ML20138E736

From kanterella
Jump to navigation Jump to search
Rev 1 to WCAP-14138, Final Data Rept for PCS Large-Scale Tests,Phase 2 & Phase 3
ML20138E736
Person / Time
Site: 05200003
Issue date: 04/30/1997
From:
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML19355F122 List:
References
WCAP-14138, WCAP-14138-R01, WCAP-14138-R1, NUDOCS 9705050119
Download: ML20138E736 (88)


Text

.

a g.

s . , - . . . .:..

...,'.....,p.;...:..

...,d.-"....

.. . ..'.
.[. \, . v.. . , .. ~r . ,

q;..

4;<.. . . . .. ~..= : , . . . ......'r,...s

..........'.._...,.......,:L..  ; ..:.. ... .e. ..

- ... .. : . .:1..*. ... . . .

.f.6 ~?%.

%.' :.. . l'..";.

,. '... ~. . : " ;'.r ' ' . : " a...i.. 0~

.*.': ' ' . .. ...<.g' . ':. ..i'n J:

. , . :)* ~. ; .{ ,' ~ \ ;'.!+...:*-. . . .:* *' :I..', e'~ .: ., .,

~

h.' . l; ?, n.  : . . ' .. - 't

n ::. . :. . - , .  :~.: -. '. _. -:- ..: : ..y . . < . ; . r .. .: . ,, e

. * .o

. :; ' , ;. . y . . :, ~.. . '9; ,. \. 4 .'*' ..

c:  : :. . .

u: .a

~. .  :. .. . , .:  ; . .  ; .:

.. .:L;.  ; : . ,i, .. ... ...

. . .u;. u ; ...

. h . ,... ... s.. ,

. .v....; . .:  ;. ' . .

-l:..<  ; .:: ;  ;;., . a. .1 p f. b:' .c. .s

.c.....-

n

.y.:y:.: ;... :f..;,.p..;.y.:.:. ; p . ^ r.;..,.;..: %*s-,,.:.;, '.n.  ::;;.. -. ;,' ..n .,,;;...., ~. . ;: ::... . m. . . L; . .. u .

.. . ~ . . t.. '..

V

. . , ' . , . . .: :; ;.: ::' y H,. . : . :?.:::: . . *: >>, .; .' .q::> .;

, . . . , :l , , . ?, . , , . . . . . . - * .' * .,,,.s,,.,

..,.,,.*...g n -

. *. s,,...-..- 4. ' ,

,. .,.tg . , ', . '-, ,

.: ; .. .s -

. s q

-p ,.  ; ; . ;. . .. e. ' . , ,, e *: . .,, . ,x - g :c,. .. . ~

,g t..,C.... . .

f. . .

..,..,..o,; . t : ps.. ...;s,. s.s.: ,: . , - .+ >.,.4., . . . ,e p ' , 4,n  ; . .,. '

. ; . .,,.y -

, ~ s s,

  • . . . . . , .4. . l, T...,.,f.* .* ,,..,,.4.s. s. ..'s.~,,.w ., ... . , . . , . .

_a  :

.N-.e..;,,. n) . - ...4 . . . .

,,.,v .

,q ..

.,e.,  :

.a*' .* ;l.,g.,.y, . . ' . - - <:

,i...,..go .e. . . , . . * . . . " , , . :. . v ,..3..:**s, .:

~' n q ' .,l* .ri.....:st . .'r.,

( c ' ; ' . .1,: .' ..c. ..,.

s

' ' Q t **r". , ..,.: ', ;,., * :, , > . *: ..l o . +;,;;. .*.*<...

.'.1

,b,",.L..* * , *-

.,.% .,',v

... , r..:*.. .-

, . . ~

. 1. : ,.

., ;g .- r. r *e  ; .:. *g* ~<......,,q..,=,'.,..

' .a.. . -. ; + . .

. , . y .. ...d...

..t.yL-
s. . . , . ' . . -

. p... p .

.. .,, 7 ....'.,e.

.-......,,>,..,H.:*>.....%,q....:. ,.

v. r

.v.  : , . ;-

e, .  : .* . :m o., . .. ..,.: . < . 6 .,.,l . a.. .- .. . q . .s,u t .'7. * ~,. n...-....> ..*v ' , ,

.,4..,. *.s. .; : . .

~

.. . . . . . . M.1s. , - [s . . .  :. , ,. . t. t,.s . .:.

. :. s . . .u . 9,....,;,.

, o

. ,,..,....,,.'.,;r,A,#
< q .'. y. -.? '
. Lis

. . ., *. t v ~; r- -

'.i.". .  :

. - .. :. n: - . ..

h:~:*: . .".* 5. i. l-:,5 Q. l4, *' ' .E) t.

. ".:.".'; .I ' f ~.~ . : ' rv.', . , v ' .l ' '. '.: ' l<,' '%,k' . : Y .'I :"' ?f ' l,;' .5 l ' ' . ~ N..' . ?l *l'? ;

.,,:....,.,.,:,.,,***.....e+:

. 5;... l:

n ( e' ,.. .,;y:.  : .. - :.-'.* ' ;~ ; :,. . >*- ,' - , . , -

( .' . t:n. s. *. :.

,.p..%..c-',".'

,-*:'.,- . 'r., . - .;- < - . d .<:;. :*.'.

' J y * .

:* ",,;. ' {:

..,.'.'.,C.. , .: .: .9:": , . . . . *.: f. ' . / ' *,

m

.i, .r:? y ." .'; e ., ; ,. . '.Q: * ,.. - *  ::,- , . ,v .nl, .,. - .  ; :n p. , r,..s: .,c.

q, , , , , . , s . . ' . ., , . . " ,.- . ..  ; .. .:

.),' . . . .-- .: I : >. . . ,

ll ' V. * '. , ' .. l* ', l- { . ' ' ., y' : . . * *' s , %' - + 0:...'..

- . .. , . ; L. .; . ., s.

~ '- ,' / . 'o, . ,l.,~....a,.'* ' * ' . ,";..;; .+  ; : * .,',,. .M' E..sl ll . :.:.o . - * :'. ,

..~..: -

.n: :!,s y :. . . .. . . . .; ), ., - sa s. .

i . v.. . .: . .. .- , - . , * .: .y - ; : -

. .. : ,, t . ,. .

Q i ':, . L &.:; .:.v :. . *: :) ,. 4, . . l'; , : G *,%' '

.f:..f.'lq. ,',.# . ,.: "( 1'

. ' , .* ^ * * ' - '

.% .'s 2.,_ *\

., :l; '.R l 'l. \, . . , . . , , . l. [: ; . ., .

?. :f . : ,',. .: V ^.s . <:n',: g;; ' .. '. '* ' f.'.;!?U'. ..*: . .; '. * . <  :- *- *' * -

,Y.. : ' .- '- - . ..'

., . :i , - : .-

s.2 , - ., s

~,.. -;' ..

v, l';;w: e .*:. * ' ., . e. :.. . . - ;<.. -, . , . .  : . . .,.  : -

.v

'< ' .3 4., ;' :i':: : .: .r c , z ' ~.,'~ , f.:...

.s ~:.

.. .:. ? . ' ':4.. ..l' < > : ... . . '. ; '. , . .- '.

. . .s. .. ;. ..' >,

:.; .,v*.n........ .:.~,....

. . ,;~. ., , f. . . ' . c. <w . ..

. <.:.:. ,, v. . ~,  : . sa

...:.. : p; ;. .- . ; <. , :. . . . ::. _ , .c. . : , ".  ; ot :- . . .

. . , n
, . . -;. -*.

..,t;.,,t.'W.. . ~..... <

. %,v'.e.+: : . .t.n :. .* . 7 ;,:..

k b, ,y e ' ,5.a. ~.

. q* Q: ., . *m.l.  : .:V.

-;  :. .c..!. < :g:l ..; ,,;:,..,, .

'""M

e. ....
c. ; : * .

. . y *: '. ,:

,,: . i.,'...~..,::a;.. .

t 1 . , k"q' %. .: ,.y.. .7 e rt~ ,. ..,,...s  ;. , ,i.. , s.. ' . . , .1.: .'.  :*

.(,,,.  : ....s .. .y: t- ,. .~ t,* ! ".. .:.: : .. n,-,

.':  ; s, . _ s : ,: . , . .,.. v- . , .

  • c .' .,.. ,,. . ,

9,

. ..n

- .s.e-: , . k.. . ;e.. *..,;

., o -

,.. , e g , y,. . - .. ... ..,,.s...,>y, . . .

., n.~..'.. .  : . r. s. . ,

.. . < ~ . . . . . . ' . -/ >.,f,.

, . , .v e

,.*u, s

',4..<,,-;,'.'.:*s.,

  • ' : . . ' ,% L . 4 . ' ' , " .. ' $ . L . ,s -o *

.** , : ,.1.-. . . .:-

'.:"q ., :.y f, ;~*'.j.,.. .,. .-;f. ..:;:p:* . l*,.%.,. .. ..., *'.. . ,s: ' , \, :.; *)l ' , ', , ,', .' 3 ;, * ' . ,

4*

..p't.: , '". 9. .::. :'..j " ' <-} , . s:. :.. .' ,,, 'yk',

- : .>;p . ,t' j/. ....,..t.s.

. .y * , , , ,l. ' *;' . . . ' , , l .- . ., .

...  ;.,, , _ =-*  !

. 1..L. . .  : , .: .

m .... . . .

4.

.,.,/.**

' . '. ,( .*s,.,g

.t ..

  • T'.
- . ; . . .. ,.. .-h
. e ,:

'f.

.. :' :.. ~ y; . - ..,eo, . . ' :: ' * *

,,,,;*..,.....:;...s.

r

v. .).* , .s* ... ,'y ,:v. . . .w ; :'* l. . .n ,,.a.  : .

','; A.

. 'I 1; f *

  • S*.* . 4'

.,f",' 4: . '.

s.s* . ,. .

  • . ,, ;l p. '  ;, *- -t ,s

... ... *."..,y,.'-'.w

..y.-

.:? ,,* >

. ,*u , , ' - .s .: , , g. . : .. ., .. ... ';' . ,. .. . ' . . ..,:  :, , ..

U,': ' .i -l" .*2 t ,.

>:4. .

. .;.5 ..

m

!:'-1<.'.; .,..:;.

s ..i. .<..' .

' '.:-:a ., f,,'i.. \ ll... . ., .' .. .:;,. i :.

'.. .- * ': 1

'tv

... ,?. - .,:. f p .:' :'"

,1

. 'y . .% . l . .. .l: . i. : v L. ~ ' ,5. * ,- C ." - - . ' . . .- . .; . .' . .. .- *

' * .- / ,.;,- - ,, *V , . # . .". - ~ , .. ..o

b . .,,

,-:- .,,..4,' ,s - - ;

. : .. ,f 4 - , . - ,-

. ' .C , a * * ;.W.j .;..,')

.*.,}r".'..f,.'.'.:.'l...:,*;.'r,'..*,'l.l' t,..* .

i.g > - .- -' e , ,

. ~

t

'*,Q, ,.

.i..,' g, , s. ..' . -

(.l.n :." ' . ., 'a' ' ;a.,.. ....s  :.

nr.

.. ;.-7:,. :q .

. .'y:.- ; : , x n,,.

. ..., ..s ;m .. . .,-. .:  : .: - < ., .: ...

.u .. . ~ ;'a - ...

'.> .;.;,'.,'E.C. .l.%. . ..; f:.y".... .%: . ; . . -, .v;'.. .:  :. a .. . ;, q:....,
e. g .n

- ..f wC,%. . . * , -

~., .{
. < .L. .A/,.b:.;.:l,;".......lc...3*..l^.

s

. . , <.... -.. c . .

,.i1 ',. .

- ... :L.

Y'.i. . ,^.. .C:.'. ; .), 4. ..;.* .

.. : A s .sw; a s,t;. . ...r. .:  %. - '  : n . . , : ' ".* :' , ..

.. ,, .q.H".  ;,.

.c.,A*. , .i.. ..V A c.. .n.t,: , , ,.

  • n . :s,.s p;;,;

jsk'.  :.. s . ,,;~. t ,'

\,. .

<:13 ,n'.' :':J . y;.. '4-

. $ s . ...

9 .. *< - . . . . b

. >. , ., a:,, ,,,.,,%,.c.- -

- y s '. . >

,. :4; . .,. .

.$  :\... :e\ .? s.

.I '. . . . .I. .- ,a

..f.'..> ... ." s. -[ ,((.

.. . . / i . .

,:.?p . y ' - , / . .

.1 -

.,: u.1 -: : *+*;,.'...:. . , : ~;; i * .* , - .:: * ., . .

n .' ..,;.(.. - a . ' ..

., , y i.; <. s

%;- .l a....*.

.  %.; #' < < DQ, .. .a.t;o@ h ,,. . '. .f,:y'bp:

, . . .}..,. . , r J .. .~ -.

~r.g s a"

. . ~ ,:..

. . . n. h..s.

J. ,,; s,y9 ,:"l ,c :s .p.; k; ; ..,.,s-g.* *

.I. n.,.3,;)f 4 . -

.lUh.E.l.l , . '.S.;W' *' {. 0;N . . . i *0.  : 7  :.: ^  ; - ' v'jY. ^ '[' .  ?. .: ?'.

p,5N. 1. y .j;;'gh.,. -

,s . Yl

..r ; ..: ;;.e .: y, y c..n :gy , y n ..; . .;. ' .'. .). 4.f c:.  :

. _  : . ', .'g:.

y,-

.  :  ; Y .U:

n 7,. .j;
,. '., ' .: ., . -l;.. - . .

V .- . . . . . . :, :.. . ' . ?.t ..~, . ; ., . ;;:a:.

m ev. .w. . . i :g. .;:. b .';,. W;. .. a. y... :

. . . ..w . .;;

, .u . e - . .

,%y%,y,N;4 4 % ;+.c.

pgs.

.t
2~

2.x: &. .w:ap:w:n n p:. . .y :wtr.,;;L,:g.:;..L w.: n. . m.. .. ..

x ':.t:, t;>@+y. a ..

N,c  ; ..g;nl,., ..

. . e. . t . y . n. s. . . .. ;s;. t) r , . .. ; .. .,. ..

g z..

,.e  :.p.t . . ,k.:.p: ..<.1.,u.... .: v v .~::.  :.

.. . n w a

.'yy tq d.pte .:C Kg.+.a

.yke s

?Q.e c, i ,q  :

. e .

.Qq; ,n.y< ~ ~
.
f. .:c 1l.j .:.  ;..; ...n.

+ . . . . e . y ..

l.: ;i  ;>:

%_*.,.f.  :. ..:  ; .y.:mmn .c.. .s;;. .;

px -;V:p,%..

i c .9 ;s!: A ve...;p., v. %gg%.e.J.. - Q, y,Jv.; j.a ,h,.

sa Q%.b,.' b.4.1:$. f: .. , .

Q; .y c.Q L. .m!. , i . ' .9y

s.

.. . :, . , n.: . :;\ .

M%.:,,%y%x:&y. ny%g,m.g ;4:~y .;,y.

. : ...: M.. ? %. ; y. e ,;$.g.

,. p..v. :pp.w..V: o : z. >A, .c..~:: e. - .

4 +8 o

. .:v t yws ym.f: ;hs.:.V:y.V.'T: 4 .p9:,y ,.wp.O..: :H;'.

' r r. 9s .y". d. ,c.,,;:

ps . c .R' r W%e.,

. . my .. .y v .w4 9,u ..u6:h.6 w.+g, <.:V .pp.6. :v:::. 'm. ::9.'.

. s . .> ~ 9.:. >;:q .e,s., ..p;:b,.*r  : p ':<. { :: -.

. v . .y . i .

n.., 3 y. i . 1.. . . . . . n>

^

5 ^

yRGM: ;pd.i:Q h A A j$y ...

4 pxpf sk l % p::@:n.a$;Q

.u NNyjjQQ@N.f,;*iy.Q&s M M4%pa.&.q a WAS4.$.%;. .gf .; :m/,;a: . . . in .

e :q )/*M4b~:v4M^ . . .

f
y.h. :. .: . 6%.:.>a$..t : .

h

~

5 h$.hhYkND h?

Jh.$k .y.;&Of%%/ph$?? .Y N??.W.il,$.? 5  : -

'N Dh::fM:kh.Y

,:,.p@f'!.W:.Q.?.'..h%y$d.Q.1:',%Wf 5 .j:.V :L WlD" 9:.L:.VQ:Wd.

f.*}2M:b$.l.M'[h" .

dW5b. *E M@ f;g yp U bl w.c

y,;.%.3. )qp;;;li,N.;....p;dh,0.M<

.y

.., .y

. .9? 6.gp$'.s.E[u.s.h,B;?:i h:Qf:f a5 i%-f{%.Ek as

. bM:' - alQ.Q,f. .

l k$n nb

f'(m
f.YP./:fd s.h.M.f.

%. .-;, gfp!,i N;.< dW % fh,4/$ .

^

h' b

h b.Q . k.h{.ft chlk.h +.Q:.flgf,%q k h.h hhNb,,9:% f.':h?'hh:.$.. hb.

Y.' .< , f. v

h. hh.lh$:bk I

~ '

.h

.n n.e.s y I $k. N 0f.. ...'bb:h. pyp. ; :mg:y: :? ypp:1.:. / y,.

c. m.. : c. . . .v  : ..

e.wM i. .uy": %.4.yl1:. .M 3 p ':v.; 9. '. ;h9 ; :w::?f. ::+Q::n.;%%p ;Q:.,;.:.:..;w;.

! 4 .:.qy.c. t. .! -

i: GW::;m;dQ .. s.p;.jp.n.h..a.

..r -

.:5;",y:3 "V?: f.&.v. .4&. . pL. , ..

v-
:?:&:u;W u,, .e....-
G.'h:::n i. Q. +.g. 2  :-  %,

. M' 4.O. .1,. %(4.%.-p  %,s,' .W... ? , M. v

  • 1: yf Q,,),il/ .)..;,6 P . * + :  ; . . .:.:h';.:>i> :L.. . ,r I ,%);.' l:f vy,.2 0 . *f ,d; .:.
A '.LQ.'. t. s. ..

- ' f 1.7.. M . -

.v r N

f.'.f. s'v;;.  : , y; . .k. M.,&,Q. . A  ::y.b v w.: :L.:'; 4.. . . . f.gv'.1

%:4.. -: Y . !if *N;J.. s. ,. :,. %. ' .

M.:.Q.

. .m
.g. )Q..,Jj:  ?  %  :.y-f.) 9:y.p . w ..r. ~. -

..v .-

i.r p. , .- . a

W ,.e,. M.y,*j, . . 3.\:.s. i:.s ,' .t;,'.. O. , : .' ? .L.v.'*J' :,:'e:,z,. .,
ll.q,','0 l: ,

v.. m; a n. .,;pp .e #,:5&.  % .:.yy .;a. .;p q p&. .n,.,f,Q: .

.,. . y ,.y.A..

p.. ,

e..:;.;.9. r9;.. . .a,. p;{.:i m,. f. ..n Q%t.r p. .

ni .llJ:.y.p..f y. ::g.,y

.,R.4. II). f.  ;,.w.0.,:.

..A,. w,;f.

yl.:..Yl:

0, . .

. .. .f. .. ,;.cQ,:

. . . sm.g:.,&,, r.

mG: ,y.a.) e.n.,i.l.;Q.> ..?,.Q.

. a..: .,+W.',. ~ >

[al

~

h  :

h..

[M,h.MM. ON.h

'!: IM.NMU 5MW '  ; I .E fh GM4M @NMMN. $ k kk.0$Yk

% M.@. l. $ .Mk.D@h hhb [kk '

Y W@%r$%{Neup@4W$g,.

p E M gg%MMMaMRg g% '. ..ga.. ..,

-g g y e a@N, .D. .n. .9,::n:Q s - _,w:: n. . ~* m.

m.

%, ','l . . ,. <:.o:9.5W u.

4 E&n.p'Mc -

r :M l:.1..n.  %

' ,y .X.4 .3%~  :;;; . >:;y  ?..,:^ . ..? u M: ' Y ^v 3 ) :f". *!.a%% .4.?-%..:.: .. s  ?'

3. l-

'""!);h h hk. ' b* . $. h W :n #% .Mh $h%. hh, :% .W.'C. ,5.N .l6:W;.D h D* % h 8

Y.Q.&:2$

'pM&Q$;

%MQ W . %,.

Mt >%. . &.!G..it - . :.. / .1 ,- %i.

/; i

,WW%%W%p?  % 41Q

-W .. .. f.., .%$.p,'

g

, = , .O, si yt

%.,l' .,... M.,d%,%. y ,,y,,,.:.g,..,,.,..e W Sh.$C'g%%g4Qg u ,

g%@. , ,,.M, ,,,-

M lWB6$g%%}%. y ;, ,7%g:%M5. h -

. . , r . ,w 3, i

,g<

g g _

1, g

)/,

.9

) _

.; c ,..

n ,...

. s .- .., ,..

e ,

3, .:, . v .., ,, . . . , , .

.s .

,.,*...~,..,,.:p, ..,. .. . , ., * :. , ,, . <,

. .. t - .,  :, . - -. , ' " .

,. - . ., e ,3 . - ......i.,,

. . . . . ... r . . .,.. , . . . , .,. . . .,

.c .

. .t.e : ,. ,. ,j t. . ,t., . :- . .; , . .,. t"t..,.,. ,;: .l .N . '. .: q ;: ., p. ~ . . .

~ , .< ., > .,., .,.: ,..:. . ,- .". .. . , s :a.,s.. -. .. ,.,:

.. . . . , ..1

.g .. ,),.. .f,. ., . .

., .....,y : .

e v.

.: . v.e..

. v . . . ,, ~:

. . . s. , s. ...>. .- -

. . ,,. . :. ., .n. ,, .i,... .. .

s.,.

. . ). , i...,

.<..n..,, , . . . i.,yc . , ~.a ., . , . t .. < .

.. . , ., ., . - ., + . . , , .. ,...t,,.

..,.u. t , .. . , z. . , . a., 4s . ......,u.,,.. . v .. s n. < ,. . . .s, : .

.,n ......

. . . . ... . . , ..: . ...- . . . . .. s.. ...,._,.,~c.,,,c.,a.s s.,.

s

..,c,....,....-,<.....,.:.s

...r,...

s. . . , . .

, - -~ . ..,..<,e ., . .

,,r. .: ..,,.,t. , . <

..,.....,,.,v. .- ...

. ., . , . ., ; y..,.:..,.;,,,

'.. s,:,, .,. . . ., .

n, a:. 4, s

. t. .; . -

<. : . .s . .. . . - * .' . - -  : y a,

.,. .. :' - ..  ! . r . :: .- . , .

. . n . y' ,- yW ^ y %.*,3,p.......i,,

h , . y. ,. ', p ,..s . .; . , .

. r . ,: # .., .. ,, , .' 4. P.: .- . uu. .. ; ' . , * ,, , . .

.%., > , . o,u , , i Q. f q.% ,,, . . .. ?s. . :, ,V . -; .~. .,>s'. '. . > .> . :

,1 , , , ' - . .

, , ,. . .: . . ,. ,q

. s. a . , -

. . -. -1.

s~*.

, 3 t... . . . . ... . ., *c

.s.

... .e,. > , . .; . < , . . .. , .

. . . ......'..,.z,..

. . . . ,, s:.. . . . . .

. ,,. p .  ;. .. j. - ,..

..o. ', g y'j W '*/j. 4 n  % ... , . " . , 0 ,, ,,',w .c, ..., "... , ; . .

- <.. ' , . - * + . . ' . ,.5,." - , /. . ,;, . y . , .<

. . , - . ,.,i.,.,,,,'.,....,...' .(  ; ,

..,.'d...,.,

g. .,; >

.,,4.. " ..

... ,. .. . .: , , m 4. , . .. , . . , . ,, ,,  : ,.. .:.... ,, - .  ; c.. . .:.,, - .,,.,,3.,, .,

.'..a

. . .s ... ..

s.. ... s .. ,. s -r..,

e .,,..t.,,..4 y , '. ' . u .  :

..f.4 ,.

.a,

,..*.,.._'r., .

.s.,s. c .

  • s

. . , - . , , ' < . . . .. .. . ' . . . ' .'.> - m. ..-

...... , , . .-s.,. s. . . . .C . ~ ' .

,a

.s . . . ,.

. c. .

. f , , .....,..,..'.,.5...,a,.,p p.,. * ; * ' ; .,ge. e.. ,.,: y > + ' , ,..,, .

.,'y..' :.. ., : r.., , . .; m J-< ., ej . :.d s ,'. * ... -l. . i - ..s 7 ,;;. .

+

.,: ,'.. s l . . . 1, . c ..

., ...s~.,., . . . , .. ., m. , ,: . , .. .. . ,.

,. : .. - .f ,. e , . . ., . + .

  • , . , ,m. >c .m . .... .w . y . . . .-. .... ..

. e ;,. c i.. . .

.,"...,....,.......r.,.

4,.

..s . .

.q. :. 6 ,, <,;.e.,,.<.,,- . .. .n:

.....,,.~~.a.s..,.,,.. , . . , . . , t. . . .... , , , , . . ...c..,,,,..

.. . . . . ,, , , , , . . . .. .e . . . . , .

e. . -..r....

.:. .....m

. y . > .

  • l,,,,....

..h,. y.:.. . ,;p. ' ,:l, . .s',Mj  : %.u . .; . ~g,.,.y y y. d'. y," .. . . -,' e : .,,:: :.3 q. ].. .,,l ;,. .. ., , ',;. 2? . ;. .y:

,, ., .. 9.:, . . , , , . , *;

,.o,.,.

.... .s a .

.e + .v ,o; . ~ . , . . . , , . '...4, ,..,.n,,....,..

,,.w,.. . . . c .e . . . .. .: . . . . . . -

. . . e.. . .z ..., .s.,n . . v....-

./. ,.O, ,

.3 . . .. ..

. ,. . .s. :

L..,n.. ,-

.e . : p e . ,. *. -.'t t,,....,...s..

. Q., o, . . ';,15 . , .; . - o

.. n-

, . . # : . .'. .e .

  • 7,.

.y ' .. .; , . *.. . u, i .

g'

.s

. . ' . f r ;g; ',, .*.J.}g. .[ , ';,.h f. .

s . .'a/ ' 2 '[- ( .y Y l

" ' * * , f ' .'.y* ,

,;; ',f[ }. ,.,' . . d  : " s,, , ,

' ., ' ,h i

!. I '#

/c,

,&y'.I. Y['$ k.~ ;b ' ? 'k?;) . ,p,'.t.' *dd ' ,, ' '.,' . ,' 'd0 ' '.l '

' .?' N, ."*.  :,*:. k',!.1.'. - l '.h,.,. ?.' j.i l . ll W d. W ; W.

" ' ,;c fe + * \*r - ^. :A.4 ).'n.l. . 69:y .b l::f: *'.  %.l%%; . . . 1 .t . .?' ' ' - ' . ', * : ' ' , . .s l'. . , - ; ,;c l. p' ,=* i l , ' . lp . '. : . . ., , : J ,.

,s.,

W,,'.,*.

4

, .: .c... ,.. * . , , ' ,... ,4' :.W,r . .-'. . , , 3 .

. . f: ( i. .c..;

. < ;;.,. , .,...,.,r t ,;, f,e ,lh%, %< e 3 s. .a.-'* ?sc'y s .'

. f , .. , *: , m ,

.. . ' ....',,5.,

,3.- .

s. c... ..4 > ,6 . ..

. . *,, ,..a.

.,. a g,.

i. :, . 'f,, , , . ), .
  • . , . tg s .* ...v,f.,.,p...,.

.,e,,

.-. , , '. .. . -,, :, ,. . g , vt 4:r ; *. t, ; ,u..

- t,..,., .

.i; . . .... . . " . . , . , , .

u .

,,. . y , , . , , . . <..

v s .. . . . ' . m q. ,,gf. , '. Lg.,y.a, .: av . . . ,,

. u, . - ~ .,.~.. ...  ;...o... 1<  :

.u - , , , ..

cy

' .; ; y .. y. :Wi :,:> >;,:;ys. ;~ . ,f, .*. :\ ,:<,,:,:.. : ,y.;Ml*(,;;p:':

.s . y- ' . . . t, . .. - ..: , .

q'
.,l :

.'..,,..s,,;[ . :. 7 ., :: : e V.,; . ;,..L

v. . . , ,

,'.:; g - ..:..'.,,.; _:.

pp.; \;M ... ,y.g: l 4. . .v:c

 :: :: yp.. t a >* , '

?:.? , ,.. :Q;.

1. i," * :. .'Y:.. -M," s '. ' ' . ' ' . ":.,. -.: :.

.; ' *;<:' . . . . ';; P, .y :,..&.

v...L ,:;  :=

a- 6: '..: . i:

.,b ., *

, ','i....

. _ ;;; Ul:. R .. .. /*ll%m.%.. > ,s. , . Je s.. ,

y.*lg:. ,y

{ _'*}.h dll.'.l'

..;.. .. Q'

... %;  : -)l.'

'";N_,',;.%

  • [] '.:h'*:.;. i,.. ' '*'; k, ,%,? ((:' hl,.f,: .' ,,3.&.h

' .' ' l 4'  ;' " , :: -

' *' ,8'in',i ?.,:':

'a .-:::J: *:' .

_ f.4 '.[.;.Y. . . ,, . ..t6 . ' : ".:. ., . lp. > .. . ,>:l. . . ,l '.Q:: .m : *. .r ....

?.
'O, s 'g  : ',..,....
. c  :
~.... '

,:. a: _; .: r .- .* *

. ~ ,, . .u

, y: ' y ' *?' '.' .l' a .m . - . . .

.. . ...;'.s y 'n"a..a s

  • t . Y :? ' .r-i >' .:'. 's tf ,s . ' W h s,

.s b- '.t.'.,,* . , . . ..'.4-s ^..!-..

. .. a n

. J :sr,

}Or ;e ,.,,%;' ,v.; e.ay.,. ?

. g fu .. . g, -

y',,:.'sd.h{

  • s.o - .- ;,, i, .q., . /',j ,
  • , g ',: 4,*.h.,'.l,',
  • i: , y,h':....',..s*,

k,;p : ,%,.

lr'i, s ,* f , , .;.;s,.

- *, u'*:*

e

,. '/- .i -i ,C(.. *.,,d!.
., ,'h.' h. ,..* *n'

'i' n,e a..a, ,s# . , ,J

, d ;; , *

. . .v - ....".,...i,',,'y',,.:.

' y

n . J. ;' ,.,'f.,,
.

.A

,4. .t J.

.,i;,,  :,' ,e

,s

-; . ' ':. , ,.*~

*l.

.'s.

. ' . ' ' . , zI ' *",A'. "[

  1. . .. .s . . o * .. . eu .s. s.. +-  ? -

} no n 4 s *. '7l E;

. . 'a' 'T.':.' 3,':. '...* *. - r .: 1.#,,'t..

'e ,',h . .( ,'$. Y l'I o.I

. :. . ' .; c .'.'/'.[,,'

J ' E, [ E . ,.

l* :v. 4 f,ry t '.'."*^2 y I :* 8 I..,.*%'

.m t','M/ . %p ..b ..T ,! ;% . lN.;:l'.ea,*s,.

T l.hy %y sl {3@ .t ~l,: lh  :.t.,MY(( n*.s W:.' =: ,a' . . . ..

.: . .. :: 4: . '*:., ,.c gg.- .'; :l. .: . '. ..y 1. .. . . ., u .

- : , I, T 5 . ' '. . .

-.'* - (. , '#'

,.f' , ,- , . . ,,

. ,k' l .

.h. ,

- i O. . ,' ., ,' ; e,. :.. .

.,'N.,.{.,g.'~, .. 4 s.

y,

,y .- -

,,,f.  ;

,p

.'.':,.4 l* ?lA -

I

  • l
  • . 'r ,,,' , . . ' ' -- ; '. . . . .' \ :' - ,'.' .

l'.  !. ,'. , .f- l"

  • 5. .: . i{. ! ' ' , ' Qn

'f

~- - .*

-lv'l2.0.': C:'.,B d -.i ;$U., . .^(vf!:G .N. 6.. . ,, (' .,'..

.- ' .fr , . . .su .'. .':b',,) .l.,.,v1':h.b,  ;;'!.i.."b.&':<:' G h ,-'D:.

<.f.,,r.. r ... N,

. n q F .N. e ,,, , <.. -' ,

z.: q. 0 f,(> =~. s. ....,d'r ,, . &. f..h.4,.:<

p l'... ":.'.s, *-. , L' p*y?. ., ..;y; i...* y- .

i .::? .'.:.:'.'::.'.' .1,'s >,. *..,

'.'>' 1. . ... .' .f&, . -,. '.3:. Y',.'.,;,?'s'

. . ..-',,',.r. N -:( fe.. .%* -

  • .* . - ' .UI .,.

s n.? .r . -

3 . q

, lg . i.6, 'A. %. '. e u i. <>' .Ms.yj... ; M h ' . ' .<,*'r.'

'<.,*.i..~.

..P *

  • g .* r ..a .s .s e ..p >

i.py.- s. *

. c Y. ' > f; ,. =l4, i.,e p.'s, . .. s:,-.t *'

v, * - ,,.8 7,

t .y'. . ; , ' ' ' 'f .'p: ':!; m * * . . . :. !.

y * .* ' * [F , e i. . .  : .: ' f. .f,

.. .'s  : , . >:I ' ' . , . ' .Q . * ,J

.u s . 7:, -

f .- -

c.  %.'. ,.

a 9A . 's. -

H;.kj):fff,flM'. :hg'Y y ? ;' .@.,gf. ;f.)-l - * ? Yl.' ,.*h :l .' *,h. N*.Tih,f . ' % f i..h . , .'h* ' . l.,& .f

$p.'. a w,. ".Q:f  ; *]'i {,4\h

' ' ? ]': '.. 'h'.5 l, ....

^

k h:n

?k? .

i, -

?.l.0 Ai.hll fjY.k [Q.; e yQ.,%f;, fQ'WE 4 g;

~ .\. Q. ' ' ' $ h '. ')h * -

lh  ? ..  ? T i 'h chg.7Wphp.$:d@.\;,.T.

,,t

',Q $,h@.'. l?Q /. W[% .%. .z,\

@l99i Q- '.  : ! DW:.6.!; , 5.7W6 .jad.W.:.'S'Ng.:.;: -,0M.,. ':. :!;&.lM;:J a.9 O.*:

%b . '

.. . lb.

k* N,y *..

fb* h&.,V!.@ t .).f,..N. 'hlf,, ',$ Q.,,l[lfz}D,f}'$.(.{.M;'.,h..o f!bl.'l'2. % o.1 I' ,

( .W. f,; :Q I'5:^ N.1: .2 7 %'h .Y}l' . .h,f. ':" Y'. {_l U.i

f. . . ,

} . E '

. e- . '.

5 .

' \ . .. ,

.. . , , s l.

  • h$i. Q,* . :?)* *k  ?, ? f' :. .'.' . "N' /
  • h': k:. & l .h. ?.*. 't'0 '. U. ,% ! " '

h h

' %lh 45' { 1kf 'h. %' $'1.;$.f'i ps.%f %?:h &' b '?'$'s

'lG .%! *,y! e? i.h.,.V jYh:Y ' ' 6 ? b '.:i y 9 4 6:r W. ~ [ i:. O}:.

'/.

  • V:- <; h
N.Y, '.'.it hl'.h ?. N.IYW Y%.*L,' . '% ""). istY; 'I.'Y. . ~$.
rA'.A 'h ' ' ].'.

. f~i , g.f.p. U".

'e-},jf'. : 's?h)h*'.$

.g.LM}Q.$%.s4 7 t, V' y. kr ?.. ?i..l,%:j;?%k.

h =';N ,ul ib..% 0lb:v,"M.sy f

  • ' ., ;p

} ;s '.j . ;: . W..&. f b S $. Ok'w A N l. *:. '.'";

.h:,. ;.; :.';'V.'i.llN

' U'

' :.: ;'t Y-  :- ,e y. .V:: ;P's % ', *::

Y. 9,b M

.:l :5; 6

'* ,Muj .

Y$ ' b ' \; d?  ; Q f[b) f'?,E.

t

?

M <.f;,W'Yl' i'['

s

.4 '=

k [!?k(Q):q.f',<fh78[I #~%' VY.M,? NN 40-[%f.f 4..vk;r.

' * ,' id: !Md 3.*l~ ' I7 .) - l., 'OE-t fj?,$,'QldN *.p;,'.,%.  :% .hd( '  :%) ' . N'M Q,h'h .' Ed 4.d.>

. Y q <l .' **kW ' *
*i,'. GM .%l0;'s,'l*^'lh.)' n:) 1:W.We"WQ.M. . :. ,' i ' b. % cf, f:,'.

.'t A? ..b  :.~ ..1.

,'Q' ,f m '

% .c gaa f my,-.%n ."W ,y % d.Qe 7; u

$,,'*f."~

, ;'/.r.a. ' rl~:' . %., l;a i%s

  • n . ., -

gkW 1y . .%, b. > :. :q %jt',$,.

.r. i " :<.: .: %:. * ;.1,rlSf:;uf . n:l ..s5  : ?s:.Q:.b0 ~:

V .: v :A .s. ', .%. D';lM. ' .n. y. V,. ;:,' @.,

?. . q"n r,.:: ' .* n :::- g

'...:, . ' . e f.:9.t-.....:d:.'

c,ll,6..d" ;). n';", ' ' vl* i,<.- e,o, U'o W.n. p,2.,,4g;a.,% p:f' :h,, .: :gy .,p n . r:. . .. s A sh:ae* , ; $r.i.e  ; . W;*4"Pl'.<  :%,. - * ': '. '.' .I':, . '* < " -

, m -

.. . . > , . .u . '1 st s,

..r. . - . ~. *

  • h.,. g,, ' , '"MI, s ,

p . ..

h ,)',f f'((h, f i,t '(f *- l'.I. q .Q,, I h ~ ,s /[ , . [ ?,.k . *[.,D , b : . ,'., . '.,j[2 I,,N.,[

' Y k.h * ','.. i. a ,,

g. . ,
r. . 'lU 5. h' .t.. . * :' 5.Y.f .A. . .. N. ":,*. {i.:. *
' i YI: ll *:Yl,... *%e :..  : $.,

~e<.g%n ;,:.f:.;f:.

Y'f. a: .

3 9 ;c .l:*?!'[.f.E.h:

i

.);h, e- h jh,.".. .e'?$.h..', ,

.?Oh;,9.:"qp_j

.'p , 7.;. ,+ gt,,3,qyl;.': .

g ..gq,, , ;#_ ,v',y:.,..

..lh',:%,:['

.m. T, '. .,g y_. . . <,p . ,_ u..p.  : s.f ,.; b.yj,;

., ( ., n,~,.  :, .x,,';;;.  ;... 9* .,, y g .

e c -

. cs '. Y v - ; ;. ..  ;<,. v , . w ,, . .

g. .'  : .- - .

.j c,.,',.

' ';.s.b;,,rl e:.,n: -'l' . , '. .

,'y, s; ' ,' * : ,* . , . ',: .*. ,.

%. s. ,5

, C.~.. '. a,g% .1i .p,. : .*ilw, ,s. ..Y, fg.Q'* . . f,, n L.' ..l .. *p.., * * . ' '

, A' . . V,. ;:.e

  • s,rl . . .'.\ ' C '.i, ,),....
.,. e....A s,., A 1,,,,

s

.. .: pfp,'Is'., . q,,. -

.- . . ., '.s. , >w  : ,..m

m. , ,
  • s. , . ,s. ,:<<,s, n

...r

( / . '

. . >., '. d.: ~-..

.y r. t 4 .y }.*e.

  • C ,. a

, u,. 't , . . s'/ .t. . }s - s .m.,,. . , , . ', . , , ,

e t' m* ..

' s.t.: .'sv, ' lV ,* i Q,"?. .. '),,e*: .:#y 9' , p'.. . ' ' . r., .% go,;

g, ,, : yn : .. , .:%-p b u. E .Q, ,.,' ..,.:. . : i .. . . , . ~..y m,, .  : p'  :. *

.t* 'y .;c:d .,

t A.', .e*:: '.q...,,t *% , '., , :. , . . .. , . , I, &, h ,a.

.( . 4

's ( .,.a e ' . e.~

t,,,.

m~ . . ; m . :. n. . w,j.' ,

'. ,5 . .' *: / ?' - ll 't.

  • l; llf:

l .  ?* c .,~  ! l' I Y f l' ' '

't.  :,* 1,'. .: ? '% .s ' . .. ' Y,t'

, , .. . w. . . ,.+.:.y g.:

r t 2 us~...c,p. h w. .c.w. . s.gwaa... .' lh 4 ,';.b

  • b. .'-
x,., v.
. . . . . ., .g..g c.w.n. , . k., ,s,.. ..w. .

. .. ,.. vu.e. . . . v. . .., .n. . s 5

I,

. 'l'Y ~. a.

. ' s:m n. .,-. n' h, .

. . . n. . ,'

w. ,; aT' . C. . f.?n) n$.y;M h. .h~,'$/.. :l'W

$n:[$5,'&. e;,Q. A. ..)..

W.sy: v

. . .. , y.Q'hh.;.,y.p.Qhf....@p;{P* w t

o y... u

.w . . %_&NQ),'p,W:,0;f

',w,. ':ll.,Q, g:i. ".y,v.g

. , , , . 2,>,A : .y~..m... ' w yr f.N k.,.V. ,., Q. .. :%: :f..'f $,.i;I -

1.2.[h'W&& ,.

y ,' . . c .)..w ':,.g h :h@;Q:y

<.'Q:y:.3::,; y.a, llR. e:h: q . .

'%.s W.;Q. :.,n:... m :Jg:.sy . qQ,. . s,;, w :w,. . : j? ,.> : ? .., s ; , . . y .> . :  :: a;e : : r. .6.r:'.i

,  :: s yy., . c.-  ;> < .:. ,

w g, w n:n. m.nw am .:. gm., .-

7 v. t w.,.~ m,w. n . 4 n:q. w. y.;' y ..e.n.np'::%wu,:&n..n.v.

< .? . L . 42& WMb '. .

h ym.

?.

nmay,fM S R' n%Aa.%.,vm.by..m r4 6+ -

m (C' ';,l h>:.:W;;h,,.W{:::.epe.hW.%"i;R$n).&

w&@v:m:f.}: j p

$xl,h;;.

k.O.T..)d W";

h Ifph W ,.;QRi 9ggm:.;

% :(; . Q:

3.? OO.:&m Q .5Y%,f' : . :

'g &p?x:.w 3, m&p..W.u.&.?&c,9Q; g.y:m.YQ.&.

e ..

. m . s :w .m. .

x;:s An. x n s pg,p .g.:..:m.ne.g_+mg.a:c.. v.m i :.. y7.y.e .:. 9 . . g, y.,3 I,

s g

,t. <=.

Westinghouse Non-Proprietary Class 3 -

WCAP-14138 Rev.1 Final Data Report for .

PCS Large-Scale Tesi:s, Phase 2 and ..

Phase 3 Westinghouse Energy Systems -W ame

' , ,0 %' 1 ; -,?',.4,'>g

+ , , , c l .. ,. ,, .,e 1 .. ,y,

..- .. . . . . . ~ . . _ . _. . _ . . . .

i i

- --- . . . _ . . . _ _ .,___...._m.._.:_ _ , . __

.._.m.. ..m ._,z. . . . . . . _ . . - . . . . _ _ _ _ . . . . _ - ww.M L

2

.' B o l

n k.$ .

t

)

j Final Data Report for PCS Large-Scale Tests, Phase 2 and Phase 3 y%

L -I- 5 =

W-oo

}IO$

EI ir l

5 ta I ___ . _

t' i -- -

I l

This package contains Revision 1 of the Final Data Reportfor PCS Large-Scale Tests, Phase 2 and Phase 3. Replace the Revision 0 cover and spine with the Revision I cover and spine and replace the Revision 0 title page with the Revision I title page. Each change is listed in the transmittal letter along with the reason for the change. All the change pages are double-sided, and the page numbers match up with the Revision 0 report; therefore, all change pages in this package should replace the same page numbers in the Revision 0 report (i.e., replace Revision 0 p. 2-47,2-48 with Revision 12-47, 2-48).

l l

l l

. _ _ . . . _ _ _ _ . . _ _ _ _ _ __. _ _ _ . _ .. _ _ _..._ ,_ _ _ ._ __ _ ..__. _ .- . - _ . - ...... . _ _ .__.__ _ ... .m _ __.

l

! WEsimcuotst NON-PaoralETARY CLASS 3 FINAL WCAP-14138 Ol Rev.1  !

l 1

1 I

I

\

FINAL DATA REPORT FOR l PCS LARGE-SCALE TESTS, l

PHASE 2 AND PHASE 3 l

l l April 1997 l

l O

m:\3578w.non:lb-041897 Rev.I

a a

FINAL.

TABLE OF CONTENTS (Cont.)

Swtion Title fase j 4.12 Test 221.1. . . . . . . . ...................... ............... 4-157 i 4.13 Test 222.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 175

4.14 Te st 222.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 189 4

4.15 Test 222.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-206 4.16 Test 222.4 . . . . . .......................................... 4-223 4.17 Te st 223.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-240 4.18 Test Results 224.1 . . . . . . . . ... ....... .............. . . . . 4-249

! 4.19 Test Results 224.2 . . ..... ..................... ........... 4-257

5.0 CONCLUSION

S . . . . . . . . . . . . . . . . . ................................. 5-1

6.0 REFERENCES

.. .......................... ...................... 6-1 i

APPENDIX A - Facility Drawings . . . . . . . . . . . . . . . . . . . . . . . ..................... A-1 APPENDIX B - Sampling Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .........B-1 1 APPENDIX C - Data Handling . . . . . . . . . . . . . . . . . . . . . . ....................... C-1 APPENDIX D - Official Test Data Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-1 APPENDIX E - Baseline Test Data . . . . . . . . . . . . . . . . ..... ... ................ E-1 i

1 I

I i

i i

1 1

4 O 1 m:\3578w.non:lb N1597 y Rev.1

FLNAL TABLE 2.31 (cont.)

LIST DATA CHANNEL ASSIGNMENT Fluke Sensor J

Channel No. Tag No. Sensor Description Location i

198 199 TC DOME BAFFLE DO-90 1

199 200 TC DOME BAFFLE DO-O  ;

200 201 TC DOME BAFFLE DO-270 1

201 202 TC ANNULUS BAFFLE B-203  !

1 202 203 TC ANNULUS BAFFLE D-203 203 204 TC ANNULUS BAFFLE A-113 204 205 TC ANNULUS BAFFLE B-113 205 206 TC ANNULUS BAFFLE C-113 2% 207 TC ANNULUS BAFFLE D-113 l

207 208 TC ANNULUS BAFFLE E-Il3 208 209 TC ANNULUS BAFFLE B-23 209 210 TC ANNULUS BAFFLE D-23 210 211 TC ANNULUS BAFFLE B-293 211 212 TC ANNULUS BAFFLE D-293 212 213 TC AIR INLET "B" AI-203 L.-

213 214 TC AIR INLET AI-113 214 215 TC AIR INLET "C" AI 23 215 216 TC AIR INLET Al-293 216 217 TC STEAM INLET VESSEL "H" S-1 1 217 218 TC CONDENSATE OUT "2 "G" 218 219 TC COOLED CONDENSATE 219 220 TC FILM WATER IN "D" 220 221 TC FILM WATER OUT "E" 221 222 TC TRAVERSE KNUCKLE TK-203 222 223 TC TRAVERSE KNUCKLE TK-113 mA3578w.non:Ib-041597 2 47 Rev.1

FINAn.

TABLE 2.3-1 (cont.)

LIST DATA CHANNEL ASSIGNMENT Fluke Sensor Channel No. Tag No. Sensor Description Location 223 224 TC TRAVERSE KNUCKLE TK-23 224 225 TC TRAVERSE KNUCKLE TK-293 225 226 TC TRAVERSE MID TM-203 226 227 TC TRAVERSE MID TM-113 l

227 228 TC TRAVERSE MID TM-23 228 229 TC TRAVERSE MID TM-293 229 230 TC TRAVERSE LOWER TL-203 230 231 TC TRAVERSE LOWER TL-113 231 232 TC TRAVERSE LOWER TL-23 232 233 TC TRAVERSE LOWER TL-293 233 234 TC STEAM PIPE S-2 234 235 TC STEAM PIPE S-3 235 236 TC STEAM PIPE S-4 l l

236 237 TC STEAM PIPE S-5 1 237 238 7C STEAM PIPE INLET S-6 l 238 239 MV VESSEL PRESSURE P-1 I 239 TC CONDENSATE OUT #1 240 MV WIND VELOCITY "

241 MV WIND DIRECTION ~

242 MV WATER FLOW METER "

243 MV FILM WATER OUT l l 244 MV 3-INCH STEAM METER Vortex 245 TC INTERNAL TC RAKE DO-9 in.-0 in.-0 246 TC INTERNAL TC RAKE DO-28 in.-18 in.180 247 TC INTERNAL TC RAKE DO-28 in.-0 in.-0 l

l m \357sw.nonab 041597 2-48 Rev.1 l

FINAL r3 3.0 DATA REDUCTION

\

v]

This section describes the data handling activities and test evaluations performed on the PCS Large Scale Test data.

3.1 Data Acquired The data is accumulated during the tests in the following forms:

1. The Test Record Book, which provides documentation of the conduct of the test, includes any anomalies that may be experienced during the conduct of the test, and contains a record of the history of the test facility.
2. The Fluke Data Acquisition System (DAS) output, which is stored directly to disk (note that no data reduction is performed during these operations. The thermocouples are directly recorded in degrees Fahrenheit and all others in actual millivolt or volt signals.
3. Strip Chart recorders which provide a qualitative description of the conduct of the test for selected channels.

r^\

4. Data recorded by hand on data sheets and on the individual test procedures. This data includes gas sampling data, helium concentration data, atmospheric pressure and weather conditions.

3.2 Data Handling The primary source of the test data is that recorded on the Fluke DAS. The Fluke data is an ASCII file containing the values of the 335 channels used for each data recording. The data is recorded in two modes as described in Section 2.3. The computer data is separated at the times where data acquisition on the internal floppy takes over. The separated data is then rejoined to produce the complete test record file using the unique time-indexed records. Data relating to the hand input data is inserted at the beginning of the test file. There are two types of hand input data. Test identification and prerequisite data, which must be included in each hand input data set; and recorded data, which is data recorded by the test engineer and may or may not exist for a given test. Only the initial set of conditions is recorded in the hand input data. Failed channels are identified and are zerced out by the Fortran code to avoid misinterpretation of the data.

The LPCCS Fortran code is written to transform the data recorded by the Fluke data acquisition equipment of the test facility into a Foxpro data base and/or Lotus spreadsheet format. Figure 3.2-1 shows a simplified flow chart of the operations perfonned. A final data base provides the reduced data calculated on the basis of the equations noted in Section 2.2.

mA3578w-1.non:lb-o41597 3-1 I

FINAL.

The reduced data from start to completion of these tests is presented as compressed ASCII files in I Appendix D of this document. The data files are identified as "RC0xxF1.PRN", "PC0xxF2.PRN",

"RC0xxF0.PRN", and (where appropriate) "RC0xxTR.PRN" and are contained within the archive file "RC0xx. ZIP", where the "xx" identifies the specific run number of the test in question. Files ending in "Fl" contain reduced data from channels 0 through 243; files ending in "F2" contain reduced data from channels 244 through 335; files ending in "F0" contain selected manually recorded data and test descriptions, and average, maximum and minimum temperatures for each level as a function of time.

A definition of the outputs and their imits is contained in Appendix C, Table C.1-3.

The non-DAS (noncondensible) data is collected and where appropriate is entered into files with the DAS-generated data. Noncondensible data is acquired separately and evaluated in accordance with the procedure identified in Appendix B.

9 O

mA3578*-l.non:lb-o41597 3-2 Rev.1

FINAL O

s s (Table 3.3-1) obtained by monitoring the vessel over a 48 hour5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> period at ambient conditions. Data V recorded in the "FO" files of Appendix C and D also contain maximum, minimum, and average I temperatures and differential temperatures as a function of time. The differential temperatures reported I in the "FO" files were not corrected for the calibration offset of Table 3.3-1.

Table 3.3-2 presents a summary of the tests performed during Phase 2 and Phase 3 of the PCS test program. Repeat test runs were perfonned where tests did not meet the test requirements or pertinent test data was missing. The reasons for repeating tests are also indicated in Table 3.3-2.

3.3.2.1 Heat Balance Table 3.3-3 provides a rough comparison of the heat loads as calculated from the various measurements listed below:

  • Condensate mass flow rate

. External heat loss (water, air and radiation)

  • Heat flux across the wall Figure 3.3-1 illustrates the various heat balance calculations relative to the heat loss calculated from the condensate measurement. Table 2.0-1 provides estimates of the test vessel and baffle surface areas and the applicable flow areas for use in evaluation of the test data. The indicated position of the area q

(,j is approximately at the middle of the identified area. The condensate heat load was calculated from the entha!py of the steam entering minus the enthalpy of the condensate leaving while the system was at steady state; a densate flow was used for both the steam flow into the vessel and the condensate flow out of the , sel. The external heat loss sums the heat pickup of the cooling water, the heat of vaporization of water, the heat pickup of air and the estimated heat losses to the environment due to convection and radiation from the vessel bottom and baffle sides using the ambient temperature as T .

2 The convection losses were estimated using a heat transfer coefficient of 1 BTU /(hr*ft **F). The convective and radiation heat losses from the bottom of the vessel were assumed negligible for all tests with an insulated bottom (Test mns less than RC053). The equations used are shown below:

9cw = Wu (H,,,, - Hg) (1) 9env

  • 9a + Swmer + 9bonom
  • 9bame (2) q,, = I A, (f, AT + (1 - f ) AT,,,,) (3) 1 l

9,=W,C (T,,,, - T,,3,) + H,,,,,, (W ,,, - W,,,,)

, (4) 1 r T U

rnM578w-Lnon.1b-N1597 3-5 Rev.1

FLNA1, 9 water = H,,,,,,,, W,,,,,,,,,-H,,,,,,,,W,,1,,,;, (5) where:

qcond =

heat loss calculated from the condensate flow (BTU /hr)

Wend =

mass flow of condensate (Ib/hr)

H,,,, =

enthalpy of steam into vessel (BTU /lbm )

11 =

cond enthalpy of condensate leaving vessel (BTU /lbm) q,,y =

estimate of heat lost to environment via air and water (BTU /hr) qg, =

estimate of heat lost to air in annulus (BTU /hr) q ,,,, =

estimate of heat lost to water flowing over the vessel and collected in the gutter (BTU /hr)

=

qbottom estimate of heat lost from convection and radiation on the bottom of the vessel (BTU /hr)

=

qbattle estimate of heat Icst from convection and radiation on the outside surface of the baffle (BTU /hr) q,g =

the heat loss calculated from temperature drop across the wall (BTU /hr) i l

W, g =

mass flow of air through the annulus (Ib/hr)

Ai = 2 area of the cross section of interest (ft )

k =

thermal conductivity of steel (BTU *in/(ff *hr"F))

1 = '

thickness of vessel wall (in) f,,, =

estimate of the fraction of circumference that is wetted ATmax,i =

maximum temperature difference of cross section i ( F)

ATmin,i =

minimum temperature difference of cross section i ( F)

C p, air = heat capacity of air (BTU /(lb"F))

Tair,in =

tempsrature at inlet to baffle Tair,out = temperature at outlet of baffle H wmer vapor.out =enthalpy of water vapor leaving the annulus (BTU /lb)

Hwater.out =

enthalpy of water leaving the vessel outside gutter (BTU /lb)

Wweer,in =

mass flow of water to the top of the vessel (Ib/hr)

W water,out

=

mass flow of water out of outside vessel gutter (Ib/hr)

H water,in =

enthalpy of water onto the top of the vessel surface (BTU /lb) l Equation 3 assumes that the maximum and minimum temperatures differences for a cross section are representative over the cross section and that the percentage of wet versus dry surface stays constant l from top to bottom. Equation 4 assumes that all evaporated water leaves the annulus as vapor and therefore does not provide any correction for condensation of water vapor prior to exit from the l annulus. The heat losses calculated from the condensate (equation 5) are considered to be the most l reliable since they depend on the least number of assumptions and represent a closed system. These l values are used as the abscissa on Figure 3.31.

O m:\3578w.1.non:Ib-041897 3-6 Rev.I

_ - - - - .- . .- . . - . - - . . - _ _ - . - . . . . =_ - . - - . . . - _ _ _ . . . .

FrNAL I

The overall behavior of the intemal velocity meters is indicated in Table 3.3-6. In general the internal 5

flow path was observed to be down along the wall and up along the wall in the dome area. Available i

data indicates that both the anemometers located in the dome were in agreement in speed and direction i

of the gas raovement.  ;

! No consistent flow indications were observed from the meter located at E-90*.

3.3.3 Test Summary  !

.' i e

Table 3.3-7 presents a summary of the channels that are considered as failed iluring Phase 2 and ,

, Phase 3 testing. Table 3.3-2 presents a summary of all the test runs performed during Phase 2 and f j Phase 3 of the PCS test program. Test runs identified with an asterisk identify the qualified matrix ,

! tests reported herein. In addition, tests identified by "t" contain partially completed tests that did not i j meet the specific test requirements but do contain useful test data. The reduced data from these tests  !

I is also presented in Appendix D.

i i

i  !

i i

P i

r i

1 l

m:\3578w-1.non:lb-041597 3-9 Rev.1

FINat, TABLE 3.3.I DIFFERENTIAL TEMPERATURE CALIBRATION Location Inside CH Outside CH Delta T Cal DO-180-21 in. CHO CHI -0.015 DO-210-42 in. CH2 CH3

. 0.283 DO-180-42 in. CH4 CHS -0.573 DO-150-42 in. CH6 CH7 -0.485 DO-210-63 in. CH8 CH9 -0.025 DO-180-63 in. CH10 CHI 1 DO-150-63 in. CH12 CHl3 0.110 DO-210-84 in. CH14 CHIS 0.212 DO-180-84 in. CH16 CH17 0.515 DO-150-84 in. CHIS CHl9 0.021 DO-120-21 in. CH2O CH21 -0.090 DG-120-42 in. CH22 CH23 0.302 DO-60-42 in. CH24 CH25 -0.435 DO-105-63 in. CH26 CH27 -0.433 DO-90-63 in. CH28 CH29 -0.094 DO-60-63 in. CH30 CH31 0.010 DO-120-84 in. CH32 CH33 0.285 DO-60-84 in. CH34 CH35 DO-0-00 in. CH36 CH37 -0.017 DO-0-21 in. CH38 CH39 -0.015 DO-0-42 in. CH40 CH41 -0.531 l l

DO-30-63 in. CH42 CH43 -0.438 DO-0-63 in. CH44 CH45 -0.067 DO-330-63 in. CH46 CH47 -0.027 l DO-0-84 in. CH48 CH49 0.233 DO-210-21 in. CH50 CH51 0.096 DO-300-42 in. CH52 CH53 0.300 DO-240-42 in. CH54 CH55 -0.423 4

mA3578w.l .non:lb-G81597 3-10

FINAL TABLE 3.3 5 COMPARISON OF STEAM FLOW MEASURCMENTS Run Number Condensate Vortex Meter Gilflo Meter and Test (Ib,jsec) (Ib,/sec) (Ib,/sec)

RC039-202.3 1.206 1.2 1.06 RCO41-203.3 1.52 1.54 1.38 RC044A-214.1 1.176 1.14 1.00 RC044B-214.1 1.15 1.14 1.00 RC045A-215.1 1.085 1.14 0.99 RC045B-215.1 1.163 1.15 1.00 RC046A-216.1 0.612 0.6 0.5 RC046B-216.1 0.618 0.61 0.51 RC048A-212.1 0.365 0.36 0.25 RC048B-212.1 0.551 0.56 0.5 RC048C-212.1 0.854 0.84 0.73 RC050A-213.1 0.342 0.34 0.27 RC050B-213.1 0.554 0.54 0.49 RC050C-213.1 0.851 r;.84 0.72 RC052A-217.1 1.15 . 14 1.00 RC052B-217.1 1.135 1.14 0.98 RC053A-218.1 1.16 1.14 0.99 l RC053C-218.1 1.09 1.16 1.00 RC056A-221.1 0.159 0.15 0.1 RC056B-221.1 0.163 0.16 0.11 RC056C-221.1 0.161 0.17 0.12 RC057A-219.1 0.125 0.11 0.07 RC057B-219.1 0.127 0.12 0.08 RC057C-219.1 0.123 0.12 0.08 RC067-224.1 0.265 0.27 0.21 RC068-224.2 0.606 0.59 0.5 RC069-223.1 1.26 1.36- 1.56 I

l ntuS78w.i.non: b-otis97 3-19

FINAL TABLE 3.3-6

SUMMARY

OF INTERNAL VELOCITY METER PERFORMANCE Test Run Test Matrix Pacer Pacer Pacer H5ntzsch H5ntzsch No. No. E-90 D-180 Dome-345 A 90 Dome-165 RC039* 202.3 No Functional Output No consistent - consistent - No Functional up down Functional Output Output RC040 203.3 RCN1

  • 203.3 No Functional Output No No consistent - No Functional Functional down Functional Output Output Output RC042t 212.1 RC043t 213.1 RCN4
  • 214.1 No Functional Output 1I to 11.2 magnitude consistent - magnitude high value consistent down consistent 27.7 with do-165 with do-345 carly only early only RC045* 215.1 No Functional Output No No consistent - early  ;

Functional Functional down positive i Output Output response RC046* 216.1 No Functional Output No No consistent - early Functional Functional down positive Output Output , response i

! RC048* 212.1 No Functional Output No magnitude consistent - magnitude l j Functional consistent down consistent I l Output with do-165 with do-345 i RCN9* 217.1 RC050* 213.1 No Functional Output No No consistent - early Functional Functional down positive Output Output response 1

RC051* 217.1 l

RC052* 217.1 No Functional Output No No consistent - early Functional Functional down positive Output Output response RC053* 218.1 No Functional Output wild No consistent - early i swings Functional down positive throughout {

Output response test more l

Inttnslie a'ter He addition RC054* 219.1 RC055t 221.1 O

m:\3578w.l.non lb-041597 3-20 Rev.I

~. -_. _ _ _ _ _-_ _ _ . _ _ . .. _ _ _ _ . . . _ _ _ __ . . __

l FINAL.

i TABLE 3.3-6 (cont.)

a

SUMMARY

OF INTERNAL VELOCITY METER PERFORMANCE 4

Test Run Test Matrix Pacer Pacer Pacer H5ntzsch Huntzsch No. No. E-90 D-180 Dome-345 A 90 Donw 165 RC056* 221.1 No Functional Output No activity on No early Functional He addition Functional positive Output and on Output response stoppage of wate ,

coohr ng RC057* 219.1 No Functional Output No No consistent - early Functional Functional down positive Output Output response RC058 ttC059 RC060 RC061* 222.1 No Functional Output No No consistent - No Functional Functional down Functional Outout Output Output i RC062* 220.1 No Functional Output No consistent - consistent - No l Functional up down Functional l Output Output RCM3$ 222.3 RC06#,* 222.3 No Functional Output No No consistent - No Functional Functional down Functional Output Output Output RC065* 222.2 No Functional Output No No consistent - No Functional Functional down Functional Output Output Output RC066* 222.4 No Functional Output No No consistent - No Functional Functional down Functional Output Output Output  :

RC067* 224.1 No Functional Output No No No No Functional Functional Functional Functional Output Output Output Output RC068* 224.2 No Functional Output No No No No Functional Functional Functional Functional Output Output Output Output RC069* 223.1 No Functional Output No No No No Functional Functional Functional Functional Cutput Output Output Output RC070 223.1 l

l 1

i

_t-m:\3578w-lJnon:lb-041597 3-21 Rev.1

FINAL O

N M M M M M M M M a M M M M M M M m M M g M g, g y 89 I g' G M M M M M M M M M M M M M M M N M M M M M M I

M M M M M M M

- M M F. M M M M M

. M M M M M M I

  • M M M M M M N M M M M M g g g l

. 1

  1. # # M M M M M M M M M M g g g M M M M i

- M. M M M M M M M

= M M M M M M M l

    • > ,* m g ,

M M M M M M M M M M M m a M M m M M E

g M M M M M M M M a M M M M M

< = - M M n E w i h E k M M M E

Er - .

M M M M M M M M E.

e 0 n

z e 5 -

e4 g wt

~

E=

n

~

M M M M M M M M M M g M MW ME ;k EN hb $5:;  ? $ M M u W M u M M M u eEI6 a X M 2

M *

- g . ~

e y

l M M M M M u M M M y.

C . e y y &

M M M M M M M M u A

k y d a

M M M M M M M M g m

= i a ln M M u M u M M M M a fa M M M M M M M M M M

= r M M M M M 0 h M M M M

t M 8 E 2

f

! M M x M x M -M M

jy - n =  : i

:  :  :  : a E E E R E E E E E  ! ! E mM578w.l.non:!b-041597 3-22 4

FINAL

/T4 t

w_ r' 8

e -

O AirMater Estimate  :

T g e Wall Heat Flux Es timate ~

g 7 i g . co w

e.

1 P e

<6 -

Z M O  :

W H

d -e O

, <5 O o -

4' W e e <

H O j

< *

  • O 2 4 f) s e E o e O ,

a 8,O i

>< 3 e ,,

O o E

W P*

D a i

% ._n

~

p 2 .

W

~

0 -

?

i 1 i

i t  :

0 1 2 3 4 5 6 7 8 HEAT REMOVAL ESTIMATE CONDENSATE (Mbtu/hr) r 's Figure 3.31 Comparison of Large Scale Heat Removal Rates

(

i m:\3578w.1.non:1b-041597 3-23 Rev.1

l l

FLNAL

a,C l

1 i

l I

l l

J ,

i a

m it o

C e

Ncs

.2 e i C )

m o

C C

e C

ce

!o O 'l w

o C i o l

.12 n

es A.

E o

C.)

l 4

9 m

O 3

62 5

t O

mA3578w.l.non:Ib-041597 3 24 J

1 i

FLNAL A 4.0 TEST RESULTS

(_)

'Ihis section contain a summary of each of the completed matrix tests considered acceptable. Each of the following sections presents:

1

= description of the test performed i e plots of the steam flow rate e plots of the vessel pressure l

= plots of the noncondensible concentrations (when available) e summary tables of the average of the steady state condition of the test vessel a summary tables of the average, maximum and minimum vessel temperatures and differential temperatures during the steady state periods.

I Electronic files of the test data are contained in Appendix D.

4.1 Test Results 202.3 Test 202.3 was a constant pressure test designed to repeat the previous tests performed in the Baseline Tests 202.1 and 202.2. The test featured an insulated vessel bottom, short term internal heat sinks and a steam generator volume located over the steam discharge nozzle. Additional instrumentation was

/ 'N added which includes:

b

. steam flow meter a thermocouple rake e intemal velocity meters

= annulus differential pressure cell l

1 The test m .onducted a establishing a stealn flow sufficient to achieve the required vessel test pressure (approximately 30 psig) with the air cooling fan at 530 RPM and water cooling to the vessel at a 75 percent water coverage level. The test continued until the vessel pressure was constant within l 0.5 psi for a minimum of a half hour. The extent of water coverage on the vessel was measured during the steady state period of the test.

A histary of the vessel pressure and steam flow are shown in Figure 4.1-1. The steady state period is

defined from 13.006 to 13.856 hours0.00991 days <br />0.238 hours <br />0.00142 weeks <br />3.25708e-4 months <br /> and the steady sta
e behavior is tabulated in Table 4.1-1 and Table 4.1-2. Table 4.1-2 presents a compatison of the average, minimum and maximum temperatures on the inside and outside vessel walls at each cross section of the vessel. Also included are the 1

maximum, minimum and average differential temperatures for the same cross sections. l l

O

\

The exit air anemometer failed during the conduct of Test 202.3. Velocity values from the calibration of the exit fan were used to estimate the resulting air flow at 530 RPM. This is an acceptable mA3578w.2.non:IMMI597 4.] Rev.I

FINAL i l

accommode. tion since the exit velocity meter mainly provides an indication of the variation of the  !

velocity through the annulus. Performance is confirmed throughout the test by the differential pressure  ;

cell located below the fan and by verification of fan RPM late in the test.

The H6ntzsch anemometers were located at Dome-42"-165 -1.5" and A-90The -1.5" H6ntzsch l

anemometer located in the dome of the vessel provided outputs during the initial transient but provided no outputs above its velocity threshold during the steady state period whereas, the meter at A-90 -1.5" provided outputs that indicated that the velocities down along the sidewall while at steady state. I Limited outputs were also available from the Pacer anemometers (Dome-42"-345*-1.5", D-180 -2" and E-30 -2"), but only the anemometer at Dome-42"-345*-1.5" provided outputs above the sensor threshold and sufficient enough to determine die direction as upward in the same manner as the i

H6ntzsch anemometer at Dome-42"-165-1.5". Table 4.1-3 contains a summary of the indicated flows for the velocity sensors and Figure 4.1-2 shows a history of their performance over the entire test. The negative values for the H6ntzsch meterindicate downward flow.

i Condensatlon collection during the steady state portion of the test was performed with the condensate collection to tank 1 (small tank) from the open and closed area in the heel of the test vessel and the remainder to condensate collection tank 2 (large tank).

Water distribution around the circumference at the bottom of the baffle was taken after steady state was established at 1325 hours0.0153 days <br />0.368 hours <br />0.00219 weeks <br />5.041625e-4 months <br />. The distribution of dry stripes around the circumference total to a 89 percent water coverage with an average width of 3.1 in. i Figures 4.1-3 and 4.1-4 provide an indication of the average temperature history of the inside wall of the test vessel and the fluid adjacent to the vessel wall as a function of elevation throughout the test.

O mA3578w-2.non:ltwo41597 4-2

, , . . _ _ . ~ . - - . . . . . . . . . - _ . . _ .. .. .... ~ . . __ .. .-.. -._-... .- - - .. - - . .

FINAL f

a,c i

8 5a 6

E b

=

n N

O 1_  !

  1. 1 6

7 m

A 0

s f.Y i.

i mA3578w.2.non:!b-041597 45 Rev.1

i l

l FLNAL 1

~c O l i

l l

8 2a 6

E u

b 2

=

5 l

=

T

  • G O'

c

>=

v SC 8

u T

9 w

8

=

OC 5

1 l

l l

l l

l O

m:\3578w-2.non:Ib-041597 46 Rev.I

FINAI.

(~} 4.2 Test Results 203.3 V

Test 203.3 was a constant pressure test designed to repeat the previous tests performed in the Baseline Test series 203.1 and 203.2. The test featured an insulated vessel bottom, short term intemal heat sinks and a steam generator volume located over the steam discharge nozzle. Additional instmmentation was added which includes:

e steam flow meter

= thermocouple rake e internal velocity meters e annulus differential pressure cell e fixed annulus exit velocity meter.

A history of the vessel pressure and steam flow throughout the test are shown in Figure 4.2-1. The steady state period is defined from 11.615 hours0.00712 days <br />0.171 hours <br />0.00102 weeks <br />2.340075e-4 months <br /> to 12.590 and the steady state results for 203.3 are tabulated in Table 4.2-1 and Table 4.2-2. Table 4.2-2 presents a comparison of the average, minimum and maximum temperatures on the inside and outside vessel walls at each cross section of the vessel.

Also included are the maximum, minimum and average differential temperatures for the same elevations. The data presented is representative of approximately one hour of test operation; plots of the pressure and steam flow (vortex meter) are shown in Figure 4.2-1.

,q (V 1 Internal velocity meters were located in five internal locations in the test vessel as indicated in Table 4.2-3. The H6ntzsch anemometer (A-90* 1.5") provided outputs that indicated that the velocities were down along the sidewall. All other velocity meter outputs were too low during steady state operation to evaluate the outputs. Figure 4.2-2 shows the history of the H6ntzsch meters throughout the test. The H6ntzsch anemometer located in the dome (Dome-42"-165 -1.5") initially provided both up and down velocities but produced no velocity indications during the steady state period.

Water distribution around the circumference at the bottom of the baffle was taken after steady state was established at 1340 hours0.0155 days <br />0.372 hours <br />0.00222 weeks <br />5.0987e-4 months <br />. The distribution of dry stripes around the circumference that total to a 86 percent water coverage with an average width of 3.5 in.

i

\

Condensation collection during the steady state portion of the test was performed with the condensate collection to tank 1 (small) from the open and closed area in the bottom of the test vessel and the l

remamder to condensate collection tank 2 (large).

1 1

Figures 4.2-3 and 4.2-4 provide an Indication of the temperature distribution on the inside wall of the test vessel and of the inside fluid temperature approximately 1 inch away from the wall as a function of elevation.

(3 V

1 l m:\3578w-2.non:1b-o41597 4 )1

FLNAL a,C .

5 o

U M

c 2

3 i

e N

H D

C O

it e

E ca O

3 Z

T c

cs 8

c M

8 C.

T M

o b

v 8

a

?

an h

m*3578w-2.non:Ib-04I897 4-l' Rev.I

FINAL a,c l TABLE 4.2-3 TEST 203.3 RUN RC041, INTERNAL VELOCITY TEST DATA STANDARD AVERAGE MAXLMUM MINIMUM DEVIATION LOCATION (ft/sec) (ft/sec) (ft/sec) (ft/sec) NOTES t

i i

i L

1 i

f i

P l

m:U$78w-2.non:Ib-4tl597 4.] 9

FINA1.

4.3 Test 212.1 Test 212.1 was a constant flow test conducted by , stablishing a steam flow at a constant rate and maintaining the flow until the vessel arrived at a constant pressure with the air cooling fan on at 530 RPM, with water cooling to the vessel maintained at a predetermined uniformly distributed water coverage. After the vessel reached a constant pressure the steam flow was increased and maintained until the vessel again reached a steady pressure. Again after the vessel reached a constant pressure the I

steam flow was increased to a third level and was allowed to come to a steady pressure. The extent of water coverage on the vessel was measured during each steady state period.

The steady state results for Tests 212.1 for each of the three flow levels are tabulated in Tables 4.3-1 through 4.3-6 and are representative of the average performance during approximately one hour of test operation. The tables are identified by the test run number "RC048" followed by an alpha suffix "A,"

"B" or "C" to indicate the intended steam flow rate of 0.25,0.5 and 0.75 lbm/sec, respectively. The steady state times are defined as 8.722 to 10.307 hours0.00355 days <br />0.0853 hours <br />5.076058e-4 weeks <br />1.168135e-4 months <br /> for "A",11.121 to 12.096 hours0.00111 days <br />0.0267 hours <br />1.587302e-4 weeks <br />3.6528e-5 months <br /> for "B," and 13.214 to 14.289 hours0.00334 days <br />0.0803 hours <br />4.778439e-4 weeks <br />1.099645e-4 months <br /> for "C." Tables 4.3-4 through 4.3-6 present a comparison of the average, i minimum and maximum temperatures on the inside and outside vessel walls at each cross section of the vessel for each of the steam flow conditions. Also included are the maximum, minimum and average differential temperatures for the same elevations. The plots of the pressure and steam flow (vortex meter) are shown in Figure 4.3-1. The results of the non-condensible sampling are shown on l

Figure 4.3-2 at the two sampling locations (Dome-90 -63"-3" and F-0 -6"). The data shows that the air tends to concentrate below the operating deck level. '

Internal velocity meters were located in five internal locations in the test vessel as indicated in Table 4.3-7. The Huntzsch anemometers (Dome-42"-165 -1.5" and A-90*-1.5") provided outpu" that l indicated that the velocities were generally upward, parallel to the dome wall, i.e. toward the center in l

the vessel dome and toward the center in the vessel dome and down along the sidewall while at steady l

l state. The pacer at Dome-42"-345 -1.5" provided data of a magnitude consistent with the dome  !

l H6ntzsch. The remaining pacer units either failed or had velocities below the current sensor threshold.

l Table 4.3-7 contains a summary of the indicated flows for the velocity sensors for the entire test run. '

l Figure 4.3-3 presents the history of the anemometers for the test.

Condensation collection during the steady state portion of the test was performed with the condensate collection to tank 1 from the open and closed area in the bottom of the test vessel and the remainder to condensate collection tank 2.

Water distribution around the circumference at the bottom of the baffle was taken during each steady state portion of the test. During the two lower steam flow portions of the test the water distribution was measured at 100 percent; coverage reduced to 95.3 percent during the 0.75 lb/see portion of the test at 13.75 hours8.680556e-4 days <br />0.0208 hours <br />1.240079e-4 weeks <br />2.85375e-5 months <br />. The distribution of dry strips around the circumference had an average width of 2.5in.

mM$78w-2.non:lb-041897 4-20 Rev.I

FINAL O-M i

u

.J d

N b

5 K

O { E r.E a

e 1

Z 9

e Es.

l l

l t

!O - -

m:\3578w 2.non:Ib-041897 4-23 Rev.1

yp

=.n O

l I

8 4

0 C

R n

u R

1 2

1 2

t s

e T ,

t s

n e

m e

r u

s a

e O

M y

t i

c l

o e

V l

a n

r t

e I

n 3-3 4

e r

u g

i F

' i O

Bc$e$8 2I_5 4I

._ . = - . ~ . _ - . _ _ . . - . . .. _ _ .~. ..

FrNrt I

_ a,C TABLE 4.31 TEST 212.1 SUhDIARY DATA l

RUN RC048A AVERAGE TEST DATA WALL TEMPERATURES TEMPERAT('72S INTERNAL 1

INS E OUTSIDE FLUID WALL AT BAF LE

( F) (op) 4.p)

O l

l o_ _

l m:0578w.2 non:Ib-041597 4-27 Rev.I

i FINAL

~

a,c

, TABLE 4.31 (cont.)

TEST 212.1

SUMMARY

DATA RUN RC048A AVERAGE TEST DATA O

i 1

4 9

m:\3578w-2.non:lboll597 4 28 i l

1

FINAL a,c TABLE 4.3-3 TEST 212.1

SUMMARY

DATA RUN RC048C AVERAGE TEST DATA WALL TEMPERATURES TEMPERATURES INTERNAL INSIDE INSIDE OUTSIDE FLUID WALL AT BAFFLE

(*F) ('F) ('F) ('F ) (*F) i I

O l l

1 l

l l

)

l l

I l

m \3578w 2,non:Ib 041597 4 31 l

1 FLNAL l

_ a,c TABLE 4.3-3 (cont.)

9 )1l 1

TEST 212.1 SU5151ARY DATA '

i RUN RC048C AVERAGE TEST DATA j

e 9

O m:\3578w-2.non:Ib-041597 4-32 hI

FINAL 4.4 Test Results 213.1

('N Tc:t 213.1 was a constant flow test conducted by establishing a steam flow at a constant rate and maintaining the flow until the vessel arrived at a constant pressure with the air cooling fan on at 530 RPM with water cooling about 50 percent less than that employed in Test 212.1 to the vessel maintained at a predetermined uniformly distributed water coverage. After the vessel reached a constant pressure the steam flow was increased and maintained tmtil the vessel again reached a steady pressure. Again after the vessel reached a constant pressure the steam flow was increased to a third level and was allow to come to a steady pressure. The extent of water coverage on the vessel was measured during each steady state period.

The steady state results for test 213.1 for each of the three flow levels are tabulated in Tables 4.4-1 through 4.4-6 and are representative the average performance during approximately one hour of test operation. Tables 4.4-4 through 4.4-6 present a comparis.on of the average, minimum and maximum temperatures on the inside and outside vessel walls at each cross section of the vessel for each of the steam flow conditions. The tables are identified by the test run rumber "RC050" followed by an alpha suffix "A," "B" or "C" to indicate the intended steam flow level of 0.25,0.5 and 0.75 lbm/sec, respectively. The steady state times are defined as: 8.519 to 9.539 hours0.00624 days <br />0.15 hours <br />8.912037e-4 weeks <br />2.050895e-4 months <br /> for "A," 9.950 to 10.871 hours0.0101 days <br />0.242 hours <br />0.00144 weeks <br />3.314155e-4 months <br /> for "B," and 12.280 to 13.030 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br /> for "C " Plots of the pressure and steam flow (vortex meter) are shown in Figure 4.4-1.

l n

l

) As noted on Table 4.4-3, the outlet velocity of the annulus air is low when compared to the other air velocities reported herein. The only significant variation from the other portions of the test was the increase in the water evaporated into the annulus. Review of previous tests would indicare a minimal impact on the air velocity at constant fan speed of 530 rpm. It is recommended that a nominal value of 13.9 ft/see be used for the exit air velocity based on the fan calibration value at 530 rpm and the maintenance of an annulus AP of 0.11 in. H2 0.

The results of the non-condensible sampling are shown on Figure 4.2 2 at the two sampling locations (Dome-90*-63"-3" and F-0*-6"). The data shows that the air tends to concentrate below the operating deck level.

Internal velocity meters were located in five internal locations in the test vessel as indicated in Table 4.4-7. ' Die H5nt2.sch anemometers (Dome-42"-165*-1.5" and A-90 -1.5") provided outputs that indicated that the velocities were generally up and toward the center in the vessel dome and down along the sidewall. No useable outputs were available from the Pacer anemometers. All these units have either failed or velocities below the current sensor threshold. Table 4.4-7 contains a summary of the indicated flows for the velocity sensors for the entire test run. Plots of the performance of the I anemometers during the test performance are shown in Figure 4.4.3.

m m:\3578w.2.non:Ib-o41597 4 37 Rev.1

Ftut Water distribution around the circumference at the bottom of the baffle was taken afterl stea was established at each of the required flow rates. Table 4.4-8 summarizes the water distribution around the circumference of the vessel at each of the steady state.

Condensation collection during the steady state portion of the test was performed with the cond s collection to tank I from the heel of the test vessel and the remainder to cond Figures 4.4-4 and 4.4-5 provide an indication of the 'emperature distribution on the inside wall o test vessel and of the inside fluid temperature apprcximately 1 in. away from the wall as a function of elevation.

9 9

mM578w 2.non:lb4M1597 4-38

FINAt.

a,c TABLE 4.6-1 TEST 215.1

SUMMARY

DATA RUN RC045A AVERAGE TEST DATA

=====,

WALL TEMPERATURES TEMTERATURES INTERNAL INSIDE INSIDE OUTSIDE FLUID WALL AT BAFFLE

('F) (*F) ('F) ('I') ('F) l O

l mA3578w-2a.non.lb481597 4-73

FINAL a,c TABLE 4.6-1 (cont.)

TEST 215.1 SUS 151ARY DATA RUN RC045A AVERAGE TEST DATA l

1 O l l

O m:\3578w 2 anon:lb-041597 4 74 Rev.1

FLNAL TABLE 4.6 2 4 TEST 215.1

SUMMARY

DATA RUN RC045B AVERAGE TEST DATA WALL TEMPERATURES TEMPERATURES INTERNAL INSIDE INSIDE OUTSIDE T' UID WALL AT BAFFLE

('F) (*F) (-F) ('F) ('F)

O l

l l

O _'

m:\3578w ". anon:Ib-041597 4 75 Rev.1

TsNAL

_ a,c T2 BLE 4.6 2 (cont.)

TEST 215.1

SUMMARY

DATA RUN RC045B AVERAGE TEST DATA i

I 1

l l

l l

l l

l 1 l l

1 1

O i

O m:\3578w-2a.non.lb-041897 4-76 Rev.1

FINAL

' AC i

i 1

N en 6

a e

s '

K '

,?

==

N >

F D

e i 3  ;

  • i g $

U Ie i E

Es E

s i R

w 8"

I ec A

  • I s

I t

f

~ _

i m:\3578w-2a.non:lbe41597 4 97

m9$

I I

eo O 2

5 0

C R

n u

R 1

7 1

2 t

s e

T s

n i

o t

a r

, t -

n e

c n -

o C

i m

u O

l I

c I

d n

a l

e b

i s

n e

d n

o C-n o

N 2- -

8 4

e r -

u g

i F

I l

O R63?Vv$ VE 5a wI c -

Q*

FLNAL

_ a,c I

TABLE 4.8-6 TEST 217.1, RUN RC052, DISTRIBUTION OF DRY STRIPS WET AVERAGE DRY MTDTH TEST CONDITION (ck) (;,)

f l

O l

f m:0578w-2a.non:1 bot 1597 4,y g9

FINAL, 4.9 Test 218.1 he constant flow tests reported herein were conducted by establishing a steam flow at a constant rate and maintaining the flow until the vessel arrived at a constant pressure with the air cooling fan on and with water cooling to the vessel set at a predetermined level. After the vessel reached a constant pressure,20 mole percent of helium is injected into the test vessel over a half hour time period and the vessel is allowed to again reach a steady pressure. The extent of water coverage on the vessel was measured during the steady state periods and gas sampling was performed to detennine the concentration of ncncondensibles and helium. The insulation was removed from the bottom of the I vessel belove the open and deadend companment areas to simulate long term heat sinks; insulation was left under the steam generator compartment.

The steady state results for 218.1 for the test before and after (elium addition are tabulated in Tables 4.9-1 through 4.9-4 and is representative of approximate;y one hour of test operation. The tables are identified by the test run number "RC053" followed by a alpha suffix "A" or "B" to indicate the steady state conditions before and after helium addition, respectively. The steady state times are defined as 9.064 to 9.971 hours0.0112 days <br />0.27 hours <br />0.00161 weeks <br />3.694655e-4 months <br /> for "A" and 12.923 and 13.923 hours0.0107 days <br />0.256 hours <br />0.00153 weeks <br />3.512015e-4 months <br /> for "B." Tables 4.9-3 and 4.9-4 4 l

present a comparison of the average, minimum and maximum temperatures on the inside and outside vessel walls at each cross section of the vessel for each of the air flow conditions. Plots of the pressure and steam flow (vortex meter) are shown in Figure 4.9-1. The helium was injected between 9.95 and 10.45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br /> at a flow rate of 3.46 x 10~3 lb/sec. l I

The steam flow in test 218.1 shows a larger spread than in test 217.1 but it is a regular cycle which stays within a 360 lb/hr range required by the test procedure.

The results of the non-condensible sampling are shown on Figure 4.9-2 at the four sampling locations (Dome-90 -63"-3", A-270*-6", E-90 -6"and F-0 -6"). The data shows that the air tends to concentrate below tise operating deck level and that the helium concentration over the entire vessel reaches a well mixed condition after approximately 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

Internal velocity meters were located in five intemal locations in the test vessel as indicated in Table 4.9-5. The H6ntzsch anemometres (Dome-42"-165*-1.5" and A-90*-1.5") pavided outputs that indicated that the velocities were generally up and toward the center in the vessel dome and down along the sidewall. Some outputs were noted from the Pacer anemometers, panicularly at D-180* No outputs were steady enough to obtain a flow direction and the high velocity outputs are most likely the result of the sensor blade beirg hit with condensation droplets. Table 4.9-5 contains a summary of the indicated flows for the velocity sensors for the entire test run. Plots of the benavior of the internal velocity meters is shown in Figure 4.9-3.

I Water distribution around the circumference at the bottom of the baffle was taken after steady state was established before and after helium addition. Table 4.9-6 summarizes the water distribution l

l around the circumference of the vessel during each steady state period.

1 m:us78..n non:1b.041897 4-110 Rev.1

.--. _ . . . . . - . . _ . . . ~ . . - - . - . - - . - . . .- - . .-. . . - . . . . .

FLNAL l

a.c J

TABLE 4.9 2 c TEST 218.1

SUMMARY

DATA RUN RC053B AVERAGE TEST DATA

WALL TEMPERATURES TEMPERATURES 4 INTERNAL INSIDE INSIDE OUTSIDE FLUID WALL AT BAFFLE

(*F) (*F) (*F) (*F) ('F) i i

s j

.i I

O -

I I

1 1

i 1

4 1

l O_ _

m \3578w-2a.non:lb-041897 4 119

FINAL

_. a,c TABLE 4.9-2 (cont.)

TEST 218.1

SUMMARY

DATA RUN RC053B AVERAGE TEST DA'l A l

I l

I l

l l

l m:r O

m:\3578w-:a.non-lb041597 4 120 Rev.1

FLNAL TABLE 4.10-7 TEST 219.1 RUN RC057, INTERNAL VELOCITY TEST DATA STAST)ARD AVERAGE MAXIMUM MINIMUM DEVIATION (fusec) (fusec) (fuscc) (fusec) NOTES LOCATION

~

O O

m:057Sw-2a non 15041597 4-141

FrNAL 4.11 Test 220.1 I

The transient flow test reported herein was conducted by providing the maximum flow of steam 9

I attainable to the test section for a 20 to 30 second period of time, ne flow was then reduced to I

I approximately 0.5 lb/sec. for the remainder of the test until the vessel arrived at a constant press with the air cooling fan on and with water cooling to the vessel set at a predetermined level. The I

I extent of water coverage on the vessel was measured during the steady-state periods and gas was performed to daermine the concentration of noncondensibles. For Test 220.1, the insulation was I

removed from the bottom of the vessel below the open and deadend compartment areas; insulation was I left under the steam generator compartment.

I l

I Review of the steam flows from the condensate and vortex meters indicated that the vor consistently performed at a 15 to 20 percent lower flow than indicated by the condensate over the I

steady state period. The vortex meter operates at 7.5 percent of its operational range and therefore its I

accuracy' relative to reading is a large percentage (-10 percent). It is recommended that the vortex '

I meter outputs be used for time-dependent performance and the condensate measurement for the steady I

state performance characteristics (or 15 percent be added to the vortex measured steam flow rate for I all times greater than 10.9 hours1.041667e-4 days <br />0.0025 hours <br />1.488095e-5 weeks <br />3.4245e-6 months <br /> to compensate for this difference).

I l

The initial transient steam flow to the test vessel is shown in Figure 4.11-1. The start of the transient I is back calculated from the data contained in Appendix D to 10.7122 hours0.0824 days <br />1.978 hours <br />0.0118 weeks <br />0.00271 months <br /> or about 10 seconds before I the first transient data set.

l l The steady state results for Test 220.1 are tabulated in Table 4.11-1; the steam state time is defined as I from 11.9814 hours0.114 days <br />2.726 hours <br />0.0162 weeks <br />0.00373 months <br /> to 12.9997 hours0.116 days <br />2.777 hours <br />0.0165 weeks <br />0.0038 months <br />. A plot of the vessel pressure, steam flow (vonex meter), and I

steam flow (condensate) is shown in Figure 4.11-2. The indicated pressures are corrected for an offset I

of 0.12 psi at the start of the test to adjust the ambient pressure within the vessel to equal the recorded I pressure from the transducer.

I l The results of the noncondensible sampling are shown in Figure 4.11-3 at the four sampling locations I

(Dome-90*-63"-3", A-270*-6", E-90*-6"and F-0*-6"); note that the pressure axis is displayed in " psia" I rather than the "psig" used in Figure 4.11-1. The data show that the air tends to concentrate below the I operating deck level).

I I Internal velocity meters were located in five locations in the test vessel as indicated in Table 4.11-2.

I The H6ntzsch anemometer A-90 -1.5" provided output that indicated that the velocity along the wall I was down along the sidewall throughout the test. The H6ntzsch anemometer at Dome-42"-165*-1.5" I did not provide any useable output. The Pacer anemometers at E-30 -1" provided outputs in excess I of their minimum sensitivity over the first 6 minutes of the test and then read below their detection i

The meter accuracy is quoted as I percent of full scale with the range extending from 5 9 to .45 lb/sec. at the rneter's test operatmg conditions.

mM578w-3.non lb-041597 4-]42 Rev.1

I FINAL, 1

O l limits. The Pacer located at Dome-42"-345 -1" provided outputs over the majority of the test with 4

bl some high velocities noted (9,12,25, etc) on a sporadic basis; the majority of outputs were on the I order of the average value shown in Table 4.11-2. Figure 4.11-3 contains a summary of the indicated I l flows for the velocity sensors for the entire test run. I l l I Condensation collection during the steady state pottion was switched to different collection tanks to j l determine the distribution of condensate within the vessel. Table 4.11-3 documents the condensate 1 I flows for the dome and sidewall during the steady state period. Review of the data indicates that only l l 3 to 4 percent of the condensate collects as rainfall and bottom collection (steam generator l I compartment and remainder of bottom). The remainder of the condensate is almost equally divided I l between the side wall and dome. '

l I Water distribution around the circumference at the bottom of the baffle was taken after completion of I the transient and after steady state was established. Table 4.11-4 summarizes the water distribution I i around the circumference of the vessel at each of the steady state conditions.

l l Figures 4.11-4 and 4.11-5 provide an indication of the average terrperature distribution as a function I of level for the inside vessel wall and the fluid temperature approximately 1 in. inside the vessel.

O l

I 1

1 i

l l

l l

l i

l 4

%J i

i

)

mA3578w-3.non:lbell597 4 143 Rev.1 '

I

FINAL a,c 9

4 N

W o

U M

4 m

D J

d N

N Eu b

k 2

6

E ca 2

th 3

=

==

c v

o.

4 D

.5 6

4 4

4 O

m:\3578w 3.non:1 bell 897 4 144 Rev.1

- _ , _ . - - . . . . _ ..-. . _ _ , . _ . _ . . _ . . . - . . . . , _ . _ . _ . . . _ . . . _ -._.m_...mm.._.. . ..._m.u.._.-. . _ . . - _ . . . . _ -

J i

l FmAL t

E i "

I 8,C i ,

l-i .s J

i i  :

i .

l .

4 1 1  !

1 9

e a

2'

[

1 N E $

1 u  :

} M a n

' 3 O

N N

  • O F

I 3

m k

E a

w G

r/1 la G

h 3

t \

l m

N.

v G

b b

m:\3578w-3.non:1b-041597 4 145 Rev.1

m2$

I 3 l

$h 1

e -

2 6

0 C

R n

u R

I.

0 2

2 t

s e

T s

n i

o t

a r

t C

n e

c n

o 9

e b

i s

n e

d n

o c.

i o

N 3-1 1

4 e

r u

g i

F l l B$#fy!VE3% l'%cn <. -

FINAL

- a,c '

O i i

i i

I m ,

8 .

U  !

M s

s E 1 6

N l

N  ;

5 E=

1 & i l' g It [

s 2

.b.

( $o  !

'll 4 e,.

s 2

.s.

T 9

  • 2 ,

s .

.P b  !

i l L i

a m:us78w.3.non. iso 4i597 4-147 Rev.1

FINAL a,C O

N U

z a

3 z

J d

N N

C H

d u

a E6 o

C=

E o

H

=

a

?

T e-o o

~5

'?

~i E

n ec E

l l

O 1

m:us78w-3.non.lb-04:597 4 148 Rev.I

FINAL

_ - a,c O

i

)

i l

)

N M

a

'. c 3

1 4 M

!^ J 0

-}

?

N I .o E ,

H  ;

l Y

' 2 R.

1

.T i k

7 E

s 3 ,

.~

4 w

i 8 '

=

ins r

5

[

E m:\3578w 3,non:Ib-041597 4-]49 Rev.1

FINAL a,c TABLE 4.11.1 TEST 220.1

SUMMARY

DATA RUN RC062 AVERAGE TEST DATA WALL TEMPERATURES TEMPERATURES INTERNAL INSIDE INSIDE OUTSIDE FLUID WALL AT BAFFLE

('F) (*F) ('F) ('F) (*F) l 9

i I

m:\3578w-3.non.lbe41597 4-150 Rev.I

FLNAL a,c TABLE 4.11.1 (cont.)

TEST 220.1

SUMMARY

DATA RUN RC062 AVERAGE TEST DATA -_-

WALI. TEMPERATURES TEMPERATURES INTERNAL INSIDE INSIDE OUTSIDE FLUID WALL AT BAFFLE

(*F) (*F) (*F) (*F) (*F)

("

(

l l

l l

l

't U

m:\3578w 3.non:lb4M1597 4 151 Rev.I

gp I

g l

O S

E T

O N -

A T

A D

T S DN T

I' RO )

Y AIT c e

T NIA D s I /t .

C AV f

(

O TE SD L

E V

2L-1 A M 1 N O

)

U c 4R M e lee bT I

/t s

N aN I f

(

TI ,

M 2

6 0

C R M N U )

c U M e R I

/t s

X 1

A f

(

0 M 2

2 T

S E -

T E )

G .

A c e -

R it s

E V f

(

A N -

O I

T A -

C O.

1 I

I e--

Bd$$ 8i[g G, Jt O<. -

l,I 1 fl

]j .

N3" -

g l

I E

R

$ U T

{'U A R

E P

)

F

( -

R I

M I

E 0 T 3

1 O

T )

WE 7 c 5 T e 2 DA /

s 1

RR b I(

D OI R

E P

E M N I

T O I

T A

C O

L E

T A

S E N R E U D T N A )

F O R

  • C E (

P R

F I M O I 5

E T

N 2 O

I 1

3 T O 1

U T )

WE 1

4I B 0 T

c e

2 O A s ER 1 L

F R W L ST D I( _

x Bl Ap OI _

^U

/

T 2 6

0

, R E

P E

C R M N N

I T O I

U T R A C

I., O 0 L 2

2 T

S E

T E R

U T

A )

F R

  • E (

P R

I M

E I

5 T 8

1 1 )

O WE T c

e T O A s 5 L F R W 1 I(

1 D

O I

R E

P E N M O I

I T T A

'X I

I

'eC 1 j

E6Nehl YG,w N2 ._

lii

FINAL 1

I TABLE 4.11-4 I

TEST 220.1, RUN RC062, DISTRIBUTION OF DRY STRIPS I TEST CONDITION WET AVERAGE DRY WIDTH

(%) (in.)

I ,

1 S-l i

1 l

l O

1 1

l l

l i

l l

l l

1 l

0 m.\3578w-3.non:lb-041597 4-154 Rev.I

FINAL

'q a,c g I l

TABLE 4.11-5 VESSEL TEMPERATURE DISTRIBUTION FOR TEST 220.1 l AVERAGE WALL MAXIMUM WALL MINIMUM WALL I TEMPERATURE TEMPERATURE TEMPERATURE I LOCATION INSIDE OUTSIDE DELTA INSIDE OUTSIDE DELTA INSIDE OUTSIDE DELTA l cn t*n s's en en en en en en l

l l

L l

I 1  :

I I \

l 7 -

i O  !

i l

l 1

O m:us78w.3.non:1b-04:597 4 155 Rev.I

FLNAL 9

l l

I This page left intentionally blank O

mA3578w.3.non:!b-041597 4-156 Rev.1

FINAL 4.12 Test 221.1 G

The transient flow test reported herein was conducted by introducing an initial high steam flow (2 lbm/sec) for approximately 40 seconds followed by a reduced steam flow of approximately 1 lbm/see for 5 minutes with a flow reduction to 0.1 lbm/see for the remainder of the test. Helium is added to the system through the steam line after steady state is reached at 0.1 lbm/sec steam flow.

The water cooling is shut off after steady state is reached. The test is continued until the pressure stabilizes. A constant air flow is maintained through the test by maintaining the air cooling fan at a constant speed. The insulation was removed from the bottom of the test vessel below the open and I deadend compartment areas; insulation was left under the steam generator companment.

Review of the steam flows from the condensate, voitex and Gilflo meters indicates that the Gilflo meter has consistently been performing at a 15 to 20 percent lower flow than indicated by the condensate and the vortex meter during steady state flows. The initial flow transient recorded by the vortex meter is about half of the flow recorded by the Gilflo meter during the initial transient. Review of the strip charts which continuously give an indication of the steam flow shows that the initial flow was held for approximately 48 seconds at 2.00 x 0.11 lb/sec followed by 5.2 minutes where the average flow was 1.0120.07 lb/sec as monitored by the "Gilflo" flow meter. The vortex meter produced outputs that were beyond its calibration range for the initial flow transient. The second portion of the transient is within output range of the vonex meter and indicates a steam flow rate of

/O 1.18 0.06 lb/sec. It is recommended that the Gilflo output be used for the initial flow transient and the vortex meter outputs be used for time dependent performance after the initial transient and either the condensate measurement or the vortex meter for steady state performance characteristics.

The steady state results for Test 221.1 are tabulated in Tables 4.12-1 through 4.12-6 and are representative of approximately one hour of test operation. The tables are identified by the test run number "RC056" followed by an alpha suffix "A," "B" or "C" to indicate the steady state conditions of wet, wet with helium present, and steady state dry, respectively. The steady state times are defined as:

8.516 to 9.516 hours0.00597 days <br />0.143 hours <br />8.531746e-4 weeks <br />1.96338e-4 months <br /> for "A," 12.411 to 13.245 hours0.00284 days <br />0.0681 hours <br />4.050926e-4 weeks <br />9.32225e-5 months <br /> for "B," and 17.5389 to 18.538 hours0.00623 days <br />0.149 hours <br />8.895503e-4 weeks <br />2.04709e-4 months <br /> for "C."

Tables 4.12-4 through 4.12-6 present a comparison of the average, minimum and maximum temperatures on the inside and outside vessel walls at each cross section of the vessel for each of the air flow conditions. Plots of the pressure and steam flow are shown in Figure 4.12-1; the steam flow is a result of the combination of Gilflo and vortex meter outputs as recommended above. The helium was injected between 9.53 and 10.28 hours3.240741e-4 days <br />0.00778 hours <br />4.62963e-5 weeks <br />1.0654e-5 months <br /> at a flow rate of 0.00385 lb/sec (75"F,70 psig). Although higher than the required flow rate, this flow is sufficient to accomplish the test purpose of addressing the effects of helium mixing on the long term cooling during post accident conditions.

The gas sampling apparatus was used during each of the steady state periods of the test. The results of the non-condensible sampling are shown on Figure 4.12-2 at the four sampling locations (Dome-90 -63"-3", A-270 -6", E-90 -6" and F-0 -6"). The data shows that the air tends to concentrate below h the operating deck level. The plot also shows the helium concentration at each sample location and time. The helium concentration is shown to become uniformly distributed in the test vessel during the m:u578w-3.non:ib-04 597 4 157 Rev.1

FINAI.

I water cooling portion of the test after about three hours. The helium concentration difference between l the volumes above and below the operating deck increased after stoppage of water flow to approximately 5 percent. Two helium concentration data points shown are incon. ' with the trends shown for the remainder of the test and it is recommended that they be ignored.

Internal velocity meters were located in five intemal locations in the test vessel as indicated in Table 4.12-7. The H6ntzsch anemometer located at A-90 -1.5" indicated a generally downward flow along the sidewall while at steady state. The H6ntzsch anemometer located at Dome-42"-165'-1.5" showed little change in output from before the test was started to the end and is assumed to have failed. The Pacer anemometer at Dome-42"-345 -1.5" showed civity during tlie helium addition and during the dry portion of the test with few indications at other times. The Pacer anemometer at E-30 showed limited outputs which were concentrated during the dry portion of the test. The Pacer anemometers at D-180 showed very few indications higher than a nominal 0.4 ft/sec and is assumed to be nonfunctional. Table 4.12-7 contains a summary of the indicated flows for the velocity sensors for the entire test run. Plots of the behavior of the intemal velocity meters is shown in Figure 4.12-3.  ;

Condensation collection during the steady state portion of the test was performed with the condensate collection to tank i from the heel (open and closed areas) of the test vessel and the remainder to condensate collection tank 2.

4 Water distribution around the circumference at the bottom of the baffle was taken after steady state water coverage was established. Table 4.12-8 summarizes the water distribution around the circumference of the vessel at each of the ste'ady state conditions.

Figures 4.12-4 and 4.12-5 provide an indication of the average temperature distribution as a function of level for the inside vessel wall and the fluid temperature approximately 1 inch inside the vessel.

O muS78wanona b-041597 4-158

l FINAL i

i

?

f iO 4.13 Test 222.1

The transient flow test reported herein was conducted by providing the maximum flow of steam

{ attainable to the test section for a 15 second period of time. 'Ihe flow was then reduced to

approximately 3 lbm/sec for 30 seconds and then reduced to 0.5 lbm/sec for the remainder of the test

! until the vessel arrived at a constant pressure with the air cooling fan on and with water cooling to the j vessel set at a predetermined level. The extent of water coverage on the vessel was measured during l the steady state penods and gas sampling was performed to determine the concentration of-i noncondensibles. For test 222.1 the insulation was removed from the bottom of the vessel below the

I open and deadend companment areas; insulation was left in place under the steam generator

! companment.

i

! Review of the steam flows from the condensate and vortex meters indicates that the vonex meter l l consistently performs at a 8 to 12 percent lower flow than indicated by the condensate over the steady I j state period. It is recommended that the vonex meter outputs be used for time dependent performance )

and the condensate measurement for the steady state performance characteristics (or 8 percent be l added to the steam flow rate for all times greater that 11.05 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> to compensate for this difference). j The initial transient steam flow to the test vessel is displayed in Figure 4.13-1. The stan of the l transient is back calculated from the data contained in Appendix D to 11.0302 hours0.0035 days <br />0.0839 hours <br />4.993386e-4 weeks <br />1.14911e-4 months <br /> or about 6 seconds before the first transient data set.

l The steady state results for Test 222.1 (Run RC061) are tabulated in Table 4.13-1 and 4.13 2 prior to the first pressure upset shown in Figure 4.13-2 and are representative of approximately one hour of I test operation. The steady state time is defined as from 12.434 to 13.432 hours0.005 days <br />0.12 hours <br />7.142857e-4 weeks <br />1.64376e-4 months <br />. Table 4.13-2 presents a comparison of the average, minimum and maximum temperatures on the inside and outside vessel walls at each cross section of the vessel for each of the air flow conditions. Plots of the vessel pressure and steam flow (vonex meter) are shown in Figure 4.13-2. The pressure upsets shown around 13.5 and 14.1 hours1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> were due to a direct discharge of condensate that had backed up into the test vessel. The vessel pressure transducer is closely coupled with the vessel sight gage line and is reacting to the localized decrease in pressure. The comparison of the condensate and vortex steam flow measurements are also illustrated in Figure 4.13-2. The vortex flow meter is operating at the lower end of its operational range during the third flow rate period (0.5 lbm/sec) and therefore the discrepancy noted is about 1.3 percent of full scale (6.7 lbm/sec) or about 8 to 12 percent lower than the condensate flow rate.2 The meter has a rated accuracy of 1 percent of full scale.

The results of the non-condensible sampling are shown on Figure 4.13-3 at the four sampling locations (Dome-90*-63"-3", A-270*-6", E-90*-6"and F-0*-6"). The data shows that the air tends to concentrate below the operating deck level).

O 2 The meter accuracy is quoted as 1% of full scale with the range extending from 5.9 to .45 lb/sec at the meter's test operating conditions.

m:\3578w.3.non:Ib-o41597 4-175 Rev.I

FINAL l

Internal velocity meters were located in five locations in the test vessel as indicated in Table 4.13-3.

The H6ntzsch anemometer A-90 -1.5" provided output that indicated that the velocity was down along the sidewall throughout the test. The Huntzsch anemometer at Dome-42"-165*-1.5" did not provide  !

any useable output. The Pacer anemometers at E-30* 1" and Dome-345*-1" provided outputs in excess of their minimum sensitivity over the first 10 minutes of the test and then read below their detection limits for the remainder of the test. The Pacer anemometer located at D-180*-1" provided outputs sporadically over the first hour of the test. The majority of outputs were on the order of the average value shown in Table 4.13-3. Table 4.13-3 contains a summary of the indicated flows for the velocity sensors for the entire test run. Plots of the behavior of the intemal velocity meters is shown in Figure 4.13-4.

Condensation collection during the steady state portion was switched to different collection tanks to determine the distribution of condensate within the vessel. Table 4.13-4 documents the condensate flows for the dome and sidewall during the steady state period. Review of the data indicates that only 3 to 4 percent of the condensate collects as rainfall and bottom collection (stean: genera:or compartment and remainder of bottom). The remainder of the condensate is almost equally divided I between the side wall and dome.

Water distribution around the circumference at the bottom of the baffle was taken after completion of I the transient and after steady state was established. Table 4.13-5 summarizes the water distribution ,

around the circumference of the vessel at each of the steady state conditions.

Figures 4.13-5 and 4.13-6 provide an indication of the average temperature distribution as a function i of level for the inside vessel wall and the fluid temperature approximately 1 inch inside the vessel. I l

i l

I l

l l

l 1

l l

l O1 l

mA3578w 3 non:1t>o41597 4-]76

- . .,-.. . . . - . . - . . = _ . . - . _ . . . . - . - - . . - . . ~ - . . . . . . - . . - . , - . - . ~ _ - . - . . . -

FINAL I

i 1

- ~ f Sc I

v '

I h

i I

4 I

t M ,

E i 3

M

    • 1 N ,

N N ,

b  !

'] t sa  :

w o

i z

C i

== t w

i

. l n

.=

1 L i

.L.

)

1 l

l

~

/

)

mA3578w-3.non:Ib 041597 4 177 Rev.1

}

-- - . .. -_ - - - - -- __.__ _ _. ___ _l

m95 I

I u'"

O-1 6

0 C

R -

2 n

u R

1 2

2 2

t s

e T

y -

r t

o i

s I

I w

O l

o F

m a

t e

S d

n a

r e

u s

s e

r P

l e

s s

e V

2 3

1 4

e r

u g

i F

I I

O 5sae4Eib c3 ?Goo

FINAL a,c V) TABLE 4.D-1 TEST 222.1

SUMMARY

DATA RUN RC061 AVERAGE TEST DATA WALL TEMPERATURES TEMPERATURES INTERNAL INSIDE OUTSIDE FLUID WM L AT INSIDE BAFFLE

(*F) (*F) (*F) (*F) (*F) l l

1 I

ts s

l r

V- -

mA3578w 3.non:Ib-041597 4-183

FLNAL a,c TABLE 4.13-1 TEST 222.1

SUMMARY

DATA RUN RC061 AVERAGE TEST DATA l

O O

m:\3578w 3 non:lb-041597 4 184 Rev.I

FINAL.

A 4.14 Test 222.2

(

The transient flow test reported herein were conducted by providing the maximum flow of steam attainable to the test section for a 15 second period of time. The flow was then reduced to approximately 3 lbm/see for 30 seconds and then reduced to 0.5 lbm/sec for the remainder of the test until the vessel arrived at a constant pressure with the air cooling fan on and with water cooling to the vessel set at a predetermined level. The pressure is then increased to approximately 30 psig and the vessel is allowed to come to steady state. The extent of water coverage on the vessel was measured during the steady state periods and gas sampling was performed to determine the concentration of noncondensibles. The bottom ithe vessel below the open and deadened compartment areas rernained uninsulated wi.h the insulation left in place under the steam generator compartment.

The initial transient flow to the test vessel with the steam diffuser raised to a level 5.8 ft. above the operating deck is displayed in Figure 4.14-1. The start of the transient is calculated from the data I contained in Appendix D to the data set taken at 9.9936 hours0.115 days <br />2.76 hours <br />0.0164 weeks <br />0.00378 months <br />. The mass flow transient was calculated from the vortex meter output together with the steam temperature and pressure at the flow meter. The line pressure at the steam meter was estimated from the data available in the DAS output and the pressure history of similar transients. The steam temperature was estimated from a linear regression of the DAS monitored steam temperature. The nominal values of-pressure and temperature are indicated on Figure 4.14-1.

i b The results for the low (RC065A) and high (RCM5B) steam flow rate, steady state periods of Test 222.2 are tabulated in Tables 4.14-1 and 4.14-2. The steady state data was taken from the time periods 12.06 through 13.04 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> and 15.32 through 16.32 hours3.703704e-4 days <br />0.00889 hours <br />5.291005e-5 weeks <br />1.2176e-5 months <br />, respectively. Tables 4.14-3 and 4.14-4 show a summary of the vessel average, minimum, and maximum temperatures on the inside and outside reactor walls at each set of test conditions. Also included are the maximum, minimum, and average differential temperatures across the wall. The data presented is representative of approximately one hour of test operation; plots of the vessel pressure and steam flow (vortex meter) are shown in Figure 4.14-2. The comparison of the condensate and vortex steam flow measurements are also illustrated in Figure 4.14-2. The steam flow as recorded by the vortex meter maintains a steady flow over both of the steady state periods. The condensate flow settles into a steady flow rate approximately 5 percent higher than the steam flow rate. Condensation collection during the steady state portion was switched to different collection tanks to determine the distribution of condensate within the vessel. Table 4.14-5 documents the condensate flows during the steady state period. The initial two collection periods seem to indicate that condensate was held up for a time and later discharged during the second period and the early part of the third. Review of the data indicates that approximately 61 percent of the condensate is generated on the vessel dome during the final collection period.

The results of the non-condensible sampling are shown on Figure 4.14-3 at the four sampling locations (O

%J (Dome-90*-63"-3", A-270 -6", E-90*-6"and F-0*-6"). The data shows that the air tends to concentrate c ?a578w.3.non:ib-os 597 4 189 Rev.I

FLNAL below the steam injection point, since the air partial pressure at both the "F" and "E" levels are close to the pressure of the vessel.

The internal velocity meter located at A-90 -1.5" provided output that indicated that the velocity was down along the sidewall throughout the test. The majority of readings were on the order of the i average value shown in Table 4.14-6 with the peak velocity occurring during the initial steam l transient. The remainder of the internal velocity meters did not function throughout the test and are considered to have failed. Figure 4.14-4 shows the behavior of the intemal velocity meters throughout one test. l Water distribution around the circumference at the bottom of the baffle was taken after comple: ion of the transient and after steady state was established. Table 4.14-7 summarizes the water distribution around the circumference of the vessel at each of the steady state conditions.

Performance of the velocity meter (Channel 295) below the fan assembly is no longer providing reliable data. Use fan calibration data located in Section 2.2.7, equation 13 for an estimate of the l outlet velocity based on the fan RPM. 1 1

Figures 4.14-5 and 4.14-6 provide an indication of the average temperature distribution as a function of level for the inside vessel wall and the fluid temperature approximately 1 inch inside the vessel.

O J

d 9

m:\3578w.3.non:Ib-041597 4-190

FINAL rm a,e u ..

TABLE 4.14 2 TEL7 C 2

SUMMARY

DATA RUN R( s65B AVERAGE TEST DATA WALL TEMPERATURES TEMPERATURES INTERNAL INSIDE INSIDE OUTSIDE FLUID WALL AT BAFFLE

('F) (*F) ('F) ('F) ('F) e l

l I

I O

l mA3578w 3.non:Ib-041597 4 199

FINAL a,c TABLE 4.14 2 (cont.)

TEST 222.2

SUMMARY

DATA RUN RC065B AVERAGE TEST DATA l

O I

1 i

I O'

i mA3$78w-3.non.lb-041597 4-2 % Rev.1

)

FINAL l

a,c

(

TABLE 4.14 3 I VESSEL TEMPERATURE DISTRIBUTION FOR TEST 222.2, RC065 AVERAGE WALL MAXIMUM WALL MINIMUM WALL TEMPERA 111RE TEMPERATURE TEMPERATURE INSIDE OUTSIDE DELTA INSIDE OUTSIDE DELTA INSIDE OUTSIDE DELTA LOCATION (*F) (*F) (*F) (*F) (*F) (*F) (*F) (*F) (*F) e f

i g.,

I a

1 l

j 1

~

l i

j 8

O\

Q- _

i O

m:\3578w 3.non:lb-041597 4 201 Rev.1

FINAL TABLE 4.14-4 l VESSEL TEMPERATURE DISTRIBUTION FOR TEST 222.2, RC065B 1

AVERAGE WALL MAXBlUM WALL TEMPERATURE TEMPERATURE MINLMUM WALL TEMPERATURE INSIDE OUTSIDE DELTA INSIDE OUTSIDE DELTA INSIDE OUTSIDE DELTA LOCATION (*F) (*F) (*F) (*F) (*F) (*F) ('f) (*F) (*F)

O m U578w-3.non:lb-041597 4 202 Rev.1

FINAL

('s 4.16 Test 222.4

C/

The initial transient steam flow to the test vessel with the discharge directed upward through a 3 in.

diameter nozzle is displayed in Figure 4.16-1. The start of the transient is back calculated from the l l data contained in Appendix D to 10.8975 hours0.104 days <br />2.493 hours <br />0.0148 weeks <br />0.00341 months <br /> or about I second before the first transient data set. l The mass flow transient was calculated from the vortex meter output together with the steam )

temperature and pressure at the flow meter. The steam line pressure at the flow meter was calculated l 1

from the data available in the DAS output and the pressure history of the transient. The steam '

temperature was estimated from a linear regression of the DAS monitored steam temperature. The nominal values of pressure and temperature are indicated on Figure 4.16-1.

I The results for the low (RC066A) and high (RC066B) steam flow rate, steady state periods of Test 222.4 are tabulated in Tables 4.16-1 through 4.16-4. The steady state data was taken from the time periods 12.25 through 13.25 hours2.893519e-4 days <br />0.00694 hours <br />4.133598e-5 weeks <br />9.5125e-6 months <br /> and 15.75 through 16.77 hours8.912037e-4 days <br />0.0214 hours <br />1.273148e-4 weeks <br />2.92985e-5 months <br />, respectively. The data presented is representative of approximately one hour of test operation. Tables 4.16-3 and 4.16-4 present a comparison of the average, minimum and maximum temperatures on the inside and outside vessel walls at each cross section of the vessel for each of the air flow conditions. Plots of the vessel I pressure and steam flow (vortex meter) are shown in Figure 4.16-2. The comparison of the condensate and vortex steam flow measurements are also illustrated in Figure 4.16-2. The total )

l condensate flow settles into a steady flow rate approximately 4 percent higher than the vortex steam )

O G

flow rate during the first period and approximately 3 percent higher during the second.

]

Condensation collection during the steady state portion was switched to different collection tanks to l determine the distribution of condensate within the vessel. Table 4.16-6 documents the distributed i condensate flows during the steady state period. The condensate backed up into the test vessel during the third period and appears to have overflowed into the other condensate system as evidenced by the low condensate collection rate in the early portion of the third condensate collection period flowed by l an increased collection period. Review of the distributed condensate data indicates an inconsistency in the condensate distribution. Although the total condensate collection agrees well with the steam flow, the specific distribution to the dome and side wall during the first two collection periods do not produce consistent results, i.e., total to 118 percent. It is recommend that this condensate distribution data be used with caution.

The results of the non-condensible sampling are shown on Figure 4.16-3 at the four sampling locations (Dome-90*-63"-3", A-270 -6", E-90*-6"and F-0 -6"). The data shows that the dome tends to have a smaller concentration of air than the remainder of the vessel. All the pressure transducers of the sampling system were in agreement with the vessel and each other within 0.3 psi.

The internal velocity meter located at A-90 -1.5" provided output that ind;cated that the velocity was down along the sidewall throughout the test. The majority of outputs were on the order of the average hl value shown in Table 4.16-5 with the peak velocity occurring during the initial steam transient with J

the nczzle pointed directly upward. The remainder of the internal velocity meters did not function mA3578w.4.non:lb-041597 4-223 Rev.1

FLNAL throughout the test and are considered to have failed. Figure 4.16-4 presents a plot of the behavior of the intemal velocity meters. l l

Water distribution around the circumference at the bottom of the baffle was taken after completion of the transient and after steady state was established. Table 4.16-7 summarizes the water distribution around the circumference of the vessel at each of the steady state conditions. l Performance of the velocity meter (Channel 295) below the fan assembly is no longer providing reliable data. Use fan calibration data located in Section 2.2.7, equation 13 for an estimate of the outlet velocity based on the fan RPM. The velocity noted in Tables 4.16-1 and 4.16-2 reflect these values.

Figures 4.16-5 and 4.16-6 provide an indication of the average temperature distribution as a function i of level for the inside vessel wall and the fluid temperature approximately 1 inch inside the vessel.

1 i

i O 1 i

l I

l l

l 1

O mA3578w-4 non ib-N1597 4-224

FLNAL TABLE 4.161 TEST 222.4

SUMMARY

DATA RUN RC066A AVERAGE TEST DATA WALL TEMPERATURES TEMPERATURES INTERNAL INSIDE INSIDE OUTSIDE FLUID WALL AT BAFFLE

(*F) ('F) (*F) ('F) ('F) l O

l l

l l

l l

l 1

l O - -

mA3578w.3.non:lb-041597 4 23}

FINAL

_ a,c TABLE 4.16-1 (cont.)

TEST 222.4

SUMMARY

DATA RUN RC066A AVERAGE TEST DATA l 1

1 l

w O

> 0 m:\3578w 3 non:1b-041597 4-232 Rev.1

FINAL

_ a,e

(

TABLE 4.16-2 TEST 222.4

SUMMARY

DATA RUN RC066B AVERAGE TEST DATA

=

WALL TEMPERATURES TEMPERATURES INTERNAL INSIDE INSIDE OUTSIDE FLUID WALL AT BAFFLE

(*F) ('F) (*F) ('F) ('F) l l

O l

l l

1 l

r m:\3578w.3.non:Ib-081597 4-233

FINAL, TABLE 4.16-2 (cont.)

TEST 222.4

SUMMARY

DATA RUN RC066B AVERAGE TEST DATA i

O m:\3578w-i non 1b-G11597 4 234 Rev.1

FLNAL O- TABLE 4.16-5 TEST 222.4 RUN RC066, INTERNAL VELOCITY TFET DATA STANDARD l AVERAGE MAXIMUM MINIMUM DEVIATION l

(ft/sec) (ft/sec) (ft/sec) NOTES LOCATION (ft/sec) l l

l l '

l O

l' I

O m:0578*-4 non:Ib-041597 4-237 m1

j 1'

'25 I

P ) I R M Pa O

F H E *(

5 T

7 8

O T

8 WE)c 5 OT en 4 L A/b D

I FRO O

I R

E P N E IO M T I

A T C O

W L O

L P F R M)

II E (T T

M 7 6

A 9 E 1 T *J OT W E J_

S b L A S

7 4

I F RC (

U D S O R RI F N E P O V E I

T A

IM E T C

O T L A -

S N P.)

E t I

MT D

I E

I 5 T(

6N 5 e

6O 1 C l

O T

W O TE J_ .

4 F 7 9 L A FR t r EO L

1 1

D BN AO TIT U

O I

R E

P E

t h

N O

I T

A O

l C l

I Tf O L

R T

S I P D R Mn I

I Ee

, T 5

6 2 6 1 0 3 C O T W E )c Tr a R 3 4

I0, A t'h FR( I N 2 1

U D R IO R

, E N 4 P O E IT 2 A 2 M I C 2 T O L

T S

E T R P

MF )

H 2 T'E(

4 2

1 O W E )r T OTe i 5

2 LAWt fit (

1 1

D O

I R N F O P I T

E A IM C T O L

I I

e Ed$7e 8P..V2G$

. O 0 b*tW0

, . .-. - - _ , . , . . - . . . - . . - - . . - - . . , . . - - . . - . . . . - . . - . . . _ . . _ . . . - - . - - - ~ . . - . . . - ~ _ _ - - - - ~ - - - . - . - . - . .

Y l

i FINAL

( -

l a,C 1

1 a e

i i

4 4

i i

4

}

m t u  !

u 1 E 3

i g ,

N N

w U

H h

6 0 *

.1 x

i sa G

em Ch 9

8- '

a G

in 3

n.

b I'-

m.

4 b

3

.OC m:\3578w-4.non:Ib-041597 4-241 Rev.1

m5?

l I

P" O

9 6

_ 0

. C R

n u

R 1

3 2

2 t

s e

T s

n i

o O

t a

t r

n e

c n

o C

l e

b i

s n

e d

n o

c n

o N

2-7 1

4 e

r u

g i

F -

i I

O 5&3EL$n b a3 abt4

l i

FLNAL 1

O a,c l O

1 TABLE 4.171 TEST 223.1

SUMMARY

DATA 4

RUN RC069 AVERAGE TEST DATA ,

1 WALL l

, TEMPERATURES TEMPERATURES LNTERNAL INSIDE INSIDE OUTSIDE FLUID WALL AT BAFFLE j

('F) ('F) ('F) -('F) ('F) '

I O

i f'

'J __ -

mA3578w-4.non:lb-Gil597 4 245 Rev.1

FLNAL TABLE 4.171 (cont.)

TEST 223.1

SUMMARY

DATA RUN RC069 AVERAGE TEST DATA l

l 0

t O

m:0578*-4 non:Ib-041597 4 246 Rev.1

FINAL f 4.19 Test Results 224.2 V]

The flow tests reported herein were conducted by providing a constant flow of steam to a vessel initially pressudzed with 2 atmospheres of air. Test 224.2 was conducted with a steam flow of 0.5 lb/sec until the vessel arrived at a constant pressure with the air cooling fan on and with water cooling to the vessel set at a predetermined level. The extent of water coverage on the vessel was measured during the steady state periods and gas sampling was performed to determine the concentration of noncondensibles. The insulation was removed from the bottom of the vessel below the open and deadend compartment areas; insulation was left in place under the steam generator compartment.

The results for the steady state period of Test 224.2 (RC068) are tabulated in Table 4.19-1. The steady state data was taken from the time periods 13.39 through 14.39 hours4.513889e-4 days <br />0.0108 hours <br />6.448413e-5 weeks <br />1.48395e-5 months <br />. Table 4.19-2 provides a comparison of the average, maximum and minimum temperatures on the inside and .outside vessel walls. Also included are the maximum, minimum and average differential temperatures for the same locations. The data presented is representative of approximately one hour of test operation; plots of the vessel pressure and steam flow (vortex, Gilfio and condensate) are shown in Figure 4.19-1.

Review of the vortex meter data indicates that its outputs are approximately 0.1 percent higher than the average condensate flow. The average condensate flow is approximately 16 percent higher than the average Gilflo steam flow rate over the majority of the test.

' The indicated vessel pressures were determined to be an average of 0.4 psi higher than the manual data recorded during extraction of the noncondensible samples at approximately 56 psia; no pressure corrections were performed on the conversion of the vessel pressure.

The results of the non-condensible sampling are shown on Figure 4.19-2 at the four sampling locations (Dome-90 -63"-3", A-270 -6", E-90 -6"and F-0*-6"). The data shows that the air tends to concentrate below the steam injection point in the heel of the vessel.

No intemal velocity meters were active during this test. The annulus velocity meter is considered to have failed. The fan calibration correlation located in Section 2.2.2 (equation 13) should be used to estimate of the outlet velocity based on the fan RPM. The velocity reported in Table 4.19-1 reflects this value.

Water distribution around the circumference at the bottom of the baffle was maintained at close to 100 percent coverage level throughout the test (Table 4.19-3). After 265 minutes two strips approximately 1.5 in. . & and approximately 6 ft. long were observed on the test vessel around the 210* location.

! Figure 4.19-3 and 4.19-4 provide an indication of the average temperature distribution as a function of (A

wJ

) level for the inside vessel wall and the fluid temperature approximately 1 inch inside the vessel.

m:us78w.4.non:it>. mis 97 4 257 Rev.1

l xe I a

?

5 a

bl oo I

l Figure 4.19-1 Vessel Pressure and Steam Flow IIistory Test 224.2, Run RC068 m u 5 h $

0 -- -- - -------- -

0 ---

0 -

FINAL i

APPENDIX C l

l DATA HANDLING i

i m:uS78w.non:ibats97 C-1 Rev.1

I l

l l

i l

1 l