ML20133L346
| ML20133L346 | |
| Person / Time | |
|---|---|
| Site: | Farley |
| Issue date: | 01/10/1997 |
| From: | Dennis Morey SOUTHERN NUCLEAR OPERATING CO. |
| To: | NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM) |
| References | |
| NUDOCS 9701210573 | |
| Download: ML20133L346 (45) | |
Text
{{#Wiki_filter:- f 8 D:vs M:r:y Stuthern Nucl:ar Vice President Optrating C?mpany Farley Project P0. Box 1295 Birmingham. Alabama 35201 Tel 205.992.5131 k January 10, 1997 COMPANY Docket No.: 50-364
- "N " ** N"#"#
1 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555 Joseph M. Farley Nuclear Plant - Unit 2 Tube Pull Eddy Current Analysis Ladies and Gentlemen: During the Fall '96 refueling outage on Farley Unit 2, five tubes were pulled from the steam generators in order to gather additional information on steam generator degradation. During discussions with the NRC Staff, a request was made that " blind" degradation analyses for the steam generator tubes be docketed prior to the destructive examination of the steam generator tubes. In accordance with the Staffs request, the requested " blind" analyses are attached. If there are any questions, please contact me. Respectfully submitted, Dave Morey REM / cit:TUBEPULL. DOC Attachment cc: Mr. L. A. Reyes, Region II Administrator Mr. J. I. Zimmerman, NRR Project Manager f f Mr. T. M. Ross, Plant Sr. Resident Inspector f Mr. T. A. Reed, NRR - Materials and Chemical Engineering Branch 9701210573 97011o DR ADOCK 05000364 PDR
1 i l 1 Attachment 1 " Blind" NDE Analyses for Farley-2 '96 Pulled Tubes 7 l l l l l I
" Blind" NDE Analyses for Farley-2 '96 Pulled Tubes - Five tubes were pulled from Farley-2 SGs in November,1996 at the EOC-11 outage. The tubes pulled and the type of degradation are identified in Table 1. Table 1 also summarizes the in situ test results for these indications. This note summarizes the NDE analyses performed for each tube prior to the destructive examination. Consequently, these analyses can be considered to be " blind" NDE analyses. The NDE analyses are summarized in Table 2 for R34C53 with ODSCC at the TSP intersections, Table 3 for R16C57, R12C39 and R14C48 with axial PWSCC at the hardroll expansion transition and Table 4 for R18C42 with circumferential ODSCC at the hardroll expansion transition. Attached figures for each indication include RPC C-scans, plots of depth profiles and UT crack maps. Depth profiling for the indications was performed by two NDE analysts. Analyst 1 is a very experienced senior analyst with significant experience in depth profiling. Analyst 2 is a field Level III analyst with limited training and experience in depth profiling. In general, the agreement between the two blind analyses, performed with no exchange ofinformation between analysts, is good. NDE Analyses for R34C53 Tube R34C53 with a 6.8 volt indication at TSP 1 was pulled to provide data for support of the ARC for ODSCC at TSP intersections and to obtain further insight into the effects of prior plugged tube history on the crack morphology. This tube was plugged in 1990, deplugged in 1995 at EOC-10 and returned to service for Cycle 11. This indication showed a significantly higher growth rate than found for other indications in the EOC-11 inspection including other tubes deplugged at EOC-10 and returned to service for Cycle
- 11. The bobbin voltage increased from 1.9 to 6.8 volts over Cycle 11. Figures 1 to 4 provide the + Point C-scan, bobbin analysis and depth profile plots for this indication.
Results of RPC depth profiling analyses are given in Table 2 including analyses of the RPC data from the '90 and '95 inspections. The '96 indication shows a length of about 0.65" with maximum and average depths of about 92% and 70%. The 80 mil and 100 mil pancake coil data provide the best basis for comparisons of changes in the crack profile from '90 to '96. After deplugging in '95, the crack length shows a very small increase compared to '90 data (about 0.04") with no quantifiable difference in maximum or average depths. The implied growth while plugged from '90 to '95 shows the typical voltage increase for plugged tubes with modest implied increase in length and depth. These RPC results would imply negligible growth over the last operating cycle from '95 to '96. An implied growth increase is seen only in the bobbin and RPC voltages. This could indicate an increased separation of the crack faces such as could occur with IGA growth on the crack faces as indicated by prior destructive examinations of tubes previously plugged fut indications at TSP intersections including the '90 Farley-2 tube R21C22. ~ NDE Analyses for R16C57 and R12C39 Tubes R16C57 and R12C39 were pulled for axial PWSCC in the roll expansion transition in support of development of an ARC for this degradation mode. By both + Point and a apesapr96\\ptadeprowADecember 18,1996 1 s ~
UT inspections, R16C57 has two detected cracks and R12C39 has three indications. Table 3 summarizes the NDE analyses for these tubes. Figures 5 to 11 provide RPC and UT results for R16C57 and Figures 12 to 18 provide results for R12C39. The NDE analyses indicate all indications to be near throughwall locally with average depths between about 60% and 88%. The principal differences between + Point or pancake coils and UT are in the predicted crack lengths with UT implying shorter lengths. The RPC results of Table 3 include adjustments for end effects as discussed below. Guidelines for adjusting PWSCC crack lengths for coil lead-in and lead-out effects were developed as part of an effort to qualify depth sizing for axial PWSCC at dented TSP intersections. The resulting guidelines for reducing the crack length are based on the increase in phase angle found on both EDM notches and corrosion specimens at the ends of the crack. These guidelines are: OD Phase Angles Near Ends of Crack
- Data points with OD phase angles from the start of OD to the end of the crack are ignored in defining the crack length as long as within 0.2" of the indicated end of the crack. The end of the crack shall be defined as s 0.03" beyond the last accepted (without points with OD phase) data point if points are deleted at the end of the crack.
Near Throughwall ID Phase Angles Near Ends of Crack
- Near throughwall ID phase depths (2 85 %) with voltages < 1 volt are ignored in defining the crack length as long as within 0.2" of the indicated end of the crack. The end of the crack shall be defined as s 0.03" beyond the last accepted data point if points are deleted at the end of the crack.
ID Depths Increase Near Ends of Crack
- IfID depths at points near the end of the crack show depth increases of > 10% over about 0.05" spans and voltages < 1 volt, the data points shall be ignored in defining the crack length as long as within 0.2" of the indicated end of the crack. The end of the crack shall be defined as s 0.03" beyond the last accepted data point if points are deleted at the end of the crack.
The above guidelines were applied to the NDE analyses for the Farley-2 pulled tubes with the results given in Table 3 as an NDE modification for end effects. It is seen that the corrections reduce the crack lengths by up to 0.3" (R16C57-Crack 1 and R14C48-Crack 1) with the resulting lengths in closer agreement with the UT results. Corrections for the end effects also affect the maximum and average depths for the indications. For this reason, guidelines to eliminate the data points affected by the end effects are required rather than only a correction to the length. NDE Analyses for R14C48 Tube R14C48 was pulled for axial. WSCC in the roll transition in support of an ARC with particular emphasis on assessing return to service of deplugged indications. This e.r www a m. 2
tube was plugged in '90 and deplugged in the '96 inspection. Table 3 includes the NDE analyses for this tube. Figures 19 to 28 provide the RPC and UT results including depth profiles. Comparing the 80 and 100 mil pancake data between '90 and '96 for crack 1, the implied growth as a plugged indication is modest in length (about 0.15" increase), - maximum depth (7% increase) and average depth (17% increase). However, the pancake coil voltage shows an increase from about 4.8 to 22.3 volts for the plugged tube period. The destructive exam may help to explain the voltage increase which is larger than expected for the changes in length and depth. This indication provides a good comparison of coil resolution between the + Point,80 mil and 115 mil coils as well as UT. Figures 19 to 23 show the three RPC C-scans and the UT crack map and response. It is seen in Figure 20 that the 80 mil coil clearly resolves the two closely spaced cracks as also seen by UT (Figures 22,23). However, the second crack is not resovable with the + Point coil as shown in Figure 19. The second indication is identifiable with the 115 mil coil but not as well as the 80 mil coil. These results demonstrate the reduced resolution of the + Point coil due to the larger coil field for this coil. NDE Analyses for R18C42 Tube R18C42 was pulled for a circumferential indication of about 290'. The NDE data are summarized in Table 4. Figures 29 to 34 show the RPC and UT data. The NDE results show a locally deep indication although the PDA (360* percent degraded area) is only about 40%. Voltage integral analyses using the Zectec EDDYNET95 software are also given in Table 4. The UT results indicate that the overall circumferential indication is comprised of about 5 overlapping segments with apparent ligaments between the segments. UT also indicates the presence of a short, shallow axial indication (0.035" long,45% deep) which does not quite intersect the circumferential segments. This axial indication was not identified in the + Point inspection. e.e., w#o
- a. a. im 3
. -. - _ - -... -. - - - - ~ Table 1. Farley-2: 96 Pulled Tubes and Type of Degradation d i l Axial Indication Tube Pulls i SG B: R12C39 - PWSCC axial (MAI with 3 sizable ind.) for ARC support. Establish crack morphology, NDE accuracy and support for in situ test results. 4 i Indication did not leak during in situ test. Not pressure tested. l Tube cut just below 1st TSP. i a R14C48 - Current outage, deplugged PWSCC axial for ARC support and j understanding of causes for apparent growth in volts and length of deplugged tubes. Indication did not leak during in situ test. Not pressure tested. 1 Tube cut just below ist TSP. i. i a SG C: R34C53 - TSP indication with large volts and deplugged at prior outage. Exam to aid understanding of apparent larger growth in deplugged j tubes and provide data to support ARC leak rate correlation. Delays need for another ARC tube pull for one cycle. No in situ test performed on this tube. l Tube cut just below 4th TSP. 4 l R16C57 - PWSCC axial (MAI with 2 sizable ind.) for ARC support. Establish j crack morphology, NDE accuracy and support for in situ test results. Indication did not leak or burst during in situ pressure testing. Tube cut just below ist TSP. l l 1 l Circumferential Indication Tube Pull l i SG C: R18C42 - Largest circumferential indication in terms of voltage, maximum i depth and crack angle for all SGs. j Indication did not leak or burst during in situ testing and, therefore, i satisfies structural integrity. ) Objectives for tube pull are to obtain burst capability of the indication, l provide data for comparison oflength/ depth sizing predictions with i destructive exam data, confirm crack morphology for comparisons with other industry data to reduce need for future tube pulls based on use j ofindustry wide experience for NDE analyses and obtain information on chemistry environment for assessing operational chemistry. Tube cut just below ist TSP. ~ M f w w w e mum 4 r N* -7 + 'm-f 'mm
O f Table 2. Fa : ley-2 '96 Pulled Tubes: NDE Analyses for Axial ODSCC at TSP Intersections Bobbin Coil Detailed Sizing Analyses Tube Elev. NDE Date Field Lab. Cross Corr. Depth Coil A nalyst Length M ax. Avg. P-P Volts Volts Cal. Lab. Depth Depth M a x. Factor Volts Volts R34C53 III '96 6.73'" 7.03 0.967 6.80 89 % + Point At 0.65 92% 70 % 4.54 SG C A2 0.74 87 % 63 % 4.62 Deplugged 80 mil Al 0.52 91 % 68 % 6.49 in '95 at IIF EOC-10 '95 1.89 1.93 1.007 1.94 88 % 100 mil Al 0.48 89 % 74 % 2.29 MR Operated in Cycle 90 1.4 1.28 No 80 % 100 mil Al 0.39 82 % 629 1.16 l 11 Std. MR Plugged 211 '96 NDD Not Inspected r l 311 '96 NDD Not inspected Notes:
- 1. Voltages for field analyses inc~iode cross calibration of field ASME standard to the reference laboratory standard.
f L q s.pcsacrwn tnerpre.ps m.mber is. im 5 e
Trble 3. Fcriry-2 'C6 Pall d Tahes: NDE Acclyses f:r Axi:1 PWSCC et IIcrdroll Expusium Transitions' Detailed Sizing Analyses Tube NDE Crack Coil A nalyst NDE Length M a x. Avg. M a x. Date No. M od. (inch) Depth Depth Volts R16C57 '96 1 + Point Al None 0.52 100 % 79 % 1.80 SG C A2 None 0.52 100 % 83 % 1.95 Active tube Al End Effects 0.24 100 % 73 % 1.80 up to 11/96 A2 End Effects 0.24 100 % 80% 1.95 tube pull UT A3 None 0.18 100 % 70 % 2 + Point Al None 0.21 99 % 75 % l.09 A2 None 0.27 100 % 69 % 1.18 Al End effects 0.15 99 % 85 % l.09 A2 End Effects 0.17 100 % 80 % 1.18 UT A3 None 0.16 100 % 69 % i , us.ero w.i % is, im 6 6
Tchie 3. Feriey-2 '95 Pulled Tubes: NDE Annlyses for Axist PWSCC et flerdroll Exptasion Tran itions' Detailed Sizing Analyses Tube NDE Crack Coil Analyst NDE Length M ax. Avg. M ax. Date No. M od. (inch) Depth Depth Volts R12C39 '96 1 + Point Al None 031 100 % 88 % 1.29 SG B A2 None 0.26 100 % 71 % 1.46 Active tube Al End Effects 0.29 100 % 88 % 1.29 up to 11/96 A2 End Effects 0.24 100 % 73 % 1.46 tube pull 80 mil IIF A1 None 0.42 100 % 73 % 3.60 Al End Effects 0.18 100 % 88 % 3.60 UT A3 None 0.18 100 % 65 % 2 + Point Al None 0.19 100 % 84 % 0.78 i A2 None 0.22 100 % 59 % 0.66 Al, A2 No End Effects 80 mil IIF Al None 0.31 99 % 68 % 4.92 Al End Effects 0.21 97 % 67 % 4.92 UT A3 None 0.14 96% 73 % 3 + Point Al None 0.15 100 % 83 % 0.39 A2 None 0.18 98 % 68 % 0.41 Al No End Effects A2 End Effects 0.14 98 % 69 % 0.41 80 mil liF A1 None 0.25 100 % 80 % 2.21 Al End Effects 0.19 100 % 78 % 2.21 UT A3 None 0.14 96 % 62 % e.ia.i%%.ps sw a is. im 7
== Tchle 3. Fcriey-2 '96 Pelled Tebes: NDE Anlyses f r Axirl PWSCC ct licrdrell Exp nsina Tr nsitions Detailed Sizing Analyses Tube NDE Crack Coil Analyst NDE Length M a x. Avg. M ax. Date No. M od. (inch) Depth Depth Volts R14C48 '96 1 + Point Al None 0.87 99 % 83 % 10.8 SG B A2 None 0.81 99 % 83 % 11.3 Deplugged Al End Effects 0.55 99 % 92 % 10.8 in '96 A2 End Effects 0.53 99 % 91% i 1.3 Plugged 80 mit HF Al None 0.56 96 % 84 % 22.3 i in '90 Al End Effects 0.50 96 % 86 % 22.3 UT A3 None 0.40 100 % 80% '90 1 100 mit AI None 0.39 89 % 64 % 4.83 MR A1 End Effects 0.35 89 % 69 % 4.83 '96 2 + Point Not Resolvable 80 mil IIF Al None 0.36 100 % 75 % 6.32 r Al End Effects 0.28 100 % 85 % 6.32 UT A3 None 0.18 100 % 74 % e.r.-%. s t-is. im 8
s Table 4. Farley-2 '96 Pulled Tubes: NDE Analyses for Circumferential ODSCC at Hardroll Expansion Transition Detailed Sizing Analyses Voltage Integral Tube NDE M ulti-Scan Date Coil Analyst NDE Crack Max. Percent P-P M a x. Avg. M od. Angle Depth Degraded M ax. Volts Volts A rea Volts Rl8C42 '96 + Point Al None 285 85 % 39 % 2.01 2.07 0.53 A2 None 293 83 % 39 % 2.58 2.12 0.59 Active tube up Al 20% Min. 360 85 % 41% 2.01 to 11/96 Depth tube pull A2 20% Min. 360' 83 % 44 % 2.58 Depth UT A3 None 211 100 % 35 % Envelope of five segments A3 20% Min. 360 100 % 45 % Depth A3 None 0.1 " 45 % 31 % t Long Axial e.r.-%.r im is, im 9 s ~
i -{ l' il fh !i't i i} li!' [.
- j I
- Li ilf[j iiji
~ t\\ l T i 5 0 f 5 RC M8 s3 C t L e i I Il C EE O A r f S C - o1 E IRO IT I in = O ll = T l Gt t E. S/ M X C AL p [r lF pl N 0 0+ MT M)- m6 IR s I 3 9 Ct Lt i S C Ce O / 7 RG IAa R n St C 1 R Ii E P S (+ s= CF MF CL C 4 C M l L' fh D p' O dr .4 Lpi:,. 5P E i N;- hP ib ' 2 R o C C I ES h = n Y m7t 0 X 0 4 8 0 L z 0 0 H i b 0-1 t 0 ] c e c l h a l [ ~ 5 0 8 H 1 1 0 3 N 5 S C F_ T 4 I 3 N U R I L O C V G 1 S 3 I 3 E S 6 = 9 t C D o R 2 2 G1 1 7 - 0 5 SP V = 2 l I ,S = O t -_1 N 1o 3S 1n 8 0 1 o 9 Cri I 3 = t 0 ot 3 3 I 4 f c I 4 m 3 e rRnp s t e r u as E T N I t Y E-cn S 1 l i 4 sI E H2 N 5 = 4 4 8 0 0 C6 A 8 s 3 9 O 1 n 2 t i 0 a ntUin' E 8 r T L X C e A 8 T C 6 yeP 2 E I 1 9 N C_ S d+ z =n 8 0 G a i a t c S. F L 0 S I / A C s x l t i l F P A _ / 0 I Y H L 1 D N I 0 S E 0 i l I M m t i l r l e 0 t V l 7 i I Il 8 1 F E 0 l1 M S I 6.% i l =
== O m I t l i r M t l T' e = V M_ ll u y 4 W 0 _ r t l o G 0 a S l3 s L, G C 2 l s. 8 G s E t W e 6 4 o l F __ G 1 r = 9 1 l g-llil jI l l
J.M. FARLEY _10/29/96 INLET UNIT: 2 SG: C REEL: 1 RES l i
- iT 8 E
E tti : ) SI E
- I
$ Eh l u ! -~sg [. ~.... - g = a 5 !! 5 9 mzEn g E
- E
- I f
8 E C E Wft a a. i II 8 f U 3s / f L_ _ m <w I
- ili E
= n .q-a a n 8 P j j kabS 8 E E E = .m]a. c"a N "Y dM s. a -,:s I C gm f.
- 3 4
I g I L,r-- I 3 3 d d e 3 i E d j ,,i, b l l l-i t ls t i l 1 ei >> II mI i 6 EC187 12/04/96 10:45:48
ei i i Figure 3 Farley Unit 2 - R34C53 SGIC - Crack i Axial Length vs. Throughwall Depth 96 Eddynet +Pt Mid Range 100 E}o O + Point - Al 90 0 D' gyD --*--- + Point - A2 A D D- __D 80 -- ,9 D y o 70 g3 Al A2 ? 60 - - - - - ' - ~ U Max. Volts 4.54 4.62 5 Max. Depth (%) 92 87 0 y 50 J 0, ,i Length .65 .74 m y HP o 40 t Avg. Depth (%) 70.4 62.9 Q .c H 30 l ', 20 Ml -0 'O 10 D c' 0: = -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 Asial Length Apr96axc.xis:Ch_R34C53 12/17/96
Figure 4 Farley Unit 2 - R34C53 SG/C-Crack 1 Axial Length vs. Throughwall Depth '9e '80 mit HF Pancake,'95 - 100 mil MR Pancake,'90 - 100 mit MR Pancake 100 90 '*q - o 96 - 80 liF PC - Al NN O 95 - 100 MR PC - Al O 9' O. '90 - 100 MR IC - Al .o-x 80 70 /p g o s Al Al Al g t;l '96 '95 '90 JD \\ ~ 60 / Max. Volts 6.49 2.29 1.16 5 ,/ q 50 L - ---- -- Max. Depth (56) 91 89 82 i k 40 Length .52 .48 .39 .5 O Avg. Depth (%) 67.8 74.3 61.5 20 10 / 0 .L. -0.4 -0.3 -0.2 -0.1 0 0.1 '02 Asial Length Apr96axc.xis.Ch_R34C53 (2) 12/17/96
Mgure 5 Fcricy U it 2 - R16C57, SG C + Point C-scan for Roll Transition ~ '% Inspection i i I C m c LIZ AXIAL LIZ EDOYIduul = [] =
== = set Vott tseits il SET CE CLsNES SE1 VOLI (MITS ll MI CAL GWVES t e:415 4 300 + I Go (5 Vert Upp l Indt l Vaux l 100 Vpp l Itdt l Vnx ll 180 a e Il 194
- 0.12 ll
- i ISH
+ 0.12 I I I frC: SGC11 CAL 88181 SAT 9:45:22 NOV-09-96 SG C1 R 16 C 571061 (he] l-F1 = Filter:fullft. IKY Pts / Scan =87 XTrans=-4 YTrans-26 Ntot=57 2 Rot =345 IG e#== ni= = O v e = c M 4* 300 GO 05 3 + pt i t CSC., usti-H 71OD !G ECT -0.57 y SCAN SCM H i (+/-)
- /-05:
KSCALE YSCALE E 0.57 = 2.0 = 2.1 SCms f 055 ? o =61 =66 0 0.F SPAN R-SLEh 11 IN O.57 / k CIRC CIRC 240 / J FROM TO I 0.57 AXIAL AXII[ ~ 0 FROM TO CIRC AXIR Line Line E 153.1 Ax Len = 0.26tn 1 l[ TSH C + 0.12 240 120 0 7 I I I I
i i Figure 6 l Faricy Unit 2 - R16C57, SGC } 2 l UT Crack Map for Roll Transition l -' nX t nl.' C IIM. ~ ~ nXlnL CIPd II IJK LUC LEN DIR DEPD4 XDCR TYPE tl IJK LOC LDJ DIN DEPHI XDCR TYPE O n.12f. It's 0.1 11 H 22 100 tlT2 5411 l 1 M.1% 2HH H.153 - to 32-1HH IITZ Snli IIT1 UT2 I [ H.38 i m:h UT3 EC Y l l l 1 ( ,& / l H f l -w p\\ j 3 ( ( l -((y 1 1 ') I ! ( ~ l ) l 1 HESTINUIRAEE ELECTRIC CORPURATION WD NDE Ctf570MER : SOUTi(ERN HitCLEAR Al l'ilA : Al'R UNII: 2 GliN : C LEG: 11 SITE: rnpirv l'11 1 : APR9')SGC A 1% / I Sil Ntil ou tor,c - uzpii
-.7 8 l 1 Figure 7 r 4 Farley Unit 2 - R16C57, SG C ~ UT Response for Roll Transition
- '1 p,
-i .i [.' P F 4t N. Ql+l O $} l r ...Q. ' ' * *' ** * ^ ' ' ' v. u s [ E a. -.i . 5 i,.
- 3
.-:'t, e*., e, e >+ r - ) s,.s n f j ? +.' i..3. mac i I . i....., 2 I1. g an g A - a.i 4 - 4e- !...y
- e He
. 1.- ,A ^ L4++ h l e r n t. t o, r 7, <.- t i I., i P P6 - !L, t ' ~ ~ A-l ER! SRI manngEM 1.I towi
- LN is pE -.h f . h
'"rr s'Is -r p.. 4- .1 i. s < l m l t I g ;, t
- r 4'
j HISTINC810USE ELECTRIC CtlRI'URATION NSD NDE l CUS TOMER : 50tlTHEFN NUCIIAR Al.I'llA : Al'R tlN 1 T Z GliN : C IEG: 11 1 siTr-nviry l'I IE : AI'R%SGC A16 /1S!!,NO1 coToct: uzR11
ei Figure 8 Farley Unit 2 - R16C57 SG/C - Crack 1 Axial Length vs. Throughwall Depth igg '96 Eddynet +Pt Mid Range N 1 A' /g p + Point - Ai' ~ \\< -a ',' f '% m / -e- + Point - A2 DD 90 ,k, c
- ,g/,
i) . g 'a/ - - ~ '- A ~. UTEC - A3 L' ~ ~ - - - O, ' a .. D h - -9 80 70 1I 'd l Al A2 A3 g 60 ,1 q l Max. Volts 1.80 1.95 f [ y Max. Depth (%) 100 100 100 g 50 . 50- l a' s j na E 40 L -l _ '.l___.. Length .52 .52 .177 Avg. Depth (%) 78.5 83.0 69.9 30 4 f e j \\ 20 1 - -'~-~' -~~ - ~ ~ - 10 I l I I .1 0 -0.2 -0.1 0 0.1 0.2 0.3 ' O.4 Axial Length Apr96axc.xis:Ch_R16C57-Crki 12/19/96
4 i Figure 9 Farley Unit 2 - R16C57 SG/C - Crack 2 Axial Length vs. Throughwall Depth , '96,Eddynet + Point Mid Range g-a~gg,;M,,-u c[ /,,,g + D + Pomt - Al a e - + Point - A2 / 1 _ _.-. A_. UTEC-A3 80 -f- -i--- l 70 - l I--- - I Al A2 A3 60 -- l 'd. Max. Volts 1.09 1.18 g l i g 50 l Max. Depth (%) 99 100 100 j on ,1-Length .21 .27 .157 [ 40 -e-o i m I f H 30 Avg. Depth (%) 74.5 68.9 68.9 l b k -- _. 20 \\ d 10 / / i i 0 ^ -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 Axial Length 12/1896 Apr96axc.xis:Ch_R16C57-CrL2 1
i. ,i Figure 10 Farley Unit 2 - R16C57 SG/C - Crack 1 - Length Adjusted Axial Length vs.Throughwall Depth ,g '96 Eddynet iPt Mid Range '/ --u E Point - d~l' ~ ~ exg/ - - o - + Pomt - A2 ,,y lTN /,' 'A '( _ _ _ _TA: JJTEC-A3 _ _ _ / D s e D. e' A ( 80 =g s T '+ / \\ 70 ,, 'O Al A2 A3 g l
- 60 l
y Max. Volts 1.80 1.95 E 3 0 dl' ~ Max. Depth (%) 100 100 100 g. .)l: Length .24 .24 .177 l 40 -l \\ e E' 30 ~ l 20 l \\ \\ 10 t ^^ 0 -0.05 0 0.05 0.1 0.15 0.2 0.25 Asial Length Apr96axc.xis:Ch_R16C57-Crki (Adj) 12/19/96
i, ii Figure 1I Farley Unit 2 - R16C57 SG/C - Crack 2 - Length Adjusted Axial Length vs. Throughwall Depth '96,Eddynet + Point Mid Range ,g 4-u c p - - a % g g y __f _ D -D- + Point - A l -j ) -e + Point - A2 90 _i l 80 -j-- i 70 - -- - j- - - --- n# AI A2 A3 m{ 60 [ I Max. Volts 1.09 1.18 j g 50 Max. Depth (%) 99 100 100 i y 40 l Length .15 .17 .157 n H 30 Avg Depth (%) 84.7 80.3 68.9 20 -- - t -- - - 7 t / L a i i 10 / l \\- - - 0 0 0.05 0.1 0.15 0.2 0.25 Axial Length s Apr96axc.xis:Ch_R16C57-Crk2 (Adj) 12/I8/96
'l Iti! (
- f I
{';! l [i,j 'iIi[ t t!, , i ~ O l1 J T T R lS E i l 5 RC M5 F e C L L e i 6 C RO AO A EE 8 n6 O= gm IT IT I i4 2 SL C - = Wt UE S/ C X X lF T A AL l p l} 1 0 0 1 0 0+ ND 2S M)/ S L N Ce 1 3 AO M3 g9 CM IAn IRnF Rf S C A9 F SL C C= p= IR R i F S (+ S CF X E 4 C AF CL0 VR lV 3 ]L t. O l M j, j !i2 t l 3 ^ m 9 sC 0 n_ s T k ES n = : 5 x n n2 0 m G V e3 0 5 L z 0 0 H u 0 ) x S A T. I c E u s l + h i c l l [ t. 2 1 0 H I C 1 S T 9 R 3 4 u t 1 S i 2 l 1 m R t e T l n O B v. L o W 4 Bi C 6 T S 1 t = E Gis S 6 t 0 p 9 o Sn p R 2 a V 7 g , r 0 8 g 9T 5 Q* 3 V t Cl El a O o = N N O l R 2 2 o R =- 1 1 02 4 eR i 7 r r 4 s o - 0 uf t n g2 i S a e r n 0 a Y h l T iFt 0 I I 4 a S 1 t i i =-
- > M nc W
l 2 Us R 7 1 y C-i 1 s g 7 O 0 n m l 0 a et E L T 1 r 91 i n C A X r C i a o T F P S a !0 G n 2 I_ 2 = E x G 9_ 0 i 4 + z V u 0 S ac S L C / A l l r + s i t x l f P A 02 0 Y. 1 9 t d S 1 l S I E T ~ l I 0 e m 21 T l t r o a V t i T l S p s F E l p V 4 El i l i = = I E1 i t I - 0 a t i r a l* e = V m l l t u s l ]I I u e 0 5 y 1 m 0 I I e 3 0 L 9 0 9 9 i ll 9 D m E l t 0 0 4 0 Il if I 0
t b. Figure 13 i Farley Unit 2 - R12C39, SG B UT Crack Map for Roll Transition i r-HXint CIRC nXint CIRC LOC LOC LEN DIR DEPTil XDCR TYPE N LOC 1.UC LEN Dik DE'PTH XDCR TYPE l. H H.lH6 'l H.157 -G 34-10H IIT2 SAll f 1 1 H_1Hb 57 H.12h H 52 'th IITZ SAII I 2 0.087 237 H.115 - Il 3H 'fG UT2 SAII ~ l 3 H.H07 334 ft.H21 22 4G-4G llT2 SAII L IIT1 ti f2 l [ 4 H.HHT 33's H.H2] 22 E-E IIT2 snll H.N inch UT3 EC i i 5 0.H03 351t H.H34 H 24-72 tlT2 SAII I I i I i l ) ',i i l 'I l 1 I i j i l. I t t b f I b i [ O 1 2 34 5 fN (, I, l \\ [ ss f ~l 'W A i xs i \\ x i ) \\ 1 [ { l .I ) [ i ) i I k j MESTlHGIRRISE ELECTRIC CtlRPORATION HSD NDE tir;TOMER : 50tlTifEFN HitCLEAR ALPilA : Al'R U N I l' : 2 GEN: il LEG: 11 j stTE: rast.Ev I FILE' APR96SGil A 12 3*JI Sil. No t ournGE-02F11 l l
I Figure 14 Farley Unit 2 - R1209, SG B ~ 1 UT Response for Roll Tmnsition D.'H% 1' % t J P Nh st il 41 W T NN Nei i 4 4 ,w -
- r...,4
- gigg I
v., ,. s.. u i p... p.. a JW i-. y y. l ~ ~,a - a u w e w Y *w L: !" . o.- 'T-~~- .a-N, a - si i, c. 'H
- f*H
- t, -
1, Lif+. +4 c { y4+. 4 wiTa-- - 0 54., Js a P} f) i ' 1y, I i E JE_.. B-j M NME M M i g gg ; i g l > :n ! T - I@T
- _ pa, ispr #
psy
- ic ri m]i s 4
a a
- ,4e s 7
pp p. r t. i,6 I ____.e.... l' r' 4i + I Hl'5 TIN 038tRISE ELECTRIC CORPORATItN NSD NDE Clf5IONER : ';fitlTIIEFN HitCLEAR All'il A : Al'R UNIT
- 2 GEN: 11 LEG: 11 SITE:
I'nFl.EV ll LE Al'R96SGli A I Z 39 i Sil. Ntil 1 nung;E - U2F11
g Figure 15 Farley Unit 2 - R12C39 SG/B - Crack 1 Axial Length vs. Throughwall Depth 100 '96 Eddymet +Pt Mid Range 0 Il 's I--$- D-q-o -o. /~ .g # B D + roini - A i ~ p \\ D 3 + Point - A2 -- A i tJilc-A3 90 g3 Al A2 A3 80 0 Max. Volts I 29 1.46 70 l ength .31 26 .18 d _[ / g e' 5 S / Avg Depth (%) 87 6 70 7 65 I c = 50 l -- - - a I t n l 40 -l L--- - --o-H e 30 - l-- - E e k-20 0 a 10 I-I \\ e 0: e -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 Axial Length Apr96axc.xis:Ch_R I2C39-Crki 12/17/96
o ,1 Figure 16 Farley Unit 2 - R12C39 SG/B - Crack 2 Axial Length vs. Throughwall Depth 94 EddyneL+Et Mid Range 100 g-O + Point - Al e ' f ++ i st - A2 .-+,4-4 0 g 90
__.-s,.
- ~... \\ l 1:1 Al A2 A3 80 1, hlax Volts 78 68 i 70 Is-klax Ikpth 04) IW im 96 I lxngth .19 .22 .14 g 60 l- { 1 Avg ikpth(%) 83 7 59 1 73 4 l { I 3 g 50 it m, 40 0 l ? n r 30 t 20 10 L- - - _ 1 0 = = -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 Axial Length Apr96axc.xis:Ch R12C39-Crk2 12/17/96
N 88 Figure 17 Farley Unit 2 - R12C39 SG/B - Crack 3 Axial Length vs. Throughwall Depth Eddynet +Pt hUsi Range ,gg g -L3 ' O ' D + Point - Al g 'e 'g, e
- Point - A2 90
,,0
o - tiTI:c - A3 Al A2 A3 go Max. Volts
.39 .41 i l I e 70 Max. tkpth (%) 100 98 % t.cngth 15 .18 14 [ + 60 g, l \\ Avg ikpth(%) 82 8 68 3 62 3 a e g 50 f-- - 5 s - -h -- - -- 40 ---4---- n V-30 2 1 t 20 a-- - 10 i-4 O -0.1 -0.05 0 0.05 0.1 0.15 O.2 Asial Length 12/17/96 Apr96axc.xis:Ch_RI2C39-Crk3 i
O it Figure 18 Farley Unit 2 - R12C39 SG/B - Crack I - Length Adjusted Axial Length vs. Throughwall Depth 100 '% Eddynet +Pt Mid Range g #-ll --0 ~33' U 'I i"' ' AI ~ 'D ,e s g. _g > ~ $-- \\ Q e il%mt - A2 ' -~'--I - - ~~ o tillC-A3 if l El 80 Al A2 A1 Max. Volts 1 29 1 46 - I 70 ~, ~ - '~ Mas. Ikpth (ii) 100 830 100 h_ eo l Length .29 24 .l8 6 l ' O, Avg ikpth(?4) 88 3 73.3 65 I b I
- g 50
- - - ~ ~ ' ~ - - ' ' - s N E 40 j ~ l 30 l {~'-~~~ l t t t 20 10 d - -- - - / \\ i 0 ~ -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 Asial Length Apr96axc.xis:Ch R12C39-Crkt (Adj) 12/17/96
i i Figure 19 Faricy Unit 2 - R14C48, SG B + Point C-scan for Roll Transition -l Sq.wease an.Iy e.cenereIP w l.l ; Dame Pest Is tes t oes==t < Cet > II. ore.In W%e .N. en.seery Sm De>.!:3s SW (183 ) tem.m ses, eem mrontranost r m. srtiter/us l -l! i ris. ma ei.8.
- n. se e n.a s7 Si SIm
.n Imum 5 a.14 e u.es se ss S in .te Imim R. 34 4 ft.M eM S Im ee.it ISut318 S. 14 4 19.92 4e 55 919e +0.3 3 tsstisu i
- 3. 14 e 89.St 58 87 5tm 53 Isutsul S. 34 e 98.89 es 93 S ISII
+4.11 Imf5A
- o. 14 e SS.e9 es St S ISul
+0.09 talsit E. 84 e te.ee 53 SS S ISII +0.07 15ml111 i O. 14 e F.e S4 se S 1 911 +4.05 Isut311 i S. 84 4 S.Se 94 es S IIII +0.03 1915N { R. 14 4 4.se St 83 5 ISII +0.01 IntSul i
- 8. 84 4 4.08 FS 71 5 ISit
+0.01 15ittSII i
- 3. 14 e 3.3E 55 et S ISit
-e.01 15stI511 O. 84 e f.45 SS 79 5fu -e.st ISussit R. 14 e 1.38 SS et 5im -4.05 tmisil 4. ~:.. .o m. l telt ll ca.or l l nacen t tie l l eniet. l -1 soo ensucassein aus eene esse.e-sesee. e see e ses peng i.lO riteerier ris -_ c wir e tir as sus se ami ise - I '*s, ek a e,.i.lel-seates i p.e y limi l -l: i l 4: san as a) re. a.w,.s. s, t n. t mason.a.e. j I< b r i na l j xa rm -r um a mai unw-m mm -- n ca e em M 4: A B E Ch D Q k sa"N M M S J Yg.t LE wid -M r.t (L W C1 Tet W 4 El. W 'F 1 j e 1.s ,,0 , m' l s te -9.7 i .m nu n -i g g n u o.74 glg
= + v. *=.e
ij '= -. = gg l 4i 4 .au __ F L L b. _e l 3
== l
l Figure 20 ei Farley Unit 2 - R14C48, SG B l 80 mit Pancake C-scan for Roll Transition i 1 -I m==esih a-e,.a.c =de e
- 1. L_,
I . -1 sess.we m 1 10 f*" W
- 1em.
, e, _smini. as e geisp [, [ Q Q [ ..s, File Net fa.tp j
- s. se e 21.e 37 s7 s in
.e.re Iserm i
- m. se a to.es se ss s in
.e.se term S. 34 40 st.M eM s ist .e.ss tsistne j
- s. se e ns.se es ss s tsu
.e.a s tsmass
- a. 34 e ts.se ss et a tm
.e.as twiss
- s. se e se.se es ss a tsa
.e.ts tsutsu 4
- a. 14 e is.es a se a tsa
.e.es Issim S. 34 e to.ee ss Os s isII +0.e7 tsutsit l
- a. se e 7.e se se s tsu
.e.es twism
- a. 34 e s.se se se s tsu
.e.es tsmine
- s. 34 e 4.se se es s tse ee.et im:su l
E. 14 4 4.ee 7s 71 sin .e.es 89tf1N j l
- a. se e s.se as et s tsu
.e.es tsmism i
- m. se e e.e se 7s a tz
.e.es Im sm d. 34 e 1.3 es et s tsu .e.es inerne L 4 j Y I =- - l Wat ll Clear ll m.calI hee ll a.i.te l l l -1 are nascareers ans esees sese.e.esseet a see a ese pel 1 10 -^" riteeriet A ___ = = __ : mis se ase us ,, a g, I sesp en a s,.a.tci-seates
- pm, feel I.l i re.
ame,.a. s, t e. t., e massi a.,. me,
- t. e r a uma i KE."a er u 3 kmqg agMt-47-M EGE m,w H CLA E ME
^^h M M M In 1 M E W D C7 g W CI Tet E I EF Y.rt LEI wie s.- M r.e 2B }4 T rm .v j I,RE -. 74 , 74, g mj ri m
- n. w a esos ri==
let g i,,, t l 1m.== ag i j MA t j ) J Ime [ j f I
- 83 V
6 r
I.- l ^ 1 1 i i i 1 - ] 1 I 5 i j j g 4 p 3 a a i "55!!""555"E*E5 >i len!!!!!!!!!!!! 3 Y hR l d"i c = { a = nl = E j j A 3'1 l u_; j i M MJ L i u:n = = = u = = u s j j s tetetsterrettet 9 g l y! l EE!!!!!!!!!!!!! 1 j j j; l A ass =nsanass==ms s ] } l s L g navsusvassansas g g $ d!!!!!!b'!05 i 55 3= la J-R. *
:::::::::::::
==************ e I;; x t.s asj _3
=
5 a _4 gj 7 c sassassssasssas N i - 7 e 9 k._ u If 5 E $!EEEEEIL5 l $j } T us y, y 1.. _ __. _.,.. _._.. -. - namn ] [ E g. j l s e g }, il a i c! s 1 E 11ECTRIC CURITRATION NSD HDE CllSTOMER : '_8%)TilERN HilCLEAR ALPIIA : APR UNIT: 2 GEN: B LEG: 11 siTt: rnwi.rv Filli APR96SGB A l +181Sil. NO I ouTocE - uzeil
I Figure 23 Farley Unit 2 - R14C48, SG B ~ UT Response for Roll Transition 1 g: u _. g gg qq - 69 29 33 11 - lh % 18 14 E D GFR W LB 41449fSH N91 t g . a p . 4 = Pt<. k. 468 ,c t
- 5
? 3 13' h$ ;4' j h g L. klau. l. 8 g,,gg - .,,g. g i Us D' 8 t;M i g: n' q g., ; ~~ DETTH M' t a.t e-H HP m;is ' 3 l 'y. f E' Vern 3092 e g r a g of f w t vmm 7 l Q 'jb.< 3 batA . y 6 m . 7 1 ^ [ D me i a
- 44 u,
',) a pe -H l . T) F eq FM *#tM I ~ Ucits Rn l I (. Atti 6 l' ^ T ' A t t r.( 29 I e HiPast 20 I l ~ e
- 1. p.
24 m- ~. Pk D. s 4 ~
- [.
( ' l k i. f__ ~, 7 l _ l ~ ? 4 t..: T P 1 msg = m m v m. x. 354 EM Em M ~ MIERIEW ElR 88BMIB t 0IE 4.InRI IM THRESW FRH t F.R ' M I' LV ' ^ - Q. ' y ,pp p, 7p 94 9 l 4{ ? 7. 7.,, 3 3 gy g ,,1 cg g (4;. or m +1 i n-n , n - " "' 'i l ( 3 _._ ' , _ _..f.,, ..'%0 ___w_ g______-.----- ...l_ NESilNCilOUSE ELECTRIC CURPORnTION NSD NDE CilSTCHER : SO'lTilERN HttCLI AR AI.I'llA : Al'R UNIl' 2 G II N : il 1.l?G : 11 SITE: FA RIIY I II I5 SIYUbOb A I-I'III b!! M I OU Tid;E - tl2R11
e o Figure 24 Farley Unit 2 - R14C48 SG/B - Crack I Axial Length vs. Throughwall Depth U"b iS + Point - Al.. g8 o gD D 90 p_ -9 D, e
- roini-A2
\\ Ql a A ITII:C-Al Q' g 80 D -- - S U, - o a- \\ No 70 - - - # e-l- %. 'O ~ ~ Al A2 A3 . u. ~0 Mat Volts to 78 11 26 60 g Max tkpth(%) w w 100 O 4 \\, O
- g 50 t cngth s7 st 40 I
"Ei .l Ang ikpth(%) 82 9 82 6 80 4 0 40 -6,0 - -- i l 30 l d I 20 l --j-t e 9 10 - --3,--- -( i ^ ^ 0- '.5 0.6 O -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 Axial Length Apr96axc.xis:Ch_R14C48-Crk t 12/18/96
e i \\ Fignre 25 Farley Unit 2 - R14C48 SG/B - Crack 2 Axial Length vs. Throughwall Depth '% - 80 pi[JiFfancake and UTEC ,g N - X.80 llF PC-Al g [ . _._o illLC-A) M 80 // 70 3, g3 Max. Volts 6 32 % 60 } K ~. \\ Max. Ikpth (%) 100 100 c bq 50 lxngth .36 18 R N Avg ikptf(%) 75 4 73 9 0 X f 30 I I 20 10 l J 0 x -0.1 -0.05 0 0.05 6.1 ' O.15 0.2 0'.25 0.3 Axial Length Apr96axc.xis:Ch_RI4C48-Crk2 12/19/96
e n Figure 26 Farley Unit 2 - R14C48 SG/B - Crack 1 - Length Adjusted Axial Length vs. Throughwall Depth .. '96 Edstypet +Pt blid Range ,oo D Yo% Q;D. D + Point - A i ,gA*"'E-E],l ,p]o"a" e U O e gp%/ . _ _ _ ?, El _ e 4ron. - A2 90 g, . A trilt'. A3 - P \\ El 80 t 4 Al A2 A3 Max Volts 10 78 il 26 60 h Max. [kpa (%) +1 99 100 Cg 50 -q-l ength .55 53 .40 Avg ikpth(*.) 92 4 91 0 80 4 y g o 40 A i 30 t 20 10 E;. 0 J. -0.2 -0.I O 0.1 0.2 0.3 0.4 0.5 Axial Length 12/18N6 Apr96axc.xis:Ch_Rl4C48-Crkt (Adj)
e o Figure 27 Farley Unit 2 - R14C48 SG/B - Crack 2 - Length Adjusted Axial Length vs. Throughwall Depth , % - 80 inil HFfancake and UTEC 100 p c-N/" "N /" X.50llFIC-Al y [ N O Ullf-A3 $C 80 70 3, 33 Max Volts 6 32 7 60 Max. Ikpth (*.) 100 100 h Q length .28 .15 g 50 Avg ikpth(*.) 85 5 73 9 g o 40 A 30 20 10 / 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Axial Length 12/19'96 Apr96axc.xis:Ch_R14C48-Crk2 (Adj)
Figure 28 Farley Unit 2 - R14C48 SG/B - Crack 1 - Length Adjusted Axial Length vs. Throughwall Depth '96 - 80 mit HF Pancake and '90 - 100 mil Pancake 100 +96-80 PC-Al _ y _-O' N 9 I '"
- a-o 80 N
r 1 70 3, 3, 96 PC 90FC m$ Mas. Volts 22 34 4 83 [ N [ ~~ cL f d Man. Ikpth (*Q 89 q 50 I.cngth 50 .35 j ee! 40 Asg Ikpth(%) 86 3 69 4 5 30 20 10 0 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Asial Length Apr96axc.xis:Ch_R14C48-Crk2 (Adj)(I) 12/19.96
l Figure 29 i. i, i Faricy Unit 2 - R18C42, SG C 1 + Point C-scan and Voltage Integral for Roll Transition r-- l i sa an a-dr* c-=* r--a l 11 1 sm, t m.nea - l 10. -1 r re. _s.4 t 3 sye Acydete {-. - {arten L. cad,% 9.t. Pr6st Z.ma 14. t_ -t ( c.t > ll..r.4 Wh*w s ie> <= s.t., (ei n i
- l CMCW
==l A3 GAL W g vi. inn X wi at ones mi mi mirs Hmi cE amis !,.6 L s j m.. m.. ,=.. in.. m.. as.. m.o ns.. e c .t ..t t i, i PbtScd. St.tims hhoth-Sc.nFt.t w I na I== I us % l na I m-I m l,f.,,,,l c .m. 2.si 4.,- in s 2*'""***** va n.t.,.m ass Ise*I21 ~ [ 3 11 . tems II) . une n.t c E;,e dus;;; va m [YI l - l= 'l s.- n *
- is.ti.r.a i l.lal
{ -i wa socw:missisi en namn -soci n uc em en teel 1 10 -l ,*ici.n.a _i,. ,iwi 1 i It.r:mIR 98.T Pt./5c.4 Nicarwas TicM mut=78 N=BGL.r~wWM . 4. M OD C5 pg. Am.sysee Sy.t. sin f.ed. L.yeart Add Diosdeye I-I tEER 5GE'K' A lE 2J 3G Zl NDV-GE-M COL 42 B22 l dierta2 i tal 4-I M il C8 > C5 i (3 C1 V.s t Ver t E3R wdd m.m 23 234 6 N
- g. 95 4.m l
im ,a,,- A y mm: urare ..n. s. u u R 11 78 5 8 an t. I* 5 Q {
- 26 M
LM e 5 \\_ 1 h Gi;g m=E:h l I I I I I I I I I I I I I I I I I I I I I I i i i i i i I,1 I y + 1 x-, -.- -- =. : - t--r
1 J 1 Figum 30 l Farley Unit 2 - R18C42, SG C UT Cmck Map for Roll Transinon j l i cinc oxint ciur l n.v EUC LEN DIR DEPHI XDCR TYPE N LUC LtK LEN DIR DIST}l XDCR TYPE 17 3 16 19.122 -96 G2-72 tlT3 SCIO s 4 ' ' ' ' 21H H.145 -87 1H-SH tlT3 SC ill l IDG U.398 -U7 G-10H UT3 SCIO 3 - H.s 359 H.7an -03 G 'W1 IIT3 SCIO l IITI UT2 4 H.H IS 314 H.H69 13 31-45 IIT2 Sall im:h UT3 EC 5 H.13H 08 H. 32'l UU 10- UZ UT3 SClO l_.3R I I i l 2 I i 1 i .l \\ i Q M __, Q, % 4 l g \\ _NN _ e f 5 -g J l i p i i l b l { i t HLSTING810USE ELECTRIC CilRPURATION NSD HDE Ctf5 TOMER : SOUTilERN NUCLEAR All'lI A : APR UNIT: 2 GEN: C LEG: 11 s To rnRI.I v l'I LE : Al'R96SGC A 1812T Sil. Nu l ouTocE-u2R11
I e e g. g e. l 'l E sus a s g 7 gg j y-ER T: - - 2 v = 1 1. 2 f =i-'L 7 1 4l l' = 1 e z f 1 N ~ , i i 2 ew-r- x l ~ i [ -}' 2 1 .2 i e I $31 } ,4 -r
- i H..,,
c s 1 7 Oy 1 .s l a N - - n. 4, ~ / l' -m .g j .^ .1 2.., Eea 4 B ) ( [' /, h,. N M f .i. - I V .w g q . aa Dg .t W M ce w he r .. g ~ ~ g ~ " - " ~-.,..,,._ '5 k g
- Eu u a 1
80 ) w Q v f "a i i
- E=
u a I p y L.J t
- g &H
~ s ~G u' w 5e u + A L h
- aa8
.,d80 E ~ s v z e k
l i o t Figure 32 j Farley Unit 2 - R18C42, SG C l e UT Axial Response [ I i l 3 94 m, p c i ;%. 3 c w.t
- sh w1
= .iaa r. na e.,. u.. u _l. W.. .pp g ] ,4, a .g .14 L l v s.- .o .. +
- apc.
t.. .,+. f ( m._. 6 ,p. ( i t is.. au .o l ,. + + id 7 ut+ j 4 64 ,,r.. o 5 IL - 'i,,. ~ is e I lMMM IE I 4 E== = ~ 'l %g l 1 -,y- - N
- upp ;r tu wi: -
l l '.p 54 l
- p.,
6 +. HESTINGHOUSE ELECTRIC CORPURATION NSD NDE Ctf> TOHER : '.>00THERN NUCLEAR All'lI A : Al'R UNIT: 2 GEN: C LEG: 11 S I TE : I AFI.EY I 1 LII: Al'R96SGC A 1812'I Sil. NO 1 OUTAGE-U2R11
e = Y Figure 33 Farley Unit 2 -R18C42 SG/C '96 Eddynet + Pt Mid Range 100 %
- 6 h'
- - O - - +Posnt - At UTEC - A3 i 90 % 6 a .g ,y 80% t-I' 3 -[ A1 A2 A3 70% dl, I,a a ,,y [ Max. Voits 2 01 2 58 - i a ra 6 .y 6 ~ ~ ~~~ 'e ~ ~ Max Depth 45 83 100 i ai i hk I i < l ATD (%) 379 37.6 34.3 pi d t d i d 5 50 % l-u-u- j -lI: gI . l u,6-PDA (%) 38 8 386 350 d d qn ^ j 40% tu a g-a t >--- H i a s ', a p 30 % u ---- a ! k', < &} > - 20% O - g-- {' t d l- - 10 % L- , -{t l ~ l 8, 5 5t " S
- =
0% = 0 40 60 120 160 200 240 280 320 360 Circumferential Extent (*) ChR18C42 Apr96cir.xis:12/18/96
I o t e i t Figure 34 Farley Unit 2 -R18C42 SG/C - Adjusted to 20% Minimum Depth '96 Eddynet + Pt Mid Range 100 % 46 70 - -+Pont - At i --G--+ Point - A2 90 % -J i -J .". UTEC - A3 J ili llg 80 % k- ' ' i i-a a I U ( A1 A2 A3 l l C a 70% - d g'El Max. Volts 2 01 2.58 3, ,q-i g{ Max Depth 85 83 100 ~ i at bg ._s l l S*' i / 8..h. _ a l g, a, 6 h 3 i 5, ATD(%) 39 8 423 442 4 L a L .s u i ,i G-l 5 50 % Ii al( q, PDA (%) 40 8 43 5 45 3 6-g l t -ip J ' [i 40% < > -<M> g m L 5 '. g s n -- n ,a p' ,N.-- 30% I i ,b *. h'si\\ t 20% i. a L 10 % 0% 0 40 80 120 160 200 240 280 320 360 Circumferential Extent (*) ChR18C42 (Adj) Apr96cir.xts:12/18/96 - -}}