ML20148C607
| ML20148C607 | |
| Person / Time | |
|---|---|
| Site: | Vermont Yankee File:NorthStar Vermont Yankee icon.png |
| Issue date: | 01/31/1988 |
| From: | Wheeler C Battelle Memorial Institute, PACIFIC NORTHWEST NATION |
| To: | Office of Nuclear Reactor Regulation |
| References | |
| CON-FIN-I-2003 NUREG-CR-5048, PNL-6388, NUDOCS 8801250223 | |
| Download: ML20148C607 (144) | |
Text
.
NUREG/CR-5048 PNL-6388 Review of the Natural Circulation Effect in the Vermont Yankee Spent-Fuel Pool l
Prepared by C. L. Wheeler l
Pacific Northwest Laboratory Operated by Battelle Memorial Institute Prepared for i
U.S. Nuclear Regulatory j
Commission i
i R
D 0
1 PDR p
t
w e.
NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of re-sponsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe povately owned rights.
I NOTICE Availability of Reference Materials Cited in NRC Publications i
Most documents cited in NRC publications will be available from one of the following sources:
1, The NRC Public Document Room,1717 H Street, N.W.
Washington, DC 20555
- 2. The Superintendent of Documents, U.S. Government Printing Of fice, Post Office Box 37082 Washingtc,n, DC 20013 7082
- 3. The National Technical Information Service Springfield, VA 22161 Although the listing that follows represents the majority of documents cited in NRC publicaNns.
it is not intended to be exhaustive.
Referenced documents available for inspection and copying for a fee from the NRC Public Docu-ment Room include NRC correspondence and internal NRC memoranda; NR Office of Irspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.
The following documents in the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides N RC regulations in the Code o/
federal Regulations, and Nuclear Regulatory Commission issuances.
Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.
Documents available from puolic and special technical libraries include all open literature items, such as books joumal and periodical articles, and transactions. Federal Register notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.
Documents such as theses, dissertations, foreign reports and translations, and non-N RC conference proceedings are available for purchase from the organitation sponsoring the publication cited.
Single copies of NRC draft reports are available free, to the extent of supoly, upon written request to the Division of Information Support Services, Distribution Section, U.S. Nuclear Regulatori Commission, Washington, DC 20555.
Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library,7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute,1430 Broadway, New York, NY 10018,
NUREG/CR-5048 PNL-6388 RJ Review of the Natural Circulation Effect in the Vermont Yankee Spent-Fuel Pool Manuscript Completed: December 1987 Date Published: January 1988 Prepared by C. L. Wheeler l
Pacific Northwest Laboratory Richland, WA 99352 Prcpared for Division of Engineering and Systems Technology Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, DC 20555 NRC FIN 12003 l
l l
- - - - - - - - - l
ABSTRACT A 7,429-node, three-dimensional computer model of the Vermont Yankee spent-fuel pool was set up and run using the porous media model of the TEMPEST computer code.
The results of this analysis show that natural circulation is sufficient to ensure adequate cooling, regardless of the loading pattern used or the orientation of the cooling system discharge nozzle.
1 I
iii
f EXECUTIVE SUMARY To ensure adequate cooling of the spent fuel in the Vermont Yankee fuel pool with the proposed modification to the spent-fuel pool cooling system, the U.S. Nuclear Regulatory Commission (NRC) requested the Pacific Northwest Laboratory to independently verify that the removal of the dispersion header and the dumping of water above the fuel will have no adverse affect on ability to provide adequate spent-fuel cooling.
To accomplish this, a 7,429-node, three-dimensional computer model of the pool was set up and run using the porous media model of the TEMPEST computer code.
This model is shown in Figure S.I.
The results of 10 separate simula-tions are given in this report.
The simulations used inlet temperatures of 100', 130*, and 150*F; pool heat generation rates of 17 MBtu/h and 10.11 MBtu/h; and recirculation flow rates of 450, 1048, and 4187 gpm. The parameter configuration for each of the 10 runs is sumarized in Table S.I.
Typical temperature and velocity distributions are given in Figure S.2.
Figure S.2a is a view of the heat generating region, and Figure S.2b is an elevation view for one of the planes that passes through the rack leveling pads (as identified in Figure S.2a).
The results presented in this report show that approximately 50 to 80%
of the peak fluid temperature rise results from bulk pool heatup, which can be estimated from a simple pool energy balance.
The remaining 20 to 50% results from three interdependent factors:
- 1) the local heat generation rate, 2) the proximity of the heat bundle to the inlet nozzle, and 3) the proximity of the peak powered bundles to the rack leveling pads.
Extrapolation of the results shows that, for the worst case of pool inlet temperature of 150*F, pool heating rate of 10.11 M8tu/h, and peak local bundle heating rate of 49,000 Btu /h, natural circulation provides adequate cooling to prevent local boiling, independent of the loading pattern or the orientation of the spent-fuel pool cooling system discharge nozzle.
)
The results also show that the pool above the fuel is well mixed, except for the region of the discharge nozzle where large temperature gradients exist.
A hypothetical calculation demonstrates that the 2-in, gaps between the spent-fuel racks and the pool wall are sufficient by themselves to supply adequate cooling to the open flow area below the fuel so that natural circulation will maintain an acceptable coolant temperature.
Locating the pool inlet in the region above the fuel rather than using a sparger below the fuel storage racks does not significantly degrade the pool cooling performance.
However, locating the cooling system return line above the fuel bundles does change the location of the maximum temperature rise because it does not necessarily occur in the bundle with the highest heat generation rate.
In addition, the incoming cold fluid tends to place a flow i
resistance cap over the bundles in the vicinity of the inlet, which competes v
22-_.
,,g,,
I 21 i
O e Outlet t
to 19 18 17 16 i
e gg 3 Ass,eeWes 5 14
&x 13 3 AssemNeet '
j 12 Me w...
I i n f to 3 '.
I 7
6 i
i l
N
! g _._ _ _
-..o--.
4 2 3 4
6 6
7 8 9 to 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 Frora See (Ovttet see of Pw). Y Deutea ll 18 l
i. wei O = Outlet l
16 15 l
14 i
o o
i l
13 j
i2 i
l i
5
'O O
}
~
~
ll I
ll Il l
Il 7
11 0
5 II I
I 1
5 lI I
3 ll l
2
- i 23 4 5 6 789 to 11 12 131416 16 17 18 19202122 23 24 25 I
Sottom of Pool Y Direction FIGURE S.1.
TEMPEST Noding Model vi
)
,I
- s.,,,,.r o-
. '...R,.A,m'-
7 l
'.lll r"'
.t
\\
t.
n.
a.
XY Plane--Top of Fuel M r.
j
...,.t
.e +.............
- ,, J
~... r- -
u n--
t 4
[,".'~....[l
'$ i, n
m z
=
5:
3 3
,yg.
- ,y.........
7
.1
,.....%(s
~. +.J..
....,n b.
YZ Plane Through Leveling Pads FIGURE S.2.
Typical Velocity (Q = 450 gpm, TINLET = 130'F, P /P = 13.9, and Temperature Distributions in the Pool for Case Number 17 inletflowdown,peakheatgenerationnearcenkerofpool) vii i
TABLE S.I.
Parameter Configuration for the Ten Reported Runs Total Heat Pool Inlet Naeber of Peak-Average.
Nueber and Direction Pool Outlet Run
- Rate, Teeperature, Sundlee Bundle Location of of inlet Teeperature, Number Q,gpa WBtu/h F
In Pool Heat Ratio Peak Bundlee Flow Rate CF 5
4187 17.0 150 2879 1.4 368 Near Center Down 159 9
1848 18.11 150 287f 1.4 368 Nest Center Down 189 If 1848 10.11 138 2870 1.4 368 Near Center Down 149 11 1848 10.11 158 2878 1.4 368 Under Inlet Down 169 12 1848 10.11 150 2870 13.9 132 Near Center Down 189 14 1848 10.11 150 2876 13.9 132 Near Center Horizontel 189 18 1848 10.11 150 2696 13.9 132 Near Edge Down 189 17 450 10.11 130 2870 13.9 132 Near Center Down 175 18 450 18.11 Iff 2870 13.9 132 Near Center Down 145 19 458 10.11 13e 2870 13.9 Near Center Doen 175 (csakares recoved free calculation) viii
with the buoyancy effects of the heated bundles below. This results in stable temperature oscillations of 8'F in some of the bundles near the return line discharge.
l l
l
)
1 l
i IX
CONTENTS ABSTRACT................................
iii EXECUTIVE
SUMMARY
v INTRODUCTION..............................
1 APPROACH................................
3 TEMPEST CODE 3
Limitations 3
Governing Equations 3
Solution Procedure......................
7 MODEL DESCRIPTION 9
RESULTS 15 CONCLUSIONS 93 REFERENCE 95 APPENDIX A - INPUT FOR CASES 5, 9, 10, 11, 12, 14, 16, 17, 18, 19 A.1 Xi
FIGURES vi S.1 TEMPEST Noding Model l
S.2 Typical Velocity and Temperature Distributions in the Pool for vii Case Number 17 1
Cross Section of Vermont Yankee Spent-Fuel Poo1 Showing Proposed Storage Rack Layout........................
20 2
Vertical Cross Section of Vermont Yankee Spent-Fuel Pool 21 3
TEMPEST Noding l'odel in X-Y Plane.................
22 4
TEMPEST Noding Model in X-Y Plane.................
23 5
Normalized Local Heat Generation Rate Distributions........
24 6
Temperature Distribution at the Top of the Fuel Bundles for Case Number 5.
(Q = 4187 GPM, TINLET = 150 F, PL/P = 1.4, inlet flow down, peak heat generation near center of pool)..........
25 7
Temperature Distribution at the Top of the Fuel Bundles for Case Number 9.
(Q = 1048 GPM, TINLET = 150'F, PL/P = 1.4, inlet flow i
down, peak heat generation near center of pool)..........
26 8
Temperature Distribution at the Top of the Fuel Bundles for Case i
Number 10.
(Q = 1048 GPM, TINLET = 130*F, PL/P = 1.4, inlet flow down, peak heat generation near center of pool)..........
27 9
Temperature Distribution at the Top of the Fuel Bundles for GPM, TINLET = 150*F, PL/P = 1.4, inlet flow down, peak heat generation underinlet) 28 10 Temperature Distribution at the Top of the Fuel Bundles for GPM, TINLET = 150*F, PL/P = 13.9, inlet flow down, peak heat generation nearcenterofpool) 29 11 Tem)erature Distribution at the Top of the Fuel Bundles for Case Num3er 14.
(Q=1048GPM,TINLET=150*F,PL/P=13.9,inletflow horizontal, peak heat generation near center of pool).......
30 12 Temperature Distribution at the Top of the Fuel Bundles for Case Number 16.............................
31 xiii
13 Temaerature Distribution at the Top of the Fuel Bundles for Case Num)er 17 (Q = 450 GPM, TINLET = 130'F, PL/P = 13.9, inlet flow down, peak heat generation near center of pool)..........
32 14 Temaerature Distribution et the Top of tlie fuel Bundles for Case Num)er 18.
(Q = 450 GPM, TINLET = 100'F, PL/P = 13.9, inlet flow j
down, peak heat generation near center of pool)..........
33 15 Teisperature Distribution at the Top of the Fuel Bundles for Case Number 19.
(Q = 450 GPM, TINlET = 130'F, PL/P = 13.9, inlet flow down, peak heat generation near center of pool, large open flow region of cask area removed from model)..............
34 16 Temperature and Flow Distribution along tne Back Wall of the Pool for Case Number 5.
(Q = 4187 GPM, TINLET = 150'F, PL/P = 1.4, inletflowdown,seakheatgenerationnearcenterofpool) 33 17 Temperature :nd Flow Distribution along the Back Wall of the Pool for Case Number 9.
(Q = 1048 GPM, TINLET = 150*F, PL/P = 1.4, inletflowdown,peakheatgenerationnearcenterofpool) 36 18 Temperature and Flow Distribution along the Back Wall of the Pool for Case Number 11.
(Q = 1048 GPM, TINLET = 150'F, PL/P i 1.4, inlet flow down, peak heat generation under inlet) 37 19 Temperature and Flow Distribution along the Back Wall of the Pool for Case Number 12.
(Q = 1048 GPM, TINLET = 150'F, PL/P = 13 4, inletflowdown,peakheatgenerationnearcenterofpool) 38 20 Temperature and Flow Distr 3ution along the Back Wall of the Pool for Case Number 14.
(Q = 1048 GPM, TINLET = 150'F, PL/P = 13.9, inlet flow horizontal, peak heat generation near center of pool) 39 21 Temperature and flow Distributicn along the Back Wall of the Pool for Case Number 16.
(Q = 1048 GPM, TINLET = 150*F, PL/P = 13.9, inlet flow down, peak heat generation near edge of pool) 40 22 Temperature and Flow Distribution along the Back Wall of the Pool for Case Number 17.
(Q=450GPM,TINLET=130'F,PL/P=13.9, inletflowdown,peakheatgenerationnearcenterofpool) 41 23 Temperature and Flow Distribution along the Back Wall of the Pool for Case Number 18.
(Q = 450 GPM, TINLET = 100*F, PL/P = 13.9, inlet flow down, peak heat generation near center of pool) 42 24 Temperature and Flow Distribution aicng the Back Wall of the Pool l
for Case Number 19.
(Q = 450 GPM, TINLET = 130*F, PL/P = 13.9, inlet flow down, peak heat generation near center of pool, large open flow region of cask area removed from model).........
13 1
xiv 3
i 1
u
l l
i 25 Temperature and Flow Distribution in Bundles next to the Back Wall of the Pool for Case Number 5.
(Q = 4187 GPM, TINLET = 150*F, PL/P = 1.4, inlet flow down, pool)............ peak heat generation near center of 44 26 Temperature and Flow Distribution in Bundles next to the Back Wall of the Pool for Case Number 9.
(Q = 1048 GPM, TINLET = 150'F, PL/P = 1.4, inlet flow down, pool)............ peak heat generation near cent s of 45 27 Temperature and Flow Distribution in Bundles next to the Back Wall of the Pool for Case Number 11.
(Q=1048GPM,TINLET=150*F, PL/P = 1.4, inlet flow down, peak heat generation under inlet) 46 28 Temperature and Flow Distribution in Bundles next to the Back Wall of the Pool for Case Number 12.
(Q = 1048 GPM, TINLET = 150'F, PL/0 = 13.9, inlet flow down, pool)............ peak heat generation near center of 47 29 Temperature and Flow Distribution in Bundles next to the Back Wall of the Pool for Case Number 14.
(Q = 1048 GPM, TINLET = 150*F, PL/P = 13.9, inlet flow horizontal center of pool).........., peak heat generation near 48 30 Temperature and Flow Distribution in Bundles next to the Back Wall of the Pool for Case Number 16.
(Q = 1048 GPM, TINLET = 150*F, PL/P = 13.9, inlet flow down pool)..........., peak heat generation near edge of 49 31 Temperature and Flow Distribution in Bundles next to the Back Wall of the Pool for Case Number 17.
(Q = 450 GPM TINLET = 130*F, PL/P = 13.9, inlet flow down, peak heat generation near center ofpool) 50 32 Temperature and Flow Distribution in Bundles next to the Back Wall of the Pool for Case Number 18.
(Q = 450 GPM, TINLET = 100*F, PL/P = 13.9, inlet flow down, peak heat generation near center ofpool) 51 33 Temperature and Flow Distribution in Bundles next to the Back Wall of the Pool for Case Number 19.
(Q = 450 GPM, TINLET = 130*F, PL/P = 13.9, inlet flow down, peak heat generation near center of pool, large open flow region of cask area removed from model)...
52 l
34 Tem)erature and Flow Distribution below the Fuel Bundles for Case Num)er 5.
(Q = 4187 GPM, TINLET = 150'F, PL/P = 1.4, inlet flow down, peak heat generation near center of pool)..........
53 xy I
35 Temperature and Flow Distribution below the Fuel Bundles for Case Number 9.
(Q=1048GPM,TINLET=150*F,f./P=1.4,inletflow down, peak heat generation near center of pool)..........
54 36 Temperature and Flow Distribution below the Fuel Bundles for Case Number 10.
(Q = 1048 GPM, TINLET = 130*F, PL/P = 1.4, inlet flow down, peak heat generation near center of pool)..........
55 37 Temperature and Flow Distribution below the Fuel Bundles for Case I
Number 11.
(Q = 1048 GPM, TINLET = 150*F, PL/P = 1.4, inlet flow down, peak heat generation under inlet)..............
56 38 Temperature and Flow Distribution below the Fuel Bundles for Case Number 12.
(Q = 1048 GPM, TINLET = 150'F, PL/P = 13.9, inlet flow down, peck heat generation near center of pool)..........
57 39 Temperature and Flow Distribution below the Fuel Bundles for Case Number 14.
(Q = 1048 GPM, TINLET = 150'F, PL/P = 13.9, inlet flow horizontal, peak heat generation near center of pool).......
58 40 Temaerature and Flow Distribution below the Fuel Bundles for Case Num)er 16.
(Q = 1048 GPM, TINLET = 150*F, PL/P = 13.9, inlet flow down, peak heat generation near edge of pool)...........
59 41 Temperature and Flow Distribution below the Fuel Bundles for Case Number 17.
(Q = 450 GPM, TINLET = 130'F, PL/P = 13.9, inlet flow down, peak heat generation near center of pool).......
60 42 Temperature and Flow Distribution below the Fuel Bundles for Case Humber 18.
(Q = 450 GPM, TINLET = 100*F, PL/P = 13.9, inlet flow down, peak heat generation near center of pool)..........
61 43 Tem >erature and Flow Distribution below the Fuel Bundles for Case Num)er 19.
(Q = 450 GPM, TINLET = 130*F, PL/P = 13.9, inlet flow down, peak heat generation near center of pool, large open flow region of cask area removed from model)..............
62 44 Tem)erature and Flow Distribution above the Fuel Bundles for Case Numaer 5.
(0 = 4187 GPM, TINLET = 150*F, PL/P = 1.4, inlet flow down, peak heat generation near center of pool)..........
63 45 Tem)erature and Flow Distribution above the Fuel Bundles for Case Num)er 9.
(0 = 1048 GPM, TINLET = 150*F, PL/P = 1.4, inlet flow down, peak heat generation near center of pool)..........
64 46 Temperature and Flow Distribution above the Fuel Bundles for Case Number 10.
(Q = 1048 GPM, TINLET = 130'F, PL/P = 1.4, inlet flow down, peak heat generation near center of pool)..........
65 i
xvi l
i
1 47 Tem)erature and Flow Distribution above the Fuel Bundles for Case Num)er 11.
(Q = 1048 GPM, TINLET = 150*F, PL/P = 1.4, inlet flow down, peak heat generation under inlet)..............
66 48 Tem)erature and Flow Distribution above the Fuel Bundles for Case Num)er 12.
(Q = 1048 GPM, TINLET = 150*F, PL/P = 13.9, inlet flow down, peak heat generation near center of pool)..........
67 49 Temaerature and Flow Distribution above the Fuel Bundles for Case Num)er 14.
(Q = 1048 GPM, TINLET = 150*F, PL/P = 13.9, inlet flow horizontal, peak heat generation near ceriter of pool).......
68 50 Tem)erature and Flow Distribution above the Fuel Bundles for Case Num)er 16.
(Q = 1048 GPM, TINLET = 150*F, PL/P = 13.9, inlet flow down, peak heat generation near edge of pool)...........
69 51 Temperature and Flow Distribution above the Fuel Bundles for Case Number 17.
(Q = 450 GPM, TINLET = 130*F, PL/P = 13.9, inlet flow down, peak heat generation near center of pool)..........
70 52 Temaerature and Flow Distribution above the Fuel Bundles for Case Num)er 18.
(Q = 450 GPM, TINLET = 100*F, PL/P = 13.9, inlet flow down, peak heat generation near center of pool)..........
71 53 Tem)erature and Flow Distribution above the Fuel Bundles for Case Num)er 19.
(Q = 450 GPM, TINLET = 130*F, PL/P = 13.9, inlet flow down, peak heat generation near center of pool, large open flow region of cask area removed from model)..............
72 54 Temperature and Flow Distribution along the Front Wall of the 1
Pool for Case Number 5.
(Q = 4187 GPM, TINLET = 150*F, PL/P = 1.4, inlet flow down, peak heat generation near center ofpool) 73 55 Temperature and Flow Distribution along the Front Wall of the Fool for Case Number 11.
(Q = 1048 GPM, TINLET = 150*F, PL/P = 1.4, inlet flow dowr.. peak heat generation under inlet) 74 56 Temperature and Flow Distribution along the Front Wall of the Pool for Case Number 9.
(Q = 1048 GPM, TINLET = 150*F, PL/P
's.4, inlet flow down, peak heat generation near center 75 of pooi) i 57 Temperature and Flow Distribution along the Front Wall of the Pool for Case Number 10.
(Q = 1048 GPM, TINLET = 130*F, PL/P = 1.4, inlet flow down, peak heat generation near center 76 ofpool) xvii
58 Temperature and Flow Distribution along the Front Wall of the Pool for Case Number 12.
(Q = 1048 GPM, TINLET = 150*F, PL/P = 13.9, inlet flow down, peak heat generation near center ofpool) 77 59 Temperature and Flow Distribution along the Front Wall of the Pool for Case Number 14.
(Q=1048GPM,TINLET=150*F, PL/P = 13.9, inlet flow horizontal, peak heat generation near center of pool)..........................
78 60 Temperature and Flow Distribution along the Front Wall of the Pool for Case Number 16.
(Q = 1048 GPM, TINLET = 150*F, PL/P = 13.9, inlet flow down, peak heat generation near edge 79 of pool) 61 Temperature and Flow Distribution along the Front Wall of the Pool for Case Number 17.
(Q = 450 GPM, TINLEI = 130*F, j
PL/P = 13.9, inlet flow down, peak heat generation near center ofpool) 80 62 Temperature and Flow Distribution along the Front Wall of the Pool for Case Number 18.
(Q = 450 GPM, TINLET = 100'F, PL/P = 13.9, inlet flow down, peak heat generation near center ofpool) 81 63 Temperature and Flow Distribution along the Front Wall of the Pool for Case Number 19.
(Q = 450 GPM, TINLET = 130*F, PL/P = 13.9, inlet flow down, peak heat generation near center of pool, large open flow region of cask area removed from model)...
82 64 Temperature and Velocity Distribution in a Plane above the Leveling Pads for Case Number 5 83 65 Temperature and Velocity Distribution in a Plane above the Leveling Pads for Case Number 9.
(Q = 1048 GPM, TINLET =
150*F, PL/P = 1.4, inlet flow down, peak heat generation near centerofpool) 84 2
66 Temperature and Velocity Distribution in a Plane above the Leveling Pads for Case Number 10.
(Q = 1048 GPM, TINLET =
130*F, PL/P = 1.4, inlet flow down, peak heat generation near centerofpool) 85 l
67 Temperature and Velocity Distribution in a Plane above the Leveling Pads for Case Number 11.
(Q = 1048 GPM, TINLET =
150*F, PL/P = 1.4, inlet flow down, peak heat generation under inlet)...........................
86 i
xviii i
68 Temperature and Velocity Distribution in a Plane above the Leveling Pads for Case Number 12.
(Q = 1048 G9N, TINLET = 150*F, PL/P = 13.9, inlet flow down, peak heat generation near center ofpool) 87 69 Temperature and Velocity Distribution in a Plane above the Leveling Pads for Case Number 14.
(Q = 1048 GPM, TINLET = 150'F, PL/P = 13.9, inlet flow horizontal, center of pool).......... peak heat generation near 88 70 Temperature and Velocity Distribution in a Plane above the Leveling Pads for Case Number 16.
(Q = 1048 GPM, TINLET = 150'F, PL/P = 13.9, inlet flow down, peak heat generation near edge ofpool) 89 71 Temperature and Velocity Distribution in a Plane above the Leveling Pads for Case Number 17.
(Q = 450 GPM, TINLET = 130*F, PL/P = 13.9, inlet flow down, peak heat generation near center ofpool) 90 72 Temperature and Velocity Distribution in a Plane above the Leveling Pads for Case Number 18.
(Q = 450 GPM, TINLET = 100'F, PL/P = 13.9, inlet flow down, peak heat generation near center ofpool) 91 73 Temperature and Velocity Distribution in a Plane above the Leveling Pads for Case Number 19.
(Q = 450 GPM, TINLET = 130'F, PL/P = 13.9, inlet flow down, peak heat generation near center of pool lar model),.. ge open flow region of cask area removed from 92 1
l xix
TABLES S.1 Parameter Configuration for the Ten Reported Runs.......,, viij l
1 TEMPEST Code Capabilities..................
4 2
Local Pressure Loss Coefficient..................
11 3
Parameter Configuration for the 10 Reported Runs 13 4
Sumary of Maximum Temperature Rise................
16 i
l l
l 1
i XXi L
ACKNOWLEDGMENTS This project was funded by the U.S. Nuclear Regulatory Comission under NRC FIN 12003. Mr. John Ridgely was the NRC Project Manager.
Appreciation is
(
extended to N. C. Waugh, word processor, for assistance in preparing this document.
i I
i i
r i
I 1
i l
l l
I i
xxiii j
I i
i i
REVIEW 0F THE NATURAL CIRCULATION EFFECT IN THE VERMONT YANKEE SPENT-FUEL POOL 3
INTRODUCTION Spent-fuel storage is becoming a major concern for many U.S. utilities.
The onsite storage facilities were designed to store spent fuel from only two to four refueling operations because it was assumed that fuel would be stored for a short time before being shipped to a reprocessing facility. After the federal government removed the reprocessing option, the utilities were obliged to find or develop alternative methods of onsite storage of spent fuel. One method being considered is that of storing more fuel bundles in the spent-fuel pool by replacing existing low-density spent-fuel storage racks with new 1
high-density storage racks.
Generally, the fuel within the spent-fuel pool is cooled by one or more fuel-pool cooling systems. The system removes the heated water from the top of the pool via scupper tanks, cools the water via heat exchangers, and returns
)
the cooled water to the pool through dispersion headers on the pool floor.
Because the cooled water is supplied at the bottom of the pool, adequate cooling is ensured.
The integrity of the system has been demonstrated to be independent l
of the relative placement of hot or cool fuel bundles.
J In 1977, the Vermont Yankee operating license was modified to allow instal-lation of new racks that could accommodate 1,680 fuel bundles within the spent-i 6
fuel pool.
However, it has become apparent that as delays mount and the l
proposed date for a federal waste repository slips further into the future, it is necessary to further increase onsite storage capacity.
Unless the onsite j
capacity is increased, the Vermont Yankee reactor will lose its full core offload capability in 1990. One proposal for increasing the storage capacity is to further modify the fuel pool design to include 2870 storage spaces. To achieve this storage capability, it is necessary to modify the pool-cooling flow distribution system by removing the dispersion header from the bottom of the pool so that the cooling water is discharged directly into the pool above the stored fuel.
To ensure adequate cooling for the spent fuel with the proposed modifica-tion to the spent-fuel pool cooling system, the U. S. Nuclear Regylptory l
Commission (NRC) requested the Pacific Northwest Laboratory (PNL)(at to independently verify that the removal of the dispersion header and the dumping of water above the fuel will have no adverse effect on ability to provide (a) Operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830.
l 1
l
.----..v.
~ -
+-
adequate spent-fuel cooling by demonstrating that natural circulation is suffi-cient to remove the decay heat and prevent local boiling in the high density racks. A secondary objective is to verify that the fuel loading pattern in the spent-fuel pool and the orientation of the s)ent-fuel pool cooling-system discharge nozzle will not adversely affect the a)ility to provide adequate pool cooling. This report documents this independent analysis.
1 e
t F
i l
I f
i i
I j
4 2
l
- = -, - - -
.n
l APPROACH 1
Because a realistic evaluation of she potential for natural circulation i
to adequately cool spent fuel in the spent-fuel pool, a full three-dimensional model of the pool was required.
The TEMPEST computer code satisfies this requirement. Therefore, a pool model was developed for analysis using TEMPEST.
TEMPEST CODE The TEMPEST code offers simulation capabilities over a wide range of hydrothermal problems that are definable by input instr %tions. Code capabilities, limitations, and conservation laws are described in this section.
Capabilities of the base version of TEMPEST (Trent, Eyler, and Budden 1983) are sumarized in Table 1.
Limitations The TEMPEST porosity and turbulence models are not compatible, so they cannot be used at the same time.
Governino Equations The equations governing momentum, heat, and mass transport solved by TEMPEST are based on three conservation laws:
conservation of mass (continuity) e conservation of momentum (Newton's Second Law) e conservation of energy (First Law of Thermodynamics).
These laws are simulated subject to six assumptions and/or restrictions:
The fluid is single phase and incompressible (insofar as sonic effects are not considered).
The body forces other than gravity are not considered.
Forces resulting from an accelerating reference frame are included.
The fluid is Newtonian (for laminar situations, Navier-Stokes equations apply).
l The turbulent flow conservation equations are time-averaged, and Reynolds stresses are incorporated through appropriate eddy-viscosity models.
i 1
The viscous dissipation is eliminated.
The Boussinesq approximation holds.
3
TABLE 1.
TEMPEST Code Capabilities Modelino Capabilities full three-dimensional e
time-dependent with transient approach to steady state turbulence models (k-c model) (mutually excludes porosity model) a cartesian or cylindrical coordinates e
heat diffusion in solid regions e
full implicit solution to all scalar equations I
e direct solution for thermal steady state e
multiple flow regions (may be connected through conduction heat transfer) e arbitrary orientation of solution coordinate system (WRT gravity) e variable grid spacing along all/any coordinate direction e
use of specified or precomputed flow regions internal heat generation (20 time-dependent tables possible) e fifty different material types a
inflow / outflow boundaries specified or computed time-dependent flow and thermal boundary condition tables (20 tables possible) variable materials properties (thermal conductivity, density, specific e
l heat, and viscosity) single-cell width or zero width wall logic dragcoefficientcorrelationsforeachdirectionofeachcell(98different coefficient types available from input specification) film coefficient for each direction of each cell l
partial material-properties table built in l
wind shear planetary Coriolis effects l
porosity model (mutually excludes turbulence model).
e l
l Program Control hydrodynamics only solids heat transfer only
& oupled hydrodynamics (no buoyancy effects) fully roupled hydrodynamics and heat transfer a
hydrodynaic solution explicit in time--no direct solution for steady state a
pressure bcundary conditions not available e
curved boundaries (except circular) required to be stair-stepped.
e Input / Output. Control velocity and temperature array output postprocessing and restart file dumping graphics plotting of velocity and ternperature distributions.
4
l l
Forlow-speedflowsthatinvolvedensityvariations(i.e.,lAp/po 1),
the well-known Boussinesq approximation is valid.
This ap)roximation s com-monly used in natural-convection simulations involving eitler liquids or gases.
Although the approximation is consistent with the accuracy of other approxima-tions required for numerical simulation, its validity is questionable if density changes considered are large compared to local fluid density. Most simulations involving liquid systems are within the valid range of this approximation.
The conservation equation solved in TEMPEST version NPOR mod 0 fr. this application is:
Continuity The equation describing the conservation of mass is
[+h+[*0 Symbols V, W, and V refer to velocity components and a, y, and 6 refer to surface porosities in the X, Y, ant' Z directions, respectively.
Momentum The equations describing the conservation of momentum in each of the three coordinate directions are:
Y-direction component, V (h+haVU +h(qWU)+h(6VU)
I i
1 BP B
BU 8
I T
BU 8
I 80'
= g, g + (p9y + g ac gj + g ge gj + g '6e gj + s y Bea 8U Oc3 BW Oc6 8V f
where Sy= y p + g g + g g - F (u) y
( = volume porosity e = P + PT
= dynamic viscosit l
T = turbulent (eddy)yviscosity fy(U) = Y-directioil flow drag l
5
X-direction component, W:
(h+h(aVW)+h(WW)+h(6VW)
I
\\
=1 8P 8
BWI 8 [
8W g + (pgX + W ( M
- E (7' Ej l
j 8
f 82
+g 6e g
+S X
= h h + h h + h h - F (N)*
where S X
x Z-direction component, V:
(h+h(aVV)+(WV)+h(6VV)
~
I I
I 8Y 8
8VI I
=1 BP 8
BV 8
g + (pgZ + BT (ac 37; + g :(ge g;I + g 6e g;
+ S Z
+
+
- F IY)*
where SZ=
Z Thermal Energy The equation describing the conservation of thermal energy is po(
+ h (aVT) + h (y!) + h (SVT) c I
I 8
8Tl 8
BTI
/
I 8
BT
= g l u g, + g (v g; + g 1 sa g;. + b 6
i k
where o=x+x s=thermIlconductivity
= turbulent (eddy) thermal conductivity s
= specific heat
= volumetric heat generation rate.
Solution Procedure The TEMPEST solution procedure is a semi-implicit, time-marching, finite-difference procedure that sequentially solves all governing equations. At each time step, the momentum equations are solved explicitly and the pressure l
equations implicitly.
Temperature, turbulent kinetic energy dissipation, and other scalar transport equations are solved using an implicit continuation procedure.
Thus, the solution proceeds in three phases:
Phase I, tilde phase - The three momentum equations are advanced in time (t + At) to obtain approximate (tilde) velocities, U, V, and W, based on the previous time values of pressure and density, P and p.
Although these values of the velocity components satisfy the momentum equations based on current values of P and p, continuity will usually not be satisfied.
Phase II, implicit phase - The velocity component and pressure corrections (U'
V W'
and P' Vn+1.'$ + y,i, wn+1)= 9 + W',
and Pn+1 = p + P' satisfy continuity.are obtained such U + Ui, Phase III, scalar phase - Using the previously computed values of Un+1 Vn+1, and Wn+1, the advanced time (t + At) values of temperature in+1,
and other scalar quantities are computed as required.
The solution is advanced step b of the above three solution phases. y step in time by continued application New time-mixture properties are computed at the end of Phase III.
The solution procedure is explained in more detail in the TEMPEST Users' Manual (Trent, Eyler, and Budden 1983).
7
MODEL DESCRIPTION The proposed arrangement for the Vermont Yankee spent-fuel pool is shown in Figures 1 and 2.
The spent fuel is to be stored in 10 racks that can con-tain from 180 to 360 fuel bundles, @pending on rack location in the pool.
Each rack is separated from adjacei. racks or the wall by an approximate 2-in.
gap. Within the racks, the fuel bundles are tightly packed; there is very little room for bypass flow outside the bundle flow area.
However, a cask l
area on the right side of the pool contains a relatively large volume of water that is unobstructed with respect to flow between the upper and lower regions l
(
of the pool (Figure 1).
As shown in Figure 2, coolant enters the pool on the back side and exits the pool on the front side.
The water enters the pool approximately 9 ft below the top water surface and exits approximately 5 ft below the surface.
The racks are supported by rack-leveling pads (four to six per rack), which produce a relatively large open flow area (approximately 14 in, high) below the fuel bundles. However, the leveling pads act as flow obstructors to the fuel bundle located directly above them.
The fuel-handling machines are located along the left front side of the pool.
As shown in Figures 3 and 4, the features specifically modeled in the TEMPEST nodalization are:
the 2-in, gaps between racks and between the racks and the wall - These
+
are represented by nodes 3, 10, 16, and 22 on the left-hand side, and by nodes 2, 8, 14, and 20 along the front side of the pool on Figure 3.
These are open channels, and flow is allowed to flow through them in all three directions.
the fuel machine area - This area is modeled by a solid nonparticipating
+
material, represented by node 3 along the left-hand side and nodes 3 through 7 and nodes 9 through 10 along the front face.
the cask area - This open flow area is represented by nodes 3 through 17
+
along the left-hand side and nodes 20 through 25 along the front side.
l the region below the racks, represented by node 2 on Figure 4
+
the pool above the fuel, represented by nodes 10 through 18 on Figure 4,
+
1 Each TEMPEST node in the X-Y plane represents 12 bundles (three in the X direction and four in the Y direction), except for the nodes behind the cask area, which represent nine bundles (three in the Y direction and three in the Xdirection).
The axial node length is 2 ft in the fuel region, 2.33 ft in the upper pool region, and 1.2 f t in the node between the floor and the fuel.
9
~
i One row of boundary nodes surrounds the pool on all six sides.
In this study, the boundary nodes are considered to be adiabetic.
This assumption is conservative, as convection and evaporation from the pool surface will remove a significant amount of energy from the pool. An additional but substantially smaller amount will be removed by conduction through the pool floor and walls.
To enable plotting these outflow vectors, an additional nonparticipating j
boundary node was added to the front side of the pool.
The pool inlet and outlet are designated by I and 0, respectively, in 3
Figures 3 and 4.
[ Note that the inlet to the pool (I) is the discharge from the spent-fuel cooling system (i.e., the discharge nozzle), and that the outlet from the pool (0) is the inlet to the spent-fuel pool cooling system.]
The inlet flow rate is modeled by mass (divergence), momentum, and energy source terms. However, because of node size restrictions the model momentum is diffused.
The relatively large TEMPEST node size necessitates specifying a smaller velocity in the simulation than would be exiting from the 8-in inlet pipe.
The fuel bundles are modeled using volume and surface porosities. The volume and surfsce porosity in the axial directions are set to 0.695.
Flow is constrained in the axial direction only, by setting the porosity in the transverse direction (X and Y faces) to zero.
The fuel bundles are re) resented by axial nodes 3 through 9.
The structure in the region below the rac(s (axial node 2) is modeled using a volume porosity of 0.54, X and Y surface porosities of 0.54, and Z direction surface porosities of 0.695.
These are applied uni-
)
formly to all nodes below the fuel racks.
The 13.5-in, region containing no fuel at the back of the fuel pool is modeled by assigning a volume porosity
)
of 0.602 to the nodes adjacent to the 13.5-in, region.
l Friction pressure losses (within the fuel bundles and in the 2-in. gap region between the racks) are modeled using local loss coefficients defined by the pressure equation c
(k)
AP = K V
where AP = pressure loss I
V = local velocity in fuel bundle region
]
p = coolant density j
g = gravitational constant l
K = local pressure loss coefficient (input) c = exnonent on velocity (input).
The input values for K and c are given in Table 2.
l.ocal expansion and con-tractions losses where the coolant enters and leaves the fuel bundles are also modeled using the local loss coefficients given in Table 2.
These coeffi-cients, supplied by the utility, appeared to be very conservative. Special loss coefficients representing the effect of the rack-leveling pads are also i
4
]
10 l
4 i
l
- _ - - - - - ~ _ -. _
i l
TABLE 2.
Local Pressure Loss Coefficient Location K
C Direction Where Applied Fuel bundle 0.13 1
Z Nodes 3 through 8 in fuel bundle nodes
(
t Peripheral gaps 0.003 1
Z All 2-in. gaps around edge Peripheral gaps 0.003 1
Y or X All 2-in gaps around edge Center gaps 0.002 1
Z All interior gaps between racks j
Center gaps 0.002 1
Y or X All interior gaps between racks Region below pool 1.04 2
Y All nodes below fuel racks Region below pool 0.78 2
X All nodes below fuel j
racks Fuel bundle inlet 23.77 2
Z All fuel bundles at axial node 3 All 2-in. gaps 1.6 2
Z At level 2, simulates between racks expansion and contraction and the upper and lower losses between the bundles plenums d
Below 6 specific 283.0 2
Z Axial node 2, simulates i
fuel nodes in leveling pad losses i
center rack i
l I
11
l i
defined; however, they are not appi,ed in the model at all locations where l
they occurred in the actual poc1 Lt only to one fuel rack near the sool center.
The leveling pads are modeled in this manner so that the effect of tie pad could be evaluated without additional computer runs.
{
The calculations presented in this report were made using one of the four different heat generation distributions shown in Figure 5.
In the first con-I figuration (Figure Sa), 368 bundles are operating at a local to average power ratio of 1.4.
For the most part these bundles are located near the center of the pool. All other bundles have a local heat generation ratio of 0.939.
In the second configuration, most of the higher power bundles (P/P = 1.4) are in the rack under the back left inlet as shown in Figure 5b.
The third configura-tion (Figure Sc) represents a pool full of newly loaded spent fuel immediately after loading.
In this case, 132 bundles have a local to average heat genera-tion ratio of 13.9, 263 bundles have heat generation ratios of 0.52, and the remaining bundles have a heat generation ratio of 0.49.
All the fuel bundles with the high heating rate are located near the center of the pool.
The fourth configuration represents the same case as the third; however, the freshly discharged fuel is isolated in one corner in the front and surrounded by 84 l
J empty bundle locations, which separate it from the older spent fuel.
1 r
]
A total of 19 simulations were performed. Of these 19, 10 simulations are j
represented as complete evaluations in this report. The simulations used inlet temperatures of 100', 130*, and 150'F, pool heat generation rates of 17 MBtu/h and 10.11 MBtu/h, and recirculation flow rates of 450, 1048, and 4187 j
gpm.
The pool geometr l
from the calculation. y was changed for the final run to remove the cask area This was done to determine hypothetically if the 2-in.
spacing around each rack is sufficient by itself to maintain sufficient coolirg i
flow. The parameter configuration for each of the 10 runs is sumarized in j
Table 3.
Because the desired output was the steady-state temperature distribution within the pool, and because the pool thermal capacitance is large, a hybrid solution procedure was used.
This procedure consisted of solving the transient momentum and mass conservation equations to determine a time-dependent velocity distribution, but the steady-state energy equation was iteratively solved at i
each time step using a loose convergence criterion to advance the thermal solutions at a rapid rate.
Each case was started from a previous run, which already had a developed velocity and temperature profile, and the run was continued for approximately a 2-min simulation time.
The temperature at various locations was monitored.
It was found that a true steady state could not be achieved, but that the maximum calculated temperatures at a given location varied by 8'F, and that the location of the pool peak temperature also changed between adjacent nodes.
The peak pool temperature, however, remained relatively constant (* 2'F) over the final 30 s of simulation time.
The inability of the simulation to reach a true steady state is consistent with the results of pool temperature measurement where local measured temperatures fluctuate with time, but the average remains constant.
I l
12 1
7-m----.y--
-i-,
s yf.-y--
a-.,-.y c-
,------.--w+
9 - - + +r'
+ ----y-
-.g
--p-
--t--
-- --
- w
i I
TABLE 3.
Parameter Configuration for the 10 Reported Runs Total Heat Pool Inlet heber and Peak Average haber en Dirutlen Peel Dutlet Run
- Rate, Teeperature, hadlea badle Location of of Inlet Teeperature, haber 4,gpe letu/h
'F In Peel Heat Rotle Peak hadf ee Flee Rate
- F l
5 4187 17.0 154 2470 1.4 He her Center Deen 150 Figure le 9
1944 18.11 158 2870 1.4 He kor Center Deen let Figure 5e 10 1644 18.11 1H 2470 1.4 M4 h ar Center Doon 149 Figure la 11 1848 10.11 154 2070 1.4 M4 Under Inlet Down 169 Figure Eb 12 1944 10.11 1W 2470 13.9 132 hear Center Doon 189 Figure Ec 14 1644 18.11 158 2078 13.9 132 her Center Heritental 109 Figure Ec 16 1848 10.11 158 20H 13.9 132 har Edge Deen let Figure 54 17 458 10.11 1H 2870 13.9 132 heer Center Deen 175 Figure Ec 18 458 18.11 1H 2870 13.9 132 har Center Down 145
[
Figu o Ec 19 4 58 10.11 1H 2878 13.9 hear Contar Down 175 Figure Ec (cash area recoved free calculatlen) l 1
13
(
RESULTS The maximum calculated temperature rise.(maximum calculated temperature minus pool inlet temperature) and the location at which it occurred are summarized in Table 4.
As shown, 46 to 80% of the maximum temperature rise results from the pool average temperature rise, which is determined by the simple pool energy balance Ototal p,CMp total where IT = pool average temperature rise Qtotal = total pool heat generation rate M
= total pool inlet flow rate tot
= coolant specific heat = 1 Btu /(lbm * 'F).
The remaining 20 to 54% of the pool maximum temperature rise results from three competing factors:
the local heat generation rate, the )roximity of the hot bundle to the inlet piping, and the proximity of the pea ( powered bundles to the rack-leveling pads.
It is difficult to generalize any specific rules for the location of the predicted peak temperatures, because these three factors are interdependent as well as dependent on the pool temperature and temperature rise.
In general, however, the peak temperature rise tended to occur either above a leveling pad for high local heat generation rates at
)
that location or near, but not directly under, the inlet piping if the local power ratio above the leveling pad was low.
The difference in calculated l
temperature at these two locations is, however, relatively small (less than 10*F for all cases studied) when the maximum temperature rise is near the inlet.
The effect of increasing the ratio of pool heat generation rate to pool flow rate is demonstrated by comparing figures 6 and 7.
The heat-to-flow ratio shown in Figure 7 is 2.4 times greater than that of Figure 6.
Comparison l
of Figures 10 and 13 also demonstrates this effect; the heat-to-flow ratio of Figure 10 is 2.3 times that of Figure 13.
These comparisons show that increasing the pocl Mat-to-flow ratio has little effect on the shape of the i
temperature distribution within the central rack, which is the higher powered region of the pool for this comparison.
It also has little effect on the shape of the local temperature increase caused by the rack-leveling pads.
The leveling pad effect produces the six small regions of local temperature increase in the central rack of Figures 6 and 7, as well as the three regions of temperature increase in the central rack in Figures 10 and 13.
The effect of the leveling pads is visible only in the central rack, primarily because this is the only location where they were set up in the model.
The model was defined in this manner so that the leveling pad effect could be evaluated with a minimum number of computer runs.
The magnitude of the leveling pad effect is further demonstrated by comparing Figures 10 and 12 where the leveling pads were under the hot zone in 10 but omitted under the high heat generation 15 1
TABLE 4.
Summary of Maximum Temperature Rise Pool Energy Location Balance Inlet Maximum Local ET Run of Maximum Temperature Temperature, Temperature Number Temperature Rise Rise
'F
'F Rise, 'F (AT,) AT, 5
above foot 6
150 9
0.67 9
near inlet 13 150 19 0.68 10 near inlet 13 130 28 0.46 11 near inlet 19 150 24 0.79 12 above foot 19 150 32 0.60 14 above foot 19 150 32 0.60 16 near inlet 19 150 26 0.73 17 above foot 45 130 56 0.80 18 above foot 45 100 60 0.75 19 above foot 45 130 58 0.78 I
1 l
1 0
16 i
zone in Figure 12.
This shows that the leveling pad increased the local tem-perature by only 8 F for the largest possible relative heating rate distribution l
that can occur.
This is a small increase in temperature; it is expected that the effect in the real pool will be even smaller because the loss coefficients used in this analysis to model the leveling pads are conservative.
These results also demonstrate that, if the relative power of the bundles above the pads is small, the pad has little effect on the temperature distribution, l
j In Figures 6 through 15, it is apparent that the inlet flow affects the temperature distribution to some degree in the bundles near the inlet locations and that the effect is greater when the pool heat generation-to-flow ratio is increased.
It is also greater if the local heating rate is increased somewhere in the pool. However, if the local heat generation rate is increased in the region of an inlet (Figure 9), the inlet effect on the flow distribution is somewhat negated, as demonstrated by comparing figure 9 to Figure 7 where the only difference between the two cases is the location of the higher heat generating bundles.
Several factors combine to produce the observed temperature distribution 3
near the inlets.
The major factors are the transverse velocities above and below the fuel bundles, the slightly higher density of the coolant in the poc1 above the bundles near the inlet, and, to a lesser degree, the axial momentum of the fluid leaving the inlet piping. The general flow pattern is such that the inlet coolant tends to flow downward along the back and side walls of the pool and, the colder it is, the faster it falls.
This is demonstrated in Figurt 16 through 24, where the flow and temperature distribution are given along the back wall.
The pattern of flow down the back wall is approximately the same in each of the 10 runs except that the region of higher velocities is slightly broadened when the inlet flow is horizontal and directed away from the back and side walls.
This is shown in Figure 20.
In all 10 cases the velocities are also dowm.ard through some of the bundles in the vicinity of the inlet as shown in Figures 25 through 33.
Another effect (which is visible in Figures 25 through 33) is a cooler fluid cap, which is carried out over the top of the spent fuel in the vicinity of the inlet.
The water falls downward in the pool aoove the bundles until it is just above the heated region, where it is turned and directed radially outward over the bundles. The water, which is directec' over the bundles, is colder than the water both above and below so it acts as a cap that inhibits j
the rise of the hotter water below.
Near the back corners, the downward flow through the bundles is sufficiently large to maintain near isothennal condi-tions in the bundles with the downward flow.
This regime is stable and has little effect on the temperature in other regions of the pool, in some instances, farther out from the corner, the cool cap acts in concert with the other forces to produce a small upward or downward flow, as shown in Figures 29 and 31.
The effect of a small downward flow rate is most visible in the local inverted temperature distribution where higher temperatures occur at the bottom rather than the top of the bundles.
In Figure 29, the temperature j
inversion is shown to correspond to a bundle grouping that has an upward l
1 17 i
velocity.
This indicates that the average temperature in these bundles is becoming high enough to change the flow direction and, if the solution were to proceed, the temperature inversion would dissipate in t.' ese bundles.
This unstable situation prohibits the solution from reaching a true steady state.
Even though this flow pattern is unstable and )roduces temperature oscillations of 8'F, the natural effects of buoyancy keep t1e temperature from increasing to unacceptable levels.
A large percentage of the available cooling for most of the bundles in the )ool comes from the fluid that flows down the rear corner walls and through the ligh downflow bundles under the inlet.
This causes high transverse velocities under the racks in the rear corners.
Figures 34 through 43 show the transverse velocity and terperature distribution in the region below the racks and above the pool floor.
They show the high (approximately 0.5 ft/s) transverse velocities in the rear corners and also along the side near the cask-handling area.
These relatively high velocities produce a slightly lower pressure that tends to increase the relative effect of buoyancy.
The velocity and temperature distributions are qualitatively the same for 9 of the 10 runs, but the transverse flow pattern generally termit.ates at the location of the bundle with the highest local heat generation rate.
For the tenth run (Figure 43), the flow in the back right corner is directed around the blocked-off cask-handling area.
The higher the local heat generation rate, the greater the effect on the transverse velocities.
A similar transverse velocity pattern exists in the plane just above the bundles, except that the coolant in this case is entrained in the plume rising above the hot bundles.
Figures 44 through 53 show these transverse velocity and temperature distributions for the 10 cases run.
The temperature distribution along the front side of the pool is fairly homog 1eous (less than 4*F temperature difference), with the velocities generally being small (less than 0.1 ft/s) with the direction dependent on the case.
In Case 14, where the inlet flow is horizontal, there is a larger region where the flow is downward along the front face (Figure 59).
Thi; tends to pull the upper lenum fluid into the region between the wall and the racks.
For the case p(Figure 57) where the hot bundles are located near the front wall, there is a zone of high upward velocity (=0.6 ft/s) above the fuel bundles.
Three qualitatively similar velocity and flow distributions occur in the bundles above the rack leveling pads. These are shown in Figures 64 through 73.
The first type, shown in Figures 64 through 66, has a local power ratio of 1.4 in the bundles above the leveling pads.
In the second category, the local power distribution in the bundles is less than 1.0.
The typical velocity and temperature distributions for this case are shown in Figures 67 and 70.
Figures 68, 69, 71, 72, and 73 show results where the local power ratio is j
13.9 in the bundles above the leveling pads.
These figures demonstrate that i
the leveling pads significantly affect the temperature distribution only if the heat generation rate in the bundles above the leveling pads is large.
In all of these high local heating ratio cases, the temperature gradients in the high heating bundles are approximately equal.
This set of figures also shcas 18
a i
that buoyancy effects tt.d to equalize temperatures throughout the pool.
For example, if the local heating rate increased by a factor of 10 (which is i
approximately 13.9/1.4), then the temperature rise through a bundle governed by forced convection would also increase by a factor of approximately 10.
However, these results show that, when the local power is increased by a factor of 10, the local temperature rise increases by only 12'F (16' temperature 65, or 66)gures 68, 69, 71, or 72, versus 4'F temperature rise in Figures 64, rise of Fi This is only a factor of 4.
This nonlinear relationship results J
j because buoyancy flows are governed by the Grashoff number (the ratio of buoyancy forces to viscous forces), which is linearly proportional to tempera-1 ture difference and also approximately proportional to the third power of the local temperature (over the range of 100'F to 200'F). Therefore, the higher the local temperature, the higher will be the buoyancy forces compared to the viscous forces. This is demonstrated by comparing the peak inlet-to-outlet temperature rise in Figures 71 and 72.
The only difference between the two cases is the inlet temperature, which is 130*F in Figure 71 and 100'F in Figure
- 72. The inlet-to-peak temperature rise is only 56'F for the 130*F inlet case, while it is 60'F for the colder 100'F inlet, t
In the pool above the fuel bundles, the coolant tends to roll with a large scale on the order of one-fourth of the linear dimensions of the open pool region.
This large rolling maintains the upper pool approximately isothermal except for a slight high temperature cone or alume that forms above the heated regions.
There are also small regions of hig1 temperature gradients near the inlets.
These results combine to demonstrate that the good mixing in the upper plenum, the relatively o>en flow area below the fuel, and the 2-in. gaps around the seriphery of the rac(s all combine to provide adequate cooling, regardless of tie inlet flow orientation or the location and magnitude or "loading patterns" of the hot bundles within the pool.
The major factor controlling pool performance is the total pool heating rate to total pool recirculation flow rate.
The maximum temperature rise of 56*F calculated for the 13.9 local power ratio is 15* less than that calculated by the utility.
By assuming an axial power factor of 1.2 and using a coolant to clad heat transfer coefficients of 50 Btu /h-ft2 'F, the clad temaerature rise above that of the coolant was determined to be 15'F for the assem) lies with a heating 1
ratio of 13.9.
The fuel temperature rise is highly dependent on the fuel clad heat transfer coefficient about which there is little reliable information at these low temperatureg.
However, it is believed that its value lies between 200 and 1000 Btu /h-ft
'F.
The maximum fuel-to-clad temperature rise was calculatedtobelessthang*Fusingtheconservativelylowheattransfer coefficient of 200 Btu /h-ft
- F and values of 1.2 and 13.9 for the axial and assembly heat rate peaking factors, respectively.
These temperature rises are negligible when compared to the pool coolant temperature rise.
19
13.5 in.
f...
j_
'I 1 -- --- - [ - - - - - - - - - -
n U
l a
2 in.
I l
15 x 12 l
20 x 15 20 x 13 (20 x 13) + 14 I
Fuel Bundles l
l l
L. _ _ _ _ _ _ J l
2 in.
l Cask l
Area Typ l
20 x 15 20 x 15 20 x 15 l
l Right E
Side
~l l
l l
l 20 x 14 (20 x 15) + 36 l
20 x 18 I
Fuel Bundles I1 I
26 in.
i JL'
?
_j 20 in.-l l-Pool Front Side Fuel Boundary of Machine Pool Area Available for Fuel Racks FIGURE 1.
Cross Section of Vermont Yankee Spent-Fuel Pool Showing Proposed Storage Rack Layout
l l
l l
Water Level he A
g Coolant.
Inlet
~5ft 9ft Coolant Leaves y
Pool Back Front Side Side 35 ft Spent Fuel Storage a
14 ft J
U i
e I
o 4
14.5 in.
--2 2 f t
=
=
FIGURE 2.
Vertical Cross Section of Vermont Yid ee Spent-Fuei Pool I
l 21
II I
18 f
17 I = Inlet O = Outlet 16 15 14 i
O O
I 13 l
12 8
3 11
$ 10 l
)
~
9 8
7 j
6 i 5
4 3
2 23 4
5 6
789 10 11 12 131415 16 17 18 192021 22 23 24 25 Bottom of Pool-Y Direction FIGURE 3.
TEMPEST Noding Model in X-Y Plane 1
22
ll t
t i:
letu InO
I O aI 5
2 s
ie 4
l 2
b 3
e 2
ss l
5' A
2 3
.I 2
1 2
0 2
9 1
8 O
1 no 3
it e
c n
7 e a
1 ir l
D P
Y Y
6 1
X l)oo n
P i
5 f
1 o
l 4 e e
ie id d
s 1
o 3 S M
lb 1
t m
e g
e lt n
s u
i 2 O d
sA 1
o
(
"4 e
N id S
T 1
S t
E 1
no PM r
F E
se O 0 T
h 1
b m
4 es 9
E sA R
8 U
3 G
I f
7 F
6 5
4 1
3 2
2 1 0
9 8
765 4
3 2
1 09 8 7
6 5
43 2 2 2
1 1
1 1 1 1
1 1
1 1 8Ue6x EE CO mw fl1lr
a.-
32
--,_., d.,.. - -
--,r-32
[ dr 9
Il 3,
s'
_,..,_~
3 we i
y il i
ll
{.
i 6
tt
. I
!i y
i!
a
=
j!
n i i
!i ll ii I
i i
n L
n ij
_t' McW"RENF4m o
a i
WWErogedi F
,. t i
n i&WeMMw?MR h
MWsM iiiMaski n
i i
??iM Wu.:.2%M n i R7W%wx&tlls$g i
n i
WW4MWM E@MWiiM i
i
',___RSj2EEEEM[_
=[=;
- =I=._i)2$MM@sjMni_
_ g__j
=_
n a
t it i
i li i
f i!
jj i
7 7
I!
u it 0
l it i
i i i ii !
i t
i i l
ii
! i i i ! Il I 1 i
I ii Li i ! ! !! I l_
! (!
h 3,
3
,,,a 2,...
..,,,... m. nnaa 2 >...,....,,,,,,,...,,..,.,, n n u o
- a. Configuration 1
- b. Configuration 2
, n
.....@.,fe,,...,.....hhzd..
M W
"r a
m M@sccsws :?26 f
'l lt
,f4p s2T
- f 3
H di ii il s se.?z nWegMM t
4 t!
!I
,.r @1%M wa i
-f; II
- mg22,
_4__._.ii y
o t
m
.m; m
.- _ e_.__._*
1 r
jgfl i
I WMMMM347/ F
,, i e,w; j i
.l WRW%n?efe Wenn#6*MW4 i
Q ji i
l hS.hi h
[
I Y8b?0NM?N$$AMV?$b\\
Il
,_~--.~ _
_y-g_;g_ig i
l
_g (ig i
..y_
it I
fl p
i i,
0 j!
l I
it li i
iR Lweew%f i ; i i g i I
W ii
,[
l!
WiWic4Vn3 /4+
,l t
l
\\
- sch:p;&&;wn. ;9
...,,u
,,....,,... m. n n 2
,,,-....-...--,~,...m.
,o n u,.,.
- c. Configuration 3
- d. Configuration 4 FIGURE 5.
Normalized Local Heat Generation Rate Distributions
Ijl 8
6 o
8 y;>
3 3
M P
F y
A
^A A
A A
A 4
G
's ; N
)
7l 8o A
4 4
- 4 4 A
4 a
1 1 o N'
4p A 7 4
4 4
7 " '
= f e
o y,S 5
Q k
V Y
A y *
( r 1
8 7
e 5
.t 1
n r,\\
~
('
'p v
v V
A i
A y
5e c v*y y
y y
4 A A
A A
A r
u
^ ^
er h
s\\
d<
ba 8
me 8
5 un 5
1 N
1 n
eo
~
si at Ca r
~
re on fe g
~
s C
et l a 0
6 6
de 1
nh 1
L l
u
( cr fN[],
^
A A
A A
^
A r a
e Bk J_
l e ep u
F
^<
n ew 9
ho
^
td E
N f w 2 2 A
oo L
l P
1 1
pf
~
o Tt L
e 8
O el 0
O 5
O h n 6
1 P
ti l
f d c7 O
(:
o t
a4 E
y
^
i
\\
I D
h 9h i
a A
^
r I
n1 S
o T
i =
E t
L uP T
u b/
2 o
i L 6
rP 1
ts,
4 iF D
6 0
~
1 e5 2
r1
=
6 u
1 08 t =
v 66 a
0 0
1 1 rT 6
6 0
eE 0
pL 1 -
6^6 0
0 mN j
'7 4
I I
I 0
eI TT 7
0 5
0 6
1 0
22 0
E RUG
~su I
F l
l ll
7 3
' r 4
4 134 V
v V
_ u<y 7~
M A
,
- 4 9 4
v y
y
- ~
P 8
G )
6_
1
' a 4
8l v
- S 1
V v
F A
4 o j
0o 1 p
'e A
y
- y y y
v F
7
=f 1
o
(
,~
A v
y V tY Y
v F
Q( r F
y y
4 Y
y F
e
.t e_
J n
9e c rer ba me un N
n eo si at Ca r re C
0 on 7
7 0
f e m
\\#
%.r 1
7' g
1
's 1
s et v
y y
4
^
4 l a
/
g A
A A
^ :
d e
.N j
nh s
u Bk a l e ep 9
u F
E n
2 N
ew 7
A ho L
1 P
td
~
f w L
oo 0
O l
7 07 0
O pf P
o 1
7 Tt
-b<-
N1 f
1 e
o F
4 el E
h n
^
A 3A
^
A 3
!^ 3 A A
A A
D ti MT S
I f
t,
0 T
a4 E
7 7
LT n1 1
7 U
o 1
C i =
t uP
]g b/
'4 1
i L
_y<
g7 s
rP 7
t 1
s iF 6e <2 D
2 0
0 e5 7 # 7 0
r1 7-1 7
1 1
7 u
1 1
t =
f a
>/
(
4
(
(
(
(
(
eE rT 7
pL 5
0 mN 1
0 eI 22 0
TT 0
7 E
R U
m G
I F
f
22.157 l
}
r'
% y r'
?
(
15, 3 y V
A 154 o
2
'52 1 6 A
Y i
1 A
1&
V A
Jb j87 V
t N 15 s s o
A.
I{-
g D r V A 4
4 y
E' f
A 3
154 t
t A
A y F 4
A E
152 A
Y Y E
(
A A
A 4
N 154 i
154
^
^
Y "
1 vv V
4 4
--152 A
s s
(q150
- Q b l50 e.
v 9
4 4
(r 152 Tr T,7 3
- v v
i 1
V a
V V V
V V
V
(
i V F Y
Y Y
F
(
A i
Y E F
E E
E
(
A i
+150
)*150 y &
y y
(
0.000
-?
-f 150 O.000 33.868 OUTLET SIDE of POOL - PLANE 9 FIGURE 8.
Temperature Distribution at the Top of the fuel Bundles for Case Number 10.
(Q = 1048 GPM, TINLET = 130 F, P /P = 1.4, inlet flow down, peak heat generation near center of pool) g
ll
\\1l I
fl 2#
3 7
68 3
4 y A4 V y
y p
4 j
1 1
_ 'y b
1.
I g
44 1 y
y y
y x
P 4
4 A
Y i 1 1 y
y y
y
- 1
/ L P
0
'84 A
k Y
T Y y y
y P
y F
2 7 O 6 1
1 A F
V Y
V AV Y
y P
y 0
~
l1 8
[aF 5
Y y
Y V
k Y
Y Y
y Y,
1 4
=
+
TE L
N
+
I T
M P
G r
o 0
g f
7 7
0 1
j s
7-e e
A#
1 l
d y
y A
A A
A A
A A
A A
A :
n
\\
s' J~
u)
Bt e llen ui
~
9 f
r E
ee N
hd A
t n
.~
L u
P f
ono L
O pi 0
o ot 7
0 P
Ta 1
7 r
[
L>
q<F
+
F ee 1
O h n E
t e
~,
^
A 4A A
A A
A' kA A
A A
A f:
D g
1 j
y<
I t
s at T
a 2
E ne 7
L T
oh 1
U i
4
_ s O
tk 7
ua b e i pr t
snw i
Do 4
d 7
erw 9
/
'/3 uo o
tl
(< [f'.
<I o
af o.
r
['
Ff f
(
(
L r
(
L L
L
(
o et pe ml 73 o
en 1
o Ti 2
o.
2 o
9 E
R U
G I
F l\\l ll l
l 1ll l1 8
6 8
9 xh 3
3 2 4 68 3
1 hlf 1
t I1
' A <
A 4 g, 4 1
Y 4
> ~
=
P
/
1 4 r
>x 4
1 Y
y
- ~
g P
1 A e
' x4 4
i T
y
[0 F
2 47
- sA 4 4 4
V V
y 0
7 1
7 61 5
7 1
(
- sA v
Y 4 9 4
V y
=
A
]
a
^
b +v V
Y y
y 4 3 TE L
+
N I
T
+
M P
2 G
7
+
1 r
8 o) fl o
so 8
ep l
6 8
df 1
6-no r
L u
1 Br y
V V
v A
f 4
4 A
a -
e w
j~
l t en
<g ue Fc er
~
~
9 h a t e E
n 0,
N f
88 A
J 71 L
on 1
P o
L 1,
pi ot L
Ta O
r 8
o ee 6
0, 8
P h n I
7 6
t e
'g j k >_
f 1
1 o
g r
4 t
E at
- 0 y
Y 6
4x
> r A
A A
D a
l I
ne
.]
3
%1 S
oh T
i E
L tk 72 2
T ua U
be 17 o
ip 1
8 r
6 t
1 snw hl 6 i
2 f6 Do 7
1 d
erw uo tl 6
1 0
8 8
af 6
6 r
0 1
1 0
et 1
>r P
0 pe ml
(
\\r 0
r r r r r
i
(
(
(
(
.{;
en Ti 75 1
2 0
2 1
E R
J?
I F
l l
j l
l 8
6 8
3 8
3
)
6 l
> [
- + 'p 4
y v
p
,o 1
Mo P p kS#
G e
, : *4 4
y v
y f
8o 4
A, :
- 4 4
y v
y 0r 1 e t
, : T 4 4
y v
y
= ne 4
Qc
(
6
. # p e
v
- 4 v
y v
y r
1 a
,^y y
y
- *V v
y v
y
.e
^
4n 1
+
8 n
ro 6
ei 1
bt ma
+
ur N en ee
+
sg A
a Ct a re oh b
1,"
f 7
4 k
@1
- + Y A
sa ee l p d
~
^y A
A
^ f 8,'$
7ia;-
n,
ul Ba t
l n 1_
eo 2
uz 8
9 p
Fi
,8 a6
_,s 6
1 E
r 1
N eo s
A hh 1
L t
8
~
P w
7
~
f o 8
1 G$'
a ol l6 L
f O
p o
ot P
Te (t
f l
l
'S o
en 6
hi E
v6 l ' A A
l A
A a
h-D t
j I
t9 e"6 S
a TE 3
L n1 T
o
/{
,i U
i =
s 1
O t
2O uP 7
b/
1U i t rP 0
t 7
s,
6 i
1 i F 6
D Mi 0
^
8 e5 6
r1 1
0 u
+
0 a
^
0 t =
rT O
eE r
r r
(
t g
(
5 (6 S pL mN 7
1 0
eI 5
0 TT 1
2 0
2 O
1 1
E RU G
I F
u 16 176 1 '2 174 Y
168 164 i
A 172 l'4 168 166 L
r i
V 168 j 3
Y 6
A 4
f
<y 4-16 4 4 4
4 4
I 4
A 1'~
A Y k 4
4 4
y
^
^
16E 168 b
16 u
(
A A
'r A
4 y
4 L
Y i
vv v s t
A y
4 r
<4
< A F V
s y
4 L
A 16 A
Y Y 4
A 4
L A
A Y Y 4
4 A
4 i
A A
Y V 4
4 4
4 174 1172
^
168 s
A 170 fr374 170 h]y 172 P168 168 y
p y
y
(
3 f
Y M E
M V
A[
4 I
I 0.000 0.000 33.865 OUTLET SICE OF POOL - PLANE 9 FIGURE 12. Temperature Distribution at the Top of the Fuel Bundles for Case Number 16.
(Q = 1048 GPM, TINLET = 150*F, P /P = 13.9, inlet flow down, peak heat generation near edge of pool) g
8 6
E g
8 3
8 3
1 t
3 4 4 1 9
4 4
4 1 P
M 28 8
2 G) 7
= ',
e l
1 4
9 T
1 r 0o 41 5o 7
4p 1
A
- 4 4
V V v
=f 27 2
o k
F Y v*
4 9
V V
V z Q
81
( r 6 8 e
1j
' ^,
v Y A*
y v
y V
V <
.t 6
11 n
7e v + ii
^
y y
4 >
y v
y V
V,
1 c rr ea be 2
7 mn 7
1 u
Nn 1
O 0
o 7
2 ei st O
7 1
aa 2
1 -
Cr 7
e 1
6 rn 7
oe o
2 4
fg 1
7 l
2 st g7 0
7 ea 1
l e N<
l k'
((
dh n
v y
y A
V eY
, +
A A
^ ;
uk Ba s
j e
4 l p 7
e 1
u,
Fn
~
w
~
9 eo 2
hd 7
I t
N 1
A w
2
~
L f o 8
P ol 2
f 1
p 1
1 L
ot O
Te 1
7 2
o l
I 7
P en f
hi 1
"I
+
o t
E t9 y
y
^
^
A ^
A A
A a
D a
I S
3 O
^6 I
n1 4
T o
'7 E
6 7
7 1
j2 L
i=
- 12 f7 T
t U
uP 7
o b/
1 1
i t 8
rP 7
t 1
s,
4 iF O
7 2
D I
1 7
0 1
e3 r1 0
2 u
g
\\
7 7
t =
1 a
4 1
0 rT
,7 0
eE 0
1 pL p
8 1
i i s
(
(
(
(
i 0
mN 6
eI 7
1 TT 5
n 1
n 22 n_
3 1
E R
w U
G I
F l
22.c7 44 j4 146sj' 6
A 4
4
{
~
~
14
- 146 l % 58
^
'^
150 14
^
^
<y46 150 152 15
(
v 152 y v v
A 4
A w
(
'146-y V V
.y 4
(
s s
s
- a A 4
y 4
s144 4
A V
N
(
A (
A r
A 1
A A
A A
VV 4
A 4
(
g A
vv 9
4 x
y V V V
i 4
(
A A
j O
l v v v
v v
v ia 3
g l
V ^
Y A
L146 a
0.000 33.868 O.000 ouTLE1 SIDE OF POOL - PLANE 9 FIGURE 14. Temperature Distribution at the Top of the Fuel Bundles for Case Number 18.
(Q = 450 GPM, TINLET = 100*F, P /P = 13.9, inlet flow down, peak heat generation near center of pool)
L
22.157 1
8 174 O
y
,v 176 e 172 gj74 17 374 m
y h2 5
h* V i
A
/
v A
< g >
3174, i i
174,
y 374,
r 170 T
^/
bd 188 t
r
[
\\186
\\ \\184 l
A S
174 17 82 182 182 a
A >
p r
s s
s s
s l
A A
/
i n
A A
/
316 A
A i
f+s 74 A
A
/
176
(
A A
/
i A
-176 e
i
,,nn,
_.c s
s s
s s
s 33.868 0.000 OUTLET SIDE of Pool - PLANE 9 Temperature Distribution at the Top of the Fuel Bundles for Case Number 19.
(Q = 450 GPM, FIGURE 15.
TINLET = 130 F, P /P = 13.9, inlet flow down, peak heat generation near center of pool, large openflowregionbfcaskarearemovedfrommodel)
sene r A 4
4 4
44 A A
A 4
1 A 4 4
4 4
4,,
>A 4 1 r k 4
4 A
vv4 4
4 i
V vA 4
4 4
g yp 4
> 4 1
r v A
A A
1 4 4 1
4 1
v v>
A 4
y ga 4 y 4
r4 y
v 4 4 4 1
1 5
v vk 4
4 w
y y4 v
4 4
4 4 v
v v
v ve 4
4 4
e v
h" a
v vsv v
v
- v v 4
4 iyv j j i
- g vv d
A 4 4 v v
I s t; v
4 Q qi rt a
y}$
v+/(Tjg"i;/ f e
"a e 4 vv*
+
4 * '
j
, m 3
t r,, f f 3
i
,,4 4
v y t v v
v v
v*+
v v
e
>4 g gg vvv e
v v..
v v v v
v v
v +'
+
+
v
< v v v
v v
v v+
s
+
+
v vg 4 4 y y
v v
vv+
+
4 4
1 g
4 4,
4 v
v vvv j
x 4 h h h
A 4
E AA 4
4 g
p
/ 4 4
7 7
y y y y
y A AA 4
4 g
g
, 4
%.ik 4
y y
y y
4y*
I A
4 4 b
N g
i DC h
A e < <
y 4
4 4A > $
.)'
t I
)C b
1 4
A b k 4
1 7
M d #
F 1
4 AA k k 1
..h 1
yf [ j
,y 4 4.
1 a
4 4 4 4
4 4
A A A A
A A
A 4A A k d
k 4
k n
4 A
s4 4 4
4 4
4 4 4 4
4 4
a s A %
y I
4 A
A A 4 4
4 4
4 4 4 4
4 4
4 A A k 4
a h A h k
k k
k k k k
4 k yb b c
b A
A 4
4 4 4 4 4
4 4
4 44 4 K
b b A
4 4 4 4 4
4 4
4 4
- / !
O'000 4
s
,y y
g 4
9 g.
4 s
y v
v r v.
s
/!
o'000 CC'098 8011OIP OJ d001 - 41YN3 EE 310na3 ll' lawdaaegnaa eup dloM 0!sgpqnnou etouS 1ya sep; neti oJ 1ya dool
)oa aesa NnmqaJ 6'
)D = i0t8 0dW lIN731 = 190.d d /d = I*#'
tutaq ; tom pomu' daea yae2 6auaaep' ou ueva sautaa'oJ ldoot(
E9 Y
e...
y P
> 7 7 7
7 7
7 ff 1 4 k k j 4 y
P h h h h
> 7 7 1
1 1
1 11 4 A A A s A y
> A h h
h F
f f
1 14 A k k A 4
4 v.
f)}
e 4
4 v>.
4 4 44 y.
B._
4 v+<
'JJ !
t tT i
,4 4 s 4 4
T
, ss s a f
v b
a 6,
1 4
4 4
iT Y 7
h T
T T
T
,,, b y,
1 a
.19
,L.98 i
t I
g 4
4 4 4 4
4
..., 4 l
t I
1 4
4 4 4 4 4
4 a
A 4 4 4
4 4
4 > 5 a 4 I
b b A A 8
4 4
h A 8 8
A A
A b b p
^
A A A A n
e 4
s < 4 4
4 t'
< a s s 4 ss a 4
4 4
4 4 4 4
4 4
4 44, + t Y
b h
k k
4 4 $
4
$ 4k 4 s
>s v
s a
a 4 as 4
4 4 4 e s
\\\\
ff l%
T b y A
4 y r y
y r
e ea e
/ f j
0
- o. ooc cc m sonon o; doo, - unu cc l
{
319n83 18-lawdaaegnaa eup dloM 0f stpgn;)ou etou6 ;ya seca.geit oJ 1ya doot
- oa aesa NnwgaJ II'
)D = IOk8 9dH' lIN131 = IS0 d
)utag ; tom posu' daeM yaet 6ausae;!ou nupaa )utag(' d /d = I't' l
EL
36.178 r y y
F A
A A A A
A 4
4 A A k
v 4
A a>
>>4 r v v
v
+
4 4
4 4 4 4
e v44
- x *
- r y F
k k
A 4 4 4
4
< v4 4 4 4 4 y
< o > >,
,b,g
< <<, v a
k
< <a 4
4 p>
b b
4 b
k 4
A A A A
4 4
4 A AP V g F {
a, 4
g,
, j e,8,
y
+
,,, 4
,go f 4
,o 3,
y s.
.v.
y vvv v
v v
v v v v
v v
v vv v
}l t
i i
y vv v v
v t
t v v v
v v
v44 t Q o
v v vv v
v v
vvv v
v v
v s s t o
o y
v v>
e
+
- re e
r y rv v 4 v >
> +v v
l r
r s y
> +> > p
, s 4
t v
v v
vvv s..
.4 4
4 0.000 33.863 BOTTOW OF POOL - PL AN[ 22 FIGURE 19.
Temperature and Flow Distribution along the Back Wall of the Pool for Case Number 12.
(Q=1048GPM,TINLET=150'F,P,/P=13.9, inlet flow down, peak heat generation near center of ool) 38
36.f78
< t
< t #
1 4
y 4 4 4 s
> >> > a 4 y
f &
A k F Y T
V P
F Y V 4
4 a
A aa A
4 1 y
f P k
4 4
4 < <
y
> >> > 4 1 y
i y
< > 11 y
! o l
i 3
A v
v
,j d'
. 4 y v4
- v'*
p&
6 g
l *68
[hff1 585 k
l g'
l V
g ] gg$
k v
r l
r} T
\\
166 " '
to 4 4
- d *
( }
'( }'
j j j
v v v v
4 4 ;;
Y Y Y Y
Y Y
Y Y >
P Y
1 9
V V y y
y V
V V V Y
y i
j f l}
}
}
i T
Y 9
h F f
& A 4 4
4 4
4 4 Y V
P k
g x
4 4,
4 4
4
< v v v
v 4
g j
j 0.000 P
- 4
" 4 4 4
4 4 V P
- ## /4 h t 0.000 33.468 80TTOW OF POOL - PLANE 22 FIGURE 20. Temperature and Flow Distribution along the Back Wall of the Pool for Case Number 14.
(Q = 1048 GPM, TINLET = 150'F, P /P 13.9, inlet flow horizontal, peak heat generation near centbr o=f pool) h 39
1 1
{
C969 7
7, 1 A
,v d 4 T
P F
F
, 11 4 A k k
>4 4
y yg g g g g 4
9,i ywJe r
d ' ).
d
.2 L98-f f
a y
,a 4.,,,,,,.,,,
=
- ,m
, 4 l{
l.
,,, < i i
\\
4 4
A A A A
4 4
$ > k A
A A
4 4A A 0 4
4 4 4 4 4
4 4
, A A i
A A
A, 5
- I I
1 4
4 4 4 4
4 A
h 4 4 4
4 4
A g b b
a n
A A 4 4 4
4 A
A 4 4 4
4 4
4 AA A 4
0 A
k
, A 4 4
4 4
4 4
4 4
4 4 44 4 0
4 4
4 4 4 4
4 4
, 44 4,
t t
4 4
4 4 4 4 4
4 4
4 44
,y y
y 4
y y y y
y y
y a
e, f
0'000 gg 393 00110M OJ d001 - d1YH3 ZZ 319003 2I*
lawdaaegnaa euP dloM 01sapgnatou etou6 ;ya gep geti oJ ;ya dool
- oa aesa Nnwqaa 19'
)D = IOk8 9dW lIN131 = 190.J d tutaq)tomposu'daezyaeg6auaaegt'ouuseaap6aoJ' dog /d=IE'6' t(
rO
36.178 r A A
A e
vi4 A
y A
evi A
A A A e r y v
V v
4 A A A
A k V e y
v v
V kA < < v v r y A
<<y y
> 4 y
r A
<<y y
Y b,,l pg
,p 4
4
< << v,
4 4
172 L@
A
< vv v
}g U
m A
> > > 4 y
A
,1
(
/v G
} 70.r
=
y v v&
Am A s,
)\\
l 7
r y vv v
i V
v y v v
v v
v v v v,
y 4
r v v v v
r y
vv v v
v v
v v1 1
4 r
e vvv v
v v
v v v v
v vvv v,
4 y v v
v v
vv v v
v v
vvv v,
pV y
y 8 v v v
v v
vvv v
v v
v vv v 4
4 4 1 y
v v
vv v
v v
v>>
g w
<vv v
v v
v v
v v
v vv
,, j Y d
\\
~ ~ ~
'.000 0.000 33.465 0
BOTTOW OF POOL - PtANE 22 FIGURE 22.
Temperature and Flow Distribution along the Back Wall of the Pool for Case Number 17.
(Q = 450 GPM, TINLET = 130'F, P /P = 13.9, L
inlet flow down, peak heat generation near center of pool) 1 41
36.176 r v A
A
> v4 4
A A
y 4 4 A
s a
a a>
> v k v r v V
v 1
4 4 4 4
F A
vv v 4
4 4
4 44 v P v v f v k
4 4
< 4 4 g
y t g y,
A 1
y r
A w
g g
< vy y,
4 v [i4 b,, T f
,p 4
4 4 < <
4 4
4 << <
M g,
a 4
4 1 4
A 5
8 g
4
, < < + v
}
~ 146 h f U
g h "\\
v f
4
<, 4 4
, 4
> >> 4 1%
4 4
4 v
vv +
144
..., f j
j g
4 y
v v v v
v v
v v v v
e v vv v,
4 4
y v v v
v v
v v v v
v v
v vs v,
4 4
v v v v v
v v
v v v v
v v
v vv v,
y v
v v v v
v v
vv v v
F vVV v,
4 o
v v v
v v
v vv v
e e
- *v v,
y s\\v 4
4 4
v v
v v v v
v e
p 11 y
r 4 < v v
v v
v vv v
v
[
g s -.
=4 4
4 v
+
4 4
4
,y 0.000 33.868 801 TOW OF POOL - PLANE 22 FIGURE 23.
Temperature and Flow Distribution along the Back Wall of the Pool for Case Number 18.
(Q = 450 GPM, TINLET = 100*F, P /P = 13.9, t
inlet flow down, peak heat generation near center of pool) 42
36.178 r y A
F y v P
4 A
4 4 4 A
A A
A A > a >
A 4
r y y
y v
vv1 y
F V y 4 4
4 4
4 AA 4 A 4 y r y y
A v1 >
4 A
- k V
4 A
A A A A
A 4 4 176
~
4
.c <
y 7 y > > > 4 4
4 4 4 4
4 4
4 1
> >> > >i j
A A A A A
A 4
4 4
A O
I y
A A A >
y 4
f g [4
-a to 4
all4' ' '
i n y
y o
>j 11 A
4 4 Y V
+
+
V y &
s
+
+
o p j l
\\
1 y
, v s Y
y v vy 4
,, 1 4
y v
v v v v
v v
v v v v
1 1
1 1Y v, 4 y
v v v v
v v
v v V y
V 4
g yy y, 4 g
o y
v 1 y y y
v v
v V F V
y y
y v v, 4 y
4 1 1 y V
y v
v P A e
P y
y A > y 4 4
4 A 4 y V
y v
v > A e
P y A4 4 >
\\
v s
a 1
4 y
v v
A 44 4
y y g m n
-s s<
A v
V
+
- -e e e e g 0.000 33.464 80170W OF POOL - PLANE 22 l
FIGURE 24.
Temperature and Flow Distribution along the Back Wall of the Pool for Case Number 19.
(Q=450GPM,TINLET=130*F,P/P=13.9, g
inlet flow down, peak heat generation near center of pool, large open flow region of cask area removed from model) 43
36.f78 f A 4
g y
4 y >
4 4 <<
g w
v v yb 4 y
>A A
i V
k 4 4 y
y y
b kA 4 1 > i f P d
v v
y y y r F A
v g
y > A 4
i V
P k a v
v v
vAA 4 1 4
A 4
1 Y
F k A v
v vA4 4 f 1 Y
w g
y y 4
y y A T
Y Y
Y Y k 4
g g4 y
V 1
s,
a 6
> >v 8
r 4 < v
,, s
[
' t P
P >
k 4
A A 4 4 4
4 k
P YY
}
l,,
9 y
A 4 > A A
A M "
V k
A A 4 Y
[
y A
y <<
4 4
I76 i
Y T
1 A
A A
A A
Y Y
t 1
A
[
A A
A A
A i
V t
i Y
Y Y
i 1
A A
A A
A A
A A
A A
A A
V T
t t
A A
A A
A A
A
@A
/ Y Y
V
' V T
t 1 Se_
Y Y
t f
\\
A A Y A A
A A
A A
A A
A A A V
V t
r
(
F A
a A
A A
A A Y A A
A A
I A A V V
t r
! t w
A A Y A A
A A
A A
A A
V Q' Y t
lb.A.
v
< 4 <
... +,
0.000 33,858 B0f f0W OF POOL - PLANE 21 FIGURE 25.
Temperature and Flow Distribution in Bundles next to the Back Wall of the Pool for Case Number 5.
(Q=4187GPM,TINLET=
150*F, P /P centerofpoo=l)1.4, inlet flow down, peak heat generation near 44
36.178
/ A 4
4 4
4 4 4
<4, y
> > 4 4 y y y
p k
1
/ V 4
4 4 4 4 4
/ P A
4 4 4 4
4 4
y
>y y
4 1
7 7
4
- 156*
v v v r
f 1, O 4
e 4
4 4
- 4>
y 4
t y
4 y,
1 56 1 58
< 4 4 4
4 V 14 4 s li30 4
V k
5 4
A k V k A
A
>>A 4
1 F
1 14 4 4 y
a c
Ch
[
V A
4 4 4 4
A y y >
a a
h A 44 4 y
\\ j*e gl y
4 y < <
4 p
g j
g 170 17C g
) g A
,6 A
A A
A A l '
A A
A A
A A
V V
Y
=
Y Y
A A
A A
A A
A A
A A
A Y
Y t
,"j A
1.
y r
V Y
r
- =
A Y A
A A
A V
V t
Y A A
A A
A Y A
A A
A A
V V
y Ap A i
V A
a 1
Y g
A Y A A
A A
A V A
A A
A A
A V V
t V
Y 1
V A
A A V A
A A
A A
A Y
Y y
(
V V
A A
A A
A A
A A
A A
A A
A V
'Y t
a
+
+
< 4 <
< d 4 4 < +
4-4 A
o.000 ss. ass 80TTOW OF POOL - PLANE 21 FIGl!RE 26.
Temperature and Flow Distribution in Bundles next to the Back Wall of the Pool for Case Number 9.
(Q = 1048 GPH, TINLET =
150'F, P,/P = 1.4, inlet flow down, peak heat generation near centeroYpool) 45
38.178
/ 4 4
4 4 4 4 4
4 A
A Ak k k V V f P A
4 4
4 4 4 A
A A
A kk > F V V f V k
4 g y z y
4 4 4 4 4
4 4
k kk W Y Y Y
- 158, 4
4
- Ar 4 a (t156 Y
b A 4 1 4
T
- T T
- T A
I O '@
\\1b8 D
l'60 4
9 x
4 4 4 4
4 4 *r 4 a g
@' 5 f
,k f
g
>a a
A A
4 4 44 4 4 4
A k k k
A P
k 4 4 4 4
g A
4 y >
A A
A A A4 4
V s**j fi-a'
\\
y 4
y < <
44 p'
j y
g g
)
y y
y V
T A
A A
A A
A i
A A
A A
A r
5 5
Y 1
A Y
A A
A A
A A
A A
A A
N Y
Y t
W A
A Y A
Y A
A Y
Y t
i N
N Y
Y 1
Y, A A
A A
A A
A A
A A
A A
A A n)V V
t P
j Y
I V
V t
Y A
A Y A A
A A
A A
A A
A A
A A
J 163 Y
Y r
V A
A Y A
A A
A A
A A
A A
Y Y
t Y
Y
(.
(f-
>N>
g
</ N/
./
A A
A A
A A
A A
A A
A A
Yj t A
< 4.
k 0.000 33.868 BOTTOW OF POOL - PL ANE 21 FIGURE 27.
Temperature and Flow Distribution in Bundles next to the Back Wall of the Pool for Case Number 11.
(Q = 1048 GPM, TINLET =
150'F, P /P = 1.4, inlet flow down, peak heat generation under L
inlet) 46
l 36.176 f Y V
k A
A A A k
V V
1 4 4 A
A A
A AA A
A A
4 f V V
V V
V V V V
k k
b & F h
k V
4 44 4 4 4 4
(
y V
b b b &
4 4
4 4 4 4 4
4 4
4 VV A A %
4 4 < <
4 4 4 4
4 4
4 <> > >
7 15 t t g
g < <
4 4
4 5 yy 4 4 10 V4 4
4 4
4 4
<g
, > \\s g
g 4
a Y
A A 4 4
4 k
& 4 4 4
4 4
V Vi A A
(D r
F A
g A
A AA 4
a h
y g
g j
g g
Y Y
Y l
A A
A A
A A
A A
A A
Y f
r to g
Y Y
Y J
A A
A A
A A
A A
A A
A A V 1
g Y
Y T
Y A
A A
A A
A A
A A
A A
A Y
1
?
r Y
Y T
Y A
A A
A A
A A
A A
A A
A A
V q
g r
Y Y
Y T
V A
A A
A A
A A
A A
A A
A A
A V
1 y
Y V
Y V
V A
A A
A A
A A
A A
A A
A A
1 y
r v
T Y
A A
A A
A A
A A
A A
A A
A A
y lk
> a >
p.
0.000 33.868 BOTTOW OF POOL - PLANC 21 FIGURE 28. Temperature and Flow Distribution in Bundles next to the Back Wall of the Pool for Case Number 12.
(Q = 1048 GPM, TINLET =
150*F, P /P centerokpoo=l)13.9, inlet flow down, peak heat generation near 47
l
)
l 36.178
/k 4
4 4
4 A F 1
4 A
A
.s a
a
>>w
> a 4
1 l
r V k
4 A
F V V 4
4 4
1 4 4 4
A A
A 4
i V
)
/ Y k
d 4 4 A 4
4 1
y m
y 4 y y y
w
<V y
y r
'152 1 56 p154<
< 4 <
a v i
3,
1m
.. 4 4 1
7 7 7 v
4
'y ) y A'
e 166 j
y y < <
< 4 4 4
V k
A V() V V
A A
A L
A A
A F
V V
V Y Y V V V
V g
,t A
A A A I
A A
A A
A V
V V
Y Y
Y Y
Y A
A A
A A A A A
A A
V V
V C V
V V
V f
A.
A A
A A A A A
A A
A 164 Y
Y V
V V
V
- {
A A
A A
A A
A A
A d
V Y A A
A A
A A
A A
\\
h Y
Y Y
,Y, A
Ju 6.
17 k
k 7
0.000 0.000 33.068 sottow or Pool - PL ANE 21 l
l FIGURE 29.
Temperature and Flow Distribution in Bundles next to the Back Wall of the Pool for Case Number 14.
(Q = 1048 GPM TINLET =
150*F, P,/P = 13.9, inlet flow horizontal, peak heat generation nearcenterofpool) l l
l 48 l
l l
1 1
- u. _
36.178 _
/A 4
4
<4 4
4 4
4 4 44 A P 1 4 r y p
4 4
4 4 4 4
4 4
4 ** k F V T r y F
4 4
4 <
,t d
d
' ## # T V V
p 4
4 4 4 4
< 4 6 4 4
)<
i F
4 4 4 4
< < < g j
44 >
'l 8
160 4
4 4>
f M 68--
t 4
4 A A A A
4 4
4 y >
A F
4 44 k i n
Y
' m
-s y
A 4 4 4 4
y 4 4 y
> AA 4 Y
'e I
N V
5 \\
e 166
)
d d 44 Jr gc j
a P
7 4 4 y g
ME-A A
A A
A A
A A
A A
A Y "V V
Y Y
A
,i ge
+168 A
T T
V t
n A
A A
A A
A A
A A
A Y
y V
A A
a V
V t
?
Y A
A A
A A
A A
A A
A A
A
- f Y
A A
A A
A A
A A
A A
A A
A" Y
Y f
i Y
O Y
V Y
y V
A A
A A
A A
A A
A A
%,DT T
t ir
\\/ V Y
V t
g V
A A
A A
A A
A A
A A
A A
Y I
< 4 <
i i
0.000 33.468 O.000.
l BOTTOW Of POOL - PLANC 21 l
FIGURE 30.
Temperature and Flow Distribution in Bundlet next to the Back Wall of the Pool for Case Number 16.
(Q = 1048 GPM, TINLET =
i 150*F, P,/P = 13.9, inlet flow down, peak heat generation near edge of ool) 49 t
i l
30,f78
/ k A
A A
A A F A
V k
4 4 &
A A
> bb A
1 Y
r F P
F 1
4 4 4 4
A F V V i
4 4
4 41 F
k F V s
f F A
4
< < y y b
4 4
j (y
<y y
=
4 g
g 162 1 58
,g 1)30 4
4 F 4 4 4
< << F A
d 44 V V 4 Ih U
e
~
-17 2 --
8 y
A 4
& h >
A i A 4 4
y i
i
.2
}
g A'
a
- 4 4 4
T<
d A
A y
\\
Y Y Y Y dJ 1
i 4
A L
V A
V V
y A
N
' m 182----o-5 6
V hY i
4 A
5
(
V V V Y
A r
1 N A V
V 9
180---+
R f
W 1
A A
A
'A V V V l
V A
A Y A
A Y
Y 9
i
}
178--+
es
~
v 1
y A
A A
A Y Y Y A
A Y A A V
V g
R.v
,s 7
7Y v
i cr a
i A
Y Y Y A
A V g A v
v g
r (i'
G r
s gg' f r
v i
4 A
A V V V A
T A
A A
A V
V g
Y
{ (. M 704 h.'G s
17d
^ ^
0.000 33.364 Bof f0W OF POOL - PL ANC 21 FIGURE 31.
Temperature and Flow Distribution in Bundles next to the Back Wall of the Pool for Case Number 17.
(Q = 450 GPM, TINLET =
130'F, P /P = 13.9, inlet flow down, peak heat generation near centerokpool) 50
I h
i 3s.i7s e
4 4
4 4 +
v 4 4 =
a
> >> > > s 4
/ Y Y
V V
i 4 4 A
4 k
V 4 4 4
4 4
> s 4 Y
< v 4
< 4 4
< p k
< vy y >
132 134
<1364 5130 4 < <
N1 2 M,
< << < 4 14 I
y,s t
4 4+
v v lI I
i 2
--14 e
'3 3g 4
> >+ 4 Y
Y 4
4 i
w
< d4 4
A g
4 g
A A
A A
A A
A g
A A
A Y A Y
Y y
V y
V V
A h
w n,,
1 4
V"
~
Y V
A A
A A
A A
A A
A A
A V
V t
Y A
A A
A A
A A
A A
A A
A A Y Y
t 1
Y Y
Y V
V V
V T
1 Y
Y A
A A
A A V A A
A A
I V
V V
A A
4 A
A A
A V A A
A A
A L
A Y
Y
?
}2 I
Y A
A A
A A
A V A
A A
A g A V
V g
V 144
) q.
AgA AoyY V A A
A A
A V
0.000 33,868 BOf f0W OF POOL = PL ANE 21 FIGURE 32.
Temperature and Flow Distribution in Bundles next to the Back Wall of the Pool for Case Number 18.
(Q = 450 GPM, TINLET =
100*F, P /P centerohpoo=l)13.9, inlet flow down, peak heat generation near 51
ss.T74 r F 4
4 4 4 A Y
F V
4 4 4 A
A A
h ha > >
h A
r y P
P P
/ P V i
Y V 1 4 4
A AA A
A
. 1 4 4 A
A A
A AA A
4 4 1 r y F
A 4
7 4 4 4 4
g g
< g g t
4 4
1 58
,1664 4 4 4 4
4 4 4 4 4
e >
>l 1 32 8
4 4
4 4 4 4
4 4
4 4 4 4
li34 l'66 4
k 0
d I.
E 4 Y
A V5 Y i
M j%#
g a
.y y
d 4 4 4
4 4
4 V 4
g Y
V V V V
V A
A Y Y V
A A
{
1 r
f%
f%
5 g
Y Y Y Y Y
Y A
A A A V V 3
T Y
A A
A A
A A
m Y
Y Y Y Y
Y A
A Y Y T
T V
A A
A A
A Y
Y Y Y Y
Y A
A A A Y Y T
T Y
A A
A A
A A
Nc T
Y
/
A A
A A
V V V V
V A
A A A Y Y r
Y 172 l
T f
Y A
A Y A A
A A
Y Y Y Y
Y A
A A A Y
r Y
174 I
Y T
V A
A A
A A
A r
4 4
o.ooo ss. ass 801 TOW OF POOL - PL ANE 21 FIGURE 33.
Temperature and Flow Distribution in Bundles next to the Back Wall of the Pool for Case Number 19.
(Q = 450 GPM, TINLET =
130*F, P /P 13.9, inlet flow down, peak heat generation near centerohpoo=l,largeopenflowregionofcaskarearemovedfrom model) 52
i w A
s s
, y 4
'g I \\
\\
s
= v v y
5 y y g
e c.
s<
/ / / A I
% V V K
4 y
y F
re M
F F I
w Id \\
>< g A
y y y v
s s
- +>
e 4
4 o
tsv o
b V
V V b v y
g 4
y y
w e
+ * >
4 4
4 g
d b 4
V
& b b A
4 y y r
e s
- --*--e 4
4 A
b b
b b >
A 4
4 4 4 4
4 N
9 y 4
A E
d b b
b b
b k k A
A 4
f f 4 f
- M y 4
4 A
A 3
b b
b b
k A
A 4
y y y f
y s
4 A
A A
99 y
y y
y g
4 4
y 9 y g
w e
x x q A
A A
A
' b b
b b
b k k A
4 y
y y y
-e e
+ # y A
A A
A
- b b
b A A A A
4 y
y y v
v
+
ee e 4
A A
A
- g g
g A A 4
4 y y y y
y y
s, y 4
A A
A
/p g
g A
A 4
4 y
y y
y p
e e
e w g 4
4 A
A y
g A
\\ >
A A
A A
4 y
y y
' " Y 4
4 A
A i
y A
4 y
y 4
y
> > m 6
+
+
- - + Y 1
4 4
A bbd Y
A A
A y >
A A
A A a s
+
>- e 7 y
1 4
A 19 A
A 1
A A
A s
s
+
+
+ e 7 7
y y
4 y
~,
1
,w
=
O'OCO CC'999 O'OOO 001731 si03 oJ doOl - dlYN3 Z
)D = tI81 9dH' iamdaaetnaa eup 3 tom otsipqnnou qalom 1ya jnat gnuptas Joa 3esa segaJ S 31S1fH3 E#-
s 1
,,. m
- 9 f__ _
p-g7 1
,x Nsx x
1*o s
"/
l\\Nxs
+
~ -/ /
m 4
=
\\Nss xx,
- - - - - / / /
\\
\\
s 4
r e
s s
s sne / l l o
gg
\\
\\
\\
K w % w A
4 c < <
s e
sev d
f
\\
\\
A x
w %
A 4
< < s e
+
\\
\\
\\
\\
6 a
d e 4 #
/
/
/ /es
/
f f
4 1 \\
h 6
4 4
/ 1 9
/
/
M
///
f f
f A %
b b b b
A 4
e f f
/
/
/ /ll Y
e i
l b
b b
b > L A
4 4
s 9 9 s
s
- ///
l h
d >
k k
k A A A A
4 y
v e e e.
w e.//
/
f f
v,99 n - s s
A A 4
1
. e a e.
- - sss f
f f
+
I >
b A
A A A 4
4 4
4 g 9 e.
A A
eas f
s A A
A A
4 A A 4
4 v
v v v e.
w A
- -A 1
l A
A 4
4 4 4 4
v v
+ * *
+
- S 4
d V
A s
A
-o
+ s s s-
- -*--e 4
4 4
1 A
s s
A
-2 s
A A
- e e
f y
A 0 000 c-,
-, ~, ^
y 0 000 CC999 on1131 stca oa acol - alw3 r l
JI9 nit 3 ES-lamdaaelnaa eup 3loM O!slp gnitou gatom 1ya 3nat anuptas 1oa 3esa Nnegaa 6~
)D = I0#8 9dW' lINI31 = 190 3' d /d = I p* guta1 Jtom pomu' daez yaeg 6auaae)!ou uaca aautaa oJ doot(
22.o7 142 NN N s
- ef 7 7 Y<
%\\
< < //
/ /,f 3,4 N
N N
% 4 4 1
e *
- e
--e
//,
g g
N
% w s e
e e
<
- y4 / / /
g o
g g
g 'w w g <
v e e g
, g g
X X
g g g 1
y P
s a e e
y y eve f
g 9
g g
N N
4 9
s 7 #
/
/ <- e 4
4
+
4 y k
\\
\\
\\
k k 4 9
9 1 ! /
/
/
/ /
/
f f
4 s
v 9
e o r
/
s' 4
f E
1 g
g g
1 1 1 v
P e
e e e e
e y
j f
f 4
r 4 1
1 1
1 v v v
+j4 *-
-yy j
j g
s s
e
, s v v
+
x
</s 4
1 1
T Y
Y Y F v
P e
s'
/
g g
g 148 1 4 t
v v
v v
V
+
e e-ers g
g g
g v
v V
V,
- V
+
s ves y
g g
g
,A F
k A
A A
A 4
4
+ * *
+-
4-4-
e s j
p p
9 148 s 4 <
w
+ *
- w w
+-
- -.-e, y
4 y
u 1
0.000 0.000 33.868 OUTLET SIDE of POOL - PLANE 2 Temperature and Flow Distribution below the fuel Bundles for Case Number 10.
(Q = 1048 GPM, FIGURE 36.
TINLET = 130 F, P /P = 1.4, inlet flow down, peak heat generation near center of pool) g
.g.
t9 p..
g_ _
l,_N x s z
s i \\NN
// /
x xx,
4
,. 4 m
.,-////
\\\\
N s
x,,
o k
\\
\\
\\
A s s 4
e, <
/
e
/ / /
f
' \\
\\
A V
s b > 598 A
y r < <
e.
e ee w f
4 8 A A
w w
a e
s e
k k
k k
% k b 4
4
- < /
/
/
/ /e#
f f
k N' "
c, i 4 g
g sla
- A 4
e e
e
.p/
f f
f t
$ b b
b b
b b b A
4 d
1 4 d
/
/
/ /. / l h
h f
e A b b
b A A A
d e
./ /
f f
f f
s v v
s s
A s 4
e e a e.
s"s f
f f
t lU y
s A s a 4
e.
ss f
f t
+
a &
A A
A 4 4 4 4
4
- e a e
A ess
/
f f
f J >
A A
4 4 4 4 e
a v v x
e.
n-e-s#
0 q
A 4
4 4 4.
y e
+ *
- e-
+
p--.
=-- e #
8 4'
tg 4
4 4
A
+ s s m
n e-
+-*-r 4
y y
4 s
- e-N* s 4
A A
A A > A A
A m
O*000 c -
y--
CC'999 O*000 001131 St03 oJ dool - dlYN3 Z USlfit3 El-iamdaaegnaa euP 3loM 0!sapgnnou gatom 1ya 3nat gnuptas 1oa 3esa Nnmqaa II*
)b = I0#8 9dW' lIN131 = li50 3' d /d = I t' iuta2 ; tom pomu' do w yae2 6auaaep ou nupaa guta2(
l
22.157
-m 's ss--
_n i ~'
s' /,/,/
x~~-..
v....--
A 1
x x
/ s,-,
,164, j
I{
\\
\\
\\
\\ 4 4 A
y x
x x g,
t
[yg g
g g
g g1 4
t
, e #
,o
( 4
\\
\\
\\ \\h 4
)
sf
/ / /
(
(
t k g h
\\
\\
\\ h h h
i
/
/ / /
/
f f
\\
\\
\\ \\ \\
\\
j
/
/ / /
'/ /
+
6 t
C r n
\\\\ \\
9
/
/ *" **
- " / f.
+
t 166,._
, p, g
4 4
s
- =
- r 1 4
4
=
4 4
- e-e e
vp p
g g
g 1
W W
r ce V
p g
g g
y 1 4
A 4
4 4 A
- + +
e e
e ess y
p 9
9 f
4 4
4 7
I 4 d5 4 4
A 3-V k V
4 N-
- + +
+-
+-
e e a y
p p
L 4 4
A 4 P y v
v
+
w.
+-
4-ec,
p p
y v
v v
v v v V
N
+-
- N-
+-
+-
+- e a p
p y
a y
v v
v < w w
v
+
S-
+ *
+ s a a
e A
F yg 0.000 O.000 33.868 OUTLET SIDE of POOL - PLANE 2 Temperature and Flow Distributioi below the Fuel Bundles for Case Number 12.
(Q = 1048 GPM, FIGURE 38.
TINLET = 150*F, P /P = 13.9, inlet flow down, peak heat generation near center of pool) t
j p'g u.
-xvn^
-e-e- -
ea s-e.
, is g*
-e.
-e.
+++ + +
- A 4N g
y s.
- 4 g
$y<
g a,
wws s * *
- i,
,g no 7=
sss s wxs s s s wx s N N 's N N \\ \\ \\ \\ \\ \\\\
\\
4 4
h y,8
\\ \\ \\ }\\\\ \\ \\ \\ \\ \\ \\
\\
\\
t i
f 4
jj k \\ \\\\\\\\ \\\\\\\\\\\\\\\\
\\
\\
l
'a 5
k k k k kk k k k kkk k
k k
f bo f
+n 5
\\
kh k k k kkk k
k h
f g
l! "
- ws sxN 4g4 4
+
+
f fj a-7y
's % \\\\
4 4
t t
t
- * * '* N N\\}fe f
f f
f f
2,2 s s,t,,
,4 Eb
~
.c 4
h 5$
+
e e,
e 2 ;-
N i
w r
s 8.e 2
C.5 s/ / /
v(
b a
/
- - j/ f., A
- 4 ss
+
g
// /
/ s. esGe s
s.
E b e.;
l////////
?
f 9s>
n i
+,
[ f l / /* / / / / / /
b d
9*
4 4
a r
a e 6,
/lll/*/ / /$
/f 4 4
A y
w,
,~
E eS f W. f /' //. * / s
{sa y
x s
, v
.,* di". //- - - M 6
B5 g
h
- - m m m.
m 2
h 2
8 u
58 5
C
ZZ*LCL
- w w
4 s v v v
v
- *' / / /
f ggg L9Z
[
\\
\\
x s
v v v y
4 y,,
,8 e<
/ / /
/
\\
\\
s v v y
k a
y y y y
, < < / / /
/
1s s
w k
4 4
e r
g i4 s
w
> > kt9v 5
4 y y y
v e
e e 4
4 A
4 b b
b W
k k
k 4
4 4 y f
e s
s r-y 1
4 4
A 4 b b
b b
> b >
A A
4 4 4 4
- e 4 4
A A
I
& b k k k
A 4
4 4 4 4
4
- # 4 4
4 A
A J
k k k A
A 4 4 4 4
- # 4 4
A A
3 k k
k k
k k k k
A 4
4 4 4 4
- # 4 4
4 A
A b k k
k k
b >
A 4
4 4 4 4
4 M
a 1 4 4
4 A
d >
A A A
A 4
4 4 4 4
4 A
A j k k
k k
k A >
A A
A 4 4 4 4
- , y 4
4 4
A j k k
k k
k k k k
A A
4 4 4
- , y 4
4 A
A l
y k
k k
k k k k
k A A 4
/
/ n g 4
4 4
A i y k
k k
b v v v
v b A I f
I
/
/# #
4 4
4 A
4 g
y y y y y
y y
h h b 4
/
/
/a, f
4 4
A
- = <
-e, y
4
,I99>
nn n
=
o*ooo -
O'000 cc 999 0017315103 03 dOOl - diVN3 I i
JIDlfd3 p0*
lamdaJe}nJO eup J[oM Q!s1J}qnitou gatom 1ya jnat gnup[as joa 3esa Nnmqas I9~
)D = 10#8 DdH*
lIN731 = 190 3' d /d = lE*6' iuta2 ; tom pomu' daez yaea 6auaJellou uaca ap6a oJ dool(
l
06N jf
\\f p
I i
4 a._ o i
b,
, l
/ p A
b,,
w
\\
\\\\ \\ \\ s
,s
\\\\ \\ N N @%
a$
f
, /
/ y 4
x
\\
k y
f
, /
/
/ p 4
g
%, w
\\
\\
\\ $\\
\\ss~
4
/
/ xa 4
h, w x
k
\\
\\ I 4 o
x s s~
f j
,o@
Q*4 xe 4
b, b t
I t
I k A
, /
/
/
/
4
,, b k
i k
5/
/
/
a x
w/
f
/
+
s
\\, b I
i k k b Aw y
- /
f
/
+
s
\\, %
k i
\\ \\ b i
k i
\\ \\ %
w x a
-
- e
+
s
\\sk 9
- a a
o o
/ p o 4
x sh k
k i
k \\ %
0 i
t I
t I \\ %
- k h
9 Y > 1 i
4 s
- k V
f,
/
t i t
i k
/
I k
i k k 4
- k k
V k
V V
i Y r
r 4 4 t
I t
k k b
, 1 4
4 e
f, f t
f t
I k b 4&V 4
e f, #
t f
t I k b
> 4 4
4 %
V A
r A
A r
4 A
A 4 4
d e
/
f f
i I b b
h 7
4 4
A A A
J i
)
f f
t k b 4
08o h
l
\\
\\
L t
i s
r^
ugS em o Q ]O I
z ~
2Eh;- O0 S2, N
i 73 k,=
i m5S3 d* ' Dm0 E r
1_o1 o w 3 c.
3
-v 2.
4 3
iy 83 g$
=2 e$@%.0 r
[Q' 5 g
~k,
4 Qn C3 t
s"n 3
- a t
l
.t
22.1s7 I' 8 A
A N N %
n,,,m, y xss xx.
4 P
4 s
x x
< es /
d g+4
\\
\\
T P
s A e
e e
f j
\\
g g
g g g y
r gg l \\
1 1
e r
i s e e
s e ~ 4-h' L\\
\\
\\
\\
\\ h4 i
f
/
/ # #
< " d a
y p
g
\\
\\
\\
\\
\\ % %
4 4
/
/ # #
e
< <e e
e m
b \\
\\
\\
h k k h k
/
/ / 1
< ro p
t p
9 9
/
/" "
< r9 9
t t
t 144 144
}
g 4 4
4 4
A A h A
T
+
e e p p p
p 9
u.-
e
[
r 4 A
A A
4 c
'- + +
+
4-4-
e-4-
A y
y y
r 4 4
4 4
4 A
i 4 A
A A
4 F A
5 5-
+ +
+-
.-, 4 L A s
s F
- - + +
+-
+-
e.-,
p p
y y
144-
.f y
4 x &
v
- - + +
+-
+-
4-4 y
y y
1 A
F T
T T
T
- ** d A
A F
Y J-
?$
~
1 1
1
?
~~ " ?
0.000 o.000 33.868 OUTLET SIDE of POOL -Pt.ANE 2 FIGURE 42. Temperature and Flow Distribution below the fuel Bundles for Case Number 18.
(Q = 450 GPM, TINLET = 100*F, P /P = 13.9, inlet flow down, peak heat generation near center of pool)
L
22.137
~ AA Ye's k,hg v
+
s s
/
% % xx AQ v r
i i /
/
/
\\
"/ / /
\\
\\\\
N
\\X
- Y P
- / /
/
/ #
- ~
d'
/
eg///
/
/
/
/ /* * "
g
\\
\\
N
%% s o
r (p
\\
N x
sss s
p #
/
/
/
/
i l N N
w\\*
t v#
/
/
/
,u k \\
\\
\\
\\
\\\\h 4
t f
/
/
/
/
a o
L\\
\\
\\
's Vi\\
6 f
/ /
/
/
/ j L 4
\\
\\
k i
/ / #
- n, /
/
o.
A 4
\\\\
h
/
s 4
4, e
- g*
r j
a, y > b 4
A V
- a 4 A
p r 4 r s
- A >
4 A
V 4
A A p
p f j i 4 4
4 A
4 A
y
< e e A
, j l
i 4 4
4 x
x v
< t e e
t y
,2 x
> > v 4
r 4 4 e e
t y
7174 z 7
y 7 y 4
y
< 4 4
4 e
e 7
4 1
1 y
1 y y y
A T 4 <
4 4
4 y
0.000
=
=
^ * -
~
O.000 33.868 OUTLET SIDE of POOL - PLANE 2 FIGURE 43. Temperature and Flow Distribution below the fuel Bundles for Case Number 19.
(Q = 450 GPM, TINLET = 130'F, P,/P = 13.9, inlet flow down, peak heat generation near center of pool, large open flow region Of cask area removed from model)
l l
l (tood Jo aatuaa acau uopeaaua6 seay zead 'umop mot) 2atu} 'p I = d/ d '3.0SI = 131 nil
- Wd9 18It = D)
- S aaqmnN ase3 ao) sa[pung tanJ ay) aAoge uo pngpts}a mot 3 pue aJngeJadW31
- )) 3d1191J ot 3NYld 'lood Jo 30 s 131100 999CC 000 0 OOO*O
^
~
r 7
r 7
m
, x x y
7 7
7 1
4 k
y V v v
v v
b & b A
A 4
4
)
Y k
E A
y 4
4 A A k b
d b
k k
A A
A A
1 9k V
F F 4
> > 7 1
4 4
4 4 A k
b b
b b A
A J V
F F
4 ry y 4
4 4
4 4 A A
b b b b b
A J
V F
F A
1 y 1 4
4 4 4 4 A
k b
b b b b
A A ;
91 Y
F F
4 4 1 4 4
4 4 4 4 A
b b
b b b b
b A ;
V F
4 4 4 4 4
4 4
4 A
4 h b b b
b A j V
V 4
4 4 4 4 4
4 4
4 4 4
g y
s y y y
s g
g,
V y
4 4
4 4 4 4
4 4
4 4 4 A
b b
b b b b
b A
J m
y 4
4 4
4 4 4 4
(
4 4 4 A
b b
& b b b
b A
J A
4 4
4 4 4 4 4
4 4
4 4 4 b
% b b h
b
)
It A
S S
I d d 4 4
f y 4 g
y 4 h %
h h
k j
W9
- e
< < 4 w w w w
sti s
4
/
< < 4 3
y s s s k
k 4
f I
/
J'
>r s
r 3
y s s s s
M.
A
% J g
/
J'
/
v v <,
v.
M.
k 4 pgg
%f zt
/
w v
v v v v y
i m-w.
- p-F
.f.,
4
l (tood Jo Ja2uaa Jeau uotteJaua6 2eay zead 'umop motJ 2atut 't I = d/ d '3.05I = 137 nil
'WdD 8t0I = D)
~6 JaqunN ASP') Jo1 Salpung tanj ay) aAOqP uOtingp1510 mO[J pup aJnleJadWal
- $) 3M)Dlj 013Nvid - 100d.10 30rs 1311n0 000'O 998'CC 000*C x
4
=
y y 7 >
A T T v v
T V V t A
4 4 j E
4
,,, y y
y 4
5 > >
v v
w w w &
6 a
a 4 ;
v v
g 4
.y y y y
4 4 d A >
b b b b
4 6
4 4
y v
.,, y 4
4 4
4 4 s
b h 4 4
4 4
a a v
A V
y y, 4 4
4 4
4 4 L b
4 4 >
, y f 4 4
4 4
4 4 A b
h A
\\ \\ \\
4 4
j v
A 4
4 4 4 4
4 4
4 4 a b
k A
\\ \\ \\
4 4
v 4
4 4
4 4
4 4 4 a b
A A
AN\\
4 4 ;
y A
A 4
4 4 4
4 4 4 4
4 4
4 4 4 b
k k
k\\\\
\\
\\
4 a y
e A
y >
4 4
4 4 4 4
e 4 4 4 W
w k
\\\\\\
\\
\\
4 0 e
4 4
4 4
4 4 #
4 4 4 4 b
\\
\\\\k k
\\
k I c
0 4
4 s
s
< < 4 s
x
%%\\
\\
\\
\\
t 4 f
/
-d
// /
/
s s
< < 4 b
s s
x%%
9I %
?
/
/
// /
/
s s
< < 4 y
s s
w%%
\\
\\
ii f
/ / / /
/
s xxx N
\\
ti g
e
\\
\\b Yl
/
s#/ /
.e" e
e v y s
1 s 9/1 q[k l
s'
/
s.*
r
.e e
e r,
- w. m Zgt
e
+
. +
n.
i l
(tood Jo aatuaa aeau uo peaaua6 leay zead 'umop mot; latut 't I = d/ d 'J.0EI = 131 nil
'Wd9 8t0I = D)
~01 JaqanN ase3 Jo; satpung tanj ay) aAoge uonnqpis!O MolJ Pue aanteaadmai gp 3ut191J 013NV1d - loOd Jo 301S 13110o 999 CC 000'O 000*O x
4 F
A 4
7 7 7 >
r y
v v v v
v T
t V W b
A 4
4 ;
Y T
y y
y y y y
y 4
k b y V
b b b b b
A A ;
4 4
y y y
y 4
A A b b
b b
n b b b
4 4
A ;
Y y
g 4
f y y 4
4 4
b h
h h h h 4
4 4
4 ;
y
, a y y 4 4
4 4
4 4 4 h
h k
k A %
4 4 ;
V e
v A
g 4 y a 4
4 4
4 4 4 k
k A k i 4
4 4
y z
4 J
4 4
4 4 k
b k
k A k \\
4 4
y 4 4 4
e e
e e a 6
s S.
A \\ \\
\\
4 4 ;
y e
+
4 4 4
4 4 4 e
e e
e 4 4 s
k A\\\\
\\
4 a y
v v
4 4
4 4 4 e
e 4 4 a b
w w
K %%
N
\\
t
+ 4 m
v 4
4 4
4 4 4 4 e
e e
4 4 4 b
s x
x\\\\
\\
\\
\\
t <
0 4
d e
/
e e
< < 4 b
s x
x%%
N
\\
\\
t <
' ' g.,g VM e
/
/ // /
/
/
s < 4 b
s w
\\
L f
I
/ // /
/
< < 4 y
w w
\\
\\
Ii f
/ / /
e s
xxx s
\\
t 'i g
/
/ / / e
,. x x s
s N
\\1 9' r t e
e e
e v,
,. s w w
\\
Nb g/
/ / //
t nig
- ~
/wf e
n.
I
't I = d/ d '3.0S[ = ITINII (2atut aapun uotaeaaua6 Teay zead 'umop mot 3 1atutII acqmnN ase3 ao) sa d
It 380913
'Wd9 8t0I = D)
OL JNYld - lOOd Jo 30tS 137100 oco o 999'C C 000*o
^
~
~,
~
4 v
P P P 7
y T T T T
T y & v b
A 4
4 j b
b b
b b b b
A A
A j V
4 y
y y y y y
y y
4 4
y y y y
4 4
A b b b
b b
b 4 b 4
4 4
a ;
V y
g 4
y f y 4
4 4
A A b b
b h
h h I,
4 4
4 ;
Y F
4 y
3 y y y 4
4 4
4 A %
b h
h h \\ %
4 ;
g y 4 y 4 4
4 4
4 & A b
\\ \\ \\
k 4
V L
4 4
4 4
4 4 A b
k k
A A A 4
4 j
v A
4
, gy 4
4 4 4 4
4 4
4 4 4 4
h
\\
\\ \\ \\
\\
k 4 ;
Y F
k y
4 4 4 4
4 4
4 4 4 5
w
\\
\\\\\\
g g
g
, a y
v v e*
y y
4 4 4 4 4
4 4 4 4 b
h
\\
\\\\\\
\\
\\
k
( 4 4
4 4
4 4
4 4 4
- # 4 b
\\\\\\
\\
\\
k k 4 E
A 4
/ # #
- # 4 k
K\\\\
\\
\\
k I 4 C
" ' 80Li
/
/
// /
/
/
s s < y w
w
%\\\\
\\
\\
- 1 f
/
/ /
/
/
p s
S s
s xKN
\\
\\
\\
ii s
xss N
\\
ti I
/ / / //
,, y
- s g
g,1
/ / / //
xxx x
s N
\\1 9(
l l
/M
e v v v
,. w m.
g LCL *EE
ZlrSL
- :7 r
r
- rc s[
Z i \\
N s
s, sm.
g v
/
1 \\/99 N s
x xx,
--- / /
/
ggg g 1 I
\\
\\
N xxx s
///
/ / /
f i I
\\
\\
\\
xxx s
a 4 4 <
s
/
/ // / /
/
f i i
\\
\\
\\
NAx s
A 4 4 4 s
/
/ // / /
/
+
N" "
\\
kkh h
b A
4 4 4 W
/
/
/ //
I e
4 4
c 4 t
\\
\\
\\
K 5 A w
w a
4 4 4 4
e e
e ed 4
4 4
4 s
t e e e
4 e
4 4 4 y
s 9
i 4
\\
\\
\\%
199 G
e e
4 4 A 4 y
4 4
\\
\\
\\ Mt I" 1
v v
J &
\\
\\\\\\
4
/
J /
4 4
4 4 A g 4
F F
y g
j A
\\
\\ \\
h 4
4 4
4 A &
4 A
y
, A 4
4 A..
> A b
b n
g v
- 4 4
4 A
h by 4
F V
j A b
D v
N
- a k
A
. f f
4 4
A A by x
4 4
k j A k
F V
v v g
4 4
p-y y y 4
4 A
g b y v
4 198 j
j A k
b T
v v w y y y 4
4 A
k A b v
4
<{W g 4 4
A y
y Ag r
4
>4 k
V T
T T <
7 a
s 7 4 ~
m O~000 O'OOO CC 999 001131 S103 01_ dOOl - dlYNJ 10 319lfh3 #8* lasdaJP1nJD eup J[OM 0151pgnpOu eqOAO )ya Jna[ gnup[aS JOJ 3PSG NnmqaJ 12~
)D = 10#8 9dW' lIN731 = 150 3' d /d = IE*6' tuta2 } TOM pomu' daez yae2 6auaJepOu uaea aautaa OJ doot(
l
'6 EI = d/ d '3.051 = 13INIl (tood Jo aaluaa aeau uo})eaaua6 Jeay lead 'LPluozpoy mot; latu}*tI JagenN ase') JoJ satpung tanj ay) a
- 6) 3809I3
- Nd9 8t0! = D)
OL 3Nvid lood Jo Jats 13110 0 000 0 ggg gt 000^O x
y j a
w y
A >
V J-V x
> y r
y y
y y v v 4
< T T T
F A
J V
F V
A y i y 4
4 1
y f y a
y
_p 4
4 4
W f r r y
y w y v
v QL A >
V V
V 2
A
< v v D-A A >
g 44 4 4
4
- # e e.
V V
V g
g e.
y a
+ % s D
k A
A J
g 4 4 4 4
1
/ #
V V
F 4
A 4 4 l
l l
/
V A
A >
V V
V V
4 4 4 4
/
/
/
A b
h \\ \\
h b
A A >
s f
V 2
4 4
4 4 #
l
/
/
/ / /
a 4
\\\\\\
h S
a A j x
y 4
4
- /
/
/
/
/ /
/
i i
n 6
a A ;
m 4
ll l l
l 1
l l f h
h R h k b
b b
A >
4 4
9
/
/
// /
/
/
/
/ / 9 4
k s
k s
s f
/
/ / // /
/
/
/
e e 4 A
6 5
- s >
s w
n s
[/ / // /
/
/
-- 4 4
w w
w
/ // /
/
/
p s s <
4 a
6
> > v w
w K
n f
[ [ / // /
/
e e
s s e 4
> v v s
s A
o l l ///
9L N
/
s
.e a e r 4
s v
, w,
98 9 Ll l / // '
- v r 4
'* ~
~
~
' 5 y
_#9 gh
_we Z
+99L+D_.
gg
- + + -
_e e
n.
m m
s s
s m
09t_
m Lcrit
l l
(tood Jo a6pa avau uotaeaaua6 2eaq zead 'umop mo[J 1atu} '6*EI = d/ d '3.05I = 137 nil
'Wd3 890I = D)
~9I JaqmnN ase3 ao; salpung tanj ay) aA0ge UOpnqplS!Q MO[J pue aJn}endsal *09 3809I3 013NYld - lOOd JO 30:S 1311n0 999'EC 000'O 000~O m
m a
m x
4 7
F i
4 y
7 7 y b
v v v
v v
V V V b
A 4
1 V
e A
b V. V V
V V
V,,
A A
A,
A 4
4 4 4 89L-Y y
g 4
A A A A
b b
V V V V
V V
F F b k
A A
A /
V A
g g
A A A A
b b
b b &
V V
V F b b k
A A
A j Y
F A
g g A A A
A A
> > V V
V V
V W W A
A A j V
V V
V g A A A
A A
> b V V
V V
V V V k
A A j V
V V
4 4 A A A
A A
k b &
V V
V b V V b
b A
A j V
V V
4 A A A
A A
A k >
V V
V V V W b
b k
A j V
1 A
y 4 A A 4
4 4
A y y V
V w
V V V b
b A
j g
Of C
4 y
4 4
4 4
4 A k y V
V W
b V
h b
b OS 4
A y y V
v 4
b 4 4
4 4 4 4 4
,{
A 4
4 4
4 4 4 4
4 4
4 3 y y
v V
= s V k
4 4 a A
4
$$ 4 4
4
~
4 4 y
y w
w h
k 4 4
- 4 4
4 4 4,
s s K
K
\\
4 4 f
/
/
/ // s 4
4 di y 4 y
s s s
K
\\
% 4 g
u l
l 9
y y y 4
g w
w
\\
b
/ /
- e y
y y >
4-g g
g g
s s
A h
gu.
~
,,,f ~
d's at
~
s <
LCL *ZZ
ZZrGI z
m s,,
r e es / /
/
L98 o
L 8
% % 4 y
y y
y y
y f ff i i
\\
\\
x s s,
, // / /
/
f o
i %
K A
w s w y y e //
/
f f
f i 4 h
K k K w w
g 4 y y
y a
p //
/
/
f f
4
- 6 w
w w ws 4 4,
, ee e
e e
4 4\\A 4 A b
k
\\ \\ k h
b k
4 4 4 4
d d
4 A
A s
s a e 4 4
e 4
A A A 4
4 4
LM o
d A b
b 4
4 4 d d d
4 4
4 A A 4
y
~
y A
4 4
4 A A g g
V V
Y J
A b
b
\\ \\
\\
b A
A A
\\ k s
4
/ <
4 4
4 A A g g
V V
V V
y y
3 y y 4
4 4
4 4 g F
V V
V p/
A s s g
> A A
w w,
4 4
x y
y 4
4 4
4 A 4 y V
V V
Y
> A A
h y
y y g A
4 3
p e y 4
4 4
4 9 4 V
V V
V
- A A
y y y g A
3 y y y 4
4 4
4 >
4 V V
V V
y y
y y y y
4 4
g xV V
V V
V
> g y
y y
y g g V
> A y
v w
<s y
y y v y y
4 4
s<F V
Y g
) 4 x
m m
~~
~
~
~
O'000 CC'999 0 000 0n1131 sroJ 03 dOol - dlYN310 3IDIM3 SI-lamdaaetnaa eup jtom atsipqnnou egoAa )ya jnat gnuptas Joa 3esa NnuqaJ II"
)D = tSO DdW' lIN131 = IE0 3' d /d = IE*6' !utal ; tom pomu' daez yael 6auaaep ou uaca aaulaa oJ doot(
l
A s
o m
2
/
Y s
2
<g g
5 v
)LPO 1
vi v y
r r
r- #, / / / /
I[Z
\\
s ltZ s<
\\
y y
A g
y v
e s // / l f f
i I
\\
\\
A y
y 3
y f f f
f
/ // / /
/
f o
1,
x x
, n i i
1
+
, n
~
. sn 4
A a s
\\ \\ %
s s
s 9 9 d
4 4
A gyy a a 6
6
\\ \\
b 6
4 4 4 4
4 d
4 4 4
4 4
4 a a a
6 k
h 4
4 4 4 4
4 4
A
.A 4
4 4
L V9--
~
(,,,
.. A
, A u 9,
,t 2, J A A
b b
k A
d 4
A A & g y
v J
A A
b A
4 4
4 A A g g
F y
A 4
4 4 v y
4 4
4 A A A y
F y
J A
b y
y w 4 A
4 A
7 # #
4 d
d A A A y
g A
F
> A A
b y
v w 4
k A
A 7 f f 4
4 4
4 A A y
y A
F J A A
b y
T < 4 r
f f
4 4
A A A y
y A
F
)
A A
y Y
A >
v Y
Y 9
4 4 4A y
L F
- 4 A
y y
4 A >
e 7
7 7
y 1
4 4 ay w
F
) 4 y
n m
y r
x
=y O* OOC O OOO tt ggg 001131 Sl03 oJ dool - diVN310 J191[d3 $Z' lamdaJegnJa eup jlom O!s2P qnatou eqOAa 1ya jnat gnuplas Joa 3esa NnaqaJ 18~
)D = tSO 9dH' lIN731 = I00 3' d /d = IE 6' tutal ; tom pomu' daez yae2 6auaae1!ou uaca aauqaa oJ doot(
l
22.137
~
- - a
~
{1 K
r 4
+
m-A A 4
4 8
170 gjO k
N s
s *
- 4 4
4
,, p 17 172
%g y p k )
\\
\\
% % 4 1
4 4
4
> b
\\
's
% % A 4
V a
s e
a.-
f I h
\\
\\
4 % 4 1
F p
p p p p
p p
P N k I h
\\
h 4 % %
1 F
r p p a p
p p
V 9 Y t k
k
\\
\\ \\ %
v v
v p p p
r p
4 %
' t 4
4 h 4 4 4
9 t
i e a a
r r
4 N e
e r
v 4 '
t t t
t 4
4 4 h V174 ;
- )e D
> t t
t g
1.
p p
r Y
V i 17 r T 4
4 g gi g
g 4
y p
I, y
y y
V V i r v 9
q g
g g'
g g
g y
y,
yg y
V N hv V N A
p p y
y y
r y v.
q g-g g g
y y
4, p y
y v
v i r y g
q g g g r v v
1 g
s s s e-r 4
4 4 A y
v v v l174-A & A V
v v
5 A
A a-s s-e-
r
-v y p p p
y 4
4 y r
V-y 4
4 m a m y
7 P
v 4
A A 4 F
F 4
A A 1 0.000 4 #
OUTLET SIDE OF POOL - PLANE 10 Temperature and Flow Distribution above the fuel Bundles for Case Number 19.
(Q = 450 GPM, FIGURE 53.
TINLET = 130*F, P /P = 13.9, inlet flow down, peak heat generation near center of pool, large
)
openflowregionbfcaskarearemovedfrommodel)
36.178 5 <
w
,, y 4
y
> >> > > > a p,
4 4
4 4 4 4 g
k A 4 4 4
4 4
f,, > >
h 4
1
+
4
. 4 4 6
4 4ed A
4
< <,, a 4
- i 1 4 4
6 4
fff
/
/
< 44 4 > < v i 4 4
4 4 4 3
(
a 3
3 4
4 4 <
4 s
4 ff/
/
/ 4
- A4 4
6 a 6
a a
4 4 4 4
4 4
dA f f
/
f 4 44,4 d
t s s
s s
s n s s
a a
4 4 4 4
4 4
4 4 4,,
s n
0 a 4 L A A
A A
A A A 4
4 4
4 4 4 4
4 4
4y y y
gi, g
(
y 4
, 4,
y y
vvv 4
< v v
v v
v>
v v
v A
>>4 4
4 4,, a 4 4 4 e
+
4 4
4
,y a 4 4 4 a
v v
v v>
v v
=
s 4 & v A
4 a
v, n 4 4 4 v
v v
1, y v
6 4 k 4 Y r
4 4 T T k A y,
(
v v
V v>
v 1
y r v r &
v v
v v r,y v
v
& 4,
e 4
4 <,,,
y 4
4 < <
4 4
- r lr r
e+
y v
v v
> 4
+158
-156 -
y v
v v
vv v
v r
4 4 4
4 elv / e 4
4 i
v 4
33.ess o000 BOTTOW OF POOL - PLANE 3 f
FIGURE 54.
Temperature and Flow Distribution along the Front Wall of the Pool for Case Number 5.
(0 = 4187 GPM, TINLET = 150*F, P /P =
g 1.4, inlet flow down, peak heat generation near center of pool) i i
I I
73 I
34.f70 t y 4
< y y y
v k
A A A 4
4 f fv v y
> 1 L A 4
4 4 A A
A A
A A S 0
3 4
4 44 4 4 4
4 T V L A A
g 4
A A A A
A A
4 4 0 4
4 4
4 44 4 A
> v i A A
A A
A A A A
A A
0 0 0 0
4 4
4 44 4 T
- Y L A A
A A
A A 4 A
A A
4 4 4 4
4 A
g 44 A 4 4 Y
L A A
A A
A A A A
A A
4 4 4 4
4 4
4 44 y
a m 9
L A A
A A
A A A A
A 4
4 4 4 4
4 4
4 44 y
> > y i A A
A A
A A 4 4
4 4
4 4 4 4
4 4
y y 4 A A
A A
170 3,,
A 4
. 4,
4 4 - -,,. -
v v
1
< > v v
i
.,,,, 4 y rl 5
v 1
4, y 4
> > r
, 4 1
1 1
& > 1 y
y P A F k
4 4
4 < < < y a A
, 4 v
4
> < 4 e
> 4 y 4
4 r
T T
k A >
a A
A
& 4 y A
4 4 < < <
4
& 1
)
y e
r e A
A A
& 4 >
A A 4 y 4
4 4 4
& F F y 166 r r
- v v
v e
p 4 4 4 4
- ^#
0.000 0.000 33.343 BOTTOW OF POOL = PL ANC 3 FIGURE 55.
Temperature and Flow Distribution along the Front Wall of the Pool for Case Number 11.
(Q = 1048 GPM, TINLET = 150*F, P IP "
L 1.4, inlet flow down, peak heat generation under inlet) i 74 i
36.f78 f 4 4
4 4
v v
v k A A 4
f f
f ff F F
- i 4
1 4
4 > 4 A
A A
A 4 4 4
4 4
4 44 4 4 y
V
( 4 A
1 1
1 h k y 4
A A
4 4 4 4
4 4
4 44 4 4 y V k A g
4 4 4 4
A 4 4 4 4
4 4
4 44 4 y y
Y a
1 L A A
A 4
4 4 4 4
A A
4 4 4 4
4 A
y A4 y y
b 4
i A A
A 4
4 4 4 A
A A
4 4 4 4
4 4
4 44 y
> A 4
h A 4
4 L
A A
A A
4 4 4 4
4 4
4 4 4 4
4 4
4 4,
n) 14 4 4 4 1 L A A
A A
4 4 4 4
4 4
4 4 4 4
4 4
4 170 g
L k V
A y
y 4 7 7
y f
f f
4 d 4 4 > > > >
a 1
1 1
4 > v V
h w
a ww e f p
y s
4 4
1 4 > V 1
y y
y > F 4
4 4
4 <<
d 4 A
4 4 4 4
1 1
4 > V 4
y y
1 h F k
4 4
4 <<
g y
( 4 T
T 1
- b T
f 7
- # Y E
T f P
7 l A V
V 1
> k1 P
A d y A
4 A 4 4 4
4 4 i p 9
y
(
k V
V
> 6%
V k
k 4 y y
4 4 A k V 4 4 168-r P k
k k
k e>
r
> > y y
e a 4 4 4
- v k I F 4
4 4
4 4 4 4
4 4
4 4 4 A
+
4 e +. e a w y b 0.000 801 TOW OF POOL - PLANE 3 l
l FIGURE 56.
Temperature and Flow Distribution along the Front Wall of the l
l Pool for Case Number 9.
(Q = 1048 GPM, TINLET = 150*F, P /P =
1.4, inlet flow down, peak heat generation near center of pool) g 75
l 36.t7e iy a
4 4
4 g g v
v v jk A A 4
1 f
f f F
P > 4 4 y 4
4 1
1 h y
A A
A A 4 4
4 4
4 44 4 y 6 4 6 A 4
1 1
4 44 4
A A
& 4 4 4
4 4 44 4 4 F V y y y 4
A A
4 3 0 d
4 4
4 44 4 E
- Y 1
4 L A k
L A g
g 4
4 4 4 4
A A
4 4 4 4
I A
> A4 > 4 i V
L &
A A
A 4 4 4 4
4 4
4 4 4 4
4 4
4 44 7 *
- L A A
A A
4 4 4 4
4 4
4 4 4 4
4 4 44 y > > w e
U A A h
h
- L A A
A A
4 4 4 4
4 4
4 4 4 4
4
+y A'
l
(
y S
y y vy w
f f f 4
t 4
4 4 4 Y v P
P
(,
1 1
1 1>
v V
w
< ww e y 4 y
> > t 4
4 4
4 << < > > >
1 1
1 4 > v 1
j
( 4 f
1 At A
4 4
4 ea <, > A 1
1 1
4 > v 4
(
4 k 4 y 4
4 4 4 4 g
g > >
V 1
1 4 > 1 y
y
( g 1
r v
1
> A1 k
& 4 y A
4 4 < < < 4
& 1 y
y y
A 4
4 4 4 A k & F r 4 A
> 41 k 4 148 r >
k k
> > y y
y a
4 4 4
e,,
0.000 0.000 33.868 50170W OF POOL - PLANT 3 FIGURE 57.
Temr arature and Flow Distribution along the Front Wall of the Pool for Case Number 10.
(Q = 1048 GPM, TINLET = 130'F, P,/P =
1.4, inlet flow down, peak heat generation near center of ool) 76
i 1
l 1
L ns.
r 4 4
1 A
A A A 1
4 a A a A
h a
a ha h a 4 4 r v 1
4 v
v,,
y 4
4 4 4 4
4 4
4 44 4 4 4 1 f 1 1
1 4
Y y w v
v 1
4 4 4 4
4 4
4 44 4 4 4 1 i
d k
v 4
4 v v v
v 4 4 4 4
4 4
4 44 4 4 4 5 s,
4 g A
1 4 4 5
k 4
4 4 4 4
4 4
5 44 4 4 4 1 4
i sa
=
4 44 4 4 4 y 4,
,,d k 4 6
4 d
( q q q
g b
b AA &
4 Y Y 3
-168
% 68' ' "
" "" " * * ^
P h
>b A
7 7,
F f
(
k yy P P
7 4
(
4
.. v v
4 1
1 1
4 A > v v
4
> > h d
d d
4 e4 4 N 4 4 i
4 4
4 4 > v 4
v 4 y k
4 4
4..,,, =
4 4
4 a a v k 4 r k
4 e
, 4 1
1 1
> k4 T
k k 4 y 4
k 4
4 << g 9 4 4
(
g t
a k
k 4 F k
A 4 y k
4 4
<d A k & F y
]
.i f 4 4
k k
k k i
- > y y
A 4 4 4 4
w *,
I 4 e
d 4
4 4 4 4
4 4
e a d d
e e-
< v g g n...
I 80170W OF POOL - PLANC 3 l
FIGURE 58.
Temperature and Flow Distribution along the Front Wall of the j
Pool for Case Number 12.
(Q = 1048 GPM, TINLET = 150*F, P /P =
i t
13.9, inlet flow down, peak heat generation near center of pool) l i
77 t
i
34.170 4
4 4
4 4 4 4 4
V A
A A A a
a A
m aa a a A A
]
i
)
I v A
+ A >
v 4
4 4 4 4
4 4
4 44 4 4 4 4 l
4 A
v 4
4 4 4 4
A A
A 44 4 4 4 4 k
y y P y
V 4
A A A A
A 4
A AA A A A 4 F 4 1
y
> e >
A AAA
- h
- A
- T T b
T TA y
4 4
4 4
g < <
4 4
168,,,
g 4 4
4 4
e o
l y
4 4 y
V 4
4 <<, 4,,
r v 4
4 a > a A
A 1
40
~
t v V
v 4
1 > v v
v A
y w
e
< < < w y y,
i r y V
y 1
1, y y
A 4
e e
< < < < 1 m
1 l
c r y v
v v
4. V 4
d '
4 4
4 = < wp >,
( v v
v 1
A & v A
1
- 4 F 4
4 < < < < y a l
]
r y V
V 1
- AV 1
eaV A
4 4 4 4
,, g 4 i
v k 4 y e
4 4 4 4 e & > V r y v
v
> A,]
r y v
v v
V V
F F
> > y 4
4 4 4 e < w,
4 i 1 1
A 6I4 A
4 4
4 4 4 4
4 e
, g 1
0.000 0.000 33.e48 30TTOW OF POOL - PtANC 3 l
}
FIGURE 59.
Temperature and Flow Distribution along the Front Wall of the Pool for Case Number 14.
(Q = 1048 GPM, TINLET = 150*F, P /P =
i 13.9, inlet flow horizontal, peek heat generation near center of
)
pool)
)
i 1
J 78 1
l 1
1
36.t78 l
' 4 A
h A
4 4 4 4
+ +
+++
4 y
4 f #F e > > 4 l
1 4
4 A
4 A4 4
4 4
e '. A A A
4 ff4 y > 4 y i
r 1 4
4 A
4 1 v A
A A
> y 1 4
f f
4 4 4 y y
I 4 1
4 h
> > h 4
x 4
4 v4 Y
ff 4 i V Y y y
> y >
A 4
e vV &
f kf A i V k V g <
4 4
4 4
f f
i tf 4 4 4 v
t
-168 to 4 #
4
- T Q
( A A
A A
4 4 4 4
1 Y
.I 4 4 A T >
f F
F N k k
A A
4 4 4 4
1 1
3, s y y
y y
y y >
y y
4 4
A 4 < < < < >>
1 1
1 4 > V V
i a
y > y y
g y i
i 1
4 > Y Y
y y > k 4
( 4 1
1 1
4 > y V
4 y
> 4 v A
4
< < <, y y
P g 4
- ~
4
<6 6
y v
4
>> v v
4 y
eA y t
4 y
e A
A 4 4 4 4
k P V V
i 4
>a Y
1 y
F 4
(
l r
v v + v y
et 4
. 4 4
>
- v v 166 v
vv4 x
i v
v r,
,4 4
4 y
t I
4
+
v4 >
4 v
+, - ~.- < < v >
t 4 0.000 33.864 DOTTOW OF POOL - PLANE 3 FIGURE 60.
Temperature and Flow Distribution along the Front Wall of the 13.9, inlet flow down, peak heat generation near edge of p,/P =
Pool for Case Number 16.
(Q = 1048 GPM, TINLET = 150*F, P ool) 79
._ \\
3e.17e r A 4
4 A
A A A A
v 4
4 4 A A
A A
A AA 4 4 4
4 l
r &
e>>
e v
1 1 < 4 4
4 4
4 44 4 4 4 4 r e v
1
$ $ 4 4
4 4
4 44 4 4 4 1 r >
v 1
1 4 4 4
4 4 44 4 4 4 1 r &
A A
A A A1 A
4 4
4 4 4 4
A 4
y 44 4 4 4 4 A
A A A A
A y
A AA A
A A
A 4
g 4
-172,
- e<
, m172m D
A g (
7 F
T 4 <
h 4
( > f A
A 4
1 1 A'
g r v 1
4 4
A > A 4
< 4 <
y a
4 4>
v y 4 4 r v v
v 1
4 A y v
v 4
A A 4
y, 3 4 4 4 g v v
v 1
4 > v v
4
> > F A
A A A
v v
1 1
4 > V 1
y 1 A y k
4 4
4 << < v A 4
(
v v
v 4
4 4 v 4
e
> A y A
4 4 << < < A g
r v v
v.
v v&v 1
e
> 4 y e
A A
t << < < e r r y y
v P
p Ay y
p p
p 4 y p
p 4
4 << k k P y v v v
v v
vvv v
v v
vv v y
s aa a A
< ** *~ * * * *
- l 1 k
b
- & d h
0.000 33.s45 0.000 BOTTOW OF POOL - PLANC 3 FIGURE 61.
Temperature and Flow Distribution along the Front Wall of the Pool for Case Number 17.
(Q = 450 GPM, TINLET = 130 F, P /P =
13.9, inlet flow down, peak neat generation near center of pool) 80 3
i ss.no
- r. A 4
4 4
4 4 4 A
Y 4
4 A A A
A A
A AA A 4 4 1 l
e e
v 4
4 4 4 4
4 4
4 44 4 4 4 1 4
4 4 4 4
4 4
4
.4
. 4 4 4 r k A
A A
A A A P
Y 4
4 4 4 4
4 4
4 44 4 4 4 4 A
A A A A
A 4
4 44 4 A 4 4 r A 4
4 4
4 4 k A
A a 4
< g y y
g y
A Ah h
_,14e,
,, ;o 146 -
O s4 7
7 w
6 s < > 4 4
y 7 > > > > >
ii r r v
4 4
v 4
4 s
4 44 4 y v v g
y
, y v
v 4
4 > v v
4 A
A > <
< < <, < A >
V T
4 4
A > T i
A A A P
4 4
4
< < < < 9 y y
g T
T 4
A
> > i 4
4 4
> A Y k
4 4
4 < <
g g y y
g 4
4 k
k A 4 4 Y
V k
k 4 V V
A 4
4 < < <
g 4 4 y
4 4
A V
k 4 V V
k k
4 y V
A 4
4 < <
4 4
A V 1 Y V
k V
k 4 V V
V V
k 4 y V
k 4
4 4 4 V > > Y g 44--
< v v
v v
& & v v
v V
& v, y
4 4 4 4 4 4
A l 4 4
4 4
4 4 4 4
4 4
e e 4 e
n-n- + <
4 s, y 33.844 0.000 801 TOW OF POOL - PLANC 3 FIGURE 62.
Temperature and Flow Distribution W ng the Front Wall of the Pool for Case Number 18.
(Q=450GPM,IIHLET=100*F,P,fP=
13.9, inlet flow down, peak heat generation near center of pool) 81
3$.178 k 4 4
4 4
4 4 4 4
F 4
A A A A
A A
A 1 f k 4
A A
A A A Y
1 4 4 4 4
4 4
4 1 F A A
A A
A A A k
V y
4 4 4 4
4 4
i i k 4 4
4 4
4 k
P 1
4 4 4 4
4 4
1 1 17 11 6 d
4 4
4 4 4 k k
k 4
A > >
4
> 1 4 i g 4 4
4 4
4 4 4 P
A y
y y y y
y y
g 4 4
4 4
4 4 4 4
4 k
y a i 1 7
7 f
T T 4 4
4 4 1 4 4
4 4
4 >
A V
V i
4 A > A A
A A
A y
g p
y y
y y
y y
y V 4 1 4
T 4
4 N f y y
y y
y a f y y
y y
1>
y y
V V
A > 1 1
1 4
4
( y y
y v
1 > y y
v 4
> > V V
1 4
A 4 L
( V y
y V
1 > y y
1 y
y > V V
4 4
4 4 L Y y
y V
i > y y
4 A Y 1 4
4 i
i 1
' y y
y V
1 4 4
F kV P
k A
A y
V y
1, f y y
y V
V V y 1
A V
F F k 4
-r' 4 4
4 4
4.
0.000 33.868 BOTTOW CF POOL - PL ANE 3 FIGURE 63.
Temperature and Flow Distribution along the Front Wall of the Pool for Case Number 19.
(Q = 450 GPM, TINLET = 130*F, P /P =
13.9,inletflowdown,peakheatgenerationnearcenteroYpool, large open flow region of cask area removed from model) 82
36.178
/ k 4
4 4
4 4
4 4 4 4
Y a
a s>
A i
/ Y F
A 4
4 4 4 A
k k
V Y Y T
i 4
4 44 4 4 1 y I
/ Y 1
4 4
4 i V V
V 1
i i i 4
i V
F FF F F y y
/ 4 4
4 4
4 4 A 4
4 4
4 4 4 4
4 1
y Pk A & P y r 1 4
4 4
A A A A
4
> > A A
A 4
1 Y Y k A k P y
f 4 4
4 4
4 4 4 4
Y A
y y >
h A
A 4 44 4 4 4 g
WP F
k A
A 4 4 y A A A
A A n
NtSb 0
158 g
4 A
A h k g
4 y
y > k k
V 4 4
4
/
4 4 4
, 4 e<
/>
> > v y
4 y
5 -
e v
v y 4 4 A P N
y 4 f
DA T
A d
(
A
~L A
A YY Y T 4 Y f
A A
A A
J
^
^ *'
P A
A162 r h 6F" 162 A A
v A
A A
A A yv v v v v f
A.
A A
A A
f A A
A A
A A
A Y A A
A A
A YV T i y
A 158 Y
gA A
A Y 2158 m. vv 1 *
/ A A
A A
A a
A r\\150 A
A A
A A YY 1 4
~
Y A A
A A
Y A
4 4
k k 156 Y
A A
A A
A YV i 4 A
^
^
A V A A
A A
r A 4
y \\4
'N 7
y A
y x
<. 4 4 4
4 4
+
n,nn, o coo ss.ess 80Tf0W OF POOL - PLANE 11 FIGURE 64.
Temperature and Velocity Distribution in a Plane above the Leveling Pads for Case Number 5.
(Q = 4187 GPM, TINLET =
150 F, P,/P = 1.4, inlet flow down, peak heat generation near l
centerofpool) 83 l
so.17e
/A A
4 4
4 4 4 4
4
,, y y
y
>>>>>A 1
>4 y V V V r F F
A A
k k P F
1 y 4 4 4
4 y
4 44 + k y v r y v
v v
> vv v
4 y, y y
4 r 1 1
1 5
vvv 1
A y,,
4 4 44 *
- e v r 1 1
1 1
4 4 4 4
A 4 y y s
4 A AA A A & F x
A 4 4 y v v v k r y v
v v
vv1 s
v 4 4,
/ F V
V V
V V F 4
4 A 44 h
A A
=4 A A
> 4 y
4 4 A A A
, >x
= > v 4 r 4 4
+
4 4 + +
3' kE f
P 7
7 4
t T v
v v
v y
y P
y f
YY NA A
A A
A A
A Y
A 4 1 r
A g
e-8 s
YY 4 4 1 r
A A
A A
A A
A A
A A
A A
A A
A A
A V 4 4
Y 4 4 1 Y
Af A r A A
A A '.
A 172 37 A
A A
A A vA A
A A
A vy 4 4 4 >
r 17 v
h Y
Y
- A A
A A Y 4 4 4 A A f A A
A A
A A
A A
A Y
Y f
A A
A A
A A
A A
A A
A A
A V 4 4 4 A A 166 Y
Y A A
A A
A Yb,
f e
e A
A A
A A
A
,1 6,...V
^
4 4
v
< 4 <
33 e64 0.000 BOTTOW OF MOL - PLAN! 11 FIGURE 65.
Temperature and Velocity Distribution in a Plane above the Pads for Case Number 9.
(Q = 1048 GPM, TINLET =
Leveling /P = 1.4, inlet flow down, peak heat generation near 150*F, P, centerofpool)
J l
84 1
36.178
/ A 4
4 4
<, y y
y
> >> > > A 4
/ P P
P P
P 4 <
y g
g g 4 4 4
y y
y > >
b 4 i V V V V V
/ Y Y
Y Y
V 14 9
4 4
4 4 4 4
g y
y y<
f V V
V V
i 1 4 y y y 4
- P V y y >
A A
4 4
4<
-4 4
4 F r V V
V 4
1 4 4 4
4 4
4 4 4 y A
A A
4 44 V 4
4 r V V
V 4
1 1 1 V
F f Y V
P P
P P k A
4 A
A 4 y A
A A AA A
A y
y U
y y
a A A A 4
y y
y sk k
> > y f V 4
4 4
4 4 4
_v v y v
v v
v**
A y
> y f
s p
- M A[
A A
A A
A.VV 4 4,
.35D A
r A
r A
LO LD 4
Y YI r
A A
A A
A A
A A
A 4 4 Y A A
A A
Y 4 i
A[
4 4 y A
A A
A r
A A
A A
Y Y 15 A
A A
V, 4 4 4 r
A A
A A
A A
A A\\kb Y
Y A
A A
A A
A A
A A
A Y 4 4 A A A f A
=
Y Y
f A A
A A
A A
A A
A A
A A
A A V 4 4 A A A A
A A
A A
A Y A A
A A
A Y*
Y y
y y
4 g'g A6 j3 48-i
?
0.000 0.000 33.864 BOf f0W. F POOL - PLANE 11 FIGURE 66. Temperature and Velocity Listribution in a Plane above the Leveling Pads for Case Number 10.
(Q = 1038 GPH, TINLET =
130*F, P /P 1.4, inlet flow down, peak heat generation near centerohpo=l) o 35
36.08 f P A
4 4
4 4 <
< v y y
y
> > > > > A 4
r F F
F y
V V P A
g 4 4 4 4
y y
y y>
h 4 i y f Y Y
Y Y
V 1 1 4
F V V V y
4 4 4 4
g y
y yy l
f V V
V V
i i 4 4
h
>>y y
g g
g tw < A > Y f y V
V 9
4 4 4 4
A A
> > b h
A 4
4 << <
4 A Y y
y y >
A A
A 4 44 4 4
4 4
r V V
V W
1 4 4 1
f F W
P V
P k k A
A A
4 g y b
A A
A AA A
A
> y Q
=='
/ A 4
4 4
4 4 4 g
y 4
4 A 4 4
> > h h A > y j
l d'
y F
1 Y T T
T T
d A 1 > 1 f
l y
y!
yV 3
A A
A A
A 4 4 7
r A
A A
A A
A 1
j 4-172 j
8 s
A A
A A
A A
A A
Y 4 4 7 r
A A
A a
r A A
A A
A A
A A
A A
A V 4 i
Y Y
4 4 1 10 17 Y
Y Y
f
'A A
g1 A A
A A
A A
A A Y Y 4 4 4 Y
Y f A A
A A
A A
A A
A A
A A
A A
A Y 4 A
A A A g6 Y
Y f
A A
A A
A A
A A
A A
A A V 4 4 A A A 166 Y
A A
A A
A A
A A
A A
A A
A y
2 0.000 0.000 33.868 SOTTOW OF POOL - PLANC 11 FIGURE 67.
Temperature and Velocity Distribution in a Plane above the Leveling Pads for Case Number 11.
(Q = 1048 GPM, TINLET =
150*F, P /P = 1.4, inlet flow down, peak heat generation under L
inlet) 86 Y
l l
3..no f a 4
4
< t v y
A y
y > >
7 A
i
' i 1 4 A A
0 A
Y 4 4 A k
V V
b kA 4 I A A
> > A A
0 A
4 Y Y A A y y
y y
y yy y A
4 4
T 4 f >
1 Y < g g
g g g g,
4 F V A
0 2
y V
V P
V P
A g y
y y vv v 4
> Y g A g
g A A
f 4
A 4 'l 4
4 4
k P
F y
g y yy g
4 A Y g 4 A A
f A AA A
> 4 g g
w < >
/ k 4
4 A
D
- 168 -
d d #
-168' 182 41 f
4
< v 4
l4 4 t
v g
y y 4 A
A f
YY A
I A
A A
P 4 4 f d)
A A
YT
- 4 f f
A A
A
(
A A
A A
A 172 g
f A A
A A
I A
A A YT f 4 4 A
J A
A A
A I
f A
A A
A A Y f 4 4 A
A A
Y*
4 4 A A f
A A / A A
A A
A A
A
\\
7 A
A Y
'A A
A A
A A
A A
A Y 4 4 4 4 A 16 166 166 f A A
A Y \\6 V
T A
A A
A A
F f f f 4 0.000 O.000 33.868 BOTTOW OF POOL - PLANE 11 FIGURE 68.
Temperature and Velocity Distribution in a Plane above the leveling Pads for Case Number 12.
(Q = 104B GPM, TINLET =
150 F, P, /P = 13.9, inlet flow down, peak haat generation near center of pool) 87
36.178 w y v A
4 y y y y
y
> >> > > a i 0
f A
A A g y
v w
4 P
w y 4 A 0
+
0 A 4 A A A '
4
< vv v v <
i>
y y
i V
0 0
A A Y F
y y
4 T A v
v ve v v y
y V
0 k
0 A A 4 1
4 h
y v
v A A 4 g g g g g g g A 0
I Y
A A 4 4
A y yy y
y y
4 f
k 4
4 4
4 g g A 0
0 0
A g 4
h
> > > > > A i
/ 4 4
4 4
A N
4 4 A A
A A f4 f 4 V
P 4
A g
g g 182 168 Q 374 3,
A 4 4 g a4 4
4 y g g
/
y g
d Y Y Y i A
A A
f g g
g g
4 I
't Y1 s A i
j' D
N r
I Y4 h
A 4 V
/ >
A A
A i
A A
A A
A O
v n
I A
A I
Y*
A I Y hA
' A A
A A
A A
A A
R A
A A
A A Y A
A
/
14 Y Y Y Y g
g g
3 g
sBB
- 166,
,, y y y,
v h,.
4
+
i
> y 0.000 ss.ess BOTTOW OF POOL - Pt ANE 11 FIGURE 69.
Temperf.ure and Velocity Distribution in a Plane above the Levelir1 Pads for Case Number 14.
(Q = 1048 GPM, TINLET =
150*F, n /P = 13.9, inlet flow horizontal, peak heat generation nearcenterofpool) 88
36.178 f
k A
4 4 4 4 4
4 y
> > > > > A 4 4
4 i T j
k F F F F
w y
k A A A
A A
A 44 7
(
w y
y y g a y
y y
y yy y 4
k V k
k V V 4 4
g P 4 4
i V
V i 4 y
y y y >
p y
y vv v < 4
'F y
A h > >
y y
y y y >
4 4
4 b
4 4 4 4
4 4
4 FA > > > >
g
-168 f
k A
4 4
g y >
7 7
7
/ 4 4
4 4
< < g 4
y y
4 g y T k
- 7 7
y y 4 A
y y
A y v k
/
YY Y A*Ad A A A
A A
A 4 1 7
A A
A A
- -168 f
A d
A A
A A
A A A
A A
A YT 4 k
4 1 Y
f A A
A A A A A
A A
A A
A A
A A
T 4
A A
A A A A A
A A
A A
A A
A A
T 4 Y
4 A A
/
g$
/
'A A
A A
A A
A A
A A
A f V A Y
4 A A A
A A
A A
A A
A A
A A
Y f
4 A Y
/
l 164 l
A A
A A
A A
A A
A A
A A
A A T4 A
> > 4 Y
/
A 4
r #
0.000 33,064 O.000 BOTTOW OF POOL - PLANC 11 FIGURE 70.
Temperature and Velocity Distribution in a Plane above the Leveling Pads for Case Number 16.
(Q = 1048 GPH, TINLET =
150*F, P,/P = 13.9, inlet flow down, peak heat generation near edgeof#ool) 89
\\
l 36.f78 f d w
w v v v
A 4
y y y y
y y
y >> > > a 4 A
f A A A y
w w
< << < < < A y
y y y 4 L y y
y y
> a A 0
f 4 A 4
< << < < w y g
0 4 4 i
T k
4 k <
( 4 4
1 g
y t t y y y b A 4
4 4 4
4
>7 7
7 1
A E k A A A A
V 1
/
k k
A 0
f f
4 4 A
A A
>y y
y
> y g
4 y
/ A A
I f
4
-172 <
Ay y
y
- 4 3
172 -
U I >
4 4 4
0 f
f A
F g
y y
y A>
y y
e y
16
,S A
VV V g
=
=
c -
A 4
F A
h A"
A A
{
A A
A 6
A YY v >
7
,/
A A VV I A
r A
A 1
1 4
N 4
b A
I A
A A
A A YY I A
A A
A 4
A A r A A
A A
A V AA A
Y A
A A
A A YV 4 4 A A f A A
A A Y A
A A
A-Y A
A A
A A YT
- 1 4 A Y hi1 Y
r A A
A A
A A
A A
d<<<<<<<<<4 ry y
70,
+
0.000
- 33. ass BOTTOW OF POOL - M ANE 11 FIGURE 71.
Temperature and Velocity Distribution in a Plane above the Leveling Pads for Case Number 17.
(Q=450GPM,TINLET=
130*F, P /P = 13.9, inlet flow down, peak heat generation near t
centerorpool) 90
i I
36.176 k
l
/ A 4
4
<t t
v A
4 y y y y
y 1
44 A
4 4 4 A y
v 4
A << < < < k y
y y
y y 4 V
0 f
A A A k
4 g 4 y
y y A 8
4 A 4 A AA 4 4 4 A
4 1
1 v
v A A L A A
A A
V V
A 0
f A A 4 y yy y
y 4
i g g y
g 4
A
<h A
4 f
f A A y 4
4 h
y yy y
y A
4 A*
- ** * * * ^
q 44F 146-d y
y y
A A A
0 4
4 A
k y
y
> AA >
y v y
/4 160 4
^
F 4
m )#
T T
v A
4 1
k A
A
- D A
A A
7 7
TT T r
.A A
A
/
I l
)
p A
A A YY i 4
A A
4 y r A A
A
/
I A
A A
A A VT A r A A
A A
A 3l I
4 4 >
/ A A
A A
A I
A A
A A
A A YY A A
b A p
s Y
A A
Y f A A
A A
A A
A A
A YY b k A p
l e
A A
A A
A Y T
- Y
$A A
A V
4 A A r A A
A A
r A A
A A
A
\\ A A
Y
^
- 144 A
w 1
1 144 '
, y y
y y
4 2 1 A
< 4 4 4
4 4
A 0.000 33.468 B0f f0W OF POOL - PL ANC 11
)
FIGURE 72.
Temperature and Velocity Distribution in a Plane above the Leveling Pads for Case Number 18.
(Q = 450 GPH, TINLET =
100 F, P,/P = 13.9, inlet flow down, peak heat generation near center of pool) 91
l l
t 36.178
/ A 4
4
< < t v
v y
y y >
4 i f 1 4
A y y y 4
4 4 4 4 A
P V i F
A A
k Y 1 1 4 h
4 4
4 4 F
k 4
k F 1 A
T Y Y g
A A
4 4
(
k Y
F F F V
F A
4 F i g y y
3 A
A 4 4 A
F V F F
V V
V V i
/ <
g g
A A
A A y y < A A
A A
A A
1 A
4 N f A 4
4 4
p s1 e
4 4 A A
A A
4 4 4
- 1
' A A
A A
188 174 r
y a a p
~
4 A
g 1
/
A A 1 g
f A
A A
a, A
A A
=
=
8 f
A A
A A
A A A A
N A
A i Y$ A A
A A
A A
A i A
A A
A v i YgA i
A I A A
A A
A A
A A
A A
A I
A A
A i
/
A A
A A 1 f
/
A A
A A
A A
A A
A 1 Y
Y I
A 4
A A
A 1
i
< > y 4
A
< 4 <
a 0.000 33.g64 BOTTOW OF POOL - PtANE 11 FIGURE 73.
Temperature and Velocity Distribution in a Plane above the Leveling Pads for Case Number 19.
(Q = 450 GPH, TINLET = 130*F, P /P = 13.9, inlet flow down, peak heat generation near center ofpool,largeopenflowregionofcaskarear6movedfrommodel) 92
CONCLUSIONS The results presented in this report show that natural circulation is sufficient to ensure adequate cooling of the spent fuel, regardless of the loading pattern used or the orientation of the cooling system discharge nozzle.
The licensee's analysis predicted a hot bundle temperature rise of 15 or 27%
greater than that calculated by TEMPEST using a three-dimensional model and conservative bundle loss coefficients.
It is also concluded that the open flow region above the fuel will be l
well mixed and that there is sufficient flow area around the periphery and beneath the storage racks to ensure adequate cooling, regardless of the loading I
pattern used.
Locating the cooling system discharge nozzle in the region above the pool rather than below does not significantly degrade the pool cooling perfor-mance.
However, locating the inlet above th6 fuel oundles does change the location of the maximum temperature rise, as it does not necessarily occur in the bundle with the highest heat generation rate.
In addition, the incoming cold fluid tends to place a flow resistance cap over the bundles in the vicinity of the discharge nozzle, which competes with the buoyancy effects of the heated bundles below.
This results in stable temperature oscillations of 8'F in some of the bundles near the discharge nozzle.
l i
I 93
REFERENCE Trent, D. S., L. L. Eyler and M. J. Budden.
1983.
TEMPEST--A Three-I Dimensional Time-Dependent Computer Program for Hydrothermal Analysis. Volume l
I: Numerical Methods and Input Instruction.
PNL-4348, Pacific Northwest Laboratory, Richland, Washington.
i 95
APPENDIX A INPUT FOR CASES 5, 9, 10, 11, 12, 14, 16, 17, 18, 19 l
l l
l l
L APPENDIX A
{
INPUT FOR CASE 5
- size, 26 19 23
- time, 1.0 100 2200
- prnt, 100 100 2
18 1
- time,
.1 600 1700
- prnt, 2
18 1
- rest, 1
1
- pres, 200 1-8
- post, misc, 1
1 1
- temp, cont, read,tess, cont, heat, pace,mont,dtim, cont,save, cont,rxio,besq, cont, pore, dbug,in t, prop,ttbl,mt p,nt p, size, data, dbug,dcid,vp r,ap r, aout,velz, vel, vel, temp, 50 1
26 1
19 1
23 1
0 1
2 25 2
18 3
22 1
all 50 3
7 3
9 4
4 1
block 50 9
10 3
9 4
4 1
block 20 1
2 25 19 19 3
22 1
top 0
10 0 25 25 14 14 21 21 1
inflo 0
10 0 3
3 14 14 21 21 1
inflo 0
12 1 25 25 14 14 21 21 1
inflo 0
12 2 3
3 14 14 21 21 1
inflo 40 1
10 10 14 14 2
2 1
outfl 40 1
18 18 14 14 2
2 1
outfl 1
49 1
3 19 3
9 4
22 4
cells 50 51 1
3 19 3
9 3
3 4
edge 50 51 0
3 25 3
9 22 22 4
edge 1
51 50 2
2 3
9 3
21 4
side 53 52 1
2 19 3
9 10 10 4
rstrip 53 52 1
3 19 3
9 16 16 4
rstrip 1
52 53 8
8 3
9 3
21 4
xstrip 1
52 53 14 14 3
9 3
21 4
xstrip 1
52 53 20 20 3
9 18 21 4
xstrip 1
49 1
21 25 3
9 18 21 4
cells A.1
1 21 25 3
9 17 17 4
cells 2
2 3
9 10 10 4
in sect 2
2 3
9 16 16 4
in sect 8
8 3
9 10 10 4
in sect 8
8 3
9 16 16 4
in sect 14 14 3
9 10 10 4
in sect 14 14 3
9 16 16 4
in sect 5
2 19 2
2 3
22 4 edge a k 2
4 3
3 19 2
2 4
21 4 1 pleu k 2
6 3
9 9
2 2
11 11 4 foot k
2 6
3 9
9 2
2 15 15 4 foot k
2 6
3 11 11 2
2 11 11 4 foot k
2 6
3 11 11 2
2 15 15 4 foot k
2 6
3 13 13 2
2 11 11 4 foot k
2 6
3 13 13 2
2 15 15 4 foot k
2 4
3 21 25 2
2 18 21 4
1 pceuk 11 2
12 13 2
11 14 2
13 23 2
13 4
5 mont 11 5
12 13 5
11 14 5
13 23 5
13 2
5 mont 11 15 12 13 15 11 14 15 13 23 15 13 3
5 mont 20 3
19 20 3
20 20 3
21 20 3
22 1
5 9
5 21 11 5
9 6
5 13 18 5
2 1
5 mont 90 180 90 1
1 2 2.37 3
721.11 8
8 2.75 1
3tn 9
1321.11 14 14 2.75 15 1921.11 1
3in 20 20 2.75 21 2615.83 1
3in 1
2 14.5 3
9 24.
10 1927.96 1
4in 1
3 2.37 4
915.83 10 10 2.75 1
Sin 11 1515.83 16 16 2.75 17 2115.83 1
Sin 22 23 2.37 1
Sin 14.7 150.
- 50. 400.
26 1
2 1c1 6 h20 150.
1 26 1
19 1
23 9
allt 170.
1 26 9
19 1
23 9
upper 170.
3 19 3
8 4
21
?
180.
9 17 3
8 21 21 9 upit 150.
8 8
3 8
3 21 9
150.
14 14 3
8 3
21 9
150.
3 19 3
8 10 10 9
150.
3 19 3
8 16 16 9
170.
21 25 3
8 18 21 9
1-9 2
25 2
18 3
22 r 9 all 2384.
3 19 3
8 4
21 r 9 heatl 2384.
21 25 3
8 18 21 r 9 heat 2 3574.
7 13 3
8 11 15 r 9 hotl 1191.
9 10 3
8 21 21 r 9 hot 2 1986.
18 18 3
8 21 21 r 9 heat 4 794.7 11 17 3
9 21 21 r 9 heat 5 596.
11 11 3
8 4
4r 9 heat 3 1-9 8
8 3
8 4
21 r 9 strip A.2 s
u
1-9 14 14 3
8 4
21 r 9 strip 1-9 3
19 3
8 10 10 r 9 strip 1-9 3
19 3
8 16 16 r 9 strip 0.
-1.07
-1.159132.
1 16 in sorce 1.e+9
-1.07
-1.159132.
1 16 in sorce 0.
-0.80
.8649132.
2 16 in sorce 1.e+9
-0.80
.8649132.
2 16 in sorce 0.
O.
30.
1.
1+9 1.
3 1
24 q-table
-9999 2.
I 1
17 z-t wall
.13 1.
003 1.
003 1.
002 1.
002 1.
49 53 17 friction 1.04 2.
.78 2.23.77 2.
1.6
- 2. 283.
2.
2 6
17 1 plen
.695 1.0.695 1.0 2
19 3
8 3
21 36 all pore
.695.54.695
.54 2
19 2
2 3
21 36 all pore
.232 1.0.232 1.0 9
17 3
8 21 21 36 back pore
.602 1.0.602 1.0 18 18 3
8 21 21 36 back pore
.174 1.0.174 1.0 11 11 3
8 4
4 36 front pore 1.
1.
1.
1.0 2
19 2
8 3
3 36 strip p.
1.
1.
1.
1.0 2
19 2
8 Y
10 36 strip p.
1.
1.
1.
1.0 2
19 2
8 16 16 36 strip p.
1.
1.0 1.
1.
8 8
2 8
3 21 36 strip p.
1.
1.0 1.
1.
14 14 2
8 3
21 36 strip p.
.695 1.0.695 1.0 21 25 3
8 18 21 36 c pore 1.
1.
1.
1.0 21 25 3
8 17 17 36 c pore 1.
1.
1.0 1.
20 20 2
8 18 21 36 c pore
.695
.54.695
.54 21 25 2
2 18 21 36 c pore l
A.3
INPUT FOR CASE 9
- size, 26 19 23
'ime, 1.0 100 2200 c
- prnt, 100 100 2
18 1
- time,
.1 600 1600
- prnt, 2
18 1
- rest, 1
1
- pres, 200 1-8
- post, misc, 1
1 1
- temp, seal, 10.
cont, read,tess, cont, heat, pace,mont,dtim, cont,save, cont,rxio,besq, cont, pore, dbug,in t, prop,ttbl,mt p,nt p, size, data, dbug,dcid,vp r,ap r, acut,velz, vel, vel, temp, 50 1
26 1
19 1
23 1
0 1
2 25 2
18 3
22 1
all 50 3
7 3
9 4
4 1
block 50 9
10 3
9 4
4 1
block 20 1
2 25 19 19 3
22 1
top 0
10 0 25 25 14 14 21 21 1
inflo 0
10 0 3
3 14 14 21 21 1
inflo 0
12 1 25 25 14 14 21 21 1
inflo i
0 12 2 3
3 14 14 21 21 1
inflo 40 1
10 10 14 14 2
2 1
outfl 40 1
18 18 14 14 2
2 1
outfl 1
49 1
3 19 3
9 4
22 4
cells 50 51 1
3 19 3
9 3
3 4
edge 50 51 0
3 25 3
9 22 22 4
edge 1
51 50 2
2 3
9 3
21 4
side 53 52 1
2 19 3
9 10 10 4
rstrip 53 52 1
3 19 3
9 16 16 4
rstrip 1
1 52 53 8
8 3
9 3
21 4
xstrip 1
52 53 14 14 3
9 3
21 4
xstrip 1
52 53 20 20 3
9 18 21 4
xstrip 1
49 1
21 25 3
9 18 21 4
cells 1
21 25 3
9 17 17 4
cells 2
2 3
9 10 10 4
in sect 2
2 3
9 16 16 4
in sect A.4
8 8
3 9
10 10 4
in sect 8
8 3
9 16 16 4
in sect 14 14 3
9 10 10 4
in sect 14 14 3
9 16 16 4
in sect 5
2 19 2
2 3
22 4 edge a k 2
4 3
3 19 2
2 4
21 4 1 pleu k 2
6 3
9 9
2 2
11 11 4 foot k
2 6
3 9
9 2
2 15 15 4 foot k
2 6
3 11 11 2
2 11 11 4 foot k
2 6
3 11 11 2
2 15 15 4 foot k
2 6
3 13 13 2
2 11 11 4 foot k
2 6
3 13 13 2
2 15 15 4 foot k
2 4
3 21 25 2
2 18 21 4
1 pceuk 11 2
12 13 2
11 14 2
13 23 2
13 4
5 mont 11 5
12 13 5
11 14 5
13 23 5
13 2
5 mont 11 15 12 13 15 11 14 15 13 23 15 13 3
5 mont 20 3
19 20 3
20 20 3
21 20 3
22 1
5 9
5 21 11 5
9 6
5 13 18 5
2 1
5 mont 90 180 90 1
1 2 2.37 3
721.11 8
8 2.75 1
3in 9
1321.11 14 14 2.75 15 1921.11 1
3in 20 20 2.75 21 2615.83 1
3in 1
2 14.5 3
9 24.
10 1927.96 1
4in 1
3 2.37 4
915.83 10 10 2.75 1
Sin 11 1515.83 16 16 2.75 17 2115.83 1
Sin 22 23 2.37 1
Sin 14.7 150,
- 50. 400.
26 1
2 1cl 6 h20 150.
1 26 1
19 1
23 9
allt 170.
1 26 9
19 1
23 9
upper 170.
3 19 3
8 4
21 9
180.
9 17 3
8 21 21 9 upit 150.
8 8
3 8
3 21 9
150.
14 14 3
8 3
21 9
150.
3 19 3
8 10 10 9
150.
3 19 3
8 16 16 9
170.
21 25 3
8 18 21 9
l 1-9 2
25 2
18 3
22 r 9 all 1417.
3 19 3
8 4
21 r 9 heatl 1417.
21 25 3
8 18 21 r 9 heat 2 2126.
7 13 3
8 11 15 r 9 hotl 708.3 9
10 3
8 21 21 r 9 hot 2
- 1181, 18 18 3
8 21 21 r 9 heat 4 472.6 11 17 3
9 21 21 r 9 heat 5 354.4 11 11 3
8 4
4r 9 heat 3 1-9 8
8 3
8 4
21 r 9 strip 1-9 14 14 3
8 4
21 r 9 strip 1-9 3
19 3
8 10 10 r 9 strip 1-9 3
19 3
8 16 16 r 9 strip A.5
0.
.267
.2889132.
1 16 in sorce 1.e+9
.267
.2889132.
1 16 in sorce 0.
-0.20
.2169132.
2 16 in sorce 1.e+9
-0.20
.2169132.
2 16 in sorce 0.
O.
30.
1.
1+9 1.
3 1
24 q-table
-9999 2.
1 1
17 z-t wall
.13 1.
003 1.
003 1.
002 1.
002 1.
49 53 17 friction 1.04 2.
.78 2.23.77 2.
1.6
- 2. 283, 2.
2 6
17 1 plen
.695 1.0.695 1.0 2
19 3
8 3
21 36 all pore
.695
.54.695.54 2
19 2
2 3
21 36 all pore
.232 1.0.232 1.0 9
17 3
8 21 21 36 back pore
.602 1.0.602 1.0 18 18 3
8 21 21 36 back pore
.174 1.0.174 1.0 11 11 3
8 4
4 36 front pore 1.
1.
1.
1.0 2
19 2
8 3
3 36 strip p.
1.
1.
1.
1.0 2
19 2
8 10 10 36 strip p.
1.
1.
1.
1.0 2
19 2
8 16 16 36 strip p.
1.
1.0 1.
1.
8 8
2 8
3 21 36 strip p.
1.
1.0 1.
1.
14 14 2
8 3
21 36 strip p.
.695 1.0.695 1.0 21 25 3
8 18 21 36 c pore 1.
1.
1.
1.0 21 25 3
8 17 17 36 c pore 1.
1.
1.0 1.
20 20 2
8 18 21 36
- pore
.695
.54.695
.54 21 25 2
2 18 21 36
.: pore l
A.6
l INPUT FOR CASE 10 1
- tin =130., qtot=450gpm, power =10.11 mbtu/hr
- size, 26 19 23
- time, 1.0 100 2200
- prnt, 100 100 2
18 1
- time,
.1 600 1600
- prnt, 2
18 1
- rest, 1
1
- pres, 200 1-8
- post, misc, 1
1 1
- temp, seal, 10.
cont, read,tess, cont, heat, pace,mont,dtim, cont,save, cont,rxio,besq, cont, pore, dbug,in t, prop,ttbl,mt p,nt'p, size, data, dbug,deid,vp r,ap r, aout,velz, vel, vel, temp, 50 1
26 1
19 1
23 1
0 1
2 25 2
18 3
22 1
all 50 3
7 3
9 4
4 1
block 50 9
10 3
9 4
4 1
block 20 1
2 25 19 19 3
22 1
top G
10 0 25 25 14 14 21 21 1
inflo 0
10 0 3
3 14 14 21 21 1
inflo 0
12 1 25 25 14 14 21 21 1
inflo 0
12 2 3
3 14 14 21 21 1
inflo 40 1
10 10 14 14 2
2 1
outfl 40 1
18 18 14 14 2
2 1
outfl 1
49 1
3 19 3
9 4
22 4
cells 50 51 1
3 19 3
9 3
3 4
edge 50 51 0
3 25 3
9 22 22 4
edge 1
51 50 2
2 3
9 3
21 4
side 53 52 1
2 19 3
9 10 10 4
rstrip 53 52 1
3 19 3
9 16 16 4
rstrip 1
52 53 8
8 3
9 3
21 4
xstrip 1
52 53 14 14 3
9 3
21 4
xstrip 1
52 53 20 20 3
9 18 21 4
xstrip 1
49 1
21 25 3
9 18 21 4
cells 1
21 25 3
9 17 17 4
cells 2
2 3
9 10 10 4
in sect 2
2 3
9 16 16 4
in sect A.7
8 8
3 9
10 10 4
in sect 8
8 3
9 16 16 4
in sect 14 14 3
9 10 10 4
in sect 14 14 3
9 16 16 4
in sect 5
2 19 2
2 3
22 4 edge a k 2
4 3
3 19 2
2 4
21 4 1 pleu k 2
6 3
9 9
2 2
11 11 4 foot k
2 6
3 9
9 2
2 15 15 4 foot k
l 2
6 3
11 11 2
2 11 11 4 foot k
2 6
3 11 11 2
2 15 15 4 foot k
2 6
3 13 13 2
2 11 11 4 foot k
2 6
3 13 13 2
2 15 15 4 foot k
2 4
3 21 25 2
2 18 21 4
1 pceuk 11 2
12 13 2
11 14 2
13 23 2
13 4
5 mont 11 5
12 13 5
11 14 5
13 23 5
13 2
5 mont 11 15 12 13 15 11 14 15 13 23 15 13 3
5 mont 20 3
19 20 3
20 20 3
21 20 3
22 1
5 9
5 21 11 5
9 6
5 13 18 5
2 1
5 mont l
90 180 90 1
l 1
2 2.37 3
721.11 8
8 2.75 1
3in 9
1321.11 14 14 2.75 15 1921.11 1
31n 20 20 2.75 21 2615.83 1
3in 1
2 14.5 3
9 24.
10 1927.96 1
4in 1
3 2.37 4
915.83 10 10 2.75 1
Sin 11 1515.83 16 16 2.75 17 2115.83 1
Sin 22 23 2.37 1
Sin 14.7 150.
- 50. 400.
26 1
2 Icl 6 h20 150.
1 26 1
19 1
23 9
allt 170.
1 26 9
19 1
23 9
upper 170.
3 19 3
8 4
21 9
180.
9 17 3
8 21 21 9 upit 150.
8 8
3 8
3 21 9
150.
14 14 3
8 3
21 9
150.
3 19 3
8 10 10 9
150.
3 19 3
8 16 16 9
170.
21 25 3
8 18 21 9
1-9 2
25 2
18 3
22 r 9 all 1417.
3 19 3
8 4
21 r 9 heatl 1417.
21 25 3
8 18 21 r 9 heat 2 2126.
7 13 3
8 11 15 r 9 hoti 708.3 9
10 3
8 21 21 r 9 hot 2 1181.
18 18 3
8 21 21 r 9 heat 4 472.6 11 17 3
9 21 21 r 9 heat 5 354.4 11 11 3
8 4
4r 9 heat 3 1-9 8
8 3
8 4
21 r 9 strip 1-9 14 14 3
8 4
21 r 9 strip 1-9 3
19 3
8 10 10 r 9 strip 1-9 3
19 3
8 16 16 r 9 strip A.8
i 0
.267
.,gggygg4, 1
16 in sorce 1.e+f
.267
.2887924, 1
16 in sorce 0.
-0.20
.2167924, 2
16 in sorce
.2167924, 2
16 in sorce 1.e+9 0.
O.
30-1-
1+9 1.
3 1
24 q-table
-9999 2.
1 z-wall l
.13 1.
003 1'
1.
002 1.
002 1.
49 53 17 friction 1.04 2.
.78 2.2;'
l'0 2 283.
2.
2 5
.695 1.0.695 1.0 2
19 3
8 3
21
% aU pore
.695
.54.695.54 2
19 2
g 3
gl a
p re
.232 1.0.g32 1,9 9
17 3
8 21 36 back pore
.602 1.0.602 1.0 18 18 3
8 21 21 6 back pore
.174 1.0.174 1.0 11 11 3
8 4
4 36 front pore 1.
1.
1.
1.0 2
19 2
8 3
6 strip p.
1.
I-1.
1.0 2
19 2
8 10 6 strip p.
1.
1.
1.
1.0 2
19 2
8 16 6 strip p.
1, 1.0 1.
1' 8
8 2
8 3
6 strip p.
1.
1.0 1
l 14 14 2
8 3
6 strip p.
.695 1.0.695 1.5 21 25 3
8 21 36 c pore 18, 1.
1.
1.
1,0 21 25 3
8 1
c p re 1.
1.
1.0 1
20 20 2
8 18 21 P '
.695
.54.695
.54 21 25 g
g 18 21 36 C pore I
A.9
INPUT FOR CASE 11 high power rods under inlet
- size, 26 19 23
- time, 1.0 100 2200
- prnt, 100 100 2
18 1
- time,
.1 600 1600
- prnt, 2
18 1
- rest, 1
1
- pres, 200 1-8
- post, misc, 1
1 1
- temp, seal, 10.
cont, read,tess, cont, heat, pace,mont,dtim, cont,save, cont,rxio,besq, cont, pore, dbug,in t, prop,ttbl,mt p,nt p, size, data, dbug,dcid,vp r,ap r, acut,velz, vel, vel, temp, 50 1
26 1
19 1
23 1
0 1
2 25 2
18 3
22 1
all 50 3
7 3
9 4
4 1
block 50 9
10 3
9 4
4 1
block 20 1
2 25 19 19 3
22 1
top 0
10 0 25 25 14 14 21 21 1
inflo 0
10 0 3
3 14 14 21 21 1
inflo 0
12 1 25 25 14 14 21 21 1
inflo 0
12 2 3
3 14 14 21 21 1
inflo 40 1
10 10 14 14 2
2 1
outf1 40 1
18 18 14 14 2
2 1
outfl 1
49 1
3 19 3
9 4
22 4
cells 50 51 1
3 19 3
9 3
3 4
edge 50 51 0
3 25 3
9 22 22 4
edge 1
51 50 2
2 3
9 3
21 4
side 53 52 1
2 19 3
9 10 10 4
rstrip 53 52 1
3 19 3
9 16 16 4
rstrip 1
52 53 8
8 3
9 3
21 4
xstrip 1
52 53 14 14 3
9 3
21 4
xstrip 1
52 53 20 20 3
9 18 21 4
xstrip 1
49 1
21 25 3
9 18 21 4
cells 1
21 25 3
9 17 17 4
cells 2
2 3
9 10 10 4
in sect 2
2 3
9 16 16 4
in sect A.10
8 8
3 9
10 10 4
in sect 8
8 3
9 16 16 4
in sect 14 14 3
9 10 10 4
in sect 14 14 3
9 16 16 4
in sect 5
2 19 2
2 3
22 4 edge a k 2
4 3
3 19 2
2 4
21 4
1 41eu k 2
6 3
9 9
2 2
11 11 4
toot k
2 6
3 9
9 2
2 15 15 4 foot k
2 6
3 11 11 2
2 11 11 4 foot k
2 6
3 11 11 2
2 15 15 4 foot k
2 6
3 13 13 2
2 11 11 4 foot k
2 6
3 13 13 2
2 15 15 4 toot k
2 4
3 21 25 2
2 18 21 4
1 pceuk 11 2
12 13 2
11 14 2
13 23 2
13 4
5 mont 11 5
12 13 5
11 14 5
13 23 5
13 2
5 mont 11 15 12 13 15 11 14 15 13 23 15 13 3
5 mont-20 3
19 20 3
20 20 3
21 20 3
22 1
5 9
5 21 11 5
9 6
5 13 18 5
2 1
5 mont 90 180 90 1
1 2 2.37 3
721.11 8
8 2.75 1
3in 9
1321.11 14 14 2.75 15 1921.11 1
3in 20 20 2.75 21 2615.83 1
3fn 1
2 14.5 3
9 24.
10 1927.96 1
4in 1
3 2.37 4
915.83 10 10 2.75 1
Sin 11 1515.83 16 16 2.75 17 2115.83 1
Sin 22 23 2.37 1
Sin 14.7 150.
50, 400.
26 1
2 Ici 6 h20 150.
1 26 1
19 1
23 9
allt 170.
1 26 9
19 1
23 9
upper 170.
3 19 3
8 4
21 9
180.
9 17 3
8 21 21 9 upit 150.
8 8
3 8
3 21 9
150.
14 14 3
8 3
21 9
150.
3 19 3
8 10 10 9
150.
3 19 3
8 16 16 9
170.
21 25 3
8 18 21 9
1-9 2
25 2
18 3
22 r 9 all 1417.
3 19 3
8 4
21 r 9 heatl 1417.
21 25 3
8 18 21 r 9 heat 2 2126.
7 7
3 8
11 15 r 9 hotia 2126.
3 7
3 8
17 21 r 9 hotlh 708.3 9
10 3
8 21 21 r 9 hot 2 1181.
18 18 3
8 21 21 r 9 heat 4 472.6 11 17 3
9 21 21 r 9 heat 5 354.4 11 11 3
8 4
4r 9 heat 3 1-9 8
8 3
8 4
21 r 9 strip 1-9 14 14 3
8 4
21 r 9 strip 1-9 3
10 3
8 10 10 r 9 strip A.11
1-9 3
19 3
8 16 16 r 9 strip 0-
.267
.2889132.
1 16 in sorce 1.e+9
.267
.2889132.
1 16 in sore.e 0.
-0.20
.2169132.
2
-16 in sorce 1.e+9
-0.20
.2169132, 2
16 in sorce 0.
O.
30.
1.
1+9 1.
3 1
24 q-table
-9999 2.
1 1
17 z-t wall
.13 1.
003 1.
003 1.
002 1.
002 1.
49 53 17 friction 1.04 2.
.78 2.23.77 2.
1.6
- 2. 283.
2.
2 6
17 1 plen
.695 1.0.695 1.0 2
19 3
8 3
21 36 all pore
.695.54.695.54 2
19 2
2 3
21 36 all pore
.232 1.0.232 1.0 9
17 3
8 21 21 36 back pore
.602 1.0.602 1.0 18 18 3
8 21 21 36 back pore
.174 1.0.174 1.0 11 11 3
8 4
4 36 front pore 1.
1.
1.
1.0 2
19 2
8 3
3 36 strip p.
1.
1.
1.
1.0 2
19 2
8 10 10 36 strip p.
1.
1.
1.
1.0 2
19 2
8 16 16 36 strip p.
1.
1.0 1.
1.
8 8
2 8
3 21 36 strip p.
1.
1.0 1.
1.
14 14 2
8 3
21 3 strip p.
.695 1.0.695 1.0 21 25 3
8 18 21 36 c pore 1.
1.
1.
1.0 21 25 3
8 17 17 36 e pore 1.
1.
1.0 1.
20 20 2
8 18 21 36 e pore
.695
.54.695.54 21 25 2
2 18 21 36 c pore A.12 f
INPUT FOR CASE 12 assebamblies in hot discharge near center of pool pr=13.9,ti=150f
- size, 26 19 23
- time, 1.0 100 2200
- prnt, 100 100 2
18 1
- time,
.1 600 1600 132
- prnt, 2
18 1
- rest, 1
1
- pres, 200 1-8
- post, misc, 1
1 1
- temp, 10.
- seal, cont, read,tess, cont, heat, pace,mont,dtim, cont,save, cont,rxio.besq, cont, pore, in t, prop,ttbl,mt p,nt p, size, data, dbug,dcid,vp r,ap r,
- dbug, aout,velz, vel, vel, temp, 50 1
26 1
19 1
23 1
0 1
2 25 2
18 3
22 1
all 50 3
7 3
9 4
4 1
block 50 9
10 3
9 4
4 1
block 20 1
2 25 19 19 3
22 1
top 0
10 0 25 25 14 14 21 21 1
inflo 0
10 0 3
3 14 14 21 21 1
inflo 0
12 1 25 25 14 14 21 21 1
inflo 0
12 2 3
3 14 14 21 21 1
inflo 40 1
10 10 14 14 2
2 1
outfl 40 1
18 18 14 14 2
2 1
outfl 1
49 1
3 19 3
9 4
22 4
cells 50 51 1
3 19 3
9 3
3 4
edge 50 51 0
3 25 3
9 22 22 4
edge 1
51 50 2
2 3
9 3
21 4
side 53 52 1
2 19 3
9 10 10 4
rstrip 53 52 1
3 19 3
9 16 16 4
rstrip 1
52 53 8
8 3
9 3
21 4
xstrip 1
52 53 14 14 3
9 3
21 4
xstrip 1
57 53 20 20 3
9 18 21 4
xstrip 1
49 1
21 25 3
9 18 21 4
cells 1
21 25 3
9 17 17 4
cells 2
2 3
9 10 10 4
in sect 2
2 3
9 16 16 4
in sect 1
A.13 l
f
8 8
3 9
10 10 4
in sect 8
8 3
9 16 16 4
in sect 14 14 3
9 10 10 4
in sect 14 14 3
9 16 16 4
in sect 5
2 19 2
2 3
22 4 edge a k 2
4 3
3 19 2
2 4
21 4 1 pleu k 2
6 3
9 9
2 2
11 11 4 foot k
2 6
3 9
9 2
2 15 15 4 foot k
2 6
3 11 11 2
2 11 11 4 foot k
2 6
3 11 11 2
2 15 15 4 foot k
j 2
6 3
13 13 2
2 11 11 4 foot k
2 6
3 13 13 2
2 15 15 4 foot k
l 2
4 3
21 25 2
2 18 21 4
1 pceuk i
11 2
12 13 2
11 14 2
13 23 2
13 4
5 mont 11 5
12 13 5
11 14 5
13 23 5
13 2
5 mont 11 15 12 13 15 11 14 15 13 23 15 13 3
5 mont 20 3
19 20 3
20 20 3
21 20 3
22 1
5 9
5 21 11 5
9 6
5 13 18 5
2 1
5 mont 90 180 90 1
1 2 2.37 3
721.11 8
8 2.75 1
3in 9
1321.11 14 14 2.75 15 1921.11 1
3in i
20 20 2.75 21 2615.83 1
3in 1
2 14.5 3
9 24.
10 1927.96 1
4in 1
3 2.37 4
915.83 10 10 2.75 1
Sin 11 1515.83 16 16 2.75 17 2115.83 1
Sin i
22 23 2.37 1
Sin 14.7 150.
- 50. 400.
26 1
2 1cl 6 h20 150.
1 26 1
19 1
23 9
allt 170.
1 26 9
19 1
23 9
upper 170.
3 19 3
8 4
21 9
180.
9 17 3
8 21 21 9 upit i
150.
8 8
3 8
3 21 9
150.
14 14 3
8 3
21 9
150.
3 19 3
8 10 10 9
i 150.
3 19 3
8 16 16 9
170.
21 25 3
8 18 21 9
1-9 2
25 2
18 3
22 r 9 ell 535.7 3
19 3
8 4
21 r 9 heatl 535.7 21 25 3
8 18 21 r 9 heat 2 803.8 7
13 3
8 11 15 r 9 hotl 267.8 9
10 3
8 21 21 r 9 hot 2 446.5 18 18 3
8 21 21 r 9 heat 4 178.7 11 17 3
8 21 21 r 9 heat 5 211+2 7
13 3
8 11 11 r 9 hotd 212+2 9
13 3
8 12 12 r 9 hotd 134.0 11 11 3
8 4
4r 9 heat 3 1-9 8
8 3
8 4
21 r C strip 1-9 14 14 3
8 4
21 r 9 strip A.14 1
a
1-9 3
19 3
8 10 10 r 9 strip 1-9 3
19 3
8 16 16 r 9 strip 0.
.267
.2889132.
1 16 in sorce 1.e+9
.267
.2889132.
1 16 in sorce 0.
-0.20
.2169132.
2 16 in sorce 1.e+9
-0.20
.2169132.
2 16 in sorce 0.
O.
30.
1.
1+9 1.
3 1
24 q-table
-9999 2.
I 1
17 z-t wall
.13 1.
003 1.
003 1.
002 1.
002 1.
49 53 17 friction 1.04 2.
.78 2.23.77 2,
1.6
- 2. 283.
2.
2 6
17 1 plen
.695 1.0.695 1.0 2
19 3
8 3
21 36 all pore
.695.54.695
.54 2
19 2
2 3
21 36 all pore
.232 1.0.232 1.0 9
17 3
8 21 21 36 back pore
.602 1.0.602 1.0 18 18 3
8 21 21 36 back pore
.174 1.0.174 1.0 11 11 3
8 4
4 36 front pore 1.
1.
1.
1.0 2
19 2
8 3
3 36 strip p.
1.
1.
1.
1.0 2
19 2
8 10 10 36 strip p.
1.
1.
1.
1.0 2
19 2
8 16 16 36 strip p.
1.
1.0 1.
1.
8 8
2 8
3 21 36 strip p.
1.
1.0 1.
1.
14 14 2
8 3
21 36 strip p.
.695 1.0.695 1.0 21 25 3
8 18 21 36 e pore 1.
1.
1.
1.0 21 25 3
8 17 17 36 c pore 1.
1.
1.0 1.
20 20 2
8 18 21 36 c pore
.695.54.695
.54 21 25 2
2 18 21 36 c pore k
A.15
INPUT FOR CASE 14 asse in hot discharge near center of pool, pr=13.9,ti=150f, w/F.D.
- size, 26 19 23
- time, 1.0 100 2200
- prnt, 100 100 2
18 1
- time,
.1 600 1600 132
- prnt, 2
18 1
- rest, 1
1
- pres, 200 1-8
- post, misc, 1
1 1
- temp,
- seal, 10.
4 cont, read,tess, cont, heat, pace,mont,dtim, t
cont,save, cont,rxio,besq, cont, pore, dbug,in t, prop,ttbl,mt p,nt p size, data, dbug,dcid,vp r,ap r, aout,velz, vel, vel, temp, 50 1
26 1
19 1
23 1
0 1
2 25 2
18 3
22 1
all l,
50 3
7 3
9 4
4 1
block 50 9
10 3
9 4
4 1
block j
20 1
2 25 19 19 3
22 1
top 0
10 0 25 25 14 14 21 21 1
inflo 0
10 0 3
3 14 14 21 21 1
inflo 0
1222 1 25 25 14 14 21 21 1
inflo 0
1122 2 3
3 14 14 21 21 1
inflo 40 1
10 10 14 14 2
2 1
outfl 40 1
18 18 14 14 2
2 1
outfl l
1 49 1
3 19 3
9 4
22 4
cells
^
50 51 1
3 19 3
9 3
3 4
edge 50 51 0
3 25 3
9 22 22 4
edge 1
51 50 2
2 3
9 3
21 4
side 53 52 1
2 19 3
9 10 10 4
rstrip 53 52 1
3 19 3
9 16 16 4
rstrip 1
52 53 8
8 3
9 3
21 4
xstrip 1
52 53 14 14 3
9 3
21 4
xstrip 1
52 53 20 20 3
9 18 21 4
xstrip 1
49 1
21 25 3
9 18 21 4
cells 1
21 25 3
9 17 17 4
cells 2
2 3
9 10 10 4
in sect 2
2 3
9 16 16 4
in sect A.16 i
)'
8 8
3 9
10 10 4
in sect 8
8 3
9 16 16 4
in sect 14 14 3
9 10 10 4
in sect 14 14 3
9 16 16 4
in sect 5
2 19 2
2 3
22 4 edge a k 2
4 3
3 19 2
2 4
21 4
1 pleu k 2
6 3
9 9
2 2
11 11 4 foot k
2 6
3 9
9 2
2 15 15 4 foot k
2 6
3 11 11 2
2 11 11 4 foot k
2 6
3 11 11 2
2 15 15 4 foot k
2 6
3 13 13 2
2 11 11 4 foot k
2 6
3 13 13 2
2 15 15 4 foot k
2 4
3 21 25 2
2 18 21 4
1 pceuk 11 2
12 13 2
11 14 2
13 23 2
13 4
5 mont 11 5
12 13 5
11 14 5
13 23 5
13 2
5 mont 11 15 12 13 15 11 14 15 13 23 15 13 3
5 mont 20 3
19 20 3
20 20 3
21 20 3
22 1
5 9
5 21 11 5
9 6
5 13 18 5
2 1
5 mont 90 180 90 1
1 2 2.37 3
721.11 8
8 2.75 1
3in 9
1321.11 14 14 2.75 15 1921.11 1
3in 20 20 2.75 21 2615.83 1
3in 1
2 14.5 3
9 24, 10 1927.96 1
4in 1
3 2.37 4
915.83 10 10 2.75 1
Sin 11 1515.83 16 16 2.75 17 2115.83 1
Sin 22 23 2.37 1
Sin 14.7 150.
- 50. 400.
26 1
2 1cl 6 h20 150.
1 26 1
19 1
23 9
allt 170.
1 26 9
19 1
23 9
upper 170.
3 19 3
8 4
21 9
180.
9 17 3
8 21 21 9 upit 150.
8 8
3 8
3 21 9
150.
14 14 3
8 3
21 9
150.
3 19 3
8 10 10 9
150.
3 19 3
8 16 16 9
170.
21 25 3
8 18 21 9
1-9 2
25 2
18 3
22 r 9 all 535.7 3
19 3
8 4
21 r 9 heatl 535.7 21 25 3
8 18 21 r 9 heat 2 803.8 7
13 3
8 11 15 r 9 hotl 267.8 9
10 3
8 21 21 r 9 hot 2 446.5 18 18 3
8 21 21 r 9 heat 4 178.7 11 17 3
8 21 21 r 9 heatC 211+2 7
13 3
8 11 11 r 9 hotd 212+2 9
13 3
8 12 12 r 9 hotd 134.0 11 11 3
8 4
4r 9 heat 3 1-9 8
8 3
8 4
21 r 9 strip 1-9 14 14 3
8 4
21 r 9 strip A.17
1 1-9 3
19 3
8 10 r 9 strip 1-9 3
19 3
8 16 16 r 9 strip i
0.
068
.063.2889132.
I 16 in sorce j
1.e+9.068
.068.2889132.
1 16 in sorce i
0.
.080
.080.2169132.
2 16 in sorce i
1.e+9
.080 080.2169132.
2 16 in sorce-i 0.
O.
30.
1.
1+9 1.
3 1
24 q-table
-9999 2.
I 1
17 z-t wall
.13 1.
003 1.
003 1.
002 1.
002 1.
49 53 17 friction 1.04 2.
.78
?.23.77 2.
1.6
- 2. 283.
2.
2 6
17 1 plen
.695 1.0.695 1.
2 19 3
8 3
21 36 all pore
.695
.54.695
- 4 2
19 2
2 3
21 36 all pore j
.232 1.0.232 1.0 9
17 3
8 21 21 36 back pore j
.602 1.0.602 1.0 18 18 3
8 21 21 36 back pore
.174 1.0.174 1.0 11 11 3
8 4
4 36 front pore 1
1.
1.
1.
1.0 2
19 2
8 3
3 36 strip p.
1.
1.
1.
1.0 2
19 2
8 10 10 36 strip p.
1.
1.
1.
1.0 2
15 2
8 16 16 36 strip p.
1.
1.0 1.
1.
8 8
2 8
3 21 36 strip p.
1.
1.0 1.
1.
14 14 2
8 3
21 36 strip p.
.695 1.0.695 1.0 22 25 3
8 18 21 36 c pore 1.
1.
1.
1.0 21 25 3
8 17 17 36 c po' >
1.
1.
1.0 1.
20 20 2
8 18 21 36 c
..e i
i
.695
.54.695
.54 21 25 2
2 18 21 36 e pore 1
I i
i j
1 A.18 i
j
1 INPUT FOR CASE 16 I
assebAmblies in hot discharge near center of pool pr=13.9,ti=150f
- size, 26 19 23
- time, 1.0 100 2200
- prnt, 100 100 2
18 1
- time,
.1
- 60t, 1600 132
- prnt, 2
18 1
- rest, 1
1 pres, 200 1-8
- post, mise, 1
1 1
- temp, seal, 10.
cont, read,tess, cont, heat, pace,mont,dtim, cont.save, cont,rxio besq, cont, pore, dbug,in t, prop,ttbl,mt p,nt p, size, data, dbug,dcid,vp r,ap r, aout,velz, vel, vel, temp, 50 1
26 1
19 1
23 1
0 1
2 25 2
18 3
22 1
all 50 3
7 3
9 4
4 1
block 50 9
10 3
9 4
4 1
block 20 1
2 25 19 19 3
22 1
top 0
10 0 25 25 14 14 21 21 1
inflo 0
10 0 3
3 14 14 21 21 1
inflo 0
12 1 25 25 14 14 21 21 1
inflo 0
12 2 3
3 14 14 21 21 1
inflo 40 1
10 10 14 14 2
2 1
outfl 40 1
18 18 14 14 2
2 1
outf1 1
49 1
3 19 3
9 4
22 4
cells 50 51 1
3 19 3
9 3
3 4
edge 50 51 0
3 25 9
22 22 4
edge 1
51 50 2
2 3
9 3
21 4
side 53 52 1
2 19 3
9 1G 10 4
rstrip 53 52 1
3 19 3
9 16 16 4
rstrip 1
52 53 8
8 3
9 3
21 4
xstrip 1
52 53 14 14 3
9 3
21 4
xstrip 1
52 53 20 20 3
9 18 21 4
xstrip 1
49 1
21 25 3
9 18 21 4
cells 21 25 3
9 17 17 4
cells 2
2 3
9 10 10 4
in sect 2
2 3
9 16 16 4
in sect A.19
. ~.
l 8
8 3
9 10 10 4
in sect 8
8 3
9 16 16 4
in sect 14 14 3
9 10 10 4
in sect 14 14 3
9
-16 16 4
in sect 5
2 19 2
2 3
22 4 edge a k 2
4 3
3 19 2
2 4
21 4 1 pleu k 2
6 3
9 9
2 2
11 11 4 foot k
2 6
3 9
9 2
2 15 15 4 foot k
2 6
3 11 11 2
2 11 11 4 foot k
2 6
3 11 11 2
2 15 15 4 foot k
2 6
3 13 13 2
2 11 11 4
foot k
2 6
3 13 13 2
2 15 15 4 foot k
2 4
3 21 25 2
2 18 21 4
1 pceuk 11 2
12 13 2
11 14 2
13 23 2
13 4
5 mont 11 5
12 13 5
11 14 5
13 23 5
13 2
5 mont 11 15 12 13
.15 11 14 15 13 23 15 13 3
5 mont 20 3
19 20 3
20 20 3
21 20 3
22 1
5 9
5 21 11 5
9 6
5 13 18 5
2 1
5 mont 90 180 90 1
1 2 2.37 3
721.11 8
8 2.75 1
3in 9
1321.11 14 14 2.75 15 1921.11 1
3tn 4
j 20 20 2.75 21 2615.83 1
3in 1
2 14.5 3
9 24.
10 1927.96 1
4in 1
3 2.37 4
915.83 10 10 2.75 1
Sin 11 1515.83 16 16 2.75 17 2115.83 1
Sin 22 23 2.37 1
Sin 14.7 150.
50, 400.
26 1
2 1cl 6 h20 150.
1 26 1
19 1
23 9
allt i
170.
1 26 9
19 1
23 9
upper 170.
3 19 3
8 4
21 9
180.
9 17 3
8 21 21 9 upit 150.
8 8
3 8
3 21 9
150.
14 14 3
8 3
21 9
150.
3 19 3
8 10 10 9
150.
3 19 3
8 16 16 9
~
170.
21 25 3
8 18 21 9
1-9 2
25 2
18 3
22 r 9 all 535.7 3
19 3
8 4
21 r 9 heati 535.7 21 25 3
8 18 21 r 9 heat 2 803.8 7
13 3
8 11 15 r 9 hotl 267.8 9
10 3
8 21 21 r 9 hot 2 446.5 18 18 3
8 21 21 r 9 heat 4 178.7 11
.7 3
8 21 21 r 9 heat 5 1-9 12 12 3
8 4
4r 9 cold 211+2 13 19 3
8 4
4r 9 hotd 1-9 13 13 3
8 5
5r 9 cold 211+2 15 19 3
8 5
5r 9 hotd 1-9 13 19 3
8 6
6r 9 cold A.20 i
l
134.0 11 11 3
8 4
4r 9 heat 3 1-9 8
8 3
8 4
21 r 9 strip 1-9 14 14 3
8 4
21 r 9 strip 1-9 3
19 3
8 10 10 r 9 strip 1-9 3
19 3
8 16 16 r 9 strip 0.
.267
.2889132, 1
16 in sorce t
1.e+9
.267
.2889132.
I 16 in sorce 0.
-0.20
.2169132.
2 16 in sorce 1.e+9
-0.20
.2169132.
2 16 in sorce 0.
O.
30.
1.
1+9 1.
3 1
24 q-table
-9999 2.
1 1
17 z-t wall
.13 1.
003 1.
003 1.
002 1.
002 1.
49 53 17 friction 1.04 2.
.78 2.23.77 2.
1.6
- 2. 283.
2.
2 6
17 1 plen
.695 1.0.695 1.0 2
19 3
8 3
21 36 all pore
.695.54.695.54 2
19 2
2 3
21 36 all pore
.232 1.0.232 1.0 9
17 3
8 21 21 36 back pore
.602 1.0.602 1.0 18 18 3
8 21 21 36 back pore
.174 1.0.174 1.0 11 11 3
8 4
4 36 front pore 1.
1.
1.
1.0 2
19 2
8 3
3 36 strip p.
1.
1.
1.
1.0 2
19 2
8 10 10 36 strip p.
1.
1.
1.
1.0 2
19 2
8 16 16 36 strip p.
1.
1.0 1.
1.
8 8
2 8
3 21 36 strip p.
1.
1.0 1.
1.
14 14 2
8 3
21 36 strip p.
.695 1.0.695 1.0 21 25 3
8 18 21 36 c pore i
1.
1.
1.
1.0 21 25 3
8 17 17 35 e pore 1.
1.
1.0 1.
20 20 2
8 18 21 36 c pore
.695.54.695
.54 21 25 2
2 18 21 36 e pore 1.
1.
1.
1.0 15 19 3
8 6
6 36 cid pore 1.
1.
1.
1.0 13 13 3
8 5
5 36 cid pore 1.
1.
1.
1.0 12 12 3
8 4
4 36 cid pore 1
l l
l i
l A.21 i
INPUT FOR CASE 17 assebamblies in hot discharge near center of pool pr=13.9,ti=130f
- size, 26 19 23
- time, 1.0 100 2200
- prnt, 100 100 2
18 1
- time,
.1 600 1600 132
- prnt, 2
18 1
- rest, 1
1 pres, 200 1-8
- post, misc, 1
1 1
tmp,
s 1,0,
10, cont, read,tess, cont, heat, pace,mont,dtim, cont,save.
cont,rxio,besq, l
cont, pore, dbug,in t, prop,ttbl,mt p,nt p, size, data, dbug,dcid,vp r,ap r, aout,velz, vel, vel, temp, 50 1
26 1
19 1
23 1
0 1
2 25 2
18 3
22 1
all 50 3
7 3
9 4
4 1
block 50 9
10 3
9 4
4 1
block 20 1
2 25 19 19 3
22 1
top I
0 10 0 25 25 14 14 21 21 1
inflo 0
10 0 3
3 14 14 21 21 1
inflo i
0 12 1 25 25 14 14 21 21 1
inflo 0
12 2 3
3 14 14 21 21 1
inflo 40 1
10 10 14 14 2
2 1
outfl 40 1
18 18 14 14 2
2 1
outfl 1
49 1
3 19 3
9 4
22 4
cells 50 51 1
3 19 3
9 3
3 4
edge 50 51 0
3 25 3
9 22 22 4
edge 1
51 50 2
2 3
9 3
?1 4
side 53 52 1
2 19 3
9 10 10 4
rstrip 53 52 1
3 19 3
9 16 16 4
rstrip
)
1 52 53 8
8 3
9 3
21 4
xstrip i
1 52 53 14 14 3
9 3
21 4
xstrip 1
52 53 20 20 3
9 18 21 4
xstrip j
1 49 1
21 25 3
9 18 21 4
cells 1
21 25 3
9 17 17 4
cells 2
2 3
9 10 10 4
in sect i
2 2
3 9
16 16 4
in sect A.22 1
8 8
3 9
10 10 4
in sect 8
8 3
9 16 16 4
in sect 14 14 3
9 10 10 4
in sect 14 14 3
9 16 16 4
in sect t
5 2
19 2
2 3
22 4 edge a k 2
4 3
3 19 2
2 4
21 4 1 pleu k 2
6 3
9 9
2 2
11 11 4 foot k
2 0
3 9
9 2
2 15 15 4 foot k
2 6
3 11 11 2
2 11 11 4 foot k
2 6
3 11 11 2
2 15 15 4 foot k
i 2
6 3
13 13 2
2 11 11 4 foot k
I 2
6 3
13 13 2
2 15 15 4 foot k
2 4
3 21 25 2
2 18 21 4
1 pceuk 11 2
12 13 2
11 14 2
13 23 2
13 4
5 mont 11 5
12 13 5
11 14 5
13 23 5
13 2
5 mont 11 15 12 13 15 11 14 15 13 23 15 13 3
5 mont 20 3
19 20 3
20 20 3
21 20 3
22 1
5 9
5 21 11 5
9 6
5 13 18 5
2 1
5 mont i
90 180 90 1
1 2 2.37 3
721.11 8
8 2.75 1
3in 9
1321.11 14 14 2.75 15 1921.11 1
3in 20 20 2.75 21 2615.83 1
3in 1
2 14.5 3
9 24.
10 1927.96 1
4in 1
3 2.37 4
915.83 10 10 2.75 1
Sin 11 1515.83 16 16 2.75 17 2115.83 1
Sin 22 23 2.37 1
Sin 14.7 150.
50, 400.
26 1
2 Icl 6 h20 150.
1 26 1
19 1
23 9
allt 170.
1 26 9
19 1
23 9
upper 170.
3 19 3
8 4
21 9
180.
9 17 3
8 21 21 9 upit 150.
8 8
3 8
3 21 9
150.
14 14 3
8 3
21 9
150.
3 19 3
8
- 0 10 9
150.
3 19 3
8 16 16 9
170.
21 25 3
8 18 21 9
1-9 2
25 2
18 3
22 r 9 all 535.7 3
19 3
8 4
21 r 9 heatl 535.7 21 25 3
8 18 21 r 9 heat 2 803.8 7
13 3
8 11 15 r 9 hotl l
267.8 9
10 3
8 21 21 r 9 hot 2 446.5 18 18 3
8 21 21 r 9 heat 4 178.7 11 17 3
8 21 21 r 9 heat 5 211+2 7
13 3
8 11 11 r 9 hotd 212+2 9
13 3
8 12 12 r 9 hotd 134.0 11 11 3
8 4
4r 9 heat 3 1-9 8
8 3
8 4
21 r 9 strip 1-9 14 14 3
8 4
21 r 9 strip A.23 i
1-9 3
19 3
8 10 10 r 9 strip 1-9 3
19 3
8 16 16 r 9 strip 0.
.267
.1237924.
1 16 in sorce i
1.e+9
.267
.1237924.
1 16 in sorce 1
0.
-0.20
.0937924.
2 16 in sorce 1.e+9
-0.20
.0937924, 2
16 in sc ce 0.
O.
30.
1.
1+9 1.
3 1
24 q-tooie
-9999 2.
1 1
17 z-t wall
.13 1.
003 1.
003 1.
002 1
.902 1.
49 53 17 friction 1.04 2.
.78 2.23.77 2.
1.6
- 2. 283.
2.
2 6
17 1 plen
.695 1.0.695 1.0 2
19 3
8 3
21 36 all pore
.695.54.695
.54 2
19 2
2 3
21 36 all pore
.232 1.0.232 1.0 9
17 3
8 21 21 36 back pore
.602 1.0.602 1.0 18 18 3
8 21 21 36 back pore
.174 1.0.174 1.0 11 11 3
8 4
4 36 front pore 1.
1.
1.
1.0 2
19 2
8 3
3 36 strip p.
i 1.
1.
1.
1.0 2
19 2
8 10 10 36 strip p.
1.
1.
1.
1.0 2
19 2
8 16 16 36 strip p.
1.
1.0 1.
1.
8 8
2 8
3 21 36 strip p.
1.
1.0 1.
1.
14 14 2
8 3
21 36 strip p.
.695 1.0.695 1.0 21 25 3
8 18 21 36 c pore 1.
1.
1.
1.0 21 25 3
8 17 17 36 e pore 1.
1.
1.0 1.
20 20 2
8 18 21 36 c pore
.695.54.695
.54 21 25 2
2 18 21 36 e pore 1
I A.24 i
INPUT FOR CASE 18 assebamblies in hot discharge near center of pool, pr=13.9,ti=100f
- size, 26 19 23
- time, 1.0 100 2200
- prnt, 100 100 2
18 1
- time,
.1 600 1600 132
- prnt, 2
18 1
- rest, 1
1
- pres, 200 1-8
- post, misc, 1
1 1
- temp, seal, 10.
cont, read,tess, cont, heat, pace,mont,dtim, cont,save, cont,rxio,besq, cont pore, dbug,in t, prop,ttbl,mt p,nt p, size, data, dbug,deid,vp r,ap r, aout,velz, vel, vel, temp, 50 1
26 1
19 1
23 1
0 1
2 25 2
18 3
22 1
all 50 3
7 3
9 4
4 1
block 50 9
10 3
9 4
4 1
block 20 1
2 25 19 19 3
22 1
top 0
10 0 25 25 14 14 21 21 1
inflo 0
10 0 3
3 14 14 21 21 1
inflo 0
12 1 25 25 14 14 21 21 1
inflo 0
12 2 3
3 14 14 21 21 1
inflo 40 1
10 10 14 14 2
2 1
outfl 40 1
18 18 14 14 2
2 1
outfl 1
49 1
3 19 3
9 4
22 4
cells 50 51 1
3 19 3
9 3
3 4
edge 50 51 0
3 25 3
9 22 22 4
edge 1
51 50 2
2 3
9 3
21 4
side 53 SP 1
2 19 3
9 10 10 4
rstrip 53 tt 1
3 19 3
9 16 16 4
rstrip 1
- ,2 53 8
8 3
9 3
21 4
xstrip 1
52 53 14 14 3
9 3
21 4
xstrip 1
52 53 20 20 3
9 18 21 4
xstrip 1
49 1
21 25 3
9 18 21 4
cells 1
21 25 3
9 17 17 4
cells 2
2 3
9 10 10 4
in sect 2
2 3
9 16 16 4
in sect A.25
8 8
3 9
10 10 4
in sect 8
8 3
9 16 16 4
in sect 14 14 3
9 10 10 4
in sect 14 14 3
9 16 16 4
in sect 5
2 19 2
2 3
22 4 edge a k
?.
4 3
3 19 2
2 4
21 4 1 pleu k 2
6 3
9 9
2 2
11 11 4 foot k
2 6
3 9
9 2
2 15 15 4 foot k
i 2
6 3
11 11 2
2 11 11 4 foot k
2 6
3 11 11 2
2 15 15 4 foot k
2 6
3 13 13 2
2 11 11 4 foot k
2 6
3 13 13 2
2 15 15 4 foot k
F 2
4 3
21 25 2
2 18 21 4
1 pceuk 11 2
12 13 2
11 14 2
13 23 2
13 4
5 mont 11 5
12 13 5
11 14 5
13 23 5
13 2
5 mont 11 15 12 13 15 11 14 15 13 23 15 13 3
5 mont 20 3
19 20 3
20 20 3
21 20 3
22 1
5 9
5 21 11 5
9 6
5 13 18 5
2 1
5 mont 90 180 90 1
1 2 2.37 3
721.11 8
8 2.75 1
3in 9
1321.11 14 14 2.75 15 1921.11 1
3in 20 20 2.75 21 2615.83 1
3in 1
2 14.5 3
9 24.
10 1927.96 1
4in 1
3 2.37 4
915.83 10 10 2.75 1
Sin 11 1515.83 16 16 2.75 17 2115.83 1
Sin 22 23 2.37 1
Sin 1
14.7 150.
- 50. 400.
26 1
2 lcl 6 h20 1
150.
1 26 1
19 1
23 9
allt 170.
1 26 9
19 1
23 9
upper i
170.
3 19 3
8 4
21 9
180.
9 17 3
8 21 21 9 upit 150.
8 8
3 8
3 21 9
150.
14 14 3
8 3
21 9
150.
3 19 3
8 10 10 9
1 150.
3 19 3
8 16 16 9
170.
21 25 3
8 18 21 9
1-9 2
25 2
18 3
22 r 9 all 535.7 3
19 3
8 4
21 r 9 heatl 535.7 21 25 3
8 18 21 r 9 heat 2 803.8 7
13 3
8 11 15 r 9 hotl 267.8 9
10 3
8 21 21 r 9 hot 2
{
446.5 18 18 3
8 21 21 r 9 heat 4 178.7 11 17 3
8 21 21 r 9 heat 5 211+2 7
13 3
8 11 11 r 9 hotd 212+2 9
13 3
8 12 12 r 9 hotd i
134.0 11 11 3
8 4
4r 9 heat 3 1-9 8
8 3
8 4
21 r 9 strip l
1-9 14 14 3
8 4
21 r 9 strip l
}
A.26 1
l 1-9 3
19 3
8 10 10 r 9 strip I
1-9 3
19 3
8 16 16 r 9 strip 0.
.267
.1236175.
I 10 in sorce 1.e+9
.267
.1236175.
I 16 in sorce 0.
-0.20
.0936175.
2 16 in sorce 1.e+9
-0.20
.0936175.
2 16 in sorce 0,
0.
30, 1.
1+9 1.
3 1
24 q-table
-9999 2.
I 1
17 z-t wall
.13 1.
003 1.
003 1.
002 1.
002 1.
49 53 17 friction 1.04 2.
.78 2.23.77 2.
1.6
- 2. 283.
2.
2 6
17 1 plen
.695 1.0.695 1.0 2
19 3
8 3
21 36 all pore
.695.54.695
.54 2
19 2
2 3
21 36 all pore
.232 1.0.232 1.0 9
17 3
8 21 21 36 back pore
.602 1.0.602 1.0 18 18 3
8 21 21 36 back pore
.174 1.0.174 1.0 11 11 3
8 4
4 36 front pore 1.
1.
1.
1.0 2
19 2
8 3
3 36 strip p.
1.
1.
1.
1.0 2
19 2
8 10 10 36 strip p.
1.
1.
1.
1.0 2
19 2
8 16 16 36 strip p.
1.
1.0 1.
1.
8 8
2 8
3 21 36 strip p.
1.
1.0 1.
1.
14 14 2
8 3
21 36 strip p.
.695 1.0.695 1.0 21 25 3
8 18 21 36 e pore 1.
1.
1.
1.0 21 25 3
8 17 17 36 c pore 1.
1.
1.0 1.
20 20 2
8 18 21 36 c pore
.695.54.695
.54 21 25 2
2 18 21 36 e pore A.27
_.._,+. son- _
s-.au
.a-.a.-..,,
a a
I i
INPUT FOR CASE 19 i
i asse. in hot discharge near c.o.p., pr=13.9,ti=130f (no cask area) l
- size, 26 19 23
- time, 1.0 100 2200
- prnt, 100 100 2
18 1
- time,
.1 600 1600 132
- prnt, 2
18 1
- rest, 1
1
- pres, 200 1-8
- post, 1
- misc, 1
1 1
- temp, il
- seal, 10.
cont, read,tess, cont, heat, pace,mont,dtim, 4
cont,save, cont,rxio besq, l
cont, pore, dbug,in t, prop,ttbl,mt p,nt p, size, data, dbug,dcid,vp r,ap r, acut,velz, vel, vel, temp, 50 1
26 1
19 1
23 1
0 1
2 25 2
18 3
22 1
all 50 3
7 3
9 4
4 1
block 50 9
10 3
9 4
4 1
block 20 1
2 25 19 19 3
22 1
top 0
10 0 25 25 14 14 21 21 1
inflo 0
10 0 3
3 14 14 21 21 1
inflo 0
12 1 25 25 14 14 21 21 1
inflo 0
12 2 3
3 14 14 21 21 1
infio 40 1
10 10 14 14 2
2 1
outfl 40 1
18 18 14 14 2
2 1
outfl 50 21 25 1
19 1
17 1
imag 1
1 49 1
3 19 3
9 4
22 4
cells 50 51 1
3 19 3
9 3
3 4
edge 50 51 0
3 25 3
9 22 22 4
edge 1
51 50 2
2 3
9 3
21 4
side 1
53 52 1
2 19 3
9 10 10 4
rstrip I
53 52 1
3 19 3
9 16 16 4
rstrip 1
52 53 8
8 3
9 3
21 4
xstrip 1
52 53 14 14 3
9 3
21 4
xstrip
{
1 52 53 20 20 3
9 18 21 4
xstrip j
1 49 1
21 25 3
9 18 21 4
cells 1
21 25 3
9 17 17 4
cells j
2 2
3 9
10 10 4
in sect 1
)
A.28
_~ _
.y e
=
2 2
3 9
16 16 4
in sect 8
8 3
9 10 10 4
in sect 8
8 3
9 16 16 4
in sect 14 14 3
9 10 10 4
in sect 14 14 3
9 16 16 4
in sect 5
2 19 2
2 3
22 4 edge a k 2
4 3
3 19 2
2 4
21 4 1 pleu k 2
6 3
9 9
2 2
11 11 4 foot k
2 6
3 9
9 2
2 15 15 4 foot k
2 6
3 11 11 2
2 11 11 4 foot k
2 6
3 11 11 2
2 15 15 4 foot k
2 6
3 13 13 2
2 11 11 4 foot k
2 6
3 13 13 2
2 15 15 4 foot k
2 4
3 21 25 2
2 18 21 4
1 pceuk 11 2
12 13 2
11 14 2
13 23 2
13 4
5 mont 11 5
12 13 5
11 14 5
13 23 5
13 2
5 mont 11 15 12 13 15 11 14 15 13 23 15 13 3
5 mont 20 3
19 20 3
20 20 3
21 20 3
22 1
5 9
9 13 6
9 21 24 9
18 6
9 13 1
5 mont 90 180 90 1
1 2 2.37 3
721.11 8
8 2.75 1
3in 9
1321.11 14 14 2.75 15 1921.11 1
3in 20 20 2.75 21 2615.83 1
3in 1
2 14.5 3
9 24.
10 1927.96 1
4in 1
3 2.37 4
915.83 10 10 2.75 1
Sin 11 1515.83 16 16 2.75 17 2115.83 1
Sin 22 23 2.37 1
Sin 14.7 150,
- 50. 400.
26 1
2 Icl 6 h20 150.
1 26 1
19 1
23 9
allt 170.
1 26 9
19 1
23 9
upper 170.
3 19 3
8 4
21 9
180.
9 17 3
8 21 21 9 upit 150.
8 8
3 8
3 21 9
150.
14 14 3
8 3
21 9
150.
3 19 3
8 10 10 9
150.
3 19 3
8 16 16 9
170.
21 25 3
8 18 21 9
1-9 2
25 2
18 3
22 r 9 all 535.7 3
19 3
8 4
21 r 9 heatl 535.7 21 25 3
8 18 21 r 9 heat 2 803.8 7
13 3
8 11 15 r 9 hotl 267.8 9
10 3
8 21 21 r 9 hot 2 446.5 18 18 3
8 21 21 r 9 heat 4 178.7 11 17 3
8 21 21 r 9 heat 5 211+2 7
13 3
8 11 11 r 9 hotd 212+2 9
13 3
8 12 12 r 9 hotd 134.0 11 11 3
8 4
4r 9 heat 3 1-9 8
8 3
8 4
21 r 9 strip A.29
I NUREG/CR-5048 PNL-6388 DISTRIBUTION No. of Copies 0FFSITE 20 NRC J. N. Ridgely Rm. 428, Phillips Building Washington, D.C.
20555 ONSITE 9
Pacific Northwest Laboratory C. W. Stewart C. L. Wheeler Publishing Coordination (2)
Technical Report Files (5)
Distr-1
l
. xi.wi w..i m-
~ r - a I.,
=.c o.. u.
vi evcan uovmo v co
.u.o=
BIBLIOGRAPHIC DATA SHEET NUREG/CR-5048 su '*" ucc s os "u.si PNL-63P8 2 f qTLi.sO SA f tf Li JL
.gi,L.s.
REVIEW 0F Tl 4ATURAL CIRCULATION EFFECT IN THE VERM0t ANKEE SPENT-FUEL P0OL
- o #" ' '*" ' c ** " " o oo.f i
Decefer 1987 i.o-c C.L. Wheeler I.
/ ~~,-
l 1988 anuary
,u..o.. % o.3.
,.,,es
., e s o. o e. i n,,,, < c,
0.ict,...c.,
Fluid and Thermal neering Section Engineering Physics artment
. * *a ea.*' w n a Pacific Northwest La tory Post Office Box Numbe 99 -
FIN Number 12003 Richland. Washinctnn o 9
,a.asa.m o.a.v,., e u v..sa. 4 aan u ~~,,. <, c.
,,,,,,eo. n.o.,
Division ot Engineering ystems Technology Final Office of Nuclear Reactor gulation
.... a c o. i o "~ ~.
Nuclear Regulatory Commiss Washington, D.C. 20555 12/86 to 12/87 o...a. e... se, n Report is in support of staf eview o proposed re-racking of SFP under TAC # 61351 on Docket Number 50-271 u..u..ci ex.
A 7.429-node, three-dimensional-. suter model of the Vermont Yankee spent-fuel pool was set up and run using the por
, media model of the TEMPEST computer code.
The results of this analysis show th atural circulation is sufficient to ensure adequate cooling, regardless of the loa g attern used or the orientation of the cooling system discharge nozzle,
,. occ..is
.s.s.
..c sienc..ic.i 4
...s..vi.
S pent -Fuel col, Spent-Fuel Storage, Spent Fuel Rc ks Natural Circula-tion, TEMr ST, Re-rack, Spent-Fuel Pool Cooling Sy em unlimited
'4 s CL.47 v C L.ll' C.?iCs j' c[as si fi ed
.,ei o... 4 s ie o n...
uncl as si fi ed a %...c...sii
,3 en ci
.u.
., w..n1 m m m
.....,2,.,,,
. m,
s
UNITED STATES
,,, c, y, y,,, c.n. u
..'UCLEAR REGULATORY COMMISSION ac5 tut 6 uts o WASHINGTON, D.C. 20555 OFFICIAL BusiN[$$
PENALTY F03 FRIVATE USE,4XO 120555078877 1 1AN1RJ US NRC-0 ARM-A04 O!V 0F PUB SVCS POLICY & PUB MGT BR-POR NUREG W-537 WASHINGTON OC 20555 i
.