:37 .015504 .010554 .005349 19 l

.000421 .002501 .008390 .007226 .002607 .006071 .001429- .002037 2C

.000617 .003727 .006947 .007471 .009342 .010897' .011456 .012099 21

.016959 .019545 .011756 .005926 .011586 .016738 .020565 .021843

.0'8052 22

.016075 .012307 .008276 .012251 .010991 .000970 .008573 23

.016828 ,020156 .022252 .023181 .026103 .027972 .026990 .026490 i

24

.020120 .014473 .007808 .000141 -.004186 .000002 .008799 .011907 25 t .007186 .001709 .006083 .006794 .003971 .003415 .008205 .007448 26 I .001594 .000584 .001558 .003671 .000663 .007650 .013324 .014825 27 i

.012617 .015534 ,018982 .014047 .010863 .011475 .013611 .015962 28 i .014556 .015720 .014224 .014015 .014993 .016842 .020573 .013664 29 l .002743 .004497 .013170 .020714 .024285 .026549 .024572 .020080

.021203 .019846 30 016601 .009868 .005929 .004628 .001330

.004147 .005357 .002190 .002447 009525 .015619 019381 .000027 31

, 015754 32

.016499 .019395 .017509 .012550 .008114 .002206 .002902 .003907 33

! / .001346 .001156 .000877 .000994 .003849 .003374 .005503 .011218 34

, ( .012548 .016747 .018491 .017221 .014151 .013130 .005912 .005934 35

.013960 - 020174 .022222 .024046 .025954 .026995 .022681 017619 36 r

i

.014988 .014515 .014923 010331 .004503 .000661 .000693 .001627 37 l

.005080 .003823 .000810 .005040 ,003085 .000393 .001415 .003579 38

.000336 .006817 .008411 .006443 .001662 .003376 .003599 ,002737 39

{

! .008166 .001824 .001514 .004934 .006586 .004145 .002644 .002006

.004112 .009355 .006947 .003978 002821 .000806 .00.1335 .000257 40

, 41

( .003497 .004385 .005300 .000633 .004220 .001268 .006907 .012903 42 '

l .016261 .020725 .024691 .028281 .029218 .028557 .029826 .034240 43

.060000 .038046 .034732 .032826 .029966 .026800 .018182 .015449 44

.018845 .018883 .011923 .007119 .007180 .010345 .010925 .008327 45 i

.009095 .008113 .006503 .001543 .000469 .003478 .007879 .011924 46

.010515 .011897 .013856 .011438 .003477 .001925 .004767 .003771 47 010053.009751

.011712 .014729 .019518 .024901 .022910 .019301 .012164 .009818 48

.006571 008805 .009133 .008605 .002315 .000774 .003452 49 010827 .014705 .014747 .011319 .000454 .012e96 .019883 50

( .020180 .021711 .024933 .022398 .016076 .014445 .012446 .009182 51

.002175 .004786 .005407 .008131 .011312 .011288 .005864 .006412 52

.009630 .000888 .004743 .005025 .011881 .012023 .005833 .000143 53 0022954018499

.012568 .002311.024149

.009214 .010153 .006701 .001406 .007938 .009541 54 023776 .020215 .019733 .016557 .011318 55

.007184 ,002931 .003603 .001601 .001053 .000977 .002064 .001130 56 006046 .009912 .011243 .007900 .003806 .015228 .016314 011830 57

.011932 .010957 .010927 .005369 .000261 .000010 .000207 .004083 58 *

.007884 .009938 .011238 .010869 .006326 .002895 .008585 .009944 59

.010506 .014455 .012919 .011666 .013142 .012134 .006309 .000290 60

.000074 .000307 .003963 .004510 .002331 .001704 .006576 .013262- 61 i

+

.013549 .011245 .011056 .013796 .009729 .003282 .005018 .009054 62

.005038 .001216 .005715 .008437 .006739 .002963 .001718 .005928 63

.014606 .012395 .002280 .001017 .007819 .007442 .006434 .006707 64 j

.005893. 003476 .002319 .006992 .011708 .009252 .004833 .000662 65

.003352 .003688 .005035 .011693 .012524 .005062 .003933 .010636 66

.019050 .015648 .006804 .003285 .004640 005799 .012284 .014121 67- j

.006391

.002307 .004254 .003370 .011637 .013214 .017778 .021388 68

.024328 .025757 .028828 .031996 .021964 .008682 ,003932 .005749 69 i .004466 .005127 .011408 .018727 .026516 .031526 .029063 .023632 70

.024784 .028577 .031120 .026317 .015312 .009173 .005697 .008905 71

.013656 .016568 .021284 .023631 .028313 .027677 .023192 .014410 72 4

4/197 Pagelor5 NSPh009E. doc i I l l

. . - . . . - - . . -. .- . . - . ~ ~ _ ~ , , - - . - . - . . .w . ~ . - - ~.-. -.. -

l 1

l

{

l y .006238 .005044 .003371 .002520 .rl350t 007879 .015:48 .019:10 73 w .019951 .024856 .025429 .019711 .015!04 .%20396 .023329 ,019769 74

.016138 .006218 .004493 .009998 014ff' .J17625 .017570 .014370 75

.010836 .008653 .005310 .005487 .0066/6 .004171 .000216 .001344 76 i

.006345 .011498 .010644 .012214 .009817 .002425 .001600 .000587 77 i

.001548 .001805 .003168 .009296 .011991 .010822 .010364 .006171 78  !

.001617 .003605 .005840 .005090 .005428 .011050 .022545 .025272 79

.021670 .018761 .016480 .017896 .020951 .025338 .021222 .014167 80  ;

.010332 .009627 .009528 002540 .004943 .010069 .010046 .009544 81

! .010425 .01.0549 .013899 ,017514 .018760 .020209 .019448 .014747 82 l .005501 .001576 .002503 .011231 .019399 .021276 .024028 030785 83

.031937 .027635 .018658 .010154 .006650 .006389 .008285 .012247 84 l .022408 .032993 .032096 .027079 .024515 .026974 .026752 .023983 85

.023641 .023629 .026442 .024218 .023083 .021178 .013183 .004104 86 l .003929 .011079 .019980 .026119 .029339 .030481 .030662 .022089 87 l .007373 .002165 .005042 .003432 .006225 .011065 .011218 .011015 88 l j .015647 .015679 .011685 .013011 .014542 .011177 .012112 .014691 89 )

~.016143 .020926 .023361 .024631 .023959 .021745 .018578 .011261 90 l

.000288 .008703 .015908 .023667 .024451 .014724 .001505 .004067 91 j j' .003467 005901 .006521 .008283 .006752 .008183 .007587 .003890 92 ,

.005252 .010912 011505 .001831 .006327 .006103 .003021 .003663 93 -

.006210 .008672 .008617 .004800 .004404 .018059 .021138 .013764 94 I

.007739 .005116 .006603 .007117 .003629 .001009 .003345 .010775 95 1

.011628 .015212 .022775 .025559 .024982 .021373 .013965 .004156 96 002132 .003707 .001177 .005592 .007803 .008548 .007548 .007384 97

.007907 .005245 .002682 .001566 .001439 .000603 .002468 .008549 98

.012718 .016354 .017680 .014768 .008164 .000776 .004944 .005834 99 i

007650 .009362 .009674 .007961 .009835 .015192 .012563 .000056 100 l .009491 .015140 .020400 .018323 .016269 .015884 .015823 .014426 101

.021717 .031712 .036372 .034891 .029937 .026070 .022256 .014057 102 l .004361 .000939 .002261 .003639 .008758 .012813 4016357 .015565 103 l l .012872 .014489 .020062 .023237 .022365 .017583 .008473 .004396 104 l .007446 .015583 .024398 .021930 .016052 .014514 .011338 .002724 105 l .002533 .003455 .003706 .004503 .003302 .001819 .003101 .000082 106 l

.001049 .000176 .000646 .000976 .006643 .016090 .025960 .029809 107

,.030127 .031040 .031039 .029230 .024854 .017818 .010732 .005663 108

.002261 .001907 .002870 .000647 .001664 .000123 ,003938 .004630 109

(

0

\s -

.005196 .004356 .007266 .009797 .010491 .011011 .014307 .018235

.020544 .020709 .02:143 .022055 .015976 .009578 .009596

.019002 .017750 .014199 .011936 .010510 .009690 .011302 .014367

.018991 .021626 .022158 .021:12 .017069 .012107 .006352 .002897 015134 110 111 112 113 i .003528 .003037 .002927 .003571 .004637 .004123 .001606 .002960 114

.005382 .005430 .004136 .004371 .005151 .004438 .005262 .006911 115 ,

.006644 .005259 .004819 .003246 .001324 .001206 .000792 .000798 116 I

.001193 .004479 .004714 .004431 .003947 .005720 .007081 .007770 117 l .009602 .010927 .009927 .008174 .005884 .004583 .006644 .009425 118

! .011304 .011365 .009215 .007578 .005519 .004137 .004718 .004125 119

, .002715 .001895 .000093 .000289 .000166 .000890 .000189 .000670 120 i 000197 .001018 .001122 .001413 .001099 .000391 .001200 .001879 121

.000155 .001670 .000313 .002573 .003616 002468 .001862 .000895 122

.000519 .001049 .001172 .001626 .003548 .005682 .005740 .003303 123 l .001377 .001412 .001166 .000039 .001393 .001754 .001137 001423 124 i- .001731 .001650 .001953 .002765 .004311 .005405 .005281 005202 125 l .005163 .0052C8 .004622 .003497 002534 .002172 .002117 .001486 126 r

.000568 .000171 .000116 .000284 .000720 .000574 .000388 .000586 127

.000619 .000437 .000159 .000075 .000120 .000058 .000009 000025 128 ,

i l

i l l i

s l

l 1

l s

I f-~ l

(

4/l/97 Page 2 of 5 NSPh009E. doc

- , - .J

P I

l' O

x' 20 SNSP-PINGP DBE e EL.515 COL.1 199' 1 9 1 4 0 .07 .12 650 1 0 2 10 1 4 0- .07 .12 650 1 0 3 10 1 6- 0 .07 .22 650 1 0 l .4 11 1 6 0 .12 .31 650 1 0 l 5 .11 1 3 -0 .12 .115 650 1 0 3

[ 6 11 1 6 0' .1 .125 820 1 0 7 11 1 6 0 .1 .225 820 1. 0 8 12 1 6 0 .1 .125 820 1 0 9' 12 1 6 0 1 .125 820 1 0 10 12 1 9 0 .07 .13 1000 1 0 11 12 1 9 0 .07 13 1000 1 0 12 13' 1 9 0 .07 .13 1000 1 0 j 13 13 1 17.5 0 .07. .13 1000 1 0 i 14 13 1 17.5' O .07 .13 1000 1 0 l 15 13 1 17.5 0 .07 .13 1130 1 0 l 16 13 1 17.5 0 .07 .13 1225 11 0 I .17 13 1 17.5 0 .07 .13 1590 1 0 I E18 13 1 17.5 0 .07 .13 ~ 1950 1 0 f

19 7 1 20 0 .07 .155 2500 1 0 l~ 20 3 0 0 0 0. .155 5000 1- 0

3 19 0 8 .

13 0 0 0 )

i 11 .01 SHEAR MODULUS CLAY - MAY 1972 i

.0001 .000316 .001 .00316 .01 .0316 .1 .316. i l 1. 3.16 10.

I 2300. 2100. .1750. 1300. 920, 600. 350. 175.

[ 84. 30. 10.

! 10 1 DAMPING CLAY - MAY 24, 1972

.0001 .001 .00316 .01 .0316 .1 .316 1.

3.16 10, 2, 2.5 3.5 4.75 6.5 9.25 13.75 20,

26. 29.

.11 .5 SHEAR MODULUS SAND SQ. ROOT REL. - MAY 1972

~'j ' .0001 .000316 .001 .00316 .01 .0316 .1 .316 l~

l- j 1. 3.16 10.

l

' 61. 60, 57. 50.4 40, 27 15. 7.

I 3. 3. 3.

9 1 DAMPING SAND - FEBRUARY 1971

.0001 .001 .003 .01 .03 .1 .3 1.

10. .

1

1. 1.6 3.12 5.8 9.5 15.4 20.9 25.

l 25.5 8 .01 ATTENUATION OF ROCK AVERAGE l

l .0001 .0003 .001 .003 .01 .03 .1 1.

2000, 2000. 1975. 1905, 1800. 1620. 1450. 1100 5 1 DAMPING IN ROCK AVERAGE 9/4

.0001 .001 .01 .I 1.

.4 .e 1.5 3. 4.6 10 30C1 (CLAY PI = 0-10) MODULUS REDUCTION CURVES, PEB 1988

.0001- .001 .00316 .01 .0316 .1 .316 1.

3.16 10.

1. .974 .915 .766 .574 .312 .1E .06

.02 .006

, 10 1 DAMPING CLAY - MAY 24, 1972

.0001 .001 .00316 .01 .0316 .1 .316 1.

l t 3.16 10.

l- 2. 2.5 3.5 4.75 6.5 9.25 13.75 20.

26. 29.

10 30C2 (CLAY PI =10-20) MCDULUS REDUCTION CURVES, FE' 1988 30001 .001 .00316 .01  :.0316 .1 .316 1.

3.16 10.

1. .997 .974 .881 .674 .425 .22 .076

.03 .01 10 1 DAMPING CLAY - MAY 24, 1972

.0001 .001 .00316 . 01 .0316 .1 .316 1.

3.16 10.

2. 2.5 3.5 4.75 6.5 9.25 13.75 20.
26. 29.

i 10 30C3 (CLAY F1 =20-40) MODULUS REDUCTION CURVES, FEB 1988

.0001 .001 .00316 .01 .0316 .1 .316 1.

3.16 10.

! '~' 1. .999 .9B .92 .78 .532 .293 .137 a

4/1/97 Page J nr5 NSPh009E. doc I ' _ ..m . _ _ _. _ . . _ . _ _ _ . . _ . _ _ _ _ _ . _ . . . _- _ ,_ .. _ _ _ , , . _ . _ , _ . _ _ _ . . , _ _ . _

.s_-------- . . . - - . .. -

^

l O 10

.075

.0001 025 1 DAMPING CLAY - MAY 24, 1972

.001 .00316

.01 .0316 .1 .316 1.

i i

3.16 10. I

2. 2.5 3.5 4.75 6.5 9.25 13.75 20. l
26. 29. I 10 3004 (CLAY P1 =40-60) MODULUS RE00CTION CUPVES, FEB 1988 '

.0001 .001 .00316 .01 .0316 .1 .316 1.

3.16 10.

1. .995 .902 .934 .819 .61 .41 .202

.118 .035 10 10 AMP 1NG CLAY - MAY 24, 1972

.0001 .001 .00316 .01 .0316 .1 .316 1.

3.16 10,

2. 2.5 3.5 4.75 6.5 9.25 13.75 20.
26. 29.

10 30C5 ' (CLAY PI > 80 ) MODULUS REDUCTION CURVES, FEB 1988

.0001 .001 .00316 .01 .0316 .1 .316 1.

3.16 10.

1. 1. .979 .937 .85 .713 .545 .336

.28 .06 10 1 DAMPING CLAY - MAY 24, 1972

.0001 .001 .00316 .01 ,0316 .1 .316 1.

3.16 10.

2. 2.5 3.5 4,75 6.5 9.25 13.75 20.
26. 29.

11 3031 (SAND CP=.25 KSC) MODULUS REDUCTION CURVES, FEB 1988

.0001 .000316 .001 .00316 .01. .0316 .1 .316 "

1. 3.16 10.
1. .98 .93 .85 .72 .49 .25 .1

.07 .06 .05 9 1 CAMPING SAND - FEBRUARY 1971

.0001 .001 .003 .01 .03 .1 .3 1.

10.

1. 1.6 3.12 5.8 9.5 15.4 20.9 25.

25.5 11 30S2 (SAND CP=.50 KSC) MODULUS REDUCTION CURVES, FEB 1988 9 9

.0001 1.

.09 1.

,000316 3.16

.99

.07 1 DAMPING SAND - FEBRUARY 1971

.001 10.

.95

.06

.00316

.89

.01 77

.0316

.58 .32

.1 .316

.16 j

.0001 .001 .003 .01 .03 .1 -. 3 1.

10.

1. 1.6 3.12 5.8 9.5 15.4 20.9 25, 25.5 11 3033 (SAND CP=1.0 ESC) MODULUS REDUCTION CURVES, FEB 1988 0001 .000316 .001 .00316 .01 .0316 .1 .316
1. 3.16 10.
1. 1. .97 .92 .82 .65 .4 .2

,12 .08 .06 i 9 . 1 DAMPING SAND - FEBRUARY 1971

'0001

. .001 .003 .01 .03 .1 .3 1.

10.

1, 1.6 3.12 5.8 9.5 15.4 20.9 25, 25.5 11 30S4 (SAND CP=2.0 ESC) MODULUS REDUCTION CURVES, FEB 1988

.0001 .000316 .001 .00316 .01 .0316 .1 .316

1. 3.16 10.
1. 1. .98 .94 .66 71 .48 25

.15 .11 .09

~9 1 DAMPING SAND - FEBRUARY 1971

.0001 .001 .003 .01 .03 .1 .3 1.

10.

1. 1.6 3.12 5.8 9.5 15.4 20.9 25, 25.5 11 30S5 (SAND CP=3.0 ESC) MODULUS REDUCTION CURVES, FEB 1988

.0001 .000316 .001 .00316 .01 .0316 .1 .316

1. 3.16 10,
1. 1. .99 .97 .9 .77 .57 .34

.2 .13 .11 9 1 DAMPING SAND - FEBRUARY.1971

.0001 .001 .003 .01 .03 .1 .3 1.

10.

1. 1.6 3.12 5.0 9.5 15.4 20.9 25.

l 25.5 4/IN7 Page .I of 5 NSPh009E. doc

i k

c l

I 4

l 2

I 4 0 10 .5 ,65 f.

i 5

1 2 3 4 5 6 7 8 9 to 11 12 13 14 15 1 0- 1 1 1 1 .I 1 1 1 1 1 1 1 1 1 l 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0

. 5

]- 16 11 18 19 20 20 0 0 0 0 0 0 0 0 0 1 1 1 1 1 -1 0 0 0 0 0 0 0 0 0 0 j 0 0 0 1 1- 0 0 0 0 0 0 0 0' O O l 9.

4; 13 1 1 1- 0 1 0 4

.05 9

,' 19 0 I 1 0 1 0 4

.05 1

0 l

1 i

l i

I i

I i

O O NSP'009E. doc 4tlN7 Page 5 of 5

[~

V)

Surface Motion @ EL.694 ft.

.15-

[o ,s. Peak value= .0933 c 05-eiA dhdL4 l I 4L 8 g,, ' rwi ig] irj'qp ' th%.f typ.tMO $ $ %liwr r

z y .1-

.15-5 1'O l'5 Time (secs)

Input Motion to OVAD4M @ EL.620 ft

.15

-2 1' Peak value= .0811 c 05-4Y l. 4 k )/ A.

s'TV' A n.h N e VfIPfi9 l' .M "d dA A A d ( 'd ff $' y l V W '

V z

S .1-V .15-5 to 15 Time (secs)

DBE Outcropping Motion @ EL.515 ft.

.15-2 l' Peak value= .09 c 05-e A iik A ddk $ R kl I, Ab AA.

VW" T Y }/ It 'l ' %VlhT'4dffN(PF z

y .1-

.15-5 1'O l'5 Time (secs)

(File: NSPV008A.')

DRAWN BY DTA 6-2-97 SHAKE 88 VERTICAL FREE-FIELD ACCELERATION CHECKED sy TAK 6-2 97 INTAKE CANAL LIQUEFACTION ANALYSIS APPROVED BY WHW 6-2-97 (N 1 PRAIRIE ISLAND NUCLEAR GENERATING PLANT FIG 33. PPT NTS N sTs c

on uungIn"gMk STSP OfECT 3_A l

l

~ p.

SilAKE ADJUSTED VERTICAL PARAMETERS Variable Constant Iloriz. Vertical Material Shake Shear Shear Wave Constant Constrained Variable Constrained Damping Damping Type Layer Density Modulus Velocity Poisson's Modulus Poisson's Modulus Factor Factor

  1. y G V, Ratio D. Ratio D2 A A/3 (pe0 (ks0 (ft/see) vi (ks0 v2 (ks0 Fill I 120 1413 4 616 0.35 6123 - 1 - 0.033 .

0.01I Fill 2 120 1327 597 0.35 5750 - - 0.053 0 018 Fill 572 0.35 5291 0.064 0.021 3 120 . _l221 ..

1.oose Sand 4 110 1092 565 0.35 4732 - - 0.076 _ 0.025 Loose Sand. Sat. 5 115 i I101 555 -

I - 0.49 89286 0.079 0.026 yedyse Sand _ 6 125 2090 734 - -

0.49 97050 0.062 _ _

0.021 125 2008 719 0.49 97050 0.067 0.022, S*d:-Dense Sand ,{. 7 ~

Med.-Dense Sand 8 125 2097 735 - - 0.49 97050 0.068 0.023

~

~ ~

Med-Dense Sand 9~ ~ l'25' ' 2U5'4~

727 - - 0.49 '~97U50 ' O.b71

~

0.024 Dense-V. Dense Sand E5avel 10 ' '130 3386'~ 916 - - 0.48 100932 0 b57 ~0I019

~

INnse-V.I5nse Sand'd Gravei 11 13U 3326 908 - - 0.48 'i~00932 U.d58 0.UI9

~

Dense-VlEnse~ Sand k Grasel 12 13d 3492 93b - - O'48

. 100932 d5058 ~0.519

~

Den $se-~V DenESand I Gravei 13 130 3440 923 - - 0.48 100932 0.059

~

0.020 ,

~ ill

~ ~ ~

inn'sc-V.' Dense' San'd Gravel ~

I4 13d 3361

- - ~6 48~ 4 100932 '0.061 ~~

~

~0.020~ '

Dense-V. Dense Sand k Gravei 15 130' 4398' IIU4 - - b.48 106932' 0 054 ~

d.018 Dense-V. Dense 5an[k grani ' i6 13b ~~5221'

~

IIU ~ - - 'd.47~ I00932 'O.05i ~ 0.0IT Den's eS.DEse Sand'I Gravei ~ 'I 7 ' ~ '30 I 9280 1516 - - 0.45 100932 0.039 0.013 Dense-V. Dense Sand & Gravel _

18 130 14283 1881 - - 0.42 100932 0.032 '~$UII 0 ~

Weathered Sandstone Bedrk. 19 155 29544 2477 - - 0.34 120342 0.023 0.008 Sandstone Bedrock llatfspace 20 155 120342 1 5000 - - 0.31 434433 0.000 0.000  !

Notes: 1. Density (y), Poisson's Ratio (vi), Shear Modulus (G), Damping Factor ( A) obtained from the final iteration of SIIAKE88 file "nsph009e".

2. Layers # l-4 are above the water table; #5-20 are below.
3. Dilatational Compression Wave Velocity of Water (V,=5000 fps), Solid Bedrock (V,=9500 fps).
4. EQ @ EL515 above 20 fl. Weathered Bedrock.

G(32.2ft / sec 2G(1- og ) (y )2 y D2 - 2G V s =t D Above Water P Below Water 7 g = (1-201 ) D2 = neiour water

) v2 = 2D2 - 2G (32.2ft / sec2 )(1000) 6/17/97 NSP-PINGP-28723A Modulus.xis

d i

i f l

.; 1 1

4 J

t i

)

1 l

1 I SHAKE 88 OUTPUT FILE i Nspv008a. opt i

4 5

4 i

i I e

4

]

1 5

1 1

l

m O O J S H A..K

.... E88 A program for:

Earthquake Response Analysis of Horizontally Layered Sites Version of February 1988 Originally authored by Schnabel, Lysmer, 6 Seed Modified by J. Sun & S. Lai University of California - Berkeley IBM-PC version by Geotech International (312) 939-7162 May 1991 Input file name = NSPv000A.IPT Output file name = NSPV008A. OPT Punch file n.sme = NSPV008A. PUN Date and time of run = 3/27/1997 11:41 MAX, NUMBER OF TERMS IN FOURIER TRANSFORM = 2048 NECESSARY LENGTH OF BLANK COMMON X = 12819 EARTH PRESSURE AT REST FOR SAND = .450 1****** OPTION 1 *** READ INPUT MOTION EARTHQUAKE - DBE THs4 3/1/97 Av 1024 ACCELERATION VALUES AT TIME INTERVAL .0100 THE VALUES ARE LISTED POW BY ROW AS READ FROM CARDS TRAILING ZEROS ARE ADDED TO GIVE A TOTAL OF 2048 VALUES MAXIMUM ACCELERATION = .06000 AT TIME = 6.96 SEC THE VALUES WILL BE MULTIPLIED BY A FACTOR = 1.333 TO GIVE NEW MAXIMUM ACCELERATION = .00000 MEAN SQUARE FREQUENCY = 4.48 C/SEC.

3/27/97@!l:44 AM PageIof8 NspV008a. doc

r

'\

J v v 1'**** OPTION 2 *** READ SOIL PROFILE NEW SOIL PROFILE NO. 1 IDENTIFICATION - NSP-PINGP DBE9EL.515 COL.1 229' Con MUMBER OF LAYERS 20 DEPTH TO BEDROCK 199.00 NUMBER OF FIRST SUBMERGED LAYER 5 DEPTH TO WATER LEVEL 20.00 t

LAYER TYPE FACTOR THICENESS DEPTH EFF. PRESS. MODULUS DAMPING UNIT WEIGHT SHEAR VEL k MOD. DAMP. FT FT KSF KSF. KCF. FT/SEC 1 9 1.00 1.00 4.00 2.00 .24 6123. .011 .1200 1282.

2 10 1.00 1.00 4.00 6.00 .72 5750. .018 .1200 1242.

3 10 1.00 1.00 6.00 11.00 1.32 5291. .021 .1200 1192.

4 11 1.00 1.00 6.00 17.00 2.01 4732. .025 .1100 1177. i 5 11 1.00 1.00 3.00 21.50 2.42 89286. .026 .1150 5000.

6 11 1.00 1.00 6.00 26.00 2.69 97050. .021 .1250 5000.

7 11 1.00 1.00 6.00 32.00 3.06 97050. .022 .1250 5000.

8 12 1.00 1.00 6.00 38.00 3.44 97050. .023 .1250 5000.

9 12 1.00 1.00 6.00 44.00 3.81 97050. .024 .1250 5000.

10 12 1.00 1.00 9.00 51.50 4.30 100932. .019 .1300 5000.

11 12 1.00 1.00 9.00 60.50 4.91 100932. .019 .1300 5000.

12 13 1.00 1.00 9.00 69.50 5.52 100932. .019 .1300 5000.

13 13 1.00 1.00 17.50 82.75 6.42 100932. .020 .1300 5000.

14 13 1.00 1.00 17.50 100.25 7.60 100932. .020 .1300 5000.

15 13 1.00 1.00 17.50 117.75 0.78 100932. .018 .1300 5000.

16 13 1.00 1.00 17.50 135.25 9.97 100932. .017 .1300 5000.

17 13 1.00 1.00 17.50 152.75 11.15 100932. .013 .1300 5000.

18 13 1.00 1.00 17.50 170.25 12.33 100932. .011 .1300 5000, i 19 7 1.00 1.00 20.00 189.00 13.85 120342. .000 .1550 5900.

20 RASE 434433. .000 .1550 9500.

PERIOD = .17 FROM AVEPAGE SHEAR VELOCITY = 4620. FT/SEC e

MAXIMUM AMPLIFICATION = 51.73 FOR FREQUENCY = 6.38 C/SEC.

PERIOD = .16 SEC.

i F

1****** OPTION 3 *** READ WHERE OBJECT MOTION IS GIVEN OBJECT MOTION IN LAYER NUMBER 19 OUTCROPPING t

3/27/97 Page 2 or 8 NspV008a. doc

_ . - . _ - _ ~ _ - _ _ _ - _ - _ - - _ _ _ - _ _ _ _ - _ _ _ _ _ _ _ _ _ _ - . _ . . .- . -- - - . - -

f /

(d b 1****** OPTION B *** PEAD RELATION BETWEEN SOIL PROPERTIES AND STRAIN CURVES FOR PELATION OF STPAIN VERSUS SHEAR MODULUS AND DAMPING MODULUS AND DAMPING VALUES APE SCALED FOR PLOTTING SNEAR MODULUS CLAY - MAY 1972 MULTIPLICATION FACTOR = .01000 DAMPING CLAY - MAY 24, 1972 MULTIPLICATION FACTOR = 1.00000 SHEAR MODULUS SAND SQ. ROOT REL. - MAY 1972 MULTIPLICATION FACTOR = .50000 DAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACTOR = 1.00000 ,

ATTENUATION OF ROCK AVEPAGE MULTIPLICATION FACTOR = .01000 DAMPING IN ROCK AVERAGE 9/4 MULTIPLICATION FACTOR = 1.00000 C1 (CLAY PI = 0-10) MODULUS PEDUCTION CURVES, FEB 1988 MULTICLICATION FACTOR = 30.00000 DAMPING CLAY - MAY 24, 1972 MULTIPLICATION FACTOR = 1.00000 C2 (CLAY PI =10-20) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 CAMPING CLAY - MAY 24, 1972 MULTIPLICATION FACTOR = 1.00000  ;

C3 (CLAY PI =20-40) MODULUS PEDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING CLAY - MAY 24, 1972 MULTIPLICATION FACTOR = 1.00000 C4 (CLAY PI ~40-80) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING CLAY - MAY 24, 1972 MULTIPLICATION FACTOR = 1.00000 C5 (CLAY PI > 80 ) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING CLAY - MAY 2 4, 1972 MULTIPLICATION FACTOR = 1.00000 S1 (SAND CP=.25 ESC) MODULUS REDUCTION CURVES, PEB 1988 MULTIPLICATION FACTOR = 30.00000  :

DAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACTOR = 1.00000 7 S2 (SAND CP=.50 KSC) MODULUS PEDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000

  • DAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACTOR = 1.00000 "

S3 (SAND CP=1.0 KSC) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING SAND ~ FEBRUARY 1971 HULTIPLICATION FACTOR = 1.00000 S4 (SAND CP=2.0 KSC) MODULUS PEDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACIOR = 1.00000 SS (SAND CP=3.0 KSC) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 ,

DAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACTOR = 1.00000 1****** OPTION 4 *** OBTAIN STPAIN COMPATIBLE SOIL PROPEPTIES MAXIMUM NUMBER OF ITERATIONS = 1 MAXIMUM ERROR IN PERCENT = 10.00 FACTOR FOR EFFECTIVE STRAIN IN TIME DOMAIN = .65  !

l L

L 3/27N7 Page 3 or8 NspV008a. DOC

> v v EARTHOUAKE - DBE TH#4 3/1/97 Av SOIL PROFILE - NSP-PINGP DBEBEL.515 COL.1 229' Con ITERATION NUMBER 1 THE CALCULATION HAS BEEN CARRIED OUT IN THE TIME DOMAIN WITH EFF. STRAIN = .65* MAX. STRAIN LAYER TYPE DEPTH EFF. STRAIN NEW DAMP. DAMP USED rRROR NEW G G USED ERROR FT PRCNT Ph?NT KSF KSF PRCNT 1 9 2.0 .00023 .012 .011 9.7 6033.878 6123.000 -1.5 2 10 6.0 .00072 .015 .018 -18.9 5528.031 5750.000 -4.0 3 10 11.0 .00134 .020 .021 -4.6 4945.052 5291.000 -7.0 4 11 17.0 .00211 .026 .025 5.1 4436.270 4732.000 -6.7 5 11 21.5 .00014 .011 .026 -140.0 89285.000 89286.000 .0 6 11 26.0 .00015 .011 .021 -89.2 97050.000 97050.000 .0 7 11 32.0 .00019 .012 .022 -89.0 97050.000 97050.000 .0 8 12 38.0 .00022 .012 .023 -90.3 91050.000 97050.000 .0 9 12 44.0 .00026 .012 .024 -92.5 97050.000 97050.000 .0 10 12 51.5 .00029 .013 .019 -48.6 100932.000 100932.000 .0 11 12 60.5 .00034 .013 .019 -43.8 100788.900 100932.000 .1 12 13 69.5 .00039 014 .019 -40.1 100741.200 100932.000 .2 13 13 82.8 .00047 .014 .020 -42.7 100589.900 100932.000 .3 14 13 100.3 .00056 .014 .020 -30.0 100431.000 100932.000 .5 15 13 117.8 .00064 .015 .018 -21.2 100308.600 100932.000 .6 16 13 135.3 .00073 .015 .017 -12.1 100201.200 100932.000 .7 17 13 152.8 .00081 .015 .013 15.9 100105.000 100932.000 .8 18 13 170.3 .00089 .016 .011 29.9 100027.000 100932.000 .9 19 7 189.0 .00001 .025 .008 67.4 119796.100 120342.000 .5 t

)

VALUES IN TIME DOMAIN LAYER TYPE THICKNESS DEPTH MAX STRAIN MAX STRESS TIME FT FT PPCNT PSF SEC 1 9 4.0 2.0 .00036 21.45 7.01 2 10 4.0 6.0 .00111 61.25 7.01 3 10 6.0 11.0 .00207 102.18 7.01 4 11 6.0 17.0 .00325 144.16 7.01 5 11 3.0 21.5 .00021 189.04 7.00 6 11 6.0 26.0 .00023 227.46 7.00 7 11 6.0 32.0 .00029 280.24 7.00 8 12 6.0 38.0 .00034 332.74 7.00 9 12 6.0 44.0 .00040 385.01 7.00 10 12 9.0 51.5 .00045 452.27 6.99 11 12 9.0 60.5 .00053 531.60 6.39 12 13 9.0 69.5 .00060 608.93 7.00 13 13 17.5 82.8 .00072 722.65 7.00 14 13 17.5 100.3 .00086 864.94 7.00 15 13 17.5 117.8 .00099 993.39 7.00 16 13 17.5 135.3 .00112 1121.75 6.99 17 13 17.5 152.8 .00125 1250.69 6.99 18 13 17.5 170.3 .00137 1366.18 6.99 19 7 20.0 189.0 .00124 4488.83 6.99 i

i 3/27/97 Page 4 or8 NspV00Sa. doc

i l

t PERIOD = .17 FROM AVERAGE ' SHEAR VELOCITY = 4607. FT/SEC

{

t MAXIMUM AMPLIFICATION = 46.08 L FOR FPEQUENCY = 6.37 C/SEC.

PERIOD = .16 SEC. 1 h

t i

1****** OPTION 5 *** COMPUTE MOTION IN NEW SUB LAYERS 1

EARTHOUAKE - DBE TH#4 3/1/97 Av SOIL DEPOSIT - NSP-PINGP DBE@EL.515 COL.1 229' Con LAYER DEPTH MAX. ACC. TIME MEAN SQ. FR. ACC. PATIO PUNCHED CARDS 2 FT G SEC C/SEC QUIET ZONE ACC. RECOND 1

I OUTCR. t

.0 .09332 7.01 7.24 .000 256  !

WITHIN 4.0 .08855 7.01 6.62 .000 t

1 .

i WITHIN 8.0 .07739 7.00 5.59 .000 1 I

WITHIN 14.0 .08081 7.00 5.22 .000 5

1 i WITHIN 20.0 .07543 6.99 4.27 .000 I 1 '

WITHIN 23.0 .07539 I 6.99 4.27 .000 1

  • WITHIN 29.0 .07493 6.99 4.20 .000 i

1 i

WITHIN 35.0 .07392 6.99 4.05 .000 1 WITHIN 41.0 .07246 t 6.99 3.05 .000 1 WITHIN 47.0 .07063 6.99 3.63 .000 1 WITHIN 56.0 .06762 3.34 6.99 .000 1 WITHIN E5.0 .06788 6.98 3.14 .000 1 WITHIN 74.0 .06919 6.98 3.06 .000 1 OUTCR. 74.0 .08107 6.99 4.65 .000 256 WITHIN  !

91.5 .06802 6.98 3.15 .000 1

)

i 3cr7/97 rage 5 or8 PJsp%N008a. doc

sn .e x f h \

v ~ b' ' v 1****** OPTION 5 *** COMPUTE MOTION IN NEW SUBLAYERS EAPTHQUAFE - DBE TH#4 3/1/97 Av SOIL DEPOSIT - NSP-PINGP DBE@EL.515 COL.1 229' Con LAYER DEPTH MAX. ACC. TIME MEAN SQ. FR. ACC. PATIO PUNCHED CARDS ET G SEC C/SEC QUIET ZONE ACC. PECORD WITHIN 109.0 .06277 6.98 3.42 .000 1 WITHIN 126.5 .06467 6.97 3.56 .000 1 WITHIN 144.0 .06526 6.97 3.30 .000 1 WITHIN 161.5 .06291 6.96 2.92 .000 1 WITHIN 179.0 .06278 6.96 3.02 .000 1 OUTCR. 179.0 .08000 6.96 4.48 .000 0 WITHIN 199.0 .05754 6.96 3.37 .000 1 1****** OPTION 9 *** COMPUTE PESPONSE SPECTPUM COMPUTE RESPONSE SPECTRUM IN LAYER 13

  • RESPONSE SPECTRUM ANALYSIS FOR LAYER NUMBER 13 CALCULATED FOR DAMPING .050 TIMES AT WHICH MAX. SPECTPAL VALUES OCCUR TD = TIME FOR MAX. RELATIVE DISP.

TV = TIME FOR MAX. RELATIVE VEL.

TA = TIME FOR MAX. ABSOLUTE ACC.

DAMPING RATIO = .05 PERIOD TIMES FOR MAXIMA TD TV TA

.00 6.9700 7.0600 6.9700

.06 2.3300 6.3100 2.3300

.06 7.0000 4.7300 7.0000

.07 6.9600 4.7400 6.9600

.08 4.7700 4.7500 4.7700

.00 6.9900 4.7500 6.9900

.09 4.7800 4.7500 4.7800~

.10 4.7900 7.1600 4.7900

.11 6.9600 2.5600 6.9600

.12 6.9700 2.6400 6.9700

.13 6.9900 4.8400 6.9900

.14 3.4500 3.4100 3.4500

.16 7.4000 7.0600 7.4800 ,

.17 4.0200 4.8600 4.8100

.19 4.8300 4.8800 4.8300

.21 4.8400 4.8900 4.8400 3/27M7 Page 6 or8 NspV008a. doc

..m O

, _(

's v /-

\

.23 5.2000 5.1500 5.2000

.25 8.5400 9.1000 8.5400

.28 2.3400 2.4100 2.3400

.30 7.0000 7.0900 2.3700

.33 7.0300. 7.1100 7.03JO

.36 7.2300 7.3200 7.2300

.40 7.4800 7.3600 7.4700

.44 7.5200 7.6300 7.5200

.48 2.4800 2.3700 2.4700

.52 7.5900 7.7000 7.5000

.58 7.9500 7.5100 7.9400

.63 8.0200 8.2100 8.0100

.69 8.1000 8.2700 0.0900

.76 7.1700 7.0200 7.1500

.83 6.1800 7.0500 6.1600

.91 6.2900 6.0900 6.2700 1.00 6.4400 6.1600 6.4200 1.10 7.2200 7.0300 7.2000 1.20 9.3700 9.6700 9.3500 1.32 9.4700 9.7500 9.4500 1.45 9.6300 9.3300 9.6100 1.58 3.5200 9.4100 3.5000 1.74 8.3400 8.7400 8.3100 1.91 7.6700 8.1200 7.6400 2.09 7.8800 7.5100 1.8400 2.29 4.0400 4.51n0 4.0100 2.51 4.1300 4.5300 4.1000 2.75 4.2200 4.7300 4.1800 3.02 4.3400 3.7800 4.2900 3.31 4.4700 3.9600 4.4200 3.63 6.9300 7.5800 6.8900 3.98 7.0300 7.7900 6.9600 4.37 7.4100 6.7900 7.3700 4.79 5.7000 6.8100 5.5000 5.25 5.9600 6.8300 5.8800 1 SPECTRAL VALUES--

DBE THf4 3/1/97 Av NSP-PINGP DBE8EL.515 COL.1 229 DAMPING RATIO = .05 NO. PERIOD REL. DISE. REL. VEL. PSU.REL. VEL. ABS. ACC. PSU. ABS.ACC. FREQ.

SEC. FT. FT./SEC. FT./SEC. G. G. C/SEC.

1 .00 .00000 .00000 .00035 .06918 .06916 1000.00 2 .06 .00019 .01101 .02112 .07087 .07160 17.38 3 .06 .00023 .01208 .02298 .07098 .07108 15.85 4 .07 .00027 .01488 .02492 .07029 .07030 14.45 5 .08 .00032 .01414 .02687- .06980 .06913 13.18 6 .08 .00040 .01302 .02986 .07021 .07005 12.02 7 .09 .00048 .01652 .03334 .07131 .07132 10.96 8 .10 .00063 .02042 .03947 .07686 .07702 10.00 9 .11 .00084 .02988 .04798 .08534 .08539 9.12 10 .12 .00098 .03808 .05134 .00375 .08333 8.32 11 .13 .00139 .04317 .06639 .09799 .09827 1.59' 12 .14 .00100 .06867 .07819 .10466 .10556 6.92 13 .16 .00218 .06839 .08661 .10814 .10663 6.31 14 .17 .00291 .08612 .10514 .11899 .11805 5.75 15 .19 .00376 .11186 .12382 .12613 .12600 5.25 16 .21 .00434 .12372 .13050 .12144 .12188 4.79 17 .23 .00589 .15162 .16143 .13850 .13750 4.37 3/27/97 Page 7 of 8 NspV008a. doc

6 J v')

i v l

! 18 .25 .00678 .16123 .16949 .13295 .13166 3.98 19 .28 .00913 .17147 .20820 .14746 .14750 3.63

.00941 .18056 .19587 .12723 3.31

{!

20 21

.30

.33 01146 .21215 .21747 .12998

.12656

.12815 3.02 l 22 .36 .01337 .22200 .23135 .12490 .12433 2.75

23 .40 .01571 .23422 .24796 .12223 .12153 2.51

{ 24 .44 .01866 .25184 .26865 .12063 .12009 2.29

)

25 .48 .02065 .25399 .27112 .11104 .11053 2.09 26 .52 .02492 .28161 .29035 .11160 .11093 1.91 l 27 .58 .02805 .29944 .30633 .10434 .10387 1.74 2P .63 .03200 .29977 .31868 .09899 .09856 1.58 i j 29 .69 .03465 .34125 .31467 .08913 .08875 1.45  !

30 .76 .04260 .35724 .35283 .09128 .09076 1.32 l 31 .83 .04169 .31432 .31495 .07426 .07389 1.20 3? .91 .05104 .32167 .35163 .07568 .07523 1.10 13 1.00 .05352 .34598 .33627 .06584 .06562 1.00 34 1.10 .06389 .38909 .36614 .06557 .06516 .91 -

35 1.20 .05931 .32668 .30997 .05048- .05031 .83 36 1.32 .09300 .42282 .443r4 06601 .06567 .76 37 1.45 .09810 .42321 .42643 .05790 .05757 .69 38 1.58 .08203 .36096 .32519 .04024 .04004 .63

)l 39 1.74 .11456 .48456 .41421 .04068 .04651 .58 j 40 1.91 .15477 .58229 .51035 .05257 .05226 .52 3

41 2.09 .16862 .49785 .50709 .04778 .04736 .48 42 2.29 .14358 .44466 .39380 .03369' .03354 .44 i 43 2.51 .17477 .42995 .43717 .03419 - .03396 .40 44 2.75 .20234 .39597 .46159 .03293 .03270 .36 45 3.02 .22263 .41897 46319 .03014 .02993 .33 46 3.31 .23360 .47286 .44326 .02632 .02612 .30 47 3.63 .27072 .54730 .46850 .02544 .02518 .28 i 48 3.98 .32008 .52828 .50517 .02519 .02476 .25 '

49 4.37 .33369 .57747 .48032 .02160 .02147 .23 50 4.79 .32031 .63997 .42049 .01723 .01714 .21 51 5.25 .36097 .60599 .43216 .01619 .01607 .19 [

4 .

VALUES IN PERIOD RANGE .1 TO 2.5 SEC.

s I AREA OF ACC. RESPONSE SPECTRUM = .166

+

AREA OF VEL. RESPONSE SPECTRUM = .894 MAX. ACCELEPATION RESPONSE VALUE = .147 MAX. VELOCITY RESPONSE VALUE = .582 I

a Total execution time = .2 mins l

t

?

I 3/27M7 Page 8 of 8 NspV008a. doc I l

- . . - . . . . . . .-_- - . ..-. . . _ .._ .. . . . . . . - ~ - - . . - ,-- .-. . - - . . .

SIIAKE88 INPUT FILE Nspv008a.ipt l

l 1

l i

4 1

_. ._. .- , - ~_ - - - ~ . - - - .- . ._ . .

I 7 ~s 2048 .45 ,

s,,/

1024 2048 .0108E THe4 3/1/97 Av

~

1.333333 0 100000 1 .000000 .000077 .000105 .000046 .000011 .000078 .000015 .030205 1 l .000411 .000476 .000472 .000327 .000339 001054 .000382 .000854 2

.000836 .000966 .002646 .003652 .003033 .002647 .003841 .003548 3

]

.001977 .002473 .004512 .004954 .003881 .005921 .006952 .006222 4 i

. .006845 007737 .007048 .004925 .003388 .003371 .000246 .002075 5 i

.001380 .001600 .002541 .002039 .000931 .000723 .002432 .001617 6 1 l

.000204 .002073 .000497 .002679 .004649 .004260 .001449 .002217 7 l

, .002668 .000515 .000269 .003488 .005096 .002525 .001428 .004049 8 I

, .010353 .011397 .010001 .012461 .012080 .013325 .010300 .010850 9

.012025 .008965 .004924 .001850 .003542 004239 .000592 .000446 10

.002126 .003936 .007044 .009748 .010411 .012293 .015735 018092 11

.014677 .012904 .014163 .019690 .015477 .012959 .008703 .004033 12

. .000116 .000920 .004913 .001061 .007441 .005862 .007113 .005399 13

.000362 .002651 .000200 .002883 .003197 .005241 .005035 .002426 14 l

.004749 .004973 .003800 .006988 005129 .000496 .005129 .004146 15 j

.001820 .000240 .000342 .001354 .009390 .012249 .000009 .000271 16 l

.003996 .005454 .000778 .002494 .004262 .009505 .000160 .003166 17

.000987 .007038 .013826 .016046 010428 .006121 .007094 .011897 18

.010379 .007258 .004404_ .003007 .003815 .002061 .004909 .008874 19

.008626 .011176 .012091 .014250 .016124 .013782 .011514 .008814 20

.007843 .008019 .016910 .015026 .012178 .007896 .000002 .004512 21

( .003072 .004191 .001586 .004393 .002156 .000753 .002287 .000171 22

.000392 .002877 .006795 .007952 .008087 .000332 .000799 .005272 23

.005410 ,007614 .014331 .025282 .032040 .020385 .014775 .012407 24

.015850 .014525 .015693 .028267 .031335 .028383 .017972 .018954 25

.018507 .012340 .010661 .014176 .009277 .005829 .004345 .005213 26

.003057 .009368 .010051 .012206. 012044 .010244 .009393 .016690 27

.011107 .002917 .014045 .020255 .019463 .023577 .026262 .027584 28 i .028406 .024123 .022408 .029236 .034368 .039765 .040760 .039173 29

.034722 .026478 .016385 .015383 .011012 .002610 .005330 .015420 30

.012629 .012079 .015404 .008812 .009394 .007211 .006877 .003581 31 3- .004853 001612 .005740 .000959 .00BE58 .011619 .015517 .018530 32 j

.020580 .017434 .007047 .009437 .007007 .004288 .000395 .002065 33 - l 4

/#~'%g .001301 .006422 .007639 .003366 .005920 .007E95 .011433 .000839 34 .

  • .012283 .017674 - 015211 .018419 .006746 .003300 .005643 .005223 35 i

.002737 .000505 .006090 .004529 .006209 .010070 .003135 .006541 . 36 i .006729 .000730 .003825 .001685 .000681 .005077 .017614 .021022 37

.011572 013660 .012883 .009111 .004037 .003313 .001861 .005938 38

.006343 .008233 .015120 .009962 .013555 .020640 .022900 .015017 39

.020249 .014811 .012240 .000148 .006665 .000891 .002238 .002746 40 1 .008233 .007707 .007404 .004715 .002360 .006178 .006305 .005919 41

.017725 .009584 .006617 .012607 012785 .011424 .001814 .007182 42

.009098 .008531 .011139 .010586 .011036 .019256 .014646 .013502 43

.008840 .009850 .004185 .001225 .004865 .003328 .007948 .007890 44

.001068 .002367 .001186 .004896 .000770 .010710 .010860 .010418 45

.004610 .007527 .002870 .003284 .010933 .008366 .005351 .005081 46

.010529 .015330 .017093 .022928 .018181 .005684 .000814 .005404 47

.007652 007468 .000154 .006121 .009679 .011523 .013441 .010133 48

.013307 .006622 .007221 .012372 .021037 .019916 .007016 .008970 49

.016640 .009472 .006993 .008232 .008891 .000328 .000360 .006702 50

.012748 .000894 .007641 .007245 .003244 .004787 .001160 .004684 51

.000340 .007438 .016383 .016258 .004271 .006075 .012684 .012298 52

.006170 .006931 .010602 .017238 .010452 .000479 .000306 .000739 53

.006418 .001803 .011873 .017906 .010901 .009253 .008563 .012498 54

.001546 .000237 .000020 .000457 .006224 .010281 .001366 .001472 55

.012731 .010104 .010719 014314 .011346 .002139 .002303 .002370 56

.004424 .000040 .003478 .001013 .011788 .018938 .019024 .019491 57

.019884 .015224 .013055 .018713 .015889 .006984 .004210 .001356 58

.005172 .005022 .003558 .012248 .016429 .009234 .007120 .007334 59

.022467 .032466 .030470 .034918 .040182 .034412 .030744 .022454 60

.020816 .017259 .012022 .013425 .006803 .005143 .012467 .007308 61

.004377 .007966 .009386 007887 .009003 .005466 .012312 .010398 62

.004034 .001740 .000226. 009260 .013000 .010390 .008657 .012057 63

.006472 .002043 .006051 .012190 .002357 .001956 .006167 .012416 64 020539 .017844 .017053 .015222 .011150 .006226 .002952 .005940 65

.001970 .002442 .003832 .001935 .001138 .005632 .001610 .002249 66

.000819 .003244 .005865 .002870 .001716 .001251 .005285 .014699 67

.025646 ,021490 .019337 .017856 .014394 .012739 .003262 .007484 68

.001142 .003623 .001701 .008463 .002277 .009116 .010480 .004226 69

.006544 .005908 .006977 .014973 .015112 ,008235 .010147 .018726 70

.017333 .008404 008732 .020082 .012632 .004295 .005708 .012297 71 g

5

.008069 .000637 .006322 .021722 .007169 .004985 .000313 .003874 72 l

I

- - - . , . .- - .-- .-- -. - ~ ---- -- - ___ -~~ -.. . . - - _ ~ .. -

l' i

!  ?

I j j /'[

\s_,/ .002915 .007186 .004133 010380 '.004363 .003787' .000941 .007595 73

.000209 .004481 .004316 .008677 .004391 .011909 .008467 .003192 74 .!

.007643 .007216 005407 .006935 .011011 .012903 .002979 .001884 75  !

.002989 .001720 .005578 .004688 .011036 .016614 .019657 .019998 76

.013622 .008953 .010508 .014046 .006808 .008876 .004690 005294 77

.001448 008657 .020555 .013702 .004774 .002809 .006916 .003868 78

.006363 .003071 .007467 .014042' .003433 .001512 .002453 .004347 79

.001326l .005772 .017522 .019170 .007511 ,007867 .012886 .016476 80

.016942 .014464 022322 .019450 .005617 .009282 .008900 .009617 81

)

.005664 000254 .012015 .014772 .010528 .004245 .008290 .005805- 82

.004960 .004270 .010299 .003724 .006503 .008493 .008926 .010444 83-r- -

.009721 000746 .003438 .007090 .013780 .014652 .015866 .020060 84 85  !

.020195 .024258 .027110 .021967 .013436 .007847 .007037 .002674 86 I

.003619 .000402 .002141 .001003 .000124 .004577 .016072 .023426 f

.019387 .022579 .032179 .037524 .033584 039802 .044542- .042997 87

.060000 .,040386 .045988 .030667 .019038 .017747 005182 .001666 88 j

.009338 .013622 .007872 .001401 .002137 006006 .001217 .007304 89

.010339 .012293 .015146 .020148 .017914 .015354 .013637 4.012765 90

.005109 .002749 .002258 .001993 .002158 .002129 .000299 .001018 91

.008683 .006406 .000599 .000682 .006883 .000458 .006501 .005805 92 l

l .003424 007990 .01;194 ,020418 .029432 .021686 .019107 .031739 93 94 i l .027028 .012104 .009887 .015653 .019957 .018626 .010410 .005111 95

.002185 001170 .001703 .003766. .002610 .004476 .005409 .000046 002808 000573 .004908 .010565 .009288 .004388 .000688 .002036 96

. .005615 .008117 .0156E9 .016245 .014968 .003471 .003238 .000045 97 98 l .000116 .003455 .008028 .007449 .015028 .023402 .027962 .025861 1 l .026316 .030105 .029240 024531 .015867 .010423 .009760' .004655 99 100 l

.000776 .006042 .015708 .010498 .002411 .009565 .017654 .010994 101

.000001 .003951 .006055 .002179 .000745 .005047 .012824 .007137 102

.008407 .007771 .009453 .000484 .004164 .001351 .001070 .006156 103

.012124 017970 .022958 .020006 .011718 .008987 .014412 .012683

' .008785 .008311 .006024 .003823 .014176 .014175 .009588 .011346 104

.012828 .005694 .001234 .003438 .008019 .002523 .001408 .000583 105

.003273 .004326 .005254 .002504 .004066 .018070 .026023 .028429 106

.024999 024473 .021306 .013366 .006628 .012551 .015583 .011711 107 J'

.009331 .013911 .007832 .000564 .004447 .004886 .000312 .001354 108 I

.006010 .006443 .010072 .013155 .016251 .013445 .004323 .006088 109

/

m 6 .002057 .003271 .003203 .006791 .007593 .014268 .016436 .011734 110

( ,,/ .010250 .010086 .015662

,004384 .004502 .002253 .003077 014786 .009218 .011542 .014316 .010148

.007420- .008277 .009133, .013285 111 112

.016234 .016979 .011166 .006010 .003734 000509 .003695 .009094 113 l 114 l

.008516 .011662 .015391 .014904 .012259 .009449 .010452 .007402 115

.009826 .011908 .013028 .014640 .013526 .013992 .013663 .007703 l .010700 .008121 .003200 .002229 007963 .009340 .008603 .008039 116 117 l .009826 .010895 .010492 .010961 .008716 .012084 .014133 J.013228 118-

.013663 .014904 012514 .008643 .007344 .008781 .005813 .000618

.003751 .004013 .005157 .004749 .004911' .005036 .006485 .008610 119

.011859 .013246 .012070 .010873 .009829 .008191 .005115 .004700 120-121 l

.007013 .004498 .001288 .000711 .001930 .000934 .000328 .000189 122 l

.000272 .004241 .005594 .004699 .006010 .006405 .005864 .004326 123 i

. 003016 .004088 .003216 .002500 .002682 .004231 .004816 .003186

.003165 .002776 .000783 .001783 .004498 .004577 .005201 005713 124 125

.003826 .002636 .003123 .004929 .005093 .003699 .003967 .002981 i .001190 .000065 .000575 000866 ,001676 .002290 .002028 .002113 126

.001868 .001952 .002107 001725 .001271 .000958 ,001041 .001168 127 l 128

.000640 .000566 .000423 .000221 .000005 .000151 .000138 .000078 1 l

t l

i 4

l' t

i 1

. . - ~ ~~ ~ . .. . . . .

. . .~. , - - . . - - ~ - . - - ~ - _- . - . = . . . . .

r i

2  !

1 20 SNSP-PINGP DBE9EL.515 COL.1 229' Con 1 9 1 4 6123 .011 .12 0 1 1 5750 .018 .12 2 10 1 4 0 1 1 l 3' 10 1 6 5291 .021 .22 0 1 1 4 11- 1 6 4732 .025 .11 0 1 1 5 11 1 3 89286 .026 .115 0 1 1 6 11 1 6 97050 .021 .125 0 1 1 7 11 1 6 97050 .022 .125 0 1 1 i 0 12 1 6 97050 .023 .125 0 1 1  :

9 12 1 6 97050 .024 .125 0 1 1 10 12 1 9 100932 .019 .13 0 1 1 11 12 1 9 100932 .019 .13 0 1 1 12 13 1 9 100932 .019 .13 0 1 1

' 13 13 1 17.5 100932 .02 .13 0 1 1 14 13 1 17.5 100932 .02 .13 0 1 1 i

15 13 1 17.5 100932 .018 .13 0 1 1 l 16 13 1 17.5 100932 .017 .13 0 1 1 17 13 1 17.5 100932 .013 .13 0 1 1 18 13 1 17.5 100932 .011 .13 0 1 1 19 7 1 20 120342 .008 .155 0- 1 1

.20 3 0 0 434433 0 .155 0 1 1 i

3 i 19 0

! 8 13 0 0 0 t 11 .01 SHEAR MODULUS CLAY - MAY 1972

(. .0001 .000316 .001 .00316 .01 .0316 .1 .316 l 1. 3.16 10.

2300. .2100. 1750, 1300. 920. 600. 350. 175.
84. 30, 10.

I 10 1 DAMPING CLAY - MAY 24, 1972 l

.0001 .001 .00316 .01 .0316 .1 .316 1. 1 3.16 -10.

i' 2. 2.5 3.5 4.75 6.5 9.25 13.75 20.

26, 29. >

l 11 .5 SHEAR MODULUS SAND SQ. ROOT REL. - MAY 1972 l

.0001 .000316 .001 .00316 .01 .0316 .1 .316 i i

1. 3.16 10.

( 61. 60. 57 50.4 40, 27. 15. 7.

l 3. 3. 3.

9 1 DAMPING SAND - FEBRUARY 1971

.0001 .001 .003 .01 .03 .1 .3 1.

10.

1. 1.6 3.12 5.8 9.5 15.4 20.9 25.
l. 25.5 8 .01 ATTENUATION OF ROCK AVERAGE

.0001 .0003 .001 .003 .01 .03 .1 ' 1.

. 2000. 2000. 1975, 1905. 1800. 1620. 1450. 1100.

l 5 1 DAMPING IN ROCK AVERAGE 9/4

.0001 .001 .01 .1 1.

.4 .8 1.5 3. 4.6 10 30C1 (CLAY PI = 0-10) NODULUS REDUCTION CURVES, FEB 1988

.0001 .001 .00316 .01 .0316 .1 .316 1.

3,16 10.

1. .974 .915 .786 .574 .312 .16 .06

.02 .006 10 1 DAMPING CLAY - MAY 24, 1972

.0001 .001 .00316 .01 .0316 .1 .316 1.

3.16 10.

2. 2.5 3.5 4.75 6.5 9.25 13.75 20.

26, 29.

10 30C2 (CLAY PI =10-20) MODULUS REDUCTION CURVCS, FEB 1988

.0001 .001 .00316 .01 .0316 .1 .316 1.

3.16 10.

1. .997 .974 .881 .674 .425 .22 .076

.03 .01 10 1 DAMPING CLAY - MAY 24, 1972

.0001 .001 .00316 .01 .0316 .1 .316 1.

3.16 10.

, 2. 2.5 3.5 4.75 6.5 9.25 13.75 20.

j 26. 29.

i 1

.w . .n . . ~~ - - , . ~ - . . - . - - . ~ ~ . . . . - . ~ ~ . ~ . - - . ~ - - - . ~ . . ~

i

.i t

?

(

10 '30C3'(CLAY PI =20-40) MODULUS REDUCTION CURVES, FEB 1988 .

.0001 .001 .00316 .01 .0316- .1- .316 1.

3.16 '10. '

1.' .999 .98 .92 .78 532 .293- .137

.075 .025 l 10 1 DAMPING CLAY - MAY 24, 1972 l 0001- .001 00316 .01 .0316 .1 .316' 1.

3.16 10. '

2. 2.5 3.5 4.75 6.5 9.25 13.75 20, l 26. . 29. i l 10: 30C4 (CLAY PI 80) MODULUS REDUCTION CURVES, FEB 1988 t

.0001' .001 .00316 .01 .0316 .1 .316 1. i l

3.16 10. '

1. .995 .992 .934 .819 .61 .41 .202

?

.118 035 1 10 1 DAMPING CLAY - MAY 24, 1972 ~

t .0001 .001 400316 .01 .0316 .1 .316 1. {

l 3,16 10.

2. 2.5 3.5 -4.75 6.5 9.25 13.75 20.

1 26, 29.  !

10 30C5 (CLAY PI > 80 ) MODULUS REDUCTION CURVES, FEB 1988 .i

.0001 .001 .00316 .01 .0316 .1 .316 1.

  • 3.16 10.

l 1. 1. .979 .937 .85 .713 .545 .336 i

.18 .06 l 10 1 DAMPING CLAY - MAY 24, 1972 l .0001 .001 .00316 .01- .0316 .1 .316 1.

{

3.16

' 4

10. '

l

2. 2.5 3.5 4.75 6.5 9.25 13.75 20. t

! 26. 29. d

! 11 3051 (SAND CP=.25 KSC) MODULUS REDUCTION CURVES, FEB 1988 ,

f ,0001 .000316 .001 .00316 .01 .0316 .1 .316 i

! 1. 3.16 10. l l 1. .98 .93 .85 .72 .49 .25 .1 j .07 .06 .05 4'

[ 9 1 DAMPING SAND - FEBRUARY 1971

.0001 .001 .003 .01 f 03 .1 .3 1.

10.

, 1. 1.6 3.12 5.8 9.5 15.4 20.9 25.

, 25.5 1

11 3032 (SAND CP=.50 KSC) MODULUS REDUCTION CURVES, FEB 1988  !

l .0001 .000316. .001 .00316 .01 .0316 .1 .316 4 7

1, 3.16 10.

1. .99 .95 .89 .77 58 .32 .16

.09 .07 .06 ,

[

'9 1 DAMPING SAND - FEBRUARY 1971

  • l .0001 .001 .003 .01 ,03 .1 .3 1. l
10. ~

l 1. 1.6 3.12 5.8 9.5 15.4 20.9' 25. '

r 25.5 \

11 30S3 (SAND CP=1.0 KSC) MODULUS REDUCTION CURVES, FEB 1980

.0001. .000316 .001 .00316 .01 .0316. .1 .316 ,

l

1. 3.16 10. J

'1. 1. .97 .92 .82 .65 .4 .2

.12 ,08 .06 9 1 DAMP 1NG SAND - FEBRUARY 1971

.0001 .001 .003 .01 .03 .2 .3 1.

10.

1. 1.6 3.12 5.8 9.5 15.4 20.9 25, 25.5 i

11 30S4 (SAND CP=2.0 KSC) MODULUS REDUCTION CURVES, FEB 1988 i

.0001 ,000316 .001 .00316 .01 .0316 .1 .316

1. 3.16 10.
1. 1. .98 .94 .86 .71 .48 .25 1

.15 .11 .09 '

l 9 1 DAMPING SAND - FEBRUARY 1971 l .0001 .001 .003 .01 .03 .1 .3 1.

10.

1. 1.6 3.12 5.8 9.5 15.4 20.9 25.

25.5 11 30S5 (SAND CP=3.0 KSC) MODULUS REDUCTION CURVES, FEB 1988 l

.0001 .000316 .001 .00316 .01 .0316 .1 .316 i 1. 3.16 10.

} 1. 1. .99 .97 .9 .77 .57 .34 l .2 .13 .11  ;

r"'n

}

F l

l l

l l

-~=

p s. .u. wu --a- - -

-~~. - _ -- = - _ . ~ . - - - - - - - . - . . . ~ - . _ _. . ---.---_ ---.

j- ,

!. l 3 1 4

l' )

1~

4 b

3.: . 9: 1 DAMP 1NG SAND - FEBRUARY 1971 ,

j

.0001 .001 .003- .01 .03 .1 .3~ 1.

10. i

! 1. 1.6 3.12 5.8 9.5 15.4 20.9 25.

3 25.5 i 4 1 20 l1 10' .65 l .5 .

' 1 ~2 3 4 5 6 7 8 9 10 11 12 13 13 14 -l l

0 1 1 1 1 1 1 1 1 1 1 1 1 0 1-1 0 0 0 1 0 0 0 0 0 0 0 '1 1 0 5

! 15 16 17 18 19 19 20 0 0 0 0 0 0 0 0 l 1 1 1 1 1 0 1 0 0 0 .0 0 0 0. O i 0 0 0 0 1 0 0 0 0 0 0 0 0- 0 0 8

9 l' 13 ' 1 1 0 1 0 4

.05 9

l 19 0 1 0 1 0 4

(" .05 0

l I

l J.

1 i.

i 4

iO l

l l

l 1

1 O

A-U SHAKE HORIZONTAL PARAMETERS Lower From SASW High Shake Shear Shear Wave Shear Wave Shear Wave Layer Density Modulus Velocity Velocity Velocity

  1. y G V,-20% V, V,+20%

(pcf) (ksf) (ft/sec) (ft/sec) (ft/sec)

<--> (--> <--> <==>

1 120 1575 520 650 780 2 120 1575 520 650 780 3 120 1575 520 650 780 4 110 1443 520 650 780 5 115 1509 520 650 780 6 125 2610 656 820 984 7 125 2610 656 820 984 S 125 2610 656 820 984 9 125 2610 656 820 984

[] 10 130 4037 800 1000 1200 i N/ 11 130 4037 800 1000 1200 l 12 130 4037 800 1000 1200

_ 13 130 4037 800 1000 1200 14 130 4037 800 1000 1200 15 130 5155 904 1130 1356 16 130 6058 980 1225 1470

_ ___ 17 130 10207 1272 1590 1908 18 130 15352 1560 1950 2340 19 155 30085 2000 2500 3000 l 20 155 120342 4000 5000 6000 G= '

i 8 l

l 1

!O i

l l 6/17/97 Modulus.xis l

i i

1 l l

!O \

U I

Peak Cyclic ShearStress Profile T cyc j

700 690 -A 680 670 660 \\

650 640 NN l 630 ,

620 kk 610 600  : vs -20%

I $90 - + Vs I 3go l \ \ #s +20%

570 \

D 560 \\ \  !

550 540 <- k \

530 520 4 510 500 t i 490 0 200 400 600 800 1000 1200 1400 1600 Cyclic Shear Stres s,t ,,,(psf)

Fess nspcce sis.nsecose(rwo)ipt) i DRAWN By DTA 6-2-97 SHAKE 88 PEAK CYCLIC SHEAR STRESS PROFILE CHECKED BY TAK 6-2-97 VARYING SHEAR WAVE VELOCITY, V. AppROvEosy www 6-2-97 l

[V 1 PRAIRIE ISLAND NUCLEAR GENERATING PLANT FRE p , $, pp SCALE i sTs consultants, Ltd. WELCH, MINNESOTA STS PROJECT NO. FIGURE NO.

Consulting Engineers 28723-A 32

.... . . . .-._ . . .-.. . .-- . .... --. ...-... .. . --. ... . _ _ . ~ . .. .- . . - - . . - . .

e 1 1

l I

4 v

1

1 i .

! l 1

1 1

I f.

.t

! SIIAKE88 i

OUTPUT FILE l

l Nsph009f. opt

(

)

i 4

i I

h J

l l

l 1

__ - - ~ . _ , _ _ _ _ _ _ - _ - - - - - - - - - - - - - - _ - . - - -_---- _ - _ - - - - - - - - - - - - - - - - - -- -- - - . - - _ - - - - -- - - - - . - - - - . - - . -- - - - - - - - - - - . - - - - - -

i i

t .$

l

/

i SH

.... A..KE98 ....... , g;) ,

I

.i A program for: i

! i Earthquake Pesponse Analysis of Horizontally Layered Sites [

Version of February 1988 Originally authored by  ;

Schnabel, Lysmer, 6 Seed I Modified by J. Sun & S. Lai  !

i University of California - Berkeley f t

IBM-PC version by l

Geotech International (312) 939-7162 L May 1991 ,

?

c

_______________________.__ _______  ?

[

Input file name = nsph009f.ipt  ;

Out put file name = nsph009f. opt Punch file name = nsph009f. pun {

Date and time of run = 4/06/1997 11:11 j I

MAX. NUMBER OF TERMS IN FOURIER TRANSFOPM = 2048  ;

NECESSARY LENGTH OF BLANK COMMON X

= 12819  ;

EARTH PRESSUPE AT PEST FOR SAND

= .450 1 1****** OPTION 1 *** READ INPUT MOTICN  !

EARTHQUAKE - DBE TH81 3/1/97 Ah i 1024 ACCELERATION VALUES AT TIME INTERVAL .0100 h

THE VALUES ARE LISTED ROW BY ROW AS READ FROM CARDS '

TRAILING ZEROS ARE ADDED TO GIVE A TOTAL OF 2048 VALUES 9 h

k j MAXIMUM ACCELERATION = .06000  !

,' AT TIME = 3.44 SEC ,

I THE VALUES WILL BE MULTIPLIED BY A FACTOR = 2.000 l TO GIVE NEW MAXIMUM ACCELERATION = .12000 I

MEAN SQUARE FREQUENCY = 3.65 C/SEC.

i i

41U97ill1:16 AM Page 1 of 10 Nsph009fdoc j I

---__.._._n-___-- - _ _

e e :e  !

. I I

?

g 1****** OPTION 2 *** PEAD SOIL PROFILE NEW SOIL PROFILE NO.. 1 IDENTIFICATION - NSP-PINGP DBE e EL.515 COL.1 199*

199.00 f NUMBER OF LAYERS 20 DEPTH TO BEDROCK

.I NUMBER OF FIRST SUBMERGED LAYER 5 DEPTH TO WATER LEVEL 20.00

'I r

i DEPTH EFF. PRESS. MODULUS DAMPING UNIT WEIGHT SHsAR VEL LAYER TYPE FACTOR THICKNESS FT FT KSF KSF KCF FT/SEC MOC. DAMP.

9 1.46 4.00 2.00 .24 1000. .070 .1200 520. g 1.00 I

1.24 4.00 6.00 7? 1000. .070 .3200 520.

2 10 1.00 3 10 1.00 1.13 6.00 11.00 1.32 1008. .070 .1200 520. f 2.01 924. .120 .1100 520. L 4 11 1.00 1.04 6.00 17:00 520. [

5 11 1.00 1.01 3.00 21.50 2.42 966. .120 .1150 1671. .100 .1250 656.  !

6 11 1.00 .99 6.00 26.00 2.69

.1250 656. I 7 11 1.00 .96 6.00 32.00 3.06 1671. .100 3.44 1671. .100 .1250 656. I 8 12 1.00 .94 6.00 38.00 656.

9 12 1.00 .92 6.00 44.00 3.01 1671. .100 .1250 51.50 2504. .070 .1300 000.

10 12 1.00 .89 9.00 4.30

.1300 000.

11 12 1.00 .87 9.00 60.50 4.91 2584. .070 9.00 69.50 5.52 2584. .070 .1300 000.

12 13 1.00 .85 17.50 2584. .070 .1300 000.

13 13 1.00 .82 82.75 6.42

.1300 000.

14 13 1.00 .78 17.50 100.25 7.60 2584. .070 17.50 117,75 8.78 3299. .070 .1300 904.

15 13 1.00 .76

.1300 980, 16 13 1.00 73 17.50 135.25 9.97 3877. .070 17.50 152.75' 11.15 6532. .070 .1300 1272.

17 13 1.00 .71 17.50 12.33 9825. .070 .1300 1560.

18 13 1.00 .69 170.25

.1550 2J00.

19 7 1.00 .6) 20.00 109.00 13.85 19255. .070 77019. .000 .1550 4000.

20 BASE PERIOD = 79 FROM AVEPAGE SHEAR VELOCITY = 1004. FT/SEC MAXIMUM AMPLIFICATION = 9.64 FOR FPEQUENCY = 1.34 C/SEC.

PERIOD = .75 SEC.

      • READ WHEPE OBJECT MOTION IS GIVEN 1****** OPTION 3 OBJECT MOTION IN LAYER NUMBER 19 OUTCROPPING 4/8N7 Page 2 of 10 Nsph009f. doc

.n y

/

\

b)' :

1****** OPTION 8 *** READ RELATION BETWEEN SOIL FROPERTIES AND STRAIN i CURVES FOR RELATION OF STRAIN VERSUS SHEAR MODULUS AND DAMPING MODULUS AMD DAMPING VALUES APE SCALED FOR PLOTTING SHEAR MODULUS CLAY - MAY 1972 MULTIPLICATION FACTOR = .01000 DAMPING CIAY - MAY 24, 1972 MULTIPLICATION FACTOR = 1.00000 SHEAR MODULUS SAND SQ. ROOT REL. - MAY 1972 ' MULTIPLICATION FACTOR = .50000  ;

DAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACTOR = 1.00000 ATTENUATION OF ROCK AVERAGE MULTIFLICATION FACTOR = .01000 DAMPING IN ROCK AVERAGE 9/4 MULTIPLICATION FACTOR = 1.00000 CI (CLAY PI 10) MODULUS PEDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000

  • DAMPING CLAY - MAY 24, 1972 MULTIPLICATION FACTOR = 1.00000 C2 (CLAY PI =10-20) MODULUS PEDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING CLAY - MAY 24, 1972 MULTIPLICATION FACTOR = 1.00000 C3 (CLAY PI =20-40) MODULUS REDUCTION CUPVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING CLAY - MAY 24, 1972 MULTIPLICATION FACTOR = 1.00000 C4 (CLAY PI =40-80) MODULUS PEDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 'i DAMPING CLAY - MAY 24, 1972 MULTIFLICATION FACTOR = 1.00000 }

C5 (CLAY PI > 80 ) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING CLAY - MAY 24, 1972 MULTIPLICATION FACTOR = 1.00000 S1 (SAND CP=.25 KSC) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 i DAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACTOR = 1.00000 i S2 (SAND CP=.50 KSC) MODULUS PEDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACTOR = 1.00000 ,

S3 (SAND CP=1.0 KSC) MODULUS REDUCTION CURVES, FEB 1989 MULTIPLICATION FACTOR = 30.00000 DAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACTOR = 1.00000 S4 (SAND CP=2.0 KSC) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 CAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACTOR = 1.00000 SS (SAND CP=3.0 KSC) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 [

DAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACTOR = 1.00000 t 1****** OPTION 4 *** OBTAIN STRAIN COMPATIBLE SOIL PROPERTIES L P

y MAXIMUM NUMBER OF ITERATIONS = 10 MAXIMUM ERROR IN PERCENT = .50  ;

FACTOR FOR EFFECTIVE STRAIN IN TIME DOMAIN = .65

?

t l

4/RN7 PaFe 3 or 10 ' Nsph009f. doc t

I

.t EARTHQU4KE - DBE TH81 3/1/97 Ah .

k SOIL PROFILE - NSP-PINGP DBE 9 EL.515 COL.1 199'  ;

s I i

ITERATION NUMBER 1 t,

.}

THE CALCULATION HAS BEEN CARRIED OUT IN THE TIME DOMAIN WITH EFF. STRAIN = .65* MAX. STRAIN -

' LAYER TYFE DEPTH EFF. STRAIN NEW DAMP. DAMP USED ERROR NEW G G USED ERROR FT PRCNT PRCNT ESF FSF FPCNT l 1 9 2.0 .00187 .036 .070 2 10 6.0 .00551

-94.3 893.162 1007.702 -12.0

' .056 .070 -25.7 838.419 1007.702 3 10 11.0 .00974 .065 .070

-20.2 4 11 17.0 .01549

-8.3 778.688 1007.702 -29.4

076 .120 -58.1 697.742 923.727 5 11- 21.5 .01783 .078

-32.4 i

6 11 26.0 .01209

.120 -53.8 709.382 '965.714 -36.1  !

7

.064 .300 -57.3 1322.962 1670.559 "

11 32.0 .01433 .067 .100

-26.3 i 8 12 38.0 .01632

-48.4 1281.095 1670.559 -30.4

! .070 .100 -43.0 1329.973 9 12 44.0 .01813 1670.559 -25.6 l 10

.072 .100 -39.5' 1307.118 1670.559 -27.8 12 51.5 .01305 11 12

.060 -070

. -16.8 2132.538 2583.851 -21.2

60.5 .01451 .061 .070 -14.2 2096.813  ;

12 13 69.5 .0157B 2583.851 -23.2

.062 .070 -12.8 2192.289 2583.851 y 13 13 82.8 .01744 -17.9 l

.063 .070 -11.7 2163.116 2583.851 14 13 100.3 .01923 .063 .070

-19.5 l 15 13 117.8 .01781

-11.6 2134.531 2583.851 -21.1 i

.058 .070 -19.7 2754.208 3299.319 l 16 13 135.3 .01744 .056

-19.8

.070 -24.9 3246.049 3877.391 t 17 13 152.0 .01132 -19.4

.044 .070 -58.9 5787.758' 6532.233 18 13 170.3 .00793 -12.9

.036 .070 -92.3 8981.392 l 19 7 184.0 .00421 9825.093 -9.4

.025 .070 -175.6 18677.830 19254.660 -3.1 e

VALUES IN TIME DOMAIN I LAYER TYPE I 1

THICFNESS DEPTH MAX STPAIN MAX STRESS TIME  ;

FT FT PPCNT PSF l SEC 1 9 4.0 2.0 .00298 25.75 3.66

2 10 4.0 6.0 .00848

! 3 to 6.0 11,0 71.12. 3.66

.01499 116.69 3.66 i

4 11 6.0 '17.0 .02393 166.26 3.67 5 11 30 21.5 .02743 194.57 3.67 6 11 6.0 26.0 .01860 7

246.12 3.66 11 6.0 32.0 .02204 9

.282.39 3.66

! 12 6.0 38.0 .02511 I

9 12 333.98 3.65 6.0 44.0 .02789 364.55 10 12 3.65 9.0 51.5 .02007 428.02 3.65 11 12 9.0 j

60.5 .02232 467.94 3.66 12 13 9.0 69.5 .02428 532.23 3.65 13 13 17.5 82.8 .02683

! 14 13 500.34 3.64 l 17.5 100.3 .02959 631.57 3.63 15 13 17.5 117.8 .02740 i

16 13 754.69 5.94 17.5 135.3 .02683 870.83 5.95 17 13 17.5 152.8 i

18 13

.01741- 2007.61 5.94 17.5 170.3 .01219 1095.10 5.94 19 7 20.0 189.0 .00648 1

1209.07 5.93 l

i

, 4/KN7 Page 4 or 10 - Nsph009fdoc

~

-.-.--m.m._..,___-___._._..._,, . . , ,

6 @ @

EARTHOUAFE - DBE TH91 3/1/97 Ah SOIL PROFILE - NSP-PINGP DBE 9 EL.515 COL.1 199' ITERATION NUMBER 2 THE CALCULATION HAS BEEN CAPRIED OUT IN THE T1FE DOMAIN WITH EFF. STRAIN = .65* MAX. STRAIN LAYER TYPE DEPTH EFF. STRAIN MEW DAMP. DAMP UOED ERROR NEW G G USED ' ERROR FT PRCNT PRCNT FSF ESF PRCNT 880.287 893.162 -1.5 t 1 9 2.0 .00225 .040 .036 9.3 2 10 6.0 .00703 .062 .056 10.8 812.990 838.419-' -3.1 11,0 .01326 .076 .065 14.9 729.027 778.688 -6.8 i 3 10 4 11 17.0 .02137 .087 .076 13.0 653.809 697.742 -6.7 5 11 21.5 .02522 .090 .078 13.1 659.904 709.382 -7.5 6 11 26.0 .01569 .072 .064 12.0 1258.755 1322.962 -5.1 7 11 32.0 .01908 .077 .067 12.1 1210.384 1281.095 -5.8 8 12 38.0 .02078 .078 .070 9.8 1277.373 1329.973 -4.1 9 12 44,0 .02324 .079 .012 9.7 1253.030 1307.118 -4.3  !

19 12 51.5 .01568 .065 .060 8.5 2070.681 2132.538 -3.0 ,

11 12 60.5 .01753 .067 .061 8.3 2033.043 2096.813 -3.1 12 13 69.5 .01817 .066 .062 6.1 2151.133 2192.289 -1.9 ,

13 13 82.8 .02022 .067 .063 6.1 2119.854 2163.116 -2.0 14 13 100.3 .02502 .070 .063 10.0 2057.781 2134.531 -3.7 15 13 117.8 .02290 .065 .058 9.9 2660.509 2754.208 -3.5 3246.043 -2.8 I 16 13 135.3 .02131 .061 .056 8.1 3158.232 17 13 152.8 .01226 .046 .044 4.2 5728,561 5707.758 -1.0 18 13 170.3 .00793 .036 .036 .0 8990.905 8981.392 .0 '!

19 7 189.0 .00384 .025 .025 -2.7 18752.080 18677.830 .4 VALUES IN TIME DCMAIN LAYER TYPE THICENESS DEPTH MAX STRAIN MAX STRESS TIME FT FT PPCNT PSF SEC 1 9 4.0 z.o .00346 30.50 3.68 2 10 4.0 6.0 .01081 87.87 3.68 3 10 6.0 11.0 .02039 148.68 3.68 4 11 6.0 17.0 .03288 214.95 3.68 5 11 3.0 21.5 .03880 256.02 3.68 6 11 6.0 26.0 02413 303.75 3.68

7 11 6.0 32.0 02935 355.30 3.67 8 12 6.0 38.0 .03197 408.39 3.67 9 12 6.0 44.0 .03575 447.99 3.67 l 10 12 9.0 51.5 .02412 499.38 3.67

12 9.0 60.5 .02697 548.27 3.67 I 1 11

)

12 13 9.0 69.5 .02795 601.30 3.66 i 13 13 17.5 82.8 .03111 659.57 3.65  !

14 13 17.5 100.3 .C3849 791.94 5.98 15 13 17.5 117.8 .03523 937.34 5.98  ;

16 13 17.5 135.3 .03278 1035.32 5.97 17 13 17.5 152.8 .01886 1000.59 5.95 18 13 17.5 170.3 .01220 1095.93 5.94 19 7 20.0- 189.0 .00590 1107.30 6.41 .

1 l

f

! t

' ?4sph009f. doc  ;

anU97 Page 5 or l0 t

t

'I

1 . t

, a rs  %., t w

f i

EARTHQUAKE - DRE TH51 3/1/97 Ah [

SOIL PROFILE - NSP-PINCP DBE 9 EL.515 COL.1 199'  ;

p ITERATION NUMBER 3 THE CALCULATION HAS BEEN CARRIED OUT IN THE TIME DOMAIN WITH EFF. STRAIN = .65* MAX. STPAIN (

LAYER TYPE DEPTH EFF. STRAIN NEW DAMP. DAMP USED EPROR NF.W G G USED ERROR

FT PRCNT TRCNT KSF ESF FRCRT i

1 9 2.0 .00226 .040 .040 .2 074.987 880.287 .0 2 10 6.0 .00722 .063 .062 1.2 810.193 812.?90 .3 3 10 11.0 .01413 .078 .076 3.1 718.418 729.027 -1.5 4 11 17.0 .02271 .089 .087 2.4 645.515 653.809 -1.3 5 11 21.5 .02694 .092 .090 2.4 650.459 659.904 -1.5 6 11 26.0 .01644 .074 .072 2.1 1247.211 1258.755 .9 l

? 7 11 32.0 .02003 .078 .077 2.0 1198.459 1210.389 -1.0

  • t 8 12 38.0 .02145 .079 .078 1.3 1270.524 1277.373 .5 9 12 44.0 .02400 .000 .079 - 1. 2 1245.998 1253.030 .6 10 12 51.5 .01599 .066 .065 .9 2064.083 2070.681 .3 11 12 60.5 .01789 .067 .067 .9 2026.130 2033.043 .3 12 13 69.5 .01831 .066 .066 .3 2148.846 2151.133 .1 13 13 82.8 .02031 .067 .067 .2 2118.556 2119.854 .1 14 13 100.3 .02596 .071 .070 1.4 2046.934 2057.781 .5 15 13 117.8 .02346 .066 .065 .9 2651.443 2660.509 .3 16 13 135.3 .02139 .061 .061 .2 3156.571 3158.232 .1 j 17 13 152.8 .01199 .045 .046 -1.2 5745.212 5728.561 .3 i 18 13 170.3 .00768 .016 .036 -1.4 8999.989 6980.905 .2 19 7 189.0 .00376 .025 .025 .6 18769.130 18752.080 .1 l

VALUES IN TIME DOMAIN LAYER TYFE THICFNESS DEPTH MAX STPAIN MAX STRESS TIME F*. FT PPCNT PSF SEC

, 1 9 4.0 2.0 .00348 30.62 3.69 i 2 10 4.0 6.0 .01110 89.93 3.69 3 10 6.0 11.0 .02174 156.16 3.69 4 11 6.0 17.0 .03494 225.52 3.69 l 5 11 3.0 21.5 .04145 269.63 3.68 4 6 11 6.0 26.0 .02529 315.37 3.68 7 11 6.0 32.0 .03081 369.22 '3.68

  • 8 12 6.0 38.0 .03299 419.18 3.67 l 9 12 6.0 44.0 .03693 460.04 3.67
10 12 9.0 51.5 .02459 507.64 3.68
11 12 9.0 60.5 .02753 557.73 3.67

! 12 13 9.0 69.5 .02817 605.39 3.66 4 13 13 17.5 82.8 .03125 662.10 .3.65 i 14 13 17.5 100.3 .03994 817.59 5.99 A

15 13 17.5 117.8 .03610 957.15 5.98 16 13 17.5 135.3 .03291 1038.71 5.97 17 13 17.5 152.8 .01844 1059.55 5.96 18 13 17.5 170.3 .01182 1063.71 5.94 -

19 7 20.0 189.0 .00578 1085.00 6.42 I 1

{

t i

4/8/97 Page 6 or 10 Nsph009f. doc [

t I

O O O EARTHQUAKE - DBE Thel 3/1/97 Ah SOIL PROFILE - NSP-PINGP DBE 9 EL.515 COL.1 199' ITERATION NUMBER 4 THE CALCULATION RAS BEEN CARRIED OUT IN THE TIME DOMAIN WITH EFF. STRAIN = .65i MAX. STRAIN LAYER TYPE DEPTH EFF. STRAIN NEW DAMP. DAMP USED ERROR NEW G G USED ERROR FT FRCNT PRCNT ESF KSF PRC!!T 1 9 2.0 .00226 .040 .040 .0 879.941 879.967 .0 2 10 6.0 .00724 .063 .063 .2 809.806 810.193 .0 3 10 11.0 .01435 .079 .078 7 715.845 718.410 .4 4 11 17.0 .02302 .090 .089 .5 643.635 645.515 .3 5 11 21.5 .02733 .093 .092 .5 64P.426 650.459 .3 6 11 26.0 .01659 .074 .074 .4 1244.893 1247.211 .2 7 11 32.0 .02023 079 .078 .4 1196.003 1198.459 .2 8 12 38.0 .02154 .079 .079 .2 1269.573 1270.524 '-.1 9 12 44.0 .02411 .080 .080 .2 1245.037 1245.998 .1 10 12 51.5 .01602 .066 .066 .1 2063.325 2064.083 .0 11 12 60.5 .01793 .067 .067 .1 2025.376 2026.130 .0 12 13 69.5 .01831 .066 .066 .0 2148.914 2148.846 .0 13 13 82.8 .02035 .067 .067 .1 2118.077 2118.556 .0 14 13 100.3 .02613 .071 .071 .2 2045.054 2046.934 .1 15 13 117.8 .02351 .066 .066 .1 2650.642 2651.443 .0 16 13 135.3 .02133 .061 .061 .1 3157.724 3156.571 .0 17 13 152.R .01190 .045 .045 .4 5750.447 5745.212 .1 18 13 170.3 .00764 .036 .036 .2 9003.221 8999.989 .0 19 7 189.0 .00375 .025 .025 .1 18771.510 18769.130 .0 VALUES IN TIME DOMAIN LAYER TYPE THICFNESS DEPTH MAX STRAIN MAX STRESS TIME FT FT FPCNT PSF SEC 1 9 4.0 2.0 .00348 30.64 3.69 2 10 4.0 6.0 .01114 90.22 3.69 3 10 6.0 11.0 .02207 158.02 3.69 4 11 6.0 17.0 03542 227.99 3.69 5 11 3.0 21.5 04205 272.64 3.68 6 11 6.0 26.0 .02552 317.76 3.68 7 11 6.0 32.0 .03112 372.15 3.68 8 12 6.0 38.0 .03314 420.70 3.67 9 12 6.0 44.0 .03709 461.77 3.67 10 12 9.0 51.5 .02465 508.59 3.68 11 12 9.0 60.5 .02759 558.77 3.67 12 13 9.0 69.5 .02817 605.26 3.66 13 13 17.5 82.8 .03130 663.04 5.97 14 13 17.5 100.3 .04020 822.12 5.99 15 13 17.5 117.8 .03E18 958.91 5.98 r 16 13 17.5 135.3 .03282 1036.35 5.97 17 13 17.5 152.8 .01831 1053.02 5.96 L 18 13 17.5 170.3 .01176 1058.35 5.94 19 7 20.0 104.0 .00576 1081.93 6.42 [

1 l i

i l 4/8/97 Page 7 of 10 Nsph009f. doc l l

i

, 'k

1

? @ @ @

EARTHQUAKE - DBE TH41 3/1/97 Ah i

SOIL PROFILE - NSP-PINGP DBE 8 EL.515 COL.1 199*

I j ITERATION NUMBER 5 THE CALCULATION HAS BEEN CARRIED OUT IN THE TIME DOMAIN WITH EFF. STRAIN = .65* MAX. STPAIN .

I LAYER TYFE DEPTH EFF. STPAIN NEW DAMP. DAMP USED EPROR NEW G G USED ERROR FT FRCNT FRCNT KSF KSF

! PRCMT 1 9 2.0 .00226 .040 .040 2

.0 879.927 879.941 .0 10 6.0 .00725 .063 809.741

.063 .0 809.806 .0

$ 3 10 11.0 .01440 I

.079 .079 .2 715.203 715.845 .1 4 11 17.0 .02310 .090 .1 i 5 11

.090 643.199 643.635 .1 21.5 .02742 .093 .093 .1 647.973 j 6 648.428 .1 11 26.0 .01662 .074 .074 .1 1244.414 1244.893 .0 7 11 32.0 .02027 .079 .079 .1 1195.499 1196.003 .0 l 8 12 38.0 .02155 .079 4

9

.079 .0 1269.445 1269.573 .0 12 44.0 .02412 .081 10 12

.090 .0 1244.915 1245.037 .0 51.5 .01603 .066 .066 .0 2063.260 2063.325

! .0 11 12 60.5 .01794 .067 12

.067 .0 2025.315 2025.376 .0 13 69.5 01830 .066 .066 .0 2148.979 2148.914 .0 l 13 13 82.8 .02036 .067 14 13

.067 .0 2117.909 2118.077 .0

,' 100.3 .02616 .071 .071 .0 2044.703 2045.054 .0 15 13 117.8 .02352 .066 .066 16

.0 2650.606 2650.642 .0 13 135.3 .02131 .061 .061 .0 3158.131 3157 724 .0 17 13 152.8 .01188 .045 .045 I 5751.661 5750.447 18 .0 13 170.3 .00763 .036 .036 .0 9003.734 9003.221 .0 19 7 189.0 .00374 .025 .025 .0 18771.910 18771.510 .0

/

j VALUES IN TIME DOMAIN LAYER TYPE THICKNESS DEPTH MAX STRAIN MAX STRESS TIME

, FT FT PRCNT PSF SEC 1 9 4.0 2. 0 - .00348 30.64 3.69 I 2 10

' 4.0 6.0 .01115 90.27 3.69 3 10 6.0 11.0 02216 158.49 3.69 5

, 4 11 6.0 17.0 .03554 228.56 3.69 5 11 3.0 21.5 .04218 273.32 3.69 6 11 6.0 .02557 26.0 318.25 3.68 7 11 6.0 32.0 .03118 372.76 3.68 8 32 6.0 .03316 38.0 420.90 3.67 9 12 6.0 44.0 .03711 .461.98 3.67 10 12 9.0 51.5 .02465 508.68 3.68

} 11 12 9.0 60.5 .02759 558.06 3.67

] 12 13 9.0 69.5 .02016 605.15

  • 3.66 13 13 17.5 82.8 .03132 663.37' 5.97 14 13 17.5 100.3 .04025 822.96 5.99 15 13 17.5 117.8 .03618 958.99 5.98 16 13 17.5 135.3 .03279 1035.53 5.47 17 13 17.5 152.8 .61828 1051.51 5.96
18 13 17.5 170.3 .01175 1057.50 5.94 1 19 7 20.0 189.0 .00576 1081.41 6.42 i

4/s/97 Page a or 10 b

Nsph009f. doc

-[

4

!.b,!i!i. i!?i)<l l1!Ii!

S DD .

RR 6 1 1 1 1 1 1 1 1 1 1 1 i 1 1 AO 5 CC 2 E

z DP u E H .

CC NC UA P

- OE I N TO AZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

_- P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o

. .E d CI f.

CU 9

, AQ 0

_ 0 h

m p s

N R

F QE

.C 7 4

0 4

4 2

7 9

2 8

5 8

9 8

3 9

9 9

9 0

1 1

3 1

3 2

7 6

0 0

O SS .

/ 2 2 2 1 1 1 1 1 1 2 2 2 2 2 3

- NC A

E M

C E

m S E

/

T S

P MC 9 9 7 6 5 1 1 0 0 1 0 8 7 6 1

- F E I E 6 6 6 6 6 9 9 9 9, 7 7 9 9 6 5

- Y TS 3 A 3 3 3 3 3 5 5 5 5 8 8 5 5 8

- 7. L

. 2 B 9 U 0 S '9 1

9 r W 1 o E 9

= N 1 eg

.m Y N L ,

a T I O C P I C C 9 4 0 5 8 1 4 4 4 1 0 6 5 7 5 C N A 5 0 1 0 4 8 6 5 7 6 2 7 3 6 2 O O 5 6 2 6 0 8 2 2 9 1 5 0 8 8 3 1

- L . I 1 . 2 2 1 1 9 9 9 8 8 7 7 7 7 8 8 E T 5 XG 0 0 0 0 0 0 0 0 0 0 0 V C E . O A 1 1 1 1

=

SC M hL M .

R /E AE A CS E

. E T 79 H 813 U 9 S 228 P /E _

M 1 B .

E O /D

- G A

P 11 1

=

C 3 1G P H T

0 0 0 0 0 0 0 0 0 0 0 6

0 0 5 0 9

E

  • N N PT 4 8 4 0 3 9 5 1 7 5 4 1 9

V N

  • HI EF 1 2 2 2 3 4 4 5 6 7 0 A O
  • TP D 1 I -

. M T EP O A 5 BS R C DN F I

- F N - -

6 IY O

- 8 LC I T PN T I MED P ES N N N N N N N N N N AUO O FO . N N N N

. = QI AP R R I I I I I I I I I I H

I H

I H

I H

I H

MER UE E C H H H H H H H H H D URE QD Y T T T T T T T T T T T T T T T O MFP

  • H A U I I I I I I I I I I I I I I

~ I R

E I

XR AO TL RI AO L O W W W W W W W W W W W W W W 7

9

. P MF

/

1 4

' 4 4 4
! ,

I i

1****** OPTION $ *** COMPUTE MOTION IN NEW SUBLAYEPS EARTHQUAKE - DBE TM41 3/1/97 Ah SOIL DEPOSIT - NSP-PINGP DPE @ EL.515 COL.1 199*

LAYER DEPTH MAX. ACC. TIME MEAN SQ. FR. ACC, RATIO PUNCHED CARDS FT G SEC C/SEC QUIET ZONE ACC. PECOFD WITHIN 126.5 .08230 3.49 3.16 .On0 1 c.ITHIN 144.0 .08524 3.47 3.22 .000 1 WITHIN 161.5 .08491 3.45 3.01 .000 1 WITHIN 174.0 .08385 3.44 2.89 .000 1 WITHIN 194.0 .07464 3.43 2.64 .000 1  !

CUTCR. 199.0 .09793 3.43 3.26 .000 0 l l

1****** OPTION Q ***

COMPUTE PESPONSE SPECTPUM i t

NOT SIIOWN llERE.m i i

t i

I t

i i

t i

I t

r

  • I i

4/RN7 Page 10 of 10 Nsph009f. doc i

b 4

h

)

i d

4 4

1 4

J 1

f SIIAKE88 i OUTPUT FILE I Nsph009g. opt

$ 1 d

e

! \

l i

1 1

1 i

)

i i

i k.

s

l

@ O 3 i

I SHAKE 88

-f - ( ') ~

3)

)

! A program for:

Earthquake Pesponse Analysis

} of Horizontally Layered Sites l Version of February 1988 j Originally authored by j Schnabel, Lysmer, & Seed 1 Modified by J. Sun & S. Lai j University of California - Perkeley IBM-PC version by Geotech International

, 1312) 939-7162

May 1991 l

Input file name = nsph0099.ipt Output file name = nsph0099.cpt Punch file name = nsph009q. pun Date and time of run = 4/09/1997 11:12

]. __-_._-_ ---________________________-___.

i MAX. NUMBER OF TERMS IN FOURIER TRANSPORN = 2048 NECESSARY LENGTH OF BLANK COMMON X = 12819 EARTH FRESSURE AT REST FOR SAND = .450 1****** OPTION 1 *** READ INPUT MOTION EARTHQUAKE - DBE TH81 3/1/97 Ah 1024 ACCELERATION VALUES AT TIME INTERVAL .0100 THE VALUES ARE LISTED ROW BY ROW AS READ FROM CARDS

{ TRAILING ZEROS ARE ADDED TO GIVE A TOTAL OF 2048 VALUES MAXIMUM ACCELERATION = .06000 AT TIME = 3.44 SEC 1

THE VALUES WILL BE MULTIPLIED BY A FACTOR = 2.000 TO GIVE NEW MAXIMUM ACCELERATION = .12000 MEAN SQUARE FREQUENCY = 3.65 C/SEC.

i 4/RN721I:17 AM Page I of 9 Nsph009g. doc a

I O O @ lI

, 1****** OPTION 2 *** PEAD SOIL PROFILE I

I NEW SOIL FROFILE NO. 1 IDENTIFICATION - NSP-PINGP DBE 9 EL.515 COL.1 199*

! NUMBER OF LA"ERS 20 DEPTH TO BEDROCK 199.('

, NUMBER OF FIRrT SUBMERGED LAYER S DEPTH TO WATER LEVEL 20.4 t

  • l.

! LAYER TYPF FACTOR THICENESS DEPTH EFF. PRESS. MODUL'JS DAMPING UNIT WEIGHT SHEAR VEL l MOD. DAMP. FT FT FSF KSF ECF FT/SEC 1-l 1 9 1.00 1.46 4.00 2.00 .24 2267. .070 .1200 780.

l 2 to 1.00 1.24 4.00 6.00 .72 2267. .070 .1200 780.

l 3 10 1.00 1.13 6.00 11.00 1.32 2267. .070 .1200 780.

4 11 1.00 1.04 6.00 17.00 2.01 2078. .120 .1100 780.

l' 5 11 1.00 1.01 3.00 21.50 2.42 2173. .120 .1150 780.

6 Il 1.00 .99 6.00 26.00 2.69 3759. .100 .1250 984.

l 7 11 1.00 .96 6.00 32.00 3.06 3759. .100 .1250 984.

! 8 12 1.00 .94 6.00 38.00 3.44 3759. .100 .1250 984.

9 12 1.00 .92 6.00 44.00 3.81 3759. .100 .1250 984.

10 12 1.00 .29 9.00 51.50 4.30 5814. .070 .1300 1200.-

3 11 12 1.00 .87 9.00 60.50 4.91 5814. .070 .1300 1200.

12 13 1.00 .85 9.00 69.50 5.52 5814. .070 .1300 1200.

13 13 1.00 .82 17.50 82.75 6.42 5814. .070 .1300 1200.

i 14 13 1.00 .78 17.50 100.25 7.60 5814. .070 .1300 1200.

I 15 13 1.00 .76 17.50 117.75 8.78 7423. .070 .1300 1356.

a 16 13 1.00 .73 17.50 135.25 9.97 8724. .070 .1300 1470.

a 17 13 1.00 .71 17.50 152.75 11.15 14698. .070 .1300 1908.

I

! 18 13 1.00 .69 17.50 170.25 12.33 22106. .070 .1300 2340.

19 7 1.00 .67 20.00 189.00 13.85 43323. .070 1550 3000.

20 BASE 173292. .000 .1550 6000.

PERIOD = .53 FROM AVERAGE SHEAR VELOCITY = 1506. FT/SEC MAXIMUM AMPLIFICATION = 9.64 l FOR FPEQUENCY = 2.01 C/SEC.

FERIOD = .50 SEC.

4 l

f l 1****** OPTION 3 *** READ WHERE OBJECT MOTION IS GIVEN t

OBJECT MOTION IN LAYER NUMBER 19 OUTCROPPING 1

t j  !

1 8 a

i 41U97 Par: 2 cr 9 Nsph009g. doc 1

~% _

N.

1****** OPTION 8 *** READ RELATION BETWEEN SOIL PROPEPTIES AND STRAIN CURVES ftR RELATION OF STRAIN VERSUS SHEAR MODULUS AND DAMPING MODULUS AND DAMPING VALUES APE SCALED EVR PLOTTING SHEAR MODULUS CLAY - MAY 1972 MULTIPLICATION FACTOR = 01000 1.00000 i DAMPING CLAY - MAY 24, 1972 .

MULTIPLICATION FACTOR =

SHEAR MODULUS SAND SQ. ROOT PEL. - MAY 1972 MULTIPLICATION FACTOR = .50000 DAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACTOR = 1.00000 ATTENUATION OF POCK AVERAGE MULTIFLICATION FACTOR = .01000 DAMPING IN POCK AVERAGE 9/4 MULTIPLICATION FACTOR = 1.00000 CI (CLAY PI = 0-10) MODULUS PEDUCTION CUBVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING CLAY - MAY 24, 1972 MULTIPLICATION FACTOR = 1.00000 C2 (CLAY PI =10-20) MODULUS PEDUCTION CUPVES, FER 1998 MULTIPLICATION FACTOR = 30.00000 DAMPING CLAY - MAY 24, 1972 MULTIPLICATION FACTOR = 1.00000 C3 (CLAY PI =20-40) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING CLAY - MAY 24, 1972 MULTIPLICATION FACTOR = 1.00000  ;

C4 (CLAY FI =40-80) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING CLAY - MAY 24, 1972 MULTIPLICATION FACTOR = 1.00000 C5 (CLAY PI > 80 ) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING CLAY - MAY 24, 1972 MULTIPLICATION FACTOR = 1.00000 S1 (SAND CP=.25 KSC) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACTOR = 1.00000 S2 (SAND CP=.50 KSC) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMP 1NG SAND - FEBRUARY 1971 MULTIPLICATION FACTOR = 1.00000 S3 (SAND CP=1.0 KSC) MODULUS PEDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACTOR = 1.00000 S4 (SAND CP=2.0 KSC) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACTOR = 1.00000 S5 (SAND CP=3.0 KSC) MODULUS REDUCTION CURVES, FEB 1988 MULTIPLICATION FACTOR = 30.00000 DAMPING SAND - FEBRUARY 1971 MULTIPLICATION FACTOR = 1.00000 1****** OPTION 4 *** OBTAIN STPAIN COMPATIBLE SOIL PROPERTIES MAXIMUM NUMBER OF ITERATIONS = 10 MAXIMUM ERROR IN PERCENT = .50 '

FACTOR FOR EFFECTIVE STRAIN IN TIME DCetAIN = .65 b

4 P

42H Page 3 of 9 Nsph009g. doc

_ _ - - _ _ _ _ _ _ _ . - _- ._ _ - _ - - _ _ - _ _ . . _ - - _ _ . _ = _ _ - - __-__ _- - .

_m _mm._.-..a_~.m..m--m.---..- . . .

..-.--m.--.___--.---- -

..._..~m____._.m....-

! 9 9 9 1i I

EARTHQUAF.E - DPE TH41 3/1/97 Ah i i

SOIL PPOFILE - NSP-PINGP DBE 9 EL.515 COL.1 199* f r

I ITEPATION NUMBER 1 THE CALCULATION RAS BEEN CAPPIED OUT IN THE TIME DOMAIN WITH EFF. STRAIN = .65* MAX. STRAIN EFF. STRAIN NEW DAMP. DAMP USED ERPOR NEW G G USED EPROR LAYER TYPE DE PTH PPCNT i FT PRCNT PRCNT KSF KSF 1 9 2.0 .00091 .023 .070 -204.4 2117.566 2267.329 -7.1 2 10 6.0 .00269 .037 .070 -89.5 2037.018 2267.329 -11 3 3 10 11.0 .00474 .047 .070 -50.2 1921.954 2267.329 -18.0 1755.480 2078.385 -18.4 i 4 11 17.0 .00753 .054 .120 -122.5

, 5 11 21.5 .00872 .055 .120 -116.8 1807.520 2172.857 -20.2 f 3251.513 3758.758 -15.6 t l 6 11 26.0 .00595 .046 .100 -118.1 7 11 32.0 .00714 .049 .100 -105.9 3191.888 3758.75R -17.8

8 12 38.0 .00829 .051 .100 -97.9 3281.529 3758.758 -14.5 9 12 44.0 .00940 .052 .100 -92.2 3248.549 3758.758 -15.7 10 12 51.5 .00695 .045 .070 -56.7 5146.437 5813.664 -13.0 11 12 60.5 00787 .046 .070 -52.9 5096.379 5813.664 -14.1  ;

12 13 60.5 .00966 046 .070 -51.0 5283.083 5813.664 -10.0 [*

13 13 82.8 .00967 .047 .070 -49.7 5244.214 5813.664 -10.9 i

14 13 100.3 .01088 .048 .070 -46.8 5176.678 5813.664 -12.3 f 15 13 117.8 .00953 .043 .070 -62.8 6702.763 7423.468 -10.8 )

16 13 135.3 .00906 .041 .070 -71.7 7904.200 8724.130 -10.4 1 17 13 152.8 .00584 .033 .070 -114.6 13709.090 1469?.520 -1.2 1B 13 170.3 .00411 .026 .070 -166.1 21091.780 22106.460 -4.8 19 7 189.0 .00222 .021 .070 -229.1 42716.390 43322.980 -1.4

. VALUES IN TIME DOMAIN t

THICFNESS DEPTH MAX STRAIN MAX STRESS TIME j j LAYER TYPE

FT FT PRCNT PSF SEC l I l

! 1 9 4.0 2.0 .00140 29.75 3.59 a

2 10 4.0 6.0 .00414 84.26 3.59 i 3 10 6.0 11.0 .00730 140.28 3.59 4 11 6.0 17.0 .01158 203.34 3.59 5 11 3.0 21.5 .01342 242.56 3.59 l 6 11 6.0 26.0 .00916 297.70 3.59 7 11 6.0 32.0 .01099 350.04 3.59 8 12 6.0 38.0 .01275 418.45 3.59 9 12 6.0 44.0 .01447 470.03 3.58 10 12 9.0 51.5 .01070 550.55 3.58 3

11 12 9.0 60.5 .01211 617.17 3.58 12 13 9.0 69.5 .01332 703.95 3.50 13 13 17.5 82.8 .01487 780.04 3.58 14 13 17.5 100.3 .01674 866.78 3.58 15 13 17.5 117.8 .01466 982.89 6.88 {

16 13 17.5 135.3 .01393 1101.41 6.88 l

17 13 17.5 152.8 .00898 1231.65 6.87

! 18 13 17.5 170.3 .00632 1332.08 6.87 19 7 20.0 189.0 .00341 1457.74 6.86 1

(1v97 Page 4 or9 Nsph009g. doc I

@ @ @ l EARTHOUAFE - DBE TH81 3/1/97 Ah SOIL PROFILE - NSP-PINGP DBE 9 EL.515 COL.1 199*

i

? ITERATION NUMBER 2

+

{ THE CALCULATION HAS BEEN CAPRIED OUT IN THE TIME DOMAIN WITH EFF. STPAIN = .65* MAX. STPAIN LAYEP TYPE DEPTH EFF. STPAIN NEW DAMP. DAMP USED EPROR NEW G G USED ERROR FT PPCNT PRCNT ESF KSF PRCNT- 1 1 9 2.0 .00112 .026 .023 10.5 2090.336 2117.566 -1.3 2 10 6.0 .00347 .043 .037 13.8 1995.806 2037.018 -2.1 I 3 10 11.0 .00661 .055 .047 15.1 1843.611 1921.954 -4.2 i 4 11 17.0 .01056 062 .054 13.6 1687.526 1755.480 -4.0

, 5 11 21.5 .01218 .065 .055 15.0 1718.487 1807.520 -5.2 i

6 11 26.0 .00771 .052 .046 11.0 3167.163 3251.513 -2.7

] 7 11 32.0 .00997 .053 .049 9.1 3117.480 3191.888 -2.4

! 8 12 38.0 .01004 .055' .051 7.4 3230.641 3281.529 -1.6 i 9 12 44.0 .01124 .057 .052 8.5 3175.437 3248.549 -2.3  !

10 12 51.5 .00798 .047 .045 5.8 5090.858 5146.437 -1.1 11 12 E0.5 .00902 .048 .046 5.4 5041.615 5096.379 -1.1 12 13 64.5 .00948 .048 .046 3.6 5251.040 5283.003 .6 )

l 13 13 R2.9 .01087 .050 .047 5.9 5177.272 5244.214 -1.3 L 14 13 100.3 .01340 .053 .048 10.3 5040.015 5176.678 -2.7 l l 15 13 117.8 .01162 .048 .043 9.7 6555.179 6702.763 -2.3 t 16 13 135.3 .01052 .044 .041 6.6 7801.555 7904.200 -1.3

] 17 13 152.8 .00641 .034 .033 4.3 13624.440 13708.090 .6

18 13 170.3 .00436 .027 .026 3.4 21011.700 21091.780- .4 1

19 7 189.0 .00222 .021 .021 .0 42716.100 42716.390 .0 i

! VALUES IN TIME DOMAIN i

LAYER TYPE THICFNESS DEPTH MAX STRAIN MAX STRESS TIME

! FT FT PRCNT PSF SEC 1 9 4.0 2.0 .00173 36.11 7.08 2 10 4.0 6.0 . 00534

. 106.55 7.08 3 10 6.0 11.0 .01017 187.49 7.08 4 11 6.0 17.0 .01625 274.17 7.08 j 5 11 3.0 21.5 .01874 321.96 7.08 i

6- 11 6.0 26.0 .01186 375.53 7.08 i 7 11 6.0 32.0 .01381 430.43 5.74 1 8 12 6.0 38.0 .01544 498.94 5.74' l 9 12 6.0 44.0 .01729 548.90 5.74 l 10 12 9.0 51.5 .01228 624.99 3.59 i 11 12 9.0 60.5 .01387 699.23 3.58 l 12 13 9.0 69.5 .01459 766.11 3.50 '

13 13 17.5 82.8 .01673 866.10 5.00 14 13 17.5 100.3 .02062 1039.08 5.00 15 13 17.5 117.8 .01788 1171.88 5.79 16 13 17.5 135.3 .01619 1262.90 5.78 17 13 17.5 152.8 .00907 1344.33 6.87 18 13 17.5 170.3 .00670 1408.53 6.87

, 19 7 20.0 189.0 . 00341 1458.59 6.06 f ,

1 t

t t

I i

4/&97 Page5cr9 Nsph009g. doc i i i

_....._-_-m.m-w u ._s

i 4

G J A  !

t 1

t

- DBE TH41.3/1/97 Ah i EARTHOUAFE SOIL PROFILE - N3P-PINGP DBE 8 EL.515 COL.1 199*

. ITERATION NUMBER 3 l THE CALCULATION HAS BEEN CARRIED OUT IN THE TIME DOMAIN WITH EFF. STRAIN = .65* MAX. STRAIN [

j LAYER TYPE DE PTH EFF. STPAIN NEW DAMP. DAMP USED ERRCP NEW G G USED ERROR FT PRCNT PRCNT KSF KSF PRCNT l

1 9 2.0 .00112 .026 .026 .0 2090.318 2090.336 .0 2 10 6.0 .00348 .043 .043 .3 1994.806 1995.806 .1 l

4 3 10 11.0 .00676 .055 .055 1.0 1838.362 1843.611- .3 .

d 4 11 17.0 .01076 .063 .062 ' 1. 0 - 1681.039 1687.526 .3 l 5 11 21.5 .01254 .066 .065 1.5 1709.134 1718.487 .5 P 6 11 26.0 .00777 .052 .052 .3 3164.538 3167.163 .1  !

.053 3112.052 3117.480 f 7 11 32.0 .00913 .054 7 .2 I B 12 38.0 .01006 .055 .055 .1 3229.585 3230.641 .0 9 12 44.0 .01135 .057 .057 .6 3170.448 3175.437 .2

! 10 12 51.5 .00800 .047 .047 .1 5090.045 5090.858 .0 11 12 60.5 .00902 .048 .048 .0 5041.427 5041.615 .0 l 12 13 69.5 .00944 .048 .048 .2 5252.631 5251.040 .0

13 13 82.8 .01103 .050 .050 .8 5168.198 5177.272 .2 14 13 100.3 .01371 .054 .053 1.1 5024.804 5040.015 .3 15 13 117.0 .01175 .048 .049 .6 6545.554 6555.179 .1 -

I 16 13 135.3 .01051 .044 .044 .1 7802.496 7801.555 .0 I 17 13 152.8 .00638 .034 .0 34 .3 13629.640 13624.440 .0  !

I 18 13 170.3 .00432 .027 .027 .5 21023.870 21011.700 .1 l 19 7 189.0 .00219 .021 .021 4 42723.760 42716.100 .0 VALUES IN TIME DOMAIN LAYER TYPE THICKNESS DE PTH MAX STRAIN MAX STRESS TIME FT FT PRCNT PSF SEC i

I 9 4.0 2.0 .00173 36.12 7.08

. 2 10 4.0 6.0 .00536 106.95 7.08 i 3 10 6.0 11.0 .01040 191.16 7.08 4 11 6.0 17.0 .01655 278.36 7.08 5 11 3.0 21.5 .01929 329.67 7.08 6 11 6.0 26.0 .01195 378.25 7.08 i 7 11 6.0 32.0 .01404 436.89 5.75 8 12 6.0 38.0 .01548 499.86 5.74 9 12 6.0 44.0 .01746 553.64 3.59 10 12 9.0 51.5 .01230 626.15 3.59 11 12 9.0 60.5 .01388 699.53 3.59 12 13 9.0 69.5 .01452 762.90 3.58 13 13 17.5 82.8 .01696 876.61 5.00 14 13 17.5 100.3 .02110 1060.21 5.80 15 13 17.5 117.8 .01808 1183.66 5.79 16 13 17.5 135.3 .01617 1261.85 5.79 17 13 17.5 152.8 .00981 1337.04 6.87 18 13 17.5 170.3 .00664 1396.63 6.87 19 7 20.0 189.0 .00336 1436.20 6.86 1

l 4/RN7 Page 6 of 9 Nsph009g. doc i

u - .

. _ . - . . . - . - .. . = _ . . . . . . . - . . . . - .. .. _. I

EARTHOUAKE. - DBE THet 3/1/97 Ah SOIL PROFILE - NSP-PINGP DBE 9 EL.515 COL.1 199*

ITERATION NUMBER 4 THE CALCULATION HAS BEEN CARRIED OUT IN THE TIME DOMAIN WITH F.FF. STRAIN = .65* MAX. STRAIN LAYER TYPE DEPTH- EFF. STRAIN NEW DAMP. DAMP USED ERROR NEW G G USED ERPOR

)

FT PRCNT PRCNT MSF KSF PRCNT 1 9 2.0 .00112 .026 .026 .1 2090.459 2090.318 .0 2 10 6.0 .00348 .043 .043 .0 1994.944 1994.806 .0 3

3 10 11.0 .00677 .056 .055 .1 1838.026 1838.362 .0 4 11 17.0 .01078 .063 .063 .1 1681.286 1681.829 .0 i 5 11 21.5 .01258 .066 .066 .2 1707.948 170'.134 .1 6 11 26.0 .00777 .052 .052 .0 3164.701 3164.538 .0

' 7 11 32.0 .00914 .054 .054 .1 3111.571 3112.052 .0 8 12 30.0 .01006 .055 .055 .0 3229.772 3229.585 .0 i 9 12 44.0 .01136 .057 .057 .1 3169.959 3170.448 .0 10 12 51.5 .00799 .047 .047 .0 5090.217 5090.045 .0 i

11 12 60.5 .00901 .048 .048 .0 5041.659 5041.427 .0 12 13 69.5 .00943 .048 .048 .0 5252.970 5252.631 .0 j 13 13 82 8 .01105 .050 .050 .1 5166.970 5168.198 .0 14 13 100.3 .01375 .054 .054 .1 5022.939 5024.804 .0 15 13 117.8 .01176 .048 .048 .0 6544.875 6545.554 .0 16 13 135.3 .01050 .044 .044 .0 7803.368 7802.496 .0 17 13 152.8 .00637 .034 .034 .1 13630.770 13629.640 .0 18 13 170.3 .00431 .027 .027 .1 21025.960 21023.870 .0 19 7 189.0 .0021e .021 .021 .0 42724.370 42723.760 .0 i

VALUES IN TIME DOMAIN l LAYFR TYPE TH!CENESS DEPTH MAX STRAIN ' MAX STRESS TIME a FT FT PRCNT PSF SEC i 1 9 4.0 2.0 .00173 36.09 7.06 3 2 10 4.0 6.0 .00536 106.90 7.08

. 3 10 6.0 11.0 .01041 191.39 7.00 l 4 11 6.0 17.0 .01658 278.77 7.08 5 11 3.0 21.5 .01936 330.66 7.08 6 11 6.0 26.0 .01195 378.08 7.08 j 7 11 6.0 32.0 .01406 437.47 5.75 R 12 6.0 38.0 .01547 499.69 5.75 i 9 12 6.0 44.0 .01748 554.11 3.59 10 12 9.0 51.5 .01230 625.90 3.59 l 11 12 9.0 60.5 .01387 699.16 3.59 12 13 9.0 69.5 .01451 762.21 3.58 i 13 13 17.5 82.8 .01699 878.04 5.80 14 13 17.5 100.3 .02116 1062.83 5.80 f

15 13 17.5 117.8 .01010 1184.50 5.79 16 13 17.5 135.3 .01616 1260.87 5.79 17 13 17.5 152.8 .00900 1335.46 6.87 4 18 13 17.5 170.3 .00663 1394.60 6.87 4

19 7 20.0 189.0 .00336 1434.43 6.96 4/K/97 Page 7 of 9 Nsph009g. doc

. - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ = _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ . _ _

O O i i

PERIOD = .55 FPOM AVERAGE SHEAR VELOCITY = 1438. IT/SEC MAXIMUM AMPLIFICATION = 15.35  ;

= 1.90 C/SEC.  ;

FOR FREQUENCY p FERIOD = .5 3 SEC.

l 1****** CPTION 5 *** COMPUTE MOTION IN NEW 30BLAYERS ,.

I i

EARTHQUAEE - DBE THil 3/1/97 Ah SOIL DEPOSIT - NSP-PINGP DBE 9 EL.515 COL.1 199' p LAYER DEPTH MAX. ACC. TIME MEAN SQ. FR. ACC. PATIO PUNCHED CARDS FT G SEC C/SEC QUIET ZONE ACC. PECORD ,

O'JTC R . .0 .15185 7.OR 3.13 .000 256 1

.000 1 i WITHIN 4.0 .15047 7.08 3.05 WITHIN 8.0 .14602 7.08 2.88 .000 1 WITHIN 14.0 .13112 7.08 2.64 .000 1 WITHIN 20.0 .12358 3.57 2.44 .000 1 l

+

6 WITHIN 23.0 .11746 3.57 2.37 .000 1 WITHIN 29.0 .10902 3.56 2.30 .000 1

(

WITHIN 35.0 .09833 3.55 2.22 .000 1 {

I v

WITHIN 41.0 .09497 6.84 2.23 .000 1 WITHIN 47.0 .09740 5.82 2.33 .000 1 ,

f WITHIN 56.0 .10076 5.81 2.38 .000 1 ,

I

( .000 1 WITHIN 65.0 .10400 5.80 2.45 WITHIN 74.0 .10270 5.80 2.59 .000 1 91.5 .08363 5.79 2.90 .000 1 }

l WITHIN

' t

! WITHIN 109.0 .07536 3.48 3.18 .000 1 t I

s t

.?

.r I

i i

5 4/197 Page S or9 Nsph009g. doc l l

t

?

1****** OPTION 5 *** COMPUTE MOTION IN NEW SUBLAYERS EARTHOUAFE - DBE TH#1 3/1/97 Ah SOIL DEPOSIT - NSP-PINGP DBE @ EL.515 COL.1 199*

LAYER DEPTH MAX. ACC. TIME MEAN SQ. FR, ACC. RATIO PUNCHED CARDS FT G SEC C/SEC QUIET ZONE ACC. RECORD-WITHIN 126.5 .08962 3.47 3.19 .000 1 WITHIN 144.0 .08705 3.46 3.32 .000 1 W' THIN 161.5 .00566 3.45 3.18 .000 1 WITHIN 179.0 .08420 3.44 3.03 .000 1

! WITHIH 199.0 .07274 3.43 2.83 .000- 1 OUTCR. 199.0 .09194 3.43 3.33 .000 0 1****** OPTION 9 *** COMPUTE P.ESPONSE SPECTRUM NOT SilOWN IIERE..

I 4/KN7 Page 9 of 9 Nsph009g. doc

j %l )

l l

l IIAND CALCULATION CIIECK OF EXCEL SPREADSliEET FILE I

"Modutus.xis" i

l i

t I

i l

\

l.

l l

a I i

1 w

i i

l l

f%

g CALCULATION REPORT ij 1 PROJEcr PINGP L10UEFACTION ANALYSIS PAGE No.1 Or .4 SUBJECT CilECK CALC'S IN " MODULUS.XLS" SPREADSIIEET Jos No. 28723A

! STS CONSULTANTS. LTD. PREPARED BY D. ABERNATHY DATE 6/24/97 l CilECKED BY T. KIEFER DATE 6/24/97 APPROVED By B. WALTON DATE 6/24/97 l

OBIECTIVE: 1 Check calculations made within the " Modulus.xis" spreadsheet used to calculate parameters used in the SHAKE 88 input file.

GIVEN:

Modulus.xis spreadsheet which includes the " Shake Horizontal Parameters" and  ;

" Shake Adjusted Vertical Parameters" worksheets. See Figure 23 at the end of this  !

calculation report for soil parameters. I I

l 1

1. "SH AKE HORIZONTAL PARAMETERS" WORKSHEET

/'~'s V This worksheet was created to calculate the shear modulus (G) and shear velocities (V.+20%) for mput into the SHAKE 88 computer program.

V,'y \

G= '

Shear velocities were obtained from the SASW testing results.

-+Within layer #5, Vs=650 ft/sec:

2 G =V,7 =

(650ft / sec)2(115pcf)

= 1,508,929 psf = 1509ksf OKV g 322ft /sec 2

also Vs-20% = 520 ft/sec and Vs+20% = 780 f t/sec OKV

('r Y

File: CALC 009. doc I

l

l CALCULATION REPORT

{}

! \_/ PROJECT PINGP LIOUEFACTION ANALYSIS PAGENO. 2 OF 4 1

SUBJECT CIIECK CALC's IN " MODULUS.xts" SPREADSilEET JOB NO. 28723A STS CONSULTANTS. LTD. PREPARED BY D. ABERNATIIY DATE 6/24/97 CllECKED BY T. KIErER DATE 6/24/97 APPROVED BY B. WALTON DATE 6/24/97

  • Within layer #15, Vs=1130 ft/sec:

G = V,' y (ll30ft / sec)'(130pcf)  ;

OK4 2

= 5,155,186 psf = 5155ksf g 322ft /sec also Vs-20% = 904 ft/sec and Vs+20% = 1356 ft/sec OKV

  • Withinlayer #20, Vs=5000 ft/sec:

2 Vr (5000ft / sec)'(155pcf)

G= =

2

= 120,341,615 psf = 120,342ksf OK4 q( g l 322fi/ sec

/

also Vs-20% = 4000 ft/sec l and Vsv20% = 6000 ft/sec OKV

2. SHAKE ADIUSTED VERTICAL PARAMETERS"WORKSHEET Vertical modeling below the water table greatly depends on the Constrained Modulus (D) of water due to it's incompressibility. The Constrained Modulus greatly depends upon the Dilatational Compression Wave Velocity of water which was determined to be 5000 ft/sec from reference tables.

This worksheet was created to calculate the adjusted vertical parameters used to model vertical motions within the SHAKE 88 computer program. Results from the final iteration of the horizontal modeling (file: nsph009e. opt) were used as input into the following calculations and the vertical model. Constrained Moduli replaced Shear Moduli in the vertical SHAKE 88 model.

Vertical damping factors (A) were assumed to be 1/3 of the final horizontal factors resulting from the horizontal model.

/ \

V File: CALC 009 doc

i CALCULATION REPORT

' (C/ \ '

PROJECT PINGP LIOUEFACTION Analysis A PAGE No. 3 OF .4 SUBJECT CIIECK CALC'S IN " MODULUS.xts" SPREADSilEET JOB No. 28723A STS CONSULTANTS. LTD. PREPARED BY D. ABERNATHY DATE 6/24/97 CHECKED BY T. KIEFER DATE 6/24/97 APPROVED BY B. WALTON DATE 6/24/97 Above Water, Poisson's Ratio, used (v) = 0.35 for dry sands.

l 2G(1- vi )

and D' = (1-2 vi )

  • Within layer #2 - from the horizontal run output, Gh=1,327 ksf and A=0.053; therefore 2G(1 - vi ) 2(1,327,000 psf)(1- 035) I D, = = = 5,750,333 psf = 5,750ksf = Gy OK4 )

(1-2v i ) (1-2(035) 2 0.053 and 0.018 =Av OKV 3 3 A

C) -+Within layer #4 - from the horizontal run output, G=1,092 ksf and A=0.076; therefore 2G(1- vi ) 2(1,092,000 psf)(1-035) i

= = 4,732,000 psf = 4,732ks) = Gy OKV D = (1-2v ) 3 (1-2(035) 2 0.076 and 0.025 =Av OKV 3 3 Below Water, the Dilatational Compression Wave Velocity of water Vp =5000 ft/sec. The vertical motion input values for Shear Modulus (Gy) and damping (Av) were recalculated as displayed below:

  • Within layers #6 keeping V =5000 p ft/sec and density p =125 pcf -

V,27 (5000ft /sec)2(125pcf) 2 2

=

2

= 97,049,689 psf = 97,050ksf = Gv OK4 D = (322ft /sec ) (322ft/sec )

A 0.067 and within layer #7, - 0.022 = Av OKV 3 ~ 3 l s,

)

File: CALC 009. doc

4 l

CALCULATION REPORT l l

) 1 PROJECT PINGP LIOUEFACTION ANALYSIS PAGE No. 4 OF ,f SUBJECT CIIECK CALC'S IN "MonULUs.xts" SPREADSIIEET JOBNo. 28723A l STS CONSULTANTS. LTD. PREPARED BY D. ABERNATHY DATE 6/24/97 CilECKED BY T. KIEFER DATE 6/24/97 l APPROVED BY B. WAl. TON DATE 6/24/97 ]

I

-+Within layers #10 keeping V p=5000 ft/sec and density p =130 pcf -

V/7 (5000ft /sec)2(130pcf)

D=

2 2

=

2

= 100,931,677 psf = 100,932ksf = Gv OK4 (32.2ft / sec ) (322ft/sec )

2 0.059 and within layer #13, - 0.020 =A.y OK4 3 - 3 The calculated values above were then input into the vertical SHAKE 88 model (nspv008a.ipt) for one iteration. After one iteration the vertical acceleration time history file was generated for input into the QUAD 4M computer program.

Since the QUAD 4M computer program calculates vertical strains from horizontal strains

([,_s based on Poisson's Ratio (v), this ratio was varied below the water table to keep the Constrained Modulus (D) constant and hence the Dilatational Compression Wave Velocity (Vp) of water constant. Therefore, for each soil element below water, Poisson's Ratio (v) was calculated as follows:

D 2 -2G ,

V 2 = 2D2 -2G i

i *Within layer #7- keeping D2=97,050 ksf and G=2008 ksf- j D,-2G 97,050 - (2)2008 l v= = = 0.49 OKV ,

2 2D -2G (2)97,050 - (2)2008 2 j

-+Within layer #13 - keeping D2=100,932 ksf and G=3440 ksf -

D,-2G 100,932 - (2)3440

= = 0.48 OKV v = 2D -2G (2)100,932 - (2)3440 2

2 Therefore, within the QUAD 4M input file (file "nspv008a.ipt"), the adjusted value for Poisson's Ratio (v2) was used, as calculated above, to cause the computer program to use the Dilatational Compression Wave Velocity of water within the sands below the water r3 table.

O File: CALC 009. doc l

l

l

! l l' l I

D) ,

l SHAKE j llORIZONTAL PARAMETERS

Lower From SASW High l Shake Shear Shear Wave Shear Wave Shear Wave Layer Density Modulus Velocity Velocity Velocity l # y G V.-20% V, V,+20%

l (pcf) (ksf) (ft/sec) (ft/sec) (ft/sec)

< :-> (.-> <) 4.->

t i 120 1575 520 650 780 2 120 1575 520 650 780 3 120 1575 520 650 r 780 4 110 1443 520 650 780 5 115 1509 520 650 780 l 6 125 2610 656 820 i 984 l 7 125 2610 656 820 984 8 125 2610 656 820 984 9 125 2610 1 656 820 >

984 10 130 4037 800 1000 1200

[')

l (/ 11 130 4037 800 1000  ! 1200 l 12 130 4037 800 1000 1200 l 13 130 4037 i 800  ! 1000 , 1200 t 14 130 4037 800 1000 1200 l 15 130 5155 904 1130 1356 l 16 130 6058 980  ! 1225 i 1470 17 130 10207 1272 1590 4 1908 l 18 130 15352 1560 1950 2340

-19 155 30085 { 2000 2500 3000 20 155 120342 4000 5000  ; 6000 l

V' y !

l G= ,

8 i i

i i

6/17/97 Modulus.xis

N O

\.

SHAKE ADJUSTED VERTICAL

- PARAMETERS Variable Constant Horiz. Vertical Material Shake Shear Shear Wave Constant Constrained Variable Constrained Damping Damping Type Layer Density Modulus Velocity Poisson's Modulus Poisson's Modulus Factor Factor

  1. y G V, Ratio Di Ratio D2 3. A/3 (PcQ (ksi) (ft/sec) vi (ksf) v2 (ksi)

Fill 1 120 1413 616 0.35 6123 - - 0.033 0.011 Fill 2 120 1327 597 0.35 5750 - - 0.053 0.018 Fill 3 120 1221 572 0.35 5291 - - 0.064 0.021 Loose Sand 4 110 1092 565 ~ 0.35 4732 - - 0.076 0.025 Loose Sand. Sat. 5 115 I101 555 - - 0.49 89286 0.079 0.026 Med.-Dense Sand 6 125 2090 734 - - 0.49 97050 0.062 0.02I Med.-Dense Sand 7 125 2008 719 - - 0.49 97050 0.%7 0.022 Med.-Dense Sand 8 125 2097 735 - - 0.49 97050 0.068 0.023 Med.-Dense Sand 9 125 2054 727 - - 0.49 97050 0.071 0.024 Dense-V. Dense Sand & Gravel 10 130 3386 916 - - 0.48 100932 0.057 0.019 Dense-V. Dense Sand & Gravel Ii 130 3326 908 - - 0.48 100932 0.058 0.019 Dense-V. Dense Sand & Gravel 12 130 3492 930 - - 0.48 100932 0.058 0.019 ,

Dense-V. Dense Sand & Gravel 13 130 3440 923 - - 0.48 100932 0.059 0.020 Dense-V. Dense Sand & Gravel 14 130 3361 912 - - 0.48 100932 0.061 0.020 Dense-V. Dense Sand & Gravel 15 130 4398 1044 - - 0.48 100932 0.054 0.018 Dense-V. Dense Sand & Gravel 16 130 5221 1137 - - 0.47 100932 0.051 0.017 Dense-V. Dense Sand & Gravel 17 130 9280 1516 - - 0.45 100932 0.039 0.013 Dense-V. Dense Sand & Gravel I8 130 14283 I881 - - 0.42 100932 0.032 0.01I Weathered Sandstone Bedrk. 19 155 29544 2477 - - 0.34 120342 0.023 0.008 Sandstone Bedrock Italfspace 20 155 120342 5000 - - 0.31 434433 0.000 0.000 Notes: 1. Density (y), Poisson's Ratio (vi), Shear Modulus (G), Damping Factor (1) obtained from the final iteration of S1IAKE88 file "nsph009e".

2. Layers #l-4 are above the water table; #5-20 are below.
3. Dilatational Compression Wave Velocity of Water (V,=5000 fps). Solid Bedrock (V,=9500 fps).
4. EQ @ EL5IS above 20 ft. Weathered Bedrock.

G(32.2ft / sec 2G(1-og) (y )2 7 D2 - 2G i V3

=

1 Di= Above Water P Below Water D Bei w wat" 1 I (1-2u1) v2 = 2D 2-26 2 = (32.2ft / sec2 )(1000) 6/17/97 NSP-PINGP-28723A Modulus.xis

___ . - - - _ _ - _ - _ _ _ _ _ _ _ - _ _ _ . - _ _ _ _ _ _ - - - _ - ._ _______----_--____-____a

l 1

l l

l l

i l

I i

1 i

I l I APPENDIX H i

QUAD 4M ANALYSIS )

(

i ,

l l l

l l

i I

l I \

1 I

I I

l l . - ,

q CALCULATION COVER SHEET

() A PROJECT PINGP LIOUEFACTION ANALYSIS job NO. 28723A SUBJECT CHECK OF COMPIJTER PROGRAM OUAD4M OR]GINATOR: D.ABERNATHY DATE 6/23/97 CHECKED BY: T. KIEFER DATE 6/23/97 NO. OF SHEETS 95 APPROVED BY: B. WAl. TON DATE 6/23/97 CALC. No.

RECORD OF ISSUES NO. DESCRIPTION BY DATE CHKD DATE APPRD DATE PRELIMINARY CALC. SUPERSEDED CALC. FINAL CALC. X SUMuARY A two dimensional dynamic finite element analysis was performed utilizing the computer code (V) QUAD 4M (Hudson, Idriss and Beikae,1994) available from the University of Califomia at Davis.

The purpose of the dynamic analysis was to model the geometry and varying soil conditions at the PINGP site. The idealized soil profile was shown in Figure 23. The finite element mesh was extended approximately 900 feet on either side of the center line of the intake canal so that free field conditions could be modeled properly on the north side of the canal. At the south side of the canal high stiffness values were assumed for portions of the finite element mesh which represent the power plant structures. The base of the finite element mesh was established at El. 620.

Shear modulus values for the dynamic analysis were determined from the site specific SASW shear wave testing. The majority of the SASW testing results were obtained approximately 60 feet north or west of the crest of the intake canal. At these locations, the SASW test results represent free field conditions where the ground surface elevation is approximately El. 693. It was necessary to adjust these free field shear wave values, V., to be consistent with the level of overburden existing beneath the slopes and bottom of the intake canal. The shear wave velocity adjustment for overburden stress was performed for each element of the finite element mesh within the following calculation spreadsheet.

i l

l

' fh i f V; H-1 riie: ound4m doc

p g CALCULATION COVER SHEET V 1 PROJEcr PINGP LIOUEFACTION ANALYSIS JOB NO. 28723A SUBJECT CHECK OF COMPlJTER PROGRAM OUAD4M ORIGINATOR: D. ABERNATHY DATE 6/23/97 CHECKED BY: T. KIEFER DATE 6/23/97 NO. OF SHEETS 95 APPROVED BY: B. WALTON DATE 6/23/97 Calc. No.

RESULTS The results of this analysis are displayed as Figures 34 to 41 in Appendix B to this report while input and output files have been provided in the attachments to this page.

Max. IIoriz. Max. Vert. Max. Cyclic Max. Cyclic Case Filename Acceleration Acceleration Shear Stress Shear Strain l A (g) A,(g) Teye (psi) Eeye (%)

@ EL.694i nspq9a.* 0.1692 0.1150 44.2 0.007

@ EL.674i nspq9a.* 0.1359 0.0978 428.8 0.032 )

@ EL.620 nspq9a.* 0.0840 0.0811 798.2 0.024 l l

Reference OUAD4M - A Comnuter Procram to Evaluate the Seismic Responsa of Soil Structures Usine Finite Element Procedures and Incornoratine a Comnliant Base, by M. Hudson, I.M. Idriss, and M. Beikae, Sponsored by the National Science Foundation, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, May,1994.

l Table of Contents- i l

Figure 23 - Idealized Soil Profile Used in Computer Models File "Georr2. doc" - Word computer file for checking Shear Modulus Corrections File "Nspinput.xis" = Excel spreadsheet of Georr calculations.

File "Nsph9el3.sar" - Horizontal Shake EQ @ EL.620, input to QUAD 4M. l File "Nspv8al3.sar"- Vertical Shake EQ @ EL.620, input to QUAD 4M.

File "Nspsoil.dat" - Modulus reduction curves for NSP soils.

File "Shearcrv.xis" - Shear Modulus reduction curves graphed  ;

File " Curves.xis" - Damping Factor curves graphed File "Nspq9a. opt" - Computer file of QUAD 4M output results.

l Oi l v H-2 File: Quad 4m. doc

p p V bm. U Free Field Shake Column 4 1 2 A. 1 PLANT STRUCTURES EL 674 ,,4,,,

EL 671 .

\ EL664 3 4

{ 6 EL 647 [

E'635 5 $ Hnite Element Models EL 620 Extend to El. 620 Only EL 515 EL 495 8 $

%vy 9 %vy %vy %vy 9 290 Note: Vertical Scale is 5x Horizontal Scale SCALE IN FEET PEADAM84 QUAD 4M as SHARE 88 TRIOGERING STATIC PARAMETERS DYNAMIC PARAMETERS PARAMETERS Soil Description # f C $ K Le & L yr.e v G Mt V. Dr Median (pcf) (P8f) (deg) (pcf) (fs) P (%) (N1)60 Moist Sand Fill 1 120 0 33 550 1100 600 0.50 120 0.35 V 0.07 V 70 49.3 Moist loose Sand 2 110 0 31 250 500 275 0.45 110 0.35 A 0.12 A 45 6.1 Satumted loose Sand 3 52.6 0 31 250 500 275 0.45 115 vanes R 0.12 R 45 6.1 Medium Dense Sand 4 62.6 0 32 400 800 450 0.50 125 vanes I 0.10 I 55 12.6 Medium Dense Sand 5 67.6 0 33 700 1400 775 0.50 130 varies E 0.07 E 55 16.0 Saturated Sand Fill 6 62.6 0 33 550 1100 600 0.50 125 varies S 0.07 S 70 49.3 Dense Gravelly Sand 7 67.6 0 33 - - - -

130 0.35 -

0.07 vanes 55 17.6 Weathered Sandstone 8 - - - - - - -

155 - -

0.07 2500 - -

Sandstone Bedrock 9 - - - - - - -

155 - -

0.00 5000 - -

T * $ IDEALIZED SOIL PROFILE DRAM BY DTA 6-19-97 o 3 m k $m 2 Z g'

-4 "j USED IN COMPUTER MODELS CHECKED BY TAK 6-19-97 9 o y 'M PRAIRIE ISLAND NUCLEAR GENERATING PLANT APPROVED BY WHW 6-19-97 U  ?

m I) srs con.unants.us. WELCH, MINNESOTA RLE con.umna EnWnom NNN- Z --- M

O CALCULATION REPORT l &q V m 4 PROJECT PINGP LIOUEFACTION ANALYSIS PAGENo.1 OF 3 l SUBJECT SHEAR MODULUS CORRECTION JonNo. 28723A ,

I STS CONSULTANTS. LTD. PREPARED BY L. PAYNE DATE 6/24/97 CllECKED BY D.ABERNATHY DATE 6/24/97 APPROVED BY T. KIEFER DATE 6/24/97 l

)

OBJECTIVE I Calculate a corrected shear modulus, G, for soil elements based upon the ratio of the initial, effective vertical stress (immediately after construction) in the free-field, c',, versus the final, effective stress applied to a soil element, c',. Changes between initial and final, effective  ;

vertical stress are due to elastic strains occurring within the model after construction. l GIVEN Values of G are calculated using the following: I

  • A model of canal zone for QUAD 4M analysis of soil liquefaction. The model contains

,a 888 elements and delineates 18 horizontal layers of soil with varying soil properties.

- I

  • Initial effective vertical stress on an element of soil, c',, (taken as the final free-field stress at x-coordinate -199 ft. in the model), and the effective stress applied to each soil element, c', determined from the FEADAM analysis.
  • Shear wave velocity, V, , based on SASW testing for natural soils and corrected SPT N l I

values, Nw, for fill soils.

DERIVATION OF G 3 The initial shear modulus, Go , which is the shear modulus in the free field is calculated using tne following equation.

G, = Vl p = Vl E 8

Values of G , for all elements must be corrected to account for the changes in effective stress calculated by FEADAM. The formula for the corrected shear modulus, G, can be derived from the following relationship given by Seed and Idris (1973, Reference 1) for granular soils:

G = 1000Kk 1

g File: oCoRR2. doc I

! MM l q CALCULATION REPORT

,b A g

, A PROJECT PINGP LIOUEFACTION ANALYSIS PAGE NO. 2 OF }

SUBJECT SHEAR MODULUS CORRECrlON JOB NO. 28723A l

STS CONSULTANTS. LTD. PREPARED BY L. PAYNE DATE 6/24/97 CHECKED BY D. ABERNATHY DATE 6/24/97 APPROVED BY T. KIEFER DATE 6/24/97 I i

l l

where, K is a function of soil type and relative density. '

Relating the mean effective stress c', to the principal vertical stress o', ,

c', + a', + a', 2 a,. = ",* " 3#,'

3 By substituting and rearranging the above equations, a relationship between initial and corrected shear moduli can be made.

(< = ..

o y"" 1000k = y" =o g&

CALCULATION OF G m Values of G. , for each element of the QUAD 4M model are shown in the attached spreadsheet.

Example calculations are shown below for elements 26 in layer 18 and 403 in layer 12.

1. Calculate Initial Shear Modulus, G , for layer 18:

(1,000ft / sec)2 x 130 pcf i G, = V,2 p = y'2 y - 2

- 4,037 ksf N OK g 32.2ft / sec x 1000

2. Calculate Corrected Shear Modulus, G. , for element 26:

i h 2,986 psf YOK l

G,"" = G, h = 4,037 =]d5,443 2,990 psf

3. Repeat for each element requiring corrected G value.

Eh w.)

File: GCoRR2. doc

O CALCULATION REPORT

/ "N ,

d m A PROJECT PINGP LIOUEFACTION ANALYSIS PAGENo.1 OF d l

! SUBJECT SHEAR MODULUS CORRECTION JonNo. 28723A 1

STS CONSULTANTS. LTD. PREPARED BY L. PAYNE DATE 6/24/97 CilECKED BY D.ABERNATHY DATE 6/24/97 l

APPROVED BY T. KIEFER DATE 6/24/97 l

l i 1. Calculate Initial Shear Modulus, G , for layer 12:

l

, (1,200ft / sec)2 x 125 pcf l

G, = V,2 p , y'2 y - - 5,590 ksf MOK I g 32.2ft / sec2 x 1000 l

2. Calculate Corrected Shear Modulus, G_ , for element 403:

1 h

G'"" = G, h = 5,590))409 = 1,993 psf M OK 3.216 psf p

U Note: See Calculation Report in SHAKE 88 Appendix for other calculations displayed within the "Nspinput.xis" spreadsheet.

REFERENCES ,

l

1. Seed, H. B., and Idris, I. M. " Analysis of the Slides in the San Fernando Dams Durine the Earthauake of Feb. 9.1971" Report to Ca. Dent. of Water Resources. Univ. of Ca.-Berkeley, June,1973  !
2. Richart, F. E., Hall, J. R., and Woods, R. D., Vibrations of Soils and Foundations. Prentice-Hall, 1970, pp. 353-354.

l i

I

(J'\,

l File: GCORR2. doc f

I

. . . . . - . . - - . - . . - ~ . . - - . . . . - . . . - . . . . . . - . . . . - . - . . . . . - _ _ . _ - . - . . . - . - - - - _ _ . _ _ _ .

I l

i l

i i

1 I

QUAD 4M EXCEL FILE Nspinput.xis I

1 t

I t

i I

i l

i I .

l l.

l i

i e

h n,

. - - - _ _ . - ~ . - - . - - - - - - - - - - - _ _ - - - - - - _ _ - - _ - - - - - - - - - - - - - - - - - - - - - - - - - - - _ - - - - - _ - _ - - - - - - - - _ - _ - - - _ - - - - - - - - - - - - - - - - - _ - - - - - - - - _ _ - - - - - - - - - - - - - - - - - - - - -

l l

O O O .

I l

Intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculations for Corrected Moduli Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical Y-Center Unit Wt. FreeField Final FreeField FreeField Final v,,,i,, D.(ksi) v. D, (ksi) Type Damping Elem. Layer (ft.) (pcf) c',.(psf) o',(psf) V. (ft/sec) G (ksf) G.,, (ksf) v, Di v, D, # Factor 1 18 623 130.0 5443 _5483j 1000, 4037 4052 0.48 _

10G932 _ _ _ _

5 0.07 2 18 _ 623 130.0 5443.. 5480 . 1000 4037_ _4051 _ 0.48 , 100932 _ 5 0.07

~ ~ ~~

3 18 '623 ~ '130.0 ~ 5443~~ 5470~ '1000 ~4037~ ~~4047 ~OM8 100932 S ~0107

~' - ~ ~ ^ ~ ~ ' ~ ~

4~ 18 623 130.0 ~ 5443 ~ 5463^ ~1000 '4037' ~~4045 0.48 100932 5 '0:07

(( }5]

~

! 5 } 18 }623[ 13 .0 5443] 5459' 1000 ,'4037[ 4043' ~ 0.}48 100932 _[ [ 0.07

_6 18 623 130.0._ 5443 5455 1000 4037 4042 0.48 100932_ ~ ~

5 0.07

  • 7 ~18

}623 130.0 5443} _ 5450[~ [1000 ]4037] [4040 038

,0.48 100932 ' ~'] ._ ]5]

5

[ 0.07 0.07 8 18 623 130.0. 5443 5443 1000 4037 4037 100932 _ i T'

~9 18' 623 ~~ 130.0~ 5443 '5430~ '1000 ~4037~ 4032 '0A8 100932 ~

~ 0.07 10 18 [623' . '130.0} l5443} 5409 [1000[

. _4037] ~]4025 ~038 ~ ~ 100932[ _ _ _ _ __ _

~5 ~i ~ ~ 0.07 11_ . 18 623 130.0 5443 .5375_ 1000 4037 _ 4012 0.48 100932 __ , _ __

5_ .0.07 12 _ 18 623 _ 130.0_. 5443 _ 5320 1000 4037_ 3992 . 0 48 100932 _ _

5 _

_ 0.07 13 18 623 130.0 5443_ _ 5240._ 1000 4037 _ 3961 OA8 100932. ._ _ _ __5_ _0.07  ;

14 18 623 ..130.0_ _5443_ _ 5128. 1000_ .4037_ 3919 0.48 _

100932 _ _. __

5 __0.07 15 18 623 130.0 5443 _ 5012 . 1000 _4037_ _3874 0A8 100932_ ._ _, __ _

5_ __0.07 _

16 .18 623 _ _130.0 5443_ 4866_. 1000 4037_ _ 3817 _0.48. 100932 5 __0.07 ,

I 17' 18' 6231 1'30.0 [5443_ _ _4666[ 1000 4037 _.

3738 '0A8 [100932 . _ _ _ _ _. _. _ _ _ __

5 0.07 18 18 _623 130.0 5443 4440 1000 4037_ 3646 .0.48 100932 5 _.0.07  ;

19 18 623 .130.0 5443 4199._ __1000 4037 3546.. 0.48 .100932 ' - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' ~ ~ ~

5 0.07 l 20 '18 ~ ^ 623^ ~ 1300' 5443~ ~ 3954 ~1000' ~~4037'~ 3441' - 0.'48 ~ 100932 ~ 5 0.07' I 21' 18l _ 623] [130.0 [5443] [3716[ [100 _ ]4037'[ _]3336'_ ] 38[ [100932[ ] '{]

_ '][_ 5 ] [0.07} f 22 . 18 623 130.0 5443 3495 1

_ 000_ 4037 _3235 0A8 100932 _ _ . ._, _ ._ __

5 0 07 23 .18. 623_ .130.0 _ 5443_ _3285_ 1000 .4037 3136 _ _0.48 _ _ 100932_ 5 _.0.07 24 18 623] l130.'0[ . [5443[3150) 1000 4037 3071 0.48 100932 _. _ __

5 0.07 25 18 623 130.0 5443 3068 1000 4037 _3031 _0.48 . _100932 ~~

5 __ 0.07 .

_[5[

~ -

26} _18 [623[ [130.0__ 5443][2986~ 1000' [4037}'_ [2990~ ] O 48 {100932l_ , - (( ' [ ~ 0.07 [

27 18 623 130.0 __ 5443 2910_ 1000 4037 2952. 0.48 100932 5 .0.07 .  !

28 18 623 130.0 5443 2841 1000 4037 2917 0.49 100932 _ _ _ , _ . __ _ _ _

5 0.07 29 18 623__ 130.0_ __ 5443_ 2797_ _ 1000 _4037_. _2894 _0.49 _100932_ 5 _0.07 }

30 18 623 130.0 5443 2754 1000 4037 2872 0 49 100932 5 0.07  !

31 18 623 130.0 5443 2707 1000 4037 2847 0.49 100932 5 0.07  ?

32 18 623 130.0 5443 2707 1000 4037 2847 0.49 100932 5 0.07  !

33 18 623 130.0 5443 2754 1000 4037 ..

2872 0.49 .

100932 .- - - . - - - ..- - -

5 - --

0 07  ;

6/13/97 Page 1 of 27 Nspinput.xis  ;

l

~%

! d d V(

Intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculations for Corrected Moduli Total Feadam SASW Poisson Constr. Mod Peisson Constr. Mod. Curve Critical Y-Center Unit Wt. FreeField Final FreeField FreeField Final v% D _ (ks0 v. D% (ks0 Type Damping

! Elem. Layer (ft.) (pcf) ob(psf) 4(psf) V. (ft/sec) G (ksf) G,,,(ksf) v, D, v2 D2 # Factor 35 18 130.0 5443 2841j 1000 4037 2917 5 0.07 623_ 0.49 [ 100932. _ _

36 .18 .623 _ 130.0_. _5443__ 2910 1000 _4037 _ 2952. 0.48 100932 _5__. . 0.07 37 18 623 130.0 5443 2987 1000 4037 2991 0.48 100932 _ __

5 0.07  ;

38 . 18 _ 623 _ 130.0 _ 5443 3069 1000 . 4037 _. _3032 0.48 __ 100932 _ ._ _ _ _ _

5 _ 0.07

.18 . . 623 1300 _ 3151 1000 . 4037_ , 3072 , ,0.48 _100932 . 5 ._0.07 39 _ _

__ 5443 _ . _ _ _ 7__

40 18 _ . 623 130.0 . 5443 . 3286 _ 1000 .4037 __3137 0.48 100932 _ _ _ _

5 _

0.07 41 18 . 623 _ 130.0 _5443 3496. 1000 4037_ _ 3236 . 0.48 100932 ._

_5 _0.07 42 18 623 130.0 . 5443_ ,3717 1000 4037 , 3336 _0.48 . 100932 _5

, 0.48

_ { 0.07 .

43 . 18 623 _ .130.0 5443. 3956 _ 1000 1000, 4037_ _ 3442 . _ 100932 _ _ _ __ _5_ _ _0.07 44 18 623 130.0 _

5443_ 4202_ 4037 ..3547 _ _0.48 .100932 _ __ __ _ ___

5 0.07 45_ 18 623 _ 130.0 . 5443.. _4445 1000 4037_ _ 3648 _0.48 100932 _ _, _ _ _ _

5 _0.07 46 18 _ 623 _ 130.0. 5443__ _4674 1000_ _ 4037_ _ 3741 ._0 48 . 100932 __ _ _ _ _

5 __ 0.07 47 _ 18 623_ .130.0__ 5443__ _ 4881 1000 . _ _ _4037 _ 3823_ _0.48 . . 100932 _ _ __ _

__5_ _0.07_

48 18 623 130.0 5443 _ _5034._ __1000 ,4037_ _ 3883 __0.48 . _100932 . _.

_,5 _ __0.07 49 _18 _623___ 130.0_ 5443. _ 5162 _ 1000 4037 _3932 _0.48 _ 100932 __ _ _ _ _ . _5__ 0.07 50 18 623 130.0 _.5443_ 5292_ .1000 . _4037_ _3981 .0.48 _.100932 . 5 _ 0.07 51 18 623 130.0 5443 5397_ 1000 4037 4020 0.48 100932 __ __ __ 5_ __0.07 52 18 . _.623 _ 130.0.__5443_ _5484 _ 1000 .. _ _ _4037_. _.4053 _0.48 _ 100932 ~

__5 0.07 53 54 18 18 623[

623

}130.0~ [_5443[ [5563}

130.0 . 5443 5630 1000 1000 .

'4037] 4081' 4037 4106

}038 ~ 100932 0.48 100932

(( j.5] S

                                                                                                                                                                                                                                                                                                                                                                                ~ ~ ~0.07 '

0.07 55 18. _.623 130.0 _ 5443_ _ 5677_ 1000 __4037_ _4123. 0.48 _100932 ___ __ _ .,

                                                                                                                                                                                                                                                                                                                                   ._5._

_0.07 56 ~ 18 '623~' 13070 .5443_ 5687 _ 1000 .._4037_ _4127 _0.48 _100932 5 0.07 57 18 623 130.0 5443 5681 1000 4037 4125 0.48 100932 5 0.07 ' 58 18 623 130.0 5443 5689 1000 4037 4128 0.48 100932 5 0.07 59 18 623 130.0 5443 5703 1000 4037 4132 0.48 100932 5 0.07 , 60 18 623 130.0 5443 5710 1000 4037 4135 _0_.48_ 100932 _ ._ 5 _ 0.07. 61 _ 18 . __ 623_. _.130.0. _ . __5443__ 5711_ _ 1000-_. .__4037_ 4135_ 0.48 _100932_ 5 0.07 62 18 623 130.0 5443 5712 1000 4037 4136 0.48 100932 5 0.07 63 17 629.5 130.0 5020 5044 1000 4037 4047 0.48 100932 4 0.07 64 17 629.5 130.0 5020 5041 1000 4037 4046 0.48 100932 4 0.07 65 17 629.5 130.0 5020 5032 1000 4037 4042 0.48 100932 4 0.07 66 17 629.5 130.0 5020 5028 1000 4037 4040 0.48 100932 4 _ 0.07 67 17 629.5 130.0 . ._5020_ __5025 1000 _4037_ _4039 _0.48 _ 100932_ 4 0.07 68 17 J_ 629.5 130.0 _ 5020 _ _ 5023 1000 4037 _ __ 4039 0.48 100932 _. 4 _ _ ,0.07 f 6/13/97 Page 2 of 27 Nspinput.xts

q v O O Intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculations for Corrected Moduli Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical Y-Center Unit Wt. FreeField Final FreeField FreeField Final v,,% D . (ks0 v,,,,,. D,,%(ks0 Type Damping Elem. Layer (ft.) (pcf) o*,,(psf) 6(psf) V. (ft/sec) G (ksf) G (ksf) y, D i v D2 # Factor 69 17 629.5 130.0 5020 5022 1000 4037 4038 0.48 100932 ~ 4 0.07

                                                                                                                                                                                                                                                                     ~                                       ~~                       ~~

70 17 ~ 629.5~ 130.0 5020 ~ 5020~ 1000 4037~ ~ 4037 0.48 100932' ~4'~' ' ~0.07 71 17 629.5 130.0 5020 5013 1000 4037 4034 0.48 100932 __ __ 4 0.07 72 17 629.5 130.0 5020 4998_ 1000 4037 _ 4028 0.48 100932,

                                                                                                                                                                                                                                                                                                         ~

4 _ 0.07 " 73 17 130.0 ~ 5020 1000 [4037 [4017_ l 0.48 ~ 100932} i_ i] ~0.07~ _.629.5 } 4969} _ __ 74 17 629.5 130.0 5020 4920 1000 4037 3997 0.48 .100932 .__ 4 0.07 75 17 629.5 130.0 5020 4843 1000 4037 , _ 3966 0.48 100932 . 4 _0.07 76 17 629.5 130.0 5020 4732 1000 4037 3920 0.48 100932 4 0.07 77 17 629.5 130.0 5020 4613 1000 _ 4037 .3870 _ 0.48 _100932 4 0.07 78 17 . 629.5 130.0 _5020 . 4462 _ 1000 4037_ 3806 0.48 _.100932 _. _ ._ _

                                                                                                                                                                                                                                                                                                                                                                                                                       ._4 0.07 79        17             _,629.5 . 130.0                                                  5020_                                    _ 4253_      1000                                                           4037 _. .,3716        0.48    .100932 .                _ _ _                    .__

4 0.07 80 17 _629.5 _ 130.0 6020 4015_ 1000 _ 4037 _ _ 3611_ __0.48 100932 4 _ 0.07 81 17 629.5 130.0 5020 3761 1000 4037 3494 0.48 100932 4 0.07 82 17 629.5 130.0 5020 3502 1000 4037 3372 0.48 100932 ___ __ 4 0.07 __4 _ _ 0.07 _ 83 17 .629.5 130.0 5020 3252, __1000 4037_ .3249 0.48 _100932_ _ _ _ _ 84 17 _ 629.5 130.0 _ 5020 .3020 ._1000 4037_ _ 3132 0.48 100932_ 4 __0.07 1000 4037 3017 0.48 100932 _ _._ __] _ _ 4 0.07 85 17 629.5 130.0 5020 2803 86 17 629.5 130.0 5020 2664 1000 4037 2941 0.48 100932 4 0.07 87 17 - 629.5 130.0 5020 2581 1000 4037 2895 0.49 100932 4 0.07 88 17 629.5 130.0 5020 2497 1000 4037 2847 0.49 100932 4 0.07 89 17 629.5 130.0 5020 2425 1000 4037 2806 0.49 100932 4 0.07 90 17 629.5 130.0 5020 2358 1000 4037 2767 0.49 100932 4 0.07 91 17 629.5 130.0 5020 2329 1000 4037 2750 0.49 100932 4 0.07 92 17 629.5 130.0 5020 2287 1000 4037 2725 0.49 100932 4 0.07 93 17 629.5 130.0 5020 2227 1000 4037 2689 0.49 100932 4 0.07 94 ~ 17 "6296~ 130.0 '5020 ~2227~ ~1000~' ~iO37-2689 ~-049~ '~100932' 4 0.07 95 17 629.5 130.0 5020 2287 1000 4037 2725 0 49 100932 4 0.07 96 17 629.5 130.0 5020 2329 1000 4037 2750 0.49 100932 4 0.07 971 17' ~ 629.5' ~ 130.0 5020' ~ 2358 1000 4037 2767 0.49 100932 ~~ '~~ 4 0.07

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ~

98' 17 ~629.5~ 130.0~5020~ ~2426~ ~l00 ~ ~4037~ '~~2806 ~~0 49 '100932~ ~~dO7 , 99 17 629.5 130.0 5020 2498 1000 4037 2848 0.49 100932 4 0.07 100 17 629.5 130.0 5020 2581 1000 4037 2895 0.49 100932 4 0.07 101 17 629.5 130.0 5020 2665 1000 4037 2942 0.48 100932 4 0.07 102 17 629.5 130.0 5020 2804 1000 4037 3017 g 0.48 100932 4 0.07 6/I3/97 Page 3 of 27 Nspinput.xis

O O O Intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculations for Corrected Moduli  ; Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical Y-Center Unit Wt. FreeField Final FreeField FreeField Final v,,% D_(ksi) v. D,,u(ksi) Type Damping Elem. Layer (ft.) (pcf} 6.(psf) 6(psf) V. (ft/sec) G (ksf) Ge.,, (ksf) v, D, v D, # Factor 103 17 629.5 130.0 5020 3021 1000 4037 3132 0.48 100932 4 0.07 104 17 629.5 . 130.0. 5020 , 3252 _ 1000 4037_ 3249 0.48 _100932 . _ _ _ _ _4 _ 0.07 105 _17 629.5. 130.0 5020 3503 .1000 . 4037__ 3372 _0.48 100932, .__4 0.07 106 17 629.5 130.0 5020 3762 1000 4037 3495 0 48 100932 _ _ _ _ __ 4 0.07 107 17 629.5 130.0 5020 4018. 1000 4037 3612 _0.48 . 100932_ .__ ___ _ 4 _ 0.07 108 17 629.5 130.0. 5020 4258 _ 1000 _4037 3718 0.48 _ 100932 _ __ 4 _ 0.07 109 17 629.5_ 130.0 5020 4474_ 1000 4037 3811 0.48 100932 _ , _ _ _ 4 0.07 110 17 629.5 130.0_ 5020 4632 1000 _4037_ 3878 0.48 100932 ____y__ . _ _ 4 ._0.07 111 17 629.5 130.0 5020 4762 1000 . 4037_ .3932 0.48 ..100932_ ~ ~~ ~~ 4 _.0.07 112 17 629.5 ~ 130.0 5020 4893 1000 ~4037 ~ 3986 0.48 ~100932 ^ h ~~0 07 ~ 113 17 5020 4993 1000 4037 4027 0.48 100932 _y_ 4 0.07 4 629.5. } 130.0 _ __ 4 __0.07 114 17 629.5 130.0 5020 5077 __1000 __4037 _ 4060 ._0.48 _ 100932 . 115 17 629.5 130.0 _ 5020 _5151_ 1000 _ 4037_ __4090 .0.48 _ 100932_ 4 __0.07 116 17 629.5 130.0 5020 5222 1000 4037 4118 0.48 100932 4 0.07 117 17 ~629.5 130.0 ~ 5020 '5263 '1000' ~4037~ ~ ~ 4134 ~0.48 ~ 100932 4 0.07 , 118 17 629.5 130.0 5020 5261 1000 4037 _. 4133 0.48 .. 100932 _ _ . __ _ _ 4 0.07

                   . 119             17 _             629.5_ _ _   130.0                              5020                      5247       , 1000 _         _4037_                                        4127                                                     0.48                                                .100932_.                                                            _4                                                                 _.0.07   ,
                                                                                                                                                                                                                                             ' O.48
                                                                                                                                                                                                   ~

120 ~17 629.5[ 130.0~ . 5020 ~ 5255- ~ 1000 ~4037- 4130 100932 4 0 07 j 121 _ 17 j 629.5 130.0 .5020 5269 1000 4037 4136 0.48 ._100932 4 0.07 _ i 122 17 629.5 130.0 5020 5273 1000 4037 4138 0.48 100932 ~ ~ ~ ~ 4 0.07 i 123 17 629.5' 130.0~ 5020 ~ 5272 1000 ~ "4037' ~4137' ~0 38 ~ 100932 - ~

                                                                                                                                                                                                                                                                                                                                                                                        }                4                                                     _0.07    ,

124 125 17 16

                                                     ~629.5[ _130.0'~ '

_ 636.5 130.0 5020 4561 5273~ _4571 , [1000 1000 i4037} ]4138'~ [038[ 4037 4042 0.48

                                                                                                                                                                                                                                                                                                                     '100932}

100932

                                                                                                                                                                                                                                                                                                                                            ]                                             ' }}4 ] [ 0.07 4                                                      0.07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        }

_4 126 16 . 636.5 _ 130.0_ _4561 ,4568_ _1000 _ 4037__ _ 4040 .0.48 100932 0.07 i 127 16 636.5 130.0 4561 4560 1000 4037 4037 0.48 100932 4 0.07 128 16 636.5 130.0 4561 4558 1000 4037 4036 0.48 100932 4 0.07 4 129 130 16

                                   . 16 _

636.5 636.5 130.0 130.0 4561 4561 4557

                                                                                                                              ._4557 1000            4037                                        4035 4036 0.48 0.48 100932 100932

__] 4 0.07 0.07 1000 _[ 4037 131 _ _16 _ 636.5_ 130.0__ 4561 _4559. 1000 4037 4036 0.48 100932 4 0.07 i 132 ' ~ '16 ~636.5 130.0 4561 4561 1000 4037 4037 0.48 100932 4 0.07 l 133 16 636.5 130.0 4561 4560 1000 4037 4037 0.48 g 100932 4 0.07 l 134 16 636.5 130.0 4561 4551 1000 4037 4033 0.48 100932 4 0.07 l 135 16 636.5 130.0 4561 4529 1000 4037 4023 0.48 100932 4 0.07 - 136 16 _ . . _ 636.5 _- 130.0 4561 _ 4485 _ 1000 __ 4037 4004 0.48 100932 4 _ . _ _ . _ _ 0.07 i 6/13/97 Page 4 of 27 Nspinput.xis  !

g V d Q intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculations for Corrected Moduli , Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical Y-Center Unit Wt. FreeField Final FreeField FreeField Final v,.. D (ksf) vm D, (ksi) Type Damping Elem. Layer (ft.) (pcf) 4,(psf) 6(psf) V (ft/sec) G (ksf) G,,,(ksf) v. Da v2 D2 # Factor 16 636.5 130.0 4561 4412 1000 4037 3971 0.48 100932 j 4 ._ 0.07 137 138j l 16 636.5 _ 130.0_ 4561 4302 4 1000 . 4037 _ _ 3921 0.48__ . 100932_ _ 4 0.07 139 16 636.5 130.0 4561 4181 ' 1000 4037_ 3866 0.48 100932 4_ _.0.07 140 16 636.5 ' 130.0

  • 4561' 4025 1000 4037~ 3793 0.48 100932 ~A 0.07

! 141 16 636.5 130.0 4561 3806 1000 4037 3688 0.48 100932 4 0.07 142 16 636.5 130.0 4561 3556 ~ 1000 4037- 3565 6.48 ~100932 ~ ~ 4~~~

                                                                                                                                                                                                                                                                                                                                                                                             ~
                                                                                                                                                                                                                                                                                                                                                                                                 ~~0.07
                                                                                                                                                                                                                                                                                                                               ~~

143 16 636.5~ '130.0 4561 3288' 1000 4037~~ 3428 0148 100932 ~~4 ~~ 0.07

                                                                                                                                                                                                                                                                                                                           ~~

144 16 636.5 130.0~ 4561~ 3015 1000 ^ 4037~ 3282 ~0'.48 100932~ ~4 ~0.07

                                                                                                                                                                                                                                                                                                                       ~ ~~                           ~

145 16 636.5 '130.0 ~~4561 2752' ~1000 4037~ ' 3136 ~ d.48 ~

                                                                                                                                                                                                                                                                                                       '100932         ~ ~ ~ '                        ^~
                                                                                                                                                                                                                                                                                                                                                                                  -4
                                                                                                                                                                                                                                                                                                                                                                                  ~'
                                                                                                                                                                                                                                                                                                                                                                                                ~ ~d.07 146     16        636.5 ~                          130.0~                          4561                          2511'                            1000                                4037~ ~2996                                                   0.48                   100932                                                                          4            O.07
                                                                                                                                                                                                                                                                                                                       - ~~
                                                                                                             '4561                            2287                          '1000                                                                                            ~0N9~                      100932'                                                                    ~4 ~             '0.07~

147 } 16 _ 636.5 l i30.0} . [4037{ }2859 148 16 636.5. 130.0 4561 2145 1000 4037 2769 0.49 100932 4 0.07 149 16 636.5 130.0 4561 2060 1000 4037 2713 0.49 100932 4 0.07 __4 _ 150 16 . 636.5 130.0 _ 4561 . 1976. 1000 4037_ _ 2657 __ _0.49. 100932 0.07 151 16 636.5 130.0 4561 1904 1000 4037 2608 0.49 100932 4 0.07 152 16 636.5 130.0 4561 1853 1000 4037 2573 0.49 100932 4 0.07 153 16 636.5 130.0 4561 1811 1000 4037 2544 0.49 100932 4 0.07 154' '16 636.5~ 130.0~ 4561 '1844 1000 4037 2567 ~ 0.49 100932' ~4 0.07 155 16 636.5 125.0 4561 1695 1200 5590 3408 0.48 97050 _ _ _ _ _ . _ _ 4 0.07 156 _16 636.5 _ 125.0 _ __4561_ _1695_ 1200 _5590_ 3408 _ 0.48 _ 97050 __4 ._0.07 157 16 636.5 130.0 4561 1844 1000 4037 2567 0.49 100932 4 0.07 158 16 636.5 130.0 4561 1812 1000 4037 2544 0.49 100932 _ __ _ . _ _ _ _ _ 4 0.07 159 16 636.5_, 130.0 . 4561 1854_ _1000 __4037_ _ 2574_ 0.49 _ 100932_ ~~ ~~ ~ 4 0.07

                                                                                                                                                                                                                                                                                      ~
                                                                   ~
                                                                                                                                                                                                           ~1037~ ~2609                                                                                                                                                          ~ 4~~~ ~ ~ 6.07 160   }16~ ~'636 5. _ [130 0[ 456i' ~ 1904}                                                                                                       1000~                                                                                       ~ 0.49                       100932' ~'

161 _ 16 636.5 130.0_ 4561 1976 1000 4037 2658 0.49 100932 4 0.07 162 16 636.5 130.0 4561 2061 1000 4037 2714 0.49 100932 4 0.07

                                                                                                                                                                                                                                                                                                    '                                                                                  4             0.07 163     16         636.5                            130.0
                                                                                    ~ ~

4561 2145 1000 4037 2769 0.49 100932 164 '16 " 636.5' 130.0 ~456i 2288~ "1000'~ ~4037~ ~~2859 ~-0 49 100932 4 0.07 165 16 ~ 636'5~ ~130'0~ . . 4561~~ ~ 2511 ~~1000 ~ 4037~' ~2996 ~~.48'b'100932 4 0.07

                                                                                                                                                                                                                                                                                                                   -     ~~~                   ~~

166 ~~16 636.5" ~130.0~ ~456i~ 2752 iOOO ' ~1037~' ~ 3136' ^038 1 0932 ~ ~ ~ ~ ~~

                                                                                                                                                                                                                                                                                                                                                                                ~4 ~~              'O.07 167    16 ~      ~636.5~' ~'130.0 ~                                                ~4561                         3015'                          '1000                           ~4037~ ~3282                                                    ~6:48~ ~ 100932~~                                                                            ' ^ f ~~             ~ ~ ~0.07
                                                                                                                                                                                                                                                                                                                                                                                                ~607
                                                                                                                                                                                                                                                                                                                                                ~^~~~                           ~ ~ ~ ~

168' ~16 636.5~ 130.0 ~456i 3288~ ~1000~~ ~~ ~4037- ~3428 '038 ~' ~~100532~"- 4 169 16 636.5 130.0 4561 3557 1000 4037 3565 0.48 100932 4 0.07 170 16 636.5 130.0 4561 3809 1000 4037 3690 0.48 100932 j 4 0.07 6/I3/97 Page 5 of 27 Nspinput.xis

O O O Intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant t Calculations for Corrected Moduli Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical Y-Center Unit W1. FreeField Final FreeField FreeField Final v, D_(ksi) v. D, (ks0 Type Damping Elem. Layer (ft.) (pcf) 6 ,(psq 4(psq V. (ft/sec) G (ksq G (ksf) v, De v2 Da # Factor 171 16 636.5 130.0 J 4561__ 4033 1000 4037 _3797j 0.48 4._100932_ _ _ _ _ _ _ _ _ __ 4 _0.07 . l 172 16 636.5_ 130.0 4197_ __ 1000 , _4037 3873 j ~0.48 100932 4 0.07_ j^4561 ~ ~ ~ ~ - 173 16 636.5^ 130.0 456i ~4330~ 1000 '4037~ ~ 3934 038 100932' I 4 0.07 174 _6 1 636.5 130.0 4561 4459 1000 4037 3992 0._48 100932 4 0.07 _ _ _ _ _ _ __ l 175. 16 636.5_ 130.0 _4561 _ 4559 1000 _4037 _4036 _ 0.48 100932 _ 4 _0.07_ '

                                                                                                                                                                                                                                                                                                                                                     ~4 ~
                                                                                                                                                                                                                                                            ~~                                                ^~             ~

I 176 ~ 16 ~ 636.5 130.0~ ~ 4561 ~4630~ 1000 '4037 ~4068 038 100932' ~0.'07 177 16 636.5' 130.0' 4561. '4702{}iOOO ~4037))4099' O.48 100932~ ~]~ ['~ ]4] ] O.07 178 16 636.5 130.0 _.4561 4777 1000 _ 4037 4132 0.48_ 100932 _ _. _. __ 4 0.07 ' 179 16 636.5_ _ 130.0. .4561_. . 4819 _ ._1000 4037__ _ 4150. 0.48

                                                                                                                                                                                                                                         . 100932                                                                 _

4 __0.07 _ 180 16 _ _636.5 . 130.0_ 4561 4795 1000 _ _4037 _ 4139 0.48 100932 _ _ 4 _0.07 181 _16 __636.5 130.0_.._ _4561 4775 1000 . 4037 _ _4131 __0.48 _. 100932 4 _ 0.07 182 16 .636.5__ 130.0 4561 4785 1000 _4037 _ 4135 0.48 100932 _ _ _ _ _ _ . 4 0.07 183 _ 16 C36.5 130.0 _ 4561 _ _ _ 4802 1000 _ 4037 4143 _0.48 .100932 _ _ _4 _

                                                                                                                                                                                                                                                                                                                                                                        .0.07 184                    16 . _ 636.5 .     .

130.0 . ___4561_ . 4801._ _ 1,000 _ 4037_ ._4142 _0.48 _ 100932_ _ _ _ _ _ _ 4 ___ 0 ;07 16 , 636.5 185_ 130.0_ 4561 _4799 1000__ 4037_ _ 4141 _0.48 .100932__ 4 0.07 186 16 636.5_ . _130.0__ 4561 4799 1000 _ 4037 _, 4141 _ 0.48_ 100932 __ __ _ 4 0.07  ; 187 . __ 15 _643.5 130.0 4099_ _ 4097_ _1000 . 4037_ 4037 0.48 _ 100932_ 4 _ _ _ _0.07 188 15 643.5 130.0 4099 4095 1000 4037 4035 0.48 100932 4 0.07 189 15 643.5 130.0 4099 4088 1000 4037 4032 0.48 100932 4 0.07 190 15 643.5 130.0 4099 4088 1000 4037 4032 0.48 100932 ' 4 0.07 191 15 643.5 130.0 4099 4088 1000 4037 4032 0.48 100932 4 0.07 192 15 643.5 130.0 4099 4089 1000 4037 4033 0.48 100932 4 0.07

                                                                                                                                                                                                                         ~ 038
                                                                                                                                                                                                                                                            ~~^                                                       -~~                       ~ - ~

193 ~15 643.5~ ^'130.0~~ ~ 4099~ ~^409f ~"1000 ~4037-' ~ ~4034~ ~~100932~ 4 0T07~ 194 . 15 643.5 130.0 4099 4099 1000 4037 4037 0.48 ,10 0932 __ _ , 4 _ 0.07__ 195 . . .15 643.5 _130.0_ _.4099_ _ 4103 . _ _1000 __4037_ _4039 __ _0.48

                                                                                                                                                                                                                                       ~

100932 _ ~~~ 4 _ ~ 0.07 196[ } 15[ ]643.5[. [130.}0]4[095~ {4100] 197 15 643.5 130.0 4099 4084

                                                                                                                                           ] 000 [ ]4037] 4038} ]0[.48 1000                                           4037         4030         0.48
                                                                                                                                                                                                                                    ._[100932]

100932

                                                                                                                                                                                                                                                                                                       ]{                                               4 4

[D.07 } 0.07 198 15 643.5 130.0 4099 4047 1000 4037 4012 0.48 100932 4 0.07 199 . 15 . 643.5 . 130.0 - - 4099 3980 -- 1000 -- 4037 - 3978 _ _.0.48 . 100932 _ . 4 -_ 0.07 ~

                                                                                                                                                                                                                                                                                                ~

[64K5[ 130$d]4j99]

                                                                                                                                                                                                                                                                                                                                                                             ~

201 [15 ._ 3750]l ]1[000[

                                                                                        .                                                                                                     ]4037] 3862- ]Dl48} [100932{                  .           __

4 ]OIO7[ 202 15 643.5 130.0 4099 3588 _ 1000 4037 _ 3777 0.48 100932 4_ 0.07 203 _15_ _643.5_. _ 130.0__ _ 4099 3359_ __1000_. _4037_ _3655_ _0.48 _ _100932 _ _. _ 4 _ 0.07 _  ; 204 __15 _643.5 _ ._130.0_ 4099 3096_ 1000 4037_ 3509 0.48 100932 4_ 0.07 6/13/97 Page 6 of 27 Nspinput.xis , i

O O O , I intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant  ! Calculations for Corrected Moduli Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical  ! Y-Center Unit Wt. FreeField Final FreeField FreeField Final v, D . (ks0 v. D ,%(ks0 Type Damping , Elem. Layer (ft.) (pcf) o',.(psf) o',(psf) V. (ft/sec) G (ksf) G, (ksf) v, D i v3 D2 # Factor 205 15 643.5 130.0 4099 2813 1000 4037 3345 0.48 100932 __

                                                                                                                                                                                                                                                                                                                                 .___j                         __     4 l _ _0.07 206    . 15                       643.5                                130.0.                         . 4099.                              .2526                                  1000 .                      ._4037_ _ 3169                      _0.48              100932_             _                       _,                  __

4 _ 0.07 _ 207 15 643.5 ,130.0 4099 , '2250_ 1000 _4037 _ 2991 0.48 100932 __ _ 4 _0.07 4._ 208 .15 643.5, 130.0 4099. 2000_ 1000 4037 _ 2820 0.49 100932_ _ _ _ _0.07 209 15 643.5 130.0 4099 1772 1000 .4037 _2654 0.49 100932. 4 _0.07 210 . 15 643.5 130.0 4099 1628 1 000 4037. _ 2544 0.49 100932 __ 4 0.07 211 15 643.5 . 130.0 4099 _ 1539 , 1000 4037_ .2474 _ 0.49 _ 100932 _ 4 __ 0.07 __ 4 _ 212 15 643.5_ 130.0 4099_ 1457_ . . 1000_ _4037_ _2407 0.49 ..100932_. __ __ _ _ _0;07 , 213 15 643.5 130.0 4099 1388 _1000. _ 4037 2349 0.49- 100932 4 0.07 . 214 15l ~ 643.5 ~ 130.0 '4099 1336i "1000 2305 [d.~49 100932i ~ l___ T1 1 0.07 [

                                                                                                                                                                                                                                      }4037[_                        _ _2335..

215 15 643.5_ _130.0 _ 4099 1371 1000. 4037__ 0.49 . 100932 4_ 0.07  ! 216 15 643.5[ _125.0[_ 4099 4099 [1268[ ~1200 1200. [5590 - ]3110 5590 3143

                                                                                                                                                                                                                                                                          }0.48 0.48

_97050[_ 97050 (( ]-[ _ _ . ]4[] 4 [ 0.07_ 0.07 217 15 ..643.5 125.0 ~ 1296 ~~ ~- ~ ~ 218 ~15 ~643.'5~ ~ 125.0 4 99~ 1296" ~1200~ ~~ 5590~ -'3143 ~D 48 ~ 97050 ' ~ 4~~ O'.07 l 219 15 643.5 125.0 4099 1268 1200 5590 3110 0.48 , 97050 4 0.07 220_ ,_15 _ _643.5_ .130.0_ _ 4099_ 1371. _ 1000 _4037 _. _2335 0.49 .100932 _ -~ ~ ~ ~ ~ 4 _0.07 , 221 15 643.5 '~130.'0~ ~4099 1336' 1000 7 037- ~2305 ~ 0 49 ~100932 ~ i~ ' ~0.07~ i 222 15 643.5 130.0 4099 1388 1000 4037 2350 0.49 100932 ~~ ~ 4 0.07

                                                                                                                                                                                                                                                             ~~

223 15 ~643.5~ ~ 130.0~ ~ ~ ~ 4099~ ~1457~ 1000 ~ '~4037-~ 2407 ' ~0 39 ~ 100932~

                                                                                                                                                                                                                                                                                        ~                                                        '

T- ~ ~ D.07~ , 224 225 [15 . }643.5 [ 15 643.5 130.0[} 130.0 _40'99[ 1540[ 4099 1628_ . 1'60[ 1000 0 ]4037] [2474[ 4037 2544 6[.49 0.49 _ 100932} [ [~ 4

                                                                                                                                                                                                                                                                                                                                                                               , ~ 0.07}

0.07 f _ 100932_ __ _ _ _ _ . _ _ _ 226 _ 15 _ 643.5.. 130.0_ _ 4099. 1772 __1000 _ 4037 . _2654._ __0.49 _ 100932 _ _ _ _ _ 4 __ 0.07 227 15 _643.5_ 130.0 __4099 _2000_ 1000 ._4037_ _2820' _O.49 _100932 4 0.07. 228 15 643.5 130.0 4099 2250 1000 4037 2991 0.48 100932 4 0.07 r

                                                                                                                                                                                                                                                                                ~                             - - ~               ~ ~ ~                                                         "

229 ~15 643.5~ ' 130.'0 " '~4099~ ~2525~ 7 000 ~ 4037--3169^ .48 ~100932 ~ ~ T' ~ ~0.07~ 230 15 643.5 130.0 4099 2813 1000 4037 3345 0.48 100932 4 0.07 f 231 15 643.5 130.0 4099 3096 1000 4037 3509 0.48 100932 4 0.07  ! 232 15 643.5 130.0 4099 3361 1000 4037 3656 0.48 100932 4 0.07  : 233 15 643.5 130.0 4099 3594 1000 4037 3780 0.48 100932 . 4 0.07 234 15 643.5 130.0 4099 3762 1000 4037 3868 0.48 100932 4 0.07 l 235' [15 4099 3897 1000 4037 3936 ~ 0.48 4 0.07 _643.5_ [130 0_ [100932 _. ._ 236 15 643.5_ 130.0 .4099 _ 4028. _ 1000 ._4037_. _4002. 0.48 100932__ __ _ _ __ ___ 4_ _ _ _ _. _0.07 237 15 _ 643.5_ _130.0 _. _ 4099 . 4120 . 1000_ _4037_ _4048 _0.48 . _ 100932 __ _ _ _ _ _. _ 4 _ 0.07 238 15 . 643.5 ..130.0_ 4099_ _4191._ _1000 _4037_ _4082 0.48 _100932._ 4__ 0.07 6/13/97 Page 7 of 27 Nspinput.xis

O O O Intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculations for Corrected Moduli Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical Y-Center Unit Wt. FreeField Final FreeField FreeField Final v, D,,,,,(ks0 v. D, (ks0 Type Damping Elem. Layer (ft.) (pcf) 6 (psf) 4(psf) V. (ft/sec) G (ksf) Ga,, (ksi) v, D, v2 D, # Factor l 239 15 643.5 130.0 4099 4231 1000 4037 4102 0.48 100932 _. _ _ _ 4 0.07 240 15 643.5. 130.0._ . 4099_ _ 4340 1000 4037 . 4154 _0.48 . 100932_ 4 0.07 [ l07

                                                                                                                                                                                                                                                                                                     ~
       ~241     }15 ] 643.5]                                130.0}l 4699 [4371} (100.                                                                                                                                     4037[ [4169 i]O.48 4037                                                    4146            0.48
                                                                                                                                                                                                                                                                                                           ~ 100932((
                                                                                                                                                                                                                                                                                                             .100932
                                                                                                                                                                                                                                                                                                                           .'~[                 ]_                   _ . _ _4[

4 ..0.07 242 15 643.5 130.0 4099 4322 1000 4_ 243 15 643.5_ 130.0__ 4099. 4296 1000 4037. 4133 _0.48 , 100932__ 0.07 244 15 ._.643.5_ 130.0._ 4099 4318 . 1000 . .4037 _ _ 4144 O.48 _100932._ 4 0.07 245 15 643.5._ _ 130.0 4099 4335 1000 4037 4152 0.48 100932_. 4 0.07 246 15 _ _643.5_ 130.0__ 4099_ 4330 1000 ..4037_ 4150 0.48 100932 ___ _ _. 4 _0.07 247 , 15 643.5 _ _ 130.0 4099 _ __4326_ 1000 4037_. _ 4148 0.48 100932 . _ _ _ __ 4 _0.07 248 _15 643.5 __130.0_ _ 4099 4326 1000 4037 . 4148 __0.48 _ 100932 _ _ 4 _.0.07 249 14 _ 649 ._ 125 0 .

  • 3743 3735_ _820 2610__ 2608 0.49 97050 4 0.10 250 ~ 14 16491 125.0 3743L. '~3734T __820 2610i 2607 0.49' 0 l97'50T T __ . 'i ~ .

l~4[ f0'.10 251 14. 649 125.0. 3743 3728 820 2610 2605 _ 0.49 97050 4 0.10 252 14

                              ]649[~                        125'.0[       3743'~
                                                                                           ._3729 3728[                                                [820 ~

820 2610{ [2605l 2610 2605 6:49 0.49 97050~ 97050 __[ ] ]4[ 4 [0.10 0.10 253 . 14 649 125.0 3743 . _ _ __ 254 14.. _649_. 125.0_ .3743 ._3730_ _820 _ . 2610_._ 2606 0.49 _ 97050 , 4 0.10 255 14 649 125.0 3743 2610 2607 0.49 _ 97050_ 4 0.10

                                                                 .                            _      3735_ _ 820                                                                                                                                                     __                                                   __                     __ _

125.0_ _ 3743_ _0.49 97050 4 __0.10 256 14 . 649 _ __820 ___ 2610_ 2610 _ _ _ _ _,_ _ _ _ 257 14__ 649__. _ 125.0__ _3743_._3743_ 3751 820 .2610__2613 _ _ _0.49 .97050_ 4 __0.10 258. [14 } 259 14 [649] 649 [125.0} 125.0 _ }3743]375{ 3743 3743 [_820[ 820

                                                                                                                                                                                                                      }2610] 2614} ((039 2610                                                    2610           OA9 97050,_

97050 4 4 0.10 0.10 260 14 649 125.0 3743 3713 820 2610 2600 0.49 97050 4 0.10 649 125.0 3743 3651 820 2610 2578 0.49 97050 4 0.10 261 } 14 _ 262 14 _649_ 125.0 .. 3743 3546 820_ 2610 2540 0.49 97050 _ 4 0.10 263 14 125.0 3743 3423 820 2610 2496 0.49 97050 4 0.10 649_ ,_ __ _ _4 _ 264 14 _649 125.0 3743 _ _3257 820 2610_ _ 2435 _0.49 _ 97050 _ _ _ __ __

                                                                                                                                                                                                                                                                                                                                                                                            .0.10 265        14                649_ _ 125.0                          3743_                       3019                                             __820_                                                              2610__, _2344_ _ .                                                     0.49_      __97050_           _ _ .              __

4 _ _ _0.10 266 14 _649_ _ 125.0 _ _ 3743_ _2745 . _820. 2610 2235_ _ 0.49 97050 _4 __ _0.10 267 14 649 125.0 3743 2450 820 2610 2112 0.49 97050 4 0.10 268 14 649 125.0 3743 2150 820 0 49 4 0.10 2610__ 1978 . _.97050_ __ 269 .14 _ 649_ 125.0 _ _3743_ 1863. 820 .2610 1842 _0.49 . 97050 4 0.10 270 14 649 125.0 3743 1608 820 2610 1711 0.49 97050 4 0.10 271 14 649 125 0 3743 1376 820 2610 1583 0.49 97050 4 0.10 272[ _14[ {649~ ~ 125.0 ~ ~'3743-1228} { 820 j 2610 1495 0.49 97050 4 0.10 6/13/97 Page 8 of 27 Nspinput.xts

O O O Intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculations for Corrected Moduli Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical Y-Center Unit Wt. FreeField Final FreeField FreeField Final v, D.(ksi) v, D ,%(ksi) Type Damping Elem. Layer (ft.) (pcf) 6,(psf) 4(psf) V. (ft/sec) G (ksf) G . (ksf] v, D, vi D2 # Factor 273 14 3743 1143 820 2610 1442 0.49 97050 4 0.10 649 3 125.0. _ 4 0.10 274 14. _ 649 125.0 3743 1049 _820_ _2610 1382 0.49 97050 ~~ ~~ ~ 275 ~14 ~'649~ 125.0' 3743 ~ ~ 1003" ' ' 820 ~2610~ - 1351 039 ~97050~ ~T~ ~ 0:10 276 14 649 125.0 3743 925 820 2610 1298 0.49 97050 4 0.10 277 14 649 125.0 3743 _ 991_ 1200 5590 2876 0.48 97050 _ _ _ . _ _ _ __ .__ 4 0.07 278 14 ,.649 _125.0 .3743 . 940 _ 1200 5590_ _2802.. 0.49 . 97050.. 4 , _ _0.07 279 14 649 125.0_ 3743 945 1200 5590 _ ..2808 0.49 _ 97050 ___ _ 4 0.07 280 14 ~649' 125.0 ~ 3743 945' 1200 ~ 5590 2808 0.49 97050 ' __4 0.07 281 14 '649~~ 125.0 3743 ~940~ 1200 5590 ~ ~~2802 039 97050 M~ O'07 T' ~ '

                                                                                                                                                                                                                                                                              ~                       ~

282 ~14 ~649 125.0 3743 ~991' ~ 1200' 5590~ ~'2876 0.48 97050' ' ~ ~ ~ ~ ~

                                                                                                                                                                                                                                                                                                                                                                                                   ~ U.07 283       14          -~649~                                                     ~125.0~                                                   3743    ~925'                                      820~       2610~' ~~1298             '039"           97050 ~                                                                                          i~          0.10
                                                                                                                                                                                                                                                                                                                                                                                       ~d -
                                                                                                                                                                                                                                                                            ~                                 ~~                     ~ ~~

284 14 ~649 125.0 3743' '~1003~ 820 2610~~' i351 039 '97050 ~ 0T10 285 14 649 125.0 3743 1049 820 2610 1382 0.49 97050 4 0.10 286 14 649 125.0 3743 1143 820 2610 1443 0.49 97050 4 0.10 287 14 649 125.0 3743 1228 820 2610 1495 0.49 97050 4 0.10 288 14 649 125.0 3743 1376 820 2610 1583 0.49 97050 4 0.10 289 14 649 125.0 3743 1608 820 2610 1711 0.49 97050 4 0.10 290 14 649 125.0 3743 1863 820 2610 1842 0.49 97050 4 0.10 291 14 649 125.0 3743 2150 820 2610 1978 0.49 97050 4 0.10 292 14 649 125.0 3743 2449 820 2610 2112 0.49 97050 - ~ 4 0.10

                                                                                                                                                                                                                                                                                                                                                                                                      ~
                                                                                                                                                                                                                                                      ~~        '

293 ~ 14 ' ~'649 ~ ~125~0 ' 3743~ ~2745~ ~^820 ~2610~ 2235 '039 ~ ~ 97050 4 ~ 'O.10 294 14 649 125.0 3743 3020 820 2610 2345 0.49 97050 4 0.10 295 14 649 125.0 3743 3261 820 2610 2436 0.49 97050 4 0.10 296 14 649 125.0 3743 3433 820 2610 2500 0.49 97050 4 0.10 297 14 649 125.0 3743 3567 820 2610 2548 0.49 97050 ~ 4 0.10 298 14 ~649~ ~ 125.0 3743 3695 820 2610 0.49 97050 4 0.10

                                            .-        _                                                 .           _                                                 ._             _                                        _                        . ' -2594  .

q 300 14 649 125.0 3743 3824 820 2610 2638 0.49 97050 4 0.10 301 14 649 125.0 3743 3954 820 2610 2683 0.49 97050 4 0.10 302 14 649 125.0 3743 3777 910 3215 3229 0.48 97050 4 0.10 303 14 649 125.0 3743 4161 1000 3882 4093 0.48 97050 4 0.07 304 14 649 125.0 3743 3907 1000 3882 3966 0.48 97050 4 0.07 305 14 649 125.0 3743 3943 1000 3882 3984 0.48 97050 4 0.07 306' 14 ~

                                                        ]649] {125.0_                                                                                                           3743 [ }3958}                                  [ 1000 _       3882 1 3992 [ [03 8' ~~ 97050] ] [~

_ . _ ]~ _ }{ ]O.07 6/13/97 Page 9 of 27 Nspinput.xts

O O O Intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculations for Corrected Moduli Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical Y-Center Unit Wt. FreeField Final FreeField FreeField Final v,,. D . (ks0 v. D, (ks0 Type Damping  ! Elem. Layer (ft.) (pcf) 4,(psf) o*,(psf) V. (ft/sec) G (ksf) G,,,, (ksf) vi D, v D2 # Factor 307 125.0 3743 3979 1000 3882 4003 0.48 97050 _j 4 0.07 308 14 14 4 649 649 _ .125.0 . . 3743. __3971 1000 _ 3882 _ __3998 _ 0.48 97050 4 0.07 309 14 ' 649] j _125.0 ~ 3743 }3965] 1000 3882 3995' O.48 97050 _. __ 4 0.07 310 14 649 125.0 3743 3965 1000 3882_ __3995

                                                                                                                                                                                                                                                                 ~

0.48

                                                                                                                                                                                                                                                                                    ~

97050 . 4 0.07_ 311 312_ 13 13 653[ 653

                                                                  . 125.0' ~ 3496 125.0 , 3496
                                                                                                                        }3485[

3484 [820 820 2610 [2606

                                                                                                                                                                                                                                                    . 2610_,__      2606 0.49 0.49 97050]

97050

                                                                                                                                                                                                                                                                                                         ]                  __                                                                  _{         4

{ 0.10 0.10 313 13 . 653_ _ . . 125.0.. _3496 3478_ .820 2610_ ._2604 0.49 _97050 _ _ _ _ __ 4 _ 0.10 i 314 13 _ _653 125.0_ ~ 3496 _3479 820 2610 2604 . 0.49 97050_ 4__ _ 0.10 - 315 '13 653" 125.'O ' ~ 3496~ ~ 3480 820 ~ 2610~ ~2604 039 97056~ ~ T ~ ' O.10' 316 ~ 13 653~ ~ 125.0} 3496 }3482] '820 2610[ ]2605 _ .49 '97056 ] ] . T~ ' ~ 0.10 I 317 13 . _ 653 125.0 3496 3486 820_ 2610_ 2607 0.49 97050 4 0.10

                                                                                                                                                                                                                                                                                                                                                                                             ~U
                                                                                                                                                                                                                                                                                                      ~ ~~

318 ~ 13 653 ~ 125.0~ 3496~~ ~3496~~ ~820 2610~ ~ 2610' 649 970sD^ ~ d.~1D  ! 319 13 653 125.0 3496 3506 820 2610 2614 0.49 97050 4 0.10 320 13 653 125.0 3496 3511 820 2610 2616 0.49 97050 __. _ 4 0.10 321 13 .653 125.0 _ _3496 _3506_ _820 2610_ .2614 0.49 97050__ 4_ _0.10 322 323

                         '13 13
                                               ]653[

653 _ 125.0[ 125.0

                                                                              ~3496 3496_

[3480] 3423

                                                                                                                                                                                                         '820 820 2610~

2610_

                                                                                                                                                                                                                                                                ]2604}

2583 0.49 0.49 97050[ 97050

                                                                                                                                                                                                                                                                                                  ._ ] ],                                                                                        [4               [~0.10 0.10    t
                                                                                                                                                                                                                                                                                                  ~ ~ ~ ~ ~ ~           - -~

324~ 13 ~653'~ '125.0- ~ '3496~ ~3320~ 820 '2610^ ~2544~ ~0 39 ~'97050~~ ~ ~ ~ ~ ~ ~ ~ ~ '~ 4 ~-0 10 325 13' ~653~ ~'~125.0~~ '3496~ 3198~ ~ 820~ ~2610-~2497 ~ 0749 97050 4 ~~0.10^~ i l ~326[ _13 _ 327 13

                                              }653]' 653
                                                                    ~125.0]

125 0

                                                                              '3496]3028[

3496 2783 820[ 820

                                                                                                                                                                                                                                                   }2610] 2429 2610          2329
                                                                                                                                                                                                                                                                             }6}9 0.49 97050~

97050

                                                                                                                                                                                                                                                                                                  ))[~]                                _                                             ~))                  4
                                                                                                                                                                                                                                                                                                                                                                                                                 ] O[10 ~

0.10  ; 328 _.13._ ._653_. _125.0_ _3496__2501_ _820 ._ . .2610_ _2208 _ 0.49 . 97050 4 0.10 329 13 653 125.0 3496 2197 820 2610 2069 0.49 97050 4 0.10 330 13 653 125.0 3496 1889 820 2610 1919 0.49 97050 4 0.10 , 331 13 653 125.0 3496 1595 820 2610 1763 0.49 97050 4 0.10 332 13 653 125.0 3496 1335 820 2610 -~ 1613 0.49 97050 4 0.10

                                                                             ~ 3396 ~110f
                                                                                                                                                                                                                                                                            ~'                                                                       ~

333 13' ~~653~ ~125.0~- ~

                                                                                                                                                                                               ~ 820                                                "261 -          1465        0.49   '97050~                       ~

f 4 0.10 334 335

                          . 13[{653~ ]125.D]3496~~ [9s8{

13 653 125.0 3496 860 [820]~ 820 2610~~]1366 2610 1295

                                                                                                                                                                                                                                                                           '_}639' . _}97656]

_ 0.49 97050

                                                                                                                                                                                                                                                                                                                       )) }} 'T~                                                                         4
                                                                                                                                                                                                                                                                                                                                                                                                                 ]_0]Oj}      ,

0.10 336 13 653 125.0 3496 787 820 2610 1238 0.49 97050 4 0.10 [

                                                                                                                                                                                                                                                                                                                       ~~                                                                 ~~~
                                                                                                                                                                                                                                                                                                   ~ ~ ' ~ ~                               ~

337 ~ 13' ~ '6s3~ ~125.0 '3496 ~702~ ~820 2610~ ~1170 ~ ~Di9 ' ~ 9705d 4 ~0.~10 338 13 653 125.0 3496 724 1200 5590 2543 0.49 97050 4 0.07 339[ [13 ~ [ 653 ] [125T0 340 13 653 3496[ .[689(( }120 '5590] 2482'[ ~ 0[49 _ _.976s~0{))]_ ~ _[ 4 .[0.07}. 125.0 1 3496 695 1200 5590 2492 0.49 97050 4 0.07 t 6/13/97 Page 10 of 27 Nspinput.xis

O O O Intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculations for Corrected Moduli Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical Y-Center Unit Wt. FreeField Final FreeField FreeField Final v,% D (ksf) v. D (kst) Type Damping Elem. Layer (ft.) (pcf) 4.(psf) 6(psf) V. (ftisec) G (ksf) Ge.,, (ksf) vi D, v2 D, # Factor 34l _13 653 125.0 3496 692 1200 5590 2488 0.49 97050 ___ 4_ _0,07 342 13 __653_ _ 125.0_ _ 3496_, _ 692_ 1200_ 5590 2488 _ 0.49 97050 4 0.07_

                                                                                                                                                                                                                                                                                                                                                                                                                           ~ ^ ~ ~

343 344 13 13

                                      }653[' ~125.0[

653 125.0 3496 3496

                                                                                                                                             ]695}

689

                                                                                                                                                                                                                          '1200 1200 5590] 2492 5590                                           2482 0[49 0.49 97050~

97050 [^ '4~~~ 4

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ] .07 0.07 345    _ 13.           .653_                                               . 125.0..                          3496 .                      724                                                                    1200                                                                          5590_                                      _ 2543                0.49           97050                                                                                                  _                               __

4 _0.07 346 .13 _ 653 125.0 _ 3496_ _.703 820 2610 _ 1170 0.49 97050 . _ _ _ _ _ _ _ 4 _0.10 t 347 13 653 _ .125.0_ .. 3496 787 820 2610 _ 1238 0.49 97050. _ _ _. _ 4 __0.10 348 13 653 125.0 3496 _ 861 820 2610 __1295 0.49 97050 ___ _ 4 ___0.10_ 349 .13 653 _ 125.0 3496 958 820 2610_ 1366 0.49 97050 4 0.10 350 13 653[ 125.0 ~ 3496 1101 820 2610[ ~1465 0.49 97050} 4 ((0l.10 351 13 653 .125.0_ 3496 1335 820 2610 1613. 0.49 97050 4. 0.10 352 13 653 . 125.0 3496. 1594_ 820 2610 _ 1763 0.49 .97050 _ _ _ 4 0.10 353 13 653 125.0 . 3496 . _1888. 820 2610 1918 0.49 97050 _ _ _ _.

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   .4

_,0.10_ , 354 13 653 _ _125.0 3496 2197 . 820 2610_. 2069 _0.49 97050 4 0.10  ! 4 _ ___0.10 355 13 653_ 125.0 3496 _2501_ 820 2610 2208 0.49 97050_ . 356 13 653 ~ 125.0 3496 2784 820 2610 ~ 2329 0.49 97050 ~~ ~ ' - ' ~ ~ 4 0.10 357 13 '~653 ' 125.0 3496 "3031~ 820 2610" ~2430 ~0 39 ~97050' T ~~0.10  ! 358 13 [653[ ~ 125.0~ '3496[ ]3205} }820 2610] 2499' [0.49 ~ _ 97050] ]~ ))} . __[.]10 4 359 .13 653 125.0_. . 3496 _3339_ _ 820 . 2610 __ 2551 0.49 97050_ _ _ ._ _ _ _ _ _ 4 0.10 360 13 ._653 125.0_ .3496 . 3468 820_ 2610_ 2600 __0.49 .. 97050 4 _ 0.10__ - 361 13 653 125.0 3496 3556 820 2610 2633 0.49 97050 _ 4 0.10 362 13 653 . 125.0 3496 3651 820 . 2610 2668 0.49 97050 4 0.10 363 13 653 125.0_ _3496 3487 _ 820 2610 2607 0.49 97050 __. __ __. _ __ 4 0.10 364 13 _ 653_ 125.0 3496 . _3943_ 910._ 3215_ _

                                                                                                                                                                                                                                                                                                                                                            .3414    _ _

_ 0.48 97050_ __ _ _ _ _ _ _ __. 4 _0.10. _365 _ 13 _ _ 653_. 125.0__ 3496 _ _3738 .1000__ __3882_ 4014 0.48 97050_ 4 _ _ _0.07. 366 13 653 125.0 3496 3704 1000 3882 3996 0.48 97050 . 4 0.07 367 13 653 125.0 3496 3677 1000 3882 3981 0.48 97050 4 0.07 368 13 653 125.0 3496 3712 1000 3882 4000 0.48 97050 4 0.07 369 13 653 125.0 3496 3733 1000 3882 4011 0.48 97050 4 0.07 370 13 653 125.0 3496 3722 1000 3882 4005 0.48 97050 4 0.07 371 13 653 125.0 3496 3714 1000 3882 4001 0.48 97050 4 0.07 372 13 653 125.0 3496 3714 1000 3882 4001 0.48 97050 0.07 f4~~~

                                                                                                                                                                                                                                                                                                                                                      ~~                 ~                                                      ~~~^                                                      -~                                                         ~

373 ~ 12 657.5~ 125.0" 3216~ ~ 3203~ ~820 2610~ 2605 ~0M9 '97050 3 0 10~ 374 12 657.5 _. 125.0 _ 3216 _ _ _3202_ 820 2610 2605 _ _, 0.49 97050 , ___E 3 _. 0.10 6/13/97 Page 11 of 27 Nspinput.xis

O O O Intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculations for Corrected Moduli i Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical Y. Center Unit Wt. FrecField Final FreeField FreeField Final v,. D.(ksi) v. D,%(ksi) Type Damping Elem. Layer (ft.) (pcf) 4 (psf) 4(psf) V. (ft/sec) G (ksf) Gc ,,(ksf) v, D, v, D, # Factor 375 12 657.5 125.0 3216 3197 820 2610 2603 0.49 97050 t 3 0.10 i 97050 [][

                                                                                                                                                                                                                                                                                                                                                                                             ~

376 820 , 0.}49[ 3 [12 _ 657.5 ] _f125.0__.}3216[ .__3199[ 2610[_'2603 _ _ _ _ 0.10 ._ _0.10 377 12 657.5 1 3216 3200 820 . 2610 2604 0.49 97050 3 25.0 . _. _0.10_ 378 _ 12 657.5_ 125.0 3216 _3201. 820 _ 2610 _ _ 2604 0.49.. 97050__ _ _ _ _ __ 3_ 379 12 657.5_ 125.0_ _ 3216, 3206_. 820 . 2610 2606 _ 0.49 97050 _

3. _0.10 380_ _12 . 657.5__ . 125.0 . 3216 _3216,_ 820_ 2610_ .2610 _ 0.49 97050._ _3 _0.10_ '

381 12 '657.5 125.0 3216 3228 820 2610' ~ 2615 0.49 97050 '~~ ~ 3 0.10 382 12 ~ 657.5 ] ]125'.0} {3216~ ]3237(( '820 2610[ ]2619" ~0.49 "97050[ _ _ . [3] ))O'.iO~~ 383 12 657.5 125.0 3216_ _ 3237 820 2610 2619 0.49_ 97050 ,_ _ ___

3. _ 0.10 384 12 657.5.. _ 125.0 . 3216. _3217 820 2610_ 2611 , 97050_ 3 0.10

__ _0.49 . .__ _ 385 12 657.5__ _ 125.0 . ~ 3216 _ 3165 820_ 2610_ 2590 0.49 97050 ~~ ~~ 3_ __0.10 386 ~12 657.5 ~ '125.0 ~ ~ 3216- ~3067~ 820 2610- '~ 2549 ^039 ~ 97050~~ 'I ~3 0.10 387 12 657.5 125.0 3216 __ 2945j 820 2610 2498 0.49 97050 3 0.10 388 12 657.5_ .125.0.. 3216 . _ 2770_ 820 2610 2423 0.49 97050 __ ___ 3_ . 0.10 389 12 657.5_ _125.0_ _ 3216.. 2516.. 820 . 2610 _ _ 2309. _0.49 _97050 _ 3 0.10 390 12 657.5 125.0 3216 2225 820 2610 2171 0.49 97050 3 0.10 t 391 12 657.5 125.0 3216 1912 820 2610 2013 0.49 97050 3 0.10 392 12 657.5 125.0 3216 1595 820 2610 1838 0.49 97050 3 0.10 ,

                                                                                                                                                                                                                                                                                                                                                                                                                               - ~iO'    '

393 F12 657.5~- ~ 125.0~ ~3216~ 7 291~ 820 ~2610~ ~1654 0.49 ~ 97050 3~ 0 394 12 657.5 125.0 3216 1029 820 2610 1476 0.49 97050 3 0.10 395 12 657.5 125.0 3216 795 820 2610 1298 0.49 97050 3 0.10 396 12 657.5 125.0 3216 647 820- 2610 1170 0.49 97050 3 0.10 1 397 12 657.5 125.0 3216 555 820 2610 1084 0.49 97050 3 0.10 398 12 657.5 125.0 3216 453 820 2610 980 0.49 97050 3 0.10 399 12 657.5 125.0 3216 432 1200 5590 2049 0.49 97050 3 0.07 400 12 657.5 125.0 3216 409 1200 5590 1993 0.49 97050 3 0.07 401 12 657.5 125.0 3216 408 1200 5590 1991 0.49 97050 3 0.07 402 12' 657.5 125.0 3216 408 1200 5590 1991 0.49 97050 3 0.07 403 12 657.5 125.0 3216 409 1200 5590 1993 0.49 97050 3 0.07 404 12 657.5 125.0 3216 409 1200 5590 1993 0.49 97050 3 0.07 405 12 657.5 125.0 3216 408 1200 5590 1991 0.49 97050 3 0.07  ; 406 12 657.5 125.0 3216 408_ 1200 5590 1991 0.49. 97050 __, 3 . 0.07 i 407 12 657.5_ __ 125.0 _ 1200. 5590_. 1993 0.49 _97050 3 _0.07__ . __3216[409

                                                                                                                                                                                                                                                                                                                                       ~

408 ~12 657.5 ' 125.0~ 32i6 432 1200 5590 2049 0.49 ~97050 j_____ __ _ 3 _. 0.07 6/13/97 Page 12 of 27 Nspinput.x!s

! g 3 r'N Intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant

Calculations for Corrected Moduli

( Total Feadam - SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical Y-Center Unit Wt. FreeField Final FreeField FreeField Final v,. D_(ksi) v. D, (ksi) Type Damping  ; ! Elem. Layer (ft.) (pcf) 6 ,(psf) 6(psf) V. (ft/sec) G (ksf) G . (ksf) vi D, v D, # Factor 409 12 657.5 125.0 3216 454 820 2610 980 0.49 97050_ _ j _ _ _ 4 _ 33 _[ 0.10 410 12 657.5 125.0 3216 555 820- 2610 1085 0.49 97050 0.10 411 12 ~ ~657.5 125.0 3216 647 820 2610 1171 0.49 97050 3 0.10

                                                                                                                                                                                                                                                                                                                 ^~i10
                                            ^                                                                                                                                                                             ~

412 12 [657.'5 ' [125.0] 32i6 [ ]795~ ~ 820 ~ 26iO] .f1298_ 0.49~ _97050[ '~ ] ] ~}} _ ~3 ~~ _ f 413 12_ 657.5 125.0 3216 1028 _ 820 2610 1476 0.49 97050 __ __ 3 _ _0 10 414 12 . 657.5 ._125.0. . 3216 _1291_ .820 2610_ 1654_ 0.49 97050_ __ _3 0.10 415 .12 _657.5._ 125.0 _3216 _1595_ 820 2610.__ 1838 . 0.49 97050_ _ _ _ 3 _0.10 416 12.. ._657.5 _ 125.0 _. 3216_._1912_ 820 2610_ 2013 0.49 . 97050 _ _ _ _ _ _

                                                                                                                                                                                                                                                                                                         .3         _0.10 417      .12     ._657.5_       _ 125.0 ~

3216 _ ..2226 _820 2610_ _2171 _ 0.49 97050 . .3_ 0.10 t 418' '12 657.5} 125.0[ '3216[ ]2518[ 820 2610] ]'2309 _ 0 49 9705{ (( _] _ [3, ]10 [ 419 12_ 657.5 125.0 3216 2773 820 2610 2424 0.49 97050 3 0.10 7 .10

                                                                                                                                                                                                                          ~                          ~ '                        ~~

420 12 '~657.5 ~ ~ 125.0 ~ 3216 2949~ 820' 2610 ~ 2499 0.49 ~ 97050~ 3'  ! 421 422 12 ~ _12

                   }657.5}[

657.5 125.'0[ 125.0 3216[ ]3081[ 3216 3210

                                                                                               ~820 820 2610] [2555 2610                   2608 0.49 0.49 97056[

97050

                                                                                                                                                                                                                                                            ]                                            ~3 3.
                                                                                                                                                                                                                                                                                                                    . [0 10 0.10 423                               125.0                              3216       3292        820                 2610                   2641                                                                      0.49         97050                                                                    3               0.10 12 } 657.5 424       12        6576 ~125.0                                   ~3216         3379        820               ~ 2610                   2676                                                                      0.49         97050                                                                    3               0.10     i 425       12 __6 57.5_          _

125 0 _ 3216 3257 910 3215_ _3235 0.48 97050 __ __ _3__ 0.10 426 ._ 12. _657.5_ _125.0. _. ._ 3216_3656_ 1000 _ 3882 4139 __0.48 _ _97050_ _ _ _ _ 3 _ 0.07

                                                                                                                  ,3882__4019 .

427 12 . 657.5 125.0 3216__ ._3446_ 1000_ _ 0.48 . 97050 3 _0.07 428 { 12.. 657.5 125.0 3216 3418 1000 3882 4002 0.48 97050 3 0.07 429 12 657.5 125.0 3216 3396 1000 . 3882 3989 0.48 97050 3 0.07 _ t 430 12 657.5 125.0 3216 3429 1000 3882 4009 0.48 97050 3 0.07 431 12 657.5 125.0 3216 3458 1000 3882 4025 0.48 97050 3 0.07 , 432 12 657.5 125.0 3216_ 3440j _ 1000 3882 4015 0.48 97050 3 0.07 433 12_ _657.5_ 125.0__ _ 3216 3433 1000 3882 4011 0.48 97050 3 0.07 434 12 657.5 125.0 3216 3433 1000 3882 4011 'O.48 97050 3 0.07 435 11 662 125.0 2935 2922 820 2610 2604 0.49 97050 3 0.10 436 11 662 125.0 2935 2921 820 2610 2604 0.49 97050 3 0.10 437 11 662 125.0 2935 2916 820 2610 2602 0.49 97050 3 0.10 438 11 662 125.0 2935 2919 820 2610 2603 0.49 97050 3 0.10 439 11 662 .- . 125.0 -.. 2935 .. 2919 820 2610 2603 0.49 97050 3 0.10 441 442 [11 ]662] 662

                                   }125.0 ] ~2935))292{}

125.0 2

                                                                                            } }82d] [2610]2606] ]d 49 820                 2610                  2610
                                                                                                                                                                                                                              '~97050]

97050

                                                                                                                                                                                                                                                             ~ ~[~_.._[~                    ]3[ ' }~]O[10                          i 11

_ 2935_ _ _9_35 _ _ _ ._ 0.49 _ _ ____ _ _ ____ 3 _ 0.10 _ 6/I3/97 Page 13 of 27 Nspinput.xis

O O O Intake Canal Liquefaction Analysis ' Prairie Island Nuclear Generating Plant Calculations for Corrected Moduli t Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical Y-Center Unit Wt. FreeField Final FreeField FreeField Final v,# D . (ksf) v. D, (ksi) Type Damping , Elem. Layer (ft.) (pcf) 6.(psf) 4(psf)g V. (ft/sec) G (ksf) G ,,(ksf) vs D, v D, # Factor 443 11 662 125.0 2935 2949 820 2610 2616 0.49 97050 3 0.10 444 11 662 125.0 2935 2962 820 2610 2622 0.49 97050 3 0.10 445 11 662 125.0 2935 2967 820 2610 2624 0.49 97050 3 0.10

                                                                                                                                                                                                                                                                                                                                                                                ^3 ~ ID~.10
                                                                                                                                                                                                                                                                                                                                        ~~'         ~ ~~ ~

446 11~ ~~662 ~' '1250^ ^ ' 2935' ' ~2953 ^ 820 2610~ ~'2618' "039 ~ 97050~ ) 447 11 662 125.0 2935 2907 820 2610 2598 0.49 97050 3 0.10 3 ~ ~ 710

                                                                                                                                                                                                                                                                                                                ~                                    ~ ~ ~ ~

448 11 ~662~ ~ 125.0~ '2935' '2813 ~ 820' '2610~ ~2556' O.49~

                                                                                                                                                                                                                                                                                                              ~
                                                                                                                                                                                                                                                                                                                     '97050~b~~~~'
                                                                                                                                                                                                                                                                                                                                ' ~ ~ ~              ~                 ~
                                                                                                                                                                                                                                                                                                                    '970$0 ~                                                        3               0.10 449   11 662] ' ' 125.0 ' [2935~ [2692 ~ ..820                                                                                                                                                                                    820             2610] ~2500 2610         2415 0 49 0.49      97050 3                0.10 450     11          662                                                   125.0                                                   2935                                                2512                                                                                                                             ~        ~~

451~ '11 ~662^ '125.0 2935 '~2249~ ~820 2610~ ' 2285 OM9 97050' ~

                                                                                                                                                                                                                                                                                                                                                                         "F       ~3             "O.10 452     ~11 ((662] [125.0[ 293s~~ }1946                                                                                                               _
                                                                                                                                                                                                                                                                  ~820~

820 2610{ 2610

                                                                                                                                                                                                                                                                                           ~2126        [039~

0.49 9705} 97050

                                                                                                                                                                                                                                                                                                                               ' ~[]    _                     _
                                                                                                                                                                                                                                                                                                                                                                                  }3' 3 _ [0.100.] .

453 . 11 662 125.0 2935 1627 __1944 ~ 454 11

                                    ]662]                                                _125;0]~293s[ ~1298~~ [ 82 ~~                                                                                                                                              _             2610]1736 1515
                                                                                                                                                                                                                                                                                                        . '0l49 0.49

[97050] 97050

                                                                                                                                                                                                                                                                                                                               ]~~]                          [_ ~[3[ [ 110.100     3 455     _11         662                                               . 125.0_._ 2935                                                                                                                                                         820            2610

_988_} 0.10 456 11 _ _ 662_ 125 0 2035 _.722 _820 2610_,_ 1295 0.49 97050 3 _. 3 457 11 . __662_. _ 125.0_. _ S 5 490_ 820 _2610 1067 ._ 0.49 97050_ ~~ ~~~' _ 0.10  ! 458' '11 662~ ~~125.0~ '25j5' ~345~ ~ 820 ~2610~ ' 895'~ "039 ~'970s0~~ ' ~ ~ ~ ~ ~ '

                                                                                                                                                                                                                                                                                                                                                                                  ' 3' ~   ~ ~0 10     ~~
                                                                                                                                                                                                                                                                                                            ~

459f[11 _ 662] }125.0 { }2935 ~248~ [820'. [2610[{759 [0i9 '97050] ~ ~ [_[ , _3 ~ ]O 10}[ 460 11 662 125.0 2935 __147 1200 5590 1250. 0.49 97050 3 0.07  : 461 11 662 125.0 2935 130 1200 5590 1175 0.49 97050 ~ 3 0.07

                                                                                                                                                                                                                                                                                                                                                                                  ~3 -' ~~ l07
                                                                                                                                                                                                                                                                                                              ~                   ~           ~ ~ ~ ~

462 ~ 11 ~662~ ~125 W 293s~ ~12T 1200 I ~5590~ ~11'49 ' 0 49 97050 ~ ~ ~ ~ ~ ~ '~ ~ -

                                                                                                                                                                                                                                                                                '5590'
                                                                                                                              ~

463 11' '~662~~ 125.0 ' 293s~ ~125' ~ 1200 ~1155 '039 970'50~ ~~3 Df07  ! 464 11 662 125.0 2935 125 1200 5590 1154 0.49 97050 3 0.07 . 465 11 662 125 1200 5590 1154 0.49 97050 3 0.07 _ 125.0.12935 0.07 466 _ 11 ._662_ 125.0 2935 125 1200 5590 1154 0.49 97050 3 467 11 662 125.0 2935 125 1200 5590 1154 0.49 97050 3 0.07 468' ~11~ 662 125.0 2935 125 1200 5590 1155 0.49 97050 3 0.07 469 11 662 125.0 2935 124 1200 5590 1149 0.49 97050 3 0.07 470 11 662 125.0 2935 130 1200 ~ 5590 1175 0.49 97050 3 0.07 471 11 662 125.0 2935 147 1200 5590 1251 0.49 97050 3 0.07 472 11 662 125.0 2935 248 820 2610 760 0.49 97050 3 0.10 473 11j_662_ 125.0 2935 820 2610 896 O.49 97050 3 0.10 L 346_ _ _ _ _ _ _ 474 11 . 662 125.0_ . 2935._490 _820 .2610_ _1067__ __0.49 __ 97050_ _3 _. __0.10 475 11 662 125.0 2935 722 820 2610 1294 0.49 97050 3 0.10 476' ~ 1 '1 ' 125TO ' _293[5]988] 820 ~ 2610][1515~ '970s0] ^_ 3 - ~ } 0~~_ i0

                                      ~ 662]          _                                                                                                      _                                                                                                                                          10[49 ~

6/13/97 Page 14 of 27 Nspinput.xis >

O O O , Intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculatie is for Corrected Moduli Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical Y-Center Unit Wt. FreeField Final FreeField FrecField Final v,. D,,,,,,(ksi) v. D,#(ks0 Type Damping Elem. Layer (ft.) (pcf) 4.(psf) 6(psf) V (ft/sec) G (ksf) G,,,, (kst) vi Di v2 Da # Factor 477 11 662 125.0 2935 1298 820 2610 ___1736_ 0.49 97050 _ __ __

                                                                                                                                                                                                                                                                .j          3                  0.10 478   11             . 662                           125.0    . 2935                    1628_            820        2610_                1944           0.49        . 97050_                                                                       3                  0.10 479~

480 11 11 [662[ 662 125.0 125.0 2935 2935

                                                                                                               }1948~

2251 82 820 2610}' 2610 l2126 _ 2286 0.49 0.49

                                                                                                                                                                                          ~'97050}}

97050 (( _ _

                                                                                                                                                                                                                                                                          ]3, ] [ 0.10 3                  0.10 481   11                 662                         125.0      2935                    2514             820        2610                2416            0.49              97050     _ _ _ _                          ___

3 _ 0.10 482 11. ,662 _ 125.0_ 2935 2695 820 . 2610_ _2501 0.49 97050 __ _3 _ 0.10 2610~ '2560 b' 97050 0.10 483 11 ~ ~ 662'~ ~ 125.0~ 2935 '2822~ ~ 820~ 0.49 3 484 ~ 11 485 11 __662 662] 125.0}[ 2935} [294} }820[ 125.0 2935 3070 820 2610] ]2612} 2610 2670 0.49 0.49 . 97050 97050][ _)) }[ f_] [ 0.10_ 3 0.10 486 11 662 125.0 2935 2948 820 2610_ 2616 0.49 97050 _. _ _ _ . _ _ _ _ _3 . _ 0.10 487 11 662 _ . 125.0 2935 . 3300 910 3215 3409 .0.48 97050 _ _ _ _ _ 3 0.10 488 _11 662 _ 125.0 2935 3168 _ __1000. 3882 _ 4033 0.48 97050 _ _ _3 _0.07 . 489 11 _ _ 662__ 125.0 _ 2935_ 3185 1000 3882. 4044 0.48 97050 _ ._3 _ __0.07 490 11 662 125.0 2935 3134 1000 3882 4011 0.48 97050 3 0.07 491 11 __662 _125.0 .2935 _3108_ 1000 3882_ 3995 0.48 97050_ _

                                                                                                                                                                                                                                                                           .3                ._0.07 492   11                 662                         125.0      2935                    3151   _ 1000               3882                4022            0.48              97050          _

3 _ _ _0.07 493. 11 662 125.0 _ 2935 3182_ 1000 3882 _4042 0.48 97050 . ._3 . , 0.07_ 494 11 662 125.0j_2935 3157 1000 3882 4026 0.48 97050 3 0.07 495 11 . . _662_ 125.0 2935 3151 1000 3882 4022 0.48 97050 3 0.C; 496 11 662 _ 125.0_ _.2935, 3151_ _1000 _ 3882_ _4023 .0.48 _97050 3 _0.07__ 497 10 665.75 125.0 2699 2687 820 2610 2604 0.49 97050 3 0.10 498 10 665.75 125.0 2699 2686 820 2610 2604 0.49 97050 3 0.10 499 10 665.75 125.0 2699 2681 820 2610 2602 0.49 97050 3 0.10 500 10 665.75 125.0 2699 2685 820 2610 2603 0.49 97050 3 0.10 501 10 665.75 125.0 2699 2685 820 2610 2604 0.49 97050 3 0.10 1 502 10 665.75 _ 125.0_ 2699 _ 2686 820 2610 2604 0.49 _97050 _ _ _ _ , __ 3 0.10 503 10 665.75. _ __125.0 2699 _2690_. _820_ _2610__2606__ . _ .0.49. 97050 3 _0.10 504 10 665.75 125.0 2699 2699 820 0.49 97050 3 0.10 2610 J 2610 505 10_ 665.75_ _125.0_ _ 2699_._2715 ___820_ _ _ 0.49 97050 3 0.10 2610 J 2618 506_ 10 _ _ 665.75 . 125.0__ .2699_ _2731.. 820 2610 2626 0.49 97050 3 0.10 507 10 665.75 125.0 2699 2740 820 2610 2630 0.49 97050 3 0.10 508 10 665.75 125.0 2699 2731 820 2610 2626 0.49 97050 3 0.10 509 10 665.75 125.0 2699 2692 820 2610 2607 0.49 97050 3 0.10 510 10 665.75 125.0 2699 2603 820 2610 2563 0.49 97050 3 0.10 6/13/97 Page 15 of 27 Nspinput.xis

f} , f (D

                       %J                                                                                                            %J                                                                                                                                                                                                  0 Intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculations for Correcul Moduli Total                Feadam                                   SASW                         Poisson Constr. Mod        Poisson Constr. Mod.                                                                                                   Curve               Critical Y-Center Unit Wt. FreeField Final FreeField FreeField Final                                                   v,       D,,,,,,(ksi)         v.                    D,                       (ksf)                                                                Type             Damping Elem. Layer                   (ft.)      (pcf) 4.(psf) 6(psf) V. (ft/sec) G (ksf) G ,,(ksf)                                             v.         D,                       v                          Di                                                                                          #       Factor 511     10                 665.75      125.0              2699       2482         820                  2610            2503         0.49      97050                           j                                                         _                                                 . _ _

3 0.10 512. 10 665.75 _ 125.0 _2699 2298 820 2610_ _ 2409 0.49 . 97050_ 3 __0.10 513 514 l10 10

                                                 ~ 665.75 665.75
                                                              ~ 125.D '

125 0

                                                                            .}2699' }2024 2699 .      1714 820~

820

                                                                                                                                '2610}'

2610 2260 2080 0.49' 0.49 970$0} 97050 __ [3]} 3 [ 0.10 0.10

                                                                                                                                                                                                                                                                          ~

515 516 10 ~ 10

                                                   ~665.75)~ ~ 125.0 [ }2699 665.75      125 0              2699 1384~

1058

                                                                                                           ~ 820

820

                                                                                                                                '2610 2610_

_ 1869[ 1634 0.49 ~ _ 0.49 97050] 97050.

                                                                                                                                                                                              ~[ '_                                                                                                _               L3^ ' ~ ]O.10_

3 0.10 517 10 665.75 _ 125.0 .2699. .723 , 820 2610 _ 1351 _ _0.49 97050 _ _ _ 3_ _ 0.10 518 10 . 665.75. 125.0 _ 2699 477 820 _ 2610_ 1098 0.49 97050 _ .3 0.10 _3 . , __0.10 519 10 _665.75 125.0 _. 2699 _ _242 820 2610 _ 782 0.49 97050. _ 520 _10 665.45. .. 125.0 . _ 2699 _ 110 . 820 . 2610 _ _526 0.49 97050 _ _ __ _ _ . 3 . 0.10 521 10 _665.15 125.0 _2699 __ _85 _ 820_ 2610 _ __462 0.49 . 97050 _ _ _ 3 0 10 522 10 . 665.15_ . 125.0 , 2699 ___85 _ 820 2610._ . 463 _0 49 . 97050_ 3 0.10 523 10 665.45 125.0 _ _2699 . 110_ 820_ 2610 _ 527 _0.49 97050_ 3 __0.10 524 10 665.75 125.0 665.75 . __125.0 2699 243

                                                                                               .477_.

820 820 2G10] _783 2610 1098 0.49' 0.49 97050 - ~~ [ 97050

                                                                                                                                                                                                                                                                                          \ l3~}                           3

[0I10 0.10 525_ _10 _ 2699 , _ _ _ 526 10 665.75 125.0 2699 _ ._723_ _ 820 2610__ 1351 _ 0.49 _ 97050_ _ _ _ 3 0.10 _ 527 10 665.75 125.0 2699 _ _.1058 _ 820 _ 2610_ _ 1634 ,_0 ;49 97050 _ ____ . _ _ _ _ 3__ 0.10 528 _10 .665.75 125.0 _ .2699 1385_ 820_. 2610_ _1870 0.49 97050 _3 __0.10 529 10 665.75 125.0 2699 1715 820 2610 2081 0 49 97050 __ __ _ _ _ _ 3 0.10 530 . 10 665.75 125.0__ . 2699 _2027_. 820 2610__2262. 0.49 97050 ,3 ,_ _0.10 531 10 665.75 125.0 2699 2300 820 2610 2409 0 49 97050 ___ __ 3 0.10 532 _ 10 _665.75_ _125.0_ _ 2699 2485 _820__ 2610 _ 2504_ _ 0.49_ 97050 _ _. _ __ _3 _0.10 533 10 665.75_ 125.0__.2699 . _2609_ 820 2610_ _ 2566 0.49 _ 97050 . _ 3__ ___0.10 3_ 534 _10 665.75 125 0___ 2699_ .2716_ 820. __2610_ ._ 2618_ _ _ . 0.49 97050_ __ __ _ __ _ _0.10 535 . _10 665.75 _ 125.0_._2699 _ _2843 . 820_ . 2610_ _2679.. _0.49 _97050_. _ _ _ _ _ _ __ 3 _ _ .0.10 536 10 .665.75 _125.0 2699 _ 2764_ _910_ 3215__3253 _ 0.48 _97050_ 3 _0.10 537 10 665.75 125.0 2699 3072 1000 3882 4142 0.48 97050 3 0.07 , 538 10 665.75 125.0 2699 2920 1000 3882 4038 0.48 97050 3 0.07 539 10 665.75 125.0 2699 2938 1000 3882 4050 0.48 97050 3 0.07 540 10 665.75 125.0 2699 2907 1000 3882 4029 0.48 97050 3 0.07 541 10 665.75 125.0 2699 2865 1000 3882 4000 0.48 97050 3 0.07 542 10 665.75 125.0 2699 2917 1000 3882 4036 0.48 97050 3 0.07 543 10 665.75 125.0 2699 2954 1000 3882 4061 0.48 97050 3 0.07 544 10 665.75 125.0. _ . 2699 2919_ 1000_ 3882 _ _ _ _ 4037 0;48 97050 _ _ , 3 0.07 6/I3/97 Page 16 of 27 Nspinput.xis

p /m i~ b , intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculations for Corrected Moduli Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical , Y-Center Unit Wt. FreeField Final FreeField FreeField Final v,,u D.(ksf) v. D,,%(ksi) Type Damping Elem. Layer (ft.) (pcf) 6.(psf) 6(psf) V. (ft/sec) G (ksf) G,,,(ksf) v, D, v D, # Factor

                                                                                                                  $45                                               10           665.75                    125.0                 2699                    2916                 1000           3882                            4035                                                                      0.48                     97050                                                __                                                  _

3 0.07

                                                                                                                                                                                                                                                                                                                                                                                                                              . 97050 _                                                                                                                                         . . _0.07, 546                                               10           665.75                  _125.0_.              _2699                     2917.              _ 1000..         3882 _                    ._4036 _                                                                        0.48                                                           _ _ _ .                                . _ _ _                                         _3 _

547 .9 669.25 _ 125.0. . 2479 .2468 820 2610 , 2604 0.49 97050 3 _0.10 548 9 669.25 125.0 __ 820. 2610 _ _ 2604 0.49 97050 ..3 __0.10 2479 4 2467. 0.49 _97050 _ 0.10 549 9 . _669.25 125.0_ 2479 2462 . 820_ 2610 _ 2601 _ _ _ _ 3_ 550 9 669.25 125.0 _ 2479. _2466 820__ 2610 _ _ 2604 0.49 97050. __ _ g ._ _ 3 __0.10 551 9 _ 669.25 125.0 _ 2479 2466_ 820 _ _ 2610 _2604. 0.49 97050 _ ~~ 3 __ 0.10__ 552 9 [669.25[ 9 _ 669.25 _ _125.0]~2479] 125.0 2479 2467 ~ 2470 . [820} 820 2610] (2604 2610 2605 0.49 0.49 97050] 97050

                                                                                                                                                                                                                                                                                                                                                                                                                                                                -[                                                                           _         [3[          3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             }][0.10 0.10 553_

554 9 669.25 125.0 2479 2479 820 2610 2610 0.49 _ 97050; _ _ _ . 3 0.10 2610, 555 9 _669.25 _125.0 _ 2479_ 2495 . 820. _ 2619 0.49_ 97050 ~~ ~~ ~~ 3._ ___0.10 T~~

                                                                                                                                                                                                                                                                                                                                                                                                                  ~

556 9 669.25 125.0 ~ 2479 ~ ~2514 820 ~ 2610-~ ~ 2629 0.49 97050~ ~ ~ 0.10 ~

                                                                                                                                                                                             ~

557 l9 _ }669.25[ l125.0 ~ 2479' [2527} 820 2610[ }2636 ~ 049 97050][ ']_ ]_~ ~ _[3] _ 0.10_ 558 . 9 669.25 125.0 2479 2523 820_ 2610 2633 0.49 97050 ~ 3 ~ 0.10 i 559 9 669.25~ 125.0 }2479' 2490' 820 2610l }[2616 0.49 [97050] ___ ~ ] .__'3 _' ]O.10[ 560 9 669.25 _125.0 _ 2479 2407 , 820__ 2610 2572 0.49 97050 _ _ _ _ _ ___ 3 0.10 561 9_ 669.25_ 125.0 _ .2479 __ 2289.. 820 2610._

                                                                                                                                                                                                                                                                                                                   . 2508                                                                             0.49                      97050                                                                                                    _

_ _ _3 0.10 562 9 _669.25. _ 125.0 2479_ _2097 820._ 2610_ _ 2401 0.49 . 97050. _ ._ 3_ _ 0.10 _ 563 _9 . 669 25_ _ 125.0 _ 2479 _1815. 820 2610 _ 2233 _ 0.49 97050_ . _ _ _ __ __ . _3 ._ _ 0.10 564 . 9 _ 669.25 125.0_ _ 2479_ _ 1490_ 820 2610 2023 0.49 97050 __ _ 3 _ _ _ _0.10 565. _ 9 _ _669.25 ..125.0_ _ 2479 _ 1163. . 820__ 2610_ .1788 0.49_ 97050__. 3. _ . _0.10_ 566 9 669.25 125.0 2479 820 820 2610 1501 0.49 97050 3 0.10 567 9 669.25 125.0 2479 497 820 2610 1168 0.49 97050 3 0.10 568 9 669.25 125.0 2479 219 820 2610 775 0.49 97050 3 0.10 569 9 669.25 . 125.0 2479 70 820 2610 438 0.49 97050 3 0.10  ; 570. 9 _ 669.25 125.0 2479 70 820 2610 438 0.49 _ 97050 3 0.10  ! 571 9 669.25 125.0 2479 219 820 2610 775 0.49 97050 3 0.10 572 9 669.25 125.0 2479 497 820 2610 1168 0.49 97050 3 0.10  ! 573 9 669.25 125.0 2479 820 820 2610 1501 0.49 97050 3 0.10 574 9 669.25 125.0 2479 1164 820 2610 1788 0.49 97050 3 0.10 575 9 669.25__. _125.0_ ,_2479_ 1491 820 2610 2025 0.49 _97050 _ _ _ _ _ _ _ _ _ __ __, 3 _ 0.10 576 9 669.25 125.0 2479 ..1817_ 820 2610_ __ 2235 _ _ .0.49 97050 3 0.10 577 9 669.25 125.0 2479 2102 820 2610 2403 0.49 97050 _ _ _ __ _ __ 3 0 10 t 578 _ 9 669.25 125.0 2479 _, 2286 _ __ _820 _ 2610_ _2506 __ 0.49_ _ 97050_ 3 ._0.10 _ 6/13/97 Page 17 of 27 Nspinput.xIs  !

Intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculations for Corrected Moduli Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical Y-Center Unit Wt. FreeField Final FreeFleid FreeField Final v, D.(ksi) v. D,,%(ksf) Type Damping Elem. Layer (ft.) (pcf) c',,(psf) c',(psf) V. (ftIsec) G (ksf) Ge ,(ksf) v D i v, D, # Factor , 579 125.0 2479 2610 2573 0.49 97050 3 0.10 9 { 669.25 2409] __820 2610 2638 0.49 97050 3 0.10 580 9 669.25 125.0 _ 2479__ 2533 820 669.25 125.0 2479 2500 820 2610 2621 0.49 3 0.10 581j_9 . . . 97050_ __ __ __ _ _ _ __0.10_ 582 9 __669.25 . 125.0__ 2479_ 2817 910 . 3215 _ .__3427 _ 0.48 97050 __ 3 583 9 669.25 125.0 2479 , 2699_ 1000 3882_ ___4051 0.48 97050. _3 _. __0 07 584 9 669.25 125.0 _g_ 2479 2717 1000 3882 4064 0.48 97050 3 0.07 585 9 669.25 .125.0 2479 2713 _ 1000 3882 4061. 0.48 97050 __ _ __ _ 3_ 0.07 __0.07 586 9 _669.25 125.0 2479_ 2693. 1000 3882 .. _ 4046. 0.48 . 97050__ __. ,_ _ _ 3_ __ 587 9 669.25 . 125.0, 2479 2641 1000 , 3882_ __4007 0.48 _ 97050_ 3 _ 0.07 _ _ 588 _9 _ 669.25 .125.0 2479 _2694_ 1000 . 3882 _ _4047 _ 0.48 97050_ _ _ _ _ _ 3_ 0.07 589 9 _669.25_ _125.0 2479_ 2744_ _ 1000 . 3882 _ 4084 0 48 ._ _97050 _3 ___0.07 590 _9 669.25_ _125.0 2479_ ._2691.. 1000 3882 . 4045 _ 0.48 _97050_ _3 __0.07 591 9 669.25 125.0 2479 2697 1000 3882 4049 0.48 97050 3 0.07

                                                                                                                                                                                                                                                                                                                                              )) _ _ _                           [3]
                                                                                                                                                                                                                                                                                                   ~

592 9~ ~669.25 _ 125.0[ ~2479[ [2698[ 1000 3882]' 4050} [ 0.48 ' 97050] . {0.07} _ 593 .8 .672.5 115.0 2289 2279 650 1509 1506 0.49 89286 3 0.12 594 8 672.5 115.0 2289 2279 650 1509 1506 0.49 89286 3 0.12 595 8 672.5 115.0 2289 15094 ,1504 0.49 89286 3 0.12- _ _ 2275_ _ 650. 596 8. . 672.5 . 115.0 _ 2289_2278 650 1509 1505 0.49 89286 ~ 3 0.12  ; 597' 8' ~ 672.5' 1'15 0~2289 '~2278~ ' "6s0~ ~ ISO 9~ ~~1505~ ~039 ~ ~ 89286 - 3 0.12 598 ]8[ ] 672.5[ ]115.l0] ]2289]2279' _ 650[ 1509]((1506~ ]_39[ 0 _89286}} _ [_[ [3[))[12] 3 0.12 599 8 672.5 115.0 2289 2280 650 1509 1506 0.49 89286 ~ ~ - 1509- 1509 '89286- ~ E12 600 601

                      '8
                       ~8
                               ~672.5 672.5~

115.0~I~2289' 2289~ ~550~ 1i5.0~ ~ 2289~ ~2305- 650 ~1509 1514

                                                                                                                                                                                                                                                                                               'D39 0.49          89286
                                                                                                                                                                                                                                                                                                                                         -]-'~                                      3 3              0.12 602      8           672.5                                                      115.0             2289         2327             650                                                 1509                                                    1521                                  0.49          89286                                                                3              0.12 603      8           672.5                                                      115.0             2289         2344             650                                                 1509                                                    1527                                  0.49          89286                                                                3              0.12 604      8           672.5                                                      115.0             2289         2344             650                                                 1509                                                    1527                                  0.49          89286__         _ _ _ _ _                   _                __

3 _ 0.12 605 _8 _ 672.5_. _115.0. 228G 2317_ _ _ _650 _1509_ _1518 . _ .0.49_ _89286 _ y_0.12 3 606 .8 . __672.5_ 115.0_ _ . _ 2289,__2242__ __650 . . 1509_ 1493_ _ 0.49 _ __89286_ ~- 3 0.12 _ 607 _8}, ~672.5~ ]115?6]II89]2j22[{6s{ ]1509))~}1453~ }[639[ ]89sB6]_[_)) _. 3 _0.12 ] 608 8 672.5 115.0 2289 1929 650 1509 1385 0.49 89286 3 0.12 609 8 672.5 115.0 2289 1627 650 1509 1272 0.49 89286 3 0.12 89286 3 0.12 616[ ]8} ] 672.5 ] ]1s.~0][2289]13d_3] }}}650] {1509 ] 1133 0.49 611 8 672.5 115.0 2289 954 650_ , 1509 974 0.49 89286 _ _ . __ _ _ _ _ _3_ _ 0.12 , _793_ 612 ._ 8. _ __ 972 5_ _ 115.0

                                                                                                              ._ 2289_ _632_

_ __ _ 650_ 1509_ _ _ _J9_ 0 ,_.89286_ . _ _{ _ _ _ _ 3 _ 0.12 , 6/13/97 Page 18 of 27 Nspinput.xts

O O O 1 Intake Canal Liquefaction Analysis Prairie 68and Nuclear Generating Plant Calculations for C m : -i Moduli Total Feadam . 'E roisson Constr. Mod Poisson Constr. Mod. Curve Critical Y-Center Unit Wt. FreeField Final FreeFiek - 5 Final v,# D.(ksi) v. D,%(ksi) Type Damping Elem. Layer (ft.) (pcf) 6 ,(psf) 4(psf) V.(ft/sec)l G(ksf) G (ksf) v, D, v D2 # Factor 613 8 672.5 115.0 1509 522 0 49 89286 3 0.12 2289_ _ 2 74_ __ 650_ ___ ,_ _ _ 614 . 8. 672.5 . _ 115.0 ._ 2289 45 650 1509 . ___212 0.49 _ 89286_ _3 _0.12 615 8 672.5 ~ 115.0} 2289 45 '650} ~1509} _ 213, 0.49 89286~ [_{~ ' ~ []_ ~^}3 ((0}.j2] 616 8 .672.5_ 115.0 .2289 274 650 1509 522 0.49 89286 _ __ _ 3__ 0.12 617 8 672.5 _ 115.0 2289 , , 632 650 1509 793 0.49 89286_ __ _ _ _ 3_ _ _0.12. 618 8 672.5 _ 115.0 _ 2289 . 955_ , 650_ 1509 974 0.49 89286 _ _ _ _ , _ _.3 ..

                                                                                                                                                                                                                                                                                                                                                              ._0.12 619          8.                 _672.5       115.0_     _ 2289_                 _1305                     _ 650 .                        _ 1509 _                             1139. 0.49            89286                                           .

3 ,0.12

                                                                                                                                                                                                                                                                                               ~
                                                                                                                                                                                                                                    ~                                ~ ~ ~

620 8 ' 672.5 115.0 2289 '1631 650 '1509" '1274 ' O.49 89286 ~ 3' ~0.12' 621 8 672.5 115.0 2289 ;1932 650 1509 1386 0.49 89286 _ __ _ _ __ 3 0 12 622 _8 672.5__ ..115.0 2289 _ 2134 _ _650 _1509_ 1457 0.49 89286_ _ _ _ 3. __ _0.12 . 623. 8 _672.5_ _ 115.0, _ 2289_ _2216_ _ 650 1509 _ 1485_ 0.49 89286__ __ _ _ _. . __3___ __ 0.12 . 624 8 _.672.5_ _ 115.0. . 2289 .. 2414 .650_ . 1509 , _1550 _ 0.49 89286_. 3 0.12 625 8 672.5 115.0 2289 2165 825 2431 2364 0.49 89286 _ _ __ 3 _. 0.12 626 . 8. __672.5__ .125.0_ _ 2289_ _2804_ ___1000 _ 3882 _ _4297 _ __ 0.48 _ 97050_ __ _ _

                                                                                                                                                                                                                                                                                                                                   . _ ,3_ _ 0.07                        ,

627 8. 672.5 . 125.0 _ .2289_ . 2431_ _ _ _1000__ __3882_ 4000 0.48_ 97050 3 0.07 - 628 8 672.5 125.0 2289 2517 1000

                                                                                                                                                               .                                3882_ _4071 _                            0.48            97050          _.                     _               _ _      _

_3_, _ _0.07_ i 629 8 672.5 _ 125.0 2289 _2497_ 1000 . __3882 4055 0.48 97050_ 3 0.07 630 8 672.5 125.0 2289 2514 1000 3882 4069 0.48 97050 3 0.07 631 8 672.5 125.0 2289 2411 1000 3882 3984 0.48 ~ 97050 ~~ ~ 3 0.07 , 632 8 ' ~672X ~125.0^ ~ 2289 2507~ ~~1000" 3882'~ ~~~4062 0 48 97050 ~~ Y ~ ~ ~ 0.07 ' i 633 634_ _

                                                            ~8 8

672.5}~ 672.5 .. 125.D] 125.0 2289] 2538'} 2289 2485 [1000 1000 _

                                                                                                                                                                                           ]3882[~~4088' 3882                          4044 048 0.48 9750}}

_.97050

                                                                                                                                                                                                                                                                     ~[                         _ _][                                _}3]

3 [ 0;07 0.07

                                                                                                                                                                                                                                                                                                                                    , 3_ _0.07_

635 _8 _ 672.5_ _125.0 _ 2289 _ 2494_ 1000_ _ 3882 _ _4052. 0.48 _97050___ __ ___ 636 _8 672.5_ __125.0 . _2289_ 2494 1000_ 3882_ _4052_ 0.48 97050_

                                                                                                                                                                                                                                                           ~~

3_ _0.07_

                                                                               ~675.5~ ~ 11d.0~ ~2643-2035'
                                                                                                                                        ~                                                                                                ~

637 7 ~850~ ~1443'- -~441~ 1 0.35 6243' 3 0.12 638 7 675.5 110.0 2043 2035 650 1443 1440 '~ 0.35 6242 ' ~ ~ ~ ~ 3 0.12

                                                                                                                                                                                                                                                                                        ~6237^~

639' 7 '675.5 ' ~110TO~ '~ 2D43~ ~2032- 650~' ~~1443~ 7 439~- '~d.35 ~ 3 ~6 12~~ 640 7 675.5 110.0 2043 2035 650 1443 1440 0.35 6242 3 . 0.12 641 7 675.5 110.0 2043 2035 650 1443 1440 0.35 6242 3 0.12 642 7 675.5 110.0 2043 2035 650 1443 1440 0.35 6242 3 0.12 643 7 .- 675.5 110.0 - 2043 ._. 2036 650 ._ 1443 - 1441 - 0.35 .. 6244 - --

                                                                                                                                                                                                                                                                                                                                 ' 3          ._      . . - _

0.12 . 645 [7' ~675.5 [ ._110.0}{2043((

                                                                                                                                 ~206D

2084

                                                                                                                                                     } _' 650[ ]1443]                                                   ]1449[          ]~ ))                      ]O.35 ~

0.35

                                                                                                                                                                                                                                                                                          ]6281~

6316 _ ]3'~] }}d.12} 3 0.12 646 ___ 7 675.5_. 110.0 [ 2043 650 _ 1443 g 1458 6/1387 Page 19 of 27 Nspinput.xts

i Intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculations for Corrected Moduli Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical Y-Center Unit Wt. FreeField Final FreeField FreeField Final v,% D,,,,,(ks0 v, D, (ks0 Type Damping Elem. Layer (ft.) (pcf) o*, (psf) c',(psf) V. (ft/sec) G (ksf) G,.,, (ksf) v. D, v D2 # Factor 647 7 675.5 110.0 2043 2104 650 1465 0.35 6347 3 0.12 l 1443 _ 648 7 675.5 650 _j 1443 _ __1466 _0.35 .6352. _3 .0.12 i 110.0_ __ 2043. _2107_ _ __ __ 649 7 .675.5 110.0 2043 . 2087 650 1443 _ ._1459 0.35 _ 6321 _ .._ ._ _ 3. _0.12 _ _0.12 650 7 .675.5_ 110.0 _ 2043 , _2015_ _650 _ 1443 .. _ 1434 _ __ __[_ _0.35_ ._6212 _ . 3 _y_ _0.12 __6037_ 651 7 _675.5 110.0._ 2043 . ..1903 _ 650 _ 1443 _ _ 1393 0.35 3 652 7 .'2043 . [1696~ 650l[ 1443 ']i315 ~(( [0.35._ [5698 }3] ' {012

                                                                ~675.5}                    }116.0}                                                                                                                                      _

653 7. 675.5 110,0_ 2043 1393 _ j __1039 650

                                                                                                                                                     ._650                                            1443          1192                 _                                       __

0.35 5165 .3_ 0.12 l 654 7_ 675.5 _ . 110.0 _2043 1443 _1029 . ~~~ _0.35 _4461__ 3 0.12  !

                                                                                                                                                                                                                                                                                                                                                                                    ~ 370i ~                                 F
                                                                                                                                                                                                                                       ~

655 7 675.5 110.0 ]2043[._']715 ~650' '1443~ ~ 854 ~ 0.35 ~ ~ ~012 _ 650 602 0.35 3 0.12 656 _7 _ 675.5 _ 110.0 2043. _ 356 1443 __ _ _ 2609 , _ 657 j 675.5 110.0 2043 _ 89 . 650 .1443 301 0.35 1305 _ _3_ _ __0.12. 658 7 _575.5_ 110.0__ 2043_ _89_ .650_ 1443 . 301 __0.35 _1304 _ 3 _0.12 659 7 675.5 110.0 650 1443 602 0.35 2609 3 0.12 j 2043_ 355_ _ 660 7 675.5 _ _110.0_. 2043 716 650__ 1443 854 __ 0.35_ _ . 3702_ . _ 3. __0.12 . _ 3 __ 0.12, 661 _7 675.5 110.0 _ ._ 2043_ _ _ _1041 650 1443_ _ 1030 0.35 __4464 662 7 675.5 110.0 2043 1398_ 650 1443_ _1194 __ 0.35 5174 3 _ 0.12.. , 663_ _ 7 _ _675.5 _ . 110.0 2043_ _1700 _650_ 1443 1317. __0.35_ _5706_ __3 . _ _ 0.12 < 664 }7., 675.5 110.0_ _ 2043[_1893, 650 1443 1389 _ _ 0.35 _ 6020 _ _ _ 3 _0_.12. l 665 . 7 __675.5__ 110.0 2043 2068 650__ ,1443_ . 1452 _ . _ _ _ 0.35 _6292 _ _ _3_ _ . 0.12 666 .7 _675.5_____ 110O__ 2043 _ 1874_ 650_ 1443__ _.1382 _ __ _0.35 5991 _. 3.__0.12 667 __7. _675.5 110.0_ 2043_ 2439_ 825. 2325_ _2541_ ~ ~ ~ ~ __0.35 _ 11009__ ' ~ ' ' ~ 3 __.0.12

                                                                                                                                                                                                                                                                                                                                                                                    -17404 ~
                                                                . 675.'s~ ~~125?o' '~ 2043 lis7~ ~ '1000                                                                                            ~3882-~ 4016~~                '-               ^ ~ - -
                                                                                                                                                                                                                                                                                                                           ~0.35 ~                                                                                               3      ~6.~07~~     r 669            ~ 7 ^ 675.5- ~i25.0~~2 43~~ ~2242~ ~ ~ ~1000~ ~ ~ 3882~ ~4066~                                                                                                                                                                                                               ~0.35~                                                      ~1762'1~                              " 3' ~ ~   -~07
                                                                                                                                                                                                                                                                                                                                                                                   ~~17530~ ~~3
                                                                                 ~
                                                                                                                                                                                                                                       ~                           ~~

670 ~7 ~675.5' ~ 125.6~ 2043~ ~ 2259 -1000 ~ ~3882~~ ~4045 ~ '~ .35 ~ 0.07 671 7 675.5 125.0 2043 2229 1000 3882 4055 0.35 17570 3 0.07

  • 672 7 675.5 125.0 2043 2202 1000 3882 4030 0.35 17464 3 0.07  ;

673 7 , 675.5_. __125.0_ 2043 2325 1000 3882 4141 _ ___ 0.35 j 17944 3 0.07 e C74 . . 7. 675.5 125.0 2043_ _.1616 1000_ 3882_ _ 3452_ _0.35_ 14961

                                                                                                                                                                                                                                                                                                                                                                                           ~

3 0.07

                                                                                                                                                                                                                                                                                                                                                                                                                      ~~6' -
                                                                                                                                                                                                                                          ~       ~'

675 ~ 7' 6755~ ~126 0~'~~2043^ ~2708' 5000 93168- ~93168' ~0.35 ~ ~403727 ~~D Oi 676' '7 ~ ~~675.5~ ~ 120.6~ ~ 2043- ~2079' ~5000' 93168- ~93168 0.35' ~403'27-'7 "' ~'6~ ~ ~ 0.01 677 7 675.5 120.0 2043 2213 5000 93168 93168 0.35 403727 6 0.01 678 7 675.5 120.0 2043 2229 5000 93168 93168 0.35 403727 6 0.01 679 6 678.5 110.0 1712 1705 650 1443 1441 0.35 6242 2 0.12 680 6 _ ._ _ 678.5 110.0 __ 1712 1705___ _ 650 1443 1440 __ __ 0.35 _ 6241 J_2 _ 0.12  ; 6/13/97 Page 20 of 27 Nspinput.xts

                                                                                                                                                                           /                                                                                                                                                                                                                  /3 O                                                                                                                                                            k Intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculations for Corrected Moduli Total         Feadam                         SASW                                                                                                                Poisson Constr. Mod Poisson Constr. Mod.                                                                      Curve             Critical           .

Y-Center Unit Wt. FreeField Final FreeField FreeField Final v,,e D . (ks0 v. D, (ks0 Type Damping Elem. Layer (ft.) (pc0 6 ,(psf) 4(psQ V. (ft/sec) G (ksf) G ,,,(ksf) v, D, v D3 # Factor 681 6 650 1443 1439 0.35 6236 2 0.12 678.5_ 110.0_{ 1712 _ 1702_ _ __ 682 6 .678.5 110.0 1712 _1705 650 .1443 _1440 . ~ 0.35. _ 6242 2 __0.12 . 683 ' 6 678.5 L110 0 . }'1712[ '1705} 650~ ~ 1443] 11440 ~] [0.35._ _}6241 . ~ ~2 ((0'12 [ I 684 6 .678.5 110.0 1712 1705 650 1443 1440 0.35 6242 2. 0.12 685 6 678.5 110.0 1712 1705 650 1443 1440 0.35 6242 _ 2 0.12 686 6 . 678.5 110.0 1712 1712 650 1443 _ 1443 _ _ _ 0.35 6254 __ 2, .__0.12_ 687 6_ _ 678.5 110.0_ 1712 _ 1728_ 650 _ . 1443 . 1450 _ 0.35_ _6284 _ .2 0.12 . 688 6 '110.0 1712 650 l ~

                                                                                                                                                                                                                                                                                                                            .35                                          ~ 2

[678.5} . 1755] 1443] l1461 __.

                                                                                                                                                                                                                                                                                                                      , 0.35
                                                                                                                                                                                                                                                                                                                                    ]6332]                                                _((0.12[

689 6 678.5_ 110.0 1712 1777 650 1443 1470 ___ 6372 _2 0.12 690 6 678.5 110.0 1712 ._1784_ 650__ 1443__ _ 1473 _0.35 _6384 _2 _ 0.12 691 6 678.5 110.0 1712 1766 650 1443 1466 _ _ _ _ 0.35 6353 __ _. 2 _ 0.12. 692 .6 678.5 . 110.0 1712 1707_ 650_ 1443 _ _ 1441 __0.35 _.6245 2 0.12

                                                                                                                                                                                                                                                                                                                                                                                          -0.12
                                                                                                                                                                                                                                                                         ~                           ~~~

693' ~6 678.5~ 110.0' ~ 1712 ~ 1588~ 650 1443~ ~1390 ~ 0.35~ ~6024 ~ ^ ~ 2 , 2 ~0.12

                                                                                                                                                                                                                                                                                                      ~ ~ ' ~                                                         ~~
                                                                                                                                                                                                                                                                                                                                   ~5628~
                                                                                                                                                                                                                                                                    ~

694 6 678.5 110.0~ ~ 1712 ~ ~1386~ 650~ 1443 ~-1299' - - 0 35 ~ 695 6 '678.5~ ~ 110.0~ 1712~ 1050" ~ 650 1443 - ~~1130 ^ " ~ ~ ~ ~

                                                                                                                                                                                                                                                                                                                       ' 13 5 ~   ~4898 -                        ~
                                                                                                                                                                                                                                                                                                                                                                           '2~~        '
                                                                                                                                                                                                                                                                                                                                                                                          ~0.12~

696 6 ~ 678.5~' 110.0 ~ 1712 ~716~ 6s0~~~ 1443' ~934 ~ 0.35 ~ ~4045~ ~~2~ 032 T35 '~2834 ~

                                                                                                                                                                                                                                                                 ~~

697' 6' 678.5 110.0' 1712 ~352' ~~650' '1443~ ~654 ~2~ ~ T12~ 698 6 678.5 110.0 1712 87 650 1443 324 ~ 0.35 ~ 1406 2 0.12 699 ~6 6.

                           }678.5} }110.0} ~1712}                                                            ((86))     _65D((               l1443} ]324                                                                          .                                                                      _           ]'0'.35 '     ]1404[                          ]2]                        d.~12[           ;

700. 678.5 110.0 1712 352 650 1443 654 0.35 2836 _2 __ _ _ _ _ _ _ _ 0.12 701 6 678.5, _ 110.0__ 1712 _ 717 _ . 650. 1443 . _934 _ _ _. _0.35 . 4 _._ 049___ 2 _ Oj2 702 6 . 678.5 __110.0 .1712_. 1053 , 650 . 1443_ ___1132 .0.35 _. 4 2 0.12 _ _ 905 _ 703 6 _ 678.5,_ ._110.0 . 1712_ _.1396_ _ 650__ 1443_ _ 1304 _0.35 . 5649 2. _ _. __ 0.12 704 6 _678.5 _ 110.0 _ 1712. 1571_ _650 _ 1443_ _1383 _ 0.35 _5991 .2 0.12 705 6 678.5 110.0 1712 1744 650 1443 1457 0.35 6312 2 0.12 706 6 678.5 110.0 1712 1604 825 2325 2251 0.35 9753 2 0.12 , 707 6 678.5 125.0 1712 2060 1000 3882 4258 0.35 18453 2 0.07 708 6 678.5 125.0 1712 1828 1000 3882 4012 0.35 17384 2 0.07 709 6~ 678.5 125.0 1712 1869 1000 3882 4056 0.35 17578 2 0.07-710 6 678.5 125.0 1712 1866 1000 3882 4052 0.35 17560 2 0.07 711 6 678.5 125.0 1712 1858 1000 3882 4044 0.35 17526 2 0.07 712 6 678.5 125.0 1712 1862 1000 3882 4048 0.35 17542 2 0.07 713 6 678.5 125.0 1712 1928 1000 3882 4119 0.35 17850 2 0.07 714 6 678.5 125.0 1712 1374 1000 3882 3478 0.35 15070 2 3 0.07 6/13/97 Page 21 of 27 Nspinput.xis

p (. d d intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculations for Corrected Moduli Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical Y-Center Unit Wt. FreeField Final FreeField FreeField Final v D, ,(ks0 v D, (ksi) Type Damping Elem. Layer (ft.) (pcf) 6.(psf) 6(psf) V (ft/sec) G (ksi) Go,,, (ksi) v. De v Da # Factor 715 6 678.5 120.0 1712 2266 5000 93168 0.35 403727 6 0.01 716 _6 678.5 120.0 1712 _ 1719_ 5000 l93168

                                                                                                                                                                                                                                                                                                 , 93168 _           93168 0.35 . . 403727 _                 _6                                 0.01 717     6' 678.5 ~ 120 0                                                               1712                        1856                                                                     5000                                                          '93168         [93168                                                                               0.35        403127                   6                               0.01 718     6                    678.5                                          120.0      1712 1868                                                                     5000                                                             93168          93168                                                                             0.35       .403727                   6                               0.01 719      5                . 681.5 .                                   .110.0_          1380                        1375                                                                         650 ,                                                           1443         1441                                                                             0.35      __ 6244                    2                         ..0.12 720      5                    681.5                                         110.0_     1380                        1375._                                                                       650                                                             1443_      __1441                                                                        _0.35              6243                   2 __ _

_ 0.12 721 5 . 681.5. 110.0 1380 1373 _ 650 1443_ _1439__ . _ _ _ _0.35 _6238 __ _2 _.0.12 722 5 681.5 110.0 1380 _1375 650 1443 _1441 _ 0.35 _6243 _ _ _ _ 2 __ _0.12 723_ 5_ 681.5_ 110.0 1380 1375_ 650_ 1443_ 1441 __ _ 0.35 _6243 2 _ __0.12 724 5 681.5. _110.0 1380_ 1375. _. 650_ 1443_ 1440 0.35 _6242__ __2 _ _ _0.12 2 _ 725 5 681.5 110.0_ 1380_ 1375_ 650_ 1443 1441 __0.35 _6244 __0.12_ 726 5 681.5 110.0 1380 1380 650 1443 1443 0.35 6254 2 .. 0.12 727 5 681.5. __110.0 1380 1397 .650 . 1443 _ _1452 _ 0.35 _ _6292._ ,.2 .0 12__ 728 5 _ 681.5._ 110.0 1380 _1424_. 650_ 1443_ 1466_ _0.35 _6352 2_ 0.12 729 5 681.5 110.0 1380 1451 650 1443 1480 ___ 0.35 6414. __ 2 0.12 _0.35 , _ 6423_ 730 5. _ 681.5_, 110.0_ 1380..__1455_ 650_ _1443__. __1482__ 2 _0.12_ 731 5 681.5 110.0 1380 1448 650 1443 1478 ~ ~ ~ 0.35 6406 ~ ~ ~ ~ 2 0.12 732 5' ' 681.5~ 110 0 ~~1380' ~1390~ 650 ^ ~1443^ i448 ~6~.35 ' ~'6277 ~ 2 ~~ ~ ~0.12 ~

                                                                                                                                                                                                                                                                                                                                                                                                                                           }2[
                                                                                                                                                                                                                                                                    ~

733 ~5 ] 681.5} , 110.0[I~[1380( _ ]289] [650[ }1443 [ ]1395} ]~ } ._ }D55~ 0.35_

                                                                                                                                                                                                                                                                                                                                                                                                                 ]60([                      2 D}1'2}

734 5 681.5 110.0 1380 1056_ 650 1443 _ 263 1 _. __ . __5471_ . . _0.12 _ 735 5 681.5_ 110.0. _ 1380_. _733 650_ ._ 1443__ 1052 0.35 _ 4558 _2 0.12_

                                                                                                                                                                                                                                                                                                                                                                                                                ] 314      { [2^~
                                                                                                                                                                                                                                                                                                                                                                 ~

736 737 5

                                                . 5_
                                                             ~ '681.5}

681.5 110.0] 110.0 ((138 1380

                                                                                                                                                 ]35                83
                                                                                                                                                                                                 ]                                       650}

650_ _ _1443[ ~ 727 ~ 1443 354 [ _ __ [0.35 l 0.35 1532 2

                                                                                                                                                                                                                                                                                                                                                                                                                                                       -             [12}   0 0.12 738      5                    681.5                                         110.0      1380                                83                                                                   650                                                            1443           353                                                                             0.35          1530                   2                               0.12 739      5                    681.5                                         110.0      1380                           351                                                                       650                                                            1443           728                                                                             0.35         3154                 ~2                                 0.12 740      5                    681.5                                         110.0      1380                            736                                                                      650                                                             1443         1054                                                                             0.35         4567                    2                               0.12 741      5                    681.5                                         110.0      1380                        1060                                                                         650                                                             1443_._1265,                                                                           . _0.35 _           5482                    2                               0.12

_6143_ 742 5 681.5 110.0_. 1380 1331_ 650.. 1443 1418 0.35 _.2 __0.12_ 743 5 681.5 110.0 1380 1238 650 1443 1367 0.35 5924 2 0.12 744 5 681.5 110.0 1380 1618 825 2325 2517 10908 2 _0.12 745 5 681.5 125.0 1380 1474 1000 3882 4012 0.35 0.35 j __17386_ __2 0.07 746 5 ___j_ 681.5 125.0 1380 1518 . 1000 3882 4072 0.35 17644 2 0.07 747 5 681.5 125.0 1380 1499 1000 3882 4046_ 0.35 17532 2 0.07 __7481 5 681.5 125.0 1380 1501 1000 3882 4049 0.35 17547 2 0.07 6/13/97 Page 22 of 27 Nspinput.xis

O O O s intake Canal Liquefaction Analysis Prairie island Nuclear Generating Plant i Calculations for Corrected Moduli Total Fendam ) SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical Y-Center Unit Wt. FreeField Final FreeFi-id FrecField Final v,,. D_(kst) v. D,,,,,.,(ksi) Type Damping , Elem. Layer (ft.) (pcf) ok(psf) 6(psf) V. (ftA,ec, , G (ksf) Ge.,, (ksf) v. De v D2 # Factor 74 9 5 681.5 125.0 1380 1000 3882 4048 0.35 17540 2 0.07 1500_ 750 5 681.5 _ 125.0 1380 1499 1000_. _ 3882 _4046 _0.35 _.. 17534 _ 2__ __0.07_ 751 5 681.5 125.0 1380 1557 1000 3882 _. 4124 _ _ 0.35 _17869_ 2_ _ _ 0.07_ 752. 5 681.5_ 125.0 _ 1380._.__1115 _ , *000 _ 3882 _ 3490 __0.35 15124 . _ . 2 _ 0.07 - 753 5_ _681.5 120.0. 1380 _1827, _ 5000 93168 _.93168 _0.35 ._403727 .6 _0.01 , [}66

                                                                                                                                                                                                                                                                                                                           ~
                                                                                                                                                                                                                                       ~'

754' 5l 681.5} [120.0 . 1380[ ]361] l5000[ 93168[ ]93168 _. }0.3s ' _ j403727[ . . ~{ 0.d1 755 5 681.5 120.0 1380 1498 5000 93168 93168 0.35 403727 0.01 756 5' }681.5 ] 120.0 _ l1380_ [1506] ~~5060~ 1045 650 93168[ ]93168' 1443 1439 __ ~] O.3s ' 0.35

                                                                                                                                                                                                                                                                                                            ~403727 6237 _
                                                                                                                                                                                                                                                                                                                                      }6[ .[.01' 2

0.12 757 4 684.5 110.0 1051 _ __6236,_. 758 4 684.5 110.0 _ 1051. 1045, 650_ _ 1443 _ ._1439 __

                                                                                                                                                                                                                                                                                                 .0.35                                     2 _ _ 0.12    _

759 4 _ 684.5_ . 110.0 1051._ __1043_ 650 1443 _ __1438 _0.35 _6231 _ ._ 2 __ _ 0.12 760 4 ._684.5 _ 110.0 _ 1051_ 1045_ 650 __1443 __ _1439 _ _ _ 0.35 6238 2 __0.12 . 761 4 684.5 110.0_ 1051_ 1045 . 650 1443.._1439 .0.35 __6235 2 0.12 762 4 684.5 110.0 1051 1045 650 1443 1440 0.35 6238 2 0.12 763 4 684.5 110.0 1051 1043 650 1443 1438 __ _ 0.35_ 6232 2 0.12 764 . 4 684.5 110.0 _ 1051 1051 650 1443 1443 __0.35 _6255 2 0.12

                                                                                                                                                                                                                                                                                                         ~ 628i -'
                                                                                                                                                                                                                                                                     ' ~ ~ ~ ~ ~                                            ~ ~~

765 ~ 4' '~684.5 ~ i10TO~ ~ d51~ 1 ~ 1060~ ~65 ~~ '~1443'~ i450' ~d.3s~ 2 dTi2~ 766 ^ 4 684.5 110.0 1051 1098 650 1443 1475 0.35 6391 2 0.12 767 4 684.5 110.0 1051 1120 650 1443 1490 0.35 6457 2 0.12 3 768' ' '4 684.5 110.'O 1051 1130 650 1443 1497' ~ ~~ ~ O.35 6486 2 -0.12

                                                                                                                                                                                                                                                                                                                                                       ~
                                                                                          ~

769 ~ 4 ~~684.5~ '110.0 ' ~iO51~~iii9~ 650~ '1443 ~ -1489 ~ 035 ~ ~ 6454~ ~ ~ ~2~ ~ ' 0 12 770 4 684.5 _ 110.0 , 105_1__ 1085 650 1443 1467 __ 0.35 6356 _ 2_ _ _0.12_ 771 4 _ 684.5 110.0 , 1051 _ _ .960_ .650_ ..1443_ 1380_ __0.35__ _5978 __ 2 0.12 772 4 684.5 110.0 1051 752 650 1443 1221 ~ ~~ ~ 0.35 5291 ~~ ' ~ 2 0.12 773' 4 ' 684.5~ 1 i0.0' ~ ~ 10si -372~ '650~ ~1443^' ~859 ~~635 ~ ~~3721 2 ~~0!12 ' i 774 ~~4 ' 684.5 110.0 1051 73 650 1443 380' 'O.35 1646 2 0.12 I

                                                                                                                                                                                  ~1443 ~.~382'                                                                                                                            ~~~2~ ~ 712
                                                                                                                                                                                                                                    ~                                     ~~

775 ~4 ~684.5~ ~i i 0.0 "._ 1

                                                                                             ^ ~ USI".                   ~      74~            -

6sd~ - . - . .

                                                                                                                                                                                                                                                                                              ' ~ D.55    ~~1655 ~               .

6'i2 '

                                                                                                                                                                                                                                                                                                                                                             ~

777 4 684.5 110.0 1051 757 650 1443 1225 0.35 5309 2 778 4 684.5 110.0 1051 989 650 1443 1400 0.35 6067 2 0.12 779 ~ ~4 ~ I ~684.5 110.0 1051 971 825 2325 2235 0.35 9684 2 0.12 780 4 684.5 125.0 1051 1238 1000 3882 4213 0.35 18254 2 0.07 781 4 684.5 125.0 1051 1122 1000 3882 4011 0.35 17381 2 0.07 *

                                                                                          ~

782}_ } ]684.5] ~[i25.0 ~~} 51] ~ii47~ 1

                                                                                                                                              ]1 00~    _
                                                                                                                                                                              ~3882                         4055]               ] ] [ ] _                                                         0.35       17573                        2]         0.07    _

6/13/97 Page 23 of 27 Nspinput.xis I

O O O Intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculations for Corrected Moduli > Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical Y-Center Unit Wt. FreeField Final FreeField FreeField Final v% D_(ksi) v. D%(ksf) Type Damping , Elem Layer (ft.) (pcf) 6 ,(psf) 6(psf) V. (ft/sec) G (ksf) G (ksf) vi D, v2 D, # Factor 783 4 684.5 125.0 1051 1141 1000 3882 4045 _ _ . __ 0.35 17528 _ _ 2 _ 0.07 784 4 684.5 125.0__ 1051 _ 1140__ 1000 3882__ _4043 __ _ 0.35 _17520._ _ _ , 2 0.07 785 4 684.5 125.0 1051 1141__ l1000 . 3882 _. 4044 0.35 _17524 2 _ _0.07

                                                                                                                                                                                                                                                                                          . 0.35 ,

786 _4 684.5 . 125.0 1051 1136_ 1000 _3882 4036 _17487 _ .2 _0 07 787 _4 .684.5 125.0 1051 _ ._1189_ 1000 3882 _4129 0.35 .17894 2 0.07 788. 4 684.5 125.0 , 1051_ 859_ 1000 3882 _ . 3510 0.35 15212. 2 .0.07 789 4 [684.5} .120.0 _ 105j[ 1378[ 5000 93168} [93168 _ } 0.35 "403727 6[} ,_ 0.01. 790. 4_ 684.5 120.0 1051 1025 5000__ 93168 93168 0.35 403727 . 6 ._ 0.01 791 _4 684.5 _ 120 0._ 1051 1139_ 5000 93168_ _93168 .0.35 403727 ___6 _ 0.01 792 4 684.5 120.0 _. 1051 _ 1144 5000 . 93168_ 93168 _ 0.35 __403727 6 __0.01 . 793 4_ _ 687.5._ 110.0 , 713__ _ 715 650, 1443 _ 1446 _0.35 6264 ,_ 2 _0.12 794 4 687.5 110.0 713 715 650 1443 1445 0.35 6263 2 0.12 - 795 4 687.5 110.0 713 714 650 1443 1444 __ 0.35 6257 2 0.12 796 3 _ 687.5 110.0 _ _ 713 __715___ 650 . _ 1443_ _1446 __ _0.35 . __ 6265 2 __ ._0.12 797 3 . 687.5 110.0 _ _713_ _715 650 1443 __1445 __ __ 0.35 __6263__ 2__ _ _0.12 798 _3 687.5_ _ 110.0_ __713. _ 715_ _650 _1443 _1445 __0.35 6262_ _ _2 . 0.12 799 3 687.5 110.0 713 716 650 1443 1446 0.35 6267 2 0.12 800 3 687.5 7 110.0 713 713 650 ~ ~~ 1443 1443 0.35 ~6254' 2 0.12 ~ j [0]2[

                                                                                                                                                                                                                                                           ~
                                                                                                                                                                                                                                                                                                       ]6450[

801 3 [ 687.5] [11Dl0} ~ji3]75ti(( ^~65DL 1443{ ]~1488 ~ ~[ ~[ [0.35[ ((f2] 802 _3. 687.5 110.0 713 [ 691 _825 _2325 _ 2289 __ __ 0.35 9918 2 _ _ _0_.12 803 _3_ _ 687.5__ _ 125.0_ __713_ 850 _ 1000_ _ . __3882_. 4238 , 0.35 18364 _ __2 0.07 804 3 687.5 125.0 713 762 1000 3882 4013 0.35 17390 2 0.07 805 3 687.5 125.0 713 788 1000 3882 4080 0.35 17680 2 0.07 806 3 687.5 125.0 713 745 1000 3882 3968 0.35 17193 ~2 0.07 1 807 3 687.5 125.0 713 663 1000 3882 3744 0.35 16222 2 0.07 808 3 687.5 125.0 713 387 1000 3882 2859 0.35 12388 2 0.07 809 3 687.5 125.0 713 91 1000 3882 1385 0.35 6002 2 0.07 810 3 687.5 125.0 713 90 1000 3882 1379 0.35 5977 2 0.07 811 3 687.5 125.0 713 392 1000 3882 2880 0.35 12478 2 0.07 812 3 687.5 125.0 713 658 1000 3882 3728 ___ 0.35 16155 2 0.07 813 3 , _687.5._ ._125.0_ _ 713_. _.740_ 1000_ . 3882_ ._3956 _0.35 17143 2 0.07

                                                                                                                                                                                                                                                         ~

8'1 4 "3 687.5 125.0 '7'13 785 1000 ~3882 4074 ~ 0.35 17654 2 0.07 ~ 815 3 687.5 125.0 713 783 1000 3882_ _4068 . __ _ 0.35 17627 2 0.07 816 3 , 687.5 _ , 125.0 _ 713_ __780_ 1000 3882 4060 0.35 _.17594 2 _0.07 6/13/97 Page 24 of 27 Nspinput.xis

O O O Intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculations for Corrected Moduli Total Feadarn SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical Y-Center Unit Wt. FreeField Final FreeField FrecField Final v,,s D,,,,,(ks f) v,,,, D,,,w(ks0 Type Damping Elem. Layer (ft.) (pcf) o%.(psf) oi(psf) V. (ft/sec) G (ksf) G ,,(ksf) v, De v2 D, # Factor , 817 3 687.5 125.0 713 1000 3882 4061 0.35 17596 2 0.07 780_ 818 3 . 687.5_ _125.0_ _713__ .,780 1000 _ 3882 , 4061 __ . _0.35 17597 __ 2_ __0.07 _ 819 _3_ 687.5 125.0 _ 713 .781 _ 1000 3882 _4064 _0.35 _ _.17609 . 2 _ 0.07 _ p _2 __ 820 3 .687.5_ .125.0__ 713. 772 _ 1000 3882 4040 __ 0.35 _17506 . _ _ 0 07 < 821 3 687.5_ 125.0 713 820 1000 3882 _ _4163 0.35 . 18039 2 _ 0.07 822 3 687.5 125.0 713 603 1000 3882 3569 0.35 15467 2 0.07 ~ r 823 3 ~ 687.5 ~ ~120.0 _ 713] _ . 924] _5000( ~93168[ [93166 _ ] 0.35 ' [403727 _ ]_ 6 ~d01[ 403727 6 0.01 824 3 687.5. 120.0 713 705 5000 93168 93168 _ 1 0.35 0.35 403727 6 0.01 825 _3 _ 687.5 _ 120.0 _ 713 . 780_ 5000 93168 ._93168 826 3 687.5 120 0 ._ 713 ._ .783_ 5000 _ 93168_ _ 93168 _ 0.35 403727 _ __ 6_ __0.01 827 2 690.5. 110.0 394_ 385 650 1443 _ 1427 _. _ 0.35 6183 ._1 __ 0.12 828 2_ 690.5_ ..110.0 _ 394__ ' 385 650_ 1443 1427 0.35_ _6182 ~ 1 _0.12 829~ 2~ ~ 690.5~' ' 110L0[ [}394_ 384[l _ 650 1443 {1426' ['~ 0.35 [~~6178 _ -[~ ~ 0.'12 830 2 690.5 110.0 394 385 650 1443 1427 _0.35_ 6184 1 0.12 831 2_ _ 690.5 110.0 _ 394,. ..385_. _650 1443_ 1426 _0.35 _ . _ _6181 1 _0.12 832 2 690.5 110.0 394 386 650 1443 1428 0.35 6189 1 0.12 833 2 690.5 110.0 394 382 650 1443 1421 0.35 6159 1 0.12 834 2 690.5 110.0 394 394 650 1443 1444 , _ _ _ 0.35 6257 1 0.12

  • _9783__

835 2 _690.5_ _110.0 _ 394._ _371_ _ _ _825 _ _2325_ _2258 _ 0.35 _ 1_

                                                                                                                                                                                                                                                            ~ ~ ~ ~

_ _ _ _0.12

                                                                                                                                                                                                                                      -17937'~
                                                                                                                                                                                    ~
                                                                                                                                                                                                                                                                                                          ~0.07
                                                                                   ~

836' ~2 ~ ~690'.5~ 125.0 ' ' ~39f ~ ~448- ' ' ' ~ 1000~ ~ 3882~ ~4139 ~ 0.35 ~ 1 837 2 690.5 125.0 394 412 1000 ?882 3969 0.35 17199 1 0.07 838 2 690.5 125.0 394 423 1000 3882 4020 0.35 17422 1 0.07 839 2 690.5 125.0 394 420 1000 3882 4007 0.35 17362 1 0.07 840 2 690.5 125.0 394 415 1000 3882 3982 0.35 17254 1 0.07 841 2 690.5 125.0 394 299 1000 3882 3381 0.35 14650 1 0.07 842 2 690.5 125.0 394 102 1000 3882 1974 0.35 8556 1 0.07 843 2 690.5 125.0 394 102 1000 3882 1971 __ 0.35 _ 8539 1 0.07 , 844 2 __690.5_ _ 125.0_ 394 __ _300_ 1000_ . 3882_ 3386.. _0.35 _14672_ 3 1__ __0.07 , 845._._ 2 125.0 394 414 1000 0.35 17247 1 0.07. 4 6904 3882_ 3980 , __ __ 846 2 690.5 ..125.0_ __394 _420___ , 1000 3882 4010 0.35 17377 . 1 _ _ _0.07

                                                                                                                                                                                                              ~~   ~

847 ~2 6905 125.0~~ '~394~~ 420~ 1000 ~ ~ 3882--' 4009 0 .35~ ~17372~ ~ 'T^ ~ d'.~07 848 2 690.5 125.0 394 420 1000 3882 4007 __ 0.35 17362 1 0.07 849 2 , 690.5_ 125.0_ 394 . _.420_ _1000 _ _ 3882_ 4009 _0.35 . 17373_ _1 __0.07 850 2 690.5 125.0 394 419 1000 3882 4004 0.35 3 _17349 __ _ 1 0.07 6/13/97 Page 25 of 27 Nspinput.xis

3 O (V (0/ V Intake Canal Liquefaction Analysis Prairie Island Nuclear Generating Plant Calculations for Corrected Moduli Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve - Critical Y-Center Unit Wt. FreeField Final FreeFleid FreeField Final v.,% D.(ksi) v. D ,%(ks0 Type Damping Elem. Layer (ft.) (pcf) 6.(psf) o',(psf) V (ft/sec) G (kst) G, ,,(ksf) v. D, v3 D2 # Factor 851 2 125.0 394 422 1000 3882 4018 0.35 17412 1 0.07 690.5_ _ _. 17216 , 1 ._, 852 _2 690.5 _125.0_ 394. .413 1000 . 3882_ _ . _ 3973 _0.35 _ 0.07

                                                                                                                                                                                                                                                                      ~
                                                                                                                                                                                                          ~

i~ 853 -2 690.5 125.0- 394^ ' 442'~ 'i000 3882 -4113~ ~0.35 17824~~ 1 0.07 854 2 690.5 125.0 394 346 1000 3882 3638 0.35 15763 _ __ 1 0.07 855 _2. . 690.5._ _ 120.0 394__ ,476 5000 93168 93168 _ 0.35 _.403727 6 ___0.01

                                                                                                                                                                                                                                                                                                                                                                                     ,6 93168        93168                                                                                      0.35        403727 .                                                                        ,__0.01 856     _2                  690.5.                  120.0            334 .                                        391                       _ 5000 _

857 2 690.5 120.0 394 420 5000 93168 93168 0.35 403727 6 _ 0.01 858 2 690.5 120.0 394 421~ 5000 93168 ~ ~~93168 ~ 0.35 403727 6 0.01

                                                                               ~

859 1 693 110.0 ~ '116 110' 650 1443' ~1443 0.35 ~ 6254 '1" ~ 0.12 T~

                                                                                                                                                                                                                                                                          ~

860 1 ~693 ~1 i0.0 110~ 11 ' 650 1443 ~1443 0.35' ~6254~ ~ ~ 0.12

                                                                                                                                                                                                                                ~~

861 1 ~ '693' ~ Ii0.0 ~ 110~~ ~ 110~ 650' 1443 ~1443 ~~

                                                                                                                                                                                                                                                                                                         ~ D.35 ~    ~6254                                                      ~~1                      ~d.~12 862       '1                    693 -             '11070~            110                                       ~11'0~                            65                         1443' ~~1443                                                                                          ~0.35      ~~6254                                                        ~i ' ~~ ^              ~'0 12-~
                                                                                                                                                                                                                                                                                                                                                                           ~T-
                                                                                                                                                                '                                                                 ~                                  ~~~

863 1 ~ 693' ~ 110.0 110 ~~110 ~ 650~ ~1443' 1443 ~0.35~ ~6254 ~~0.'12 ' T~' ~0.12

                                                                                                                                                                                                                                                                ~~ '

_. 693~ 110.0~ 110~ ~ 110~ ~650 1443~ ~ 1443 ~ ~ O.35 ' ~6254' ~ ~ ' 0;35 865 1 ~'693 ^ 110.0 ' T10~ ~'110~ 6

                                                                                                                                                                        ~ 50~                    ~ 1443~~~1443                                                                                                    ~6254                                                         ~~~

1 ~~' O.12~ 866~ 1~

                                                ]693]                      110.0            j10[]110[ [ 825 [                                                                                    , 2325] ](2325                 [                                 ))                                    } 0.35 , [10076                                   _

1

                                                                                                                                                                                                                                                                                                                                                                                                     ]D.12} .

867 _1 693 125.0 110 120 1000 3882 4055 0.35 17570 1 0.07 868 1 693 125.0 110 120 1000 3882 4055 0.35 17570 1 0.07 4055 0.35 17570 0.07 869 693 125.0 110 120 1000 g 3882 1 1 870 1 693 125.0 110 120 1000 3882 4055 0.35 17570 1 0.07

                                                                                                                    ~                                                                                                           ~
                                                                                   ~

871 1 ~693~ 125.0 '~ ~110 T 120~ 1000 ~ 3882 4055' 0.35 17570 1 0.07 872 1 693 125.0 110 120 1000 3882_ _4055 _ _ 0.35 _ 17570 _ 1 _ __0.07__ l __._~$$-]$k -$ - ;O$7 lN82~ 28! 7 _IN- - NN- ~!?O7

                                                                                                                                                                                                                                --                        ~~ ~-                                                                                        '       ~ ~~

h4 875 1 693 125.0

                                                                                           ~i 110                                          120                           1000                        3882        4055                                                                                       0.35         17570                                                                1             0.07 876          1                  693                                  110                                           120                          1000                        3882         4055                                                                                      0.35         17570                                                                1             0.07 125.0J___110 877     _1.                 _693_                   125.0                                                          120                          1000                        3882        4055                                                                                       0.35         17570                                                                1             0.07 878          1                  693                 125.0            110                                          120                           1000                        3882        4055                                                                                       0.35         17570                                                                1             0.07 879          1                  693                 125.0            110                                           120                          1000                        3882        4055                                                                                       0.35         17570                                                                1             0.07 880          1                  693                 125.0            110                                           120                          1000                        3882        4055                                                                                       0.35         17570                                                                1             0.07 881          1                  693                 125.0            110                                          120                           1000                        3882        4055                                                                                       0.35         17570                                                                1             0.07    :

882 1 693 125.0 110 120 1000 3882 4055 0.35 17570 1 0.07 883 1 693 125.0 110 120 1000 3882 4055 0.35 17570 1 0.07 , 884 693 125.0 1000 3882 4055 0.35 17570 _j. 1 0.07 1

                                           ,                                                110 1 120                                                                                                                                                                                                                                                                                        _

6/13/97 Page 26 of 27 Nspinput.xis

intake Canal Liquefaction Analysis Prairie island Nuclear Generating Plant j Calculations for Corrected Moduli 1 Total Feadam SASW Poisson Constr. Mod Poisson Constr. Mod. Curve Critical , Y-Center Unit Wt. FreeFicId Final FreeField FreeField Final v, D.(kst) v. D,,,w(ks t) Type Damping Elem. Layer (ft.) (pcf) c',e(psf) c',(psf) V. (ft/sec) G (ksf} Gem (ksf) v, D i v2 D2 # Factor , 885 1 693 120.0 110 120 5000 93168 93168 . _ 0.35 403727 6 . 0.01 886 1 693 120.0 . 110_ ,__120 _ _ 5000 93168 93168 0.35 .,403727 6_ 0.01 887 1 693 1200 110 120 5000 93168 93168 _ _ _ _ 0.35 403727 6 0.01 888 1 693_ 120.0.. ._ 110 _120 . 5000 93168 93168. 0.35__ ._403727 _ 6 _ ._.0.01 G(32.2ft / sec (V ) 7 P V, = I (32.2p / sec X1000)

o. p2 - 2G 2G(1 - vi)

G,eorr = 0,1 D Above Water u, = Below Water 1 " v* o 2 = (1 - 2pg ) ^ 2D2 - 2G Nc/e: 1. Canal Fill Vs=1200 fps, Building Fill Vs=1000 fps, All Fill Unit Wt. = 125 pcf, Damping 7% in Fills

2. Shear Moduli (G) for the Building has not been corrected for overburden changes. ,
3. Free Field = 60 ft. from top of canal crest, x=-199 ft
4. Poisson's Ratio, v=0.35 in soils above water. ,

i I 6/17/97 Page 27 of 27 Nspinput.xis

O l I QUAD 4M Ah INPUT FILE Nsph9a13.sar

                                                                 ]

l O l O

g----_ -.u- - - - _ - -

                                                                                                                                                                    -)

d _ l l .-- 1 J s I. I i 4' I XMAX= .0840DBE TH41 3/1/97 Ah ! ' HORIZONTAL' ACCELERATION VALUES AT THE TOP or LAYER 413 EL. 620 FT. j.' - .000007 .000003 .000010 .000006 .000014 .000012 .000022 .000025 1

                     .000043 .000071 .000193 .000357 .000596 .000951 .001427 .001872                                                2-
     .          +.002112 .002149 .001914. .001539 .001335 .001265 ,001018 .000527                                                   3-
                     .000145 .000026           000011 m.000029 .000186 .000635 .000852 .000816                                      4 l                     .000725 .000573 .000716 .001331 .001603 .000067 .001749 .004371                                                5 1                     .006257 .007773 .008490 1009415 .010160 .010667 .010457 .009752                                                 6
                     .008680 .007698           0072f8 .007392 .005764 .003521 .002161 .001064                                       7
                     .001674 .001637 .003094 .004613 .004946 .004506 .004615 .004143                                                9
                     .002442 .000553 .001191 .002962 .005320 .00710E .007095 .006173                                                 9
                     .004111 4000E24 .002537' .003749 .001947 .00027C .000153' .001342                                            10
                     .005(88 ~.009743          011560 .010711 .009440 .006439 .007402 .00C039                                     11
                     .00(276 .007722 .006716 .DC4495 .003192 .002792 ,002604 .000816                                              12
                     .000134 .003150 -.005849 4007066 .007302 .006753 .013270 .017242                                             13-
                     .019346 .019572 .020611 .019429                         017324 .01E157 .017139 .C20069                    -14 l                -.023777 .02E224               0273I6 .C24445 .0161 H .013894 .011(30 .C099Es                                     IS l                     .010165. ,006445 ,000724 .00(294                       .007335    002050 .003212 .001355                     16 i                     .002:32 .007196 .012949 .C15264                        .01511< .C15120 .016079 .015494                       17 l                     .C13381 .014379 .C20022 .U259E5 .026671 .031151 .C34691 .033114                                              16
l. .025776 .018017 .012637 .009CE7 .006756 .,007309 .010899 .012260 19
                     .011856 .015423 .020446 .022446 .C21196 .022971. 022393 .016455                                              20
                     .009047 .001548 .004403 .011146 .013456 .006423 .006726                                         012509       21
                -.016075           .017634 .011485 ,004556 .000532 .003602 .008593 .013269                                        22
                     .016299 .026313 .031211 .024830 .016452 .01736( .021709                                    .025706           23 4027646 .025443 .023440 .020169 .01(441 .0169C3 .0160f5                                       -.009404       24
                -.002795 .013:53 .C17704 .01E2 32 .0179?5 .01980s .022222                                       .023305           25
                -.023502 .017037 .007560 .C01730 .009616 .011617 .00421C                                          .005311         2C
                -.01(044 .014823 .009101 ,006543 .01512C .026225                                 .039494             04B017       27
                -    .C49411 .0427(3 .036020                0365C5          .037t'3   .02E2'     .012040 .004375                  28
                     .015744 .020832 .025600 .029154 .C264f' .C2541C .0297(I .035E51                                              29 040134- .039795 .038339 .C35544                      .0341D:    035C7f .036934 .036310                     3C
                     .0307C9 .0160E9 .0C9292 .001(35 .104515 .00934: .C;;C4' - 2002(2                                             31
                -,004755' .005917 .005965 .CC2233 .004433 .00 BESS .009000 .CO2757                                                32
                     .006445 ! .000109 .004992 .006760 .C1316: ,C28342 .045377 .05665(                                            33
               - . C f 4 4 0 r.    .0(ff35    .0737CI     .tS2525 .06526'             .C5f024    .044(9. - 033:::                 34
                -.02505:           . 02) ;25  .015 6 4 3  .015 :10 . 0113 9.          . C f. . - . 0 0'; 3 4 . 23:1 0             25
                     .010114       .015410 .017977 .016502 .01f457                    .C130:e .009003 .000591                     36
                -.0112C2           .019301 .023519 .000031 .021493 ,C21537 .021439 .CIE605                                        37
       ^ 9'     .    .C09927 "299(?

005057 .002156 .001356 .009492 .01949f .026735 .029681

                                   .029B44 .022266
                                              .02 4 6-t; 0096f4 .004C45 >C13055 .01?504. .025t44 36 39
                -. ; 31C(5 . C 307 05                     . 019e 9 2 ,         1. "- ,015935     .016D59' .013;2-40
               - 401464f .015014 .005919 .0022CC                            .001:30    *01495 .005273 .0111~'                     41
                     ,CIC(90       .003055 .004eB5 .CC5440 .0033;. ,004335 .00;454 .CO252i                                        42
                     .003237 .005004 .0C5217                00471.          .00079E   .007101 .004?15 .00(14f                     43
                     .01E645       .024813 .033157 .041965 .049175 .050900: .052E32 .C55479                                       44
                     .06365( . 004003- .C73534 .0640(3 .C62502 .0592C6 .05E838 .049537                                            45
                     .043227 .042535 .042203 .037544                        .03534C .038722 .045379 .049424                       46
                     .05007C .C50E26 .049929 .047199 .043536 .0427C7 .045054 .045246                                              47
                     .0439?5 .0379fC .03:433 .02C7': .0171!5 .003127                              009152 .016857                  49
                -.025525 .035342 .044272 .051671' .059G8: .0575E5 .052729 ,045713-                                                49
                 -.04:163          .043166 .040934 .03fB36 .032775                     026099 .020573 .017261                     50
                 -.020599 .027425 .036033 .043154 .C45022 .C4211^ .032291 .016700                                                 51
                -.C09566 .005563 .000166 .C25535 .0125EC .C11(45 .0123G3 .013411                                                  52
                     .012914' .009(87 .00(455              .008071 .006587 .00ff30 ,006254 .009(12                                53 010214 .009:45         .C13702 .024344 .0400?9 .C51950 .053720 .04Ef75                                     54
                     .03710C .030240 .0298E2 .C3235f .026SO9 .017f93 .001451 .012E14                                              55
                 -.019825 .025834 .034202 .042352 .045429 .044210 .042153 .03f071                                                 56
                      .026064 .01(930 .010549 .010435 .010935 .010751 .0Ce(16                                        00f51f       $7
                      .008271 .017009 .C25894 .030905 .029416 .C19261 .009421 .CC9530                                             SB
                 -.0154E5 .016842 .015522 .012:55 .011E59 .C12583                                 010031 .005523                  59
                 -.004671 .004545 ,002881 .000929 .00165C .C07416 .01Cf45 ,024445                                                 (0
                     .029260 .c34260 .041649 .044375 .043552 ,042704 .036495 .028e83                                              (1
                      .017316 .C10471 .005969 .000C52 .002722 .004073                             006397 .012353                  C2
                 -.0191f7 .019183 .01377C .CC92f5 .00602' .C031(9 .004064 .00466.                                                 (3                                   ,
                      .001276 .003175 .007e25 .010254 .009054 .003100 .0044C6 .009447                                             (4                                   1
                 - .00C041 .000710 .000940 .01:164 .016498 .015527 .013400 .012:57                                                65                                   l
                 -.010645 .009932 .009830 .0C5(17                           .002373 .C11997 .015959 .015033                       E6
                      .011383 .008791 .008372               00fE42            001839 .000617 .005'92 .0045E3                      67
                 -.00462E          .014134   ,013396     ,005B79          .002045     .004457 .009084 .016355                     66                                   ,
                 -.016049 .009251 .001067 .002771 .007370 .C21232 .029171 .035724                                                 69                                   l
                 -.041790 .046752 .0$0209 .054173 .057496 .049455 .C33942 .023213                                                 70
                 -.019969 .017315 .008500 .001123 .012177 .024940 .034552 .C357B6                                                 71                                   !
                      .030992 .029738 .032923 .035033 .028671 .01442( .003500 .000126                                             72
                      .005468 .017494 .030116 .042416 .051400 .060392 .066758 .066616                                             73
                      .065268- .060356 .059697 .059328 .058501 .059833 .063942 .069986                                            74

t 9 l

                   ' 071497 .067211
                    .                            . 063620   . 057675 .047495L .040599                   041184 .043242         75    '
                    . 040240 .033960           . 020772   ,  004131 .009286 .020843 .029314 .032613                           76    I
               . -. 031701 .028331 .023444 .016453 .011963 .010063 .007007 .004650                                            77
                 -.008638             .017774 -. 02E690 .030082 .032869 .033445 .030803 .031614                                   7e   .i
                --. 037271 .04390f .048135 .050867 .054627 .055029 .0505C1                                               044369   79
                 -. 034974 .025508 -.021539 .019455 .016672 .0170'E .023600 .034646                                           80     l
                 -.038695 .033766 .026249. .019657 .018836 .022246 .026709 .024640                                                81     l
                 -.019275 .01631e .01(lif .015780 .008235                                . 0034?* .01309E .016821                82
                    .017474' .017854 .017037 .017761 .020012 .022034 .024264 .024041                                              83    .
                    .018494 .008217 ,000850 .004492 .011727 .020041 .023987 -.                                           027230   84
                 -. 031220 .028979 .020321 .007991 .003223 .006010 .007389                                        . 003657   85
                 -. 003208' .016154 -.030167 .035279 .035785 .039555 .0493'? .056261                                          86
                 -   . 061226 .06f93C .072655 .079273 .061668 .08129( -. 0?fi97                                         061879   87
                 -.042(eB .024216 .008300 .005606 .015140 .01922. .019025 .016709                                                 88
                     .008063' .00E228 .01(694 .019750 .016fC4 .01f0;e .019:14 .020558                                             89
                 -, 020599 .022379 .019679 .011416 .005050 .000955                                       .010303- .017128         90
                    .021212 .023706 .0204f9 .015046 .008401 .0005(5 -.0;E054                                          .009096     91
                 -.00(055             .002059    . 009911 .01394: .018293 .0152 L                     ,  ?:1535 .015922        92
                 -   . 026322 .028799 .030109 .030581 .031529                               030ff0 .030230 .026420               93
                 -.023698 .02 f44 -.025492                     .023362 .009949 .00E3C7 .01f3:3                        . 019964   94
                     .023844 .027296- .027296 .021087 .008000 .009E32 .02E045 .03(804                                             95
                 -.031734               023141 .017472 .01665s .016116 .011C;5                           .005775 .0022E4          96
                     .013941 .021042 .0292E1 .0390E9 .045828                             . 048599 .047313 .036399               97
                     . 023964 .010366 . 001543 .000400                                                                           98
                     .010958 .012899 .013137                   . 012453 .012946
                                                                              .005074 .0144'.
                                                                                            .009526 .0173;9.01:019.024035
                                                                                                                     .010E77      99
                     .034769 .043:5! ' 047144 .045241 .03f!20 .0221e'
                                                  .                                                         G07;CE    .002 625   100
                 -.00f544             .CCF4:6 .01253E -.014E05               . ;>f65     .0159 - -.2254;            -.0:E773     101
                 -.025299 + 0:9344 -. 035290 .0400(2
                                      .                                        036244     .031 . -. 0 #'95            .0:4436    102
                 -.025437 .03(259 .052765                        064545 .067921           .04544-        .Ci:159 .0594!4         103
                 -. 05010'             .03?E    -.03: Elf .02E120 .021573                 .0155i. -. 0;t4Ee           .006842    104
                 -. 005519 .004445                .001274 .011120 .016(9E                 .0196';        .013949 .003f53         105
                 -.C00716               Cr5ES: .020307 .03592! .042:of                    .0430.            045' :     .04f974   106
                     . 043204         .04042E        0,:444 .04036t         .0364t5         040U           C44(3.     .04791E   107
                     .04C266 .043;E; .039;Bt .033642 .030949                              .0344';        .044357       .0559ff   109     )
                      .0f0770 .C59999 .055903 .051753                        .04446'         C3344f         c.2'9;     .00(913   109   'j
                 -.00:21'                :0CE99   .00670E -.0043s?           .005;&2 . ;- ' -         .     .s di s    .J01557   110     ,
                      . 001704          005045 .008936 .016142              .023699 .029s**              .0327E;       .03(E42   111
                      .040007 .04;.95 .03(204 .031450 .C2531: .0150:e .005456 .003344 9               .

005275 .0:34:0 .0142f9 .012419 ..0113(e .01.r ' .014352 .019791

                      .027054 .03C5;:

0335;; C9E: 0;1f91 .0;;49: .0;00tE 243459 .047892' 050501 . 021461 .02:;e

                                                    .25;51 .J00025 .0:7E70 .0: '

04963/

45724 .039501 u  : .
                                                                                                              .;43-613610
                                                                                                                         ;13973 112 113 114 115 11E I
                      . 01(199 .0;53f.                011794 .00749; .00:444 -. .J;;.                   -.C . C.       .00f;94   117
                 -. 00000-             ...CBE - :1507 -.017033 .01 ?f, - . . .                          - ' -;'T -. s:;F43       Ilf
                 -. 023904 .0;t9f3 . J E799 .024867                        0 13f    -.01      iOf -. );iif6        .C172E9   119
                 -.020590 .023052                 .C*3351 .021305              01917; -.017 5 5 2 . 0; E 9 E 9 . 017 E E 0       120
                 -.017056                0!!C26 -. 01346;        012451     .012037 -.011904 -.C11147 -.010419                   121
                 -.009040              .005847 -.002513         .000709 .000101            .00003: -.C00210 .000449              12;
                      .0CC533          .00377( .007:21          .0072(( .0052 5            . 0 0 4 5 F.   .00E;;E .009156        123
                     ..0099E9 .011527 .011962                   .01175! .011955 .013i3-                   .01f109 .01(29;        124
                      .013132 .009993 .006079 .006650 .004f22 .0026;2 .0;14:3                                          . 000806' 125
                  -.00]t.2 .002122                    002784 -.003350 .004500 .00(33E .0:7a?2 .00?025                            12(
                 -.00'Eif              .0:'194 -." d'I' -.0061(E             .00571!       .c05'-'        .;:( ,' -.007010       12'
                  -.007460             .007099 .00eC30 .00E264 -.006028                    .007f h.       .00'7%~      .005017   126
                  -. 006051 .006:36 .005570 .006748 .008473                            .007740        .0:E746 -.005502       129
                  -.00397(             .CCI34f -.0C;6(9         .00037C .001469 .00:536                     C;342.      .00406C  130
                      .004565 .004931 .005149 .005207 .005164 .005016                                     .004753      . 004394  131
                      . 004C29 .003716 ',0C3467                .003:59 .003106 .CO3C;f                   .0C294' .002B90        13;
                       .0026;; .002729 .002f12 .002468                       . 00:30; .0::::5               0:19:' .001702       133
                       .001449 .001160 .00:535 .000470 .000076                             .00:33.          000734 -.001118      134     i
                  -.001463             .001759 .001994 .002170 .00:264 - .00:344                            00234E       002310  135     !
                - -. 002:3; .0021:5 .001991 .001843 .001E64 -. 001524 -.0013Ef -.001220                                          136     j
                  -.001025 .000966 .000859 .000764 -.000E75 .000594 -.000511 .000429                                             137    ;
                  -.000341               000250 .000153 .000053 .00005: .000157 .000:67 .000374                                  136
                       .000480 .000561 .00Cf77 .0007(2 .000635 .000E93                                      000935 . 000958      239
                       .0009E5 .000952 .000925 .000862 .000E29 .0007(5 .000E96 .000621                                           140
                       .000546 .0004'O .000397                   000326 .000261 .000199 .000144 .000093                          141
                       .000046 .000004 .000021 .000067 .000100 .000130 .0001(2 .000193                                           142
                  -.000221 ,000249 .000274 -.000299 .000320 ,000339 .000353 .0003(4                                              143
                  -.000370 +.000372 .000366 .000360 .000346 .0003 9 .00030E .00C2B1                                              144
                  -.000252 .000222 .000189 .000157 .000124 ,000093 .000063 .000035                                               145
                  -.000000 .000015                  . 000037 .000055 .000072 .0000Bf .000099 .000109                             146
                       .00011e .0001;E .000132 .000137 .000142 .000145 .000147 .000148                                           147
                       .000149           000147     . 000145 .000141 .000137 .000130 .000123 .000114                             148
                        .000105 .000094 .000082 .000070 .00005' .000044 .000032 .000019                                          149 l-                      .000007 .000004 .000015 .000025                         00003         000041 .000047 .000052              150 i

l l QUAD 4M Av INPUT FILE Nspv8al3.sar l l l t 1 l l l I 1 i t

1 I n ' ( 1 l' l ! 1

1. l l l l:

l . XMAX= .0811DBE TH#4 3/1/97 Av I ' VERTICAL ACCELERATION VALUES AT THE TOP OF LAYER #13 EL.620 FT.

          .000005 .000001 .000004 .000096 .000160 .000073 .000031 .000096                          1 l          .000032 .000260 .000563 .000677 .0006E0 .000506 .000344 .001435                         2

) .000725 .001073 .001255, .001276 ,003516 .005233 .004554 .003768 3 g .005303 .C05327 1.002927 .003060 .005813 .006921 .005235 .007635 4 g

          .009EB7 .006784 ,009270               010527 .009900 .006965 4004212 .004129             5
          .00022( .003717 .002967 .002910 .004067 .003500 .001847 .000908                          6
          .00302; .002460 .000119 .002252 .000037 .003f34 .006E01 .006617                          7

{ .002462 .003011 .004176 .001033 .000004 .004139 .007081 .003790 - 6

          .001579 .004924 .013923 .01(572 .014005 .017490 .017260 .018587                          9 l

, .014433 .01401f .016520 .012281 .006:36 .001:27 .003041 .004816 1C

          .000016        001992 .003395 .006076 .0100e7 .014520 .015003 .017197                  11
          .021716 - 025746 .021164 .016093 .016771                .02(4f5 ,021437 .01EE35        10
  • .011560 .004571 .001014 .003992 .004471 .001544 .011474. .009751 13 l- .0104 ( .00863? .000342 .003762 .001550 .0032ff .004004 .006012 14 4 .007701 s.0041(6 .006E52 .007907 .005026 006626 .007155 .000169 15 f .007036 .00709; .001320 .000391 .0:1749 .001E01 .01:205 .017167 if i .012559 .0004B2 .0039:1 .007985 .000939 .002616 .004909 .010E40 17
          .001354 .006362 .00:069 .009112 .0166(1 .023493 .016240 .0C92 3                        18 i          .01001~ .016738 ,014341 .009024 4.005205 .002792 .004320 .003757                       19
          .007935 .012619 .013044 .016079 .016332 .020180 .0229 9 .019244                        20
          .01615: .011(17 .010312 .009376 .02135C .020702 .0159:3 .011222                        21 i
          .000770 .0 4EBS .003521 .004257 .001724 .037646 .001497 .001390-                       22
          .004290 .000739 .000089 .003945 .009795 ,010431 .012200 .001442                        23 i
          .001. 7        006779 .00EE44 .010913           020f45 .C34994 .04(449 .031589         24

) .021,:: .c;75'4 .C20596 .019572 .01954 C3Ef73 .042?5C ,0393f! '. I .02434 .0244'; .025629 .017:49 .0126;0 .017495 .011612 .005594 :c L

           .00:4~     .004939 .003f35         .014047 .0149:5     .C1~905    .015034 .016090     2"

!, .01., . 0 21. 4 f .016311 .C;3799 .02015f .0304:. .009523 .035:44 2:

          .039:W. .039995 .040372 .034B15 .0306(5 .039963                     045246 .05:574     29 l-          .054?- - 5337E .04500E .036450 .0213C4 ,01E221                    .01295    .000(51   :

[ i .0:;;i- . C ;f 91: 01595; 014182 .02035: .:;307i .010:(9 .010429 3; l .00946; .001801 .00774: .004:57 ,00SE94 .004067 .010166 .015557 3: I .02; '. .C:f744 .029231 ,02fE39 .011:39 .012322 .010325 .00459E 3?

           .000:4F    .0:5925       00034( .009313 .013073 .0;1426 .009135             ,0Ct596   34 l'          .0165(5
           .00Fki 0:2(47
                         ..:v_.
                                  .01(471 .0 5742 .0:136
                                  .005143 .001955 .00941:
                                                                  .02{964 .013:09 .00.f9t
                                                                  .;;29;5 .006437 .C13709 35 3f l

j .00649, 00Ch91 .009E01 .000402 .005139 .004EfB .000:06 .00E114 .3' i . ..(96 (31C . .017562 .010443 .016:11 .013590 .005054 .007251 36

           .0:32-      ..  ' / - '.1427 .0;is : .0 ;244              . ,4 F:  '.93G5 .0 fi30        $
          . 035    "
                       .00241~      2275,4     .CO'404 .01*+59 . ;;;,. . 12444         .00414.   ,~
           . 0 0; ;  3 + . ' 0. : . . .0;2736 .0;; tee .00C291    .004^37     C;;f54     :C9271  ..
           .C;;46     .s:47;-     .024E::      .01E23C   .00.:4,  .01'!i!    . 191:0 .017;!1     4:
           .00;14:       011:(:   .C;2907      .01430'   .01759:  .;;5064 .0155f9 . 02 Ciil      43
           .02113E     .:19057 .01194: .01:315 .005555            .0002i5    .004434 .004160     44
           .0;;E22    .0136,0     .0005(4 .0C0711 .001097 - 0 f167 .000091 .015E79               45
           .C15(15     .01525E      007495 .010967 .005726 .0:2976 .013914 .011957               4f
           .005354       CC633; .01296; .021021          .0 33 E .031:16 .007324 .009403         47
           .0002e3     .~m5496    .009956    .C0947E .0011E9 .005P3; .013166           .014 C2   4E
           .018641 .014031 .019703 .0109ef .00914E .015630 .02750E .02E263                       49
           .010'3:     .010222 .022E42 .013525 .009203            .009E 4 .011993 .0009:5        50      i
           .00:1,.       !Od415 .01705: .000909 .011305            .^10e;'   .005760 .0052(3     Si   j
           .0"JiiC C     00(9 E 9   0CC 36 9   .006 E71  .020f;s   .024:55 .007796       00(5E0  5:
           .0170(3 .0190f; .009102 .006277 .0139ff .C22575 .01506) .000976                       53     ;
           .000147 - 00C029 .00&f0: .003000 .012530 .025f47                  .015E(1 .011790     54    )
           .0109fE .016335 .004137 .001126 .000923 .000537 .006:37 .010946                       55 i

l

           .000967 .000356 .017561             .014E9s .014964 ,019314       .017077 .00454      56
           .0043:5 .00101         .0:5501 .C0:256 .00C54C           C O 2' S .015495 .02'595     57
           .0279;9 .027907         .027534 .02:529 .01769-        .024974 .022095 .009(18        56
           .003:9f .000140 .009145 .009E94 .007031 .0164 36 .C24251 .0143 93                     59   ,
            .010674 .006526 .030899 .047C91 .046629 .050424                  .056546 .050(41     (- 0   i
            .043947    . 031E05    .027030 .02:274 .012249          013'3! .0064.0 .0090f0       El    j
            .0202E1      013Et; .006099 .011784 .014923 .01115;                01:441 .007251    (;
            .015e0: .014496 .004570 .001236 .000695 .012412 .01930                     .C16697   E3
            .013109 .017391 .011035 .002999 .000004 .01est: .006297 ,00395                       64
            .010179 .017224 .028903 .025502 .023795 .021986 .015344 .008092                      65
            .002700 .00(34f .002800 .005511              .0025 4 .001564 .002420 .008054         6f
            .003C75 .003938 .0005B0 .003418 .00s264                .004774 .00249; .C01869       67
            .006472 .019191 .035934 .032712 .027771                .027135 .020505 .018614       6E
            .003507 .007896 .000922 .007417               006000 .000377 .003003 .012410         E9
            .015555 .00(596 .007699 .009747 .007969 .0:1351 .02328                      .013204  70
            .013076 .C26955 .026119 .013119 .010457 .02664~ .018412 .004374                      71
            .004928 .015512 .0122E2 .001487 .005042 .029792 .012957 .008180                      72
            .001555 .005111 .002422 .012136 .002E11 .014685 .007426 .005795                      73
            .000274 .011332 .002459 .006034 .006396 .006782 .006:5E .017308                      74

pl - 1 L. . gs 1 Y J: f . ' .014132 .004214' .009633 .010507 .007459 .008998 .013693 .018292 75 f- . .005058 .000950 .003884 .001780 .006967 .005940 .013810 .023159 .76 j .026714 .028466 .020216 .013383 .014058 .019144 .008973 .009929 77 4 .006025' .008284 .004835 009032 .026753 .021837 .005661 .00214C 78

                       .009933 ,005470 .008793 .006563 .008428 .020559 .008300                                            000151'       79 l                ,      .004288 .0C4324 .001775 .00E493 .024313 .028413 .012689 .01143;                                                  80 y~

g 1 .018546 .022679 .023209 .019104 .029500 .028703 .007639 .01001E 01 e .011681' .011732 .008345 .002939 .014128 .0198E5 .014346 .00505' 82 3 .010938 .009085' .007119 004332 .013106 .006045 .007:11 .0113C6 83

                       .011636 .014571 .013600 .001982 .003615 .009204 .017411 .020754                                                  84
                       .020888 .028271 .028334 .C33283 .037396 .031659 .019153 .010394                                                  85

, .007349 .00 430 .008237 .003791 .005123 .000893 .001117 .00692.. ef

  • - .021247 .032277 028371 .03C970 .044901 .053226 .040459 .053945 87 l L- .063264 .058544 .061065 .;E7:4' .061608 .043504 .022743 .C21492 85 8 .003410 .007714 .01741E .C 4251 .016462 .005664- .000248 .C0E32?  : 69 4 .003909 .007658 .0-12042- .01(f92 .020230 .028059 .02(233 - 022094 90 l .019711 .016171 .00s1E5 .005(97 .000076 .004347 .0056(; .0045;; 91
                       .00;72(      002035 .011575 .010;ES               .001447 .0020?9 .00?574 .0:1925                                92-l                           00R989 .009509 .003619 .01:550 -.01(031 .027322' .041537 .033960                                             93
4. .026559 .043700 .0400Bi .01844: .011447 .018617 .025390 .C23744 94

{ 1

                       .012092 ,00577C .002109 .000061 ~.000113                         .003674 4003(45              .CC'0{(            95 4                        .006535 .002043 .0C3785 .0005f! .005570 .013725. .013:15                                    ,00':94             9t
                        .001463 .002402 .008609 .011f77 .022355 .023527 .02:374                                      .00711C            97 f                           004322 ,000563     001777 .005792 .013751 .011963 .021535                                        033324      96
                        .040338 ,037229 4036f05 .04157f .041224 .C34010 .021737                                      .012f7~            99
.011257 .0C39E7 .00404 .004C45 .019086 .01487( .0C2f9 .0;0c*4 10 i .024496 .017327 00 t4~ .00373t .009002 .0027;6 .000E3 ."'3e9? 10; l .017(07 . cit';7 .01076; .0
05f7 .013472 .001137 .0072;; .02.35~ 10;
                        .0C1217 .009f53 .016;E;                0:5579 .032f61 .C29491 .016499 >G1196!                                  IC3
                        .01E{35 .C172f4 ~ . !;11 F .;,'96; . 00714 7 ' . 0 05'^ ^
                         ~

0215 H 0;2 ? - .04 i .015205 .016012 .C15-95~ .009754 .001624 002921 .010407 .003; r! 105 j -

                        .004313 .C02947 .00.939 . 0.4EE .00'583 .004f40 .004499 .G:, !?                                                ICE
                        .03(634 .C40'75 . 35953 .C3439. .030607 .019:$5 .CO 94E .0:4(e,                                                107 g                       .00C214- .0145?( .CC9930                ..t'..'   .011047        .00023.       .C045!3                   :(123  1Ce

. .00 023~ 00;Cli .0to:P1 .229ff:- .013035 .0179hs 0227;.  ::#: 39 109 - ! .006771 .007445 .0:3;; .205 34 . 00 6C 4 4 . 010 9f 9 . 01195. .:::2;: 11: l 025156 .017768 .014f3- .0;3f59 .000372 000629 .012Cf5 .C1449' 111 1

                        .0191B1     01367;   .00!CC,         .004355 .002647 .004567 .01166;                          .0 341r          112 l                        .013fs2 .019:4; .C23ic4 .02454; .016368 .006141 .004f54 .000:59                                                113
                        .00f396 .014447 .014;:2              ..;'2C6     .023045         022307 .0183E2 .0:2E 99                       114
                        .01395i    .00979    .^.;9:        - ,;f;35      .01{999 .01951C .0153:' .s.??9.                               ;;S
                        .C19159 .0 GC56 .0139'                    ...e. 0037El .001f:9 .CCSf;.                            '.:.-      .;i

! .01;1 0 .C;06;E .:.:' - C;5i .C14275 .C152;. .0; '3' . :(196 11' l 0 930' .C179;' . it: - :. '. .017309 .01;'92 .;03: 2  :.. ':  ;;f

                        .007(f7 .00163(       ';EEe-         .0;     42 .00B454 .00BC27 .CC795                               .074;. 119
                        .008965 .011227 .C;f;;5 .C;E3:9 .016721 .0140E7                               .01340" .3112:'                  12;
                        .006920 .C05409 .C09(2;              .005C41     .C00719 .0004(4 .00159- .;;;9 1                               121
                        .000950 .000373 .0CC09' .0:5(06                   0064(3 .007084 .0063f                       .0c904           12;
                        ,00s356 .00f224      .0 392'         .005396 .004363 .0028(; . 0 0 9l. 5                      .2C4994          I;?
                        .00f41!    .0043:4 .0042:3 .0039:4 .001183 .00:5;9 .00Cf54                                     .CC70f-         124
                        .007566 .0066f4 .006125 .003947 .004158 .006400 .006973 .0047;.                                                125
                        .004660 .003929 .00:43;                000449 .001247 .001492 .00:580                         ,0C374           12f
                        .003355 .003:42 .00:!;9 . L;(e;                  .002799 .0C216c               0C:59( .0 .1.                   127
  • .001 3f .0;14E5 .0C073; .000544 .000464 .00C192 .0000L: 00:3;' ;26 l .000270'.0001f9 .00C0f9 .000C5E .000019 .000004 .00C031 .0000:4 129
                        .000026 .000015      .0000 9         .000i::     .000007 .0000:5 .00000f .00:00?                               130 l-g
  • 000004
                        .           000001 .000000 .0C0002 .000000 .00000. .000003 .000:C2                                             131

! .000002 .000000 .000CCC .C00C00 .000001 .000002 .0000C1 .0000C: 13:

                        .000000 .000001      .000t':           C00!t.    .C00001 .000002              .C000:*         .0 ;D:           ;33 l-g                       .000CC0 .000001 .000000 .000002 .000000 .0000C2 000CCC ,00:0:1                                                 134 3 -~                     .000000 .000002 .0000C0 .00000: .C00000 .000002 .00000C .000002                                                135
                        .000000 .000002 .0000;$              .000002      000000          000002 .000000 .00:00;                       13i
                        .000000 .000CO2 .0C000C .000CO2 .000000 .000002 .00000                                         .00000:         137
                        .0000C0 .000002 .000000 .00000                   .000000 .0C0002              .0000 ; .00;C;;                  139
                         .000000 .000002 .000C00 .000002 .C0000C --.00000;                            .000000 .00C0:2                  139
                        .000001 .000002 .000001 .00002: .000001 .000002 .000001 .0000:2                                                14C
                        .000001 .000002 .000001 .000002 .000001 .000002 .00000; .0000C:                                                141 I                        .000001 .000002 .000001 .000002                  000001 .000CO2 .00000' ,0C0 0.                               14; l                         .000001 .000002 .000001 .0000C2 .000001 .000002 .000001 .00000:                                               143 l                         .000031    000002 .00C001 .000002 .000001 .000002 .000001 .000002                                             144 s                         .000001 .000002 .000001               000002 .000001 .000002 .000001 .000002                                  145
                        .000001 .000002 .000001 .000002 .000001 .000002 .000001 .000002                                                14f d
                         .000001 .00000      .000001 .000002 .000001 .00000: .00000: .000002                                           147 i                        .000001 .000000 .000001 .000002 .000001 .000002 .000001 .000002                                                146
;                        .000001 .000002 .000001 .000002 .000001 .000002 .000001 .000002                                               149
                        .000001     000002 .000001             000002 .000001 .000002 .000001 .000002                                  150 W

9 i l

i i l t j QUAD 4M .i - SOIL CURVES FILE i Nspsoil.dat 4 e i f i I 4 l s I t i 1 i i 1

                                                                                         . . - ~ -     - -

[% \ i Filet Nspsoil.dat (N._<) > 6 < 11 30S1 (SAND CP=.25 KSC) MODULUS REDUCTION CURVES, FEB 1988

            .0001      .000316        .001    .00316      .01  .0316         .1  .316
1. 3.16 10.
1. .98 .93 .85 .72 .49 .25 .1
               .07           .06        .05 9         1 DAMPING SAND - TEBRUARY 1971
            .0001          .001       .003        .01     .03       .1       .3     1.

10.

1. 1.6 3.12 5.8 9.5 15.4 20.9 25.

25.5 11 30S2 (SAND CP=.50 KSC) MODULUS REDUCTION CURVES, FEB 1988

            .0001      .000316        .001    .00316      .01  .0316         .1  .316
1. 3.16 10.
1. .99 .95 .89 .77 .58 .32 .16
               .09           .07        .06 9         1 DAMPING SAND - FEBRUARY 1971
            .0001          .001       .003        .01     .03       .1       .3     1.

10.

1. 1.6 3.12 5.8 9.5 15.4 20.9 25.

25.5 11 30S3 (SAND CP=1.0 KSC) MODULUS REDUCTION CURVES, FEB 1988

            .0001      .000316        .001    .00316      .01  .0316          .1 .316
1. 3.16 10.
1. 1. .97 .92 .82 .65 .4 .2
               .12           .08        .06 9         1 DAMPING SAND ~ FEBRUARY 1971
            .0001          .001       .003        .01     .03       .1        .3    1.

10,

1. 1.6 3.12 5.8 9.5 15.4 20.9 25.

25.5 11 3034 (SAND CP=2.0 KSC) MODULUS REDUCTION CURVES, FEB 198B

            .0001      .000316        .001    .00316      .01  .0316          .1 .316
1. 3.16 10.
1. 1. .98 .94 .86 71 .48 .25 l

Q / 9

               .15           .11        .09 1 DAMPING SAND - FEBRUARY 1971
   \_/

s .0001 .001 .003 .01 .03 .1 .3 1, 10.

1. 1.6 3.12 5.8 9.5 15.4 20.9 25, 25.5 11 30S5 (SAND CP=3.0 KSC) MODULUS REDUCTION CURVES, FEB 1988
             .0001      .000316        .001   .00316      .01   .0316         .1 .316
1. 3.16 10.
1. 1. .99 .97 .9 .77 .57 .34
                  .2          .13       .11 9         IDAMP!NG SAND - FEBRUARY 1971
             .0001          .001       .003        .01    .03       .1        .3     1.

10.

1. 1.6 3.12 5.8 9.5 15.4 20.9 25.

25.5 8 .01 SHEAR MODULUS IN ROCK (SHAKE 88 CURVES)

             .0001      .000316        ,001    .00316     .01   .0316         .1     .1
1. 1. .99 .95 .9 .81 .73 .55 5 1 DAMPING IN ROCK (SHAKE 8B CURVES)
             .0001          .001         .01         .1     1.

l .4 .8 1.5 3. 4.6 p ( l I l 1

i ! N l i Shear Modulus Reduction Curves for Clay f-Clay Curves l ( May 1972 y PI=0-10 PI-1120 PI-21-40 Pl=41-80 PI>81 (%) G/G.o G/G., G/G., G/G. , G/G., 0.0001 1 1 1 1 1 0.000316 0.001 0.974 0.997 0.999 0.995 1 0.00316 0.915 0.974 0.98 0.982 0.979 0.01 0.786 0.881 0.92 0.934 0.937 0.0316 0.574 0.674 0.78 0.819 0.85 0.1 0.312 0.425 0.532 0.61 0.713 0.316 0.16 0.22 0.293 0.41 0.545 1 0.06 0.076 0.137 0.202 0.336 3.16 0.02 0.03 0.075 0.118 0.18 10 0.006 0.01 0.025 0.035 0.06 l Shear Modulus Reduction Curver. Sands and Clays i.. g 1 0.9 ,; 0 18 0 .7  % . ::=. - . = ' ()

 ,m E

L J 0.6

                                           \\ . . i, ,

C Cp=025 bc Sun 88 Cp-0.5 bc Sun 88 0.5 '.='. g ,, -

                                                                      ',-                                  f. Cp=1.0 bc Sun 88
          $ 0.4                                               '4 t           '.                              O    Cp=2.0 bc Sun 88 f

g .

                                                                                                      -- 41(---Cp=3.0 bc Sun 88 5    Pl=0-10
          $   0.2 -
                                                                                      *               * * + Pl=1120
  • Pl=21-40
                                                                                                                                                      ]

0.1 A - j - e Pl=41-80 l l i** ,,; l + - Pl>81 0.0001 0.001 0.01 0.1 1 10 Cyclic Shear Strals (%) i 6/24/97 Shearcrv.xis

AllClays Are The Same Cyclic Str Clay Sh Sand Sq Rock Clay Pl,0- Clay PI,1 Clay Pl,2 Clay PI,4 Clay Pl, > Sand Cp=0.2 Sand Cp=0.5 Sand Cp=1. Sand Cp=2 Sand Cp=3.0 ksc (Same as 1 (Same as 1.0 ksc) 0.0001 2 1 0.4 2 2 2 2 2 2 1 1 1 1 0.001 2.5 1.6 0.8 2.5 2.5 2.5 2.5 2.5 2.5 1.6 1.6 1.6 1.6 0.00316 3.5 3.12 3.5 3.5 3.5 3.5 3.5 3.5 3.12 3.12 3.12 3.12 0.01 4.75 5.8 1.5 4.75 4.75 4.75 4.75 4.75 4.75 5.8 5.8 5.8 5.8 1 0.0316 6.5 9.5 6.5 6.5 6.5 6.5 6.5 6.5 9.5 9.5 - 9.5 9.5 0.1 9.25 15.4 3 9.25 9.25 9.25 9.25 9.25 9.25 15.4 15.4 15.4 15.4 0.316 13.75 20.9 13.75 13.75 13.75 13.75 13.75 13.75 20.9 20.9 20.9 20.9 1 20 25 4.6 20 20 20 20 20 20 25 25 25 25 3.16 26 26 26 26 26 26 26 10 29 25.5 29 29 29 29 29 29 25.5 25.5 25.5 25.5 Damping Ratio Curves 30

                                                                                                                                                                                                                  +0ay Shear Modulus
                                                                                                                                                                                                                   -G-Sand SqRt Ret 25                                                                                                                                                ji       + Rock                                                                                                                                                                                                       i
                                                                                                                                                                                                                  -M-Ony Pf,0-10
                                                                                                                                                                                                                  -N-Gay PI,10-20 g]20                                                                                                                                                             -@-Cay PI,20-40
                                                 .g                                                                                                                                                                      Gay PI,40-80 al    15 Osy PI,>to
                                                                                                                                                                                                                  -+-Sand Cp=0.25 ksc
                                                 .{E
                                                                                                                                                                                                                  --$--Sand Cp=0.5 kse                                                                                                                                                                                         '

O 10 -

                                                                                                                                                                                                                  - G-Sand Cp=1.0 ksc                                                                                                                                                                                          ,
                                                                                                                                                                                                                  --dr-Sand Op=2.0 kse 5

Sand Cp-3.0 kse n JL , l Ak 0l ' O.0001 0.001 0.01 0.1 1 10 t Cyclic Sheer Streis (%) 6/24/97 Curves.xts i

   . . . . _. . . _ . . _ . . _ _ . ... .... _ . . . . _ - _ . _ . . _ _ . . _ . . - _ . _ . _ . . . . _ . . _ _ _ _ . , _ _ . _ . _ . . ~ . _ . . _ _ _ _ _ _ _ _ _ . _ . _ . . _ . _ - _               _. _ __ _ _ _

e i i-i i t a 4 1 l 1 J .I a 1 1 l QUAD 4M OUTPUT FILE Nspq9a. opt 4 3 t l 't e i 4 d 1 1 e 4 f 1 r 3

                                                                                                                                                                                                                        'l 1

l 6 6

                                                            ,--                                                                                                                                                                                                                           (      .
                                                                                                                                                                                                                                                                                                                                                 , ~5 (v)                                                                                                                                                                                                                            v;

( (%)

                                                                                             .e**            ............**e.......*                                                          ***.****....**....*** .
                                                                                             ****.........** ..*****                                                         .......***...e******.                                                    **e.**
                                                                                             ** QUAD 4M                             A COMPUTER PROGRAM EVR EVALUATING THE **
                                                                                             **                                      SEISMIC RESPONSE OF SOIL STRUCTURES                                                                                            **
                                                                                             **                                                             U.C. Davis, 1993                                                                                        **
                                                                                             "                                                    by Martin Byrd Hudson,                                                                                            **
                                                                                             **                                                              I.M.Idriss,                                                                                            **

and Mohsen Beikae

                                                                                             "                  MODIFIED FROM QUAD 4, 1973                                                                                                                          **
                                                                                             **                                                   by I.M.Idriss,                                                                                                    **
                                                                                             **                                                             J. Lysmer,                                                                                              **
                                                                                             **                                                             R. Hwang and                                                                                            **
                                                                                             **                                                             H. Bolton Seed                                                                                          **

NSPQ9A-PINGP-Intake Canal Liquefaction Analysis HORIZONTAL ACCELERATION INPUT FILE: NSPHtE13.SAR WITH FIRST LINE: XMAX= .0840DBE TH#1 3/1/97 Ah VERTICAL ACCELERATION INPUT FILE: NSPV8A13.SAR WITH FIRST LINE: XMAX= .0811DBE TH94 3/1/97 Av 1 NO. OF ELEMENTS = 888 NO. OF NODAL POINTS = 959 C2GREES OF FREEDOM = 1918 HALF-BANDWIDTH = 130 CONTROLLING ELEMENT = 1 NO. OF FIXED BNDRY CONDS. = 126 NO. OF ITERATIONS = 5 TOTAL EQ. POINTS READ (KGMAX) = 1200 LAST EQ. PTS. USED (NIEQ TO KGEQ) = 1 1200 INT. EQ. PTS USED (N2EQ TO N3EQ) = 1 1200 TIME INTERVAL OF RECORDS = .0100 SECONDS STRAIN CONVERSION FACTOR = .6500 DAMPING RATIO REDUCTION FACTOR = 1.000 PREDOMINANT INPUT MOTION PERIOD = 7000 SECONDS EQ. MULT. FACTOR (HORZ. COMP.) = 1.0000 MAXIMUM ACCEL. USED (HORZ. COMP.) = .0840 EQ. MULT. FACTOR (VERT. COMP.) = 1.0000 MAXIMUM ACCEL. USED (VERT. COMP. ) = .0811 0 STRESS HISTORIES REQUESTED, 10 ACCEL HISTORIES REQUESTED, O SEIS COEFF HISTORIES REQUESTED OUTPUT FILES ARE AS EVLLOWS: 06/24/97 Page1Of49 nspq9a. doc

s ~. s.3 f )

                                                                                                                                                                                                        .I f y\                                                                                                    b     \
  %/                                                                                                                                                                                                        )                                                                                                          .Y NODE          536,              X DIR IN FILE: NSPQ9a.Q4A NODE          536,              Y DIR IN FILE: NSPQ9a.Q4A NODE           640,             X DI.1 IN FILE: NSPQ9a.Q4A NODE           640,             Y DIR IN FILE: NSPQ9a.Q4A NODE            641,            X DIR IN FILE: NSPQ9a.Q4A NODE            641,            Y DIR IN FILE: NSPQ9a.Q4A NODE            943,            X DIR IN FILE: NSPQ9a.Q4A NODE           943,             Y DIR IN FILE: NSPQ9a.Q4A NODE            945,            X DIR IN FILE: NSPQ9a.Q4A NODE           945,             Y DIR IN FILE: N5PQ9a.04A FINAL CONDITIONS OF NODES SAVED FOR RESTART IN FILE: NSPQ9a.04R SOIL DATA TAKEN FROM FILE: NSPSOIL.DAT MATERIA TYPE NO.
   ........L                 ..............

1 MODULUS: 30S1 (SAND CP=.25 KSC) MODULUS REDUCTION CURVES, FEB 1988 DAMPING: 1 DAMPING SAND - FEBRUARY 1971 STRAIN G/Gmax STRAIN DAMPING

           .0001                    1.000                                                             .0001                                                                               1.00
           .0003                      .900                                                            .0010                                                                               1.60
           .0010                      .930                                                            .0030                                                                               3.12
           .0032                      .850                                                            .0100                                                                               5.80
           .0100                      .720                                                            .0300                                                                               9.50
           .0316                      .490                                                            .1000                                                                       15.40
           .1000                      .250                                                            .3000                                                                       20.90
           .3160                      .100                                                    1.0000                                                                              25.00 1.0000                      .070                                            10.0000                                                                                     25.50 3.1600                       .060 10.0000                         .050 MATERIAL TY
   ..**........PE NO....... 2.**

MODULUS: 30S2 (SAND CP=.50 KSC) MODULUS REDUCTION CURVES, FEB 1988 DAMPING: 1 DAMPING SAND - FEBRUARY 1971 STRAIN G/Gmax STRAIN DAMPING

           .0001                     1.000                                                             .0001                                                                              1.00
           .0003                      .990                                                             .0010                                                                              1.60
           .0010                      .950                                                             .0030                                                                              3.12                                                                                                                               )
           .0032                       .890                                                            .0100                                                                              5.00                                                                                                                               ,
           .0100                       .770                                                            .0300                                                                              9.50                                                                                                                               i
           .0316                      .500                                                             .1000                                                                       15.40
           .1000                       .320                                                            .3000                                                                      20.90                                                                                                                                      ,.
           .3160                       .160                                                    1.0000                                                                             25.00 1.0000                      .090                                             10.0000                                                                                    25.50 3.1600                       .070 10.0000                         .060 06/24/97                                                                                                                                                                       Page 2 of49                    mpq9a. doc F
                                                                                                                                                                             -                                                                                                             e m.

fy

                                                                                                                                                                                     /                                                                                                 t              1 (w/I                                                                                                                                                                 .t
                                                                                                                                                                            %J                                                                                                          Q/

MA 3

             .*.T.ERIAL.           TYPE
                            ..... **         NO.

MODULUS: 30S3'(SAND CP=1.0 KSC) MODULUS REDUCTION CURVES, FEB 1988 DAMPING: 1 DAMPING SAND - FEBRUARY 1971 STRAIN G/Gmax STRAIN DAMPING

                            .0001          1.000                .0001                                   1.00
                            .0003          1.000                 .0010                                  1.60
                            .0010            .970                .0030                                 3.12
                            .0032            .920               .0100                                  5.80
                            .0100            .820               .0300                                  9.50
                            .0316            .650               .1000                           15.40
                            .1000            .400               .3000                          20.90
                            .3160            .200         1.0000                               25.00 1.0000             .120       10.0000                                 25.50 3.1600              .080 10.0000                 .060 MATER              TYPE NO. 4
             ......IAL        ..............**

MODULUS: 30S4 (SAND CP=2.0 KSC) MODULUS REDUCTION CURVES, FEB 1988 DAMPING: 1 DAMPING SAND - FEBRUARY 1971 ST:'AIN G/Gmax STRAIN DAMPING

                            .0001          1.000                 .;001                                  1.00
                            .0003          1.000                .0010                                   1.60
                            .0010            .980                .0030                                 3.12
                            .0032            .940                .0100                                  5.80
                            .0100            .860                .0300                                  9.50
                            .0316            .710               .1000                            15.40
                            .1000            .480                .3000                          20.90
                            .3160            .250         1.0000                                25.00 1.0000             .150       10.0000                                 25.50 3.1600             .110 10.0000                .090
             . MAT.ERI
                 .. .... ...      AL. . TYPE. .NO..5..

MODULUS: 30S5 (SAND CP=3.0 KSC) MODULUS REDUCTION CURVES, FEB 1988 DAMPING: 1 DAMPING SAND - FEBRUARY 1971 STRAIN G/Gmax STRAIN DAMPING

                            .0001          1.000                 .0001                                  1.00
                            .0003          1.000                 .0010                                  1.60
                            .0010             .990               .0030                                  3.12
                            .0032            .970                .0100                                  5.80
                            .0100            .903                .0300                                  9.50
                            .0316            .770                .1000                           15.40
                            .1000             .570              .3000                          20.90
                            .3160             .340        1.0000                                25.00 1.0000             .200      10.0000                                25.50 3.1600             .130 06/24/97                                                                             Page 3 of 49                                                                                           nspq9a. doc

( {,-

                                                                 'Q
                                                                          }                                                                                                              (i I

Q) (

                                                                                                                                                                                                                                                                                                           %._)

l 10.0000 .110-MATERIAL T 6

                                                                    . . . . . . . . . . .Y...PE.NO.             .                         ..

MODULUS: .01 SHEAR MODULUS IN ROCK (SHAKE 88 CURVES) DAMPING: 1 DAMPING IN ROCK (SHARE 88 CURVES) STRAIN G/Gmax STRAIN DAMPING

                                                                               .0001                          1.000                                 .0001         .40
                                                                               .0003                          1.000                                 .0010         .80
                                                                               .0010                                .990                            .0100        1.50
                                                                               .0032                                .950                            .1000        3.00
                                                                               .0100                                .900                           1.0000        4.60
                                                                               .0316                                .810
                                                                                .1000                               .730
                                                                                .1000                               .550 UNDERLYING STRATUM DATA:

UNIT WEIGHT: 130.000 PCF SHEAR WAVE VELOCITY: 1500.00 FT/SEC COMPRESSION WAVE VELOCITY: 2550.00 FT/SEC 1 ELM NODE 1 NODE 2 NODE 3 NCDE 4 MAT.T E DENSITY POISSON R. GMX SH. MODULUS DAMP. RATIO AREA (PCF) (KSF) (KSF) (FT^2) 1 1 2 65 64 5 130.000 .480 4052.000 4052.000 .070 1800.000 2 2 3 66 65 5 130.000 .480 4051.000 4051.000 .070 1800.000 3 3 4 67 66 5 130.000 .480 4047.000 4047.000 .070 120.000 4 4 5 68 67 5 130.000 .480 4045.000 4045.000 .070 120.000 5 5 6 69 68 5 130.000 .480 4043.000 4043.000 .070 90.000 6 6 7 70 69 5 130.000 .480 4042.000 4042.000 .070 90.000 7 7 0 71 70 5 130.000 480 4040.000 4040.000 .070 90.000 8 8 9 72 71 5 130.000 .480 4037.000 4037.000 .070 90.000 9 9 10 73 72 5 130.000 .480 4032.000 4032.000 .070 54.000 10 10 11 74 73 5 130.000 .480 4025.000 4025.000 .070 54.000 11 11 12 75 74 5 130.000 .480 4012.000 4012.000 .070 54.000 12 12 13 76 75 5 130.000 .480 3992.000 3992.000 .070 54.000 13 13 14 77 76 5 130.000 .480 3961.000 3961.000 .070 54.000 14 14 15 78 77 5 130.000 .480 3919.000 3919.000 .070 54.000 15 15 16 79 78 5 130.000 .480 3874.000 3874.000 .070 36.000 16 16 17 80 79 5 130.000 .480 3817.000 3817.000 .070 54.000 17 17 18 81 80 5 130.000 .400 3738.000 3738.000 .070 51.000 10 18 19 82 81 5 130.000 .480 3646.000 3646.000 .070 54.000 19 19 20 83 82 5 130.000 .400 3546.000 3546.000 .070 54.000 20 20 21 84 83 5 130.000 .480 3441.000 3441.000 .070 54.000 21 21 22 85 84 5 130.000 .480 3336.000 3336.000 .070- 54.000 22 22 23 86 85 5 130.000 .480 3235.000 3235.000 .070 54.000 23 23 24 87 86 5 130.000 .480 3136.000 3136.000 .070 42.000 24 24 25 88 87 5 130.000 .480 3071.000 3071.000 .070 42.000 25 25 26 89 88 5 130.000 .480 3031.000 3031.000 .070 42.000 26 26 27 90 89 5 130.000 .480 2990.000 2990.000 .070 30.000 27 27 s2 ^1 90 5 130.000' .480 2952.000 2952.000 .070 60.000 06/24/97 Page 4 of 49 nspq9a. doc

                         . _ _ _ _ _ _ _ _ _ . _ _ _ _ . _ _ _ .            _ _ _ . _ .         _                   _ _ _ _ _ _ _ _ _ _ _                                                    __    _ _ _ _ _                           _    - _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____ ____ _ ______ m       _ _ _ _ _ . _ _ _ _ _ _
                                                                                                                    --__ ~ ~ - - - . . .           ...._   .._ _ m
                                                                                                                                                         ~

28 28 29 92 91 5 130.000 .490 2917.000 2917.000 .070 60.000 29 29 30 93 92 5 130.000- .490 2894.000/ 2894.000 .070 60.000 30 30 31 94 93 5 130.000 .490 2872.000 2872.000 '.070 60.000 'j 31 ' 31 32 95 94 5 130.000 .490 2848.000 2848.000 .070 60.000 32 32 33 96 95 5 130.000 .490 2848.000 2848.000 .070 60.000 i 33 33 34 97 96 5 130.000 .490 2872.000 2872.000 .070 60.000 i 34 34 35 98 97 5 130.000 .490 2894.000 2894.000 .070 60.000 . 35 35 36 99 98 5 130.000 .490 2917.000 2917.000' .070 60.000  ! 36 36 37 100 99 5- 130.000 .480 2953.000 2953.000 .070 60.000 -(

                                                            .480                                                          .070;            30.000                     ;

37' 37 38 101 100 5 130.000 2991.000 2991.000 38 38 39 102 101 5 130.000 .480 3032.000 3032.000 .070 .42.000 j 39 39 40 103 102 5 130.00C .480 3073.000' 3073.000' .070 42.000 40 40 41 104 103 5 130.000 .480 3138.000 3138.000 .070 42.000  ; 41 41 42 105 104 5 130.000 .480 3237.000 3237.000 .070 54.000 5 42 42 43 106 105 5 130.000 .480 3338.000 3338.000 .070 54.000 -l 43 43 44 107 '106 .5 130.000 .480' 3443.000 3443.000 .070 54.000  ? 44 44 45 108 107 5 130.000 .480 3549.000- 3549.000 .070 54.000  ! 45 45 46 109 108 5 130.000 ' .480 -3650.000 3650.000 .070 54.000 i 46 46 47 110 109 5 130.000. .480 3743.000- 3743.000 .070 54.000 t 47 47 48 111 110 5' 130.000 .480 3825.000. 3825.000 .070 54.000 E 48 48 49 112 111 5 130.000 .480 3884.000 3884.000 .070 36.000 49 49 50 113 112 5 130.000 .480 3934.000 3934.000 .070 54.000 [ 3983.000 3983.000 .070  ; 50 50 51 114 113 5 -130.000 .480 54.000' 51 51 52 115 114 5 130.000 .400 4023.000 4023.000 .070 54.000 i 52 52 53 116 115 5 130.000 .480 4056.000 4056.000 .070 54.000 53 53 54 ' 117 116 5 130.000 .480 4086.000 4086.000 .070 54.000 i 54 54 55 118 117 5 130.000 .480 4111.000 4111.000 .070 54.000 j

      $5  55   56    119   118           5        130.000   .480          4129.000                        4129.000        .070             90.000                     t 56  56   57    120   119           5        130.000   .480          4134.000                        4134.000        .070             90.000                     {

57 57 58 121 120 5 130.000 .480 4133.000 4133.000- .070 90.000 -i 58 58 59 122 121 5- 130.000 .400 4134.000 4134.000 .070 90.000 [ 59 59 60 123 122 5 130.000 .480 4135.000 4135.000 .070 120.000 -} 60 60 61 124 123 5 130.000 .480 4134.000 4134.000 .070 120.000 t 61 61 62 125 124 5 130.000 .480 4134.000 4134.000 .070 1800.000 'J 1800.000 62 62 63 126- 125 5 130.000 .400 4136.000 4136.000 .070' 63 64 65 128 127 4- 130.000 .400 4047.000 4047.000- .070 2100.000 -I 64 65 66 129 .128 4 130.000 .480 4046.000 4046.000 .070 2100.000 j 65 66 67 130 129 4' 130.000 .400 4042.000 4042.000 .070 140.000 1 140.000,

  • 66 67 - 68 131 130 4 130.000 .400 4040.000 4040.000~ .070 67 68 69 132 131 4 130.000 .480 4039.000 4039.000 .070 105.000 68 69 70 133 132 4 130.000 .480 4039.000 4039.000 .070 105.000 69 70 71 134 133 4 130.000 .480 4038.000. 4038.000 .070 105.000 t 70 71 72 135 134 4 130.000 .480 4037.000 4037.000 .070 105.000 '

71 72 73 136 135 4' 130.000 .480 4034.000 4034.000 .070 63.000 72 73 74 137 136 4 '130.000 .480 4028.000 4028.000 .070 63.000 73 74 75 138 137 4 '130.000 .480 4017.000 4017.000 .070 63.000 74 75 76 139 138 4 130.000 .480 3997.000 3997.000 .070 63.000. . 15 76 77 140 139 4 130.000 .480 3966.000 3966.000 .070 63.000 ) 76 77 78 141- 140 4 130.000 .480 3920.000 3920.000 .070 63.000 ' I 77 18 79 142 141 ~ 4 -- 130.000 .480 3870.000 3870.000 .070 42.000 78 79 80 143 142, 4 130.000 '480

                                                            .             3806.000                        3806.000        .070             63.000                      j 79  80 - 81    144   143            4       130.000   .480          3716.000                        3716.00C        .070             63.000                      t 80  81   82    145   144            4       130.000   .480          3611.000                        3611.000        .070             63.000                     v 81  82   83    146   145            4       130.000   .480          3494.000                        3494.000        .070             63.000                      ?

82 83 84 '147 146 4 130.000 .480 3372.000 3372.000 .070 63.000 1 83 84 85 148 147 4 130.000 .480 3249.000 3249.000 .070 63.000

                                                                                                                          .070                                        I 84  85   86    149   148            4       130.000   .480          3132.000'                       3132.000                         63.000 85  86   87    150   149            4       130.000   .480          3017.000                       '3017.000        .070             49.000                      f 0(V24f97                         154;e 5 of 49 -                                     nspq9a.ex:                                                                     .I f

1

O O O 86 87 88 151 150 4 130.000 .480 2941.000 2941.000 .070 49.000 87 88 89 152 151 4 130.000 .490 2895.000 2095.000 .070 49.000 88 89 90 153 152 4 130.000 .490 2847.000 2847.000 .070 35.000 89 90 91 154 153 4 130.000 .490 2006.000 2006.000 .070 70.000 90 91 92 155 154 4 130.000 .490 2767.000 2767.000 .070 70.000 91 92 93 156 155 4 130.000 .490 2750.000 2750.000 .070 70.000 92 93 94 157 156 4 130.000 .490 2725.000 2725.000 .070 70.000 93 94 95 158 157 4 130.000 .490 2689.000 2689.000 .070 70.000 94 95 96 159 158 4 130.000 .490 2689.000 2689.000 .070 70.000 95 96 97 160 159 4 130.000 .490 2725.000 2725.000 .070 10.000 96 97 98 161 160 4 130.000 .490 2750.000 2750.000 .070 70.000 97 98 99 162 161 4 130.000 .490 2768.000 .2768.000 .070 70.000 . 98 99 100 163 162 4 130.000 .490 2007.000 2807.000 .070 70.000 99 100 101 164 163 4 130.000 .490 2848.000 2848.000 .070 35.000 100 101 102 165 164 4 130.000 .490 2896.000 2096.000 .070 49.000 101 102 103 166 165 4 130.000 .480 2943.000 2943.000 .070 49.000 102 103 104 167 166 4 130.000 .480 3018.000 3018.000 .070 49.000 103 104 105 168 167 4 130.000 .480 3133.000 3133.000 .070 63.000 104 105 106 169 168 4 130.000 .480 3251.000 3251.000 .070 63.000 105 106 107 170 169 4 130.000 .480 3373.000 3373.000 .070 63.000 106 107 108 171 170 4 130.000 .480 3496.000 3496.000 .070 63.000 107 108 109 172 171 4 130.000 .480 3613.000 3613.000 .070 63.000 108 109 110 173 172 4 130.000 .480 3720.000 3720.000 .070 63.000 109 110 til 174 173 4 130.000 .480 3813.000 3813.000 .070 63.000 130.000 110 111 112 175 174 4 .480 3800.000 3880.000 .070 42.000 111 112 113 176 175 4 130.000 .480 3934.000 3934.000 .070 63.000 112 113 114 177 176 4 130.000 .480 3988.000 3988.000 .070 63.000 113 114 115 178 177 4 130.000 .480 4029.000 4029.000 .070 63.000 114 115 116 179 178 4 130.000 .480 4063.000 4063.000 .070 63.000 115 116 117 180 179 4 130.000 .480 4094.000 4094.000 .070 63.000 , 116 117 118 181 180 4 130.000 .480 4123.000 4123.000 .070 63.000 117 118 1?9 182 181 4 130.000 .480 4140.000 4140.000 .070 105.000 118 119 120 183 182 4 130.000 .400 4141.000 4141.000 .070 105.000 119 120 121 184 183 4 130.000 .480 4136.000 4136.000 .070 105.000 120 121 122 185 184 4 130.000 .480 4138.000 4138.000 .070 105.000 121 122 123 186 185 4 130.000 .480 4139.000 4139.000 .070 140.000 122 123 124 187 186 4 130.000 .480 4136.000 4136.000 .070 140.000 123 124 125 188 187 4 130.000 .480 4136.000 4136.000 .070 2100.000 124 125 126 189 188 4 130.000 .480 4138.000 4138.000 .070 2100.000 125 127 128 191 190 4 130.000 .480 4042.000 4042.000 .070 2100.000 126 128 129 192 191 4 130.000 .480 4040.000 4040.000 .070 2100.000 127 129 130 193 192 4 130.000 .480 4037.000 4037.000 .070 140.000 128 130 131 194 193 4 130.000 .480 4036.000 4036.000 .070 140.000 129 131 132 195 194 4 130.000 .480 4035.000 4035.000 .070 105.000 130 132 133 196 195 4 130.000 .480 4036.000 4036.000 .070 105.000 131 133 134 197 196 4 130.000 .480 4036.000 4036.000 .070 105.000 132 134 135 198 197 4 130.000 .480 4037.000 4037.000 .070 105.000 133 135 136 199 198 4 130.000 .480 4037.000 4037.000 .070 63.000 134 136 137 200 199 4 130.000 .480 4033.000 4033.000 .070 63.000 135 137 138 201 200 4 130.000 .480 4023.000 4023.000 .070 63.000 136 138 139 202 201 4 130.000 .400 4004.000 4004.000 .070 63.000 137 139 140 203 202 4 130.000 .400 3971.000 3971.000 .070 63.000 138 140 141 204 203 4 130.000 .480 3921.000 3921.000 .070 63.000 139 141 142 205 204 4 130.000 .480 3866.000 3866.000 .070 42.000 140 142 143 206 205 4 130.000 .480 3793.000 3793.000 .070 63.000 141 143 144 207 206 4 130.000 .480 3608.000 3688.000 .070 63.000 142 144 145 208 207 4 130.000 .480 3565.000 3565.000 .070 63.000 143 145 146 209 208 4 130.000 .480 3420.000 3428.000 .070 63.Ou0 06/24/97 Page 6 of 49 nspq9a. doc

J  %/ G' 144 146 147 210 209 4 130.000 .480 3262.000 3282.000 .070 63.000 145 147 148 211 210 4 130.000 .480 3136.000 3136.000 .070 63.000 146 148 149 212 211 4 130.000 .480 2996.000 2996.000 .070 63.000 147 149 150 213 212 4 130.000 .490 2859.000 2859.000 .070 49.000 148 150 151 214 213 4 130.000 .490 2769.000 2769.000 .070 49.000 149 151 152 215 214 4 130.000 .490 2713.000 2713.000 .070 49.000 150 152 153 216 215 4 130.000 .490 2657.000 2657.000 .070 35.000 151 153 154 217 216 4 130.000 .490 2608.000 2608.000 .070 70.000 152 154 155 218 217 4 130.000 .490 2574.000 2574.000 .070 70.000 153 155 156 219 218 4 130.000 .490 2544.000 2544.000 .070 70.000 154 156 157 2:0 219 4 130.000 .490 2567.000 2567.000 .070 70.000 155 157 158 221 220 4 125.000 .480 3408.000 3400.000 .070 70.000 156 158 159 222 221 4 125.000 .480 3408.000 3408.000 .070 70.000 157 159 160 223 222 4 130.000 .490 2567.000 2567.000 .070 70.000 158 160 161 224 223 4 130.000 .490 2545.000 2545.000 .070 70.000 159 161 162 225 224 4 130.000 .490 2574.000 2574.000 .070 70.000 160 162 163 226 225 4 130.000 .490 2609.000 2609.000 .070 70.000 161 163 164 227 226 4 130.000 .490 2650.000 2658.000 .070 35.000 162 164 165 228 227 4 130.000 .490 2714.000 2714.000 .070 49.000 163 165 166 229 228 4 130.000 .490 2770.000 2770.000 .070 49.000 164 166 167 230 229 4 130.000 .490 2860.000 2060.000 .070 49.000 165 167 168 231 230 4 130.000 .480 2997.000 2997.000 .070 63.000 166 168 169 232 231 4 130.000 .480 3137.000 3137.000 .070 63.000 167 169 170 233 232 4 130.000 .480 3283.000 3283.000 .070 63.000 168 170 171 234 233 4 130.000 .480 3429.000 3429.000 .070 63.000 169 171 172 235 234 4 130.000 .480 3566.000 3566.000 .070 63.000 170 172 173 236 235 4 130.000 .480 3691.000 3691.000 .070 63.000 171 173 174 237 236 4 130.000 .480 3798.000 3798.000 .070 63.000 172 174 175 238 237 4 130.000 .480 3874.000 3874.000 .070 42.000 173 175 176 239 238 4 130.000 .480 3935.000 3935.000 .070 63.000 174 176 177 240 239 4 130.000 .480 3994.000 3994.000 .070 63.000 175 177 178 241 240 4 130.000 .480 4039.000 4039.000 .070 63.000 176 178 179 242 241 4 130.000 .400 4070.000 4070.000 .070 63.000 177 179 100 243 242 4 130.000 .480 4103.000 4103.000 .070 63.000 178 180 181 244 243 4 130.000 .480 4136.000 4136.000 .070 63.000 179 181 182 245 244 4 130.000 .480 4156.000 4156.000 .070 105.000 180 182 183 246 245 4 130.000 .480 4147.000 4147.000 .070 105.000 181 183 184 247 246 4 130.000 .480 4140.000 4140.000 .070 105.000 182 184 185 248 247 4 130.000 .480 4143.000 4143.000 .070 105.000 183 185 186 249 248 4 130.000 .480 4145.000 4145.000 .070 140.000 184 186 187 250 249 4 130.000 .480 4141.000 4141.000 .070 140.000 185 187 188 251 250 4 130.000 .480 4140.000 4140.000 .070 2100.000 186 188 189 252 251 4 130.000 480 4142.000 4142.000 .070 2100.000 187 190 191 254 253 4 130.000 .480 4037.000 4037.000 .070 2100.000 188 191 192 255 254 4 130.000 .480 4035.000 4035.000 .070 2100.000 189 192 193 256 255 4 130.000 .480 4032.000 4032.000 .070 140.000 190 193 194 257 256 4 130.000 .480 4032.000 4032.000 .070 140.000 191 194 195 258 257 4 130.000 .480 4032.000 4032.000 .070 105.000 192 195 196 259 258 4 130.000 .480 4033.000 4033.000 .070 105.000 193 196 197 260 259 4 130.000 .480 4034.000 4034.000 .070 105.000 194 197 198 261 260 4 130.000 480 4037.000 4037.000 .070 105.000 195 198 199 262 261 4 130.000 .400 4039.000 4039.000 .070 63.000 196 199 200 263 262 4 130.000 .480 4038.000 4038.000 .070 63.000 197 200 201 264 263 4 130.000 .480 4030.000 4030.000 .070 63.000 198 201 202 265 264 4 130.000 .480 4012.000 4012.000 .070 63.000 199 202 203 266 265 4 130.000 .480 3978.000 3978.000 .070 63.000 200 203 204 267 266 4 130.000 .480 3924.000 3924.000 .070 63.000 201 204 205 268 267 4 130.000 .400 3862.000 3862.000 .070 42.000 06/24/97 Page 7 of 49 nspq9a. doc

(3 O G N. / kj 202 205 206 269 268 4 130.000 .480 3777.000 3777.000 .070 63.000 203 206 207 270 269 4 130.000 .480 3655.000 3655.000 .070 63.000 204 207 208 271 270 4 130.000 .480 3509.000 3509.000 .070 63.000 205 208 209 272 271 4 130.000 .480 3345.000 3345.000 .070 63.000 206 209 210 273 272 4 130.000 .480 3169.000 3169.000 .070 63.000 207 210 211 274 273 4 130.000 .480 2991.000 2991.000 .070 63.000 208 211 212 275 274 4 130.000 .490 2920.000 2020.000 .070 63.000 209 212 213 276 275 4 130.000 .490 2654.000 2654.000 .070 49.000 s 210 213 214 277 276 4 130.000 .490 2544.000 2544.000 .070 49.000 211 214 215 278 2Tr 4 130.000 .490 2474.000 2474.000 .070 49.000 212 215 216 279 278 4 130.000 .490 2407.000 2407.000 .070 35.000 213 216 217 280 279 4 130.000 .490 2349.000 2349.000 .070 70.000 214 217 218 201 280 4 130.000 .490 2305.000 2305.000 .070 70.000 215 218 219 282 281 4 130.000 .490 2335.000 2335.000 .070 70.000 216 219 220 283 282 4 125.000 .480 3110.000 3110.000 .070 70.000 217 220 221 284 283 4 125.000 .480 3143.000 3143.000 .070 70.000 218 221 222 285 284 4 125.000 .480 3143.000 3143.000 .070 70.000 219 222 223 286 285 4 125.000 .480 3110.000 3110.000 .070 70.000 220 223 224 287 206 4 130.000 .490 2335.000 2335.000 .070 70.000 221 224 225 288 287 4 130.000 .490 2305.000 2305.000 .070 70.000 222 225 226 289 288 4 130.000 .490 2350.000 2350.000 .070 70.000 223 226 227 290 289 4 130.000 .490 2408.000 2400.000 .070 35.000 224 227 228 291 290 4 130.000 .490 2475.000 2475.000 .070 49.000 225 228 229 292 291 4 130.000 .490 2545.000 2545.000 .070 49.000 226 229 230 293 292 4 130.000 .490 2655.000 2655.000 .070 49.000 227 230 231 294 293 4 130.000 .490 2821.000 2821.000 .070 63.000 228 231 232 295 294 4 130.000 .480 2992.000 2992.000 .070 63.000 229 232 233 296 295 4 130.000 .480 3170.000 3170.000 .070 63.000 230 233 234 297 296 4 130.000 .480 3345.000 3345.000 .070 63.000 231 234 235 298 297 4 130.000 .480 3510.000 3510.000 .070 63.000 232 235 236 299 298 4 130.000 .480 3657.000 3657.000 .070 63.000 233 236 237 300 299 4 130.000 .480 3782.000 3782.000 .070 63.000 234 237 238 301 300 4 130.000 .480 3869.000 3869.000 .070 42.000 235 238 239 302 301 4 130.000 .480 3938.000 3938.000 .070 63.000 236 239 240 303 302 4 130.000 .480 4004.000 4004.000 .070 63.000 237 240 241 304 303 4 130.000 .480 4050.000 4050.000 .070 63.000 238 241 242 305 304 4 130.000 .480 4085.000 4085.000 .070 63.000 l 239 242 243 306 305 4 130.000 .480 4105.000 4105.000 .070 63.000  ; 240 243 244 307 306 4 130.000 .480 4159.000 4159.000 .070 63.000 241 244 245 300 307 4 130.000 .400 4175.000 4175.000 .070 105.000 242 245 246 309 308 4 130.000 .480 4154.000 4154.000 .070 105.000 243 246 247 310 309 4 130.000 .400 4144.000 4144.000 .070 105.000 244 247 248 311 310 4 130.000 .480 4153.000 4153.000 .070 105.000 245 248 249 312 311 4 130.000 .480 4154.000 4154.000 .070 140.000 246 249 250 313 312 4 130.000 .480 4147.000 4147.000 .070 140.000 247 250 251 314 313 4 130.000 .400 4147.000 4147.000 .070 2100.000 248 251 252 315 314 4 130.000 .480 4140.000 4148.000 .070 2100.000 249 253 254 317 316 4 125.000 .490 2608.000 2608.000 .100 1200.000 250 254 255 318 317 4 125.000 .490 2607.000 2607.000 .100 1200.000 251 255 256 319 318 4 125.000 .490 2605.000 2605.000 .100 80.000 252 256 257 320 319 4 125.000 .490 2605.000 2605.000 .100 80.000 253 257 258 321 320 4 125.000 .490 2605.000 2605.000 .100 60.000 254 258 259 322 321 4 125.000 .490 2606.000 2606.000 .100 60.000 255 259 260 323 322 4 125.000 .490 2607.000 2607.000 .100 60.000 256 260 261 324 323 4 125.000 .490 2610.000 2610.000 .100 60.000 257 261 262 325 324 4 125.000 .490 2613.000 2613.000 .100 36.000 258 262 263 326 325 4 125.000 .490 2614.000 2614.000 .100 36.000 259 263 264 327 326 4 125.000 .490 2610.000 2610.000 .100 36.000 06/24/97 Page 8 of 49 nspq9a. doc

                                                                                                                                                     %                                                                                                   h
                                                                       %./                                                                        %Y                                                                                                N 260 264 265 328                     327        4       125.000 .490 2600.000      2600.000- .100     36.000 261 265 266 329                     328        4       125.000 .490 2578.000      2578.000  .100     36.000 262 266 267 330                     329        4       125.000 .490 2540.000      2540.000  .100     36.000 263 267 268 331                     330        4       125.000 .490 2496.000      2496.000  .100     24.000 264 268 269 332                     331        4       125.000 .490 2435.000      2435.000  .100     36.000 265 269 270 333                     332        4       125.000 .490 2344.000      2344.000  .100     36.000 266 270 271 334                     333        4       125.000 .490 2235.000      2235.000  .100     36.000 267 271 272 335                     334        4       125.000 .490 2112.000      2112.000    100    36.000 268 272 273 336                     335        4       125.000 .490 1978.000      1978.000  .100     36.000 269 273 274 337                     336        4       125.000 .490 1842.000      1842.000  .100     36.000 270 274 275 338                     337        4       125.000 .490 1711.000      1711.000  .100     36.000 271 275 276 339                     338        4       125.000 .490 1583.000      1583.000  .100     28.000 272 276 277 340                     339        4       125.000 .490 1495.000      1495.000  .100     28.000 273 277 278 341                     340        4       125.000 .490 1442.000      1442.000  .100     28.000 274 278 279 342                     341        4       125.000 .490 1382.000      1382.000  .100     20.000 275 279 280 343                     342        4       125.000 .490 1351.000      1351.000  .100     40.000 276 280 281 344                     343        4       125.000 .490 1298.000      1298.000  .100     40.000 277 281 282 345                     344        4       125.000 .400 2876.000      2876.000  .070     40.000 278 282 283 346                     345        4       125.000 .490 2002.000      2002.000  .070     40.000 279 283 284 347                     346        4       125.000 .490 2008.000      2008.000  .070     40.000 200 284 285 348                     347        4       125.000 .490 2808.000      2808.000  .070     40.000 281 285 286 349                     348        4       125.000 .490 2802.000      2002.000  .070     40.000 282 286 287 350                     349        4       125.000 .480 2876.000      2876.000  .070     40.000 283 287 288 351                     350        4       125.000 .490 1298.000      1298.000  .100     40.000 284 288 289 352                     351        4       125.000 .490 1352.000      1352.000  .100     40.000 285 289 290 353                     352        4       125.000 .490 1382.000      1382.000  .100     20.000                                                             -

l 286 290 291 354 353 4 125.000 .490 1443.000 1443.000 .100 28.000 287 291 292 355 354 4 125.000 .490 1496.000 1496.000 .100 28.000 288 292 293 356 355 4 125.000 .490 1583.000 1583.000 .100 28.000 289 293 294 357 356 4 125.000 .490 1711.000 1711.000 .100 36.000 290 294 295 358 357 4 125.000 .490 1842.000 1842.000 .100 36.000 291 295 296 359 358 4 125.000 .490 1979.000 1979.000 .100 36.000 292 296 297 360 359 4 125.000 .490 2112.000 2112.000 .100 36.000 293 297 298 361 360 4 125.000 .490 2236.000 2236.000 .100 36.000 294 298 299 362 361 4 125.000 .490 2345.000 2345.000 .100 36.000 295 299 300 363 362 4 125.000 .490 2437.000 2437.000 .100 36.000  ! 296 300 301 364 363 4 125.000 .490 2500.000 2500.000 .100 24.000 ' 297 301 302 365 364 4 125.000 .490 2549.000 2549.000 .100 36.000 298 302 303 366 365 4 125.000 .490 2595.000 2595.000 .100 36.000 299 303 304 367 366 4 125.000 .490 2631.000 2611.O N .100 36.000 300 304 305 368 367 4 125.000 .490 2640.000 2640.090 .100 36.000 301 305 306 369 368 4 125.000 .490 2685.000 2685.00'. .100 36.000 302 306 307 370 369 4 125.000 .480 3232.000 3232.000 .100 36.000 ' 303 307 300 371 370 4 125.000 .480 4098.000 4098.000 .070 60.000 304 308 309 372 371 4 125.000 .480 3974.000 3974.000 .070 60.000 305 309 310 373 372 4 125.000 .480 3995.000 3995.000 .070 60.000 306 310 311 374 373 4 125.000 .480 4002.000 4002.000 .070 60.000 307 311 312 375 374 4 125.000 .480 4004.000 4004.000 .070 80.000 308 312 313 375 375 4 125.000 .480 3995.000 3995.000 .070 80.000 309 313 314 377 376 4 125.000 .480 3995.000 3995.000 .070- 1200.000 310 314 315 378 377 4 125.000 .480 3996.000 3996.000 .070 1200.000 311 316 317 380 379 4 125.000 .490 2606.000 2606.000 .100 1200.000 " 312 317 318 381 380 4 125.000 .490 2606.000 2606.000 .100 1200.000 313 310 319 382 381 4 125.000 .490 2604.000 2604.000 .100 80.000 314 319 320 383 382 4 125.000 .490 2604.000 2604.C30 .100 80.000 315 320 321 384 383 4 125.000 .490 2604.000 2604.000 .100 60.000 316 321 322 385 384 4 125.000 .490 2605.000 2605.000 .100 60.000 317 322 323 386 385 4 125.000 .490 2607.000 2607.000 .100 60.000 06/24/97 Page 9 of49 nspq9a. doc .

(  ; i 318 323 324 387 386 4 125.000 .490 2610.000 2610.000 ^.100 '60.000' 319 324 325' 388 387 4 125.000 .490- - 2614.000 2614.000 : .100 36.000

  • 320 325 326 389 388 4 125.000 .490 2616.000 2616.000 . 100 '36.000 321 326 327 390 389 4 125.000 .490 2614.000 2614.000 .100 36.000 l 322 321 328- 391 390 4 125.000 .490 2604.000 2604.000 .100 36.000 323 328 329 392 391 4 125.000 .490 2583.000 2583.000' .100 36.000 -

324 329 330 393 392 4 125.000 .490 2544.000 2544.000 .100 36.000 325 330 331 394 393 4 125.000 .490 2497.000 2497.000 .100 '24.000 326 331 332 395 394 4 125.000 .490 2429.000 2429.000 .100 .36.000 327 332 333 396 395 4 125.000 .490 2329.000 2329.000 .100 36.000 , 328 '333 334 397 396 4 125.000 .490 2200.000 2208.000 .100 36.000 j 329 334 335 398 397 4 .125.000 .490 2069.000 2069.000 .100. 36.000 330 335 336 399 398 4 125.000 .490 1919.000' 1919.000' .100 ' -36.000 t 331 336 337 400 399 -4 125.000 .490 1763.000 1763.000 .100 36.000 332 337 338 401 400 - 4 125.000 .490 1613.000 1613.000 .100 36.000 .  ; 333 338 339 402 401 4 125.000 .490 1465.000 1465.000 .100 28.000 334 339 340 -403 402 4 125.000 .490 1366.000. 1366.000 .100 28.000 335 340 341 404 403 4 125.000 .490 1295.000' 1295.000 .100 28.000 l 336 341 342 405 404 4 125.000 .490 1238.000 1230.000 .100 20.000 337 342 343 406 405 4 125.000 .490. 1170.000 1170.000 .100 40.000- , 338 343 344 407 406 4 125.000 .490 2543.000 2543.000 .070 40.000 339 344 345 408 407 4 125.000 .490 2482.000- 2482.000 .070 40.000 340 345 346 409 408 4 125.000 .490 2492.000 2492.000 .070 40.000 341 346 347 410 409 4 .125.000 .490 2488.000 2488.000 .070 40.000 , 342 347' 348 411 410 4 125.000 .490 2488.000 2480.000 .070 40.000

3. 343 348 349 412 411 4 125.000 .490 2492.000 2492.000 .070 40.000 344 349 350 413 412' 4 125.000 .490 2482.000 2482.000 .070 40.000 ,

345 350 351 414 413 4 125.000 .490 2544.000 2544.000 .070 40.000 , 346 351 352 415 414 4 125.000 .490 1170.000 1170.000 .100 40.000 [ 347 352 353 415 415 4 -125.000 .490 1239.000 1239.000 .100 20.000 348 353 354 417 416 4 125.000 .490 1296.000 1296.000 .100 28.000  ;

                                                                                                                                                                    .100 349  354  355             418   417                 4   125.000          .490                    1367.000        1367.000                       28.000                                                                                  '

350 355 356 419 418 4 125.000 .490 1465.000 1465.000 .100 28.000 351 356 357 420 419 4 125.000 .490 1613.000 1613.000 .100 36.000 l 352 357 358 421' 420 4 125.000 .490 1763.000 1763.000 .100 36.000 f 353 358 359 422 421 4 125.000 .490' 1919.000 1919.000 .100 36.000 L 354 359 360 423 422 4 125.000 .490 2070.000 2070.000 .100 36.000  ! 355 360 361 424 423 4 125.000 .490 2208.000 2208.000 .100 36.000 i 356 361 362 425 424 4 125.000 .490 2330.000 2330.000 .100- 36.000  ; 357 362' 363 426 425 4 125.000 .490 2431.000 2431.000 .100 36.000 t 358 363 364 427 426 4 125.000 .490 2500.000 2500.000 .100 24.000  ! 4 359 364 365 428 427 4 125.000 .490 2552.000 2552.000 .100 36.000 360 365 366 429 428 4 125.000 .490 2601.000 2601.000 .100 36.000 361 366 367 430 429 4 125.000 .490 2634.000 2634.000 .100- 36.000

                                  ?62  367  368             431   430                 4   125.000          .490                   2669.000        2669.000         .100           36.000                                                                                  ,

363 368 369 432 431 4 125.000 .490 2609.000 2609.000 .100 36.000 l 364 369 370 433 432 4 125.000 .480 3416.000 3416.000 .100 36.000 )

  !                               365  370  371             434   433                 4   125.000          .480                    4018.000       4018.000         .070           60.000                                                                                  t i                               366  371  372             435   434                 4   125.000          .480                    4003.000       4003.000        .070            60.000 367  372  373             436   435                 4   125.000          .480                    3993.000       3993.000         .070           60.000                                                                                  '

368 373 374 437 436 4 125.000 .480 4012.000' 4012.000 .070 60.000 369 374 375 438 437 4 125.000 .480 4013.000 4013.000 .070 80.000 , 370 375 376 439 438 4 125.000 .480 4001.000 4001.000 .070 80.000  ; 371 376 377 440 439 4 125.000 .480 4001.000 4001.000~ .070 1200.000 i l 372 377 378 441 440 4- 125.000 .480 4002.000 4002.000 .070 1200.000  ! 373 379 380 443- 442 3 125.000 .490 2605.000 2605.000 .100 1500.000 374 380 381 444- 443 3 125.000 .490 2605.000 2605.000 .100 1500.000 [ 375 381 302 445 444 3 125.000 .490 2603.000 2603.000 .100' 100.000 06/24A77 Page 10 ef 49 nspq9a. chm:- [ i t

                                                                                                                                                                                                                                                                          ?
                  \                                                                                                           [D                                             [h b                                                                                                                      U                                              U 376 382      383 446 445         3                                          125.000                        .490 2603.000     2603.000   .100    100.000 377 383      384 447 446         3                                         125.000                         .490 2604.000     2604.000   .100      75.000 378 384      385 448 447        3                                          125.000                         .490 2604.000     2604.000   .100     75.000 379 385      386 449 448        3                                           125.000                        .490 2606.000     2606.000   .100     75.000 380 386      387 450 449        3                                          125.000                         .490 2610.000     2610.000  .' .s     75.000 381 387      388 451 450        3                                           125.000                        .490 2615.000     2615.000     ' ;0    45.000 382 388      389 452 451        3                                           125.000                        .490 2619.000     2619.000  . 00       45.000 383 389      390 453 452        3                                           125.000                        .490 2619.000     2619.000  .100      45.000 384 390      391 454 453        3                                           125.000                        .490 2611.000     2611.000  .100       45.000 385 391      392 455 454        3                                          125.000                         .490 2590.000     2590.000  .100      45.000 386 392      393 456 455        3                                           125.000                        .490 2549.000     2549.000  .100      45.000 387 393      394 457 456        3                                           125.000                        .490 2498.000     2498.000  .100      30.000 388 394      395 458 457        3                                          125.000                         .490 2423.000     2423.000  .100      45.000 389 395      396 459 458        3                                          125.000                         .490 2309.000     2309.000  .100      45.000 390 396      397 460 459        3                                          125.000                         .490 2171.000     2171.000  .100      45.000 391 397      398 461 460        3                                          125.000                         .490 2013.000     2013.000  .100      45.000 392 398      399 462 461        3                                          125.000                         .490 1838.000     1838.000  .100      45.000 393 399      400 463 462        3                                          125.000                         .490 1654.00c     1654.000  .100       45.000 394 400      401 464 463        3                                          125.000                         .490 1476.000     1476.000  .100      45.000 395 401      402 465 464        3                                          125.000                         .490 1298.000     1298.000  .100      35.000 396 402      403 466 465        3                                          125.000                         .490 1170.000     1170.000  .100      35.000 397 403      404 467 466        3                                          125.000                         .490 1084.000     1084.000  .100      35.000 398 804      405 468 467        3                                          125.000                         .490  980.000      980.000  .100      25.000 399 405      406 469 468        3                                          125.000                         .490 2049.000     2049.000  .070      50.000 400 406      407 470 469        3                                         125.000                          .490 1993.L00     1993.000  .070      50.000 401 407      408 471 470        3                                         125.000                          .490 1991.000     1991.000  .070      50.000 402 408      409 472 471        3                                          125.000                         .490 1991.000     1991.000  .070      50.000 403 409      410 473 472        3                                         125.000                          .490 1993.000     1993.000  .070      50.000 404 410      411 474 473        3                                         125.000                          .490 1993.000     1993.000  .070      50.000 405 411      412 475 474        3                                         125.000                          .490 1991.000     1991.000  .070      50.000 406 412      413 476 475        3                                         125.000                          .490 1991.000     1991.000  .070      50.000 407 413      414 477 476        3                                         125.000                          .490 1994.000     1994.000  .070      50.000 408 414      415 478 477        3                                         125.000                         .490  2050.000     2050.000  .070      50.000 409 415      416 479 478        3                                         125.000                          .490  981.000      981.C00 .100       25.000 410 416      417 480 479        3                                         125.000                         .490  1085.000     1085.000 .100       35.000 411 417      418 481 480        3                                         125.000                          .490 1171.000     1171.000 .100       35.000 412 418      419 482 481        3                                         125.000                         .490  1298.000     1298.000 .100       35.000 413 419      420 483 482        3                                         125.000                         .490  1477.000     1477.000 .100       45.000 414 420      421 484 483        3                                         125.000                         .490  1654.000     1654.000 .100       45.000 415 421      422 485 484        3                                         125.000                         .490  1839.000     1839.000 .100       45.000 416 422      423 486 485        3                                         125.000                         .490  2013.000     2013.000 .100       45.000 417 423      424 487 486        3                                         125.000                         .490  2172.000     2172.000 .100       45.000 418 424      425 488 487        3                                         125.000                         .490  2310.000     2310.000 .100       45.000 419 425      426 489 488        3                                         125.000                         .490  2424.000     2424.000 .100       45.000 420 426      427 490 489        3                                         125.000                         .490  2500.000     2500.000 .100       30.000 421 427      428 491 490        3                                         125.000                         .490  2555.000     2555.000 .100       45.000 422 428      429 492 491        3                                         125.000                         .490  2609.000     2609.000 .100       45.000 423 429      430 493 492        3                                         125.000                         .490  2642.000     2642.000 .100       45.000 424 430      431 494 493        3                                        125.000                          .490  2677.000     2677.000 .100       45.000 425 431      432 495 494        3                                        125.000                          .480  3237.000     3237.000 .100       45.000 426 432      433 496 495        3                                        125.000                          .480  4141.000     4141.000 .070       45.000 427 433      434 497 496        3                                        125.000                          .480  4022.000     4022.000 .070       75.000 428 434      435 498 497        3                                        125.000                          .480  4009.000     4009.000 .070       75.000 429 435      436 499 498        3                                        125.000                          .400  4001.000     4001.000 .070       75.000 430 436      437 500 499        3                                        125.000                          .400  4022.000     4022.000 .070       75.000 431 437      438 501 500        3                                        125.000                          .480  4026.000     4026.000 .070      100.000 432 438      439 502 501        3                                        125.000                          .480  4009.000     4009.000 .070      100.000 433 439      440 503 502        3                                        125.000                          .480  4010.000     4010.000 .070     1500.000 06/24/97                          Page iI of 49                                                                                nspq9a. doc
                                                                                                                                                                  -                                                                                                                                              s M-434            440  .441   504    503      -3      125.000                         .480-     4012.000                           4012.000            070                 1500.000 435            442   443. 506    505         3    125.000                          .490    '2604.000                           2604.000          .100                  1200.000 436            443   444-  507    506         3    125.000                          .490     2604.000                           2604.000          .100                  1200.000 437            444   445   508    507         3    125.000                          .490     2602.000                          -2602.006          .100                       80.000 438            445   446   509    508         3    125.000                         .490      2603.000                           2603.000'         .100                       80.000 439            446   447   510    509         3    125.000                          .490     2603.000                          ,2603.000          .100                       60.000 440            447   448   511    510         3    125.000                         .490-     2604.000                           2604.000          .100                       60.000 441            448   449   512    511      ,3      125.000                         .490      2606.000                          .2606.000          .100                       60.000 442           -449   450   513    512         3    125.000                          .490     2610.000                           2610.000          .100                       60.000 443            450   451   514    513         3    125.000                          .490     2616.000                           2616.000          .100                       36.000 1                                                                             444            451   452  '515-   514         3    125.000.                        .490      2622.000                           2622.000          .300                       36.000 445            452   453   516    515         3    125.000                         .490      2624.0001                          2624.000          .100                       36.000 446            453   454   517    516         3    125.000.                          490     2618.000                           2618.000          .100                       36.000 447            454   455   518    517         3    125.000                         .490      2598.000                           2598.000          .100                       36.000 448            455   456   519    518         3    125.000                         .490      2556.000                           2556.000          .100                       36.000 449            456   457   5?0    519         3    125.000                         .490      2500.000                           2500.000          .100                       24.000 450            457-  458   521    520         3    125.000                         .490      2415.000                           2415.000          .100                       36.000 451            458   459   522    521         3    125.000                         .490      2285.000                           2285.000          .100                       36.000 452           '459   460   523    522         3    125.000                         .490      2126.000                           2126.000          .100                       36.000 453            460   461   524    523         3    125.000                         .490      1944.000                           1944.000          .100                       36.000 454            461   462   525    524         3    125.000                         .490      1736.000                           1736.000          .100                       36.000-455            462   463   526    525         3    125.000                         .490      1515.000                           1515.000          .100                       36.000 456            463   464   527    526         3    125.000                         .490      1295.000                           1295.000          .100                       36.000 457            464   465   528    527         3    125.000                         .490      1067.000                           1067.000          .100                       28.000 458            465   466   529    528         3    125.000                         .490       895.000                            895.000          .100                       28.000 459            466   467   530    529         3    125.000                         .490       759.000                            759.000          .100                      28.000 l                                                                             460            467   468   531    530         3    125.000                         .490      1250.000                           1250.000          .070                      20.000 461            468   469   532    531         3    125.000                         .490      1175.000'                          1175.000          .070                       40.000 I                                                                             462            469   470   533    532         3    125.000                         .490      1149.000                           1149.000          .070                       40.000 463            470'  471   534    533         3    125.000                         .490      1155.000                           1155.000         .070                        40.000 464            471   472   535    534         3    125.000                         .490      1154.000                           1154.000          5070                       40.000 465-           472-  473   536    535         3    125.000                         .490      1154.000                           1154.000          .070                       40.000 466            473   474   537    536         3    125.000                         .490      1154.000                           1154.000          .070                       40.000 467            474   475   538    537         3    125.000                         .490      1154.000                           1154.000          .070                       40.000 468            475   476   539   '538         3    125.000                         .490      1155.000                           1155.000         .070                        40.000 469            476   477   540    539         3    125.000                         .490      1149.000                           1149.000         .070                        40.000 470            477   478   541    540         3    125.000                         .490      1175.000                           1175.000         .070-                       40.000 471            478   479   542    541         3    125.000                         .490      1252.000                           1252.000         .070                       20.000 472            479   480   543    542        3     125.000                         .490       760.000                            760.000         .100                       28.000 473            480   481   544    543        3     125.000                         .490       896.000                            896.000         .100-                      28.000 474            481   482   545    544         3    125.000                         .490      1067.000                           1067.000         .100                       28.000 475            482   483   546    545        3'    125.000                         .490      1295.000                           1295.000         .100                       36.000 476            483   484   547    546        3     125.000                         .490      1515.000                           1515.000         .100 .                     36.000 477            484   485   548    547        3     125.000                         .490      1736.000                           1736.000         .100                       36.000 4

478 485' 486 549 548 3 125.000 .490' 1944.000 1944.000 .100 36.000 479 486 487 550 549 3 125.000 .490 2127.000 2127.000 .100 36.000 480 487 488 551 550 3' 125.000 .490 2286.000 2286.000 .100 36.000 481 488 489 552 551 3 125.000 .490 2416.000 2416.000 .100 36.000 482 499 490 553 552 3 125.000 .490 2501.000 2501.000 .100 24.000 e 483 490 491 554 553 3 125.000 .490 2560.000 2560.000 .100 36.000 484 491 492 555 554 3 125.000 .490. 2613.000 2613.000 .100 36.000 485 492 493 556 555 3 125.000 .490 2670.000 2670.000 .100 36.000 486 493 494 557 556 3 125.000 .490 2617.000 2617.000 .100 36.000 1 487 494 .495 550 557 3 125.000 .480 3410.000 3410.000 .100 36.000 3 488 495 4?6 559 558 3 ~125.000 .480 4034.000 4034.000 .070 .36.000 489 496 497 560 559 3 125.000 .400 4047.000 4047.000 .070 60.000

490 497 498 561 560 3 125.000 .480 4017.000 4017.000 .070 60.000 491 498 499 562 561 3 125.000 .480' 4007.000 4007.000 .070 60.000 06/24/97 Page 12 of 49 . nspq9a. doc

_-___- - _ ____ - _ _ _ _ - - _ - - - . - _ _ _ _ _ _ _ _ _ . _ - - - _ - .. - . . - -. - ~.

p m O \., / N' 492 499 500 563 562 3 125.000 .480 4038.000 4038.000 .070 60.000 493 500 501 564 563 3 125.000 .480 4043.000 4043.000 .070 80.000 494 501 502 565 564 3 125.000 .480 4018.000 4018.000 .070 80.000 495 502 503 566 565 3 125.000 .480 4022.000 4022.000 .070 1200.000 496 503 504 567 566 3 125.000 .400 4024.000 4024.000 .070 1200.000 497 505 506 569 568 3 125.000 .490 2604.000 2604.000 .100 1050.000 498 506 507 570 569 3 125.000 .490 2604.000 2604.000 .100 1050.000 499 507 508 571 570 3 125.000 .490 2602.000 2602.000 .100 70.000 500 508 509 572 571 3 125.000 .490 2603.000 2603.000 .100 70.000 501 509 510 573 572 3 125.000 .490 2604.000 2604.000 .100 52.500 502 510 511 574 573 3 125.000 .490 2604.000 2604.000 .100 52.500 503 511 512 575 574 3 125.000 .490 2606.000 2606.000 .100 52.500 504 512 513 576 575 3 125.000 .490 2610.000 2610.000 .100 52.500 505 513 514 577 576 3 125.000 .490 2618.000 2618.000 .100 31.500 506 514 515 578 577 3 125.000 .490 2626.000 2626.000 .100 31.500 507 515 516 579 578 3 125.000 .490 2630.000 2630.000 .100 31.500 508 516 517 580 579 3 125.000 .490 2626.000 2626.000 .100 31.500 509 517 518 581 500 3 125.000 .490 2607.000 2607.000 .100 31.500 510 518 519 582 581 3 125.000 .490 2563.000 2563.000 .100 31.500 511 519 520 583 582 3 125.000 .490 2503.000 2503.000 .100 21.000 512 520 521 584 583 3 125.000 .490 2409.000 2409.000 .100 31.500 513 521 522 585 584 3 125.000 .490 2260.000 2260.000 .100 31.500 514 522 523 586 585 3 125.000 .490 2000.000 2000.000 .100 31.500 515 523 524 587 586 3 125.000 .490 1869.000 1869.000 .100 31.500 516 524 525 588 587 3 125.000 .490 1634.000 1634.000 .100 31.500 517 525 526 589 588 3 125.000 .490 1351.000 1351.000 .100 31.500 518 526 527 590 589 3 125.000 .490 1098.0C0 1098.000 .100 31.500 519 527 528 591 590 3 125.000 .490 782.000 782.000 .100 30.625 520 528 529 592 591 3 125.000 .490 526.000 526.000 .100 16.275 i 521 529 530 592 592 3 125.000 .490 462.000 462.000 .100 8.050 t

       $22                542                543 593 593                                                       3 125.000   .490              465.000      465.000      .100     8.050 523                543                544 594 593                                                       3 125.000   .490              528.000      528.000      .100    16.252 I

524 544 545 595 594 3 125.000 .490 783.000 783.000 .100 30.660 525 545 546 596 595 3 125.000 .490 1098.000 1098.000 .100 31.500 526 546 547 597 596 3 125.000 .490 1351.000 1351.000 .100 31.500 527 547 548 598 597 3 125.000 .490 1635.000 1635.000 .100 31.500 528 548 549 599 598 3 125.000 .490 1870.000 1870.000 .100 31.500 529 549 550 600 599 3 125.000 .490 2081.000 2001.000 .100 31.500 ' 530 550 551 601 600 3 125.000 .490 2262.000 2262.000 .100 31.500 531 551 552 602 601 3 125.000 .490 2410.000 2410.000 .100 31.500 532 552 553 603 602 3 125.000 .490 2505.000 2505.000 .100 21.000 533 553 554 604 603 3 125.000 .490 2567.000 2567.000 .100 31.500 534 554 555 605 604 3 125.000 .490 2619.000 2619.000 .100 31.500 535 555 556 606 605 3 125.000 .490 2679.000 2679.000 .100 31.500 536 556 557 607 606 3 125.000 .480 3254.000 3254.000 .100 31.500 537 557 558 608 607 3 125.000 .480 4142.000 4142.000 .070 31.500 538 558 559 609 608 3 125.000 .480 4039.000 4039.000 .070 31.500 539 559 560 610 609 3 125.000 .480 4052.000 4052.000 .070 52.500 540 560 561 611 610 3 125.000 .480 4033.000 4033.000 .070 52.500 541 561 562 612 611 3 125.000 .480 4011.000 4011.000 .070 52.500 542 562 563 613 612 3 125.000 .480 4054.000 4054.000 .070 52.500 543 563 564 614 613 3 125.000 .480 4062.000 4062.000 .070 70.000 544 564 565 615 614 3 125.000 .480 4026.000 4026.000 .070 70.000 ' 545 565 566 616 615 3 125.000 .480 4035.000 4035.000 .070 1050.000 546 566 567 617 616 3 125.000 .480 4037.000 4037.000 .070 1050.000 547 568 569 619 618 3 125.000 .490 2604.000 2604.000 .100 1050.000 548 569 570 620 619 3 125.000 .490 2604.000 2604.000 .100 1050.000 549 570 571 621 620 3 125.000 .490 2601.000 2601.000 .100 70.000 06/245T7 Page 13 of 49 nspq9a. doc r

p p3 y 550 571 572 622 621 3 125.000 .490 2604.000 2604.000 .!00 70.000 ' 551 572 573 623 622 3 125.000 .490 2604.000 2604.000 100 52.500 552 573 574 624 623 3 125.000 .490 2604.000 2604.000 .100 52.500 553 574 575 625 624 3 125.000 .490 2605.000 2605.000 .100 52.500 554 575 576 626 625 3 125.000 .490 2610.000 2610.000 .100 52.500 555 576 577 627 626 3 125.000 .490 2619.000 2619.000 .100 31.500 556 577 578 628 627 3 125.000 .490 2629.000 2629.000 .100 31.500 557 578 579 629 628 3 125.000 .490 2636.000 2636.Lb3 .100 31.500 550 579 580 630 629 3 125.000 .490 2633.000 2633.000 .100 31.500 559 580 581 631 630 3 125.000 .490 2616.000 2616.000 .100 31.500 560 581 582 632 631 3 125.000 .490 2572.000 2572.000 .100 31.500 561 582 583 633 632 3 125.000 .490 2508.000 2508.000 .100 21.000 < 562 583 504 634 633 3 125.000 .490 2401.000 2401.000 .100 31.500 563 584 585 635 634 3 125.000 .490 2233.000 2233.000 .100 31.500 564 585 586 636 635 3 125.000 .490 2023.000 2023.000 .100 31.500 565 586 587 637 636 3 125.000 .490 1788.000 1788.000 .100 31.500 566 587 588 638 637 3 125.000 .490 1501.000 1501.000 .100 31.500 567 588 589 639 638 3 125.000 .490 1168.000 1168.000 .100 31.500 568 589 590 640 639 3 125.000 .490 775.000 775.000 .100 31.500 569 590 591 640 640 3 125.000 .490 438.000 438.000 .100 18.375 570 594 595 641 641 3 125.000 .490 439.000 439.000 .100 18.410 571 595 596 642 641 3 125.000 .490 776.000 776.000 .100 31.500 512 596 597 643 642 3 125.000 .490 1169.000 1169.000 .100 31.500 573 597 598 644 643 3 125.000 .490 1502.000 1502.000 .100 31.500 574 598 599 645 644 3 125.000 .490 1789.000 1789.000. .300 31.500 575 599 600 646 645 3 125.000 .490 2025.000 2025.000 .100 31.500 576 600 601 647 646 3 125.000 .490 2235.000 2235.000 .100 31.500 I 577 601 602 648 647 3 125.000 .490 2404.000 2404.000 .100 31.500 578 602 603 649 648 3 125.000 .490 2506.000 2506.000 .100 21.000 579 603 604 650 649 3 125.000 .490 2573.000 2573.000 .100 31.500 500 604 605 651 650 3 125.000 .490 2639.000 2639.000 .100 31.500 581 605 606 652 651 3 125.000 .490 2622.000 2622.000 .100 31.500 582 606 607 653 652 3 125.000 .480 3427.000 3427.000 .100 31.500 i 583 607 608 654 653 3 125.000 .480 4051.000 4051.000 .070 31.500 584 608 609 655 654 3 125.000 .480 4064.000 4064.000 .070 31.500 . 585 609 610 656 655 3 125.000 .480 4064.000 4064.000 .070 52.500 586 610 611 657 656 3 125.000 .480 4046.000 4046.000 .070 52.500 587 611 612 658 657 3 125.000 .400 4018.000 4018.000 .070 52.500 i 588 612 613 659 658 3 125.000 .480 4067.000 4067.000 .070 52.500 ' 589 613 614 660 659 3 125.000 .480 4085.000 4085.000 .070 70.000 590 614 615 661 660 3 125.000 .480 4030.000 4030.000 .070 70.000 591 615 616 662 661 3 125.000 .480 4050.000 4050.000 .070 1050.000 592 616 617 663 662 3 125.000 .480 4051.000 4051.000 .070 1050.000 593 618 619 665 664 3 115.000 .490 1506.000 1506.000 .120 900.000 594 619 620 666 665 3 115.000 .490 1506.000 1506.000 .120 900.000 595 620 621 667 666 3 115.000 .490 1504.000 1504.000 .120 60.000 596 621 622 668 667 3 115.000 .490 1505.000 1505.000 .120 60.000 597 622 623 669 668 3 115.000 .490 1505.000 1505.000 .120 45.000 598 623 624 670 669 3 115.000 .490 1506.000 1506.000 .120 45.000 599 624 625 671 670 3 115.000 .490 1506.000 1506.000 .120 45.000 600 625 626 672 671 3 115.000 .490 1509.000 1509.000 .120 45.000 601 626 627 673 672 3 115.000 .490 1514.000 1514.000 .120 27.000 602 627 628 674 673 3 115.000 .490 1521.000 1521.000 .120 27.000 603 628 629 675 674 3 115.000 .490 1527.000 1527.000 .120 27.000 604 629 630 676 675 3 115.000 .490 1527.000 1527.000 .120 27.000 605 630 631 677 676 3 115.000 .490 1518.000 1518.000 .120 27.000 606 631 632 678 677 3 115.000 .490 1493.000 1493.000 .120 27.000 607 632 633 679 678 3 115.000 .490 1453.000 1453.000 .120 18.000 06/24/97 Page 14 of 49 nspq9a. doc

O \ O

                                                \d (3

C/ 608 633 634 680 679 3 115.000 .490 1385.000 1385.000 .120 27.000 609 634 635 681 680 3 115.000 .490 1272.000 1272.000 .120 27.000 610 635 636 682 681 3 115.000 .490. 1138.000 1138.000 .120 27.000 611 636 637 683 682 3 115.000 .490 974.000 974.000 .120 27.000 612 637 638 684 683 3 115.000 .490 793.000 793.000 .120 27.000 613 638 639 685 684 3 115.000 .490 522.000 522.000 .120 27.000 614 639 640 685 605 3 115.000 .490 212.000 212.000 .120 13.500 615 641 642 686 686 3 115.000 .490 213.000 213.000 .120 13.500 616 642 643 687 686 3 115.000 .490 523.000 523.000 .120 27.000 617 643 644 688 687 3 115.000 .490 793.000 793.000 .120 27.000 618 644 645 689 688 3 115.000 .490 975.000 975.000 .120 27.000 619 645 646 690 689 3 115.000 .490 1140.000 1140.000 .120 27.000 620 646 647 691 690 3 115.000 .490 1274.000 1274.000 .120 27.000 621 647 648 692 691 3 115.000 .490 1386.000 1386.000 .120 27.000 622 648 649 693 692 3 115.000 .490 1457.000 1457.000 .120 18.000 623 649 650 694 693 3 115.000 .490 1485.000 1485.000 .120 27.000 ' 624 650 651 695 694 3 115.000 .490 1550.000 1550.000 .120 27.000 625 651 652 696 695 3 115.000 .490 2364.000 2364.000 .120 27.000 626 652 653 697 696 3 125.000 .480 4297.000 4297.000 .070 27.000 627 653 654 698 697 3 125.000 .480 4001.000 4001.000 .070 27.000 628 654 655 699 698 3 125.000 .460 4071.000 4071.000 .070 27.000 629 655 656 700 699 3 125.000 .480 4056.000 4056.000 .070 45.000 630 656 657 701 700 3 125.000 .480 4072.000 4072.000 .070 45.000 631 657 658 702 701 3 125.000 .480 3981.000 3981.000 .070 45.000 632 658 659 703 702 3 125.000 .480 4097.000 4097.000 .070 45.000 633 159 660 704 703 3 125.000 .480 4079.000 4079.000 .070 60.000 634 660 661 705 704 3 -125.000 .480 4036.000 4036.000 .070 60.000 635 661 662 706 705 3 125.000 .400 4053.000 4053.000 .070 900.000 636 662 663 707 706 3 125.000 .480 4054.000 4054.000 .070 900.000 637 664 665 709 708 3 110.000 .350 1441.000 1441.000 .120 900.000 638 665 666 710 709 3 110.000 .350 1440.000 1440.000 .120 900.000 - 639 666 667 111 710 3 110.000 .350 1439.000 1439.000 .120 60.000 640 667 668 712 711 3 110.000 .350 1440.000 1440.000 .120 60.000 641 668 669 713 712 3 110.000 .350 1440.000 1440.000 .120 45.000 642 669 670 714 713 3 110.000 .350 1440.000 1440.000 .120 45.000 643 670 671 715 714 3 110.000 .350 1441.000 1441.000 .120 45.000 644 671 672 716 715 3 110.000 .350 1443.000 1443.000 .120 45.000 645 672 673 717 716 3 110.000 .350 1449.000 1449.000 .120 27.000 646 673 674 718 717 3 110.000 .350 1458.000 1458.000 .120 27.000 647 674 675 719 718 3 110.000 .350 1465.000 1465.000 .120 27 000 648 675 676 720 719 3 110.000 .350 1466.000 1466.000 .120 27.000 649 676 677 721 720 3 110.000 .350 1459.000 1459.000 .120 27.000 650 677 678 722 721 3 110.000 .350 1434.000 1434.000 .120 27.000 651 678 679 723 722 3 110.000 .350 1393.000 1393.000 .120 10.000 652 679 680 724 723 3 110.000 .350 1315.000 1315.000 .120 27.000 653 680 681 725 724 3 110.000 .350 1192.000 1192.000 .120 27.000 654 681 682 726 725 3 110.000 .350 1029.000 1029.000 .120 27.000 655 682 683 727 726 3 110.000 .350 854.000 854.000 .120 27.000 656 683 684 728 727 3 110.000 .350 602.000 602.000 .120 27.000 657 684 685 728 728 3 110.000 .350 301.000 301.000 .120 13.500 658 686 687 729 729 3 110.000 .350 302.000 302.000 .120 13.500 659 687 688 730 729 3 110.000 .350 602.000 602.000 .120 27.000 660 688 689 731 730 3 110.000 .350 855.000 855.000 .120 27.000 661 689 690 732 731 3 110.000 .350 1030.000 1030.000 .120 27.000 662 690 691 733 732 3 110.000 .350 1194.000 1194.000 .120 27.000 663 691 692 734 733 3 110.000 .350 1317.000 1317.000 .120 27.000 664 692 693 735 734 3 110.000 .350 1389.000 1389.000 .120 18.000 665 693 694 736 735 3 '.10.000 .350 1452.000 1452.000 .120 27.000 06/24/97 Page 15 of 49 r.spq9audoc ,

               %                                                                                                ,a                                                 m

{s ,,/l I i

                           '                                                                                                                                                     )

666 694 695 737 736 3 110.000 .350 1383.000 1383.000 .120 27.000 667 695 696 738 737 3 110.000 .350 2540.000 2540.000 .120 27.000 668 696 697 739 738 3 125.000 .350 4017.000 4017.000 .070 27.000 669 697 698 740 739 3 125.000 .350 4067.000 4067.000 .070 27.000 670 698 699 741 740 3 125.000 .350 4046.000 4046.000 .070 27.000 671 699 700 742 741 3 125.000 .350 4055.000 4055.000 .070 45.000 672 700 701 743 742 3 125.000 .350 4033.000 4033.000 .070 45.000 673 701 702 744 743 3 125.000 .350 4139.000 4139.000 .070 45.000 674 702 703 745 744 3 125.000 .350 3468.000 3468.000 .070 45.000 675 703 704 746 745 6 120.000 .350 93168.000 93168.000 .010 60.000 676 704 705 747 746 6 120.000 .350 93168.000 93168.000 .010 60.000 677 705 706 748 747 6 120.000 .350 93168.000 93168.000 .010 900.000 678 706 707 749 748 6 120.000 .350 93168.000 93168.000 .010 900.000 679 708 709 751 750 2 110.000 .350 1441.000 1441.000 .120 900.000 600 709 710 752 751 2 110.000 .350 1440.000 1440.000 .120 900.000 681 710 711 753 752 2 110.000 .350 1439.000 1439.000 .120 60.000 682 711 712 754 753 2 110.000 .350 1440.000 1440.000 .120 60.000 683 712 713 755 754 2 110.000 .350 1440.000 1440.000 .120 45.000 684 713 714 756 755 2 110.000 .350 1440.000 1440.000 .120 45.000 685 714 715 757 756 2 110.000 .350 1440.000 1440.000 .120 45.000 686 715 716 758 757 2 110.000 .350 1443.000 1443.000 .120 45.000 687 716 717 759 758 2 110.000 .350 1450.000 1450.000 .120 27.000 688 717 718 760 759 2 110.000 .350 1461.000 1461.000 .120 27.000 689 718 719 761 760 2 110.000 .350 1470.000 1470.000 .120 27.000 690 719 720 762 761 2 110.000 .350 1473.000 1473.000 .120 27.000 691 720 721 763 762 2 110.000 .350 1466.000 1466.000 .120 27.000 692 721 722 764 763 2 110.000 .350 1441.000 1441.000 .120 27.000 693 722 723 765 764 2 110.000 .350 1390.000 1390.000 .120 18.000 694 723 724 766 765 2 110.000 .350 1299.000 1299.000 .120 27.000 695 724 725 767 766 2 110.000 .350 1130.000 1130.000 .120 27.000 696 725 726 768 767 2 110.000 .350 934.000 934.000 .120 27.000 697 726 727 769 768 2 110.000 .350 654.000 654.000 .120 27.000 698 727 728 769 769 2 110.000 .350 324.000 324.000 .120 13.500 699 729 730 770 770 2 110.000 .350 325.000 325.000 .120 13.500 700 730 731 771 770 2 110.000 .350 655.000 655.000 .120 27.000 701 731 732 772 771 2 110.000 .350 935.000 935.000 .120 27.000 702 732 733 773 772 2 110.000 .350 1132.000 1132.000 .120 27.000 703 733 734 774 773 2 110.000 .350 1303.000 1303.000 .120 27.000 704 734 735 775 774 2 110.000 .350 1383.000 1383.000 .120 18.000 705 735 736 776 775 2 110.000 .350 1457.000 1457.000 .120 27.000 706 736 737 777 776 2 110.000 .350 2251.000 2251.000 .120 27.000 707 737 738 778 777 2 125.000 .350 4258.000 4250.000 .0}}