ML20136G928

From kanterella
Jump to navigation Jump to search
Forwards Revised Data for Application for Rev 3 to Certificate of Compliance 9103,per Discussions Between Ah Wells & Transportation Certification Branch Personnel
ML20136G928
Person / Time
Site: 07109103
Issue date: 12/16/1985
From: Houston J
NAC INTERNATIONAL INC. (FORMERLY NUCLEAR ASSURANCE
To: Macdonald C
NRC OFFICE OF NUCLEAR MATERIAL SAFETY & SAFEGUARDS (NMSS)
References
26202, NUDOCS 8601080662
Download: ML20136G928 (89)


Text

{{#Wiki_filter:. leucteer Assurance Corporation M TURN.TD l39.$$ PDtt geg g;;;, / (404)4471144 Telex: 6827020 Weinbergstrasse 9 8001 Zurich, Switzerland 5 Eg g N0'. -470844 g O Telex: 57275 December 16, 1985 JVH/85/150/ETS \\ Mr. Charles E. MacDor.ald, Chief Transportation Certification Branch Division of Fuel Cycle and Material Safety U.S. Nuclear Regulatory Commission Washington, D.C. 20555

Subject:

NLI-6502 Spent Fuel Shipping Cask (AECL Cask) Docket No. 71-9103 Request for Revision 3 \\

Dear Mr. MacDonald:

Encloc1 is the revised data for the requested amendment prepared in respense to discussions between Dr. A. H. Wells and Transportation Certifiuation Branch personnel. Should there be any questions regarding this data or other aspects of the requested revision, please contact Dr. Wells or me at your earliest convenience. s Very truly yours, I <(, c m 1 NU LEAR ASSURANCE CORPORATl If), @ h o A. O h d h / / [ pocWG US80 9 / l// hvas 7}hOEg i g $0f3 Je n V. Houston 3 LVice President g, U $$m$w R etW JVH:ck 9 6*W (Vf Q T A g Q gd. y Enclosure j tiLd Q 8601000662 851216 l-PDR ADOCK 07109103 bhh& c .J

w 1.

== Introduction:== Evaluations of Shielding, Radionuclide Release, Thermal, and Structural considerations of the proposed Miscellaneous fuel shipments were performed. A detailed Criticality analysis using the AMPX/ KENO-IV system was performed because of difficulties in estimating the nuclear behavior of-the fuel without such an analysis. The results of -these analyses show that the NLI-6502 cask design is adequate to carry the proposed shipments. 2. Criticality Analysis: A.

== Introduction:== Shipment of the desired miscellaneous fuel rods in the NLI-6502 cask must be evaluated for nuclear criticality safety because although the total U-235 mass will be no more than the current limit of 550g U-235, the arrangement of the fissile material will be somewhat different. This is because some of the miscellaneous rods will have denser U-235 loadings, 4.0 g/cm U-235 versus 2.0 g/cm U-235 for NRX fuel. B. Method: A criticality analysis was performed for the NRX fuel and for the proposed miscellaneous fuel. These analyses used the Babcock & Wilcox NULIF code to calculate the Dancoff correction factor and effective moderator cross section used by the NITAWL code. NITAWL was used to perform U-235 resonance calculations, and the resulting cross-sections were spatially weighted ("hoengenized") using the XSDRNPM code. The KENO code was then used to calculate K effective for both fuel types within the cask using a three-dimensional model of the cask basket. A common procedure for criticality analyses with PWR and BWR fuel is to also perform an analysis in which the fuel is allowed to fill the maximum possible cask cavity volume, so this type of model was also analyzed for the NRX and miscellaneous fuels. The data used in the analysis are presented in Appendix A, and the computer runs are in Appendix B. l 1

4 C. Results and Discussion: The KENO results, corrected for bias and uncertainties, are tabulated in Table 1. Table 1 Criticality Analysis Results Case Ks NRX Fuel, Normal Operation 0.895 NRX Fuel, 75% of B-10 Normal Operation, Channelling Estimate 0.905 NRX Fuel, Maximum Volume 0.852 Misc. Fuel, Normal Operation 0.838 Misc. Fuel Maximum Volume 0.782 These ~ results show that a water layer surrounding the fuel, as modeled in the normal operation case, acts as a reflector that isolates the fuel from the Boral poison of the basket. This water layer, as modeled, is much thicker (1.4 cm nominal) than similar situations for PWR and BWR fuel, and is thus more effective as a reflector.. The normal operation cases have higher reactivites as a result. A calculation with the B-10 density reduced to 75% to estimate the effect of channeling between B C particles 4 was performed. The results showed a +1% ek, indicating that interparticle ' channeling is not. a large effect for this cask. The results ~show that the denser U-235 loading of the miscellaneous fuel proposed shipments is less reactive than the NRX shipments. Note that both fuel types are limited to 550 g U-235, resulting in a smaller fuel volume for miscellaneous fuel in the KEN 0 model, which used the maximum fuel loading density. The actual shipments will be a mixture of 4.0 g/cm U-235^ fuel and lesser density fuel, so the actual shipment reactivity would fall between the two analyzed cases,1.e. between 0.895 and 0.838. Tha subcritical multiplication-of the fuel is measured as the cask is ~ loaded,- further ensuring subcriticality. The fuel loading is restricted to 75% of the experimentally predicted critical mass. D.

== Conclusion:== The AECL cask, NLI-6502, will remain subcritical with the proposed miscellaneous fuel load.

9 i 3. Shielding: The proposed Miscellaneous Fuel shipments will contain at most the same amount of U-235 initial as the NRX fuel shipments, with the same cool time. These parameters determine the available radionculide inventory and hence the shielding source term. Since the maximum shielding source term values are the same for both NRX and Miscellaneous fuel, the shielding of - the cask, which has proven adequate for the NRX fuel, will be adequate for the Miscellaneous fuel. 4 Radionuclide Release: The inventory of fission products and other radionuclides, as described in the shielding section, will be no greater for the Miscellaneous fuel than for the NRX fuel. Since the material available for release in a Hypothetical Accident is no greater for the Miscellaneous fuel, the potential consequences of such an event are no greater than for the NRX fuel. It should' be noted that the cask does not employ a rupture disk for the cask cavity and is shipped dry, making release unlikely. 5. Thermal: The maximum heat load for the Miscellaneous fuel will be the same, 4.1 KW, as for the NRX fuel. Therefore the cask body temperatures will be the same as for the NRX fuel. Pin temperatures may vary because of the different fuel arrangements for the Miscellaneous fuel during normal operation, but these temperatures are significantly less than the Hypotetical Accident Fire temperatures. The NLI-6502 cask SAR used conditions of (Table III-3) 15,060 Stu/hr (licensed: 14,000 Btu /hr), and a peaking factor of 1.3. The resulting maximum pin temperature was (Table III-4) 9020F with abnormal distribution of the heat load. The Miscellaneous fuel will impose conditions no more severe than the conditions analyzed given the 1060 Stu/hr margin of the SAR. 6. Structural / The mass of the fuel rods is approximately the same for the proposed - Miscellaneous fuel loading as for NRX fuel, given a maximum U-235 mass of 15.4 kg U-235 in both instances.. The mass for cladding and fitting (i.e. shipping cans) will not vary significantly. The total fuel load weight of 28 NRX rods is 176.4kg, (388.08 pounds) per loaded cask. Since the total cask loaded weight i.e. 45,300 pounds, the fuel payload is but a small fraction (0.9%) of the total weight. Any small fuel lading weight variation due to the miscellaneous fuel will therefore have no significant effect upon the cask structural safety margins.. -

t Appendix A AECL Cask Criticality Analysis 1. NRX fuel modeling: Rod containing 7 pins (or " elements") 28% by weight U in U/AL alloy Pin Radius: 0.3175 cm Cladding R: 0.3937 cm (Cladding is Aluminum) 7 Pins per rod, 28 Rods per cask load Rod Initial U (Mark.IV) 590.8 grams per rod (Ref: Appendix A No. 33) Rod Initial U-235 549.5 g Post-Irradi ation: Final U content: 343. g Ave. Final U-235 content: 259. g Ave. % burnup average = 53% Active fuel length: 108 inches $

  • Fuel volume = 7
  • x (0.3175) 108
  • 2.54 Fuel Road volume = 608.12cm3 Fuel Road 00: 4.83cm Fuel pins are finned, so effective pin 00 is 1.054 cm Fins have negligible effect on criticality O *[ &

09' Model as triangular pit'ch of 1.983 cm. [N Pitch = 1.983 Cell 6 Arcs = 3.405cm2 N g.9 Rod Effective Area = 7 x Cell Area = 23.84cm2 as moderator = as AL = 1.5 barns (from Tabia 4-1 in KENO-IV manual) 93 4 effective rod radius = 2.75 cm 7 x cell Area = n.

2. Number Densities: NRX Fuel Post-Irradiation Based on Appendix A Agreement (No. 33. under contract No. DE-AC09-765R01033 with AECL) data (Pin Densities). 1. 260.2gU-235 x 1 mole x 6.024x1023 atoms 1.097x1021 atoms = 608.12cm4 235g 1 mole cm4 or N25 = 1.097 - 3 atoms / barn-cm 2. U238: 1.611x1020 atoms 38.7g0-238 x 1 mole x 6.024x1023 atoms = 608.12cm3 238g 1 mole cm3 or N28 = 1.611 - 4 atoms / barn-cm 3. U236: .44.190-236 x 1 mole x 6.024x1023 ators = ~1.851x1020 atoms 608.12cm3 236g 1 mole cm3 or N26 = 1.851 - 4 atoms / barn-cm 4. A1: 1519g _ x 1 mole x 6.024x1023 atoms 5.573x1022 atoms = 608.12cm4 27g 1 mole cm3 Page 6: Appendix A-33 gives 49g U 343g U 0.16g Np 260.2 U-235* g 379 U-235 Per Element Per Rod 44.1g U-236 6.3g U-236 38.79 U-238 0.008g Pu Maximum l

  • Treating Np and Pu as if they were U-235 1 -

i 3. Cask Cavity Modeling: Horizontal Top & Bottom Plates have Longitudinal 3" gaps between 281/4" long Boral segments are neglected. Vertical divider is full axial length. Boral Thickness = 1/8"

  • 12" (Page VII-10, also cask basket drawing 650201,NLI) Boral is clad with 1/16" SS304 on both sides Bora Boral is 9 3/4" high, centered in Top]l Rods cavity. Top and Bottom plates Stacked have 5 3/8" wide Boral - model as Lead Lead Cask

' inches. ,f 3" hMa2/ ds Boral + as = Body Divider l Boral Bottom l lN Rods are stacked vertically in cavity during loading. Some shifting of rods could occur during shipping

  • so the geometry may vary. To model this situation, treat the cavity as containing 28 rods with:

a. Rod to rod contact, 4.83cm pitch, triangular or b. Equal area allocation of cavity < pace, 33.18cm2 per rod or pitch = 6.190cm triangular pitch Since b. would result in fuel cells (U + moderator) separated by 1.78cm of water [14 equal cells occupying one-half of the basket gives U + water layer region area of 3.32cm4 fuel region area of n Reff 2=n (2.75)2 = 23.76. Represented as squares, their edges are 5.76cm and 4.87cm, so the water layer is 0.89cm thick in each cell, for a total water gap of 1.78cm], (a.) is likely more realistic and will be chosen for the Normal Operation model. The Hypothetical Accident model will be formed by treating each pin as a free agent, so that there are 98 pins in each basket half at an effective pitch of 4.64cm. (A rectangle 6-1/8" = 5 7/8" by 12 inches was used for the basket area here, equally divided among 98 . rods for a cell area of 4.64cm2 or a square pitch of 2.154cm. Normal Operating (case a) is more reactive if the fuel region is surrounded by a water sleeve (average of 1.437cm thick arrived at by taking the water sleeve area [454.8cm2 14 x 23.76cm2,= 122.2cm], divided by the perimeter.). The actual water layer is uneven because of the rod arrangement - it has a jagged edge formed by the rods.

  • Note: The basket contains metal to minimize such rod movement. The modeling is intended to represent the nominal configuration for Normal Operation and a conservative condition for Hypothetical Accident..

l

NLI-6502 CASK BASKET MODEL u.923 a r L 12.049 J = -SS304 I-B,cral Too k 6 5 25 y \\ d 20 i e-Boral

  • J1vider 4

3 Plate Not 3 to Scale I 15 = a 2 ~ 5 10 v JL g 1 5 2 U. Fuel Fuel Borel Bottom 1 i n i 45 .fa 8 a s 16 18 +x -15.240 Box Type 1 Cuboid 1 13.486 1.437 2.8575 1.437 35.8775 0.0 Cuboid 2 14.923 0.000 2.8575 0.318 Cuboid 3 15.240 0.000 2.8575 0.318 Cuboid 4 15.240 0.000 2.8575 0.000 t l Materials: Box Type 3 Cuboid 1 13.486 1.437 24.765 0.000 1 = Fuel 4 = Boral l Cuboid 2 14.923 0.000 24.765 0.000 2 = Water 5 = Lead Cuboid 3 15.081 0.000 24.765 0.000 3 = Steel Cuboid 4 15.240 0.000 24.765 0.000 Box Type 5 Cuboid 1 13.486 1.437 1.4205 0.000 Box Types 2,4,6, Cuboid 2 14.923 0.000 2.5395 0.000 same as 1,3,5, but Cuboid 3 15.240 0.000 2.5395 0.000 with negative X Cuboid 4 15.240 0.000 2.8575 0.000 values. 1 1.

NLI-6502 CASK BASKET MODEL (cont.) . Box Type 2 Cuboid 1 -1.437 -13.486 2.8575 1.437 Cuboid 2 0.000. -14.923 2.8575 0.318 Cuboid 3 0.000 -15.240 2.8575 0.318 Cuboid 4 0.000 -15.240 2.8575 0.000 Box Type 4 Cuboid 1 -1.437 -13.486 24.765 0.000 Cuboid 2 0.000 -14.923 24.765 0.000 Cuboid 3 0.000 -15.081-24.765 0.000 Cuboid 4 0.000 -15.240 24.765 0.000 Box Type 6 Cuboid 1 -1.437 -13.486 1.4205 0.000 Cuboid 2 0.000 -14.923 2.5935 0.000 Cuboid 3 0.000 -15.240 2.5395 0.000 Cuboid 4 0.000 -15.240 2.8575 0.000 CORE BDY 15.240 -15.240 30.48 0.00 39.6875 CYLINDER 3 21.56 39.6875 0.0 CYLINDER 5 37.47 CYLINDER 3 42.55 Horizontal To allow -for axial gap in-boron, Box Types 7 - 12 are introduced. Plates: They are duplicates of 1-6, except that all occurrences of material 4 (boral are replaced with material 3 (steel). This is to represent the steel coupling sections that join the steel-clad Boral sheets. The gap is 3" (7.62cr' long. 1 111 111 111 0 2 221 111 111 0 3 111 221 111 0 4 221 221 111 0 5 111 331 111 0 6 221 331 111 0 7 111 111 221. 0 8 221 111 221 0 9 111 221 221 0 10 221 221 221 0 11 111 331 221 0 12 221 331 221 1 , l l

s

4. ' Number Densities in Cask Cavity (" Homogenized").

FUEL REGION NUMBER DENSITIES: NRX (Irradiated fuel) Normal Operation: 98 Pins in a rectangle 12.049cm by 27.606cm: Each pin has a fuel area of x Rfuel2= n (0.3175cm)2 V ) water = 1-98*x(0.7874/2)2 V ) fuel = 98* w (0.3175)2 = 0.0933 f f 12.049=27.606 12.049*27.606 = 0.8565 N25 = 0.0933

  • 1.097-3 = 1.024-4 atoms / barn-cm V clad = 0.0502 N26 = 0.0933
  • 1.851-4 = 1.727-5 atoms / barn-cm f

N28 = 0.0933

  • 1.611-4 = 1.503-5 atoms / barn-cm NH = 0.8565
  • 6.694-2 = 5.733-2 NO = 0.8565
  • 3.347-2 = 2.867-2 NAL = [0.0933
  • 5.573-2 = 5.20-3] + [0.0502
  • 6.026-2] = 8.225-3 Fuel Pin Clad Hypothetical Accident:

98 Pins in a rectangle 14.923cm by 30.48cm (12") V ) fuel = 98*w(0.3175)2 = 0.0682 V ) water = 0.8951 f f V ) clad = 0.0367 14.923*30.48 f Pitch = 2.154cm effectively square N25 = 0.0682

  • 1.097-3 = 7.482-5 N26 = 0.7682
  • 1.851-4 = 1.262-5 N28 = 0.0682
  • 1.611-4 = 1.099-5 NH = 0.8951
  • 6.694-2 = 5.992-2 L

NO = 0.8951

  • 3.347-2 = 2.996-2 NAL = [0.0682
  • 5.573-2 = 3.801-3] + [0.0367
  • 6.026-2] = 6.012-3 l

Per Element: Fresh fuel has 84.4 grams total U (78.5g U-235, 5.99 U-238) After irradiatiion, there are 499 total U, 0.16 g Np, 379 U-235, 6.3g U-236, and less than 0.0099 Pu. Treating the -Np and Pu as U-235 gives 37.17g U-235.or 0.473 of the original U-235, and 5.7g U-238 and 6.3g U-236. Thus the post-irradiation U-235 is 47.3% of the initial, and the U-238 is 96.6%. . l l

5. AWX/ KEN 0 Parameters: NITAWL: Normal Operation: C = 1 - 0.95267 = 0.0473 -N28.= 1.611-4 ( om)eff = h + _1 = 9885. NAL as/N28 " 484 3 N81 (AL s = 1.4) N28 2 I.po = 0.0921 7 = 0.6665 H.A.: Hypothetical Accident: C = 1 - 0.97536 = 0.0246 (o m)eff = 10107. Ipo=0.0921 7 = 0.6510 XSDRNPM: R fuel.= 0.3175cm N25 = 1.097-3 N28 = 1.611-4 Fuel R clad = 0.3937cm NAL = 5.573-2 N 6 = 1.851-4 2 R cell = 1.041 Normal NAL = 6.026-2 Clad R cell = 1.215 H.A. NH = 6.694-2 NO = 3.347-2

i l AECL 6. Results of Criticality Analysis i Fuel Case Keffective Ks, NRX Normal 0.87354 t 0.00420 0.895

Normal, 75% of B10 0.88351 t 0.00476 0.905 H.A.

0.83097 t 0.00424 0.852 MISC

  • Normal 0.81731 t 0.00484 0.838

-H.a. 0.76064 i 0.00411 0.782

  • 4.0 g/cm U-235, 40% U in AL used.

Limited to 550g U-235 total. Ks = Keffective + 0.00981 + 0.001711 + (1.645Cr2 + 0.00722 2)1 2/ (bias) (experimental (calculation (benchmarks uncertainty) uncertainty) uncertainty) I b......,

4 E f 4 APPENDIX B 4 i e i i I 'l I 4 ? -..~m.. - _ _. - -,, - - - -. _ _ _..

T e 9 4 e 4 %.' - 2 0.. I' _1 I 'M 9 ( ,g 8* f

  • **,- w gwe h

d s y 0 M - - e er 8 =,. .g f4 9 f g . y a =( es er e ump 40 , =, 4 g 4 9 $ U" g " "- p 'O

  • M F 8
  • , i g

4 % N* e. , m em v e h-4

  1. em en e t e-O as 4

.w J I e 4 4 =, ., e = es g. ,N 9 0

  • d 1
  • 9 m
  • O w

$ J - 6 O 0 $ m. G G PyM t 9

  • e -

4 8 6 L 1 p 4 (

    • . ' ' e.
  • . L v #

9 9 j, *e j * % ,

  • r g

y e e.. e % d'. j - y ) '.., i ** i 6 e

  • e*

, Te f.e e..

  1. 6 9.

P e T = q* e <. % e a 4 J .'=J'* t e e . 6 L

  • 9 3,

p , y* s . J.. Y ' 9 4 b l o 6 I I 1 I

t .,..ss... 1 4. m. /. c.... r.. -1 ,i... ,r .s...2 .. u.. 1

  • ,,r*

'*F Jt. a sn s, a ,n. u.,.. o r. g.. ...-3.. a.- J, f s,,.. c, T.., r. .,,, (., ) T ,1, . ~ r, () 1 1. + a... _ 3. -., _.,. .e....r, .3 3 1.,

7., -. (, )

e

c. ;

.3. el. ..,-T,... T -..,, ,. -. ~_ , s .o .J \\,. / Iw .e s .., 9 1, ,.C,) s _i..., ,,_( ) l.. .1 -r s .- e iv v . +. _i. ... yq(e/ .c _ _.7 33 ,e .,,,..,..,.. (. ~.,., : 3 s. e, ..T 1/t.,, _....., 2. .. r . ~ s. _17..,.(1) 1. - > ..., _, +.,. ts,.. (. .-, ) 1,. ./.. ..,., ;.,. s si i

(

,.T) ,1 21 : 'P T r;s(:,**777)_1f,_: a p.r. ...7 ., _ - -.,.w... _...(.) ..,. 3

,,
r +,.

u,.,., i. .c s .v. i -. m...r.(,) .2 .4 ...,.L,,, - 1..., 11.. s ; u 0 =." + J.

. l ( L,' C P'

27'. F - 1 / : " ( 1. + '. ) _r (_, 3. ras / s v I i % 4 8 w '.,4.? )_j f_TS [.\\ '4 s-a

  • 6 J

, e ~- ,e ,e l g e

e e.4 m %a o. ~ e

9. m...-. <.

r e r e t , e ^' j.; .t ,,' r,., 4L (89 ~ q ,i,, .mL y j.,- q g- ~. s,. - 9 s s .. i r. e ss - I I -.. p.,, .**6 e. -e,- er, s e i**. . i. 9.'.-,. '. ~, 33 . l.- .7l,. ,r J s s J 3 -,.. + s. . p l i e. s. v w 3.. s e. .. = 4 +. e e r,, - ,2 e C ' b ". fle"),. e J l,e ",e lei.,)** ,n e t.". ". e.;s*. e -e i. i t > 4 e.," ~_ 6 ss?,, r1 e f i e A-e e. - 77 7 g-7.* M j a

  • 4 1,

e. 6 es e 9 s * ,5 4.

  • 4

,e 3 e l , ?. m ,?. .. eg e 0 - I e-t. 9 - e at e 7 ~. 41 1., 1, 1., l -- 3,; 1-1 1q.,. .).. o 6

  • 7 *n s

s f* .? P ... w. l S r. a .e e. . e.9 ? * .n=4e 4 st .r ~ e. ~ s ,a r-- ? r. s c s;'s e 6 ,e? ;1 *

  • 3 - e, a.-

9

-. i,_ .,,s t w e e - ' f I, - T,2 s , * + I 2 e 1* sJ s ~ e. ..( ~ e - * .... + }T. . dfwL .'1 6.7s.T f, . 9i .I(e%/ 9 8 i y ~ ? - ,,. i g., L C r.,e. & A.y -. <,. e **.e .,,.. r. :. -. _ T.' r..' r. s +..r . 5 '. A T h' e m '.t. i.. e 9 s ", l 1

3... ' t 9

9'._ e e, e e --. 9,,, 1 -a. -~ .- 6 J. I e e s t *. e,, = s e s s a + , e. 1 ,4 . '7 r * "P *, g ,q-6 e.. . g g - q. ,7 e . t, 63 e ..,t: 3. 4 *- > =y .g

  • 4 f

-. l. e e .' 9.. q s 1. e a ..s. 8, ,q 4 6 . e e '.... e. . s g. t e e 3 ( g e i e s 0 e - ,e 4 e r 4. f

  • e....

e 4 4 -y .m m ..w e .== 4 4. t ee 1 - y n .. a e,.- e e e. s. .%.-.. w a e ,e e. e. g S s... t-c.,, 1 m. e 1 s. w a s. . s e 3 .e-. w e t. + .- 4 J. w... . ~ e t' . w. e * ,.y< 4 e s o e . + e... = a 4 . -. W J =- e s %~ + 4

    • 4.5...

e i s. e . = . e q 9 )/.S I. w ' e 8 . 8 3 e. a e oa.. e p a. a f. s e y 3* 2 .. s e e 3; 4, s e t a. .-* + *- *

  • i 4 -

e 4 s .., ;= p a-1 er...,, sJ e i .a J

  • .. e s

.e - e=, e. z e I b.y

  • =c.-

e r. (. *6.,w t p.g = A s ' t..r p.. e v s s ......w . < g r <* : i-ey.r Iy. g- . 3 c-at .r'. 8 .. sv, .J. -. i e q y, .r&L. ,c. .J. ..yh. 6D L.3 L* .s 9 F $ )e., o 's a - I I l

J e 1 e-g; f e3 -e 4 - s. es 4.. .., = *r. .t .. \\, .w w* I q a a 4 g, - -.g , -.. 9 g, t 9 . o - 4.. Ie + e 1 g s 9 n. ,.+ 1e . e ... _.+ + . c . + e . _~ 1, , e e e- ~.. r. 9 ,P

    • '*g 3

4 y e e , 4 e + e y e I... .a +.. r e r ga -'. g". f- - e r' = - I e e e 3. -. e+-,,. ,...,.. + J e o I e e e . e. s...')+ e.. u e ~ n-e -- - 7 r I* t. + *. ee Ie e+- ' ~.. . re '"'o I -' ',. e J...,:. k L 7,,. h h k. .oe e r.' a, e.- y v bo .U .t* g.e i e s ; *' * ,,a piye.. 9 .?. s.s s - 1. D g 7 ,.e. , e, n. g-7. g-- y c..;, O, e .r .. e 4 -e. e ,,7 g u.. .~ < u s t' c.,- y y. ,3 .'3 e \\F. 3g s,, ..t.,.., . p, T. e .L. ,~.s e .ar e. l e -. s.J 4 .3 - y. .ifJ Jr e. . s..s-Te e e-i.v.,.. ,a,7 2 . J.,.. I .. f e, ,, e-t 1 y g-.-._<c.w e .Te -~ r ,.e e e i ... i, _s.2 i . i 4 .4 se 7.2 s.' e. s.. 1.' T r. i. a v. e.. r, < e p s. sr -> n > - u I e- -. r. T e s' ' ' e v .* e L e + q-.y,, l. T u' r' ', ', t..,'e ' r'.' 'c .' 4...- L>*- e.. e o e ,,-' g. r,, :. j .yL . - c,. .g 3-c a r~ s ,.3 .=. - s

e..vn.

s. .v e P e .i e ..i e ,. - e. i. p. j 1. t.:T.h s.... s' s f *,. ,,C ..,j'.,.,... .'.e s - e r e .t

  • ig 1 '. J l

e g,,e 5e.s. , pi.. % e e g. 1

a. j A T 1,,,e e

.- k.. . 7-me .,F v .J

e. t ' *, ".,....

4 . oar r 6 ., s* 'e } *! .(.,.s,J 6 -. :. ' a .=*J", . I,. ',, e.s T v e,,,o - f.r - g .6 q L e* . h. ,.i. - ;, L - + e .vt. . / ', J - t, e q .e .r r,) ,/r i r. e. L /. p+ *.. s. e.,e,,.L

  • t.;..... i e.

.f.* sJe e I < . s. V 4A,, 1 13 3A* 8 5 4 e

  • e, p

,..,,1 c.,.,. I T g e.

e. -.,

-.e g..>..s F i e.. s y =e o,,,,. a t- ..e - ~ .s_ e..,.. -.... ,,e - s.. w. e e m -.re 3, r.' T ". P.. s. ', 'a e ' F~ ' ,~ 1 e u'.~ ". ~ ~ ~. ' ^ ~ ws.' J ) u e 3 e e e ,y , p' s, +,. . =.. 1 '. 9., d ;. v 6 4 s 6 ". r, n. 4,,; e bP. e,. 4 ', **, *s ,, ( ( s 3.,., ' [. ..Ie , j a w: 5 e a-4, 4 3,. y -.aNL.- } y.. -eLMt1.Viae r i, il c.. g e '; *. e e,d*,4 "1 1

e.,v,,,p.,

1 -.. e t v J .. e e ~ e 7 2 4,J a, n.,us a. Ts.f-A T,.,., e. .FJ 3F e,. 3 -.., -,,, -,-, .t.s. To e. cs.,,- e an .., s r. L.s t A T t.. C o*s *n.* u. e' a* e rJ f e 1.? * *' '?

  • J u...

....s. ,7 ? a,.,. e s , ', Y ~ L s. ' e .J r- ..n...A ".. I e r. r. s y.. . gs JF y , c. - ~,,v.e s w 6 e s%. Av..e..

r..., +

~ .n,.. s. -., ... e m .). e s s .p 9. } Ai x sv,?s.ce

s. f 7 a,, p

.=. rwe - . - v. .a s, .%..q p.7, *. er u. r.. ut. s m n ,. r. 4 , 3 i,., e e. ge..3e ., g.J t) P u a -e *,.~, * ) e. e..J ) c (,,,, t'... -., t,. .4 e i e '.+;* 3 e/. u-u.p. -

  • _
  • w: a..- c. t i.

.e f r. 9. e-t.e s r ^

  • I a

.e

i. /, **.

'i r .:a. 'r.,

s. g Je r

e,,.4 r- .., w s .r + I 3 s e e r. i- ., ' e' s . J J.,.s i,3 I ., p,s 3 e r a LF .t

s,

-*- ; ',. L.; -.. - ; ... e e +. A eL' i i d.a. ...i ; 9 s,. -. a. .t;. gar.. r.,. e ip g-r - * - r, ,,, - ; fa

e. r 9-a

.T. + + .v-4,, s u,, .t . es s s- .. s e .~ -. g ' .e.,., ' I A e "n .*.,e. ,g-9 ,v.- 3e s +. -, m n,,,, *.. J s a' e Je . J s t e'=*. w.,.' L e 4 J'.. j 1 -.r ,; L. e+- of .,Cw ..e. irn a + s s e tr. . c. ,J e ,, e. ..{...., t 7 u,. - - - e eg. p . s - e, e,, - g, s. e..,,. r. s . =. r - 3 s .eaL % r . s se r e t.* v ~-

9. -..

,t . c,.... -.,...,.e e

  • y. c y l s..

e. 6. e i v!w-L,.,. q,-

4.. a*.. "; y e <*v 9, ;.. -

.t. e F I..,,.L 4.. r (, y . r. . e "O -.'w .'8.,'.* .Y ~* . k i <g., '..~ f 6 's e

I l 3 e-I-' ..../ ., - ( .) g ,e f.,.. *r e, . /,. .6 e* e ..u .- p 't w' v . s. g , s p ) p. .. I . t.- .s ,s ,. s 9 I-4 .s T. 4 4 4 o,.. 1. 4

  • i.

g e 4 9 , S *7 ., 4( O,*. q e, r,.e i.) s., g a e

  • -=y 6

9 O7 7, 1 **.- ", e i.*. 3 s, 1...,' J.. L 'e, *,. n. al .v

  • 1.. 1 i s' 1

.v

s..

34 -.. e ',1 ~. t . 0

  • e

) bT 9. t . i. b.

  • .T.".

r r -

  • 7 F

J - 9

  • ' i +;.? 1. e

, e','**. ?. "3,, i e. ?, *f. '. j 4 r e i o '. I 6

  • e_

.es f r e

  • i
  • , e 6

.. 4e f1 T e e i + = e y,

ynv, y e 4 =*

e., 9 s - e 9/, 9 + +-

  • . a e

=., I s i e. / w 5, a e *... g ., ~

  • s

./ e

  • I

. Au j

  • -,9 4

e w t e. 4 e Ie. g ~ e I b 4 F' 1 = 9 t e d8 O N j k .f g q k '. g e. )" 9 . V 's I s a. t.

  1. *e t,

e% ei n e g.sy .. e n. e e,N a. b / a. as.o $ / . fr e.ns . c. e. .,,s,a.c. r.~,,.s., y, s. m e o 4/ 8

. c/s /C

  • (

l .t u 1 ,.Y 1, m'. T.< I :. 0 i '..., 3 . i. .r...... _s 1.. ,,Y .,...r..a c s,. T n. u.,,,.,.. (.ix. T... v.) ..s .t .e. us.s a ee * .*t.e,r. T....i. t. .~..:,, ..,...'.' F 's e '. T. '..', ".

  • I D.' 's.

.t . ;.i T ~. .'. '. C..r - . i.. ..i s 1 1 .1 - 7 _. 3 33._. ...1. 1 .1...._, a <>. 1 1

e. j *

.-9 ..r. j .es.,, ... 1.:

s..,

.<1 _1 .e. is. .1. .s i .e 1, 1.. &,. .1 ,1 1 ,.,,.3 .1._. 1 o. 1.. 3...,. 1 1 1 c 4 1 .1, .1 .. s._ .g. 3 3, 3 33 c,.,-... 3. .) -3 s & s4... .i ~ s.... ,1, s .3 ,1,. c. .) i,-.- 1 .1 ', G.*. %.. ". ..-e .}

==, ? m ~ ... :s .~ .c._ s . 1 e. ..,r....... s a..... 1. . f4...i l c.. /.,/.,. w,.. ,c, CT.3 4

1...

.. a,,...) i c 1'., LOCAil %. .ILL .f c. U S C t-af r. . T u.1.,,:,... .a .ss . u

-, (, T,;. - ..,c ,.,.,,..c .t s 1 s .4 .L <..i .n .,e. 3.......,.. .t.,7...,,, 3. ) s..,:+.. c, s.- - -~4... __,, 1..,, - 3e. ... c. r c-i. + v. .,..1 s..~. c ,.2 .c..>

s. - ~. -

s ,i. s i . ~.. -.1 ,.....,...1 i..: ...,x,+ ,,, s+.. s

3...

-m. p-.. .n s. \\yu. 1.....a.... *... 1. ..,. e, +. 1... 1...- tes'.

r. : -.;

1 : T ' ' !. T : 0.M.,FL JF 1.1 4. 7.' 7 -( '. 0,, ; t' ' t o l '. T. . ;,, c '. ~ ,, ~s,. r. s. (... c.. t. op ...r.,.._..r,. .s..,., . < +.. c n .e. a .r .t., .,, ;,..,,,, o e t,. L o *.o 4.. T. s. r. < ;... U..i t. :..0 1 s 4. f..I...r. . f.- ,, F u..s + r, ~ ' * 'e i. ',, r.., : . T ;. 7 1 r.,...c r, t 4 . '.. r .e.T. L. ' a,,..

s.,. I t L,.

i vet. .s .c vf ,. /

  • r. u...

s t. r J.,., p .e. r ..ln.,.C,..,. ,fe . L. v... r. & t ;. i s.... j * *.y, v. .e. f_ r o pp - 1.,... j. ,,,,..f p ,r ,.. t. 4,. v. s o.., f i.T. ,, } } :;...r s s o. '"~_r.*..e a C e J.. --> 1

e..

- n,

  • c.~5IJ'.

1 .r, r. r*. T * *.. c F *. >[ .. s... - . + a. u .j j., ;. 7, v c .p. np .. r e. s a 7. _ e.o .- (.. .r e -.. .7. 1, .i r w .yr( -,.; r. - 4f. af . m m., _ ',. ~, o_ m, e. e.. . 3 15., 6. e... r g cs ..<. i. s. ...a 1 .t v. , 4..t.e. =r. .J r. 2.ye... .w v.r C J n ss L.-. 4 1 s: r. r..ut. o.,. 1

s' r s
s.t..

r. 1 1 v.:. k s* *..%. e. .Fa .i f t, v. s. C... + r. e. .v - T. r r J . s a.'. u s,. C u,. r :..* .a ..T. .r...O.,, ,s f 7a >F .. > r. o s...,- s. .. r?. s. n...,s t - L e a e.c. s ,,...,,7.c.. .. F u. 3 r. ., r. e - %: o L r.,,,.. . T. ... s 4 :.. ; e i,-<, s.*.. .... -, t a t., 1 1 T r t +.,1 ,.... f.'. ,F ',. '. ~..' t ? '. 's - ; c. c,' - t ; r-m r,... y s... 1 I T ' :. *s ~T.' <s '..",. 'F"

r. r~

"s. ' t..~. 7..'. - L' ' ~. ' ~ C J.. e. t.- '. '.. '

  • r.

e .,o. ,, :.....u..-. j. T ^. P,.* *i. "Fr ,) F

r...'. ' 1 '. - L. n. '..

L' ' t '.s

  • * * ^

r 'i .u. A r .a. e .co. a ;.,.,. ri. c.' 1. v..; i ,F..F r. ', s:.. 7

  • m $~

s ,v.-... . u. u C r. i. n,. ;. "..... i. s .46 .,...c,,.,.., 1 I T L. 3,,.,.r,.. e. s J r. s.,. s. 1 a _ u s. e ,.g. .c. l '. ,,. s. d .4 ..,s 6

t. s

.4

1) c. W ' r'. t '

1 116 .P - X 5 J C L U ? ". ; ; IN 14 1, .",. ; 1,' 1 u.. e I T ' ' t. T ' ; 'a c. ' F 'J JF a.,.,<.. ; 1 7,- 4,..2..>. .s, F,.; ,, F a c.. u. .. i. i t .st .T.

r... s -.

a. 1 s. j

r..,1 ;.. -.

1 .r T r. o.., r....,pv v, p .r.. a j g, _.,.e. -).e. r,. u* r~s. '..' s ..T. ^ 2. e u3 1 . u d. I +. t... 1. L *t..v.....=. ,r. OF 4 e. ;r e> .*, r. ,, C t J,. s. ;- 4 2.T. v;ss. .2 j. v. e. r, r.- a -...c.. r.>

3. F

'.. e. 1 t ' /..i.. u.. >se.+, -n. r. .c,. c

. e.

.i .s a v 3 I T : r.....,. c,. .7 vg .r.,., ~, *,_.. m. ,er,, s a..., ..T. 1~ s' t' t, -. ~ '~" c e t,. . 4.i.l ..s ~ ,.s. v. e.i.... ,,i.-.., ~.,.. ,.F, OF /.44 . f C.h a; : ; *; l'T. . i. ; i <4 ..,s. s. 3 $. T t......,...a.. F.,, a, r ...>.,,5 J Cm r:.s c. ..s .s e, .. L...,. s 1,, L,,, T,i. e., F0 cr ...'4 f 'v .). C.J,.. o-n. a.

c..s >..

s s. ,.3 ..s... c 3. s B..,s.. e., a I. . P e i.s. .w. 4 s 4( .~. +,..,.s .>/.,.m+ g.,. n, ,,,. T,. ' k r, y ; 6c es 6,... I -e f. .J 4 4, 1& c. e,

  • 3

.9 s#

.r N e' x

'23/C5 10:00:?: (10) 'A AECL CASK WITH *RX FUEL, NORMAL OP. "7 200. 53 4C3 3 27 27 15 6 17 54 12 2 3 2 -15 1 0 2000 0 1 SZ o -1 ?FC 29-1

6 1

-02235 1.024-4 1 72238 1.503-5 1 513027 S.225-3 .c 1 555016 2.867-2 1 551001 5.73?-2 1 92236 1.727-5 't 2 SC16 3.347-2 2 1C01 6.694-2 c ? 24000 1.239-2 3 23000 1.815-3 3 26000 5.994-2 ?? 4 5010 7.52-3 4 6012 1.083-2 4 13027 3.013-2

4 5

32000 ?.299-2

9 6

9223? 4.73-2 6 -922?! 3.41-4 '6 00X TYPE 1 17 CU30ID 1 17.4S6 1.437 2.8575 1.437 35.8775 0 0 27*0.5

7 Cue 010 2

14.923 0.C00 2.8575 C.'13 35.S775 0.0 27*0.5 '? CU30ID ? 15.240 0.000 2.2575 0.313 35.G775 0.0 27*0.5

7 Cue 01D 4

15.240 0.000 2.3575 0.000 35.8775 0.0 27*0.5

6 BOX TYPE 2

1 CUBOID 1 -1.437 -13.486 2.8575 1.437 35.8775 0.0 27*0.5 '7 CUDOID 7 0.C00 -14.923 2.8575 0.318 35.8775 0.0 27*0.5 ^7 CUBOID ? C.000 -15.240 2.8575 0.318 35.8775 0.0 27*0.5

7 CUB 0ID 4

0.00C -15.240 2.3575 0.000 35.8775 0.0 27*0.5 26 E0X TYPE ? 7 CU90ID 1 13.4S6 1.437 24.765 0.000 35.E775 0.0 27*0.5 17 CUSOID 2 14.92? C.00C 24.765 0.000 35.8775 C.0 27*0.5 . 37 CUBOID ? 15.021 0.000 24.765 0.000 35.8775 0 0 27*0.5 .27 CUROID 4 15.240 0.000 24.765 0.000 35.8775 0.C 27*0.5 76 00X TYPC 4 17 Cuc0ID 1 -1.437 -13.486 24.765 0 000 35.E775 0 0 27*0.5 37 Cue 01D 2 0.000 -14.923 24.765 C.000 35.3775 0.0 27*0.5 27 CUDOID 3 C.000 -15.001 24.765 0.000 35.3775 0.0 27*0.5 17 CULOID 4 0.000 -15.240 24.765 0.000 35.3775 0.C 27*0.5 '06 DOX TYPE 5

T?

CUDOID 1 17.4E6 1.437-1.4205 0.000 ?5.5775 0.0 27*0.5 17 CUP 010 2 14.92? 0.000 2.5395 c.000 35.E775 0.0 27*0.5 27 CUuoID 2 15.240 0.0C0 2.5395 0.000 35.E775 0.0 27*0.5 ' *7 CUBOID 4 15.240 0.0C0 2 3575 0.C00 35.E775 0.0 27*0.5 26 00X TYPE 6 1 07 CUGOID 1 -1.427 -13.496 1.4205 0.000 35.8775 C.C 27*0.5 27 Cue 010 2 0.000 -14.923 2.5395 C.000 35.E775 0.0 27*0.5 07 CUBOID 3 C.000 -15.240 2.5395 0.000 35.3775 0.0 27*0.5 37 CUBOID 4 C.000 -15.240 2.5575 0.000 35.!775 0.0 27*0.5 G6 P0X TYPE 7 -07 Cue 0ID 1 13.436 1.437 2.8575 1.437 3.81 0.0 27*0.5 ' '. 7 Cue 0ID 2 14.923 0.CCO 2.8575 C.318 3 51 C.0 27*0.5 C7 CUUOID ? 15.240 0.C00 2.8575 0.318 3.81 0.0 27*0.5 07 CUBOID ? 15.240 0.000 2.3575 0.000 3 31 0.0 27*0 5 06 POX TYPE 3 H0 7 CUD 0!D 1 -1.437 -13.486 2 3575 1.437 3.91 0.0 27*0.5 27 CUGOID 2 C.000 -14.9?? 2.8575 0.318 3.81 0 0 27*0 5 107 CUGOID 3 0.00G -15.240 2.8575 C.310 3.81 0.0 27*G.5 07 CUBOID 3 0.000 -15.240 2.8575 0.000 3.51 0.0 27*0.5 06 FOX TYPE 9 07 'CU30ID 1 13.4S6 1.437 24.765 0 000 3.81 0.0 27*0.5 07 CUBOID 2 14.923 0.000 24.765 0.000 3.31 0.0 27*0.5 C7 CUECID 3 15.081 0.000 24.765 0.000 3.31 0.0 27*0.5 C7 CU901D 4 15.240 0.002 24.765 0.000 3.81 C.0 27*C.5

c E0X TYDE 10 ^ '? CueoIc 1 -1.437 -13.486 24.765 0.C00 3.E1 0.0 27*0.5 ~7 Cue 01D 2 C.C00 -14.923 24.765 0.000 3.81 0.0 27*0.5 27 CU30!D O.000 -15.CS1 24.765 0.000 3.81 0.0 27*0.5 ~7 cue 0ID 4 n.000 -15.240 24.765 0.000 3.81 0.0 27*0.5 26 E0X TYPE 11 ?? Cue 01D 1 1?.4?6 1.437 1.4205 C.000 3.51 0.0 27*0.5 37 CUBOID 2 14.023 0.000 2.5935 0.000 3.31 0.0 27*0.5

7 CUBOID

? 15.240 0.000 2.5935 0.000 3.81 0.0 27*0.5 77 CUDOID 3 15.240 0.000 2.8575 .C.000 3.81 0.0 27*0.5 C (, 00X TYDE 12 27 Cuc01D 1 -1.437 -13.4?6 1.4205 0.000 3.81 0.0 27*0.5 27 CUDOID 2 0.000 -14.923 2.5935 0.000 3.81 0.0 27*0.5 ?? Cue 0ID 7 0.000 -15.240 2.5935 0.000 3.81 0.0 27*0.5 F7 Cue 010 ? C.000 -15.249 2.E575 0.000 3.81 0.0 27*0.5 07 COPE BDY 0 15.240 -15.240 15.240 -15.240 39.6375 0.00 27*0.5 27 CUROID 3 16.510 -16.510 16.510 -16.510 39.6B75 0 00 27*0.5

7 CUBOID 6

21.59C -21.590 21.590 -21.590 39.6375 0.00 27*0.5 32 CYLINDER 5 41.28 39.6275 0.00 27*0.5 '? CYLINDER 3 42.55 39.6875 0.00 27*0.5 10 CUBOID 2 42.56 -7C. 70. -70. 39.6875 0 00 27*0.5 To 1 1 1 1 1 1 1 1 1 1 0 26 2 221 1 1 1 1 1 1 0 C6 ? 1 1 1 221 1 1 1 0 76 4 2.2 1 221 1 1 1 0 't 5 1 1 1 33 1 1 1 1 C So 6 221 331 1 1 1 0 06 7 1 1 1 1 1 1 22 1 0 26 3 221 1 1 1 22 1 0 36 C 1 1 1 221 22 1 0 Co 10 221 221 22 1 0 06 11 1 1 1 33 1 221 0 Sc 12 221 33 1 22 1 1 ?6 END KENO. ".0NE. T If1E : 0.711 SCC. IMAGE CCUNT: 89 CONTROL MODC .0. KEN 066

5 AECL CASK RITH NRX FUEL, NORMAL CP. NUMPEE CF GENERATICNS 5! START TYPE NUMDER FER GENERATION 403 GENERATIONS DET NUPDEP GF GENERATIONS TO BE SKIPPED 3 LIST INPUT X-SF NUMBED OF ENERGY GROUPS 27 LIST 1-0 MIXTUF PAX. NUMGER OF ENERGY TRANSFERS 27 LIST 2-D MIXTUf NUPDER OF INPUT NUCLIDES 15 LIST FISS. AND NUMCFD OF I X T U R E S 6 USE X-SECTIONS NUPOER OF MIXING TABLE ENTRIES 17 USE GE0VETRY F NU*CEF Or GEOMETRY CARDS 54 USE VELOCITIE!' NUMBER OF E0X TYPES 12 COMPUTE MATFIV NUMBER OF UNITS IN x DIRECTION 2 CO*PUTE MATPIX 4 NU"0EP CF UNITS IN Y DIRECTION 3 LIST FISS PRO 3 NUMDE' Or UNITS IN Z DIRECTION 2 ADJOINT CALCUL: NUPUER OF NUCLIDES READ FROM TAPE -15 USE EXPONENTIAL ALSEDO TYPE 1 CALCULATE FLUX SEARCH TYPE / 0 CALCULATE FISS: / THIS PROBLEM WILL DE RUN WITH SPECULARLY REFLECTING BOUNDARY CONDITION 4 1.00000+000 -X .C0000 +Y = .00000 -Y = .000C0 THE ALPEDOS ARE +A = = MAXI"U" TIME = 200.0000 MINUTES ?1417 STORAGE LOCATIONS REQUIRED FOR THIS J0D = REMAINING AVAILABLE LOCATIONS = 34533 I l

AECL CASK ' *I TH NPX FUEL, NORMAL OP. "IYTURC NUCLIDE DENSITY 1 -92235 1.C2400-C04 1 92233 1.5P300-005 1 513027 C.32500-003 1 553016 2.36700-002 1 E51001 5.73300-002 1 92236 1.727CO-005 2 3016 3.34700-002 2 1001 6.60400-002 24000 1.83900-C02 3 22CGC 1.31530-003 3 26000 5.09400-002 4 5010 7.53000-003 4 6012 1.03300-002 4 13027 3.01300-002 5 22000 3.20900-002 ~ c 9223E 4.73000-072 6 -92235 3.41000-004 CROSS SECTIONS READ FROM TAPE 1001 H 1269 F, 1002 7 213 GP 032475(2) NUCLIDE = 551001 H 1269 F, 1002 T 218 GP 032475(2) NUCLIDE = NUCLIDE = 5C10 0-10 1273 213NGP 042375 P-3 293K P.UCLIDE = 6012 C-12 1274F,1065T 218 GP 030476(7) NUCLIDE = S016 0-16 1276 218 GP 030476(7) 552016 0-16 1276 218 GP 030476(7) NUCLIDE = 13027 AL-27 1193 21E GP 040375 (5) NUCLIDE = 513027 AL-27 1193 218 GP 040375(5) NUCLIDE = 24000 CR 1191 213NGP WT 1/E P-3 203K SIGP=5+4 RE(042375) MUCLIDE = 26C00 FE 21SGP RE 5-17-73(1) NUCLIDE = 26000 NI 1190 21ENGP WT 1/E P-3 293K SIGP=5+4 RE(042375) NUCLIDE = C200C PB 1288 21SNGP 042375 P-3 293K HUCLIDE = 92235 U-235 1261 SIGP=5+4 NEWXLAC 213NGP P-3 293K(3) NUCLIDE = 922!6 U-236 1163 SIGO:5+4 NEWXLACS P-! 293K F-1/ E-ft ( 1. + 5 ) NUCLIDE = NUCLIDE = 92233 U-232 213GP RE 5-17-78(1) P I

AECL CACK 'e I T H N4X FUEL, NORPAL OP. ARPAY DESCRIPTION Z = 1 5 6 ? 4 1 2 Z = 2 11 12 9 In ? L I

\\ e '\\ AECL CASK LITH NRX FUEL, NORMAL OP. 9.04515-005 + OR S.18558-007 GENERATION TIME = 7.26826 ' LIFETIME = NO. OF INITIAL GENERATIONS AVEPAGE 67 PER CENT 95 PER 09 SKIPPED K-EFFECTIVE DEVIATION CONFIDENCE INTERVAL CONFIDENCE I 3 .'37354 . + OR - .00420 .86934 TO .87774 .86513 To c '~ 4 .87337 + 0R .00429. .860C7 TO .87766 .86480 TO. 5 .87401 +OR- .00433 . 6968 TO .87834 .86535 TO 6 .F7405 + OR - .00442 .36963 To .87847 .86521 To c .37309 + 0p- .00441 .86865 TO .87750 .86427 To c 2 .87143 + OR .00418

  • 6725 To

.37561 .86307 To c 9 .87181 + OR .00426 .36755 TO .87607 .86320 To 10 .S7174 + OR .00436 .36738 To- .57610 .36303 70 11 .57155 + OR .00446 .36709 TO .S7601 .86263 To 12 .87149 + OR .00457 .86692 TO .37606 .86235 To c 17 .87510 + OR .C0478 .E7032 TO .87988 .86554 TO 22 .87398 + OR .00534 .86864 TO .87932 .86330 To 2' .87254 + OR - .00534 .86720 TO .87788 .86186 Tc 4 '2 .57356 + OR .00622 .86734 To .87978 .86113 TO 37 .87E6C + OR .00634, .87226 To .88495 .86502 TO 42 .37819 + OR - .00560. .87259 70 .88378 .36699 TO 47 .86846 + OR - .00644 .86202 To .87490 . 5558 70 s t i k i

.KreRXHA 25/85 13:41:24 (10) ACCL CASK WITH MPX FUEL, H.A. 9 200. 57 403 3 27 27 15 6 17 54 12232-15 1 0 2000 C 1 SZ r 0 3PO 2c-1 ? 1 -5922?5 7.482-5 1 592238 1.099-5 1 513027 6.012-3 7 1 553016 2 996-2 1 551001 5.992-2 1 02236 1.262-5 6 2 3C16 3.347-2 2 1001 6.694-2 't ? 24000 1.839-2 3 28000 1.815-3 3 26000 5.994-2 4 5010 7.53-3 4 6012 1.053-2 4 13027 3.013-2 6 C2000 3.299-2 0 6 592233 4.73-2 6 -592235 3.41-4 9 00X TYPE 1 0 CUE 01D 1 1?.486 1.437 2.8575 1.437 35.3775 0.0 27*0.5 9 CUD 010 1 14.023 C.000 2.8575 0.318 35.8775 0.0 27*0.5 9 CUGOID 3 15.240 0.000 2.8575 0.313 35.8775 0.0 27 0.5 0 CUGOID 4 15.240 0.000 2.8575 0.000 35.8775 0.0 27*0.5 9 G0X TYPE 2 7 CUBOID 1 -1.437 -13.486 2.8575 1.437 35.8775 0.0 27*0.5 C CUBOID 1 0.C00 -14.0 23 2.8575 0.318 35.8775 0.0 27*0.5 CUBOID 3 C.000 -15.240 2.8575 0.318 35.8775 0.0 27*0.5 9 CUDOID 4 0.000 -15.240 2.8575 0.000 35.3775 0.0 27*0.5 o DOX TYPE 3 9 CUGOID 1 13.4S6 1.437 24.765 0.000 35.S775 0.0 27*0.5 C . CUB 0ID 1 14.923 0.000 24.765 0.000 35.8775 0.0 27*0.5 o CUDOID 3 15.081 0.000 24.765 0.000 35.8775 0.0 27*0.5 G CUBOID 4 15.240 0.C00 24.765 0.000 35.8775 0.0 27*0.5 9 30X 7YPE 4 G CUSOID 1 -1.437 -13.486 24.765 0.000- 35.8775 0.0 27*0.5 9 CUE 010 1 0.000 -14.92? 24.765 f.000 35.R775 0.0 2.7*0.5 9 CUE 01D T 0.000 -15.081 24.765 0.000 35.8775 0.0 27*0.5 ? CU30ID 4 0.000 -15.240 24.765 0.000 35.8775 0.0 27*0.5 9 DOX TYPE 5 9 CUDOID 1 13.486 1.437 1.4205 0.000 35.3775 0.0 27*0.5 ? CUE 0ID 1 14.92? 0.000 2.5395 0.000 35.8775 0.0 27*0.5 9 CUDOIC 3 ~15.240 0.000 2.5395 0.000 35.8775 0.0 27*0.5 9 CU90ID 4 15.240 C.000 2.3575 0.000 35.8775 0.0 27*0.5 9 90X TYPE 6 9 CUSOID 1 -1.437 -13.486 1.4205 C.000 35.8775 0.0 27*0.5 0 CUPOID 1 0.000 -14.923 2.5395 C.000 35.S775 0.0 27*0.5 '7 CUBOID O.000 -15.240 2.5395 0.000 35.8775 0.0 27*0.5 0 CULOID 4 C.000 -15.240 2.8575 0.000 35.8775 0.0 27*0.5 9 n0X TYPE 7 '9 CUB 0IC 1 13.486 1.437 2.8575 1.437 3.31 0.0 27*0.5 9 CUE 0I0 1 14.923 0.000 2.8575 0.318 3.81 0.0 27*0.5 ") Cue 0ID 3 15.240 0.000 2.8575 0.318 3.S1 0.0 27*0.5 9 CUBOID 3 15.240 0.000 2.S575 0.000 3.81 C.0 27*0.5 .9 COX TYPE 8 "? CUDOID 1 -1.437 -13.486 2.8575 1.437 3.81 0.0 27*0.5 CUO010 1 0.000 -14.923 2.8575 0.318 3.81 0.0 27*0.5 "I CUBOID 3 0.000 -15.240 2.8575 0.318 3.31 0.0 27*0.5 "7 CUDOID 3 0.000 -15.240 2.6575 0 000 3.*1 0.0 27*0.5 ") 00X TYPE 9 [9 CUBOID 1 13.456 1.437 24.765 0.000 3.81 0.0 27*0.5

0 CUCOID 1

14.923 0.000 24.765 0.000 3.S1 0.0 27*0.5 F9 CUDOID 3 15.001 0.000 24.765 0.000 3.31 0.0 27*0.5 9 CUGOID 4 15.240 0.000 24.765 0.00P 3.81 0.0 27*0.5

t 9 ?OX TYPE 10 G Cue 0ID 1 -1.437 -13.486 24.765 0.000 3.51 0.0 27*0.5 c Cur 01D 1 0.000 -14.923 24.765 0.000 3.81 0.0 27*0.5 0 Cue 01D 1 0.000 -15.C81 24.765 0.000 3.S1 0.0 27*0.5 CUDOID 4 0.000 -1!.240 24.765 0.000 3.31 0.C 27*0.5 0 P0X TYPE 11 9 Cue 01D 1 13.486 1.43' 1.4205 0.000 3 31 C.C 27*0.5 1 Cue 01D 1 14.923 0.000 2.5935 0.000 3.21 0.0 27*0.5 7 Cuc0ID 1 15.240 0 000 2.5935 0.000 3.81 0.0 27 0.5 9 CUDOID 3 15.240 C.000 2.8575 0.000 3.31 0.0 27*0.5 'i E0Y TYPE 12 7 CUBOID 1 -1.437 -13.486 1.4205 0.000 3.31 0.0 27*0.5 ? CUBOID 1 0.000 -14.923 2.5935 0.000 3.31 0.0 27*0.5 .9 CUSOID 3 0.000 -15.240 2.5935 0.000 3.31 0.0 27*0.5 0 CUBOID 3 0.C00 -15.240~ 2.8575 0.000 3.21 0.0 27*0.5 '9 CORE DDY 0 15.240 -15.240 15.240 -15.240 39.6875 0.00 27*0.5 o9 CUBCID 3 16.510 -16.510 16.510 -16.510 39.6375 0.00 27*0.5

9 CUROID 6

21.590 -21.590 21.590 -21.590 39.6875 0 00 27*0.5 ?' CYLINDE9 5 41.25 39.6875 0.00 27*0.5

9 CYLINDER 3

42.55 39.6875 0.00 27*0.5 0 CUE 01D 2 7C. -70. 70. -70. 30.6875 0.00 27*0.5 'O 1 1 1 1 1 1 1 1 1 1 0

9 2

221

1. 1 1 1 1 1 0

i G ' ? 1 1 1 221 1 1 1 0 10 4 221 221 1 1 1 0 '9 5 1 1 1 331 1 1 1 0 14 6 221 331 1 1 1 0

?

7 1 1 1 1 1 1 221 0 'o E 221 1 1 1 '2 2 1 0

9 9

1 1 1 221 221 0 ? 10 2~ 2 1 221 ?, 2 1 C '9 11 1 1 1 33 1 22 1 C 'S 12 221 33 1 2 2 a1 1 09 END KENO. NONE. TIME: 0 650 SEC. IMAGE. COUNT: 89 CONTROL MODE J. KEN 066

AECL CASK WITH HRX FUEL, H.A. NU"EEP Or G;NERATIONS START TYPE NUPDEu PEP GENERATION 4CT GENEPATIONS BET NU" DER OF GEf)ERATIOf.S TO BE SKIPPED I LIST INPUT X-SE hU"BER OF ENERGY GROUPS 27 LIST 1-0 MIXTUF MAX. NU"0ER OF ENERGY TRANSFERS ?? LIST 2-D MIXTUF NUMBER OF INPUT NUCLIDES 15 LIST FISS. AND< NUyDER OF "IXTURES 6 USE X-SECTIONS NUPBER GF MIXING TABLE ENTRIES 17 USE GEOFETRY FC NUMBER OF GEOMETRY CARDS 54 USE VELOCITIES NUMBEP OF BOX TYPES 12 CCFPUTE MATRIX h uftB E R OF UNITS IN X DIRECTION 2 COMPUTE MATRIX NU"BER OF UNITS IN Y DIRECTION 3 LIST FISS PPOB NUNDER OF UNITS IN Z DIRECTION 2 ADJOINT CALCULI NUMBEP OF NUCLIDES READ FROM TAPE -15 USE EXPONENTIAL-ALDEDO TYPE 1 CALCULATE FLUX SEAPCH TYPE O CALCULATE FISST THIS PFOSLEM WILL DE RUN WITH SPECULARLY REFLECTING EOUNDARY CONDITION .000C0 .00000 -Y = .00000 +Y = THE AL3ED05 ARE +x = .00000 -X = 200.0000 MINUTES MAXIPUM TIME = STORAGE LOCATIONS REQUIRED FOR THIS JOB = 31417 REFAINING AVAILAELE LOCATIONS = 3452? ,e r-,

AECL CASM WITH NRX FUEL, H.A. NIxTURE NUCLIDE DENSITY 1 -592225 7.43200-C05 1 502232 1.00900-C05 1 513027 6.01200-003 1 552016 2.906C0-002 1 5510C1 5.90200-002 1 92236 1.26200-005 2 0016 3.34700-C02 2 1001 6.69400-002 2 24000 1.33900-002 3 23000 1.81500-003 3 26C00 5.994CO-002 4 5010 7.58000-00? 4 6C12 1.02300-002 4 13027 3.01300-002 5 52000 3.29900-002 6 592238 4.73000-002 ~ c -592235 3.410C0-004 CROSS SECTIONS READ FROM' TAPE 1001 H 1269 F, 1002 T 215 GP 032475(2) NUCLIDE = 551001 H 1260 F, 10C2 T 218 GP 0?2475(2) f:UCLfDE = 501C e-1C 1273 21dNGP 042375 P-3 293K %UCLIDE = 6012 C-12 1274F,1065T 213 GP 030476(7) NUCLIDE = 2016 0-16 1276 213 GP 030476(7) hUCLIDE = 553016 0-16 1276 218 GP 030476(7) NUCLIDE = 13027 AL-27 1193 210 GP 040!75(5) NUCLIDE = 513027 AL-27 119? 218 GP 040375(5) NUCLIDE = 240C0 CP 1191 21SNGP WT 1/E P-3 203K SIGP=5+4 RE(C42275) NUCLIDE = 2600C FE 21SGP RE 5-17-78(1) NUCLIDC = NUCLIDE = 26000 NI 1100 218NGP WT 1/E P-3 293K OIGP=5+4 RE(042375) C2000 PB 12?8 218NGP 042375 P-3 293K NuCLIDE = 592235 U-235 1261 SIGP=5+4 NEWXLACS 218NGP P-3 29?KC3) NUCLIDE = NUCLIDE = 92236 U-236 1163 SIG0=5+4 NEWXLACS P-3 293K F-1/E-M (1. + 5 ) ~ 502238 U-238 218CP RE 5-17-78(1) NUCLIDC =

AECL CASK N'I T H NRX FUEL, H.A. 1.12121-CC4 +OR-1.C4E61-036 GENERATION TIME = ?.22056-r LI F E T It'E = NO. OF I'4 I T I A L G Ef4E G AT IO!.S AVERAGE 67 PER CENT C5 PED CC SKISPED K-EFFECTIVE DEVIATION CO?lFIDENCE If4TERVAL CONFIDENCE It .00424 .22672 To .83521 .?224S To 3 .S3077 + OR .00432 .326E7 To .E2552 .32255 To 4 .83120 + OR o .0C430 .S2636 TO .83514 .82197 To o 5 .53075 + OR .00442 .32709 TO .23593 .52267 To o i .33151 + OR .C045C .82733 To .33634 .?2283 To .33133 + OR 3 .23194 + OR - .00460 .82734 TO .83655 .22274 To .C0466 .82795 To .83727 .62320 TO o .53261 + OR 10 .33268 + OR - .00477 .32791 70 .53745 .e2?14 To 11 .33332 + OR .00484 .32848 To .83S16 .82364 TCJ. 12 .33339 + OR .00496 .82843 TO .53834 .E2347 To 1' .23434 + OR .00541 .82943 TO .34024 .E2403 To 22 .33161 + OR .00607 .32554 TO .83767 .21942.To 2' .33355 + OP .00704 .32651 TO .84059 .E1947 TO 32 .22989 + CP .00528 .'S2160 TO .83S17 .E1?32 To o 37 .??O36 + OR - 01C25 .32011 TO .24060 .50956 To 42 .82003 + OR .01292 .E0716 To .83299 .79425 TO .02198 .78201 To .32698 76103 To 47 .30499 + OR l i h

.xN4X75 25/55 11:1*:54 (11) 1 AECL CASK WITH NRX FUEL, NORMAL OP., 75% OF EDRAL 200. 53 4C3 3 27 27 15 6 17 54 12 2 3 2 -15 1 0 2000 0 1 BI -1 300 2R-1 1 -92235 1.024-4 1 9223E 1.503-5 1 513027 3.325-3 1 753016 2.967-2 1 551001 5.733-2 1 92236 1.727-5 7 2 3016 3.347-2 2 1201 6.694-2 7 ? 24C00 1.E30-2 3 28000 1.815-3 3 26000 5.994-2 1 4 5010 5.69-3 4 6012 1.083-2 4 13027 3.013-2 7 5 a2000 3.299-2 9 6 02239 4.7?-2 6 -92235 3.41-4 E0X TYPE 1 7 Cue 0ID 1 13.486 1.437 2.8575 1.437 35.8775 0.0 27*0.5 CU901D 2 14.92? 0.000 2.8575 0.318 35.8775 0 0 27*0.5 7 CUB 0ID 3 15.240 0.000 2.P575 0.318 35.8775 0.0 27*0.5 CUDOID 4 15.240 0.000 2.8575 0.000 35.6775 0.0 27*0.5 7 00X TYPE 2 7 CUGOID 1 -1.437 -13.486 2.S575 1.437 35.8775 0.0 27*0.5 CUB 0ID 2 0.000 -14.923 2.8575 0.318 35.8775 0.0 27*0.5 7 CUG010 3 0.000 -15.-240 2.8575 0.313 35.8775 0.0 27*0.5 7 CUBOID 4 0.000 -15.240 2.85'.5 0.000 35.8775.0.0 27*0.5 ? BOX TYPE 3 CUBOID 1 13.466 1.437 24.765 0.000 35.8775 0.0 27*0.5 ? CUGOID 2 14.923 C.000 24.765 0.000 35.8775 0.0 27*0.5 7 CUDOID 3 15.031 0.000 24.765 0.000 35.8775 0.0 27*0.5 7 CUBOID 4 15.240 0.000 24.765 0.000 35.8775 0.0 27*0.5 30X TYPE 4 7 CUBOID 1 -1.437 -13.496 24.765 0.000 35.8775 0.0 27*0.5 7 CUBOID 2 0.000 -14.92.3 24.765 0.000 35.8775 0.0 27*0.5 7 CUB 0ID 3 0.0C0 -15.031 24.765 0.000 35.8775 0.0 27*0.5 7 CUBOID 4 0.000 -15.240 24.765 0.000 35.8775 0.0 27 0.5 7 BOX TYPE 5 7 CuacID 1 13.436 1.437 1.4205 0.000 35.8775 0.0 27*0.5 7 CUE 0ID 2 14.?23 0.000 2.5395 0.000 35.8775 0.0 27*0.5 7 cue 0ID 15.240 0.000 2.5395 0.000 35.8775 0.0 27*0.5 7 CUB 0ID 4 15.240 0.000 2.8575 0.000 35.8775 0.0 27*0.5 00X TYPE 6 7 CUBOID 1 -1.437 -13.4E6 1.4205 0.000 35.8775 0.0 27*0.5 7 CUCOID 2 0.000 -14.923 2.5395 0.000 35.8775 0.0 27*0.5 7 CUB 0ID 3 0'C00 -15 240 2.5395 0.000 35.S775 0.0 27*0.5 7 CU5oID 4 0.00C -15.240 2.8575 0.000 35.8775 0.0 27*0.5 7 00X TYFC 7 '7 CUB 0ID 1 13.486 1.437 2 8575 1.437 3.81 0.0 27*0.5 7 CUGOID 2 14.923 0.000 2.8575 0.318 3.51 0.0 27*0.5 7 CUBOID ? 15.240 0.000 2.8575 0.318 3.81 0.0 27*0.5 7 CUDOID 3 15.240 0.000 2.8575 0.000 3.B1 0.0 27*0.5 00X TYPE E 7 CUDOID 1 -1.437 -13.486 2.8575 1.437 3.81 0.0 27*0 5 7 CUE 010 2 0.000 -14.923 2.8575 0.318 3.81 0.0 27*0.5 '7 CUGOID 3 0.000 -15.240 2.E575 0.318 3.81 0.0 27*0.5 7 Cue 01D 3 0.000 -15.240 2.8575 0.000 3.31 0.0 27*0.5 7 BOX TYPE 9 CUBOID 1 .13.486 1.437 24.765 0.000 3.51 0.0 27*0.5

7 CUBOID 2

14.923 'O.000 24.765 0.000 3.81 0.0 27*0.5 UT CUDOID ? 15.081 0.000 24.765 0.000 3.81 0.0 27*0.5

7 CUSCID 4

15.240 0.000 24.765 0.000 3.31 0.0 27*0.5 i

7 FGy TYPE 10 7 CUSOID 1 -1.437 -13.4E6 24.765 0.000 3.a1 C.0 27*0.5 7 Cuc0ID 2 0.000 -14.023 24.765 0.000 3.S1 0.0 27*0.5 CU2010 3 0.000 -15.021 24.765 0.000 3.81 0.0 27*0.5 7 CU90ID 4 0.000 -15.240 24.765 0.000 3.81 0.0 27*0.5 7 00x TYet 11 7 CUucID 1 13.486 1.437 1.4205 0.000 3.31 0.0 27*0.5 Cue 0ID 2 14.923 0.0C0 2.5935 0.000 3.*1 0.0 27*0.5 7 CUBOID .3 15.240 0.000 2.5935 0.000 3.31 0.0 27*0.5 7 CUDOID 3 15.240 0.000 2.2575 0.000 3.81 0.0 27*0.5 7 COX TYPE 12 CUBOID 1 -1.437 -13.486 1.4205 0.000 3.51 0.0 27*0.5 7 CUE 0ID 2 0.000 -14.92? 2.5935 0.000 3.*1 0.0 27*0.5 CUBOID 3 0.000 -15.240 2.5935 0.000 3.91 0.0 27*0.5 7 CUBOID 3 0.000 -15.240 2.8575 0.000 3.S1 0.0 27*0.5 COPE BDY 0 15.240 -15.240 15.240 -15.240 30.6875 0~00 27*0.5 7 CUBOID 3 16.510 -16.510 16.510 -16.510 30.6375 0.00 27*0.5 7 CUPOID 6 21.59C -21.597 21.590 -21.590 39.6875 0.00 27*0.5 CYLINDER 5 41.28 39.6875 0.00-27*0.5 5 7 CYLINDER 3 42.55 39.6875 0.00 27*0.5 CUGOID 2 42.56 -70. 70. -70. 39.6875 0.00 27*0.5 7 1 1 1 '1 1 1 1 1 1 1 0 7 2 221 1 1 1 1 1 1 0 7 3 1 1 1 221 1 1 1 0 7 4 221 221 1 1 1 0 5 1 1 1 331 1 1 1 0 7 6 22 1 331 1 1 1 0 7 7 1 1 1 1 1 1 221 0 7 221 1 1 1 22 1 0 7 9 1 1 1 22 1 22 1 0 7 10 221 221 221 0 7' 11 1 1 1 331 22 1 0 7 12 2 21 33 1 22 1 1 END KENO. ^

t. CME. TIME:

0.535 SEC. IMAGE COUNT: 89 CONTROL MODE . KEN 066

AECL CASK '4ITH

f. R X FUEL, NOPMAL OP.,

75% OF BORAL. NUMDER OF GENE R ATI0f4 S 53 START TYPE NUME: 9 PER GENERATI0f4 403 GENERATIONS DE NUPDER OF GENERATIONS TO DE SKIPPED 3 LIST INPUT X-Si NUMDER OF ENERGY GROUPS 27 LIST 1-D MIXTUC NAX. NUPPER Or ENERGY TRANSFERS 27 LIST ?-D MIXTUI NU* DER OF INPUT feUCLIDES 15 LIST FISS. AND NUPUEP OF FIXTURES 6 USE X-SECTIONS NUPBER OF MIXING TADLE ENTRIES 17 USE GEOMETRY F '- NUMBER OF GEOMETRY CARDS 54 USE VELOCITIES NUMDEF, OF 00X TYPES 12 COMPUTE PATRIX NUMHER~0F UNITS IN X DIRECTION 2 COMPUTE MATRIX; NUMBER OF UllITS IN Y DIRECTION 3 LIST FISS PRO 3 NUMbEP OF UNITS IN Z DIRECTION 2 ADJOINT CALCUL NUP9EP OF NUCLIDES READ FROM TAPE -15 USE EXPONENTIA ALBEDO TYPE 1 CALCULATE FLUX-SEARCH TYPE O CALCULATE FISS THIS PPOELEM WILL DE RUN WITH SPECULARLY REFLECTING BOUNDARY CONDITION .00000 .00000 -Y = .00000 +Y = 1.00000+000 -X THE ALEEDOS ARE +X = = 'AXIPUM TIPE = 200.0000 FINUTES ~ 31417 STORACE LOCATIONS FEQUIRED FOR THIS JOS = P E f4 A I N I N G AVAILABLE LUC ATIO NS = 34583

AECL CASK WITH NRX FUEL, NORMAL OP., 75% OF CORAL f* I T TU R E NUCLIDE DENSITY 1 -02235 1.024G0-004 1 9223S 1.50300-005 1 513027 E.82500-003 1 552016 2.86700-002 1 551001 5.73300-002 1 92236 1.727CO-005 2 S016 3.34700-002 2 1001 6.69400-002 3 24000 1.83900-002 3 20000 1.31500-003 ? 26000 5.99400-C02 4 5010 5.69000-003 4 6012 1.01300-002 4 13027 3.01300-C02 5 E2000 3.29900-002 6 92238 4.73000-002 6 -92235 3.41000-004 CROSS SECTI0flS READ FROM TAPE 1001 H 1269 F, 1002 T 218 GP 032475(2) NUCLIDE = 551001 H 1269 F, 1002 T 218 GP 032475(2) NUCLIDE = 5010 0-10 1273 213NGP 042375 P-3 293K NUCLIDE = 6012 C-12 1274F,1065T 218 GP 030476(7) NUCLIDE = E016 0-16 1276 218 GP 030476(7) NUCLIDE = 550016 0-16 1276 218 GP 030476(7) NUCLIDE = 13027 AL-27 1193 213 GP 040375(5) NUCLIDE = NUCLIDE.= 513027 AL-27 1193 218 GP 040375 (5) 24000 CP 1191 21SNGP WT 1/E P-3 293K SIGP=5+4 RE(342375) NUCLIDE = 26000 FE 218GP RE 5-17-7?(1) NUCLIDE = 2E00C NI 1190 213NGP WT 1/E P-3 293K SIGP=5+4 RE(C42375) NUCLIDE = NUCLIDE = S20C0 PP 12S8 21SNGP 042375 P-3 293K 92235 U-235 1261 SIGP=5+4 NEWXLACS 218NGP P-3 293KC3) NUCLIDE = 92236 U-236 1163 SIGO:5+4 NEWXLACS P-3 29?K F-1/E-M(1.+5) NUCLIDE = 92232 U-238 21SGP RE 5-17-78(1) NUCLIDE = i

ITH MRX FUEL, NOPMAL OP., 75% OF BORAL AECL CASV 1.01447-004 + OR - 1.09606-006 GENERATION TIME = 7.?4264-C LIFETI"E =

  • 0.

OF I';I TI AL GENERATIONS AVERAGE 67 PER CENT 95 PER CE SKIDPED K-EFFECTIVE DEVIATION CONFIDENCE INTERVAL CONFIDENCE I' 3 .28351 + oc - .00476 .S7375 To .88826 .27399 To a .00463 .88031 To .38957 .37568 To 4 .53494 + OP o .00466 .37947 TO .E8E78 .87482 To .53413 +OP _o .00470 .57870 To .32810 .87401 To 6 .25240 + OP e 9 .00470 .27967 TO

  • 8906

.E7497 TO ? .28437 + OP .00480 .S7940 To .P'9CO .C7460 To T .AS420 + OR e .00489 .87977 To .32955 .3742E TO 0 .88466 + OR .00497 .88022 To .39016 .F7524 To 10- .33519 + OR 1' .23513 + OR- .00509 .?S004 To .89022 .87495 TO .00516 .E7920 TO .28952 .f7404 TO 1? .834?6 + 04 .00564 .88020 TO .39147

  • 7456 TO 1'

.8SSS3 + OR 22 .E8367 + OR - .00610 .27756'To .839'? .27146 To .00705 87528 To .3a938 .f6223 TO '8223 + OF l .G0825 '.87695 TO .E9344 .3t?7C TO

  • ES20

+ 00 .C074! .89063 To .90542 .86?21 TO ?? .E?SC6 + OP .C0023 .084E2 To .90327 .F7559 TO 42 .09404 + 0? 4' .93202 + OR - .C069' .29504 TO .90900 .E**06 To i

' 4. K N c. X 4 /25/IS 22:JC:~' (11) 'C AECL :'!K VITu MISC FUEL, NORMAL OP., 4.0 G/CM, 40% U IN AL 10 25^. 5: ;^! ? 27 27 15 6 17 54 12 2 3 2 -15 1 0 2000 0 1 EZ -1 ';" :R-1 37 1 c:23f 2.049-4 1 0:233 3.006-5 1 513027 6.177-? 7 1 C300i' O.267-2 1 551001 5.733-2 1 92236 3.454-5 C7 2 ?C16 2.347-2 2 1001 6.694-2 24CCC 1.2:9-2 3 28900 1.815-3 3 26000 5.994-2 ,;9 4 SC1C 7.55.-! 4 6012 1.083-2 4 13027 3.013-2 97 72000 ?.200-2 11 6 9223E 4.7T-2 6 -92235 3.41-4 F7 C0X TYPE 1 27 Cue 0!D 2 13.486 1.437 2.8575 1.437 35.8775 0.0 2'*0.5 'o Cue 0ID 2 14.723 0.000 2.8575 0.318 35.8775 0.0 27*0 5 27 CUBOID 15.240 0.00C 2.3575 0.318 35.8775 0.0 27*0.5 'o CUDOID 4 15.24C 0.000 2.8575 0.000 35.8775 0.0 27*0.5 17 E0X TYPE 2 C9 Cue 01D 2 -1.437 -13.436 2.8575 1.437 35.8775 0.0 27*0.5 39 CUDOID 2 0.000 -14.923 2.8575 0.31E 35.E775 0.0 27*0.5 '9 CUGOID 3 0.000 -15.240 2.8575 0.318 35.F775 0 0 27*0.5 ?C Cue 0Ic 4 0.000 -15.240 2.8575 C.000 35.3775 0.0 27*0.5 C7 BOX TYPE 3 ':0 CUBOID 1 11.100 3.82C 23.800 0.963 35.S775 0.0 27*0.5 E9 Cue 0ID 2 14.923 0.000 24.765 0.000 35.8775 0.0 27*0.5 C7 Cue 0Ie 3 15.081 0.000 24.765 C.000 35.8775 0 0 27*0.5 29 cue 0ID 4 15.240 0.000 24.765 0.000 35.E775 0.0 27*0.5 07 COX TYPE 4 09 Cue 0ID 1 -3.E20 -11.100 23.300 C.063 35.3775 0.0 27*0.5 09 CUBOIC 2 C.000 -14.923 24.765 0.000 35 8775 0.0 27*C.! 09 CUGOID ? 0.C00 -15.081 24.765 C.000 35.E775 0.0 27*0.5 C9 CUGOID 4 0.000 -15.240 24.765 0.000 35.8775 0.0 27*0.5 07 OCX TYPE 5 29 CUEDID 2 13.486 1.437 1.4205 0.000 35.3775 0.0 27*0.5 CC Cue 0ID 2 14.923 0.000 2.5395 0.000 35.8775 0.0 27*0.5 09 Cue 01D 3 15.240 0.00C 2.5?95 0.000 35.8775 0.0 27*0.5 09 CUBOID 4 15.240 0.000 2.8575 0.000 35.8775 C.0 27*0.5 C7 00X TYPE 6 "7 CUDOID 2 -1.437 -13.486 1.4205 0 000 35.8775 0 0 27*0.5 "09 Cue 0I0 2 0.000 -14.923 2.5395 0.00C 35.8775 0.0 27*0 5 09 CUBOID 3 0.000 -15.240 2.5395 0.000 35.8775 0.0 27*0.5 09 Cue 0ID 4 0.000 -15.240 2.E575 0.C00 35.8775 0.0 27*0.5 97 DOX TYPE 7 09 CUSOID 2 13.486 1.437 2 8575 1.437 3.81 0.0 27*D.5 09 CUBOID 2 14.923 0.000 2.3575 0.318 3.81 C.0 27*0.5 09 cue 0ID 3 15.240 0.000 2.8575 0.318 3.81 0.0 27*0.5 '09 CUBOID ? 15.240 C.000 2.8575 0.000 3.81 0.0 27*0.5 37 BOY TYPE S 3C Cue 01D 2 -1.437 -13.466 2.8575 1.437 3.81 0.C 27*0.5 C9 CUDOID 2 C.000 -14.923 2.8575 C.318 3.S1 0.0 27*0.5 09 Cue 0ID 3 0.000 -15.24C 2.8575 0.31E 3.81 C.C 27*0.5 09 CUBOID 3 0.000 -15.240 2.8575 C.000 3.B1 0.0 27*0.5

07 90X TYPE 9

09 Cue 0ID 1 11.100 3.820 23.800 -0.963 3.31 0.0 27*0.5 '09 CU9OID 2 14.923 0.000 24.765 0.000 3.81 0.0 27*0.5 09 CUOOID 3 15.081 0.000 24.765 0.000 3.31 0.0 27*0.5 '09 Cue 0ID 4 15.240 0.000 24.765 0.000 3.31 0.0 27*0.5

'? L07 TYPE 1C 9 Cet0ID 1 -3.?20 -11.100 23.200 0.963 3.51 0.0 27*C.5 'c Cue 0:0 2 0.000 -14.923 24.765 0.00C 3.?1 C.0 27*0.5 C.000 -15.0?1 24.765 C.000 3.51 0.0 27*0.5 ^ Cue 010 0 Cue 0!D 4 0.000 -15.24G 24.765 C.COC 3.31 0.0 27*0.5 '7 90X TYDE 11 ~9 Cue 01D 2 13.486 1.437 1.4205 C.000 3.S1 0.0 27*0.5 29 CUDOID 2 14.923 0.000 2.5935 C.0C0 3.31 0.0 27*0.5 'i Cue 0ID 3 15.240 0.000 2.5935 C.000 3.E1 C.0 27*C.5 c CUBOID ? 19.240 0.000 2.8575 0.000 3.81 0.0 27*0.5 '7 COX TYDE 12

c Cue 0ID 2

-1.437 -13.486 1.4205 0.000 3 81 0.0 27*0.5 39 CUDOID 2 0.C00 -14.023 2.5935 0.000 3.31 0.0 27*0.5 .9 CUBOID 3 0.000 -15.240 2.5935 C.000 3.81 0.0 27*0.5 27 CUSOID 3 0.000 -15.240 2.8575 0.000 3.31 0.0 27*0.5 ?C CORE BDY C 15.240 -15.24C 15.240 -15.240 39.6875 0.0C 27*0.5 10 CUSOID 3 16.510 -16.510 16.510 -16.510 39.6375 0.00 27*0.5 10 CUDOID 6 21.S?C -21.5 9C 21.5 9 0 -21. 59 0 3 0.68 7 5 0.00 27*0.5 10 CYLINDER S 41.28 39.6875 0 00 27*0.5 1C CYLINDER 3 42.55 39.6875 0.00 27*C.5 10 CUBOID 2 42.56 -70. 70. -70. 39.6E75 0.00 27*0.5 IC 1 1 1 1 1 1 1 1 1 1 0 10 2 22 1 1 1 1 1 _1 1 0 1C 3 1 1 1 221 1 1 1 0 10 4 221 221 1 1 1 0 1C 5 1 1 1 33 1 1 1 1 0 '19 6 221 331 1 1 1 C 1C 7 1 1 1 1 1 1 22 1 0 1C C 221 1 1 1 22 1 0 '1C 9 1 1 1 221 221 0 1: 10 22 1 221 221 0 1: 11 1 1 1 33 1 22 1 0 10 12 22 1 33 1 22 1 1 1C E 'J D KENO. N 0 t. E. TIME: C.700 SEC. IMAGE COUNT: 89 CONTROL MODE

0. KEN 066

AECL CASK WITH "ISC FUEL, NCRMAL OP., 4.0 G/CM, 40% U IN AL NUPPEh 0F-GENERATIOMS 53 START TYPE NU9bEr PER GENERATION 4C! GENERATIONS BEY NUMEER OF'GE';ERATIONS TO BE SKIPPED 3 LIST INPUT x-SE NUMBER OF ENERGY C.ROUPS 27 LIST 1-D MIXTUS PAX. NUMDER OF ENERGY TRANSFERS 27 LIST 2-D FIXTUF NUMDEP OF If;PUT NUCLIDES 15 LIST FISS. AND NUMUEP OF MIYTURES 6 USE X-SECTIONS NUMBER OF ffIXING TABLE ENTRIES 17 USE GEOMETRY FT NUMBER OF GEOMETRY CARDS 54 USE VELOCITIES NUMRER OF 00X TYPES 12 COMPUTE " ATRIX' NUMBER OF UNITS IN X DIRECTION 2 COMPUTE MATRIX NUMBER OF UNITS IN Y DIRECTION 3 LIST FISS PROE NUMBER OF UNITS IN Z DIRECTION 2 ADJOINT C A L C U L.' NUMBER OF NUCLIDES READ FROM TAPE -15 USE EXPONENTIA! ALBEDO TYPE 1 CALCULATE FLUX S E A R Cli TYPE O CALCULATE FISS: THIS P R 00 L E f1 WILL DE RUN WITH SPECULARLY REFLECTING BOUNDARY CONDITION .00C00 .000C0 -Y = .00000 +Y = 1.C0000+000 -X THE ALDEDOS ARE +X = = MAXIfiUM TIME = 200.0000 MINUTES 31417 STORAGE LOCATIONS REQUIRED FOR THIS J00 = REMAINING AVAILABLE LOCATIONS = 34583 l.

AECL CASK WITH MISC FUEL, NORMAL OP., 4.0 G/CM, 40% U IN AL l' I V. T U R E NUCLIDE DENSITY 1 -92235 2.04E00-004 1 92238 3.00600-005 1 513027 6.17700-003 1 55EC16 2.?6700-0C2 1

551001, 5.73300-002 1

92236 3.454C0-005 2 E016 3.34700-002 2 1001 6.69400-002 3 24000 1.83900-002 3 CEC 00 1.81500-003 ? 26000 5.99400-002 4 5010 7.52000-003 4 6C12 1.08300-002 4 13027 3.01300-002 5 82000 3.29900-002 6 92238 4.73000-002 6 -92235 3.41000-004 CROSS SECTIONS READ FROM TAPE 1001 H 1269 F, 1C02 T 212.GP 032475(2) NUCLIDE = 551001 H 1269 r, 1002 T 218 GP 032475(2) NUCLIDE = 5010 0-1C 1273 218NGP 042375 P-3 293K NUCLIDE = 6012 C-12 1274F,1065T 218 GP 0?0476(7) NUCLIDE = NUCLIDE = 5016 0-16 1276 218 GP 030476(7) 558016 0-16 1276 218 GP 030476(7) NUCLIDE = 13C27 AL-27 1193 21E GP 04C375(5) NUCL8DE = NUCLIDE = 513027 AL-27 1193 218 GP 040375(5) NUCLIDE = 24000 CR 1191 218NGP WT 1/E P-3 293K SIGP=5+4 RE(042375) NUCLIDE = 26000 F'E 212GP RE 5-17-7B (1) NUCLIDE = 280C0 NI 1190 218NGP WT 1/E P-3 293K SIGP=5+4 RECC42375) 32000 PD 12EE 218NGP 042375 P-3 293K NUCLIDE = 92235-U-235 1261 SIGP=5+4 NEWXLACS 21?NGP P-3 293Kl3) NUCLIDE = 92236 U-236 1163 SIG0=5+4 NEWXLACS P-3 203K F-1/E-M(1.+5) NUCLIDC = NUCLIDE = 92238 U-2,33 21EGP RE 5-17-78(1) i i

l AECL CASK WITH MISC FUEL, NOPMAL OP., 4.C G/CM, 40% U IN AL 6.74393 ' 1.02461-004 + OR - 9.5057?-007 GENEPATION TIME = LIFETItE = NO. Or INITIAL G E r4 E R A T I O N S AVERAGE 67 PER CENT 95 PEP C" SKIPPED K-EFFECTIVE DEVIATION CONFIDENCE INTERVAL CONFIDENCE I* .004S4 .81247 TO .82215 .30763 TO 3 .01731 + CR o 4 .81743 + 00 - .00494 .81249 TO .92237 .80755 To a op - .00504 .21253 TO .52261 .30749 70 .31757 o r .00515 .81234 TO .32264 .30719 To / . 51 ~r 4 9 + OR a 7 .Bi685 + OP - '.00522 .31163 TO .82207 .F0641 TO o .31728 + 09 - .00532 .31196 To .32261 .00664 TC a c .31629 +OR - .00535 .31094 TO .E2164 .30560 TO o .00547 .81057 TO .?2151 .3051C TO 10 .31604 + OR o 11 .3150C + OR - .00560 .31031 TO .82150 .90471 To o 12 .31657 + OR - .00570 .31087 To .82226 .F0518 To e .00540 .81052 To .32133 .?O512 To 17 .31592 + OR e .00608 .21065 TO .82280 .30457 TC 22 .31673 + OR e 2' .82024 + OR - .C0673 .31351 To .F2696 .3067? To o .00745 .R1948 TO .53439 .9120? To 32 .32693 + OR o .00778 .51339 TO .32594 .?0561 To 3' .82116 + OR o .00872 .30532 TO .82276 79661 To 42 .814C4 + OR e .00872 .30505 To .62249 79634 To 47 .31377 + OR e v--

i l 04.KAPX4HA /25/25 2?:15:24 (15) 13 AECL CASK WITH MISC FUEL, H.A., 4.0 G/CM, 407 U IN AL 12 200. 5? 403 3 27 27 15 6 17 54 12 2 3 2 -15 1 0 ?000 0 1 SZ 11 0 3RD 29-1 11 _1 -592235 1.496-4 1 5922?8 2.193-5 1 513027 4.208-3 -11 1 55F016 2.996-2 1 551001 5.992-2 1 92:?L 2.524-5

  • 1 2

S016 3.347-2 2 1001 6.694-2 11 3 24000 1.839-2 3 28000 1.315-3 3 26000 5.994-2 17 4 5010 7.58-3 4 6012 1.053-2 4 13027 3.01?-2 11 5 F2000 3.299-2 15 6 592233 4.73-2 6 -502235 3.41-4 11 BOX TYPE 1 1? CUPOID 2 13.4S6 1.437 2.S575 1.437 35.8775 0.0 27*0.5 13 CUEGID 2 14.923 0.000 2.8575 C.?18 35.8775 0.0.27*0.5 1? CUDOID 1 15.240 C.000 2.8575 0.318 35.8,775 0.0 27*0.5 12 CUE 01D 4 15.24C 0.000 2.8575 0.000 35.8775 0.0 27*0.5 11 E0X TYPE 2 13 cue 0ID -1.437 -23.486 2.s575 1.437 35.8775 0.0 27*0.5 13 Cue 01D 2 0.000 -14.92? 2.8575 0.318 35.8775 0.0 27*0.5 1: Cue 0It 3 0.000 -15.7',0 2.8575 0.318 35.8775 0 0 27*0.5 1: CUE 0I0 4 0.000 -15.240 2.S575 0.000 35.3775 0.0 27*0.5 11 30X TYDE ? 1: CUDOID 1 11.100 3.E20 23.800 0.963 35.8775 0.0 27*0 5 1? Cue 0ID 2 14.023 0.000 24.765 0.000 35.E775 0.0 27*0.5 13 CUBOID 3 15.031 0.000 24.765 0.000 35.P775 0.0 27*0.5 13 CUDOID 4 15.240 0.000 24.765 0.000 35.8775 0.0 27*0.5 11 00X TYPE 4 13 CUDOID 1 -3.820 -11.100 23.800 0.963 35.8775 0.0 27*0.5 12 CUDOID 2 0.000 -14.923 24.765 0.000 35.8775 0.0 27*0.5 1: Cue 0ID 3 0.000 -15.081 24.765 0.000 35.8775 0.0 27*0.5 12 CUBOID 4 0.000 -15.240 24.765 0.000 35.8775 0.0 27.*.5 11 P0X TYPE 5 1: CUECID 2 13.486 1.437 1.4205 C.000 35.8775 0.0 27*0.5 1? CU90!D 2 14.923 0.000 2.5395 0.000 35.8775 0 0 27*0.5 1: CUPOID ? 15.240 0.000 2.5395 C.000 35.8775 0.0 27*0.5 1? CUDOID 4 15.240 0.000 2.8575 0.000 35.8775 0.0 27*0.5 11 00X TYPC-6 ,13 CUDOID 2 -1.437 -13.486 1.4205 0.C00 35.2775 0.C 27*0.5 13 Cue 01D 2 C.000 -14.923 2.5?95 0.000 35.8775 0.0 27*0.5 13 CUBOID 3 0.000 -15.240 2.5395 0.000 35.8775 0.0 27*0.5 1! Cue 0ID 4 0.000 -15.240 2.8575 0.000 35.37'5 0 0 27*0.5 11 DOX TYPE 7 13 CUDOID 2 13.486 1.437 2.8575 1.437 3.81 0.0 27*0.5 1? CUBOID 2 14.92? 0 000 2.8575 0.318 3.81 0.C 27*0.5 1? Cue 0I0 ? 15.240 0.000 2.8575 0.318 3.31 0.0 27*0.5 1? CUBOID 3 15.240 0.000 2.8575 0.000- 3.01 0.0 27*0.5 11 BOX TYPE 8 ,13 CUCOID 2 -1.437 -13.486 2.8575 1.437 3.81 0,0 27*0.5 13 CUECID 2 0.000 -14.923 2.8575 0.318 3.81 0.0 27*0.5 13 CUBCID 3 0.000 -15.240 2.8575 0.318 3.81 0.0 27*0.5 1 CUBOID 3 0.000 -15.240 2.8575 0.000 3.81 0.0 27*0.5 11 GOX TYPC 9 13 CUDOID 1 11.100 3.820 23.800 0.963 3.81 0.0 27+C.5 ri1: CUOOID 2 14.023 0.000 24.765 C.000 3.31 0.0 27*0.5 1: Cue 0ID 3 15.081 0.000 24.765 0.000 3.81 0.0 27*0.5 1: CUB 0ID 4 15.240 0.000 24.765 C.00C 3.81 0.0 27*0.5 e

11 00X TYPE 10 12 CU50ID 1 -?.?20 -11.100 23.300 0.963 3.81 0.0 27*0.5 13 CUE GID 2 0.000 -14.923 24.765 0 000 3.81 0.0 27*3.5 12 CUEOID ? C.00C -15.081 24.765 0.000 3.91 0.0 27+C.5 1? Cus0ID 4 7.CDC -15.240 24.765 0.000 3.81 0.0 27*0.5 11 COX TYoE 11 1? CU5OID 2 13.486 1.437 1.4205 0.000 3.31 0.0 27*0.5 17 Cue 0ID 2 14.923-0.000 2.5935 C.000 3.81 0.0 27*0.5 12 CU20!D 3 15.240 0.000 2.5935 0.000 3.31 0~.0 27*0.5 13 CUPOID 3 15.240 0.000 2.8575 0.000 3.31 0.0 27*0.5 11 30X TYPE 12 1 CUBOID 2 -1.437 -13.486 1.4205 0.000 3.31 0.0 27*O.5 1: CUEGID 2 0.000 -14.923 2.5935 0.000 3.81 0.0 27*0.5 1: Cus0ID ? 0.000 -15.240 2.5935 0.000 3.81 0.0 27*J.5 1 Cue 0Ic 3 0.000 -15.240 2.S575 0.000 3.31 0.0 27*0.5 1! CORE BDY 0 15.240 -15.240 15.240 -15.240 39.6575 0.00 27*0.5 < 13 CUBOID 3 16.510 -16.510 16.510 -16.510 39.6375 0.0C 27*0.5 13 CUD 0!S 6 21.59C -21.590 21 590 -21.590 39.6875 0.00 27*0.5 1: CYLINDER 5 41.28 39.6875 0.00 27*0.5 1? CYLINDER 3 42.55 39.6875 0.00 27*0.5 12 Cue 0ID 2 42.56 -70.

70. -70.

39.6875 0.00 27*0.5 1? 1 1 1 1 1 1 1 1 1 1 0 13 2 221 1 1 1 1 1 1 0 T3 ? 1 1 1 221 1 1 1 0 1: 4 221 221 1 1 1 0 1? 1 1 1 331 1 1 1 0 13 6 22 1 331 1 1 1 0 1? 7 1 1 1 1 1 1 22 1 0 1: S 221 1 1 1 221 0 12 0 1 1 1 221 221 0 1: 10 22 1 221 22 1 0 13 11 1 1 1 331 22 1 0 1? j 12 22 1 33 1 221 1 1: END KENO. . NONE. TIME: 0.743 SEC. IMAGE COUNT: 89 . CONTROL MODE .0. KEN 066 I

AECL CASK '41 T H MISC FUEL, H.A., 4.0 G/CM, 4 ", *4 U IN AL NUMUED CF GENERATIONS 5? START TYFE NU"bE PER GENERATION 40? GENERATIONS 9ET NU"bER OF GENERATIONS TO BE S K IPP E D 3 LIST INPUT X-SE NUFCER OF ENERGY GROUPS 27 LIST 1-D MIXTUF "AX, NUPOER OF ENERGY TRANSFERS 27 LIST 2-0 MIXTUG NUPEER OF INPUT NUCLIDES 15 LIST FISS. AND AUPSER OF MIXTURES 6 USE X-SECTIONS NUMBEP OF MIXING TAPLE ENTRIES 17 USE GEOMETGY FB NUFDER OF GEOPETRY CARDS 54 USE VELOCITIES NUPUER OF 00X TYPES 12 COMPUTE MATRIX NUFBER OF UNITS IN X DIRECTION 2 COMPUTE ' ATRIX NU eER Or UNITS IN Y DIRECTION 3 tIST rISS eR0e NUMBEG OF UNITS IN I DIRECTION 2 ADJOINT CALCULA NU"BEP OF NUCLIDES READ FROM TAPE -15 USE EXPONENTIAL ALBEDO TYPE 1 CALCULATE FLUX SEARCH TYPE O CALCULATE FISSI THIS P r 0H LEfi WILL EL RUN WITH SPECULARLY REFLECTING BOUNDARY CONDITION .00000 .00000 -Y = THE ALFEDOS ARE +X .00000 -x = .00000 +Y =

  • AXIMUF TIME = 200.0000 MINUTES STORAGE LOCATIONS REQUIRED FOR THIS JOB =

31417 i .F E'.AINING AV AILABLE LOCATIONS = 345E3 l

ACCL CASK WITH "ISC FUEL, H.A., 4.C G/C4, 40% U IN AL MIXTUDE NUCLIDE DENSITY 1 -592225 1.49600-004 1 SC2238 2.19G00-005 1 513027 4.20800-00? 1 355016 2.99600-0C2 1 551001 5.99200-002 1 92236 2.52400-005 2 2016 3.34700-002 2 1001 6.69400-002 3 24000 1.83900-002 ? 220C0 1.81500-003 3 260C0-5.99400-002 4 5010 7.59000-0C3 ~4 6C12 1.CE3CO-002 4 13027 3.01300-002 5 S2000 3.29900-002 6 59223E 4.73000-002 6 -592235 3.41000-004 CROSS SECTIONS READ FROM TAPE 1001 H 1269 F, 1002 T 218 GP 032475(2) NUCLIDE = 5510C1 H 1269 F, 1002 T 218 GP C32475(2) NUCLIDE = 5010 S-10 127? 218NGP 042375 P-3 293K 'NUCLIDE = 6012 C-12 1274 F,106.5 T 218 GP 030476(7) NUCLIDE = 8C16 0-16 1276 218 GP 030476(7) NUCLIDE = 555C16 0-16 1276 218 GP 030476(7) NUCLIDE = 13C27 AL-27 119? 218 GP 040375(5) NUCLIDE = 513027 AL-27 1193 218 GP 040375(5) NUCLIDE = NUCLIDE = 24000 CR-11C1 218NGP WT 1/E P-3 293K SIGP=5+4 RE(042375) 26000 FE 21EGP RE 5-17-78(1) NUCLIDE = NUCLIDE-= 20000 NI 1100 21ENGP WT 1/E P-3 293K SIGP=5+4 RE(042?75) 82000 PE 123S 218NGP C42375 P-3 293K NUCLIDE = 592235 U-2?5 1261 SIGP=5+4 NEWXLACS 212NGP P-3 293K(3) NUCLIDE = 92236 U-236 1763 SIGO:5+4 NEWXLACS P-? 293K F-1/E-M(1.+5) NUCLIDE = 592233 U-238 21SGP RE 5-17-78(1) NUCLIDE =

AECL CASK WITH MISC FUEL, H.A., 4.C G/CM, 40% U IN AL 1.09E03-004 + OR 7.93214-C 5.22007-007 GENERATI0'! TIME LIFETI"E = = NC. OF INITIAL GENERATIONS AVERAGE 67 PER CENT 95 PER CE SKIPPFD' K-EFFECTIVE DEVIATION CONFIDENCE INTERVAL CONFIDENCE I* .00411 .75653 TO .76475 .75242 TO .76C64 + CR .004C5 7555? To .76363 75147 70 4 .7595E + OR .00410 7549? TO .76314 .75033 TO .759C3 + 0c .00418 .75517 TO .76352 .75100 To 6 .75935 + OR .75885 + OR - .00424 .75462 TO 76309 .7503E TO S .75954 + OF .00428 .75526 TO .763E2 .75099 TO 0 .76019 + OR - .C0432 75586 To .76451 75154 TO 1C .76062 + OR .00440 .75622 TO .76502 .75181 TO 11 .76057 + OR .00451 .75606 TO .76508 .75155 TO .00451 .75704'To .76606 .75253 To 12 .76155 + OP 17 .76139 + OR .00481 75658 TO .76619 .75177 TO 22 .76079 + 04 - .00544 .75535 To .76623 74091 TO 2' .75936 + OR .00640 .75296 To .76575 .74656 To ?2 .75634 + OP .00726 74908 TO .76350 .74182 TO 37 .75296 + OR .00786 .74510 TO .760F1 .73724 To .00025 74838 TO .76688 .7391? To 42 .75763 + OR o 47 .75722 + OR - .01535 74188 To .77257 .72653 To,. i I

4 APPENDIX C DRAWING 3 O 1 l I i i

% - :..^ :. ?:r a.-- . I,1 3 4 4 ; t ,l,,,..- r v, - [ ', 8 * ** ', ,,

  • li, *, f). '.',

.y J,,.

  • q J.

i F t t.?! ,, J,, il f -1 p i. T. i. f 2 [ f a. i e 2 .,..,s e i,-. 3y ,... *.,. h;.,,, z,: ;.<.. t, m.. i ,s J, S.. :;. :.. M.,.. i.4 g. ;. y '. ', 1 f. . f. ,et.*

o.. -.

s a n' 3 e .o. - r, '] il ?T 3,- - F .3 ., [.,,,.. %..,..t,. 3,_1 I*6_.. _.. .-.31..- i,

c..a c I

+7 y-- I 'A, 4. -r +l. _. i t__. ? .*~ 4 l f l -7 . 71 i e e e. e'i i, 7 7 .i i tT 3 i -.. ~ ! ',f .. f. ~ c'f ' [' s jc )! f-'. + 1 'o 1 a ,t-l f;' -m ,j. .I ?! 1

  • ?.

.L gJ 4 u tM yi t,'

  • u 3 :

J i t, kl g o: r z e 2 s . A -st ' 'i C v21, y ?. ^;* l t. a ^ q d... f' I. . y i r g a c t

EL -

1 ~ w s, t t ,..s.- 1.-._. L. .-.rs . _.i s* 8 '} [ I T ~~2==_-- ' 're- -l i

k...

y l 7 .w-.'s _ J c r s,

2..

s

n... '

s. ~ w 7_.. ..y ~ ~ I ? w } J a? .s r L i., p -4 .t. o. g *.. a-s J

9...

s.,, s 4 'g j il 8: 54 T j ,i 1r- -s -s.-.-4 . 1 M. 3 l -- d jy ) l 1q i, w+0 1, ~. ( f'. ;- 7 i, a w 5 s. - .?. ,./ i I a26 m ' o: 4 1s. y [, l, A{ l r ;i

  • )

>.i.. t g (-j .rr -1 r-i,!. _m. l l i_. = c ,i E jj ,1 O ld.- h, i d 1 44 - 1 ) r N "" O, ! - f5 l i ?I , 1} f --r--k-- j y'r 'j q, v... ~ j ~ -, n "G s t, +,O 3 .6 l' t v y

n. j g.

9 .s. I 6 l lt t .51 \\ l ? }. i 4 m I g,s

s...

e r-I; $ dr 4 4 i 2. ~1,*

  • 5
f.. t=2 t ' rh._

2 c. S .s s ( 1-g V i g v 9 p,... [ ..~' ee t

    • 5 8

i l '4 1 ~ , ~..

,,, ;- ?

A l ,e 1 p i t I ,c M* l m .. :.u

.g.a..w.m,y #:3~ g 7 h: I e. ,c { cy f.)& }! g; & zI+h N[ps I d' id b! N D.g [ g. g,; w., a .N I f

  1. b d.7 7 iMi[Q M'I T 3"g. m m%'Hihi.y '

~ M' 'h-J - M' '-., 1

hrt b

f 2.,n# i~ J ~ m it,. g-h 2 i 15.'lg -l p...-. p. - m;e,- r.,y, ;-l i r. m___ 4,, .y p 1 c .L. . c i _4 p - $. I' - lij I,, ., '!j i j; %. 9 i N Tw b@),j - - il t pt t s --m'.,:.....s. ? a. ' >.. s y. ty _-:u._ u.1 - m:.g.-y. t r- ~; ; 9.g .y %_r. 9? q. - r. g. m

t t

.__-;.- rt pg g.- 3 . 7 - - *- D..( ~% - l 1 - Ig 11,4 ' =- e, ! +. ---e. . Q'Qj,e, r f; t%'jglg i} 7 ' 1 _i ? W '*5 ~ ] -4, j \\,Q' pl

{

N FM--- aju,)l , - r"4 4.=, 1-c., > c .. ;.e ~ i e .n .t r 4 e e ? - 1 e, 4 - W.. + i i r-t.e1.4 ,,a $). ~ l l l l i 3 3, -7m., 'I f ?i h !. ~ - - * - l s .s l },g t ,__2.,- F.u,> r ], p.,. - i e, g-, j t J t; / G-H, ~ j l t i ,Y i_ _.L ;

j!

= s .cy o l 1 / ^ l \\' J ji .h, [", @ @ @ - 24

  • n v.

r hl .i !-f .r. I

4.,9 e

e un N


r-4, +

4-t .w v.*. Ip! n i i -+ t f W I j 3M 34 z' ' \\ ~

4.. Q.y' h

+ s ',* s' I,: .Sj. l.W Wwi s 4 i

~Z s,.

v l m ,, X,~ j

c

[ "* } ( x 3 ,f q,_Q .4_, }gq@' s

. --o-.9 4=' >, 4.,8
g. j
  • 4 p

t . ---w j 1...,. + ; < ~l,i .m I' ;. c.,.l ..F Q),,,e m. i- --. w -9

- i e

f i - l Nil x m u_._f"- C.. p,q. ' [; R t 3 i - ~g g c-3 . i%g,E i,.1 r ni ~ r. /, i g ,,g r- ,, e

  • 3 ee p

~ e ,3 => .'s w __r,k*s.. r ai - l l. ~ 's '? i-.,. .y s c i ,, i . l,. 4( i - i 1 -- -. l.' ' 40 3 i n L g..: \\ ./ (" $ i

4

+

  • v.

1. -g ,i -$m,.lr,d. -s% f f.3* !.Ib ,' s 11, 'g ir( m b* 6.I ~~ ~--T.4 -I38 - = - et ' ' fr s f e . J= 4 -,-i, "[f_ = , i j l' j 4-] % s h d k,. 900***** , =a b 'h- = r .a t- _,,ac [

h...g,

~*~ ~*~ .e _ a -. l e.h g, [dQ .--,a-*, j l ( -aj j ' c-t -.,; l a,m : d.. i I 4 yy q I i p. f ^ .[ 6_1, ! - b d ML' - i ..n.. .i.tw-w-J#R = pl. L l. $--.-Q;. Q 2.v;;. r.l9, N,e___ KL ,w. s c ..j$?i], NY... ?57]! h. _.R$,.j & N ' d... :

h A

p..

.g-* W f xs..e *. ...,,.4 t -.. ~. n (i...,u..... :.. ~,, .p,',, 4,. p ?v 3,. ", j s- +. e r..-. .a j. f' i . q

c.. _

m,,s.e.. w.mf <~~.. G.e ^ l~ _. y., 3 a.. m 'N, '. e // .e y,,, a : . N - g 4 <4 i v, .,p ./, + .t .z r.. c .,1 . c/ / g.:.4 ,.w.. o e a.. m ,u J, ,/ n o 7 f f.J :., J. k",1 p'c) -

  • i t__.__ta'

/ ' =,. - '

  • =-

+ W: i ' a. YY ^ E y p,w r.n - c 3 A, (' s t. .l-I; s.gI! - E s l,$ A kg__. R _ R 8 R, U% i s s ~

t..

' ;F rl y, i i I l 2 . lh ; l' f, ' - --.4 T y.,i, 't y ;t ~ 3 6, '1 p l r.. +.. ..q. a.._,: ~1,3_ A l

1. -.s pq i ' y

' y qr, * ,9 f l G (cI i ; e ?,,-- . ;} l y p;,=' l t i l oi q I r, 1 y' i l ' 9-h ..b. i : i fc. a 6: I f2 t ,) '? l f $ p.-% ..s. .f. s::. \\ Xd - e i sw n r e i t.n' s., wf 2,a 4: 4 'a o 1 y, L =l== 1

  • ml ;

A I (l .j m 1Q, g x-:- x% i ww= g .h J y 3., ). .m r: gr. ,y. ,, i t a; M' 4.1 M--l' ] "" 9 4 "6 j -4 = = ' - e 1 iL i I u [*, ' *i y "I,. 'N '- p !(7 g I' W W 4" Ih l l h ~ n ji . e m r j i,; -g,...,, g a ; r... ,w u i W, 3 .',. ;fr* c,.. ) i 'l p e. s 'hy., yer 1. ,E 9 n*. Y,5~ W "- ~ tl* ..$.."4 ,c 7 +b .t l .2 3 ,i i c i _... j

?

%. #.n* d * * [ II l t qpe 7 il..' J t ,1 mj*-1'4cr-

+

.t t' ! grsw: 3*,. Tye e. .'a.aM-,i4 i=1 iia +- i -,j .I . M.n?, O d, 'il'i i; , i ' i l,,;, f ! I 7 hl ( l

.. s u.,,. -

A t a l ' ',,,,g. t

  • i,.

..g. - M v, e. ..%==== 6 i 8 + i /. i -l l, ') i w. 4 [ 4 4 .n.,.- , - 1 )i . i i i . 3 * '. -. _ 1 n } .g' $

i g &. ! ',C-

< r' W ~- f ,;t.,...._. t s 1 ,'<~4.9.'*' 1 d [ ^ l AM' ,e e . - 1 ;) 7 1

d t P t-'

(' n ';O i '.:. - .2 : 2 5hb.;;.1l-f.myc &i$.~.Yh, ,g;. 6_e.< r.,.ug.., - k3 ? 'd n .y ) 1 1

f[ 3 fi;.b,M@M. _.. it* .dVNg 1 7 y.)y.di'hW,-.Xi}.qh. 4 i 5 g P&.y- ]4i f ,; w&m,."*.. - ~ s -m' =-M.m.- .M. c. m,m r.,e., l., . ~ :.. . A. :, !. - w n-a u.; - m .p y. A n',..%l, ' ~ n w;r Qg: y n v. x .;; & L :n r,, ..H. ' 3-WM @L y -Y-

  • T Jg.':Q,I.:.5yfb'-

' - me,s - '.:. j,. n v';..y b. .k ' f,;m..,p' Y, '@*l'@l ?w'.",m', pl. O e .R., l - ',,4 L.b~ fJi\\ ' &,.p& Q,g,Wi ~ P n j . n.. 1 i .U.'h,!M d 7 'M l 't - !!

. l i ]. I r. $r-f,

,' i l,i, I i, I' I i -P 3 3.11;hm. bu..,.n q : iM... .,A c ._....,. w..p.,, -. - :. -.m. 5 n;n c) ~. q l -. ' s.en n,.. j u <~

r. - -

ej. l - ?,1 L., b Y ^ = '.'.7,* t ij g,, 'v. 2.fg" 7&q,

g

- ' *w

r-p o.:. g < t
b - -,'.z.... M. gAf

m ir ' g.g ..Q ',h,' [., 'I (j i. l --O Yi, 1 .:',, y-_.- _,e 4.

4.---,e 2..

_}r . s h., -..i

n..

^'

==.-a . ym / t i gf e ) .c' + f.-- o - ),.(; I s. .s .a.. .m,t, s .c L 3' ++ n yo,. a, 1 i.a a= .( .~..:___c~ ~ - -. - ~ - q-- ~.

4 '

.p-.A-.3 7_y.S m " wt g ~ i c:._ v.4 s. s . _ _ a-.s -- n

g. i f

1 r 1 1 -;. *i .t-8, %w$.1' %.y. ~e

s. :== ' - - %

l' ..>.. g,,...T. s -. ~.'.if.s. d.... s_.. ' -T 2- -N. '".f', W3,, i g s t . cp.t : l pss -I q,0.. sj a . M i s .g h d. F.,.. j i : cw =- s s.

j. j le -

[' A-L 9 D <=,, 8..r,' C 3 . s , d,. 3f.jU-s pl ' ', n.. I -p' ? d -w -2

p P W.1;_T_-3,.:uh;Q l

+ r C~ =.,. I l --- i r.E

t..

4.:.,r + w g.s y '~? , % ~ ![ a. 8 ~, ,,3------*e k. Q. 2 }-- j, **7, l . C d '3W!. , 7;; hp !3 k; _e l 3 w. [ yi,D s: i W;;W..!

plc i
    • f

'i)He$8D i 'r 31 b" -p ,a v i' \\.."7Uh.g.p ' f. *

jagt ip

.. m. fk u, bM- -Mh,,. m . ~ v.,

7..

!h l __ t (&. I

  • ~ ~

3 S. f. M s 7 t' l

  • i

,h

    • g*.
  • gn.

4 - f' V' f[ ; ;p~~s.%p d g _ '}1, 4.[ - (.a ) -. s -A .s... ; - y. = J l gj. ..... M -l 5 *.',. uy e s "~~~~--"Q 'E-- e.kv.N s ,_.s. s p ) i N ,I y' b *, pp y. g ^ , i ), M , p, p' '.,. g. M.169.h'; !, f. . - agt s W 3 3%

y- &-

&m.

4. 2i u&. e e

a V l ' .;f? L..$,. m ,[$$_,_",_:] e, - r s .3m .. -. 7; -

4..W.

A, su 1, p. -. g.. r~,M, g. .t. -.r s. on .m. . w, s'6 ' a s ql, & q,c & & Q & j [ 3 . ~l~~g 4,. . Qh..-e u s_ m m '~ h.Da-).Q\\h{pj,r l i.g . n-th[, ' N.m wM-%[. L[a .. g.fD h.___;sr l .r 2n. m r-u.r .....m.___, ~ - -.. - _ _ _

---*--4.h + s 4-D-

  • ~

l _= .px >- 1 Z8 I i 3 =C 1 ll o_ 3 ;.i,q { u 4 o, i., A :,s li s u. g OI I... <s r! 4 g:g * = ud a r

  • i,-

i a.: N L- <sg > w C ;,s'll E* o,iw [ 5 !-l h .q;';s s j u z!! LI;I > =, \\ N l u 7 9 i .T W 1 ,f r \\ I y y, I N ~ f '\\ h g ~ .s. b 'V \\ I I p+_- \\ t s l g i t, '6 N: 8 t i( a s-i 4 TN 'M l 4%. l I I s I \\ l i l \\ t I i I [ l e s ,A I / i- ____J.. I i l; ~ , !n 1 I 4 6 i I \\-s I i_ I \\, -

rja. ~- 'd jI., J,l ;.t I } j.. .-,.7 !a pr j k ) Q-l= j-A .. ;,t, t,.!!!. 4 g , si,' t. O f

  1. ..!N, iM, Q 3i! si P

I (- Z~MY~'M-w\\.;.@. ip El i . l2 J $ & o .,d l H= . f4 .- i ' a{ g$ ,7 i L, 1 l S 'l A ?. _. _._l. hl % g g 4 I

f IHw%d J.

v' \\ /

  • er ? - - %%

h t-r- a \\ in 6 3 i M-m l ~ * - t. y y [ I e N N I J I 5 p \\ m i, av i I i f, ~- e Q l ~ m I [ q g / I. e h .t j i ji y'di t .pm i E. - g see. s ty / e ?- = j,, Mt l i.t i 's g ' f Q ~ y g -Qjk , i s / j\\ . t',-- l r*. i e a 1 ,? -i 2 j h A~ t ' -o \\ ,,_.. } h ( [ I= [f i m .;p i h) ls I ~* j l i

-,- p.,

i = l i { 'i 1 l^! i, T'I I I Ld _// d [ l q w==. /A4 D 0' 6.1; ? w j< _4 d ( d i f 11 i i i . n '4 / .1', - r-ei [I.+i.l.:. F-f, t 'h i-f i. e 9,i

  • e r-1 t

J$ i me ? Y l 11 s J,. -d r-l tt i (( t } d i 4 7 '8 . e.I i I ?.e t .L l { 6 b 6 i i I j w.

I l l { APPENDIX D ISOTOPIC DATA Provided by AECL t

s NRX 7-Element MK IV Fuel Rod with Flow Tube 28% U in U/Al-937. U~35in U APPENDIX A AGREEMENT NO. 1 UNDER CONTRAC.T NO. DE-AC09-76SR01033 WITH Atomic Enerav of cannan TMmited THIS AGREEMENT, entered into this day of , 19__, constitutes an agraement by the U. S. Department of Energy (hereinafter called DOE) to receive under the terms and conditions of Contract No. DE-AC09-76SR01033 the specification material described herein. This egreement provides a detailed description of the material to be delivered to DOE in accordance with Contract No. DE-AC09-76SR01011 and also enumerates the specifications and requirements which the Customer must cect. Failure of the material delivered hereunder to comply with the specifications and requirements given in this Agreement will result in the material being nonspecification material. The following definitions are applied to the Specification Material described in this Agreement: The Fuel Element: The smallest dategral unit of clad _ fuel (or blcaket) containing Source or Special Nuclear Material (SSNH), i.e., a plate, tube, rod, disc, etc. Subassembly: If used, is a group of elecents, combined in a structural unit, which is Grouped with other subassemblica to form the larger unit called the assembly. Assembly: A group of elements or subassemblies combined in a structural unit. The p.sse=bly is ucuolly that fuel structure which is removed from the reactor.as an individual unit. Appendix A-33 l Batch 7

A separate Appendix A Agreement will be required for each element, subassembly, or assembly which is different in description. All dimensions must be given in feet and inches and all weights in grams or kilograms. A. Form and Composition of Specification Material 1. Drawings. The following drawing (s), six (6) copies of which are on file at DOE's Savannah River Operations Office and which are l incorporated herein by reference thersto, constitute (s) a comprehensive illustration of the fuel elements, subassemblies, and assemblies to be delivered under this Contract as charged to the reactor, in sufficient de' tail and accuracy to permit chemical processing under this contract: E-4210-A2-R5 D-42 30-A3-R11. C-42 30-SA2-Ril. B-4 2 30-16-R i and B-42 30-17-RS 2. Material Description. The following stammarizes the description of fuel elements, subassemblies, assemblies and assemblies modified r.fter dischargo.. Where dimensions are required, the nominal dimensions, as charced to the reactor, must be used and the test estinates of the==w4==n change in these dimencions because of irrediation must be given. Weights must be dry, unirradiated weights with the expected re.nge of weiC ts also to be included. h APPEKDIX A-33 2 Batch 7 l

a. Element Description a) Type (plate, disc, rod, tube, etc.) Rod b) Nominal Dimension (including clad and bond) 9'-7" x 0.310" 0.D. c) Nominal Weight 482.0 grams d). Weight of SSNK before Irradiation Total U 84.4 grams U-232 nil U-233 nil U-235 78.5 grams 4 Total Pu nii Total Thorium nil Pu-239 nii Pu-241 nil e) Chemical form of SSNM (UO, UC, etc.) U/A1 2 Weight ini a e,-=== f) Fabricated form of SSNM (pellets, slugs, ribbons) and loading pattern in element rods g) Alloy or dispersing material (A1, SS, etc.) Al-Alcan Suoer Pure Weight 217.0 grams h) Cladding Material (A1, SS, etc.) Al-Alcan 6104 core fitted with end plugs, and method of saaH ar excruninn ri ma aDiSel dad - Thickness 0.030" Weight' 1AA A g r.,m o

1) Bonding Material, if any (Na, Al-Si, etc.)

Thickness WeiShe j) + (Mgo, SS, etc.) Al-Alenn 6102 Two @ Dimensions 0.25" x 3.85" Weight 16.0 erams APPENDIX A-33 3 Batch 7

l nil k) Other materials' contained in fuel element: ) 4 i Any materisi not covered by the above shall be added to describe the element completely: N/A 1 I b. Subassembly N/A a) Number of elements b) Over-all dimensions l c) Total Weight d) Casing Material (Zr, A1, etc.) Dimensions Weight Dimensions Sideplace Material Weight Dimensions Spacer Material Weight Dimensions End Box Material Weight Dimensions

  • Braze or Wald Material Weight Other Structural Material
l Weight Dimensions 4

APPENDIX A-33 Batch 7 l l

c. Assembly elements a) Number of w h 7 b) Over-all dimensions I_62" ain_ r 10'-2.17s" 1nne .c) Over-all weight 4479.0 trams d) Construction material in addition to that under A.2.b.d. Casing Material Al-Alcan 1S Dimensions 1.341" O.D. x 10'-2.125" long Weight' 1096.0 grams Spacer Material nil Dimensions Weight l End Box Material Al-Alcan 1S Dimensions 1.62" dia. x 0.25" long x 0.15' wall Weight 9.0 grams Braze or Weld Material Al Dimensions Weight Sideplate Material Dimensions Weight Other Structural Material Dimensions Weight 3. Identification. Each separately removable unit in a processing batch must be identified by a durable metal tag or by embossing. ~ Identification of the Units to be delivered unde.r this Appendix A Agreement are as follows: See attached list. Rod numberis etched on side and end of flow tube-APPF.NDIX A-33 5 Batch 7

i B. Post-Irradiation Specifications 1. SSNM Content After Irradiation. The average and maximum SSNM content is to be specified in grams per element. The best available value should be given and the uncertainty stated. Average Maximum Uncertainty Total U 49~ grams 71 grams I 10% Total Pu less than 0.008 grams Total NP 0.16 grams 0.17 grams + 20% Total Th Nil U-232 Nil U-233 Nil U-235 qv ,,=m. Ag,,... I ini I mr U-236 e,_r ar==. a.1 or -- Pu-239 less than 0.007 grams Pu-240 less than 0i001 grams Pu-241 less than 0.001 grams IRRADIATION HISTORY - see Attachment A ~ 2. Delivery of Thoritra Fuels For thorium fuels only, a processir.g' batch may not be delivered to DOE until such time as the composition is such that 99.9% U-233 of the U-233 would have been formed (expressed as OM = Pa-233 + U-233 minimum). C. Specifications for Fuel Units which contain exposed SSNM or which have warped. 1. A fuel element with exposed SSNH shall be canned in a container whose material and design shall be approved by DOE unless DOE determines that such canning is unnecessary. l APPENDIX A-33 6 Batch 7 s .n_ , + - -m

2. Units distorted beyond specified dimensional limits must be considered on an individual basis. The Customer should provide DOE with complete dimensional information for each warped unit at least 60 days before delivery. 3. If material normally removed from the element or subassembly by the Customer cannot be removed due to warpage or other reasons, the Customer must notify DOE at least 60 days before delivery giving complete dimensional, material and weight information. Detailed structural drawings are also required by DOE. D. The value of R for specification material as described in this Appendix A Agreement or for nonspecification material which DOE determined could be chemically processed under this contract a.t the same daily rate as specification mat.erial'shall be 400 E. The assumed basic processing services for material described in this Appendix A (do not) include the recovery of plutonium contained in such material. UNITED STATES OF AMERICA BY: UNITED STATES DEPARTMENT OF ENERGY BY: BY: TITLt TITLE: \\ DATE: DATE: .l APPENDIX A-33 7 Batch 7 l f

Attachment A F. IRRADIAT10N MIS 10RT I ASSEMBLY TIME 15 MINIMlat POWER LEVEL TOTAL EXPOSURE HEAT CUTPUT NUMBER REACTOR C00LINC TINE ISI/(IfrU) MWD /(MTU) WATTS, AS OF (DAYS) (DAYS) (ASSB) (ASSB) DATE MS 15M MS 156. 16 MS MS 16h See attached :omputer listina for details MS 1 E,9 MS 1 70 MS 17 MS 17 MS 17 MS 176 MS 176 MS 179 MS 1 SG MS 1% MS 165 MS isb MS 1 38 MS

69 MS 1 90 MS 141 NS 192

' MS 19g MS 19> MS 196 MS 19/ MS 1 99 MS 200 MS 202 M3 20J MS 203 MS 205 MS 2C6 MS 207 MS 204 l MS 209 MS 210 MS 211 MS 212 MS 213 MS 214 MS g l 's MS cit MS 217 MS 218 l MS 2*9 MS 2 *s o MS 221 si !!! MS 2M MS 225 MS 226 MS 227 l 1 APPE!TDIX A-33 Batch 7 - l

Attaciunent A F. IRRADIATION HISTORY ASSEMBLY TIMF. IN HINIMtSt POWER LEVEL TOTAL EXPOSURE HEAT OUTPUT NUMBER REACTOR COOLING TIMR 13J/(NTU) MWD /(MTU), WATTS, AS OF (DAYS) (DAYS) (ASSB) (ASSE) DATE MS ~ 2 261 MS 229 MS 2 30 h gs 3.,. h.' S... t.ca.a :.poe., 11.cion ror a.c.11. 3 MS 234 MS ? 3 r, its 2 4 t_t MS 237. MS 238 MS 24-MS 24 MS 26 l l l l l l l l APPENDIX A-33 Batch 7 i

Type of Rod NRX 7-element MK IV Fuel Rod with Flow Tube i Appendix "A" Section~ a(c) Max. = an9 n + 14 7 = Aan 7 9 i Min. = 4R2.0 16.7 465.3 ~ Section a(d) (1) Uranium Max. = 84.4 + 3.4 87.8 g Min. = 84.4 3.4 = 81.0 i U-235 Max. = 78.5 + 3.1 = 81.6 9 Min. = 78.5 3.1 = 75.4 Section a(e) Max. = 301.4 + 7.7 = 309.1 g l j Min. = 301.4 7.7 = 293.7 Section a(g) Max. = 217.0 + 4.3 = 221.3 9 Min. = 217.0 4.3 = 212.7 Section a(h) Max. = 164.6 + R2 = 172.8 9 Min. = 164.6 8.2 = 156.4 Section a(j) Max. = 16~.0 + 0.8 16.8- = g Min. = 16.0 0.8 15.2 = Section c(c) Max. = 4479.0 + 224.0 = 4703.0 g Min. = 4479.0 224.0 = 4255.0 Section c(d) Casing Max. = inos.n + sa.a = 1150.8 9 Min. = 1096.0 54.8 = 1041.2 Spacers Max. = ufi + = g i Min. = = i End Box Max. = 9.0 + 0.5 = 9.5 g j Min. = 9.0 0.5 = 8.5 i Other Max. = N/A + = g Min. = = Appendix A-33 Batch 7

NRX 7-Element MK IV Fuel Rods - 93% U-23a aU A 7-clement MK IV fuel rod consists of seven cylindrical elements or " pencils" in a hexagonal array. Uniform separation of the fuel elements is maintained by means of spiral fins on the element cladding and a close fit on the inner surface of the flow. tube. A MK IV fuel rod,as shipped, is 10 feet 2.125 inchr3 long with an outside diameter of 1.62 inches (remainder of transition p"ece on upper end) and weighs approximately 4.5 kilograms. Each element is 9 feet 7.5 inches long( 92-7" after cutting) with an outside diameter of 0.310 inches' including ciadding. A rod consists of 72% Al and 28% U by weigh t. The uranium is enriched to approximately 93% U-235 in total U. The initial total U-235 weight in a rod! 7 elements) is approximately 550 grams. The flow tube is 10 feet 3 inches lo :g(10'-2.125" after cutting) with an outsido dianctor of 1.341 inches. A ring of end-box material remains attached to the upper end of the f.ow tube after cutting. For shipping with the flow tube. a rod is cut 0.25 inches from the bottom of the top end box and 0.25 inraes above the top of the bottom end box, making the distance 10 feet 2 125 inches between cut lines. For shipping without the flow tube, the rod is cut.0.5625 inches inside the top end box, making the elements 9 feet 7 inches long. ' Append! A-33 Batch

j~~ j j' i. / .,i 1 /,< m.,4 g' "[,\\'k.. \\/y Q X X y ,1

  • l-k I t

.9M 7 1(13 x o ,es e o (d 9 i g g 9 h D Q E fD h N k b o m D N$ f b k k n-y)~ , /-- q h-~ b g n o w, k [ 9 w n '/! / f h 9 N Q k

,th,

// i,'-/ DM 2 6 ( / af 3 a / v., q r - l/, } lJ Q k { i R D% i i ,s 84.. g s (U l 41 1l: Qm ,s. s i. /. U / g& b/ U/ f g% ./ 3 / t. / \\ li: f$ f l j/ / [ / $ m n k Qgg J 8, 4k N t ny L ...-. r.-. kg d d g e .1 \\ v su. g I '*I q$ h Q.N F-3,, ..;--l v x A : N .i.e n, 9 / y4 i==: yI i l l / i Et e q l 'l I L. Qj' ~. <. 1\\/ .l .?M/7 2/7.*) l*x N-1 (-

/, /

n . Appendix A-33 Batch 7 . j . -. ~.

~_ _ _.____ _ _ _ _ _ _ - CHEMICAL COMPOSITION OF ALUMINUM ALLOYS - Percent of Weight Values ara Maximum Except Where a Range is Shown Alcan 2S 53i ALCAN tic.. 6102 6068 A-135(1) AA -1100 C54S 35S III A-320( ' 56S(l) III COPPER 0.02 0.01 0.2 0.2 0.1 O.3 0.'05-O.1 i IRON O.4 0.15 0.5

  • l.0 (2) 0.8 0.4 0.4 MAGNESIUM O.01
3. 3. -3. ~/

0.2-0.4 .3.1-3.9 0.1 3.35-4.35 4.5'-4.6 { MANGANESE 0.01 0.01 0.1 0.05 O.1 0.15 O.05 0.05-0.2 NICKEL O.005 0.005 SILICON O.2 0.15 6.5-7.5 Included (2) 11.0-13.0 0.35-0.65 0.3

  • above TITANIUM 0.01 0.01 0.2 0.2 0.02 i

ZINC O.01 0.005 0.1 0.2 0.2 0.1 BORON O.0005 0.0005 O.05-0.2 CHROMIUM O.01 0.15-0,35 GALLIUM 0.025 0.025 VANADIUM O.025 0.025 s CADMIUM 0.0002 0.0002 COBALT 0.001 0.001 I AICAN SUPER PURE IS 99.99% ALIMINUM ALCAN IS - 99.5%(MIN) ALUMINUM WITH NO IMPURITIES OVER 0.05% EXCEPT IRON AND SILICON ) (1) MAXIMUM FOR ANY ELEMENT NOT SHOWN IS 0.05% and the TOTAL FOR ELEMENTS N(yr SHOWN IS 0.15% i (2) MAXIMUM IROl; PLUS SILICON IS 0.4S% (3) MAXIMUM FOR ANY ELEMEITF NOT SiOWN IS 0.OS% AND THE TOTAL FOR ELEMENTS NOT SHOWN IS 0.15% ALUMINUM 99.0% MINIMUM Appendix A-33 Batch 7 l

NRX M' '/I Fast Neutron Rods (Partial) Fuel.c 2e SE-006 with Flow Tubes 407 J in U/Al - 93% U-235 in U APPENDIX A AGREEMENT NO. 42 UNDER CONTRACT NO. DE-AC09-76SR01033 WITH ATOMIC ENERGY OF CANADA LIMITED THIS AGREEMENT, entered into this day of , 19_, constitutes an agreement by the U. S. Department of Energy (hereinaf ter called DOE) to receive under the terms and conditions of Contract No. DE-AC09-76SR01033 the specification material described herein. This agreement provides a detailed description of the material to be delivered to DOE in accordance with Contract No. DE-AC09-76SR01033 and also enumerates the specifications and requirements which the Customer cust meet. Failure of the material delivered hereunder to comply with the specifications and requirements given in this Agreement will result in the material being nonspecification material. i The following definitions are applied to the Specification Material described in this Agreement: The Fuel Element: The. smallest integral unit of clad fuel (or blanket) containing Source or Special Nuclear Material (SSNM), i.e., a plate, tube, rod, disc, etc. I Subassembly: If used, is a group of elements, combined in a structurni j unit, which is grouped with other subassemblies to form the larger unit called the assembly. l t Assembly: A group of elements or subassemblies combined in a structural l unit. The assembly is usually that fuel structure which is removed from the reactor as an individual unit. APPENDIX A-42 Batch 7 ,,e,

A separate Appendix A Agreement will be required for each element, subassembly, or assembly which is different in description. All dimensions must be given in feet and itches and all weights in grams or kilograms. l A. Forta and Compooition of Specification hearial i 1. Drawings. The following drawing (s), six (6) copies of which are on file at DOE's Savannah River Operations Office and which are incorporated herein by reference thereto, constitute (s) a comprehensive illustration of the fuel elements, subassemblies, and assemblies to be delivered under this Contract as charged to the reactor, in sufficient detail and accuracy to permit chemical processing under this Contract: E-3157-A-23, D-3157-8"F and D-3157-83 i 2. Material Description. The following surnarises the description of fuci elements, subassemblies, assemblies and assemblies modified after discharge. Where dimensions are required, the nominal dimensions, as chargcd to the reactor, must be used and the best I estfmates of the =awimum change in these dimensions because of irradiation must be given. Weights must be dry, unirradiated i weights with the expected range of weights also to be included. APPENDIX A-42 Batch 7 ( 2 l l lt -.

= a. Element Description a). Type (plate, disc, rod, tube, etc.) Tube b) Nominal Dimension (including clad and bond) 1.81" OD x 1.510" ID'x 41.3" long c) Nominal Weight 1762.1 g d). Weight of SSM before Irradiation 1 Total U 390.3 g(complete tube) U-232 Nil Nil U-233 363.5 g(complete tube) U-235 Total Pu Nil Tc';si Thorium Nil i i Pu-239 Nil Pu-241 Nil e) Chemical form of SSNK (UO, UC, etc.) U-Al - 40% U 2 Weight 975.8 g f) Fabricated form of SSNM (pellets, sluge, ribbons) and loading pattern in element Tube g) Alloy or dispersing material (A1, SS, etc.)M-Ali nn %no r Puro Weight 585.5 g h) Cladding Material (A1, SS, etc.) Al-Alcan 7075 l and method of sealing Co-extruded Inner 0.035" hickness Outer 0.040" Weight 786.3 g* 1 i) Bonding Material, if any (Na, Al-Si, etc.) Nil Thickness Weight j) Spacers, inactive and material (Mgo, SS, etc.) Nil f Dimensions Weight APPENDIX A-42 3 . BATCH 7 l l

i Nil k) Other materials contained in fuel element: Any material not covered by the above shall be added to describe the element. complete 19: N/A b. Subassembly a) Number of elements N/A b) Over-all dimensions c) Total Weight d) Casing Material (Zr, Al, etc.) Dimensions Weight ___ Sideplate Material Dimensions i Weight Dimensions Spacer Material i Weight End Box Material Dimensions ~ Weight Braze or Weld Material Dimensions __ Weight Other Structural Material Dimensions Weight APPENDIX A-42 4 Batch 7

c. Assembly Fuel Tube in Flow Tubes, a) Number of subassemblies' Cut Length 10'-2.125" long b) Over-all dimensions 2.050" OD x 10'-2.125" Long c) Over-all weight 4171.0 g d) Construction material in addition to that under A.2.b.d. 2.050" OD x 10'-2.125"Long Flow Tubes Al Dimensions 1.380" OD x 10'-2.125" Long Weight 2408.9 e Spacer Material Nil Dimensions Weight End Box Material Nil Dimensions Weight Braze or Wald Material Nil Dimensions Weight Sideplate Material Nil Dimensions Weight other Structural Material Nil Dimensions Weight 3. Identification. Each separately removable unit in a processing batch must be identified by a durabic metal tag or by embossing. Identification of the Units to be delivered under this Appendix A Agreement are as follows: See attached list. Rod number is etched on side and end of flow tube. APPENDIX A-42 BATCH 7 5

i B. Post-Irradiction Specifications 1. SSNM Content After Irradiation. The average and maximum SSNM content is to be specified in grams per element. The best i .available value should be given and the uncertainty stated. Average Maximum Uncertainty Total U 293.8 g 293.8 g. i 10% Total Fu l Total NP Total Th U-232 i U-233 i U-235 249.7 g 249.7 g i 10% i U-236 Pu-239 < 0.05 a < 0.008 g Pu-241 IRRADIATION IIISTORY - see Attachment A 2. Delivery of Thorium Fuels For thorium fuels only, a processing batch may not be delivered 1 to DOE until such time as the composition is such that 99.9% i U-233 of the U-233 would have been formed (expressed as = 0. m Pa-233 + U-233 minimum). 1 C. Speciff cations for Fuel Units which contain exposed SSNM or which have warped. '1. A fuel element with exposed SSNM shall be canned in a container whose material and design shall be approved by DOE unl'ess DOE determines that such canning is unnecessary. APPENDlX A-42 6 Batch 7 .~-- - _. -..-,.-. - -. ~

2. Units distorted beyond specified dimencional ILnits must be considered on an individual banis. The Customer should pr r.de DOE with complete dimensional information for each warpe d unit at least 60 days before delivery. 3. If material normhlly removed from the element or setb asembly other by the Customer cannot be removed due to warpage e F days before reasons, the Customer must notify DOE at least delivery giving complete dimensional, materia-cod weight information. Detailed structural drawing; ce also required by DOE. D. The value of R for specification materini 2s described in this Appendix A Agreement or for nonspecific cion material which DOE determined could be chemically pr cessed under this contract at the same daily rate as specifico cion mat.erial shall be 400 I i E. The assumed basic processing services for material described in this i l Appendix A (do not) ine tude the recovery of plutonium contained in such material. l UNITED STATES OF AMERICA BY: UNITED STATES DEP/f INT OF ENERGY BY: BY: i TITLE: TITLE: I DATE: DATE: APPENDT. 42 y Batch 7 l l l

Attachment A F. IRRADIATION IIISTORY s ASSE! GLY TIME IN MINIMUM POWEP. LEVEL TOTAL EXPOSURE HEAT OUTPUT NUMBER REACTOR COOLING TIME MW/(MTU) MWD /(MTU) WATTS, AS OF (DAYS) (DAYS) (ASSB) (ASSB) DATE SE-006 (SEE LTTACHED COMPUTER LISTING) t 'l I h l 1 l a 4 0 E HL* P ^-'2

NRX MK VI FAST NEUTRON RODS The fuel section of the NRX MK VI Fast Neutron Assembly consists of a co-extruded tube of A140 wt% U(93% U-235) alloy clad in Alcan 7075 aluminum. The fuel tube is located between two finned aluminum flow tubes. The fuel tubes are of varying lengths and contain from 975.8 to 1327.5 grams of U/Al. Composite billets' of varying lengths account for the varying lengths of co-extruded fuel tubes. All seven fuel tubes fabricated were prototypical and did not meet all of the dimensional requirements of Drawing C-3157-85. The fuel tubes from rod numbers SEP, SE001, SE002 and SE003 were removed from their flow tubes af ter irradiation and were sectioned for examination in the hot cells. The pieces of these fuel tubes were placed in shipping cans. the other three fuel tubes, SE304, SE005 and SE006 are contained in their flow tubes. The dimensions of the fuel tubes being shipped are as shown on the sketches attached to each of the seven Appendix.A Agreements A38 to A44 inclusive. -l APPENDIX A-42 BATCH 7 1 ,_-_.,n., --,, _..., -. ~. - - - -,.---.

9 6 8 3 ~ tits - h ' j 1 4 a h M 4 gl ~ k ) 4 i kW N D ~q k. e 'l h a ~ 3 -{ h.. e x $v l t h x 9 x l p. d x$- ~ ~

  • g

\\ l l l i o Anyoix A-42

Type of Rod NRX MK VI FAST NEUTRON ROD NO. SE 006 Appendix "A" Section a(c) Max. = 17'62.1 + 52.9 1815.0 g = Min. = 17A? 1 52.9 _ 1,709.2 m Section a(d) (1) Uranium Max. = 390.3 + 7.8 398.1 g Min. = ton.1 7.8 = 382.5 U-235 Max. = 36 3.5 + 7.3 = 398.1 .g Min. = 1st_s 7.3 = 356.2 Section a(e) Max. = 97s_g + 19.5 = 995.3 g Min. = = a3s a to_s 956.3 J Section a(g) Max. = sas.s + 11.7 597.2 g Min. = sas_s - 11.7 = 573.8 4 Section a(h) Max. = 786.3 + 39.3 825.6 = g Min. = 3et 3 to _, = 7a7_n Section a(j) Max. = M/A +- = g Min. = = Section c(c) Max. = 4171.0 + 208.6 = 4379.6 g Min. = A171. n 208.6 = 3962.4 Section c(d) Casing Max. = 2408.9 + 120.4 = 2529.3 g Min. = 9tna o - 1 ?n.a = 2288.5 J Spacers Max. = + = g i Min. = = i e Max. = + = g Min. = = other~ Max. = + = g Min. = = APPENDIX A-42 BATCH 7 s -s~ e<w,, am- - m -,-w,w- --,--w-m---

i CHEMICAL COMPOSITION OF ALUMINUM ALLOYS - Parcznt of Waight Values ara Maximum Except Where a Range is Shown Alcan 2SL I1I 35S(l) A-320 56S(1) AIfAN No. 6102 6068 A-135 (1) AA 1100 C54S COPPER 0.02 0.01 0.2 0.2 0.1 0.3 0.05 0.1 i IRON 0.4 0.15 0.5

  • l.0 (2) 0.8 0.4 0.4 i

MAGNESIUM 0.01 3.3.-3.~/ 0.2-0.4 .3.1-3.9 0.1 3.35-4.35 4.5-4.6 MANGANESE 0.01 0.01 O.1 0.05 0.1 0.15 0.05 0.05-0.2. i NICKEL 0.005 0.005 SILICON 0.2 0.15 6.5-7.5 Included (2) 11.0-13.0 0.35-0.65 0.3

  • above TITANIUM 0.01 0.01 0.2 0.2 0.02 ZINC 0.01 0.005 0.1 0.2 0.2 0.1 BORON 0.0005 0.0005

~ ~ j CHROMIUM 0.01 0.15-0.'35-0.05-0.2 GALLIUM 0.025 0.025 i VANADIUM 0.025 0.025 i j CADMIUM 0.0002 0.0002 l CODALT 0.001 0.001 AICAN SUPER PURE IS 99.99% ALIBtINUM ALCAN 7075 - 1.6%Cu, 2.5% Mg, 5.6% Zn 4 j AIfAN IS - 99.5%(MIN) ALUMINUM WITH NO IMPURITIES OVER 0.05% EXCEPT IRON AND SILICON (1) MAXIMUM FOR ANY ELEMEarr NOT SHOWN IS 0.05% and the TOTAL FOR ELEMENTS NOP SHOWN IS 0.15% I (2) MAXIMUM IRON PLUS SILICON IS 0.45% (3) MAXIML24 FOR ANY ELEMEIFF NOT SHOWN IS 0.05% AND THE TOTAL FOR ELEMENTS NOT SHOWN IS 0.15% ALUMINUM 99.0% MINIMUM 4 "ia

r g 7

I O -}}