ML20148F473

From kanterella
Jump to navigation Jump to search
Summary of 780315 Meeting W/Util Re Planned ECCS Model Change,Reactor Vessel Lower Plenum two-phase Separation for Use in Core 14 ECCS Performance Analysis
ML20148F473
Person / Time
Site: Yankee Rowe
Issue date: 03/28/1978
From: Burger A
Office of Nuclear Reactor Regulation
To:
Office of Nuclear Reactor Regulation
References
NUDOCS 8011050655
Download: ML20148F473 (37)


Text

, ._ .- ___ . . - _

l  % . 8 l '; ,.., ,

^ -

q l.h:

r ,. . ..

u .. . . .

P s

=+

=

DOCKET NO. : 50-29 . , , ,

LICENSEE: YANKEE ATOMIC ELECTRIC , COMPANY (YAEC) .,,,

FACILITY: YANKEE-ROWE [,.,,_,, , , , , ,,

i

SUBJECT:

StNMARY OF MEETING HELD ON MARCH 15, 1978, FOR BRIEFING ON PLANNED ECCS 'M,0. DEL CRANGE , .

,,j ,

On March 15, 1978, representa'tives of,YAEC briefed the NRC staff on #4 its planned ECCS model change (with respect to two phase separation in the Yankee-Rowe reactor vessel lower plenum) for 'use in th'e ECCS performance analysis for the _nsxt ' core,', Number ,1,4 . ... _,

A list of attendees is attac6ed. ,, .. . ., , . . .

Important highlights of YAEC'ls , briefing are stsnm,arized bblow. A copy p of YAEC's handout which illustrates ,signif,1c, ant as.pec.ts .of' t'h . briefing "

is also enclosed. . ,, , .,,,, .=.

i Beaause of the unique features of Yankee-Rowe, including kts 1arge I reactor vessel lower plenum, the ECCS. performance analysis for the present and previous cores required operation at less than full wee for some time at the beginning of the fuel cycle _to meet the ECCS acceptance criteria in Appendix K to 10 CFR ,Part 50. YAEC expects i th;t its pla'nned ECCS model change involving the use of a 1.ower plenum a phase separation isodel in the, Yankee-Rowelarge break ECCS performance

~ 1.

analysis for Core 14 will resul.t in lower calculated peak"c3hd D gemperatures and will pemit higher allowable heat generation rates ,

(Kw/ft). This in turn would remove the present limijation on the q specified Kw/ft and might allow o.pe at the beginning of the next fuel c.ycle. ration of,YankeeIGwe at. full power

~

YAEC woullbuse the phase separatdon model in lieu of the homogeneous ,

lower pTenum.model and employ.the bubble rise riodel in the SELAP 4 ,

code. ' This,will involve simple changes. in bubble rise model inAit - '

paremeters' but no changes to the previously, approved coding or to

-the Yankee-Rowe system nodalization. By usin.g .thd Wilson bubble rise ,

velocity' correlation and a zero bubble density gradient YAEC expects ,

an increased calculated coolant inventory at the end of blowdown with .

a reduced lower plenum refill time compared with currently approved l\

ECCS analysis methods. This would result in lower calculated peak i clad te:iperatQres at higher Kw/ft and could rmove part 'or a.11 opthe  ! ,$

pq:lity on p0=; at the beginp% ef the qt fuel cyc1 9 ,

.."":'. j I : g g gQC{]hEMTlCO W W

. ~ . POOR Qu@TMN  ;

8 01'1'~obog.gr .

. . _ ~ .. ,

~

C.. ...

-- (.= . ... '

ss

- 2- .,

YAEC meviewedseveral calculat' ions of water inventory for. various experiments (in81uding LOFT)'.'with ~th. sir.'propo. sed model .

YAE.C,a1so, discussed the application of scale model lower . plans s>eep out . ~ ~ '

1-tests to the water inventories 'c'alduTitiedit'o renain fn ~the iank'de =

Rowe vessel using the phase separ'at'idd "mddef'. ' We ' suggested"that YAEC evaluate all current infdrmatienjn thjf topjg,1,ThQjhgl,ud'es. ,.

data from Creare, DartmoSth and Bairelle, C41umbus. We also suggested

~

that YAEC should address in theforthc6 min siubmittal the effect of the new model on the and o,f jypasjsl,' cafe 1atiori an[th's addunti', ' ,,

of YHid removed at this timak,, ,,. . . , . , , .,,, ,,, ,

We told YAEC that because of t'he potential power penal,ity the staff would give priority to the re[ view of the YAEC's proposed modef change ..;

~

but we were not in a positiort[tIo[coimit[td [any specific",i;sdathfle_for ~'

completion of the review. , , , , . _ , , , , . ., , , , ,

To provide necessary assurande that the critical break size has.not . ..

shifted we stated that we wil.1.;expec[t Y EC [to 'r'eanalysis atllsa'st -

three break sizes. . . . , , _ _ ,, _,,,,, ,

YAEC stated that YANKEE-Rowe Mill be shutdown on October 21, .1978 for refueling with Core, Number 14.M 3peVation,1.s expected ,td be r'essed by Decanber 1. YAEC plans to..sutzitt its proposed phase separat. ion model within 2 weeks from the date of'the meeting and anticipates the ~

staff to complete the review in. two months. They a.lso pla'n to .make the refueling submittal indluding the .ECCS performance analysis p

- and proposed Technical Specifjcation changes _by, September.1 1978. p p

.m n

A. Burger, Project Manager , (

j.

Operating Reactors Branch f2 ,, '

"1 vision of Operating Reactors _.

. .\

Enclosures:

, . . . , s

1. List of Attendees A
2. YAEC's Handouts ,,

', ,^ '

t ec w/ enclosures: See next pa'g'e ..

DOMB #2 orric E

  • QRh#2: DOR

,,,,,,,,, ABurger:nm DLZiemann q

~

0

. . , , , 3/ 74/78 fg). 3/7.V/78 NRC FORM 318 (9 76) NRCM 0240 '/r u. s. ooVERNMENT PRINTIN0 0FFICEa 1978 = 626 614

. s. .

[,, ,

(.. *

. ~

i' ,

Meeting Sumary for YAEC March 28,1978 .

Docket - '

NRC PDR LOCAL PDR ORB #1 Reading NRR Reading E. G. Case V. Stello D. Eisenhut A. Schwencer D. Davis G. Laar R. Reid

  • L. Shao
8. Grimes W. Butler R. Baer Project Manager fttorney, i OELD 01&E(3)

ACRS(16)

Licensing Assistant Each NRC Participant Licensee T. B. Abernathy J. R. Euchanan

(. . p-MEETIN9 WITR YANKEE ATOMIC ELECTRIC COMPANY ON MARCH 15, 1978 CONCERNING YANKEE-ROWE _

LIST OF ATTENDEES __

NRC A. Burger P. Norian R. Landry G. Holahan C. Berlinger YAEC A. Husain E. Pastor .

. - =

t' APPLICATI0i10F A LOWER PLENUM PHASE SEPARATION MODEL T.0 YAf1KEE R0WE LARGE BREAK LOCA ANALYSIS i

OBJECTIVE:  ;

e REPLACE HOMOGENEOUS LOWER PLENUM MODEL BY A PHASE SEPARATION idODEL l MOTIVATION: _. . _ _

~

i 4

e YANKEE R0WE LOWER PLENUM HAS LARGE H/D - SUBSTANTI AL MASS l l'

INVENTORY AT END OF 3 LOWDOWN IS EXPECTED e SIMPLE VESSEL 3LOWDOWNS (GE, BNWL) SHOW INVENTORY AT END OF BLOWDOWN  ;

e SYSTEM 3 LOWDOWN IESTS (LOFT, GE DBHT) SHOW LOWER PLENUM NOT VOIDED AT END OF 3 LOWDOWN

YANKEE R0WE LO"ER PLENUM PHASE SEPARATION MODEL  ;

l METHODOLOGY: . . - - . .

e EMPLOY RELAP4-EM BUBBLE RISE MODEL AS-IS e NO CODING CHANGES REcutRED e SIMPLE CHANGES TO BUBBLE RISE MODEL INPUT PARAMETERS e NO CHANGES TO YANKEE ROWE SYSTEM NODALIZATION JUSTIFICATION FOR MODEL: _ _ ._ _

l e COMPARISON OF REL P4 WITH SEPARATE EFFECTS TEST DATA e COMPARISON OF RELAP4 WITH LOFT TEST DATA e COMPARISONS WITH CREARE \ND BCL DATA SHOWS ENTRAINMENT NOT EFFECTIVE IN YANKEE ROWE GEOMETRY CONCLUSIONS:

1 e PHASE SEPARATION MODEL IS CONSERVATIVE e FURTHER CONSERVATISM OF HOMOGENEOUS MODEL NOT WARRANTED e INCREASED INVENTORY AT END OF 3 LOWDOWN CAUSES REDUCED REFILL I!ME AND INCREASED POWER

'(- C.

RELAP4 BUBBLE RISE MODEL .

t u

u, SATURATED VAPOR ,

sym. -

< Two PHASE MIXTURE am 4

g. ..- a 3  :.' o f y ,,

e ASSUMES LINEAR VOIDsGRADIENT WITHIN IWO PHASE MIXTURE ge = dhlpg= M { + 8 1

'e - SLOPE M AND INTERCEPT B ARE FUNCTIONS OF BUBBLE. GRADIENT INPUT ALPH (Co)-

M = 2 Co MSb /4 F~e w 2<.r B = ( l - C.) MSb /N M=2.Co(#p N es/4) for 2 7.f B = ( [ p (,,) MAh/ _ gep, a STEAM SEPARATION RATE CALCULATED USING BUBBLE RI.SE VELOCITY INPUT VBUB W 3 = Ygus A A(hQ

( (_,

. m=:

\'

_ SELECTION'0F BUBBLE RISE VELOCITY INPUT VBUB .

e DESIRE TO AVOID CODING CHANGES ,

e .- OPTIONS LIMITED .TO CONSTANT VELOCITY OR WILSON BUBBLE .

RISE VELOCITY e ADVANTAGE OF CONSTANT VELOCITY: SIMPLICITY e ADVANTAGES OF WILSON CORRELLATION: PRESSURE, VOID, GEOMETRY DEPENDENCE ARE REAL PHENOMENA e PERFORM PARAMETER STUDY ON GE SEPARATE EFFECTS BLOWDOWN TEST USING RELAP4 TWO VOLUME, ONE JUtjCTION RELAP MODEL MATCH DEPRESSURIZATION USING CD = .65 THREE RUNS: V 3 = 2 FT/ S EC"'

V3 = 4 FT/SEC V3 = WILSON CORRELATION GRADIENT PARAMETER = 0.0 IN ALL RESULTS: _.

)

3 e PRESSURE ACCURATELY PREDICTED USING C D = .65 WI'TH ANY VELOCITY b e INITIAL LEVEL SWELL UNDERPREDICTED BY 4 FT/SEC CASE, BUT i ADEQUATELY PREDICTED BY 2 FT/SEC AND WILSON CASES e ONLY WILSON ACCURATELY PREDICTS LONG IERM LEVEL RECESSION i

! CONCLUSION:

r e CONSTANT VELOCITY ASSUMPTION INVALID PRESSURE AND VOID DEPENDENCE OF VELOCITY ARE IMPORTANi

! e b 0~ USE WILSON CORRELATION

l < .

l l

(.. 1 5:

a 4

?D y t

-_./ ,

t *

' BLOWOOWN - -

@ *pRiplCs

'-l !

j STE n.

1000 pai

~} - -

    • .b- .

~

ee VARIABLE ~-

i INITIAL LEVEL

- - 12 h. _

HH d

OVERALL AND ,

INCREMENTAL L LEVEL 3 SATURATED MEASURING LlQUID, TRANSDUCE RS 10C0 poi RUPTURE v DISO '

, v .

m w_ ^hW e .= - "

  1. ___- ^

1>

+ .s o g e - . = *.e E LECTRICAL HEATE RS 4

k.

V,5n,. am - #

w e ; 8" a.

f P emmun 7 e

> ~a.

_ . . - w <n . . . - ~ -

.u. -

v

. ( ,

Figure II.2 _

.. t ,

Effect of Bubble Rise Velocity on Pressure -1 GE Test B-3 (Reference 4)

All Cases Co=0.0 i i ,

G J

,;\ i

.\

d g, -

i a ,

faa -

g i

]

', \ -

\

i. \  !

\\

i .

j

\\ ~

i foe

\, 'i

\\ .

. \

\, \, 2 ft/sec g 4 ft/sec ,

To d#* -

Wilson i

\\ \, O GE data j 9 \'

c s a

1 b G sx L

.s a s l P

\'

g I

I i

)

I i

g --

~

\\\

't@ ~

1 3D -

\

1

~I l

~ct L  %)* -

~.~..,_

N.

! Nu i ,

i- .

' ^ '

.' c'  :; .:

., (u. c )

.. .- .('-- ( .'..

,. ,, pigu7e 17,3- =

~;.

i: .

- Ef fect o f llubble Rise t.*elocity , on Mixture Level '

CE Test 3-3 ]

All Cases Co=0.0' )

i

/-l- '

l

\

. l l0 W K & -

g. y _.

r

, m -

A C \

/2 - -

N

'N j

\

jl

'\ ' k 's, h

w

\

// d 6 ,

V

. .t .I u

w I, Y>

/d -

.3 e

u 3

u n

d- y- d -

b 1 i

l

) -

l g,

7 -

i O CE Data I O 4 f t/sec 6- O wilson 1  :') 2 ft/see i 3

l

. . . . - . s. . . '

. . .t .

. i

n 2: !c <* , -- f. - ..

~-

u .: ,..- a  ;.

TI: e face)

I- Fisure II,4 ,

Iffect of Subble Risc *s'd10CiOV On li23s GE Test B-3 (F.eference 4)' l All Cases Co=0.0 l

/000 '-

f00 -

e hh e a

[rw

=

E3 J

v Z

tr2

.soa 2 ft/seC ilso M## / A GE data

/

/ <

,/

,~.

./ ,/ ,

/ /

./ /

3 ro . '

s y ,

b -

a.

N .

i.

~* ,.

.eca -

I I

l i

I

..I ~ *

  • j' y ,

'[ *. . . , ,

U '

~

\\

\1

(= t i__ . SELECTION'0F BUBBLE GRADIENT IllPUT ALPH .

e AXIAL Vo!D DISTRIBUTION DATA DURING BLOWDOWN IS REQUIRED e EXPERIMENTAL DATA 3ASE LIMITED TO GE BDHT LOWER PLENUM DATA e EVALUATE AXI AL VOID EQUATION AT Z=0, OBTAIN .

Co = ( R -

  • tom /s , G E 4.s - -

Co =

R - d(A ,

E. I 7. 4 ..__ .

I- a e DETERMINE I, d(0) FROM GE DATA THEN CALCULATE Co SV i + d V2 t + d 3Vs

__ 4 = --

% +% +V3

~~

ol(D

~ -

OBTAINED BY LINEAR EXTRAPOLATION TO 2 = 0 -

e TRENDS IN CALCULATED Co INCREASE WITH TIME DURING BLOWDOWil DEPENDS ON PLENUM GEOMETRY (H/D)

Co = 0,5 IS A LOWER BOUND l

l e PARAMETER STUDY Ori GE SEPARATE EFFECTS BLOWDOWN TEST  ;

SAME RELAP4 MODEL DESCRIBED PREVIOUSLY .. ..

MATCH DEPRESSURIZATION WITH Co = .65 TWO RUNS: Co = 0,0 AND Co = 0,5 WILSON BUBBLE RISE VELOCITY IN EACH

([ A SELECTI0t1 0F BUBBLE GRADIEllT INPUT ALPH (CONTI.NUED) .

RESULTS:

1 1

l e- ADEQUATE. LEVEL PREDICTION WITH EITHER CASE

e. SLIGHTLY BETTER MASS PREDICTION WITH Co = 0.0 CASE I CONCLUSION:. . . . ,

. . 1 s C = 0.0 IS CONSERVATIVE RELATIVE TO Co = 0.5 o

. e GE BDHT DATA FROM BWR 4 NOT STRICTLY APPLICABLE. . l e WILL USE Co = 0.0 F.OR CONSERVATISM - .

e MAY ATTEMPT _ TO JUS _TIFY Co 0 IF BETTER DATA BECOMES AVAILABLE )

I IN FUTURE. ,

O e

- - - . ~ - _ _ . _ __

.(.. I.. - (.'.',.

Figure III.5

. Effect of Bubble Cracient Parameter on Mixture Level

l. All Cases V B= Wilson ' 'l
i. . i j'

../.

./ : .

Co = 0.0

,3 -.

-Co = 0.5 S 'b C GE Data e.x . . .

/4

'l '

C i:

\

i:

I \ . .

z s .

// - .

4 m ,,

o' o .x .

'W

%d

& j[

i s sN

= \

i

.T l 2 -

1 1 u

E v. . O 4

Y 9- I Y I re  :

4 ,

! l 1

1

,f,' ,

. *4 [ ,,
  • et . / *I'd //M [ h_

[ ge .

Tina (s e c.)

.S

(

. . . f. l g .' - Figure III.6 ,

l Effect of Bubble Gradienc Paracieter on Vessel >! ass GE Ter' B-3 (Reference 4)

All Cases V =3 Wilson 1

fr.n -

I fca _

O i

1 l

1

'[iJ o

I C

O l l

'A trl hvN b GE Data p, Co = .5 C0 = 0.0

/

O -

' I U

/.O V _

m A

7

e. =9 1 I

E * '

.m,, , -

i..

  • o',

n' oU / / .J <s

  • J* sb m r- 3 s  !*.

y *. - ,%.

~s. t- \

t b

- .. VERIFICAIION OF SELECTED BUBBLE RISE MODEL INPUTS . _. .

e. INPUTS VERIFIED BY COMPARISON OF RELAP CALCULATIONS TO SEP'ARATE EFFECTS TEST DATA OF GE AND BNWL e RELAP MODEL FEATURES 1

ONE VESSEL VOLUME, ONE AMBIENT VOLUME - I SINGLE JUNCTION FOR BREAK FLOW DEPRESSURIZATION RATE MATCHED WITH DISCHARGE COEFFICIENT e WIDE RANGE OF IEST DATA SIX BNWL AND THREE GE TESTS

-- ~ ~ l FOUR TOP BLOWDOWNS --

i TWO MID B'.0WDOWNS ,

THREE ..JTTOM BLOWDOWNS GE VESSEL n 10 FT3 AND BNWL VESSEL as 150 FT3 q e RESULTS SIMILAR TO GE TEST 3.3 DESCRIBED EARLIER PRESSURE CORRECTLY MATCHED l MASS ACCURATELY PREDICTED LEVEL CONSERVATIVELY OVERPREDICTED I

CONCLUSION: l e RELAP4 BUBBLE RISE MODEL WITH APPROPRIATELY CHOSEN INPUT PARAMETERS CAN ACCURATELY PREDICT BLOWDOWN IRANS!ENTS IN SIMPLE GEOMETRY -

!. . : z .1 ,, .

(-

. r,

- c.....

.. a g. n . . . t.. . . . . . .. . . . . 3.;- If.. C A . . . . l' l

g , ..,.,. ,u, .. .. .. .. . . . ... . ,., . . - - . . . . . . .,,. ,,. ., ,, .y.. a. 7, 0 N s i

- t, .

~

q l 1 (s!  ? y @a & T@ @T c% i=c.

M.,.

>_.i..v- .

t-is y ,,.,.ug ag- q--

m; , .w .g y , t -

t ,

-n 9 @, R s71-+a.,.,->.-:'

. l W_. ..m -4

r. -

m g+ ,g.s gy 'gAi i

F

+y l'.

  • l-Q 5
  • 'y $ . . . . . - :'& ( - *

- . . ~ . .

r l_ _ _. f; lLp;.a y .

. - __M~

- ti . i ,,;.,,i .

-- -_ A,l. . . -d.l,e, )., @, e..i

.a._ c

-D-m _.

-D-u9 q

. y n .

e_.

)

e e m, -1,i w u .=,r-c-) tr-a ~ 2,

.r_

-- . D,. ._ .

.o .

y -

f_

. -qpr, in n

-n,.

r l .

w .,.a .e... .: .

~~

2 g ,<

p- i e ..

r> -

I

}D

. a a. t_} -n--

g W h,3 >0 ' rg,c-cr[p,51-n:

- MN" >9 q c c- v 5 .l

.- a -

m1. g.s-c . y

. .,.,, a..n . ..

_. .~. . . - - .

y, c -

~ .s e ', ..s ,

s .

ca r.1 &e ua w: .

y p le,.. .

9 g

-o-ow g a nt* -

c,- .

= = y @ v D re]

$~'~' gf--Ws- 4 -

g g y;y g.

c 1 o I o n  :. ;. 1

, c

)<. a

-c -c.g,-

s) ==d ;ik c

i. .r e
, u

( -- L3. . . . y,

. g L

f i

.h

I. .

l -

TABLE IV.1 ,

i SEPARATE EFFECT TEST PARAMETERS .

Break Parameters Initial Conditions Level (ft)

~

Test Area (ft#) Elevation (ft) Disch. Coeff. Pressure (psia) Hass (Iba) ~

Top Blowdowns CE B.3 .00136 12.9 .65 1011 '9.59 317 rw 4

CE B.4 .0077 12.9 .65 *

, 1005 11.77 389 CE 15. 5 .00077 12.9 .65 1042 8.14 267 11NWI. CSE 53B .01552 12.8 .65 995 9.4 3400

!!1d Bloudowns Brall. CSE 51 .06447 12.8 .65 1697 17.0 7400 BNWI. CSE 52 .1467 12.8 .65 1304 17.0 -7400 llot tein 11]owdowns ,.

Iltull. CSE 9 .253 .875 .60 -

1625 17.0 ,

6750 BNWI. CSE 10 .0156 .875 .85 1415 17.0- 6750 BtIWI. CSE 12B .0643 .875 .70 l 1665 17.0 6500

.i i

CE Vessel: volume = 10 ft' and height = 14 feet.

+

Brn:L vessel: volume = 150 ft' and height = 150 ft' f

k._. - _ _ _ . . _ _ _ _ .

, (i.:. 71gure IV.16 3

'. 1 i

' Cor.parison of 5%~L CSE Run 51 with RII.AP4 Calculation l

., 2 .' -

.8 Caleslation if "

,/vi O tevel aata l l

' // "

,s, '

n d

wp .

h. i

.J ..

t // e,'9a% [%

.M- ,

A 1 . II i

vS .

~n 6- .  : ] O blI ,

41-

'{\iVig,yl/

l 1

f . ~ 1 1

t

, o 10 .2: 30 4c 3: 0:- 7 5'o  % s'c~ <

Time (sec) l 1

1 l

l O Calculation 1

1 1 C Pressure data

$ 0*

1

$4

+

2

_, 4. ; - .

Y E g,v . -

=

5 \

).s' -

e a-m .8*s I

j.'s ~

g g C  :. 2 f. <r  ; .

,s .' ': ..

Tirst (de ) '

-c

(..

?!.g.:re IV.17 Cocpar., son c:. a... .. v:> c Run esi an d .,a. r, .s. n ,- Ca.,culatica 1

. 1 9000 O Data  !

I 8000-i-

d Calculation .

i i

7000 h .3 1

1 A 1 60D0- ,,, ;,k ,

a.

o I, g

= 5C00. ':-

I h,. e,

, e .

4000i  : i I E

e 3. lk *I ,

.n, I l .

I? f!S ~ t., :i,

& . w. e.

g y.' - in ri , : 5 .

.r. . : ! ., i _ f, 4 : - _ _ _ .] I d $[29..; '*

3000- .>:.E.'c d.*12 !. .

ii . :. . :..-l..l,

..! ,, "jd J. .;. ,' . '. . . .i

. l

. ik . .:

..t. .A .

l 'q x :: -

'  :.a .

]P I- . . .. M .x- '". -/2 , E :. .P :*! * - :i.;' 9 . - !;:: 'g::' .i.j.

l

![ 1 2000.1 .-  :

v.wg;s ... o.. ,, , :r ,e:.: ..:.: . '.'::. .., , . :.. .s-; .;:. i .il.h.v.

. :. , i : : . .. . ,: ' :

j i t t . ; .i;..  ; - .c

m =~nn :,. Sl.

si* i ii f j #gi g}

ij . .  :: - .

r  :.p --

! i 4 1000- ,, ek - 4 -

'u

)

u .

l

.u 0  ;

c.ce . :c.a: 4: .:.: ec.::  ::. :  :::.:: i::.:: oc.;; ins.:: is:.:: :r: . :.:  ;

TIME AFTER 5.tP ;nE 6

> l, t

i

> s

!, N i

i e

4

(..

_ _ VERIFICATION OF BUBBLE RISE MODEL FOR SYSTEM BLOWDOWN ANALYSIS .

f . e- COMPARE RELAP4 PREDICTIONS WITH LOFT NON-NUCLEAR IEST DATA' e LOFT TESTS GIVE TYPICAL PWR RESPONSE SCALING BASIS FOR LOFT SIMILARITY OF COMPONENT DESIGNS TO LARGE PWR 1/11 SCALE FACTOR FOR YANKEE R0WE o SELECTED LOFT TEST L1-4 FOR COMPARISON WITH RELAP4 CLOSEST TO YANViE R0WE WORST POSTULATED LOCA

  • DOUBLE-ENDED COLD LEG GUILLOTINE BREAK
  • COLD LEG ECC INJECTION e OBTAINED INPUT FOR EG&G RELAP4 MODEL OF LOFT ,

e MODIFIEDEG&GMODELTOBESIMILARTOYANKEERdWEMODEL

- - DOWNCOMER NODING LOWER PLENUM N0 DING BREAK FLOW MODEL

e KEY PARAMETERS ACCURATELY PREDICTED I

,l BREAK FLOWS

, SYSTEM PRESSURE l

VESSEL MASS I e' LOWER PULNUM MASS CONSERVATIVELY UNDERPREDICTED FOR ENTIRE IRANSIENT

'_C_ONCLUSION:

o APPLICATION OF BUBBLE RISE MODEL TO LOWER PLENUM GIVES~

CONSERVATIVE PREDICTION OF MASS INVENTORY AND THEREFORE LOWER PLENUM REFILL IIME I .

.l 4

_____--..{~-.,.-.. ,

, , f ~

l' i l e r ' -

i

. .- _a _1 s ,

l  ; .- r

, t i

+

,  ; , . .t'

% 6 l-

. .I .

Steam Generator . -

f ' Control Volume hesswim = Junction h[ '

'I

(

'oPQ')

t 9 di Steam Genaator Sienulator ~

g, - -

35 .it s O'

n

[,

E'

/ 12 h 6 3g Q itseak I*tanu O

45

'g'* 5 Upper Plenum , 3 g-O 43 2n g ., -r 7-

'I#

2 41' Q

{ c. --

,3 Primary  %

f;'

Coolant I ), '

l. , .g .

g5} ',,,

I'l (8 ts e Puenpf. .

' U""

'- ..h33 . g ..np /' ~

r- [ s.t) Smautator 3y 5,

~

Z 54 h  ;*/

21) I  ;3 h (2 33 kl 88 3 3
  • Ak ~

til o 47 in 18 20

~~ ~

21 Break Piano m $5 ns X l 25 _

S's Q llPIS l l l l l l  ;

3.,

/ 52 50 ?4 e'

,n - - -

d \

,{ :a 4'J  !

4 J LMf g a; e,essu,. suppressicn sysiem

u,

-*- Accumulator j 44 g s J - , - j t

- , 'i~

. i!

i i I .

l i e !1

p U

U O U, V.I

  • v J

t t 't i !

! Steam Generator

{

[ [ h Control Vohame ( Td Td f., 50) ,

I Pressurliet k = Junction (Tf)T #1 f. Sp (to " @h g

'9 Steam Generator Sirnulator

)~ 35 :tr.

?E u .S S,'(9 0' *) , - - J. i <33 6 < '

Break Pfare #%

45 , y-L+ O eJ 'tu'

$ h~.) g-d S Ut*per Plenum

~

. '\

3 g- A U

  • a

~<

a pg 32

,. c-33 h ,

gg 47 'ki p -

13 2 '

., t> Prarnary -

h.*

,, t' Coolant 1

. .8'h

(~ d ll 1

_ h _,k,!:iaiutato'

7,.

) --

n, s 2Ea 4- - - ~ - -

g d

,,.. ( 14 @ ,

s.-

JJ n.' g ..f 2') b si,  ?) s E s- _ . _ _ .

r; -

, .. , , 20 t

. p.

v T 23 @ 22@a

@= @ ai Ifl 4. ) / Jk i

,3 ,,

' 21 47 g -.g

{92ntj a 1:/ J)

, g, e,, , ,,,, n, f-.

@ 0 Q S  %. *, - * ~ - - - ~ -

1 ./ 8 n ' " 8 s.i , ~ @ Sc I I L_] I I

.. t ,J ,

.I't j I

!4 Q s 37 g-~ *Rk*

Accumulatoe ' ) 44

~

j

-y l ; ,

T . I i ,

I , i '

.i l

~

n t -

t i : ' l l

  • I g

i  ; i i

! =

g

?

i I  !

  • 2 ' , i i i 1.

f

. r2 l

l Ps, C

l Y: C  ;

. ,. _. 1 i- 1 I I i l A-

_ d.;

s . .

C.

J

- . .o ep T + d I1 e g C .

M E, p b  %

i i s s 8' < \

c' b h T I l

r- +

T. .e-c.

1 7L c.

o; H '

%C C, e s tJ. C c I

"' W MM y O A v v f o

.-r 5 l r, b i Y

I h -

N

-j S

~

__ C 2 0 .

0 one a

I m o , . . ,

) -

e r wC

("

- N c e i 'cr'

/~

w d

lI ,

s.

t 5

  • W s-C (

. c.

k x

E

/f- ~

N W

,i- %c.-

+ f,.. H i

3 / ,/.

y e

LL e-o  : C

- a _

a -r= .

e. 1
u. 2 c r, 1 E \

'l

/:]

I h.

l

?  %

L- t ! C I l I I I l

I - ,

'. O C C C C C C C C C i ,.,) '

C C C C C C C C C

" Cn to r~ . C Ln v 0 N r [

(o es/ c.)) :_i_.-n~ s u u n p_. e g uvp.i eman

r l

- ( .'

c 1.o c u . ,- -

=

e l

C e *miss Of LOF T L1-E* dew L e~ e W 9 L es Fin'a D e'iw Wi~k REL5E"

, .. _9. . _

. w

'd .

-w 1

i i

1 1

- .__.,_. m . _ ._ .._. .. _.

a i 4 i . cr.,xt.u w (

e mvp.n q - -- - -l

, i i

_._.__9 I I I

_ - . --.j i I '

I . - . . _ . .. . . i

~3 i l  !

50.  ; . . i * * .

g ,

. a

~,,, ' g i bm' a $

9 C

. a

\

f . 0 I o L.E & D A T19 Y ';~,, i .

_ . - _ ga _~ "

25.

  • \

, .'i. 4

\

e l l l

= a

-_,w _p,/

1' '

I 4

g 8

-2. , .

a.. $ i . N ,} o l .-..._.-..g-e I l 1 I d ___...-__

_i N. \ -

...= n s l\

. ,,0 ~h s i -

.., l , l ( l

~

" * * . M*"h.sbni *e "* ' T. . A hp\ ]h'

3. . [. O .1@ gj ,, .

a - w r..e r. I .

\ 54 eT c e g p ,9 7 4

- -- M~3

-~

~ ~ 7, , I I l - i

~C~

--- Re uct. s l l

, i Tu AA tid t) 3 7 l l l-

~~

il i , , i I i 1

-10. 4. 10. 20. 30. 40. S0. 60. 70.

TDf. AFTER RUPTURE (s)

O l

l 1

l

/

l l

l C  ;

l l l .j C l

.m

. \

- I d C

.El .

b .

43' . C . .

< . O

~

k

- .Q '

7, P 3 vi n

y.= *) .O A Z g D i d.

c -

N T

0.

c -

o8 y

l J i t.!J a- > w C~

U sd M

-' ,, 0 . .

i .

"c.9

~

3

.y CD -

$ CC )

Z cc l y  :

w '

.,3

.)

4 m s w

a w >

e eo - <

[l ,$ _

2 . _

C W --

o J N.2

> q .

l-n + H J a 2 b

1 O o - . _

Y J

W ~'

C ,

e c

U

? s O f C C C C -

O C U C C C C C t C C C C C Z W D N 'r~

.]

I

, b:n b n...

i

- . o

  • ~ e q u v =_ 4 ' o 1

~ -.1 9

..) Co~,,c>,.u- c r. L o n u . .:. Ln. .= i v.. - ...,,

o, u u;-;L c n . . . ..

-20.0 ' ~ ~ * ~ ' ~ ~ ~ " '

4 i i i i e POCT00M-CS-001 A ]

l 1 c PCS70t%*PC-EST-00IA' " ' - * - ' ' ' - ~ ~ ~ - -

-. . . - _ _ . _ . . . _ . _ l i l i 'l~~ - - -

j c -

l

}

I

~~l . _ _ . . _ _ . _--

~'

' I 15.0 i i i i l

1 i . 1 I 4 4 L l l 8 I I I I 1 l l 2

  • 1 I l 1 l l t ( ' - -

z *2 l l

. . . . _ _ - 4 l 1 l l

- - - = - - - -

s-10.0  ; , , s

..__.--.c.. a  ! - - '

._ _ _ _ _ __ S ~ _ ( l  ;  ! i l j- -- - -

_ . . . __. . _ U .g.. 4 i l l l i l ~l - - - - - - - - - -

. . _ _ _ _. _ . 3._1 .

I _ i l i i i t l  ; -

T--

4 t'-% i 1 i i

._ .. x '-

. ._ . . 5 . 0 j--}

i -

t s 1 I  !

(

'N __ 1 i i i es N i i i t -- l -

's i 4 I i i 1 l i RE L A P4 -- a ss % m I- I i  : -l

. _!. ', '* ' ws hL.

-10. O. 10. 20. 30. 40. 50. 60. 70.

TIME AFTER RUPTU21 (s) l i

l 1 *%

-~ ^'

_,K 7'

., -- --Q _ _ _ _ . . . _ . .

E e

W #

n (c: ,

O 4 6 e4 a

' g%*) e

,. ***==+. .~

p g. ,

u N-

,4*J

.E

, mit a w, s,,

y 0 -

< E m..%-- -l - .i 4 .

a t.=

4,

. .- - g' ~ . .

. c. =

_?'* P O , ,

A A 4 Y U

. M als s \

t'j i N "

.J  % .s

. - _a 2

?  % / .

c j -

L'

= -

C r U / eg

.T. . /-' .-

.A i m

/ . ',A

> ~; /

1

  • J .

='

l W< 2 I?** I 7 i

. / I

( I

/ =

4 L,*, t =* /  :*

  • = J ,

L  % l za s *l  ?

(a*- k ~

l

(** '

]

e <G

%i c 4 O , .3

i  %

=4 b4 h '

't g- I h .

d .~

  • a

/

,/

<1 1'

g' l *.e'.

/

/ l l *

(,) ,/ er a / ./

8 W I

( v e.:** \ (pg*

. se t

\#4 gs

~

teh e .,%s g, *?it m_ _ _ _ _ _ _ __, 1 _ ._- _

' (3 t,;.

l ENTRAINMENT CAUSED BY REVERSE CORE STEAM FLOW _ j i

e RELAP4MODEL.0FYANKEE.ROWEDOESNOTDIRECTLYMODELTHIb PHENOMENON e . YANKEE R0WE LOWER PLENUM RESPONSE DuRING BLOWDOWN 1 e COMPARISON OF YANKEE ROWE REVERSE CORE STEAM FLOW WITH l I

CRITERION BASED ON CREARE TESTS SHOWS ENTRAINMENT WILL NOT OCCUR l

~

e COMPARISON OF YANKEE-ROWE REVERSE CORE STEAM FLOW WITH CRITERIA BASED ON~3CL IESTS SHOWS ENTRAINMENT M'.LL NOT OCCUR CONCLUSION:

e ENTRAINMENT WILL NOT OCCUR IN YANKEE R0WE AND IHEREFORE DOES NOT NEED TO BE INCLUDED IN RELAP4 MODEL I

- .. _ m , m . . _ . . . . . . . . . - . . . . .-._

'we**-***="'"*** - -

, .... ,.++ ...-...

e 4 * . .

,,,, ,. . t.. j e .

  • i

(::

' .=..

I t ) lA 't (

o a

.. . ; c 'u l. t c of L na ., P r . ,, t. , 9 in .,;-- D e ,.; % 8 le.. .)c. / '4

,.... . . . . 1 s

'q M

l 1

i

.* j l

l

. l I - . .

1

- 1 i

TO  ?.

auw x j

()

C ORE l

  • 1 m

I

'*' .m - --

1 R e.w s e. S4 eam i Flow i

.D o @

6 6 M M M M VE.m M - M W-e

- _ . . _ . - -. . _ -. _ - ---- am.

34

" ' ~'

  • ) }

'a '/

N mN7

\

/ [

\,"",

g ,. i v O' W .w C.

a

'e 46 /

's / _] /\ -- t J , . . c"' i *. n 3 .

,e e n ,- - , , , - . -r- ~ + a e-

. . . . - - ~. .-. - -.

, -- (_

  • y.. .

, , "ii,vv*.. '_.....

n ,3.

.ma :- ~ . . .. e.

o. , 2 f j.e; . - .

..- -,*f,,..

,w e j' - (.

4 f

d' s ~

m. 2.0 6

'N z o I*8 SCALEO PLENUM -

I i3 0 m . Tecc a 212 *.F w Pt p = 15- 50 psio c: 1.6 _

c. s = 0. 5 !n.

w .. . . . . . . _ _ . .

O- 1.4 -

iSYMBOL! GEOMETM l De (in )

w C 3.89 0 0_

c 13 mS.E, hs.~._E,c2E ~LA7E 6.25 31.2 wgs7:,,

0 J A 2 & .y 7.0

.g m 1.0 - , 0 . N O H . . . .:E 7.25 o -

-. w w 1 4 0.8 0 / -

,s M c O

C m 0.6 - -

W- # O N

y 0.4 -

gy-g / @ ~

.m , ss : o C2%e 5, c.2

- e p_9 y .

0 o: -

,,. 0 0:5 > >

_.... _ _. .o 0 .

0 =, 60

' 15 -

CORE STEAM MCMENTUM FLUX,Jpg yg (!:S/ f t 'i - sec) s

~.

. a a-.;m "v ::

. . , ~ - :... . . :.: u . = .- w .

-- - , ~ . . . - - _ . . - -

4,

. (;;;.. L, c

j 4

1

(

Table VII.1 Comparison of CREARE Entrainment Criteria with

- Yankee Rowe Reverse Core' Steam Flow Time Water Level Steam Flow Needed < . Yankee Rowe (sec) Depression 'for Entrain =ent - Reverse Core Steam Flow (ft) (1bm/sec) (1bm/sec) .

t 10 2.85- 552 285 11 2.85 542 367 12 2.85 530 '371 13 2.85- ,

515 275 14 2.88 . ,_ . _5_01 .

320 15 .2.85 _~ ~ T87' 281  ;

16 2.85 470 234 17' 2.85 450 241 18 2.85 429 220 19 2.86 403 252 20 2.97 395 307 21 2.85 350 122 22 2.86. 315 139 23 2.85 276 146 24 4.18 367 129 25 4.09 328 120 9

$* , .-- , ,w ,

-~.,

  • 1

. = _ _ _ - _ _ _

(

l l

l Table VII.2 .

Comparison of Battelle Columbus Laboratory Critical Entrainmene Velocity .

With Yankee Rowe Reverse Core Steam Flow Velocity L A W (j) Vj g (jg> Critical ,

Time Gap Cap Reverse Superficial Drift Steam Entrainment (sec) lleight Flow Area Core Flow Velocity Velocity Velocity Velocity (ft) (ft2) (Ib/sec) (ft/nec) (ft/nec) (ft/sec) (ft/sec) 10 2.85 69.2' 312 2.88 .65 3.67 5.23 n-11 2.85 69.2 546 3.91 .66 4.89 5.32 12 2.85 69.2 652 4.17 .66 5.15 5.44 13 2.85 69.2 537 3.28 '

.67 4.17 5.60 14 2.88 69.9 695 -3.99 .67 4.92 5.67 15 2.85 69.2 654 3.75 .67 4.66 5.92 16 2.85 69.2 557 3.40 .68 4.30 6 .' .14 4

17 2.85 69.2 548 3.74 .69 4.69 6.41 18 2.85 69.2 469 3.76 .69 4.74 6.73 19 2.86 69.4 475 4.84 .70 5.95I 7.17 20 2.97 72.1 503 6.33 .70 7.60 7.60 21 2.85 69.2 152 3.07 .71 4.07 8.24 22 2.86 69.4 377 4.44 .72 5.52 . 9.20 23 2.85 69.2 560 5.97 .73 7.17 10.45 24 4.18 101.5 167 4.31 .74 5.44 11.52 25 4.09 99.3 122 4.94 .75 6.18 12.62

.~ -- e e- - - w. .-- , .-w- e =s- ap , e m,..-- -.a.=

(a G

. . 8 l

. _. f _ APPLICATION OF EUBBLE-RISE MODEL TO YANKEE R0WE l LARCE-BREAK LOCA ANALYSIS 1

e. .NO. CODING. CHANGES- j

.e No il0DALIZATION CHANGES e No INPUT' CHANGES TO-LOWER PLENUM VOLUMES'34 OR 47 1

c USE WILSON 3UBBLE RISE VELOCITY CORRELATION IN VOLUME 46 ,

I q

l RESULTS: . .

e  ; INCREASED lower PLENUM MASS INVENTORY AT END OF BLOWDOWN' e SHORTENED L0wER PLENun REFILL IIME 4

l l

. , _. . - _ _ . , _ ,, . . - - , . _ _ 4,,. _.

.-. .- . . . _. . _- ~_. .__

.h.

F. y w. .I

~~ '

, s-. ,

Pl# w N ues. .LWW Y ay. l

$- E. N E 'o F Loww Plews Hebl On Law'*

' t~

, , 3 .; p, a;  :- ::- r - . - ; = rc . -, - e t..  ; t j. l.' : U "J 21 - I a

. ...,.. . i.. .

.r. . .. . . . . . .; i t.. . . , ,

. ..1 .. t- _ i. . . . . .

. . , . . . i I p .. t. ..  :

. ,.. .i..i..... o .  ; ,

.. i ,

i  ! ,

.j - 3 i. . -j.., . . l  ; t - '

i j

- -. . 4

, l c.! .

{ . .

. . :. r - I ,

1-- l

.i .i

. . . . , .i , j  ;

3 ,

. r . ,

8 '

, . 4 l l

. c, _ i t i -.

1 f%--

3 , ~i . .

)

. t

% +

i N

  • e  ;. .

]

to w . ,_.i. t .. . , . .. -

1 a r \

,s c

\ e. . 1 Q  %,,

x, I

ly F\ 'f' $ S'ja k Osb I ,

j

  • O _[ . / 9, * *M.$ '[ .2.I"- , .' '8
f. h*-

j.

so

  • p N. s .___.,Z_' .. . . . . . . . _ .. _ _ . I C' 3._ .

.. ._ 1._ _5. % _ .. N * ',. i.u .E i r d t I. ___

. - - . _ . , s I s

,. ____...s.__. ,,

.J -

. Ns A N

a

,\

q t. --

.. . 4__ , . \ _ .. _

w '._

'\'

l 3

r__..k*mpdi r. 4 ' .6 3 J h . /d oe, ls1 -~ N i ,.

s N"N . '

c ,

I 6 't.:. 'm m u u s , t + . .. - : at r [ . _'d s.N_.' __. _ _ _ _ _ .

1 hl u~$.[:\ c5N m

\

\

' N

. __ . _ s _._ e 1 e  %

'1 . .  !  !

, s

-'. s i i i  !

-Jt;

- i , ,

i

, i l

p] .  ;

., .! i i i , i  :

_ ji ._ . i.

3 l_ i

.! -, i . , ., . .

5. :see'
.4 ,

., \ i x.. '

4: j ,

- 3 - . '

.a ,

i.

. . . A

t-  !

s l

l

.=.

i 4 __ / \ -_

.5.1.vn A 1'< l 5 g h ~. ll

  • b i w..U.c2.t '

w t* _. E 3 _ _ l n ;

  • w _ P i f v.+. __ / $ 2 b.!_ . 3 .

l '

2

' 4 i  ! r +

i- i i i l l 6 I .,

e s l

i i t h i e .

i - ,

I j I l I  ! I i ,k f I f I e ,

, f  ; ,[ a

.. g;L i i I ' I O 5 80 'E 10 23 i Il-1.:-t2 ._C

F ^ ' 8

. :. , (

~;-

SUMMARY

OF RESULTS _

e- RELAP4 BUBBLE RISE MODEL CAN ACCURATELY PREDICT BLOWDOWN TRANSIENTS.lN SIMPLE VESSEL SEPARATE EFFECTS IESTS IF APPROPRIATE' PARAMETERS ARE USED.

i e RELAP4 BUBBLE RISE'MODEL CONSERVATIVELY UNDERPREDICTS LOFT 1 TEST L1-4 LOWER PLENUM MASS DATA.

e YANKEE R0WE REVERSE CORE FLOW WILL NOT ENTRAIN LOWER PLENUM LioutD.

l 1

CONCLUSIONS e YANKEE ROWE LARGE 3REAK LOCA ANALYSIS WILL USE RELAP4 BUBBLE RISE MODEL WITH WILSON BUBBLE RISE VELOCITY IN VOLUME 46.

e INCREASED INVENTORY AND REDUCED REFILL IIMES WILL BE PREDICTED.

e RESULTS ARE STILL CONSERVATIVE AND ADDITIONAL CONSERVATISM CAUSED BY~USE OF HOMOGENE0us' MODEL IS NOT WARRANTED.

's L .

i i"

_. -- .