ML20141M910
| ML20141M910 | |
| Person / Time | |
|---|---|
| Site: | 07109019 |
| Issue date: | 01/24/1986 |
| From: | GENERAL ELECTRIC CO. |
| To: | |
| Shared Package | |
| ML20141M909 | List: |
| References | |
| NUDOCS 8603030043 | |
| Download: ML20141M910 (19) | |
Text
,. - - - _ _. _ _ - - _. -
January 24, 1986 CRITICALITY ANALYSIS OF BU-7 CONTAINER FOR THEORETICAL DENSITY PELLETS I. SCOPE This analysis is performed to demonstrate criticality safety for the BU-7 shipping container at 4.025% U235 enrichment with theoretical density, heterogeneous UO2 and an H-to-U ratio not greater than 0.45.
The con tainer was pr eviously shown safe for these contents but only up to a bulk UO2 density of 4.2 gm/cc.
II. GENERAL DISCUSSION The BU-7 shipping container consists of a phenolic resin insulation sandwiched between a 30 gallon inner drum and a 55 gallon outer drum.
The inner drum can hold up to two 5 gallon cans or three 2-1/2 or 3 gallon cans. The container is shown in Figure 1. The BU-7 container has been licensed as a Fissile Class I container based on the testing performed in Reference 1.
The original analysis of the BU-7 container by R Ar tigas i s documented in Reference 2. Safety was demonstrated under both normal and accident shipoing conditions with filled five gallon containers of U(4.00)02 at a maximum density of 4.2 gm/cc and water as a homogeneous mixture with an H-to-U ratio not greater than 0.45 (tet
~1.5 weight percent). The most reactive Hansen-Roach U238 cross-sections (ID# 92801) were used. Because of this, shipments of dry (H-to-U < 0.45) UO2 pellets were covered provided that the bulk density was less than 4.2 gm/cc.
The theoretical packing factor for unifurm right cvianders is 0.907 as shown in Attachment 1. The theoretical density of UO2 is 10.96 gm/cc.
Therefore, the theoretical bulk density f or pellets ( assuming no internal voids) is 9.94 gm/cc which is considerably larger than the maximum density used in the original analysis.
The BU-7 container is limited to two safe batches of pellets per EU-7. However the original analysis assumed that each five gallon container was full. This assumption avoided the necessity of considering intermediate densities, five versus three gallon containers, special distribution of fuel, and intermediate U235 enrichments. Under this assumption, each five gallon container has about 85 kg of UO2. The safe batch limit, however. would result in not more than 24.7 kg of pellets per five gallon container at 4.00% U235 enrichment.
In the current analysis, a maximum UO2 denstty of 9.39 gm/cc has been used. (This results from a theoretical mixture of UO2 and 0.015 weight fraction water which is slightiv conserv ative relative to an H/U ratio of 0.45.) Each five gallon container has 102 kg of UO2. which is greater than was used in the ortgtnal an alvst s. The 102 k9 does not completelv fill a five gallon container at UO2 bulk densities greater thar. 4.5 gm/cc bu t is more than four times the 24.7 kg mass of 4.000 U225 enriched UO2 pellets allowed bv orocedur al controls.
The current analysts also supports a uniform BU-7 mass limst of 70 kg, consistent with Reference 4 The saf etv factor betueen a 70 k q mass limit and the safety demonstratton is a factor of about three.
8603030043 860207 PDR ADOCK 07109019 C
January 24, 1986 page 2
CRITICALITY ANALYSIS OF BU-7 CONTAINER FOR THEORETICAL DENSITY PELLETS III. CRITICALITY SAFETY CONTROLS The following controls are necessary to meet this analysis:
Control #1 Moderation Contents must have an H-to-U ratto not greater than 0.45.
Geometry Fuel may on1v be pack aged in standard metal containers having radii not greater than 14.37 cm.
Control #2 Mass - Each BU-7 container is Itmited to not more than two safe batches of UO2 pellets as a function of enrichment and is limited to not more than 89 kg of total contents.
The following assumptions are made for this analvsts:
Worst Credible Contents Forms heterogeneous UO2 Density: 10.96 gm/cc (theoretical)
U235 Enrichment: 4.025%
Mass: 204 kg UO2/BU-7 Boundary Conditions Tops water reflected array Bottoms water reflected array Sidest water reflected arrav Interunit Water - optimum Structure EU-7: carbon steel Fuel containers carbon steel Array Size Normal Condition: infinite Accident Condition: 9X8X4 IV. MODEL The current model is based on a 1980 reanalvsts of the SU-7 j
container to demonstrato safetv for UO2 powder with up to 50,000 ppm equivalent water moderation (Reference 4).
Two types of configurations are used in this analvsis, consistent wi th Ref erence 2. The normal model consists of an infinite close-oacked i
arrav of BU-7 containers with the insulation modeled as in Reference 4.
The accident model consists of an 8 bv 2 bv 4 high clo se-p ack ed arr av of vertical EU-7 con t ainers wi th no insulation out utth varotng densttles of water in the insulation regions.
The fuel mixture was obtained based on a theoretical mtxture of U<4.025)O2 olus 0.015 ueight fraction uater. Number denstties are shown in the following table.
l
January 24, 1986 page 3
CRITICALITY ANALYSIS OF BU-7 CONTAINER FOR THEORETICAL DENSITY PELLETS MATERIAL HANSEN-ROACH NUMBER DENSITY ID #
(ATOMS /BN CM)
U235 92507 8.53896E-04 U238 92801 2.01037E-02 OXYGEN 8100 4.19152E-02 WATER 502 1.43289E-01+
- MASS DENSITY The most reactive Hansen-Roach U238 cross-sections (!D# 92901) were used as in Reference 1. This enables the homogeneous fuel region to conservatively represent heterogeneous mixtures.
The calculational model contains 102.175 kg of UO2 in each of two five gallon containers. This corresponds to a full container of UO2 at a bulk density of 4.5 gm/cc. The following table shows the fuel height as a function of UO2 density.
RHO-UO2 FUEL HEIGHT (gm/ce)
(cm) 9.39 16.78 6.30 25.00 4.50 35.00 Since bulk densities greater than 4.5 gm/cc result in void regions within the inner container, spatial distribution of the fuel must be considered. Therefore, two models are used to represent the extremes of spatial distribu tion. The three spatial distributions considered are shown in Figure 2. Use of these three spettal distributions covers the use of five, three, or two and one-half gallon containers since the two five gallon containers have more volume and less metal than three of the smaller containers.
Figure 3 shows an X-Z geometrv olot of a single BU-7 container from the model. Figure 4 shows an X-Y plot of the accident arrav. Figure 5 shows an X-2 plot of the accident ar r av. S ample li s t i n gs o f the GEKENO input are provided in Attachment 2. The model used for this analysis is significantly more reactive than the model used in the original analvsis.
l V.
CALCULATIGNAL RESULTS Table 1 shows the results of calculations performed with the models in Section IV. Figure 6 shows the effect of the fuel density on k-eff
'or conttguous fuel when each flue gallon container is limited to 102.2 kg U02. Increasing the fuel densttu reduces the reactionty of the system.
Figure 7 2 hows the effect of separating the fuel regions wtthin the inner container. Tne reactivitv incrosses when the regions are separated (since a larger o'fective crors-tectional fuel area results) but is less than the smeared conuttion reactiv1to. These dat3 9hou that the smeared l
condition is the nos' reactive for the sustem being analv:ed, The max 1 mum k-etfective
- Pstgma 9alues are summar1zod below.
i I
l l
i January 24, 1986 page 4
CRITICALITY ANALYSIS OF BU-7 CONTAINER FOR THEORETICAL DENSITY PELLETS CALCULATION CONDITION K-EFFECTIVE + 3* SIGMA LIMIT BU7N. NORM NORMAL 0.7805 0.900 BU7N-35-125 ACCIDENT 0.9052 0.970 VI. CONCLUSION This analysis has demonstrated criticality safety of the BU-7 shipping container under the postulated shipping accident for not greater than 4.025% U235 enriched UO2 pellets up to and including theoretical density providing the H-to-U ratio within the inner container does not exceed 0.45 and the UO2 mass does not exceed 204 kg.
REFERENCES 1.
" Test Report for Model BU-7 Bulk Uranium Shipping Container",
04/25/80, JA Zidak.
- 2. "The General Electric Model BU-7 Uranium Shipping Container Cri ticali ty Saf ety Analvsi s". 02/74 R Artigas.
3.
" Criticality Saf etv Evaluation of a Shipping Container for Moderated Low-enriched Uranium Compounds", NUCLEAR TECHNOLOGY, VOLUME
- 19. 07/73. R Artigas.
4.
" Criticality Saf etv Analysis of BU-7 Shipping Container for UO2 Powder", 03/06/80, WC Peters.
4 e
i l
January 24, 1986 page 5
CRITICALITY ANALYSIS OF BU-7 CONTAINER FOR THEORETICAL DENSITY PELLETS LIST OF TABLES
- 1. BU-7 CONTAINER, ARRAY CALCULATIONS. 0.45 H/U LIST OF FIGURES 1.
BU-7 CONTAINER GEOMETRY
- 2. SPATIAL DISTRIBUTIONS CONSIDERED
- 3. X-Z GEOMETRY PLOT OF THE BU-7 CONTAINER
- 4. X-Y GEOMETRY PLOT OF THE BU-7 ACCIDENT ARRAY
- 5. X-Z GEOMETRY PLOT OF THE BU-7 ACCIDENT ARRAY G. EFFECT OF FUEL DENSITY ON K-EFF (CONTIGUOUS FUEL) 7.
EFFECT OF FUEL SEFARATION WITHIN BU-7 CONTAINER LIST OF ATTACHMENTS
- 1. THEORETICAL PACKING FACTOR FOR RODS
- 2. SAMPLE LISTINGS OF GEKEt10 BU-7 MODEL INPUT i
January 27, 1986 TABLE 1 - BU-7 CONTAINER RESULTS ACCIDENT CASE: 8X8X4 ARRAY (204 KG-UO2 PER BU-7, NO INSULATION)
Fuel Fuel Fuel Interunit k-eff Si gma Histories Height Density Geometry Water (cm)
(sm/cc)
(sm/cc) 35.00 4.50 smeared 0.025 0.7G54 0.0031 48500 0.050 0.8337 0.0029 45000 0.125 0.8959 0.0031 48500 0.250 0.8033 0.0032 48500 25.00 6.30 contiguous 0.025 0.7460 0.0035 26500 0.050 0.7942 0.0030 46500 0.125 0.8337 0.0031 34000 0.250 0.7435 0.0033 46500 16.78 9.39 contiguous 0.025 0.7301 0.0033 31500 0.050 0.7626 0.0026 45000 0.125 0.7753 0.0036 44500 0.250 0.7074 0.0029 48500 16.78 9.39 separated 0.025 0.7335 0.0029 44500 0.050 0.7842 0.0036 29000 0.125 0.8110 0.0026 48500 0.250 0.7148 0.0032 42000 NORMAL CASE: INFINITE ARPAY (204 KG-UO2 PER BU-7. W/ INSULATION)
Fuel Fuel Fuel k-eff Samma Histories Height Density Geometry (cm)
(gm/cc) 35.00 4.50 smeared 0.7742 0.0021 45500
- l. 6
. 1 ~(it:
,5
~-
i.
- a. t t-J e.
t
' ' ' i t ;
s
~
, r.
=M ri is n.
e,
,y gag 0-rs a.
v
. * !C, 2.
-=
.n,.
- s a.,
e.
tl
- z.,
E,.t.
.e n., I,k. p y
- c s *
- w. {,_
v o
3 tr.,
- o-y u, s; egg y 1 r,
r o *:
d-VN-J,.q
.-u e.
3 r
+!%
3 3
i 5*
ir a _ r a,t =G p c;
~~
ri.k I
is 1
.,E i g
o s.
s.
-se t
2
- s e-
,6 gI,a-
!g E
2 4 N8s, = s$ "..A
!4.E E
- h5 3 l
'h
,i E
as ?
s.
I ra - ::
s e-
- 1..
- I5 sf Ia 7*t E*is W)4 - a j ".,5 I N'
i r
5 g
.tx s r se s,a;
. g. ". a.
85*
ce*..
n
+
v a " s..e-3.:n.( = t '=.g a n a
.a A
cs sar m af n
ma
-. ~0 i
u:
a 1
- 2 P !J *e
,.e..q 1 _. u.
a;.I s-rm.
L
_ r T:t%
e.
g 6
w
- n w.
_ q 4 A 3
ub u
/O e
/.,h i
w ps
-h 3
LW
/
. e
~v 3
5
~-
J I
u" ' 3 b
il g
I P
- s. m.
~
m
.se I
i s.:: M s
F
,/
W n
st/
g l
. A l / ",
5 y
E./, w g.
--=~.~.c at 5
- I 4., i v e
y n
e p
- - 8, f* P. N **
3 A
9 d
u a ;6 u,
e t-6 3( J a
p
-8*
"s y m,.
'I' n,
=
- g4 3
h 3 I
[F 5%
2 dO
',tg
- p. y,
,g "11-6 ay
([
a y es alt
-II e
g-a.v a
r =; e
.3 jy di!5 C I -
D ga *ll g,[. *
.a i*
, g
~,
ab'
- I'I' 8 f I
u se s*sI I
,, I I I $
2( Dkfb g
If*g g] 12[fr a5
(
aI N
a H.$ g e.
Ouy~s#.l)w.w m w<m yx ih e
i g
. Q /~. d \\.
/xs,e W,. x.3 x
,c//*.<w.' Na<.-
r m
y ge pr z.
t
- h. ))g g
/e/)f q),, '
~
- x
~A;'. "[1 ri 7- ~,6. W.
~
/,
l d
8
'l e.c s
s
~
l I
~
.f!ie
~d i.
/
e
/
r1 b
+\\b
/
/o
/o\\ m./p' A
..s x
% fwc]y,,
we-f' s
{n
/l f-1
,r
,2-P.F.
s, ; E
- CI 2
- s
.: y
- u 3 h 4
c s.,
n.
/ s.
e
- 2m
- , f7
- 1. ', a.
u.
e
. G.
v,,s:?,r,
'N e
e 08 I
=
C.=[
4,,
~d 2.*.
- j*
l J WD
- r. e,
\\,,'
y D-NL '
ages e
4 t
't i
I e
i u
I i # n-i i
e a
FIGURE 2 - SPATIAL DISTRIBUTIONS CONSIDERED SMEARED CONTIGUOUS FUEL SEPARATED FUEL VOID VOID VOID
.m.
a 4
,+u*
_s--..e
_AA e+
e m.
A_
ds m
am_.2 L
aA_t.
,bA__.
_mae m.
____.J=_.
e9
.6 0
I I
I I
l t.
4 M
g W
+
O t*1 O
w 4Q r
s r
O fe i
oo O
w I
4 i
O f
fl F
k ee Sg u
N
'I a
~
5
~~
4 s
6
-t--
r -
l I.
l t
I ti j
g 4
I l
l
<me l
4 Ed t
i I
4 D
i 6
u
)
N i
h i
l W.
em
+
8
(
i 6+
i I'
.4 l
ik i
4 9
eue 8
i p.
0 I1 m.
Od i
i l
l i
(
- s a'
i f
I l
l E
L [
s f:
-5
'6foXcVoJ6T6'DXo3 c
~
\\
\\
i, k
s o f; q o f 0 ' @ p f q
<O e_sp2 c ~c3r3:5 cc6 6 en@a n@
.s (it CS(O).O l
Of0 CCQ:
w$ncn ;l l
l I
i 6
1 9
9 6
l I
I e+
b O
l n
t lli?
O U
4 G3s 4s me O
w e
4 fd O
e se w
6 i
f
\\
i I
L.
r-
=
=
\\
-z G
e
!l
~
Ij u
N 9
b b
b l
I' I
f r
o I
i d
}'l' l'
t
_ _ _i F
,I.
3 1
W t
a-l)!
3 w
l
=-
h i
r-6 i
t W
+-
g b
n e-i r-- ~ n r r 16,,;at O " r.rTOL I Ur i-b. l C2.WCI'ii Cw.
rT r-( C r t 'o,' *.-+ t nbubo rbr!.}
-t-v A
.I s 0.990 LEGEND HET. Ut410:
+.015 H10 o 204 VG-UO2, 0 =
9..?
204 v.G - U c 2, 0 e 6.30
=
0.969
+ 204 KG-UO2p 9 = 4.50 i
I 0.930 0.900 f
?
p s
/
N
/
0.3r0
/c
/
v.-ETF 130
/
.s i
t/
{
O.swo s
1 l
t l-5 I
/
,/
s,-
- f 0.410 i
i
",/
t, i
p Q,7$Q p.~~'*..,
g
. ~...
l/
[
q>
e g
iI s
'/ /
-l /
0.750
/
'l i
../
t
. r :.,
t h 4
Y s
I l
e e
.m
__ ^
e.emmenemone --- - -
-_ e -
e.
h #
8j e$
.'# T E *.- 'J 'd f *
.4 7, '
1 22-St
FIGURE 7 - EF;ECT OF FUEL EE?ARATID! WITHIM BU-7 CCNTAir.ER 0.990 W
LEGEMD NET. U(4102
.015 H2O
+
e 20u NG C 0 ri T
- G U G U O FUIL e.
204 VG OEP6 RATED FUEL 6.960
=
, 2eg go ;ttEARED FUEL q
0.930 T
o.990 l
em.
A
/
N
/
a. s r.>
s K-EFF 231
,/
J/
- 0. wo I
i T
..e#****%,.,
e d
0.310
+.
/
7 i
i
's
,/,, ~ ~
.s
' N, j
o. 7.s o
' s.
y,
, y
/
%,,,s
,n t
q 9.750
' V'
=
- T s,. r : :.
.i h
k
)
13 4
.I i
, [ ". %
mmunne.
-._4._
g as, e _-
_g
-e
- 6
- ~,,
i f Il
- 4 f T h a.4
[
{,
e d
t.;.'- :- (
October 30, 1955 ATTACHMENT 1 - THEORETICAL PACKING FACTOR FOR RODS The theoretical packing factor for rods is determined as follows based on Figure A1. The triangle represents a unit cell which can be reflected on all three sides to obtain an infinite array of uniform cylinders with a triangular pitch.
Total Area = 0.5
- base
- height 0.5
- 2R
- 2R+COS(30)
=
Fuel Area 3
- 60/360
- Pi*R*R
=
0.5
- Pi*R*R
=
Fuel Area Packing Factor
= ----------
Total Area Pi o ___________
4
- COS(20)
= 0.907
FIGURE A1 - THEERETTCAL FACKING FACTOR FOR RODS 6
p sle r
\\
V 1
/
/
\\
/
)
\\
/
/
s N
/\\
/
/
\\
'g
& ~ ~s,
/
/
/
\\/
'~~
g/\\
/g h,.._
\\
/
i
~.
/
\\
/
s
/
\\
l'
\\
\\
I
\\j/
\\
PODIUO (C)
)\\
\\.
/
x_
/
~%______s
e
~
Janu ar v 17. 19?6 ATTACHMENT 2 - GEKENO INPUT LISTING FOR BU m-35-125 85.227,BU7
,Hnnn. 4.025.WTFRO.015.0.SS4 12.N.f t9 999.0 100 500 3
16 6
9 5
12 15 1 2RS 4 9 22 10 0 1 112 1
-92507 4.09382E-04 1
92801 0.96383E-02 1
8100 2.00953E-02 1
502 0.68697E-01 2
6100 1.3830E-03 2
1102 1.8094E-03 2
5100 1.1992E-04 2
14100 3.1734E-05 2
8100 1.2306E-03 3
100 1.
4 502 0.125 5
502 1.
CYLINDER 3 14.37 0.05 -0.05 16*0.5 CYLINDER 1 14.37 35.05 -35.05 16*0.5 CYLINDER 0 *4.37 35.05 -55.05 16+0.5 CYLINDER 3 14.42 25.1 -35.1 1G*0.5 CYLINDER 0 17.70 35.1 -35.1 16*0.5 CYLINDER 3 17.003 35.5763 -35.2087 1G*0.5 CYLINDER 4 23.495 35.5763 -42.82?7 16*0.5 CYLINDER 4 23.495 36.635
-42.3287 1660.5 CYLINDER 4 29.575 44.308
-42.82S7 1660.5 CYLINDER 3 28.575 44.4167 -42.9374 16+0.5 CYLINDER 0 28.575 45.3G92 -44.8424 16*0.5 CYLINDER O 29.694 45.3692 -44.0424 1660.5 CUBOID 0 29.684 -23.684 28.694 -29.684 45.2692 -44.1424 16*0.5 CORE SDY 0 22?.472 -229.472 229.472 -229.472 180.4232 -130.4232 16Z CUBOID 5 260.
-260.
260.
-260.
212.
-212.
16Z
Januarv 22, 1986 ATTACHMENT 2 - GEKENO INPUT LISTING FOR BU7N-16.799-050 85.227,BU7
,Hnnn. 4.025.NTFRO.015.0.884 5 W.MB 999.0 100 500 3
16 6
9 5
12 15 1 2R8 4 9 22 10 0 1 112 1
-92507 8.53896E-04 1
92801 2.01037E-02 1
8100 4.19152E-02 1
502 1.43299E-01 2
6100 1.3930E-03 2
1102 1.2034E-03 2
5100 1.1932E-04 2
14100 3.1734E-05 2
8100 1.2306E-03 3
100 1.
4 502 0.050 5
502 1.
CYLINDER 3 14.37 0.05 -0.05 16+0.5 CYLINDER 0 14.37 19.22 -19.22 1G+0.5 CYLINDER 1 14.37 35.05 -35.05 16+0.5 CYLINDER 3 14.42 35.1 -35.1 1G*0.5 CYLINDER 0 17.70 35.1 -35.1 16*0.5 CYLINDER 3 17.808 35.5763 -35.2087 16+0.5 CYLINDER 4 23.495 35.57G3 -42.3297 16*0.5 CYLINDER 4 23.495 36.683
-42.3237 16+0.5 CYLINDER 4 29.575 44.303
-42.92?7 16*0.5 CYLINDER 3 29.575 44.4167 -42.9374 16+0.5 CYLINDER 0 29.575 45.2692 -44.8424 16+0.5 CYLINDER 3 23.684 45.3692 -44.8424 16*0.5 CUBOID 0 23.684 -29.634 28.664 -28.684 45.2692 -44.8424 1660.5 CORE BDY 0 229.472 -229.472 229.472 -229.472 120.4232 -180.4232 162 CUBOID 5 260.
-260.
260.
-260.
212.
-212.
16Z
January 22. 1996 ATTACHMENT 2 - GEKENO INPUT LISTING FOR BU7N. NORM 85.227,8U7
.Hnnn. 4.025.WTFRO.015.0.000.
0.I.MB 999.0 100 500 3
16 6
9 5
12 13 1 11 1 9 1 0 10 0 1 112
-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1
-92507 4.09382E-04 1
92801 0.96383E-02 1
8100 2.00953E-02 1
502 0.68697E-01 2
G100 1.3330E-03 2
1102 1.5084E-03 2
5100 1.1992E-04 2
14100 3.1734 E-0 5 2
8100 1.2306E-03
~ '~
'1.' ' ' '
3 100 4
502
__ __0.125.-
5 502 1.
CYLINDER 3 14. 37 0,0 5 - -0. 0 5 ~ -1E+fT. 5 '
CYLINDER 1 14.37 35.05 -35.05,_16*0.5 CYLINDER 0 14.37 35.b5 ~235.05 16*0.5
~
CYLINDER 3 14.42 35.1.-35 1-16+0.5
' - ~
CYLINDER 0 17.70 35.1 -35.1 16*0.5 CYLINDER 3 17.808 35.5763 -35.~2087 1G&0.'S CYLINDER 2 23.495 25.5763 -42.3237 16*0.5 -
CYLINDER 2 23.495 36.638
-42.8237 1660.5 CYLINDER 2 23.575 44.308
-42.8287 16+0.'5 CYLINDER 3 29.575 44.4167 -42.9374 1660.5 CYLINDER 0 28.575 45.3692 -44.8424 16*0.5 CYLINDER 3 28.634 45.1692 -44.5424 16*0.5 CUSOID 0 29.684 -23.634 29.G34 -23.684 45.3692 -44.3424 16&c.5 w--
e-gp
,y awqs -
% e
-w. ef.
A
.s a
4 s
w -
9$'Pb9
- E w.
m e Q-t
- m
r t
I i
l 1
l
'// 9//9 coa:n m.
cxcwun.
26 W3-oxts or tac.
QWp7/]y,
~
0at ucvo.
/)9//3AC, recr -
von ', V rear tra RI ISE REF.
5$b 62 )
f,s it : C_l' OTii T.R
<, n';i!r;.
.i '
S?M t~1C j
bM<f str&.v& -
f Alld u
.hy%dAir >
-aa
&nA_<!- k12Alt8D D2 /JfALjum:.t (Lfej l
l 1
i i
i m
.....