ML20132D529

From kanterella
Jump to navigation Jump to search
AP600 Test Program Overview
ML20132D529
Person / Time
Site: 05200003
Issue date: 10/31/1996
From: Butler J, Mcintyre B, Piplica E
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML20132D525 List:
References
WCAP-14772, NUDOCS 9612190418
Download: ML20132D529 (352)


Text

.

s

- - ,....,r. . . ....,s..-...o.., .'

.m,,..

.c' . . s,. p,. ;,.. ..-..... . p ... . . /, ., . p

.-l.,a......,.,.,,,m.....:.:.

u . ....:. .. .u af , ,:w . . w . .: ne m.:

5 1 ,.

,' , ' ' ' ' '  ; ,jl&',.M/.' ") .' . .. c., ;,,) . '. ' i ' ' . L td G,'*' {L: . ..f'l /. : ' ;': R l...'l; .h ;;iW'- ?{.Ni .. .l.

A,. .: .l. .: " ;.!l ' . * . ?, ! ; * * * ' f*; .

. ll 'l..

  • k , . ', , . $'. -U * ,. 'Y. 4 h;f} 4R ?:g.e* ,'f h.f* .,&' Q*,If',.i*

,s 3, . . ,'[..'

ll i

  • 5'.e5l.' 'f'},*ll:

flf ^. r aff, , *f

. ' h ;, ' ', . ' ,. g :- -  ?

.  :<. a:  : we .:.s'r.'

v .:.. ': .:

- .. .s.  :

. . .:, : . m . *. .,

2

...- . l

. i.' :.v;; . .;,.y -.':;. ..4....q.::  ;....g.o;, ,

.y x.

s,r.&

,.p = .7 A.:

cm._

.< . v s.-(:

r.u:.

n .

n.

l.p,.

p;.

... s.

e

. ,, 4 9:. .:p ~, ,. u ;l.: 4., .c. < ,y.4: . . .

,w'

x;

+l

.>.~y:.

r a..

. . . n av: ; .. ,. e.

saa..y .:, ..y. * . ; dii.

. '...:>....- i .';., ?. :s^ .r . '.*...e . :. a . ,...'.S

.'..4. ' ... ';'.Y. .,t -f$.,.

t.~,. '.'.L, , .  ;;; . .,j.'", , * ', "

. ' ..,,kL,..*.,'*.S , :~..c '. . .. r '. .a,, . s y:.

  • s..oR ,

.o 2 .s *J  ! .*-

s, . .; t..l; , r . ,.;.

a .

,3,c;,.,....p..  ;*

i' .

.,.,p) .,:) .t. na .:, . s.A r <r .. ....o....- . . '.' op

.k..g)

~

,..f.. 9,.,3.'. .*. .? ' '.,: ..9.., . D ..: .5. .... : . ci.r .i t a ,.s  : ..b .e 'lp > . i, .-

..t.- g . & .< <, a'..i....,. e.,.

.,-4.s.*,..l *.:

& e L- '

J' :' * ;w

(,,.. :'::k,j. .n. %

;.,f g' vA,; . s. '3.'p+.'.

l  :,,1

.".
. ,. ;,, . . . ..Q . ;'.. t.%. . j ' . .':. . ... ,... i..'a, .*;,, .U. .<, ., Q - .f,. l;c. - (,:. . , e p . .%. %,y ,p
  • s}?,.q,r, s, ,a f .<., %4.,n . . -. . . , . , .s p',9

..  ;. . ,., L -

.' ; j., q.,p.;,. !L.~ y . q '

,.3 .

. ga j j. j

-g;y.: ~r,;y; "*: . ,^; .g.

,?.. *g : .', . f . ."., :. ., '; . .*. *;,, ,- ;.~r: i . . .

. ,. ; , . . . r. ;:.. ,.t. .:

_ - . . , . . . .y; v.

s. ;;'.m v ,;; R'.:s s: y .

. ear.v L.<-

.,y .~.. t; s:h

. :,y . . ., ; p.

v

. s .. .. / ' f
::.~..".",.v.

. l : f; ,':u,-

,;... ,  : p.'.2,,,,~L.'.m.,..

5. '.. , :.%> s.

a . ..

s 3,

q,

~:m

. .'yA,

.;ny.$:Qi.g '.+:h ,;. .:.

,-.. m..n. 4 . . s c

s g' .%. <o.. . , , ~ . ,

ll.;:t, -ly j;; * . ,., '. ',4 ': .'.{ : . g *

                                                                                       '.:l;.; y '~,l l';:y,, ;                                                                                                            '; ,
                 ;. s.. ..: ..y..( .,;,                                                                      *.
                                                                                                            ;,,...s,....                        s.,*,                .[
                                                                                                                                                                                .: . },.
                                                                                                                                                                                  ,,.3.                       .      .     .?         .     . (.   .q.
s. -):.
                                                                                                                                                                                                                                                          . y      .,. 1_ _,::, a . 9.;,,                   ...,<..y..: .s..,

9; .3.. . . -

                                                                                                                                                                                                                                                                                                                                                                                                                      .,,.~;,
f.  !.,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .' ,f., .r ~ ;fy,:, ' , -

y

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           . 5. ;;. ,!;,, : . . .c ,
                                                                                                                                                                                                                                                                                                                                                                            .
  • cc r , .t -i..,+,:.'. ' .. ,; .. g + .
                                                                                        . . . , ; g- ,. . ., -r . ' . ' l . _.. .
                     .. -                               ,. .+..
                                                                                                                                                                                    ; .' , . ; , , i .: P, . . , ' A *;y' '.%.

vi 1.

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       . *. .. :. .,::.T.

s.. : . . ~ . - . y.ge

  • s*- .o. .-a.. . ..g. . g. .e
 ..* . ' . ;. i..l~                                                      .!          :.Mr;:

3- ; .  : e . g :* . . l;,' ; %, .~,,i,. . .. . . . : ;c Q - v : >:y '-(,: ' ' ..' '. . ':' .. .,.;:. 4 , ' s -. , ' .pt . . J: :. ::- .

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                . .. q:. ' ":                        -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ;?
                        ; .,. i : ;,                                                                           c ;. .. . :'n '. ' . . _ <...i                                               . .;3;. .. 4,,,                                          ;,;t':#.;' * :w;.g*i        ,4:". ::+ y .s;{;,; .'. .: .;4, '2 .-\. . : , :. .. ,                                                                                                                                                                                                                                          ..-p't.. <.. . c f}. y ,.' . ); ;.
                                              . . . ' _ '..s. .::.
                                                                                                   . ..._4                                                                                                                         6..                                                                                                                                                                                                                                                                                                                                                                                                        ..-

r., :).. )% .J. ,'n. . ~. ,: .,,

                                                                                                                                                                                                                                                                                                                                                                                       'r , _.....i
                                                                                                                                                              *~ . st '                                                                            :: .Q.. . . .,                                                                                                                                                                                                                                                                                                                         ..?                   '. O .
         < . ;- .:.eg'%l. ,, a ,3.<.;                                                          ,a. . . .:. . : .,: . p. ., ~4. : ..,,. .,a.                                                                                                                                          . ./. ... , . ... . :....
                                                                                                                                                                                                                                                                                  .........'.,y.-                                      . '..n
,;.(u..: j '... : ej. ..v. . . . n;.
                                                                                                                                                                                                                                                                                                                                                                                                                              .- -;; h.               , .::- . . .-
9:. . .. .*::. :.:: . . : .:l.' . . . ; ,

r-

                                                                                 ..,,,.'.;.;:'.'.;...........                                                                                                                        .- ..                                                                                                                         .s.1                                : i. s i ,l: . , 5; , . .g'.o.,'..,.. . " .
                                    ,-.4..,, -
                        .                                                                                                       4
                                                                                                                                          . , , .j .3                                                                                                                                       ,,

2.'

                                                                                                                                                                                                                                                                                                                                                                      .,{.N..  .s      ; ; ' , : li . .f ,. : ; , 7,' , .],. . r-                                                                            e                                                                              1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ' g y;. , ' ~ ;,,, , . , .:
                                                                                                                                                                                                                                                                                                                                                                                                      ..'.(.
                                                                                                                                                                                                                                                                                  .),-         1       .    .,.         .:,.         .?,          .7.            ,9.                       ,    ,       .     ,.      .:      /     .    [e.,           ';:

3.j .$ ,,, . t..

                                                                                                                                                           =Y:. .,,1.( ". , . . ,:l, . . ; 6
                                                                          ,.','                                    .......s't.                                                                                            *- ..,  w                                            ,e. s ,.                               , . .a.                                                                                       ~ .                                                                                                                                                            , ' w . g .., .g f,. . .
               ..?.~,..,,. . . .". ;.e ..":-
                                                                                                         ->.                        m. i v a
                                                                                                                                                                                        .:;- .- '. *h                      . T "u 4 l .., y e . u.s..%:; . :.;;. -,s~ . . ' .9 p, ", :'. : .. .: ? :., ,: :, . ; ,                                '                  4               's                                                                 . .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ;.~           -
. :., . i - *
- x:. .:'. . ?,ly .,',,'. .,. * : - l , f. ". , .., , . ; . l'
. 1.. .;~. ? . ;:,be. . . -,,:,'.

l

                       .:., .. . <,.>.;...:1,. .'~ . . v%
                                                                                                          ..ay'. W . N@4 ::,.'.                                                                                                  ,v,.*. :.y                       ; _ j[r.                             . ,. ..,, .,"..                                  -l ,....;lv              y,,,p',< ", :i.',                        . *. , p..', ._                     . . ':. - .:' t ' v 3. .::~ , . . .i' ; ,p. ;' . ..

1  ;  :'.'.s

                                                                                                                                                                                                                                                                                                                                             ;   .  .   .  .:                 , , .                             .      4,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         . ,. .                                                    s.                ,
                                                                                                                                                                                               .,.:                                                                                 .g.: .; %,.,:                                   ,; ;                                                                           .t,                                                                                                                                              -
, ..,..,"j.- .s,.. .;,3 ,  : . ,
                                                                                                                                                                                                                                                                                                                                                                                                                                 .? .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ,,.5,,

b z.-  :

                                                                                                                                                                                                                                                                                                                 .7 L: .                                                .?                                        r,
                                                                                                                                                                                                                       , .* f                                                                                                                                  -
                                                                                                                                                                                                                                                                                                                                                                              ,        ."            '-          j     ,.'.               ,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     . :.; y a:, ? - .
                                                                                       \                                                                                                                                                                          * : :. A.; . .
                                                                                                                                                                    .    ,   .;(,,-                                                                                                                                                                                   .(' . q ,, ..,'.l'
  • i J ..
                                                                                                    ..; .':.'.. ["-:                                                                                                           .,'.f.
          - fC.,7 . - . .. ,',1                                                                                                                                                                                                                                                                                                                                ',
                                                                                ?                            . f
                                                                            . ; ,. . ;. . 4 v~:.. ;. ,.. -. .v. : ~

n.... ., :..,...',.'..'c.....,','.;. .

                                                                                                                                                                                                                              .e                              . , .Jl:,% .'.. . .#l,. ' .',[                     ~

r...

                                                                                                                                                                                                                                                                                                                                                                                                                                                         <.                                                                                                                  y,' . . *7::.                      . . ~ ' .s . ' (. - . :,
                                                                                                                                                                                                                                                                                                                .. . :: ..-..o'; .,:.,... ,;,
                  ... . . . ,. . .                                                                                                                       ~
                                                                                                                                                                                                                        -yy. r;_ .>. ; R .;.'.                                                                                                                                                                                                                                                                                                                                                       ,c

_.' t. ;. .'. : ;.;. ..  ; ; . ',

                                                                                                                                                                                                                                                  .n._.~.....u.                                                                                                                                                                                             .,...' ,

i .

                                                                                                                                                                                                                                                                                                                                                                                               $ . . q .,.< . . .. r r.                                                              y '-

g .> . ,v..

                                                                              - ,: y ;
                                                                                                                                           .;; . -;4 . .q:g ; . ., .. .,. i " :g . .._ . . ;s,:.                                                                                                                    w i:                                             q,                                                   -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ;, . ..: .. ~ " ..  , ,
                           - . . .                                                                                                                                                                                                                                               :.'.;.             y'T              ;,         . e        :;'        ..         .:l          p:.            .       .      .      <        1.         s.       :
                                                                                                                                                                                                                                                                                                                                                                                                                                                    ,.     -.          n          ,.   .,. :9, g}..>- ,' f.),. .. . . n . ;.. , . . .' ! ,: : ,, :;q .+ . 3.
                                                                                              ,<          .:       .    .     . g        .     ;    .   ::.         .;
e .. ,, ~-  : n.
                                                                                                                                                                                                                            .:.4 y . .y       i    ,r        ~#,.                                                                . .                   . ; 3 a r ;. ..                                                                                                                                                                                                         * ' r, .. .;...,: . ,.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ...,                                                    . . ., . b:.,
                        . _ ' , ;,% _. ., . ; ,. ' .': ' (' '                                                                                                                                                                                                                                                                                                                                                                     ,W.                     :                                                                                .                                    , , ':            {  . ;. l.Q,'.' L.
1. '. 2:: .J.?,,). - :.,.ii :7;;(?: ,' tyl.p .P.'7, F95.  : .;:.l,t) ' 'k . - ..i ';.. .e.'%[, q:_",/,': 5,:.[L. 1.: ::';a: ~T, Ul . .i . I 9:v. ;p.:M ' ._:
                                                                        > . . ' . . L:. , .                                            . :-                                                  :                                                                                                                                                                                                             .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ',' ' :: . O .:-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              '^

ll. . ' .&..9.. .'. c ?...i .: .;,%. ,. ' j~ y,:'. .,:.,..c.

                                                                                                                                                                                                                                 ,rl Q .. : 'ia,;. z,R ::.<;, ll::..

X. ','.:. ';?. ' : : i,. . ~. ..lc% .. .?l. . :.: .

                                                                                                                                                                                                                                                                                                                                                                                                                                                                . <. . '; .                                                                                                     , . b 3 '.;,,', :.. ., (t
                                                                                                                     '                     .; -                                                              ;        ,f        t,e .                  g.              .t               ;t ., ,                                                              . . .                                    ,y .,%                                                                                                                                                                                                         ,,
                         , . . . -* ,.,'. I.

4Y:,:

                           ;i 1'            s n '. l . ' n .:f.$ k,' .(*; 'n"'.,h.f . ',i,'. _
                                                                                                                                                                                                                                              ' r$. %,_f:  .
                                                                                                                                                                                                                                                                                             *ll, .lW."kl^*,e
                                                                                                                                                                                                                                                                                  .- . s= ,} *. : : -

bl . :' . .' . .,f,: '.'[ - -! :..ll l' ';['% -

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ; ' ,4l.y ,. (.  ,' ' . ~?f                   ,

[ ', }.?*{ : .i

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ! ..      r-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           .'. .;  'Y    '.
              ..'t. '_l                                           . ' . *.,'.,;.,.          ?e - **. h'tr                                      *     ".

I'l. .' ,!, '; illj ; .  ; _l ,

                                                                                                                                                                                                                                                                                                                                                                                  }.                     :; ;,'
  • 5 * .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ,           .', 'f , . ' ';                                  's           ,,
. l, .';f. :' ?l,Y! ', ' .:
                                                                                                                                                                                                                                                                                                        !                                                                                      . . *. ? . : '/.:,'
  • l, .:
            -l ' * '

J l * ! .

                                                                                                                                                                       'r:,,:f : ' , O .'l-:
- '-,',.-  :, * ,.. . f :; . m,.

ej ,y , :te ,: l ) ':,- , :: .' -s a*.~'..':::

                                                                                                                                     '. . . ,y                              *     ,     ':   -     '      '     _'       %,v.              .      q      "     n       .9.         ;;   ;W+;:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     .:-.                                                                                                                               _g                   :. , , ' ;.,l '
                                                                                                       -e- .,,,; , ..                                                                                                                                            ,: .n. .,,, x,6                                                                                                                                                                          .- -
                                                                                                                                                                                                                                      -t                                                                                                                                                               n ,s . *'                                                                                                                                                                                                  ~y
                                                                                                                                                                                              . -                                                                                                   ,...e ..,.t,:...,...;....                                               .   '   t    .    .

y,".;;..,,... ..- a

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        .y .           ,1..;..<..;.'5,

t% .

                       .. . ,.'.: 72::,w;c.3 . , :g                                                                                                         .. -
                                                                                                                                                                                                                            .: . . ~ 3\ , , y.. : .
                                                                                                                                                                                                                                                                                                                                                                              ;:p ..;                    < c, . . . . : ..: .? t .                                                                                                                                                                                                                                           %
                                                                                                                                                     - .. ;...A.
                                                                                                                                                                                                                                                                                                                                                                                                .ss;                                                                                                                                                                                                                                            . ~
. Li. ., . ;w:#f ,. :..l ,. . . 6 i .: _ " %;:J..e r

t.( ;(, .,

                                                                                                                                                                                                                                                                                                                                                                                                                                                       ,1.
                                                                                                                                                                                                                                                                                                                                    ..r g,
                                                                                                                                                                                                                      ..      ,.3
f. },
                                                                                                                                                                                                                                                                             .           '3,,j.,.-
                                                                                                                                                                                                                                                                                              ,                                                        ....                            4    ,
                                                                                                                                                                                                                                                                                                                                                                                                                        . .':'. .***f        , . l;,.                ;' .                                                                                                                                                                        , -

l ' . M,l.': . : , .s*;;l'; "..;.% .' d' .,f:, * ' :t.;:, ** . 6,p bl *f , . :;'~ ,..:% r,;l*i . : .: ***'.,'I,'

                                                                                                                                                                                                                                                                                                                                                                                                                                                   ,y', '6                                                                                                                                                                              ..-. '
           ,,;.s~," .,%                                                                                                       L.
, . , . , . ', ' k;n(,f',;y. ,: .,, , ',

q<>. ; . ., ., ; z ,.a..  : i;

                                                          . ; .j,..3.",,c . , .                                                                                                                                                                                           ,. .,. i, c ; g>4 g,r.j                                                                            ti. ..
                                                                                                                                                                                                                             . .'                                                       w..                                              .- .. ,+: 4.,.,.
                                                                                                                                                                                                                                                                                                                                                                             ; .                                                                    . r; ..                                                                                                                                                                        a
..c..'-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     , . ,.. ..:. ::.,e ,~.
                                                                                                                                                                                               ..,. .. y .. .,. ?. ~ , .,: T, . . :. t.;;.                                                                                ',p , ;, ;)s. < :;, g4.                                       <, :. .; ,,. 's:-    .,3.._'.,,,,,.,,_. .V-,, . . ,., ': ,..
g. _ . -
                                                                                                                                                                                                                                                                             . ; .: -,.,..,l*?,,,n.,.(_,y..,,,..,.,.,..,.n.

e: 's.,. L... .',%-. '; .Wg.r, - .'}:qi.. 's 'k. % .<. ,l :::"

                                                                                                             .,v , . '.                          ::,,i,.'.....,..:,.  .. , , '. ', .4.ip                               : ...-                                                                                                         . n: . . ' y' h'. s .. *
                                                               .l'^....                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ,,. ' . ,.<t        '. .Q.,t ,!.
,;. .: ..,.:.3, . , s< < y ..,: ..
                                                                                                                                                                                                                               ,::                                                                                                                                                                                                        ' :. _ ;. _                                                                                                                          :.,                         ;. . l                          :;tj, .s
                                                                    . . . . , . ;. , ' ,. .,.~ ':q,; ![;<; d [ . y; s y ,,.,,.,,.....;,-.,yll;Q                                                                                                                                                                                   .,:.           7,        j      q::p.e1..,.,q.                                                 f.      *     ;,      .v        ...,              ,)  ..:       ;   ,,       ;  .     ;;  .    .     .<   '.;   .     .        .%j-[..              :,9.     .       -
                                                                                                                                                                                                                                                                  ,...,.,,r.,i,...,.7,...,

g . , . . ,

r. . r . . ., , , , :y g. , ,, f;...,.,,..,.; ..

4 7.,,;

                                                                                                                                                                                                                        .- . . ~ , .
                                                                                                                                                                                                                       ...s......,                                                 . 1g
                                                                                                                                                                                                                                                                                                                                      .- , . - < ,                               *      ,s.                                        <                   ..:..,                                                                                                                  . , . , .; ..q .,. ,4                                - .,,. .,
       -; 4. . , - l.        .                                            _ , . '                                       w                         ,.                       , , y                                       .. . . . . . -                                  ,                . ,.              .
                                                                                                                                                                                                                                                                                                                                                                                         >                          .:g.            . .
               '
  • s . ;'j .. s: .[ i " ?'l, , .
                                                                                                                                              ., _ ;                      l7, ,j .g _ Q.; . ,~*d ': < li '; ~ .' ;' '.a{                                                                                                            ,p , ',9 . . . %. , <.:;*.;,l?                                       ,'.;* . .u.,4 ';)                         f . .E' -'          . .:                                                                    .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ,. ;.. y {. -; ,; v i v"'., *;,. ..*i'eg                                     . n,; '. ,-l.>                                        ,:, _     ,.3g                  .. ',. e.v .e'; ;;";1r -.;, .
                                                                                                                                                                                                                                                                 . Y' V . ..;                                             - , .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      , .',*;,     . ' , c. .:
                                                                                                                                                                                                                                                                                                                                                                                                                           ..b
                                       ..                           -                                                        :   ; l ',,,    ',*         ';
                                                                                                                                                           ** 1 '?

g' 3.,.;.

                                                                                                                                                                                                               -          1 ' . > -

l+':L '.!::' ' d '. (, '. s: . .,g'.,,?.,

                                                                                                                                                                                                                                                                                                                                                  . ';g 3 .', J wt.                                                         ..

1 : . .

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    " . . 7 _ f . .? , , '-

7, u;. ,.. '..' ,h  ;  :  ; '. ',,,4.:.'.g'.; .q44. h' ,.'u.--.

                                                   '...-                                                                              r                                    , . , ,: -                                                             .. :,- .                                                    - -                                              ,-                                                                                  i . r ..w . .
                                                     .                                                t                                                                         .
                                                                                                                                                                                                                                                                                      .9                                                                                                                                                                                                                   .
       .,...[ '.' , , ' .' .', . , {' j:, U -]. 3,j,..       . .
                                                                                                                                              ' ' . .-. 'j! [. " . . '. .J ,., , .d dl k k. . .,[. ,' . ',. j, ; ' .,)' o,' ,3 i .k. - l;[. ,!,' 3, ! [t :' ' ; /[,.-                                                                                                                                                                                                 ".                    .          %-                                                                         [ ,A,7 T ,, '.'r;'                                              j   *.'....
                                                                                                                                     . '/ ;.s ,,.s(, ,.,,J"'.                                                                                                                                                                        s.            +                                                                                                   e.                 -
                          - ."                                                                             .                                                                                                      g.                                                             i                             .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -h
                                               .                            . l:j,                                                                                                                                                                                                                                                                                              '..! e , A , ,,g. ,,
                                                                                                                                                                                                                                                                                                                                                                                                                           ' .,                                                                                                                                               f. ,. ? ?. * ,f....
                                                                                                                                                                     , , .< .... .,                 '/ l, f c' ,. ;f ".,',.
                                                                                   ^
                                                                                                                                                                                                                                                                        , ',1;, :,*gf. , , }. f,.'1
. . .'. .' .'.  :,.'.lg.
                                                                       ,...t                          ,,
                                                                                                             +

c ,,/.7 .py

                                                                                                                   ,:.- .:', .;;_ , - w                             .\; ,<,t+          * '.l
                                                                                                                                                                                                                   .r           . . , , * .n.                    . . , ~ . - .,, ,,'. . 9 ;, s
                                                                                                                                                                                                                                                                                                                      .,'. -. ' =r. ' ,[* i ' <:
                                                                                                                                                                                                                                                                                                                                                                              , ..: g*          ,.~

s

                                                                                                                                                                                                                                                                                                                                                                                                                                           ,';tp.; . '. ; r.

wh., .l'

.,i,.'.6,,  ;, < .f, p
                                                                                                                                                 .1; as-;.,e?.;',,.,...,, . . f, o.?.                                                               ;.,g,...',.',         l,. j ,z. : [ .'*.,.. . ,. y:",$'

y,

                                                                                                                                                                                                                                                                                                                                                   ......,Q,'J
                                                                                                                                                                                                                                                                                                                                                             . ^'I   , . ;5u           . . [',      ', ,    ;.
                                                                                                                                                                                                                                                                                                                                                                                                            -l ,: -     g" -A' 'e                       ,.'.'         .                                                                                                                  s ,- :; .. .*

c, ..s..

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ;Y f;;,;,? ;.. s'
                                                                                        ..e.,
                                                                                                                                               'f _lJ                  .f.;                                                                                                                                                                                                                                                                                                                                                                                                       ,,..

s --

                                     . m . - :.;                   .- ,
                                                                                                                                                                                                                                                                                                                                                                        ._. ,-*.-Q',. .%                                                                                                                                                                                                                          .).' ;            .: ;_ :', .,'
                   ',C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             :'    .
                                                                                                                                                             .'.:.;;               a s G .:;;j;; i.%.i.;::. : py;::?,:;.QN, L : ,,. ,,.                                                                                                                                                                                                                                                                                                                                                                                               ,
                      ., ; .                                                             -:,',.   , .' .. . v_                                                                                                                         . .a : ,;..                       : .. s,l:    m;.g 3,.a ::;.7. ' .: v?.,m...,.$                                                                        L 'q t - ' .. i c: : ., _.                ,Q' . ,,, -
                                                                                                                                                                                                   ; o . .c                                                                                                                                                                                                                                                                                                                                                                      '....?s
                               ..e                                 ,T_                                                  -
                                                                                                                                                  . r. : .t; :
                                                                                                                                                                                  ~. ~ .,,%.

y;. : .._n,:...

                                                                                                                                                                                                                 .; . .. < *s1:,. : -l?.,

c.'

                                                                                                                                                                                                                                                                                                                                       . , , ; . : p.                                                           ~.                              - .:',,.,                                                                                                                              -

q ..  ;. .' .-

                                                        . ; : '. .t . J * ~, ,:. i . "' n . :,                                                                               n,*.
                                                                                                                                                                                                                                                                        .?. ..-.(.P .
                                                                                                                                                                                                                                                                                        =, ' -                                                                      , .:               ~

i . 6'.

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           - V ,.,g n:r
                                                   - :V,,, ;f : .v~,'.

J .W - l ',iv.  ;. . v

                                                                                                                                                                                                                                                                                                                                   , , .. 3                                                                    . 4.                                                                                                                                                                                                            ,;.                  .-
                                                                                                                                                                                                                                                                       .t ., ;:;' &.                    ' a?a           ',::;;:re,..
     .......v.s ;                                                                                                            .3. y: ;..,J                   !.,7 :

(bM:: ;p. TA .:: -lr1%

                                                                                                                                                                                                                                                                                                                                  *..c 'j. y%.i q"Q.'.s.Q,,.         ../.;.           ,.,;'. .e
                                                                                                                                                                                                                                                                                                                                                                           ',..: ...:: .: '; :a n ;,P :.. . .. , . , .  . . . .
..: v: n,%7 ,: ,
                                                                                   %': .. :'a.L                                                                              . k; :.

b:';. ;,~.y

                                                                                                                                                                                                                                                                                                                                        ., , c . g; , .c.;,y. ;. ' ,q 1: v                                                                       ' '.: .. . <                                                                                                                                           t'.c. ,::'.    . . .' ' . , , -
       .,. . *,, G , ' . :.,,..Q                                       .c . : . 3 . .;.3, ;. .",                                    *
z. . ;-
.g, f,8; S
                                                                                                                                                                             ,**0   .  '  ..   ,, ,
                                                                                                                                                                                                              ,W.d                .   .y,     -        ,

t, g.  ;. ,

                                                                                                                                                                                                                                                                                         ?

9 . 1, .ly .,'  :. f. .:. ai i

                                                                                                                                                                                                                                                                                                                                                                                                              .a          4.       **.   .y; :. 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ,l
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ' , ,'E.J ?,*                  ,
           , ' ' . . _ . . . I'.,'." ; * ; ,1pg,,'._. . : ,,. -" .ll. .',:.                                                                                                                                                                                                                                                                                                                                                                           ' .s.',,)...                                                                                                                                                                                         .'s
                                                                                                                                                                                         , s. , ;; ,&*.                         L' ,",; 'l, y, .o.'*         ..fl?                           :,
                                                                                                                                                                                                                                                                                      ; , , e:n      :P. ', ,='. yg: .= ';; ;':h f:4 ;W                            .
                                                                                                                                                                                                                                                                                                                                                                                                ,_ )g!,;     y; - ' .j,.. .' .; ...                             . .,q.* ; , '[ i . . '                                                                                     f. .,'. ,j .:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           .. . s .r   , - '_,:.
     , , . ' , ', ; t: , , . l                                                                   ..
                                                                                                                                  ' . ,, ;4s , N, . .Q, .,. p.', r g.- K
                                                                                                                                                                        .                                                                                                                                                              o
                                                                                                                                                                                                                                                                                                                                                       . , .                                                                          e
                                                                           .": . . j zr, ..'e.
                                                                                                                                                                                                                                       <a 4 , ,4, .y
7,  ? ::'.

yf, ' 4:.w 5;t,

; ;,.- . w.
                                                                                                                                                                                                                                                                                                                                                                                                     *         ..L:                ;    ,     ;     ,,     . ~.,,

( h c * , . .',e

                                                                                                                                                                                                                                                                                                              . y; ;; .p..yt ;.                          . 3 .. ',. , ~ . ~
          . . ' .'.       , , . ;;          ":. .. ;.:          . ,_,c...;...
                                                                       . e _ f. .: 1 ):j.                                                          . .;Y.    , , ...&.1:,,.,         ll::*:,,Q y;&.%                                              : . ,;f;:.'g                    ,.:);. 9.           %:,

s3 :?. .

                                                                                                                                                                                                                                                                                                                                . . .lb,);t c. M.,y.: .:;s,g...z,                                                                                         ., .;;'\ e,:i'~. '.:; i. .                                                                                      .f..,. .; : s; " l.. ;; .; ,.L L * , ,. -l .c . . f.ya.
           . . ' . ::. , .t.                                                                                                                                                                                                                                                                                           ?.e* ':; %: '..':, &... ::. f.4 f; ,                                                                                                                                                                                                                                 .., . . . . . . ..
                .                                                                                                                                                                                                                                    4                                                                  .                .,                                                                     ..                     . <
                                                                                                        +, . x. .:,,4[, ._ . ;. g.:.                                                                             y;.D' y. . . . . . . . ., ., ~; .; b,::. .-s                                                                                                                                                                                  :v.:.. , %g m:':,q'q                                                                          W .mn .p v w;.; .4 4;:':W
                                                                                                                            ;                                                                <                                                                                               ; . t.
                  ' ? ..; :' y':l                                     :.9            ? :,lv::,.                                                                                                                                                                                                                                                                                                                                                                                                                                     .                                      'L-,,!, e,.e::;, .:.9                           m.g .. ..', Y . .

no a_gg_g ~ gg_Wg a_gg%ge_ m a g a s a_

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ..                              SkbE!                                      h,

%.a.*

a. %. .. t ?..,: , :: p:..;r;( vg;; . ,; .' ,s ,., p+. w ..:
                                      .                -:s
                                                                                %M.. , @. . . %a.

4.

                                                                                                                                                                                                                                                                                                                                  . ...W.%.n.,.,,:/
                                                                                                                                                                                                                                                                                                                                     . ~ 9: y                                                                      ,; ;
                                                                                                                                                                                                                                                                                                                                                                                                                                        ,. , . .t,,-
. e.. : , . .* e
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      .@.M g v().sp:s.p,s1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ,                          e. ::,:..,,.                                              . . . y4 . .

ti  ?

                                                           -- _                                                                                                                                                                          n _ ,ve,r . .a.
                                                                                                                                                                                                                                                                                                                                                                                   .w                                                      K,, y                                                                                    .                                  , ,ap,d.f .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      .a.y
. ,) hh ;}i k_ l i}j '
                          --___-----------z-------------;-------
                                                                         ,.Y
                                                                    -c                               '
                                                         , 7 ,%                                   i f.

Westinghouse Non-Proprietary Class 3 - , WC A P-14772

                               $/ $.            .

M 7$:~$-l$; $ ;$ 1 . t AP600: Test

Program '
                .- .          LOverview 1

7 w 1

                            - Westinghouse Energy Systems                               Wam.       -
                      % 1 c' 1 9 0 4 1 8 %; Joe E' E R        ADGCr O !;;'0 DC,v 3 A                             pop
m. .......
                           .g  -
                                      . .n .

WFSTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-14772 AP600 Test Program Overview I

                                                                            =

E. J. Piplica J. Butler Engineering October 1996 l l Approved: a / - M Brian McIntfre /' l I Westinghouse Electric Corporation Business Unit and/or Division P.O. Box 355 Pittsburgh, PA 15230-0355 C 1996 Westinghouse Electric Corporation All Rights Reserved m:\3334w.wpf;1b-1126%

I iii TABLE OF CONTENTS LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF ACRONYMS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1.0 INTRODUCTION

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         1-1
                                                                                                                                      )

2.0 TEST CLASSIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 s 2.1 BASIC RESEARCH TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 I 2.1.1 Air-Flow Path Pressure Drop Test . . . . . . . . . . . . . . . . . . . 2-1 i 2.1.2 Water Film Formation Test . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 2.1.3 PCS Bench Wind Tunnel Test . . . . . . . . . . . . . . . . . . . . . . . 2-5 l 2.2 ENGINEERING TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 l 2.2.1 Normal Residual Heat Removal (RNS) Suction Nozzle  ! Test.......................................... 2-7 2.2.2 PCS Wind Tunnel Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 2.2.3 PCS Water Distribution Tests . . . . . . . . . . . . . . . . . . . . . . 2-12 l 2.2.4 Reactor Coolant Pump (RCP) High-Inertia Rotor / Journal and Bearing Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15 { 2.2.5 RCP SG Channel Head Air-Flow Test . . . . . . . . . . . . . . . 2-18 l 2.2.6 In-Core Instrumentation Electro-Magnetic Interference (EMI) Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19 2.2.7 Reactor Vessel Air-Flow Visualization Tests . . . . . . . . . . . 2-20  ; 2.3 COMPONENT SEPARATE EFFECTS TESTS . . . . . . . . . . . . . . . . . . 2-21 2.3.1 PRHR HX Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21 2.3.2 DNB Tes ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . 2-23 2.3.3 ADS Test - Phase A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24 2.3.4 ADS Test - Phase B1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27 i 2.3.5 CMT Tes t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32 2.3.6 PCS Heated Plate Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-39 2.4 INTEGRAL SYSTEMS TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42 2.4.1 PCS Small-Scale Integral Test . . . . . . . . . . . . . . . . . . . . . . . 2-42 2.4.2 Large-Scale Heat Transfer Test . . . . . . . . . . . . . . . . . . . . . . 2-46 2.4.3 Full-Height, Full-Pressure Integral Systems Test (SPES-2) . 2-53 2.4.4 Low-Pressure,1/4-Height Integral Systems Test (OSU) . . 2-60

3.0 CONCLUSION

S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

4.0 REFERENCES

. . . . . . . . . . . . . . . . . . . . . . . . . ....................                        4-1 APPENDIX A                Program Overview Tables of Contents, References 1-45 . . . . . . . . . A-1 AP600 Test Program Oven'iew m:\3334w.1.wpf:1b.110796                                                                                          October 1996

iv LIST OF TABLES 2-1 Water Distribution Test, Phase 3 . . . . . . .... ........................ 2-14 2-2 ADS Phase B1 Test Specification ADS Performance Test Matrix ............. 2-30 2-3 Matrix Tests, CMT Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36 2-4 Test Conditions, Test No., and Average Heat Flux (Bru/hr.-ft2 ) . . . . . . . . . . . . . 2-41 2-S AP600 PCS Small-Scale Integral Test Matrix ........................... 2-43 2-6 Large-Scale, Heat Transfer Test, Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-48 2-7 Matrix Tests, Full-Pressure, Full-Height Integral Systems Test (SPES-2) . . . . . . . 2-58 , 2-8 Matrix Tests, Low-Pressure,1/4-Height, Integral Systems Test (OSU) . . . . . . . . 2-63 l I AP600 Test Program Ovemew m:\3334w-1.wpf:1b-112096 October 1996

y  : t Lis7 OF FIGURES

  • i 2-1 Radial Section Showing Air Path Boundaries Through the Test Model . . . . . . . . 2-2 2-2 ADS Phase A Test Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25 2-3 ADS Phase B1 Test Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28 2-4 CMT Test Facility Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33  ;

2-5 AP600 CMT and RCS Layout and CMT Test Tank and Steam / Water Reservoir . 2-34 2-6 Large-Scale PCS Test Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-49 t 2-7 Large-Scale PCS Test Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... 2-50 2-8 Large-Scale PCS Test Facihty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-51  : 2-9 SPES-2 Facility Primary System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-55 t y 2 OSU Test Facility Primary System Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-61 . I i i I i s 1 l l l l l AP600 Test Program Overview m:\3334w-1.wpf:1b-110/96 October 1996 1 i

vi

                                                                                                        }

l LIST OF ACRONYMS AND ABBREVIATIONS ADS automatic depressurization system i CHF critical heat flux CMT core makeup tank CNRC Canadian National Research Council CRDM control rod drive mechanism CVS chemical and volume control system j DAS data acquisition system i DEG double-ended guillotine , l DNB departure from nucleate boiling i l DOE U.S. Department of Energy * , , l DVI direct vessel injection l EMI electro-magnetic interference l EPRI Electric Power Research Institute - l FID fixed in-core detector

HX heat eyftanger ]

IFM inte-.rddiate flow mixer i IRWST in-containment refueling water storage tank LCS lower containment sump LOCA loss-of-coolant accident ' l MSLB main steamline break NRC US Nuclear Regulatory Commission l NSSS nuclear steam supply syste.m , OSU Oregon State University PCS passive containment cooling system l PORV power-operated relief valve PRHR passive residual heat removal ) 1 PWR pressurized water reactor PXS passive core cooling / safety injection system RCP reactor coolant pump RHR residual heat removal RNS normal residual heat removal system SBLOCA small-break loss-of-coolant accident l SFWS startup feedwater system  ! SG steam generator i SGTR steam generator tube rupture SI safety injection - SLB steamline break SFT static pressure tap SSAR Standard Safety Analysis Report - l SSG simple support grid l STC Science and Technology Center l AP600 Test Program Overview I m:\3334w-1.wptib.1107% October 1996 l l l l

1-1 r

1.0 INTRODUCTION

l Westinghouse Electric Corporation, in conjunction with the United States Department of Energy (DOE) and the Electric Power Research Institute (EPRI), has developed an advanced light water reactor design known as AP600. AP600 is a 1940 MWt,600 MWe two-loop pressurized water reactor (PWR) that utilizes passive safety systems. The AP600 is a new design and, as such, it must conform to the requirements of 10 CFR, Part 52, which states: .y Certification will be granted only if the performance of each safetyfeature of the design i has been demonstrated through either analysis or the appropriate test programs, l experience, or a combination thereof; interdependent effects among the safetyfeatures of l the design .have beenfound acceptable by analysis, appropriate test programs, experience or a combination thereof; and sufficient data exists on the safetyfeatures of , the design t>.nsess the analytical toolsfor safety analysis over a sufficient range of l normal operating conditions, transient conditions, and specified accident sequences, , including equilibrium conditions. The purpose of the AP600 Test Program Overview is to identify and summarize the various test programs performed in support of the AP600 design and design certification efforts with the requirements of 10 CFR 50, Part 52. This report does not strive to supplant the large body of information available on the AP600 test p ograms. Instead, this report guides the reader to where additionalinformation can be found. l I j

   -                                                                                                                          1 i

l l l AP600 Test Program Overview j m:\3334w-1.wpf:1b-1115% October 1996 l

    - . _. _ _ . _ _ _ _                                    . - . . _ . _ _ _ . _ _ - . _                             ~ . _ - _.

2-1  ; 1 ( i i ! 2.0 TEST CLASSIFICATION i t l Each test performed as part of the AP600 test program'was classified according to type. The four  ! types of tests included were: ,

  • Basic research tests
                *        ' Engineering tests
 +-
  • Component separate effects tests i i
  • Integral systems tests  !

N l These classifications were determined according to the scope and primary purpose of the individual test. This section summarizes the completed AP600 tests and discusses the important results of those tests. Sources for additional information are identified. l t 2.1 BASIC RESEARCH TFETS

i l

l Basic research tests are experimental in nature and are used to provide engineering guidance or l detailed information on specific phenomena to be studied. These tests are also used to deterrnine the I feasibility of an engineering concept before proceeding to a larger-scale test or development program. While these tests am not required by the NRC for design cenification, they support design certification

              - test and analysis activities. The basic research tests conducted are briefly described in the following sections.

2.1.1 Air-Flow Path Pressure Drop Test General Description / Purpose A one-sixth scale replica of a 14-degree section of the passive containment cooling system (PCS) l air-flow path was constructed to quantify the air-flow path resistance, determine if aerodynamic l improvements were needed, and demonstrate the effectiveness of these improvements (Figure 2-1). { l 1 The air-flow path was constructed of heavy plywood and sheet metal and used a blower at the outlet diffuser end to draw air through the model. The air-flow baffle surrounding the venical sides of !, containment (downflow inlet /upflow outlet air-flow divider wall) was modeled to reflect the corrugated ! sheets, reinforcing and support beams, and suppon posts that maintain separation between the shield wall and hold the baffle and containment. The air-flow above containment modeled the PCS water j storage tank suppon beam flanges, steel radiation shielding plates, wire grill, and chimney structure. The air-flow Reynolds numbers were maintained below the scaled Reynolds number that would correspond to the actual design, throughout testing, to ensure that the measured f(llD)s were

conservative.

f i AP600 Test Program Overview m:\3334w-1.wpf-lb-110796 October 1996 i

i _ . >_m__.u_. 2 .~. .,_,m. . . . . _ . . ....__~.~m_..~. ...-_.-.____..m.__.... _ _ _ . _ _ _ 22- ! J t n .if . 24 -

                                                                                                                                                               '4-                          i
                                                                  ' CNamey. A e 0.TSAs
                                                                                                                                              -                 w                            I l                                                                                            PT *tG                e s.r.en a n .n . i.m,+=                                                                                  22        .3 -                         I

, n.. /', . o

                                                                                                              'swwwm v
                                                                                                                                              ~
w.,
                                                                                                  ^

rmmmm 20 L

                                        #                                                                                                                                                   i As2.14 ft                                     A e 0.50f t'                                                        ~

O '

  • n osa  %
                                                                                      /                                                              I8         x O                       ..

PT *is o n .i <, I6

                                                                       - ppffuser. A a 0,96f t' c

PT *i2 *4. - L I4 o L PT 82 <> _ @ o_

                                                           "                                                                                         l2          O                           i i                                                                                                                                                                  e un weis                                                                                                                               o                           i j

IO _o

                                                          <d
                                                              /n .ii                                                                            _

T *10 ' O PT .3 i, 8

                                                                                                                                                                 +-

con +einment annueus,a e o.so et' -- O 0 i s,.,e. .'ai 6 m

                               ?l fen s            n
                                                              / " **                                                                                             +

o n .. ,, ( PT . 4 c O

                                                                                                                                                                  +

2  ? J n .T e __- 3 n .. - <, d' PT *6

                                                        -                                                                                               0                                .

i f I I I I i 12 10 8 6 4 2 0 - Radius of Section (ft) Figure 21 Radial Section Showing Air Path Boundaries Tiirough the Test Model 1 i-

t. ,

AP600 Test Program Overview m:\3334w-1.wpf:1b-110796 gg gg i l

t

2-3 i

Instmmentation consisted of a series of wall pressure taps located throughout the air-flow path of the model. Each was located in the center of the air-flow path, with care taken to maintain a smooth i- surface where penetrating the wall. The taps were connected to a pressure transducer via an electrically driven scanning valve. The voltage output of the transducers was measured and recorded

at regular intervals by a data actuation system (DAS). Flow velocities were measured using a wedge probe with both wedge side taps connected together.

] i ,, Test Matrix /Results I The initial test results showed that the tuming and inlet flow losses at the 180-degree turn into the l* [ bottom of the containment annulus and the losses in the containment annulus were the largest pressure j losses. Therefore, several modifications were made: l

  • A rounded inlet was added at the containment annulus inlet.

! = Since the turning radiuses for some streamlines at the annulus inlet would be relatively small, I the rounded inlet was constructed using perforated metal to minimize flow separation.  ; i

  • The air baffle sheet corrugations were made wedge-shaped at the inlet to lessen the tendency l

4-to contract the flow. i

        =

The suppon posts from containment to the baffle were streamlined by adding fairings. The results of this test showed that the total PCS air cooling path pressure loss coefficient was reduced by 45 percent by adding the streamlining features. This reduced loss coefficient was used in subsequent analyses of PCS performance. Pressure drop in the air-flow path was quantified for the PCS. This test for the AP600 demonstrated that the pressure coefficients in the air-flow could be estimated, verified, and improved with simple design changes.

  . Documentation Additional information on the Air-Flow Path Pressure Drop Test may be found in WCAP-13328,
        " Tests of Air-Flow Path for Cooling the AP600 Reactor Containment," (Reference 1).

AP600 Test Program Overview m:\3334w-1.wpf:1b 110796 October 1996

l l 2-4 2.1.2 Water Film Formation Test General Description / Purpose A survey of coatings that could be used on the AP600 containment was conducted to determine a coating that would provide corrosion protection and could be conducive to establishing a stable water film on the containment exterior surface. After selection of a coating candidate, a simple qualitative test was performed to demonstrate the wettability of the prototypic paint selected for use on the . containment outer surface, and to characterize general requirements for forming a water film over a I large surface area. The test apparatus consisted of a flat steel plate,8-foot long in the flow direction and 4-foot wide. The plate was pivoted w that it could simulate nearly horizontal sections of the dome as well as the vertical containment sidewalls. Test Matrix /Results . Water-flow was supplied to the plate at a single point at the top center edge of the plate and was

measured to simulate actual plant-flow conditions. Various flow spreading devices were tried both to l induce and observe uniform film behavior, and to judge spreading requirements.

i Summarized results of the test are: l

  • The selected paint readily wetted and rewetted after being dried.

a No rivulet formation was observed on this painted surface even at high point source flow rates l and vertical orientation.

      .       With a point source of water, without additional distribution, most of the flow was in a 12-inch wide path down the 8-foot length.
  • Several methods were able to create a water film across the entire width of the plate at various i flowrates. Once formed, this water film was stable, did not form into rivulets, and wetted the entire length of the plate surface. .

l l These results, combined with additional observation of film behavior in the tests described in subsections 2.2.3 and 2.3.5, were used to devise appropriate water distribution devices applicable to l the actual containment structure. Documentation Additional information on the Water Film Formation Test may be found in WCAP-13884, " Water Film Formation on AP600 Reactor Containment Surface," (Reference 2). AP600 Test Program Overview m:\3334w-1.wpf:1b-110796 October 1996

2-5 l i 2.1.3 PCS Bench Wind Tunnel Test ' General Description / Purpose  ! Bench wind tunnel tests of the PCS were conducted a, the Westinghouse Science and Technology Center (STC) using 1/100-scale models of the AP600 shield building, air inlets and outlets, annulus baffle, and containment. These tests were performed to establish the proper location of the air inlets

  . and to confirm that wind will always aid containment cooling air-flow. Two models were used: one consisted of only the shield building and diffuser dischange without inlets and internal flow; the second included the air inlets, air baffle, containment, tank support structure, and a fan to simulate convective air-flow. Pressures were measured at the inlet, building side and top, bottom of inlet annulus, top of containment at the discharge of the air baffle, and in the chimney. Air-flow was measured at the inlet to the containment baffle.

Test Matrix /Results - These tests were run with a uniform wind tunnel air velocity of 85 ft/sec. Test Reynolds numbers for the shield building and chimney were demonstrated to be in the transition region. The models used in this test were 10 inches in diameter and 18 inches in overall height. The model that included the i containment and air baffle structures was instrumented with static pressure taps (SIrrs) and an air velocity (anemometer) measurement. The instrumentation was located in a common vertical plane, and the model was rotated 360 degrees to obtain the air-pressure profile around the entire structure. l l The results from this test showed that when the air inlets are located on the top (roof) of the shield building, a " chimney" effect is created over a significant portion of top of the building (this effect became more pronounced when the wind direction was inclined upward). Air inlets located at the top of the shield building sidewalls provide overall the most positive wind-induced driving pressure versus air exit pressure. l Air-pressure profiles in the shield building across the cooling air baffle to the air exit with external wind were developed. By comparison to a "no-wind" case where all the cooling air-flow was induced I

   . by the fan, it was shown that, with the selected air inlet arrangement, the wind will always increase the containment cooling air-flow rate.

Other significant conclusions from this test were: Deep beams behind the air inlets (as provided in the PCS water storage tank stmeture in the original shield building design) significantly increased wind-induced containment air cooling j flow. l l Containment air cooling flow was insensitive to wind direction and to a 15-degree downward wind inclination. Cooling flow was increased by a 15-degree upward wind inclination. l AP600 Test Program Overview m:\3334w-1.wpf;1b-110796 October 1996

l 6 j i Documentation Additional information on the PCS Bench Wind Tunnel Test may be found in WCAP-14048, " Passive  : Containment Cooling System Bench Scale Wind Tunnel Test," (Reference 3).  ! l 1 t

                                                                                                      .J i

a .i  !

                                                                                                          )

I 2  ! W l i l 1 4 l 1 't S 1 l i i AP600 Test Program Ovenww m:\3334w-1.wpf Ib-110796 October 1996  ;

I i ~ i 2-7 l 2.2 ENGINEERING TESTS , These tests are primarily performed to obtain specific design information or to verify the design of a ' a panicular component. They are also used to provide boundary conditions for analysis of other I components or systems, or to determine initial conditions for other separate effect or integral systems tests. Generally, these tests are mechanical in nature.

)

The engineering tests performed are briefly described below. l 5 1 l

  .,     2.2.1 Normal Residual Heat Removal (RNS) Suction Nozzle Test General Description / Purpose 1

In order to optimize the AP600 hot-leg residual heat removal (RHR) suction nozzle configuration and l to eliminate the potential loss of the RHR function during mid-loop operation will not be a concem in the AP600, a series of tests were performed using an existing test facility.

The test model was made of clear plastic material to allow for visual viewing of the water behavior.

I The model consisted of a simulated reactor vessel with a 1/4.25-scale hot leg and RHR suction pipe. The Froude number was used to scale the test pump flow-rates. A void meter and a strip chart recorder were used to measure the percentage of air entrainment by volume in the pump suction piping j continuously. All test runs were recorded on video tape. Two suction nozzle orientations and two i potential vonex " breaker" arrangements were tested. For each configuration tested, the critical ,l vortexing water level was measured as a function of both Froude number and loop water level. Test Matrix /Results The following configurations were tested: A scaled 10-inch RHR pipe in the bottom of the hot leg.

    -    =

A

  • step" nozzle at the bottom of the hot leg and a 10-inch RHR pipe at bottom of the step nozzle. Different diameters (14 to 20 inches) and lengths were investigated for the step j nozzle.

These configurations were compared with previous test results obtained with an RHR suction nozzle placed at 45 degrees below the horizontal, the typical configuration on current Westinghouse pressurized water reactors (PWRs). Among the different u.e arrangements tested, the optimum arrangement was a step-nozzle. Also, as the hot-leg level wa. iher reduced, vortex formation in the hot leg stopped, as water just spilled into AP600 Test Program Overview m:\3334w-1.wpf:1b-111596 October 1996

2-8 1 l and filled the large nozzle. Air entrainment during the " spill" mode was small and would not result in unstable pump / system operation.  : Documentation Additional information on the Normal Residual Heat Removal Suction Nozzle Test may be found in 1 APWR-0452-P, "AP600 Vonex Mitigator Development Test for RCS Mid-Loop Operation," (Reference 4). . I i i l l l l 1 AP600 Test Program Oveniew m:\3334w-1.wpf:1b-110796 October 1996

2-9 2.2.2 PCS Wind Tunnel Tests General Description / Purpose PCS wind tunnel tests were conducted in boundary layer wind tunnels at the University of Westem Ontario and the Canadian National Research Council's (CNRC) wind tunnel in Ottawa, Ontario. The overall objectives of the PCS wind tunnel test were to demonstrate that wind does not adversely affect

 . natural circulation air cooling through the shield building and around the containment shell, and to determine the loads on the air baffle. The test was conducted in four phases (1,2,4A, and 4B).

Phases I and 2 were conducted with a 1/100-scale model of the AP600 shield building and surrounding site structures, including the cooling tower. The model of the shield building and surrounding stmetures was placed in the tunnel on a turntab'e l which permitted the entire assembly to be rotated to simulate the full 360 degrees of wind directions. The wind tunnel also allowed extended fetches of coarsely modeled upstream terrain to be placed in front of the building undergoing testing. The wind tunnel flow (about 75 ft/sec.) then developed boundary layer characteristics representative of those found in full scale. For this testing, a boundary layer representative of open-country conditions (ANSI C) was developed. i 1 1 Phase 1 modeled the site stmetures and external shield building only. No internal flow passages were provided. The shield building model was instmmented with pressure taps at the inlet locations and in the chimney. The purpose of Phase I was to compare the pressure coefficients developed following changes to the shield building and/or site structures with the pressure coefficients developed on the current plant design. Note that the base case is without the cooling tower. Phase 2 used the model fram Phase 1 testing, modified to include a representation of the shield building air-flow path. The shield building model was instrumented with pressure taps inside the inlet plenum and in the chimney. In addition, pressure taps were located throughout the air-flow path to provide for approximate baffle wind loads at several locations. The purpose of Phase 2 was to explore the effects of the flow path on the developed pressure coefficients and to determine wind loads on the air baffle. Phase 3 was planned to provide an estimate of the amount of effluent that would be recirculated from the chimney of the shield building to the inlets. This phase of testing was cancelled. Phase 4A was conducted at both the University of Western Ontario and the Canadian National Research Council's (CNRC's) wind tunnel in Ottawa, Ontario, on both the 1/100-scale model and a 1/30-scale model. The primary objectives of the test were to confirm that the detailed Phase 2 results l at the University of Western Ontario conservatively represented those expected at full-scale Reynolds l numbers, and to obtain better estimates of baffle loads in the presence of a cooling tower. Note that, although the cooling tower represented a blockage in the University of Westem Ontario wind tunnel that is normally unacceptable, it introduced conservative errors. AP600 Test Program Overview m:\3334w-1.wpf:1b-110796 October 1996

1 2-10 l 1 l i The first portion of Phase 4A was conducted at the University of Western Ontario using the existing 1/100-scale model of the shield building and site-surrounding structures. Additional instrumentation j was added to the model to provide useful overall comparison of Reynolds number effects between the tests at the two facilities. For comparative purposes, the model was equipped with a sealing plate at l the interior base of the chimney to prevent flow through the interior passages, when desired. Tests were also conducted with the flow path open in a uniform wind field to provide tme instantaneous baffle loads for a tornado case. l l The Phase 4A tests at CNRC were conducted on a 1/30-scale model of the shield building. The model  ; did not have complete internal passages; however, the chimney was open inside to its base, and a simple inlet manifold was included extending just below the inlets. This was connected to an

                                                                                                                 )

additional intemal volume designed to compensate for the frequency response of the volume of the blocked passages in the 1/100-scale model. Instrumentation on the model was similar to the 1/100-scale model on the exterior and inside the chimney to provide comparative results between the tunnels. A 1/100-scale model of the cooling tower was tested in the CNRC tunnel to provide a cooling tower waste-pressure distribution and wake properties for application in the Phase 4B testing. l l The objectives of the Phase 4B tests were to explore vanations m site layout and topography to determine whether or when such variations significantly affect the net pressure difference between the inlet and chimney of the AP600 and, by implication, the convected flow and net baffle loads. A l small-scale model of the site buildings and local topography was built at a scale of about 1/800. This i scale range ensured that both the reactor and cooling tower models were in the same Reynolds number range (suberitical), while remaining a size that allowed the use of straightforward modeling and instrumentation techniques. Test Matrix /Results The data from the Phase 1 base case design indicated a significant positive pressure difference between the inlets and the chimney. Changes to the inlets only marginally reduced the pressure difference. Raising and lowering the chimney had little effect. Raising and lowering the turbine building also had little effect. The presence of the natural draft cooling tower significantly increased the turbulence at the shield building, resulting in larger fluctuating differential pressures. However, in all cases, the . mean pressure difference remained positive. Removal of the deaerator from the turbine building I showed no effect. The majority of the tests for Phase 2 were conducted at one wind angle with all site structures except the cooling tower. Pressure coefficients were measured across the baffle. Mean pressures from all taps on a particular level were compared to examine the uniformity of the pressures around the baffle. The data indicated that the distributions were fairly uniform, even at the top of the annulus. The presence of the cooling tower increased the pressure fluctuations, but the mean remained about the same. AP600 Test Program Overview m:\33Mw-1.wpf:1b-110796 October 1996

, 2-11 The Phase 4A tests at CNRC verified that the tests at the University of Western Ontario were independent of Reynolds numbers, e Phase 4B site geography testing conducted at the University of Western Ontario consisted of the following cases: A reference case--consisting of the current site layout, including all site buildings and a ,

  ,          cooling tower on flat open-country terrain 6

A series of other cases--idealized sites based on Diablo Canyon and Trojan and/or Indian Point The Diablo Canyon type site addressed speedup due to an escarpment. The Trojan / Indian Point site looked at the effects of a river valley site i Documentation l Additional information on the PCS Wind Tunnel Tests may be found in the following documents: l Phase 1 Wind Tunnel Test WCAP-13294, " Phase 1 Wind Tunnel Testing for the Westinghouse AP600 Reactor," l (Reference 5) I l l Phase 2 Wind Tunnel Test ( = WCAP-13323, " Phase 2 Wind Tunnel Testing for the Westinghouse AP600 Reactor," ! (Reference 6) l Phase 4A Wind Tunnel Test

     =
   .         WCAP-14068, " Phase 4A Wind Tunnel Testing for the Westinghouse AP600 Reactor,"

(Refemnce 7) l*

  • WCAP-14169, " Phase 4A Wind Tunnel Testing for the Westinghouse AP600 Reactor, Supplemental Report," (Reference 8)

Phase 4B Wind Tunnel Test

     =       WCAP-14091, " Phase 4B Wind Tunnel Testing for the Westinghouse AP600 Reactor,"

(Reference 9) AP600 Test Program Oveniew m:\3334w-1.wpf:1b-110796 October 1996 l

l 2-12 I ! 2.2.3 PCS Water Distribution Tests l l General Description / Purpose The PCS water distribution test was conducted to provide a large-scale demonstration of the capability to distribute water on the steel containment dome outer surface and top of the containment sidewall. The overall objectives of the PCS water distribution test were to quantify the effectiveness of the water distribution over tae containment dome and top of the containment sidewall, and to provide data to . finalize the design of the AP600 containment water distribution. The results of the tests were used in the safety analysis of the AP600 containment response. The test was conducted in several phases. Phase 1 utilized a full-scale simulation of the center of the containment dome out to the 10-foot radius. The surface of the model was coated with the prototypic AP600 containment coating. The test was used to evaluate water delivery to the dome. Water distribution measuremet'ts were obtained by collecting and measuring flow off the periphery of the model. In addition, the test evaluated the use of a sudactant to promote water film formation. Phase 2 was conducted or a full-scale 1/8 sector of the containment dome at the Westinghouse Waltz Mill facility located in Madison, Pennsylvania. The Phase 2 test modeled both the AP600 wuer l supply and a distribution system arrangement. The surface of the test model incorporated the maximum allowable weld tolerances between the steel plates and was coated with the prototypic l AP600 containment coating to provide similarity to the AP600 plant design. Measurements of the 1 water distribution were obtained by collecting and measuring the flow over defined areas and by selective measurement of film thicknesses using a capacitance probe. In addition, the test evaluated the use of a surfactant to promote water film formation. Phase 3 was used to confinn the final design of the water distribution system. Measurements of the water distribution were obtained by collecting and measuring the flow over defined areas and by selective measurement of film thicknesses using a capacitance probe. The results of the Phase 3 test were compared with the Phase 2 results to verify the performance of the final water distribution system design. Test Matrix /Results Phase 1 tests were conducted over a range of water-flow rates that bracketed the anticipated flows. Tests were also conducted with and without any distribution devices and with imposed surface tilts. Phase 2 tests were also conducted both with and without prototypic spreading devices at flow rates which simulated the expected water delivery from flow initiation to the 3-day delivery rate. As with the Phase I tests, Phase 2 tests showed a more even distribution with increasing flow rate. At high flow rates, water distribution on the dome was greater than 65 percent. At low flow rates, the AP600 Test Program Overview m:\3334w-1.wpf:1b-110796 October 1996

2-13 coverage decreased to below 40 percent. The test also reaffirmed the need for a water distribution device on the containment dome. Phase 3 tests were completed and used to verify the performance of the finalized distribution device design. The matrix for Phase 3 testing is provided in Table 2-1. Documentation Additional information on the PCS Water Distribution Tests may be found in the following documents: Phase 1 - Water Distribution Test WCAP-13353, " Passive Containment Cooling System Water Distribution Phase 1 Test Data Report," (Reference 10) Phase 2 - Water Distribution Test

 ,       WCAP-13296, "PCS Water Distribution Test Phase 2 Test Data Report," (Reference 11)

Phase 3 - Water Distribution Test WCAP-13960, "PCS Water Distribution Phase 3 Test Data Report," (Refereace 12) AP600 Test Program Overview m:\3334w-1.wpf:1b-110796 October 1996

l 2-14 Table 2-1 Water Distribution Test, Phase 3 , l ! Test Test Number Description

 . Weir performance tests               1      Test of weir performance with initial water flow rate 2      Test of weir performance with 24-hour water flow rate 3      Test of weir performance with excessive water flow rate                  ,

4 Test of weir performance with 3-day water flow rate 5 Test of tilted weir performance with initial water flow rate , , 6 Test of tilted weir performance with 3-day water flow rate l l l 7 Test of weir performance with initial water flow rate and plugged drainage holes 8 Test of weir performance with initial water flow rate and plugged drainage holes 15 Test of weir performance with initial water flow rate and baffle support plates 16 Test of weir performance with 3-day water flow rate and baffle suppon plates i Film thickness tests 9 Test to measure film thickness and flow rate at initial water l flow rate 10 Test to measure film thickness and flow rate at 3-day water flow rate 11 Test to measure film thickness and flow rate at excessive water flow rate 12 Test to measure film thickness and flow rate at 24-hour water flow rate 13 Test to measure film thickness with tihed weir and initial water flow rate 14 Test to measure film thickness with tilted weir and 3-day water . flow rate AP600 Test Program CNerview m:\3334w-1.wpf;1b-110796 October 1996

2-15 2.2.4 Reactor Coolant Purnp (RCP) High-Inertia Rotor / Journal and Bearing Tests General Description / Purpose 4 An effective way to provide flow during coastdown of a pump during a loss-of-power transient is to add rotational inenia to the pump shaft at a bearing location.

  . The reference design AP600 canned motor RCP provides a rotating inertia of 5000 lb/ft'. To achieve this inenia with minimum drag loss, the impeller-end journal contains a 26-inch diameter by 14.5-inch

, long high-density (depleted uranium alloy) insert. The insert is enclosed in stainless steel for corrosion

 ~~

protection, and the enclosure is hardfaced at the bearing running surfaces for better wear resistance. , The resulting journal diameter is 28 inches, twice the diameter of any previously built water-lubricated RCP bearing. Because of the size and unique construction, manufacturing and testing of the journal and bearing assemblies was undertaken. This engineering test program experimentally confirmed , theoretical predictions of the parasitic and bearing losses arising from the "high-inertia" rotor concept applied to canned motor pumps. The test program also verified manufacturability and confirmed the adequacy of the design of both the thrust and journal bearings. One important objective of this effort was to experimentally confirm the theoretical predictions of the parasitic and bearing losses arising from the high-inertia rotor concept applied to canned motor pumps. Theoretical calculations based on empirical drag laws are not sufficiently accurate to permit a final design to be made without experimental verification. The viability of the high-inertia concept depends on limiting the losses to acceptable values. Additional important objectives included confirming the satisfactory performance of the radial and thmst bearings, and demonstrating the manufacturability and integrity of a full-scale, encapsulated depleted-uranium journal. In order to measure the losses accurately, a special friction dynamometer was designed, constructed, and put into operation. Tests of the high inertia RCP were conducted in three phases. Test Matrix /Results Phase 1 testing successfully demonstrated the design and construction of a full-scale encapsulated high-inertia joumal. Five thousand pounds of depleted-uranium,2-percent molybdtnum alloy were cast, machined, encapsulated in stainless steel, precision-clad with hard-facing (Stellite), and balanced at all speeds up to and including 2000 rpm (13 percent overspeed). The program was completely successful in demonstrating satisfactory performance under load of one of the largest water-lubricated, high-speed, pivoted-pad joumal bearings ever built. The joumal, AP600 Test Program Overnew m:\3334w-1.wpf:1b-110796 October 1996

2-16 pivoted-pad radial bearing, thrust bearing, and friction-dynamometer test rig operated smoothly with no significant vibration over the entire speed and load range.

    - Success was achieved in the accurate measurement of the parasitic drag losses of the complete bearmg assembly. These losses were higher than expected. Both radial load and thrust load were shown to                         l have only a minor affect on losses, with speed being the major variable.

l l l l The largest contributors to the increase in losses over those originally expected were believed to be the . ! balance cutouts and canopy welds on the journal. Other possible contributors to the losses were i identified for investigation in Phase 2. l The first objective in Phase 2 was to measure the losses with smooth-end covers fitted over the canopy weld and balance cutout amas. De second objective was to determine the affect on the losses by removing the flow plugs blocking the ports of a six-hole centrifugal pump in the rotor. The third objective was to determine the affect on losses by increasing the gap between the outboard end of the motor and the bumper plate. Smooth-end covers were successfully fabricated and fastened to the canopy weld and balance cutout  ; areas of the high-inertia rotor. However, the resultant loss measurements were higher than those 1 obtained previously in Phase 1. Thus, the first try at smoothing these areas was not successful. The Phase 2 tests were successful in determining the effect of removing the flow plugs and increasing the axial gap. Neither of these changes produced a large difference in the measured losses. Removal of the bumper plate reduced the losses by about 9 hp. The most significant finding was that there was no difference in measured losses between the two directions of rotation. P'iase 3 tests were performed to investigate a change in the design and location of the radial bearings in order to reduce the drag losses. The design change removed the radial bearing function from the high-inertia rotor and onto the pump shaft. The objective of the current testing was to measure the losses with the radial bearing pads removed and a cylindrical shroud installed to give an annular space with a radial gap of 0.5 in. The seven radial bearing pads were removed from the test housing and replaced by a continuous . annular space having an average radial clearance of about 0.5 inches. Dynamic analysis predicted that the high-inertia test rotor and shaft would continue to exhibit stable operation. The testing verified the

                                                                                                                         ~

prediction; the test facility remained stable throughout the full-speed range to 1761 rpm. l I Noncontacting displacement transducers were added to measure the relative radial positions of the rotor and housing. These transducers worked very well to provide information to enable the rotor to l be kept well-centered in the housing. The program was completely successful in obtaining a large i reduction in power losses with the removal of the radial bearing pads, as predicted prior to testing. AP600 Test Program Overyww m:\3334w-1.wpf:1t>110796 October 1996 l

2 Documentation

   ~ Additional information on the RCP High Inenia Rotor /Joumal and Bearing Tests may be found in the following documents:

Phase 1 - RCP Rotor Test

.           WCAP-12668, Revision 1, "AP600 High Inenia Rotor Testing Phase 1 Test Repon,"

(Reference 13) Phase 2 - RCP Rotor Test WCAP-13319, "AP600 High Inertia Rotor Testing Phase 2 Report," (Reference 14) Phase 3 - RCP Rotor Test WCAP-13758, "High Inenia Rotor Test Phase 3 Repon," (Reference 15) AP600 Test Program Ovemew m:\3334w-1.wpf-1b-110796 October 1996

l l 2-18 i 2.2.5 RCP SG Channel Head Air-Flow Test General Description / Purpose The air-flow test was performed to identify effects on pump performance due to nonuniform chvmel head flow distribution, pressure losses of the channel head nozzle da.n supports and pump suction nozzle, and possible vortices in the channel head induced by the pump impeller rotation. The air ten facility r /as constructed as an approximate 1/2-scale mockup of the outlet half of the i channel head, two pump suction nozzles, and two pump impellers and diffusers. The channel head j

                                                                                                                ~

tubesheet was constmeted from clear plastic to allow smoke flow stream patterns to be seen.  ! Test Matrix /Results 1 I The results of the test confirmed that no adverse flow condition, anomalies, or vortices in the channel head were induced by the dual impellers. l Documentation Additional information on the RCP SG Channel Head Air-Flow Test may be found in WCAP-13298, "RCP Air Model Test Report," (Reference 16). I i ( AP600 Test Program Overview m:\3334w-1.wpf-1b-110796 October 1996

2-19 2.2.6 In-Core Instrumentation Electro-Magnetic Interference (EMI) Tests General Description / Purpose , A test was performed to demonstrate tha: the system would not be susceptible to EMI from the nearby control rod drive mechanisms (CRDMs) The test was performed by mocking up instrument cables, bringing them into close proximity wig an operating CRDM, and measuring the resulting noise induced on simulated flux signals. Test Matrix /Results The tests demonstrated that induced currents in the fixed in-core detector (FID) cables were acceptably small compared to the FID signals. Documentation Additional information on the In-Core Instrumentation r? II Tests may be found in WCAP-12648, Revision 1, "AP600 In-core Instrumentation System Electromagnetic Interference Test Report," ) (Reference 17) j l l AP600 Test Program Overview m:\3334w.1.wpf:1b-1115% October 1996

2-20 2.2.7 Reactor Vessel Air-Flow Visualization Tests l General Description / Purpose t l A 1/9-scale model of the AP600 reactor vessel and the four cold legs was constructed at the University l of Tennessee. His model was used to visualize the vessel lower plenum to determine if vortices were present and, if so, the effect on them from surrounding features. The model was designed for flow l visualization in the lower plenum, so the flow region from the steam generator (SG) outlet through the . i core support plate was accurately scaled. This included representations of the cold legs, downcomer, I lower plenum, and suppon plate, including the hot-leg segments and the radial support keys in the downcomer and the vortex suppression ring in the lower plenum. Acrylic plastic was used for the cold legs, reactor vessel, and lower plenum, so flow visualization techniques could be employed in these a:eas. Flow in the model was provided by a blower that exhausted air vertically from the upper plenum region. The flow rate was controlled by a gate valve immediately upstream of the blower. l This velocity was measured in each of the four cold legs using low-pressure drop orifices located near the cold leg nozzles. Test Matrix /Results These tests confirmed that vonices were effectively eliminated by the design. ne absence of adverse effects was confirmed. Documentation Additional information on the Reactor Vessel Air-Flow Visualization Tests may be found in WCAP-13351, " Studies of Hydraulic Phenomena in the Reactor Vessel Lower Plenum Region - Test Report," (Reference 18). AP600 Test Program Overview m:\3334w-1.wpf:1b-1107% October 1996

2-21 23 COMPONENT SEPARATE EFFECTS TESTS General Description / Purpose Separate effects tests are performed to obtain data for computer code model development of specific l thermal-hydraulic phenomena anticipated to occur as a result of the use of an individual component. In these tests, the boundary conditions for the individual component are controlled to provide the range

 . of conditions expected to be experienced by that component. In addition, tests are performed to separate the phenomena of interest in order to investigate the effect of that phenomena.

The following component tests have been completed: Passive Core Cooline System (PXSh

  • Passive residual heat removal (PRHR) heat exchanger (HX) tests (subsection 2.3.1)
  • Departure from nucleate boiling (DNB) tests (subsection 2.3.2)
   +

Automatic depressurization system (ADS) test - Phase A (subsection 2.3.3) ADS test - Phase B1 (subsection 2.3.4)

  • Core makeup tank (CMT) test (subsection 2.3.5)

PCS: l

  • PCS heated plate test (subsection 2.3.6) i 1

23.1 PRHR HX Test l General Description / Purpose An experimental program was performed to characterize the thermal performance of the PRHR HX and the mixing behavior of the in-containment refueling water storage tank (IRWST). The experiment used stainless steel tubing material, tube diameter, pitch and vertical length. The tubes were located l

 . inside a scaled IRWST. Since the vertical length was preserved, the buoyant-induced flow pattems inside the tank simulated the AP600. De main scaling parameter for the experiment was the pool volume per HX tube so that the heat load characteristics, resulting tank fluid conditions, and induced
 ~

flow pattem would be similar to those in the AP600. Test Matrix /Results The PRHR HX test confinned the heat transfer characteristics of the PRHR HX and mix.ing characteristics of the IRWST. These results validated the HX size and configuration. i AP600 Test Program Overview m:\3334w-1.wpf:1b-110796 October 1996

 ._._ .__ _ . . . . . _ . . ~ .                          .    . _ . _ . _ . . _ _ _ _ - . . _             _ _.._____ _              -

l 2-22  : The test conditions covered a full range of expected flow rates, including forced-convection PRHR j cooling (RCPs running) and natural circulation flows by varying the pumped flow through tha, tubes. l The tests also examined different initial primary fluid temperatures over a range from 250' to 650*F > using hot pressurized water that flowed downward inside the tubes. The initial tank temperature was , either ambient temperature (70 F) or near boiling (212'F). 'Ihe test data were reduced to obtain the , local wall heat flux on the PRHR tubes. Comparisons of the PRHR test data with existing correlations f for free convection and boiling were made, and a design conelation for the PRHR HX was developed. P The following conclusions were drawn from the test results:  !

  • A boiling heat flux conelation, similar to recognized correlations, was developed from the l PRHR data. Using the PRHR boiling correlation, an overall heat transfer coefficient can be l calculated to determine the required surface area and evaluate the PRHR performance during
                                                                                                                                        )

l postulated accidents. l l

                  =          Mixing of the water in the simulated IRWST was very good. Localized boiling did not occur until the entire IRWST water volume was significantly heated. The test demonstrated that the               l IRWST water will not steam into the AP600 containment for about two hours.                                 f Documentation t

Additional information on the PRHR HX test may be found in WCAP-12980, Revision 1, "AP600 Passive Residual Heat Exchanger Test Final Report," (Reference 19). l l AP600 Test Program Overview m:\3334w.1.wpf lb-110796 October 1996 1 1

1 2-23 l i 2.3.2 DNB Tests General Purpose / Description While low-flow DNB tests have been performed successfully on other fuel assembly geometries, data accumulated over several years of testing on the current Westinghouse fuel designs have concentrated on the higher flow range associated with operating conditions of conventional, higher-power density l l . cores. The purpose of these tests was to determine the critical heat flux (CHF) performance of the AP600 fuel assembly design, particularly at low-flow conditions. In addition, the effect on CHF of the intermediate flow mixer (IFM) grids at low-flow conditions was measured. I The test objective was to gather CHF data on typical and thimble cell AP600 bundle geometry,  ; covering the range of fluid conditions anticipated during AP600, DNB-related ANS Condition I and II transients. The conditions cover the following ranges l Pressure: 1500 to 2400 psia l Mass velocity: 0.5 to 3.5 x 106 lbm/hr.-ft.2 ) l Inlet temperature: 380* to 620*F I Also, a typical cell test where the AP600 bundle has the IFM grids replaced by simple support grids (SSGs) was run to assess the effect of the IFMs at low-flow conditions. To perform a series of low-flow tests, two test bundles were constructed. The test bundles consisted of a small 5 by 5 array of rods, which are electrically beated and well-instrumented with thermocouples. The components for the test bundles were shipped to the test site, Columbia University, and assembled just prior to testing. Test Results/ Matrix Sufficient data were taken to provide a basis for reducing the lower limit on mass velocity by 60 to 70 percent from the current value of 0.9 by 10' lb/hr.-ft.2 (i.e., to the 3 to 4 fps range). t i The results of the DNB tests were used to extend the existing Westinghouse DNB correlation to lower , l flow rates than previously tested. Other correlations, however, did extend to lower flow rates, and the I

 ~

DNB margin has been shown to exist using these correlations over the lower range of flow rates. Since the AP600 has ample DNB margin, this test did not impact the core or fuel design. Desumentation Additional information on the DNB tests may be found in WCAP-14371, "AP600 Low Flow Critical Heat Flux Test Data Analysis," (Reference 20). i I l AP600 Test Program Overview m:\3334w-1.wpf-Ib-110796 October 1996

2-24 , i  !

             . 233 ADS Test - Phase A                                                                                                        '

General Description / Purpose t The purpose of these tests was to simulate operation of the ADS, to confirm the capacity of the ADS, and to determine the dynamic effects on the IRWST structure. The ADS Phase A test was a full-sized simulation of one of the two AP600 depressurization system - flow paths from the pressurizer that duplicated or conservatively bounded the operating conditions of the AP600 ADS valves, sparger, and quench tank. A full-sized sparger was tested. The loadings on the sparger and its support were measured, as were temperatures and pressures throughout the test arrangement. A pressurized, heated water / steam source was used to simulate the water / steam-flow from the AP600 RCS during ADS operation. The flow was piped to a full-sized sparger submerged in a circular rigid quench tank sime.lating the IRWST. Instrumentation to measure water and steam-flow rate, equipment dynamic loads, IRWST dynamic loads, and sparger/IRWST steam quenching was provided. l The ADS Phase A test arrangement is shown schematically in Figure 2-2. Phase A testing consisted of saturated steam blowdowns, at rates simulating ADS operation, through the submerged sparger. l Sparger steam quenching was demonstrated from ambient to fully saturated IRWST water  ; i temperatures. l I l AP600 Test Program Overview m:\3334w-1.wpf:1b-110796 October 1996

     - . __.               - - - .._ _ _ - .._                  _ __.        .   .   ..-=--.-.                  . .. -         . -. ._ .

2-25 I5 ll)h Y  ;

                                                                                                 $   Il
                                                                                                      \_

blw ' a es ( \ / ._ El I

  ,                                                    3      3                                      k                                   l I

f f 1 'f h l ( i I il I f( . 2hj l lj 3' I l l g% '

                                         !I v          I                 3 I     35 f'

liig i 1 1 Itllll 6e t r N h l ,1 jE

                                    .J                                                                                                   l 4         m                ] = = ,l 6

is Figure 2 2 ADS Phase A Test Facility AP600 Test Program Overview m:\3334w-1.wpf;1b-1108% October 1996

2-26 j Test Matrix /Results i Phase A v . , conducted to provide both the maximum possible blowdown rate, when all three stages of the AP600 ADS were actuated, and to simulate the minimum blowdown rate (end of blowdown) l when the pressurizer was essentially depressurized. For these tests, all three piping connections i between the test drum and the discharge line were open. These tests were used to select the quench  ; tank water level to be used in all subsequent ADS blowdowns. , i Tests were performed to simulate the actuation of the first stage of ADS and blowdown to 500 psig. . One test simulated the inadvertent opening of a second- or third-stage ADS valve when the reactor is I at operating pressure. Additional tests provided the maximum blowdown rate that will occur in the AP600 when the first- and second-stage ADS valves am open. Results of the Phase A tests were used to verify the design of the ADS sparger and obtain sufficient information to perform preliminary design of the IRWST. Tests performed with a fully saturated quench tank water showed that loads on the IRWST decrease as water temperature increases. Documentation Additional information on the ADS - Phase A tests may be found in the following documents: f Facility Description Report WCAP-14149, "VAPORE Facility Description Report, AP600 Automatic Depressurization System, Phase A Test," (Reference 21)  ; t Final Data Report I WCAP-13891, "AP600 Automatic Depressurization System Phase A Test Data Report," (Reference 22). t i l e i AP600 Test Program Overview m:\3334w-1.wpfilb-110796 October 1996

2-27 2.3.4 ADS Test - Phase B1 General Description / Purpose l The AP600 uses an ADS to depressurize the RCS so that long-term gravity injection is initiated and maintained. The pottion of the AP600 ADS tested consisted of two piping flow paths from the top of the pressurizer to a quenching device or sparger submerged in a water-filled portion of the reactor containment structure. Each of these two piping flow paths are made up of a 12-inch pipe from the i pressurizer, which connected to three parallel paths (4 , 8 , and 8-inches). These three parallel paths each have one control valve and one isolation valve, and connect to a single 14-inch discharge line to ) '~ the submerged sparger. The closed control valves are slowly opened sequentially, with the isolation valve open, to provide a staged, controlled depressurization of the RCS from operating conditions of 2250 psia /650*F to saturated conditions at about 25 psia. This staged valve opening limits the maximum mass flow rate through the sparger and also limits the loads imposed on the quench tank which is always maintained at containment pressure. l The ADS Phase Bl test was a full-sized simulation of one of the two AP600 depressurization system l flow paths from the pressurizer that duplicated the operating corditions of the AP600 ADS valves, l sparger, and quench tank. A full-sized ADS valve piping package was tested. The loadings on the sparger and its support were measured, as were temperatures and pressures throughout the test l l arrangement. j Phase B1 testing was perfo.med at ENEA's VAPORE test facility in Casaccia, Italy. The test collected sufficient thermal-hydraulic performance data to support the development and verification of analytical models of the ADS used in safety analyses of events for which the ADS is actuated. In l addition,it provided the design requirements of the ADS components and obtained sufficient information to establish component design specifications. Phase Bl testing included the addition of piping to permit the blowdown of either saturated steam or ! saturated water from the preuurizer, and installation of piping and valves representative of the actual ADS. The ADS Phase B1 test arrang'ement is shown schematically in Figure 2-3. i* l ADS Phase Bl test data were used to assess the critical and subsonic flow models for the valves in the ADS, as well as the sparger, when the flow is two-phase. ADS Phase Bl tests supported proper ,' specification of the functional requirements for the valves. AP600 Test Program CNerview m:\3334w-1.wpf:1b-1115% October 1996

_- ~ _ . - - 2-28 I i g ADS Loop *

                                                                        -s 8' LT2                   h y                                                                             EAD3
       #                                                                 Spool pieces for future N                                                       {]         installation of valves       ,,

Q - , , f (oritces also fitted in % r some tests) ,, u --

                                                                             </

( " 4.- E Ha tai :t Ehr Saturated .. g rchangeam [ Revision of

                            " Piece           52                                                         11      11    the Existin New Steam 12                                                                           **-

i#- \ T;< Collector _______________  :

   . Saturated                                 --                                                  s
     - Water                                  1~"

hh A Steam to j 4" 4' Js 8" 8 8 TAosLoop - ( ( 3' / New 12" Saturated Water une

                                                                                                      //
                                                                                                      /

j /

                                                                                                                             /
                              /                   twaterto ADS Loop                                New a      /         / %          /
                                'r ,>                                                       gron',*r Z            .

f r , s,

              ~                   ~

7

                                                                                                      $w/h/wb          516898.12 Figure 2 3                                                                                                                      I ADS Phase B1 Test Facility AP600 Test Program Overview m:\3334w.1.wpf:1b-1108%                                                                                                     October 1996 l

l l

__ _ _ . _ . ~ . . _ . _ _ . _ _ _ . . _ _ . . _ _ . _ _ . . _ _ _ _ _ _ . . . _ . _ . _ _ _ _ _ . _ t 2-29 , i I Test Matrix /Results i i The test matrix is shown in Table 2-2. Tests were run with saturated steam and water, and two-phase i fluid at various quantities. The key re, ilts and observations for ADS Phase B1 are: The sparger operated properly over the full range of ADS flow rates,iluid qualities, and quench tank temperatures. ADS quench tank loads resulting from sparger-induced pressure pulses during Phase A are

. conservative.  !

Loads observed for steam and steam / water blowdowns are less than Phase A. l Pressure drops and flow nodes for water through the piping and valves were obtained, and are , similar to those predicted for the AP600. No low-flow slugging was exhibited by the sparger. '

  • Blowdowns into a hot (212*F) quench tank produced small loads.

Documentation l l Additional information on the ADS - Phase B1 tests may be found in the following documents: i Facility Descriotion Report i e WCAP-14303, " Facility Description Report, AP600 Automatic Depressurization System Phase B1 Tests," (Reference 23) l l Final Data Report l l l-

  • WCAP-14324 "AP600 Design Certification, ADS Phase B1 Tests, Final Data Report,"

(Reference 24) Iest Analysis Report

  • WCAP-14305, "AP600 Test Program, ADS Phase B1 Test Analysis Report," (Reference 25)

I AP600 Test Program Overview m:\3334w-1.wpf:1b-110796 October 1996

2-30 l Table 2 2 ADS Phase B1 Test Specification ADS Performance Test Matrix

                                                                                                            )

l Facility Configuration Test Run ADS Simulation Supply Tank l No. Pressure Saturated water blowdowns from bottom 310 Stages 1,2, and 3 open High I of supply tank, no orifices in spool pieces, cold quench tank water 311 Stages 1,2, and 3 open Intermediate . 312 Stages 1,2, and 3 open Low

                      "                                                                                     1 330        Stages 1 and 2 open       High               ,  i 331        Stages 1 and 2 open       Intermediate 340        Stage 2 open              High (inadvertent opening)

Saturated water blowdowns from bottom 250 Stage 2 open (inadvertent Intermediate of supply tank, orifices installed in spool opening) . pieces i 210 Stage 1 open High 211 Stage 1 open High 212 Stage 1 open High 220 Stages 1 and 2 open Intermediate 221 Stages 1 and 2 open High 230 Stages 1 and 3 open Intermediate 231 Stages I and 3 open High 240 Stages 1,2, and 3 open Intennediate Saturated water blowdowns from bottom 241 Stages 1,2, and 3 open Low of supply tank, orifices installed in spool pieces 242 Stages 1,2, and 3 open Low Saturated steam blowdowns from top of 110 Stage 1 open High supply tank, orifices installed in spool , pieces 120 Stages 1 and 2 open High

                      "                                                                                   ~

130 Stages 1 and 3 open Intermediate 140 Stages 1,2, and 3 open High AP600 Test Program Overnew m:\3334w-1.wpf:1b-110796 October 1996

2-31 l 1 Table 2 2 ADS Phase B1 Test Specification ADS Performance Test Matrix (Cont.) Facility Configuration Test Run ADS Simulation Supply Tank No. Pressure Saturated water blowdowns from bottom 320 Stages 1,2, and 3 open High of supply tank, no orifices in spool pieces, quench tank water at 212'F (100'C) 321 Stages 1,2, and 3 open Intermediate 322 Stages 1,2, and 3 open Low l 330 Stages 1 and 2 open High 351 Stages 1 and 2 open Intermediate l l l AP600 Test Program Ch'emew m:\3334w-1.wpf:1b-112096 October 1996

2-32 2.3.5 CMT Test General Description / Purpose The AP600 passive safety injection system (PXS) includes two CMTs that are completely full of cold borated water and located above the cold legs of the AP600 RCS. These tanks have a normally open isolation valve on the cold-leg balance line and a normally closed isolation valve on the discharge line. The tanks will drain into the reactor vessel via the discharge line from the bottom of each CMT to the - reactor vessel. Water level instrumentation in the CMTs and timers are used to open the ADS valves from the pressurizer. This depressurization system reduces RCS pressure to near atmospheric pmssure as the CMTs continue to drain. The purpose of this test was to simulate CMT operation over a wide range of prototypic pressures and temperatures, to simulate CMT operability, to simulate the operability of a CMT level instrument, and j to obtain data to suppon the development and verification of computer models to be used in safety analyses and licensing of the AP600 design. The CMT test facility consisted of a CMT tank, a steam / water reservoir, instmmentation, and associated steam supply inlet and water discharge piping and valves (Figure 2-4). A layout comparison between the AP600 CMT and RCS, and the CMT test tank and steam / water reservoir is provided in Figure 2-5. The CMT used in the test was a carbon steel pressure vessel about 2 feet in diameter and 10 feet in overall length. The tank was mounted venically and elevated so that the j height between the bottom of the tank and the steam / water reservoir was equivalent to the initial head l for gravity draining available in the plant. The CMT steam supply line from the steam water reservoir to the CMT simulated the cold leg to the CMT balance line. During testing, only one of the two steamlines were open. Steamline I had higher resistance than steamline 2 and connected to the top of the steam / water reservoir. Steamline 2 projected into the steam water reservoir and was heat-traced to better simulate the cold-leg balance line. The steam water reservoir was used to provide a source of steam to the CMT and to collect the water discharged from the CMT. Thus, it acted as a simulated RCS for the test facility. l

      'Ihe CMT test was designed to accommodate a device used to reduce steam jetting directly into the                             -     - !

tank by mean-pointing a triple-flange connection on the inlet piping. A steam distributor (consisting of a shon pipe with a series of holes in the cylindrical section of the pipe and a capped end, attached , to a flange) was inserted into the inlet piping to test the effectiveness of the device during the hot preoperational tests. I AP600 Test Program Ovemew m:\3334w-1.wpf:1b-1108% October 1996

2-33 l s i

..g. g...g..g i g g 1 3

1 3

. l1 #1lli]1 " ,

!. Il1111111t. s l ' g**xligr:W) 4 g .......g) ....y g g

                                            ............g..............
                                                                                   ~

8 /,e g$' l 4 i l ls , j l l l 4 i 9 ( i aj;j G on a l l I !........1> 1 P ! O 4> + 0 5o . ... ... ..)..., X

                                 . i t i .i i i
                                   .br.EP.:.?g i i4
l. E '*

4

                                                                            +   '

1 l l Figure 2-4, CMT Test Facility Schematic l AP600 Test Program Overview m:\3334w-1.wpf.lb-110796 October 1996

2-34 l I b j j lI l 8 I e ! ~ > - u E U r i

                                                 .[

4 _ h m f.~\ L i T l 1 '

                                                                                  /                                                                                                                        l s

j q r -- - 1

                                                                                                  ~

! t- . g _ l m L. . ) 8 g = - I ! 35 1 m I ]I 5 l ,.,_ n N II l g _ _ _ e, ij n _ _ _ _ _ j ll f - j i I i j Figure 2-5 AP600 CMT and RCS Layout and CMT Test Tank and Steam / Water Reservoir e i 1 AP600 Test Program Ch eniew I m:\3334w-1.wpf-Ib-110796 October 1996 i

l 2-35 The performance of an instrument that may have the characteristics for the desired plant-level instrumentation was obtained for this CMT test program. To test the operation and performance of the CMT level instrumentation that may be used in the actual piant, four pairs of resistance temperature detectors, each pair consisting of one heated resistance temperature detector and one unheated, were located at different elevations on their test tank. The output signals from the four resistance temperature detector pairs were recorded during each mctrix test. The data was analyzed and the performance of the instrument characterized and evalur4ed at the conclusion of the test program to determine overall performance and establish design cdteria and specifications for the actual plant-level instrumentation. - The CMT test level measurement system data was analyzed to assess the behavior of the CMT differential pressure cells and the response of the CMT level device to a wide range of thermodynamic conditions. Test Matrix /Results Shakedown testing of the facility was first completed. This testing was used to establish system volumes, line resistances, valve positions required to establish specific steam injection, and CMT draindown rates. The matrix tests are provided in Table 2-3. The objectives of the CMT matrix tests were:

  • To simulate CMT conditions and measure the rate of steam condensation on the CMT walls and water surface versus steam pressure and water-drain rate
  .-      To obtain detailed measurements of CMT through-wall temperature profiles, CMT liquid inventory temperature profiles, and condensate drain rates versus steam pressure
  =        To simulate stable behavior of the CMT water level as the cold water drains and is replaced        I by steam over a wide range of drain rates and piping resistances binding the prototypic design     l i
  • To evaluate the operation of CMT level instrumentation used to actuate the ADS at typical CMT conditions i j

AP600 Test Program Overview m:\3334w-1.wpf:1b-110796 October 1996

l l 1 l 2-36 i i a Table 2-3 Matrix Tests, CMT Test

                                                                   "                                                ]

l Steam Supply Test Test Type CMT Drain Rate Pressure (s) Comments 101 CMT wall CMT drain rate 10 CMT initially contains condensation with and based on steam no water and is 102 without 135 condensation rate evacuated 103 n nc ndensable gases and drin capability 685 - 104 1085 105 2235 - 106 10 CMT pressure with air (or N2) to .236,1.13, and 107 2.13 psia, respectively 108 l 301 CMT draindown at 6 10 Low resistance steam

                            '                                                      S PPl y line 2 utilized; 302                                           6                    135       drain rate controlled by 303                                           6                   1085       discharge line resistance 304                                           11                   10 305                                           11                  135 306                                           11                   1085 307                                           16                  10 308                                            16                  135 309                                            16                  1085 310                                           max                 10 311                                           max                 135 312                                           max                 1085 317                                           6                   45                                       ,

318 11 45 319 16 45 . 320 6 685 321 11 685 322 16 685 323 max 685 AP600 Test Program Ovemew m:\3334w-1.wpf:1b-110796 October 1996

2-37 Table 2-3 Matrix Tests, CMT Test (Cont.) Steam Supply Test Test Type CMT Drain Rate Pressure (s) Comments 401 CMT draindown 6/16 gpm 1085, depressuriza- Steam line 2 used during depressurization tion to 20

   . 403                               Rate controlled by    2235, depressuriza-  Resistance set for         j supply line 1         tion to 20           6/16 gpm drain rate        l 404 resistance 501       Natural circulation     Discharge line        1085, depressuriza-  Natural circulation        .

followed by draindown resistance set for tion to 20 until 1/5 of CMT I 502 and depressurization 6/16 gpm drain rate heated ' l 1 503 Natural circulation I until 1/2 of CMT 504 heated ' l 505 Natural circulation 1 until CMT fully 506 heated 507 Drain rate to be 1835, depressuriza- 1/5 CMT heated chosen based on tion to 20 508 results of tests 1/2 CMT heated 509 501-506 CMT fully heated . I AP600 Test Program Overview m:\3334w-1.wpf:1b-112096 October 1996

 , _ -- . . - _        ,_         __ _         ~ . . _ .     .-._ _ _. _ __. _ _ .__ ._ . __ . . _                                       . _ _ _

i 2-38  ! 1 During CMT hot preoperational testing, the model CMT diffuser was plastically deformed. Through examination and analysis of this CMT diffuser, Westinghouse determined the root cause. During < preoperational testing of high-pressure steam injecting into an empty tank, the diffusers were subjected l to a high differential pressure in conjection with high temperatures, beyond the system design basis. The diffuser suffered fatigue failure, which is not expected within an AP600 plant operating life. # Other diffusers used during more prototypic tests performed without incident. The key results and observations are: -

  • The test tank operated over the full range of pressures, temperatures, and flow rates
  • Sufficient data were obtained for model development and code validation for recirculation and draindown
  • The steam diffuser reduced condensation and limited mixing to about 12 inches below the diffuser, without waterhammer ,
  • Hydraulics of the test were well-predicted by using simple mass and energy equations  !

Documentation , Additional information on the CMT Test may be found in the following documents:  ! Scaline Report

  • WCAP-13%3, Revision 1, " Scaling Logic for the Core Makeup Tank Test," (Reference 26)

Facility Description Report -

  • WCAP-14132, "AP600 CMT Program - Facility Description Report," (Reference 27)

Final Data Report -

  • WCAP-14217, " Core Makeup Tank Test Data Report," (Reference 28) ,

I Test Analysis Report

  • WCAP-14215 " Core Makeup Tank Test Analysis Report," (Reference 29)  ;

l

  • WCAP-14442, "AP600 Core Makeup Tank Level Instrument Test Data and Evaluation  ;

Report," (Reference 30) l AP600 Test Program Overview m:\3334w-1.wpf:1b-110796 October 1996

                                                                                                                     ,-.y          -y--v   w       .m   -

2-39 2.3.6 PCS Heated Plate Test General Description / Purpose In the PCS concept, heat transfer from the outside of the vessel was performed by forced convection heat transfer from the steel containment surface to air (including some radiation to the divider wall) and evaporation of a water film on the wetted outside area of the containment surface above the operating deck elevation. In order to obtain data for the heat and mass transfer processes, and to observe film hydrodynamics including possible formation of dry patches due to surface tension instabilities, experiments were performed on a thick steel plate heated on one side and with an evaporating water film and ducted air-flow on the other side. T experimental apparatus consisted of a 6-foot long,2-foot wide, and 1-inch thick steel plate coated with the same coating planned for use on the containment vessel. An air duct was formed over the plate by side walls and a Plexiglas

  • cover used for flow visualization. A four-speed blower ducted through a set of turning vanes provided air-flow velocities which simulated the full range of both natural draft in the containment cooling duct and flows induced by a high wind. Water preheated in an automatically controlled water heater, was supplied at a metered rate to a simple distributor located at the upper end of the plate.

To simulate the heating of the containment wall that would occur in an actual plant following a postulated accident. the test plate was heated from the back side using a high temperature heat transfer fluid, UCON*500. The heat transfer fluid flowed through copper heating tubes that were soldered into grooves in the back of the plate. The heat transfer fluid was electrically heated in a drum with an automatic temperature control and pumped through a flow meter to the tube inlet manifold. All hot parts, except the front of the plate, were insulated to minimize heat loss. l i The plate could be placed in a vertical position to simulate the containment side wall or inclined somewhat from horizontal to simulate the different slopes on the elliptic containment dome. Plate temperatures and heat fluxes were measured at six locations by pairs of thermocouples. In addition, air inlet and outlet temperatures were measured together with duct velocity. An electronic watt meter registered total heater power. Water outlet flow and temperature were also measured. Temperature and power data were recorded on a DAS. AP600 Test Program Overview m:\3334w-2.wpf:1b-110796 October 1996

2-40 -i Test Matrix /Results Experiments were performed'with no water on the plate and for a range of water film flow rates  : simulating the high water-flow on the upper part of containment down to the lower part of j containment where the water was nearly completely evaporated at the high heat flux.- A series of tests to isolate and observe the effect of air velocity at one representative film-flow were completed. Tests at high air velocities were performed to examine the high wall shear effects for a number of film flow rates. A limited set of tests was performed at 15-degree inclination to horizontal to provide data for -- the thicker films that flow on the dome. A summary of test conditions is provided in Table 2-4. , I The evaporation rate of water from the heated plate was shown to agree with or exceed those expected and confirmed the overall heat transfer capability of the PCS concept. The following conclusions were drawn from the test results:

  • Water film evaporation and resultant heat removal agreed with or exceeded expected values. j
  • Heat transfer from the water film to air was performed by forced convection plus mixing with  ;

hotter evaporated water vapor.

  • Radiation to the air baffle wall and subsequent heat transfer to the cooling air occurred and accounted for some of the heat transfer.
  • Heat transfer from containment to the air with no water film agreed very well with expected f values.
  • Water film flowing on the coated steel surface was wavy laminar flow not susceptible to  !

instabilities that lead to dry patch formation at any heat flux density or plate surface ternperature encountered. i

  • A water film was easily formed on the coated steel surface even in the vertical orientation.

Once formed, the film showed no instability or tendency to form rivulets. This was true at all  : tested water flow rates. -

  • The water film was not adversely affected by the countercurrent cooling air-flow up to the ,

maximum air velocity of the test (e.g., no water-film stripping occuned). Documentation Additional infonnation on the PCS Heated Plate Test may be found in WCAP-12665, " Test of Heat l Transfer and Water Film Evaporation on a Heated Plate Simulating Cooling of the AP600 Reactor Containment " (Reference 31) [

               ' AP600 Test Program Overview m:\3334w-2.wpf:1b.110796                                                                                October 1996 i

e_ -

                       ._~                                                              ._        __        _ _ _                .

2-41 Table 2-4 Test Conditions, Test No., and Average Heat Flux (Btu /hr.-ft.8) Water Film Air Velocity (ft/sec.) Flow Rate Ibm /hr/ft- of nominal 5.9 12.4 18.8 23.7 28.5 33.2 38.7 l l Dry Plate Tests, Vertical Except 15 Degrees from Horizontal 0 1 2 4 5 6 7 l 680 860 930 1040 1100 1210 j 3* 420 Water Film (Except Partially Dry) on Vertical Plate 15 8 9 3120 3270 60 10 11 , 3490 3640 12 2120 i 110 13 14 15 18 19 20 21 1 3340 3610 3540 3570 3670 3670 3650 16 3580 17 3490 170 22 23 3520 3570 24 , 2030 l l 310 25 26 j 3560 3530 , Water Film on Plate 15 Degrees from Horizontal 60 27  ! 3500 l 2800 1960 110 29 30 3580 3590 31 2020 310 32 3510 AP600 Test Program Overview m:\3334w-2.wpf:1b-110796 October 1996

I 2-42 l l 2.4 INTEGRAL SYSTEMS TESTS i General Description / Purpose These tests examined the performance of a complete system through simulation of all interconnecting systems, subsystems, components, and piping to provide thermal-hydraulic data for computer code validation. These data verified that the interaction of the individual components used to model the l overall system was correct and that the computer code models predicted the appropriate system - response. PCS: I

  • Small-scale integral test (subsection 2.4.1)
  • Large-scale heat transfer test (subsection 2.4.2)

PXS:

  • Full-height, full-pressure integral systems test (subsection 2.43)
  • Low-pressure,1/4-height integral systems test (subsection 2.4.4)

I l 2.4.1 PCS Small-Scale Integral Test General Description / Purpose This test simulated PCS heat transfer processes occurring on both the inside and outside containment surfaces. The test apparatus included a 3-foot diameter,24-foot high steel pressure vessel internally heated by steam supplied at various pressures. A transparent wall around the pressure vessel was used to create a 15-in. wide annulus for fan-driven or natural circulation air-flow. In order to simulate a full range of possible air temperatures and humidities, the incoming air was heated by a steam heating coil and humidified with steam. Instrumentation to measure internal steam condensing rates, external water evaporation rates, containment wall inner and outer temperatures, water film and air l l temperatures, humidities, and air velocities was provided. Speed control of the draft fan at the diffuser section permitted simulation of a full range of air-flow conditions in the air annulus. Test Matrix /Results The tests were conducted with varying steam supply flow rates, water film flow rates, inlet air temperatures, and inlet air humidities (Table 2-5). Instmmentation was provided to measure internal steam condensation rates, extemal water evaporation rates, containment wall inner and outer temperatures, water film temperatures, air temperatures, humidities, and air velocities. AP600 Test Program Overview m:\3334w-2.wpf:1b-110796 October 1996 i l

2-43 Table 2-5 AP600 PCS Small Scale Integral Test Matrix Cooling Water Steam / Air Air Film Cooling Test Steam Pressure Velocity Flow Air Temp Air Relative l No. Outlet (psig) (ft/sec.) (gpm) ('F) Humidity 1 Uniform 10 8 0 Ambient Ambient 2 Uniform 20 8 0 Ambient Ambient j i 3 Uniform 30 16 0 Ambient Ambient , [

 .                                                                                                    l l           4         Uniform              40           16           0  Ambient     Ambient 5         Uniform              10           16          2.5      130    Ambient 6         Uniform              30           16          2.5      130    Ambient 7         Uniform              40           16          2.5      130    Ambient 8         Uniform              10           16          2.5      130    95'F wet bulb 9         Uniforr .            20           16          2.5      130    95'F wet bulb 10         Uniform              30           16          2.5      130    95'F wet bulb 11         Uniform              40           16          2.5      130    95'F wet bulb 12         Uniform              10            8          2.5      130    Ambient 13         Uniform              20            8          2.5      130    Ambient
          '4         Uniform              20            8          2.5      130    95'F wet bulb 15         Uniform              10            8          1.0      130    Ambient 16         Uniform              20            8          1.0      130    Ambient 17         Uniform              30           16          4.0      130    Ambient
 ,        18         Uniform              40           16          4.0      130    Ambient 19         Uniform              10            8          1.0      130    95'F wet bulb 20         Uniform              40           16          4.0      130    95'F wet bulb 21         Uniform              20           16          2.5      130    Ambient l

i AP600 Test Program Overview m:\33Mw-2.wpf:1b-110796 October 1996

2-44 1 1 Table 2-5 AP600 PCS Small Scale Integral Test Matrix (Cont.) I i Cooling Water Steam / Air Air Film Coolmg  ; Test Steam Pressure Velocity Flow Air Temp Air Relative No. Outlet (psig) (ft/sec.) (gpm) ('F) Humidity , l 22 Uniform 80 20 0 Ambient Ambient 23 Bottom inlet 40 16 0 Ambient Ambient 24 Bottom inlet 10 8 1.0 130 Ambient 25 Bottom inlet 10 8 1.0 130 90'F wet bulb 26 Bottom inlet 40 16 4.0 130 Ambient 27 Bottom inlet 20 16 2.5 130 Ambient I 28 Bottom inlet 30 16 4.0 130 Ambient 29 High inlet 10 8 1.0 130 Ambient  ; i 30 High inlet 10 8 1.0 130 95'F wet bulb 31 High inlet 20 16 4.0 130 Ambient 32 High inlet 20 16 4.0 130 95'F wet bulb 33 High water 10 8 1.0 130 Ambient 34 High water 10 8 1.0 130 95'F wet bulb 35 High water 40 16 4.0 130 Ambient 36 High water 20 16 2.5 130 Ambient l J AP600 Test Program Oven iew m:\3334w-2.wpf 1b-112096 October 1996

2-45

The following conclusions and observations were drawn from this test

i a The heat removal capability from the external surface of the test vessel for both wetted and dry conditions agreed well with previous heated plate experiments and analytic predictions and I supported the AP600 containment analysis. ,

          .        The overall heat removal capability from the test vessel with a wetted surface and well-mixed                   l air and steam inside agreed well with analytical predictions.                                                   !

The local heat removal rate at the top of the vessel where " cool" water was first applied was significantly higher than the vessel average heat removal rate.

           =       The water film behavior was stable and predictable, even at evaporating heat fluxes three times
higher than likely to be encountered in actual applicttion.

4 a' A uniform water film was easily formed on the coated steel containment surface using simple weirs. The water film on the vertical side walls of the coated steel surface of the vessel had no tendency to become less uniform or form rivulets, so that no water film redistribution was required on the vertical walls. l

         - Docunwntation                                                                                                            l
                                                                                                                                   ).

Additional information on the PCS Small-Scale Integral Test may be found in WCAP-14134, " Final Test Report for Integral Small-Scale Tests," (Reference 32) q l 4 1 i

                                                                                                                                    )

i ) 1 I 4  ! i 3~ i AP600 Test Program Overview m:\3334w-2.wpf:1b-110796 October 1996 i

2-46 l ! 2.4.2 Large-Scale Heat Transfer Test - General Description / Purpose , i He large-scale PCS test consisted of a 1/8-scale model of the AP600 containment in which both intemal steam / air noncondensible gas conditions and external PCS operation were simulated in order to l demonstrate the AP600 PCS heat transfer capability. The purpose of this test was to examine, on a large scale, the natural convection and steam condensation on the interior of the AP600 containment - ! combined with exterior water film evaporation, air cooling heat removal, and water film behavior. The PCS heat transfer test results provided data for the verification of the computer model used to predict the containment response. Also, these test results combined with the PCS smaller-scale integral test provided insight on the ability of the computer model to predict results at two different test scales.  ! i The test facility was located at the Westinghouse Science and Technology Center in Churchill, Pennsylvania. The facility consisted of a 20-foot high by 15-foot diameter pressure vessel with a .

  • 7/8-inch wall thickness (Figures 2-6 through 2-8) and the supporting hardware. The larger test vessel made it possible to study in-vessel phenomena such as noncondensable mixing, steam release jetting, condensation, and flow pattems inside containment. The vessel contained air or nitrogen when cold i and was supplied with steam for testing. A transparent acrylic cylinder installed around the vessel formed the air-cooling annulus. Air-flow up (and/or water-flow down) the annulus outside the vessel cooled the vessel surface, resulting in condensation of the steam inside the vessel. Superheated steam was throttled to a variable, bts controlled, pressure and supplied to the test vessel.

To establish the total heat transfer from the test vessel, measurements were recorded for steam inlet . pressure, temperature, and condensate flow and temperature from the vessel. Thermocouples located on both the inner and outer surfaces of the vessel indicated the temperature distribution over the height

                                                                                                                       )

and circumference of the vessel. 'Ihermocouples placed throughout the inside of the vessel on a 1 movable rake provided a measurement of the vessel bulk steam temperature as a function of position. An axial fan at the top of the annular shell tested the apparatus at higher air velocities than can be achieved during purely natural convection. The temperature of the cooling air was measured at the - entrance of the annular region and on exit of the annulus in the chimney region prior to the fan. The cooling-air velocity was measured in the cooling-air annulus using a hot wire anemometer. De test facility provided the following critical data for the interpretation of the test performance:

  • Containment wall heat flux measurements to provide local heat transfer rates
  • Air baffle wall temperatures f
  • Vessel intemal temperatures AP600 Test Program CNerview mA3334w.2.wpf lb-110796 October 1996 i

2-47

  • Air / helium concentration measurements Instmmentation to measure (to support a heat balance of) the PCS extemal air and water, and steam and condensate flows and temperatures Test Matrix /Results
  • The large-scale PCS test was performed in two phases: baseline tests and confirmatory tests. The baseline tests were conducted to support the June 1992 SSAR submittal. The confirmatory tests were completed in November 1993 and are described in Table 2-6.

Key results and observations for the PCS large-scale heat transfer test are:

  • Helium mixed well inside the test vessel; no helium stratification was observed.
  • The presence of helium had a negligible effect on heat transfer removal rates.

Condensation and evaporation mass transfer were the only significant mechanisms for rejecting energy from containment to the PCS.

  • Noncondensible distribution and internal velocity were important to the condensation rate.
  • Tests simulating loss-of-coolant accidents (LOCAs) show that internal velocities are sufficiently low; free convection dominates; and momentum does not carry from above to below the deck.
  • Tests simulating main steamline break (MSLB) events show that intemal velocities are significant; mixed convection exists; and momentum is transported from above to below deck (which induces uniform concentraticns).

Documentation - Additional information on the Large-Scale Heat Transfer Test may be found in the following documents: Scaling

 *        " Scaling Analysis for AP600 Containment Pressure During Design Basis Accidents,"

(Reference 33) AP600 Test Program Overview m:\3334w-2.wpf;1b-110796 October 1996

2-48 Table 2-6 Large-Scale, H at Transfer Test, Phase 2 Test Test Number Description Pre-operational test Video recording Videos of water distribution on top of vessel Cold annulus Low temperature annulus startup velocity velocity Water distribution Calibrate water distribution for three different levels of coverage on the vessel Condensate system Check operation of condensate system Velocity sensors Check operation and determine location of velocity meters for a future tests Cold helium Inject helium mto cold vessel and sample to determine helium injection distribution at selected time intervals following injection Delayed water Provide delayed water distribution flow to the surface of hot injection vessel and video tape performance Matrix tests 202.3 Constant vessel pressure 203.3 Constant high vessel pressure 213.1 Three steam flow levels with reduced water flow and coverage area 214.1 Constant steam flow, reduced water flow and coverage area, and variable air cooling flow 216.1 Constant steam flow with reduced water flow over section; of the vessel 215.1 Constant steam flow, reduced water flow and coverage area, and variable air cooling flow 212.1 Three steam flow levels with reduced water flow and coverage area; noncondensable gas samples taken 217.1 Constant steam flow with helium injection; reduced water flow and coverage area 220.1 Transient blowdown steam flow, reduced water flow and coverage area, noncondensible gas samples taken 218.1 Constant steam flow with helium injection; reduced water flow and coverage area; each steam flow maintained for about I hour . , and noncondensable measurements taken 219.1 Constant steam flow with helium injection; reduced water flow and coverage area; each steam flow maintained for about I hour and noncondensable measurements taken 221.1 Transient blowdown steam flow with helium addition sampling; reduced water flow and coverage area i l l l i AP600 Test Program Overview m:\3334w-2.wpf;1b-110796 October 1996 I

l I 2-49 i . l } Chimney Fan--+ l cf,. .b

                                                       //        \\         \
                                      /r                                          Ti l~   -
                                                                       /
N (s /

4 1 1 ( ) s gg q 4 y i f-r- m  % & i

                 - ;        m-d                     -                 r,        -

C - 3 -

                                                      ]

j Pressure Vessel , A i. AccessTrench v C-LF-28 Figum 2-6 Large-Scale PCS Test Facility AP600 Test Program CNeniew m:\3334w-2.wpf:1b-7.10796 October 1996

2-50 d i Manway Open Volume Steam m 1

                                                                                              # Generator N                                                                          Model TM'-y--         ,        - A,nnular.

e eam Area Grating Operating Dec Upper Dead End Volume Steam Generator Under Operating Deck l cop Compartment Manway 4 15 ft. > 90* O'~ m. *

                                                        ,b"'*%.*180*

C-LF.30

                                                      /

270* l I Figure 2-7 Large-Scale PCS Test Facility AP600 Test Program Ch'emew m:\3334w-2.wpf:1t>110N October 1996

2-51 s ,-e- , ..

                                                                                                                                .       r,                                                                                                -- -                      *p a         ;            ep.                                                    .-                                                                                                                                                                    ,,
                                                                                                                            . ,f ,

s

                                                                                                                                                                                                                                                  ' y4                                  .
                                                                                                                                                                    . .-$                                                                 -' ~                                          -

g

                                                                                              ,,,'&M
                                                                                                                                                                            ^

l - ' ;< .

                                                                                                                                                                                                                                                                             ~f                                       -

l ,f ^ , -: *" ..,'  % ,.9 '

                                                                                                                                                                                                              ,,-                              q. ' r -:4w.

t .

                                                                                                  .Q.M'      _
                                                                                                                                              .                                  g ' f                                                                  ,-

4l Q] _' j.

                                                                                                                                            * * ~                                                                                                     +,

y 'QR , :j

                                                                                                                                                                               - --                                            a,
                                    ..                             ,                                                                                                 u                                                                                                                                       _
                                                                                                                                                                                                                  ,,,          k           .      4.             Q.                   j$

4 . 7 . 4-

                                                            '                                         t
                                                                                                                            . p, ' . 3 . i                                                                        44_. _ . ' .

D' E I 'i

                                                                                                                                                                                                                                             &,                                                                  -*~

r t.* y.E' e~

                                                                                                                              . % ,emamm, y; ;        .
                                                                                                           .                                                useums s ..
                                                                                                               .~,y V '                            '

N .; ) ,),y _ {_ ,

                                                                                                  -j yc - - --                                                                                                                         ,,/

J . . ~ .+-- .i ,.% s /

                                                                               ,                         i
                                                                                                                         . ~ kilb                           NMf                                                       .,
                                                                                                                                                                                                                       . . .                                                       ./

__ l. O ,p ( ' 5 - - .

                                                                                                                         .             Mt                                                                                                         /
                                    .                                                                                                                       \.   *
                                                                                                                                                                                                                          /                    /                       / .

j - f -

                                                                                                                                                                                     .-                                                    /                         e
                                                                                                                                                                                                                         /
                                                                                                                        't                                                                 :                                                                   /                                      p

[/*

                                                                                                                        .                                                       .                                    e
                                                                                                                       }'-                          +t
                                                                                                                                                                                                 ~j
                                                                                                                                                                                                                   /

4 // l

                          ~
                                                                                                                           ~ '.
                                                                                                                                                               .             .~&                             'l                 f                 ,'

fi

                                                                                                                                                                                                                          /

gr  ;

                                                                                                                                                                                                                                               /
                                                                                                                                                                                                   --/j,. _ -

l t p

                                                                                                                                                                                             'N                              -

A g.. s -

      ~
                                                                                                                                                                          '\

53 1 1 l 'k'_', , _" '<; ?>nQ 4

                                                 .                .     .s-                                                                                                                                                                                                                      -
                                                                                                                                                                                                                                                                                                      'N l                                       Figure 2-8                       Large-Scale PCS Test Facility j                          AP600 Test Program Ovemew a                         m:\33Mw-2.wpf;1b-1107%                                                                                                                                                                                                                                                   October 1996 8

l

                                           .   . ~         . . - -.       _. ~ . . .               . . . _ . .

2-52 Final Data Repon , i l

  • WCAP-13566, "AP6001/8th Large Scale Passive Containment Cooling System Heat Transfer j
         . Baseline Data Repon," (Reference 34)
  • WCAP-14135, " Final Test Report for PCS Large Scale Phase 2 and Phase 3 Tests,"

(Reference 35) Test Analysis Report

  • PCS-T2R-050, "Large Scale Test Data Evaluation," (Reference 36) h 4

1 AP600 Test Program Overview m:\3334w-2.wpf;1b110796 October 1996 l l

l l l 2-53 i i

 ~

2.4.3 Full-Height, Full-Pressure Integral Systems Test (SPES-2) l l 4

General Description / Purpose l l A full-pressure, full-height integral systems test was performed to provide a simulation of the PXS l integrated performance. The existing SPES test facility was configured as a full-height, full-pressure  ;

l integral test with AP600 features, including two loops with one hot leg and two cold legs per loop,  ; I- two CMTs, two accumulators, a PRHR HX, an IRWST, and an ADS. The facility included a scaled i reactor vessel, SGs, pressurizer, and RCPs. Water was the working fluid, and core power was  ! simulated with electric heater rods. 1 l i l The test facility was designed to be capable of performing tests representative of a small break LOCA (SBLOCA), steam generator tube rupture (SGTR), and steamline break (SLB) transients. The design . certification analysis is being compared to the test results. I I i The facility simulated the following: l i

  • Primary circuit l
  • Secondary circuit up to the main steam line isolation valve
  • All passive safety systems - CMT, IRWST, PRHR HX, ADS ,
       .          Nonsafety nuclear steam supply systems (NSSS) - chemical volume and control system (CVS), RNS, and startup feedwater system (SFWS)                                                  .
t j A scaling, design, and verification analysis was perfompd to delineate the specific design features to be incorporated and modifications to be made to the SPES-1 facility to simulate the AP600 design.

The following general criteria have been applied to the design of the SPES-2 test facility: 1

   *
  • Conservation of thermodynamic conditions (pressure and temperature) o
        =         Power over volume ratio conservation in each component l

l

        =         Power over mass flow rate conservation
        .         Fluid transit time preservation
        =         Heat flux conservation in heat transfer components (core and SG)
  • Elevations maintained in lines and components AP600 Test Program Overview j m:\3334w-2.wpf:1b-110796 - October 1996

i 2-54  ! 1

  • Preservation of Froude number in the primary circuit loop piping (hot and cold legs) in order  ;

to preserve the slug to stratified flow pattem transition in horizontal piping l {

  'Ihe SPES-2 facility consisted of a full simulation of the "XS and the AP600 primary system. The                       j stainless steel test facility used a 97-rod heated rod bundle with a uniform axial power shape and skin                ;

heating of the heater rods. The tests were initiated from scaled, full-power conditions. 'Ihere were 59 i heater rod thermocouples distributed over 10 elevations with most located at the top of the bundle to j t detect the possibility of bundle uncovery. The heater rods were single-ended, connected to a ground - bus at the top of the bundle at the upper core plate elevation. All but two rods were designed to have 'I the same power; two heater rods were " hot" rods that had 19 percent higher power. i t l The primary system, shown in Figure 2-9, included two loops each with two cold legs, one hot leg, - { an SG, and a single RCP. The cold leg for each loop was divided downstream of the simulated RCP i into two separate cold legs, each of which connected into an annular downcomer. The pumps } delivered the scaled primary-flow, and the heater rod bundle produced the scaled full-power level so i that the AP600 steady-state temperature distribution was simulated. The SGs had a secondary side  ; cooling system that removed heat from the primary loop during simulated full-power operation.  ! Startup feedwater and power-operated relief valve (PORV) heat removal was provided following a  ; simulated plant trip. j The upper portion of the simulated reactor vessel included an annular downcomer region, where the f hot and cold legs as well as the SI lines were connected. The annular downcomer was connected to a i pipe downcomer below the direct vessel injection (DVI) lines; the pipe downcomer then connected to f the vessel lower plenum. In this fashion, the four cold-leg /two hot-leg characteristics of AP600 were l preserved, along with the downcomer injection. . There were turning devices to direct the SI flow downwater in the annular downcomer as in the AP600. A full-height, single PRHR HX, constructed in a C-tube design, was located in a simulated IRWST i and maintained at atmospheric pressure. 'Ihe line pressure drop and elevations were preserved, and the  ! heat transfer area was scaled so that the natural circulation behavior of the AP600 PRHR HX was - simulated.  ;

                                                                                                                     ~
                                                                                                                          \

The design of the CMTs was developed so that the CMT metal mass was scaled to the AP600 CMT. l The CMT design used a thin-walled vessel inside a thicker pressure vessel, with the space between the two vessels pressurized to about 70 bar. In this manner, the amount of steam that condensed on the CMT walls during draindown was preserved. Since the CMTs were full-height and operated at full pressure, the metal mass-to-volume of a single pressure vessel would have been excessive, resulting in very large wall steam condensation effects. The SPES-2 ADS combined the two sets of AP600 ADS piping off the pressurizer into a single set with the first , second , and third-stage valves. An orifice in series with each ADS isolation valve was used to achieve the proper scaled flow area. The three ADS valves shared a common discharge line to l AP600 Test Program Overview m:\3334w-2.wpf:1b-110796 October 1996 1

2-55 l l t I d. SG 1-3 ADS b n gg k J f _ E_---

                                                                                                                ,,                       t E         _

k ,_

                    ,,              e            gy                                                              ,

PRZ o I, Condenser IRWST M) k ~ N em em ----

                                                                                                                 <'"1                          Preheater PRHR
                                                                                                                 <  0 1                                       -*            1 "Ys             i i

e, o h ' T L. i rkrk[k[1 r J% *os A q; 1 l h' 6 Ish .t - r Feed Pump (Ap/ [ ] A nc h

                                                   / AD8       h a 6 l    q----7                                _-

l Water d, i l Reservoir

                                                   -                     , r                       r                   -

1 m m r Accumulator Accumulator

                                                         '"r C-OF.7                                                                       -

l Power Channel I i i Figure 2-9 SPES-2 Facility Primary System l AP600 Test Program Ovenww m:\3334w-2.wpt:1b-110796 October 1996

. - - - _ _ - . _ . - - - - - . . - - - . _. . ..~_ _ , - - -. . . - 2-56

                                                                                                                                            ]

a condenser and a collection tank that used load cells to measure the mass accumulation. A similar  ; measuring arrangement was also used for the two ADS fourth-stage lines, which were located on the l hot legs of the primary system. The SPES-2 tests simulated the AP600 transients up to the time of J IRWST injection at low pressure. I Small breaks were simulated using a spool piece that contained a break orifice and quick-opening valve. The break discharge was also condensed and measured by collecting the flow into a catch-tank.- The SPES-2 facility instrumentation was developed to provide transient mass balances on the test l facility. There were about 500 channels of instrumentation that monitored the facility, component , ,

              . pressure, temperature, density, and mass inventory. Flows into the simulated reactor system, such as                         j CMT discharge-flow, accumulator-flow, and IRWST-flow, were measured using venturi flow meters.                               j Flows out of the test facility, such as break-flow and ADS-flow, were measured with a turbine meter                          l and condenser / collection tank. The use of condensers allowed accurate integrated mass versus time l

measurements of the two-phase ADS and break-flow streams. The use of collection tanks following  : the condensers provided redundancy for the critical measurements of the mass leaving the test system. l Differential pressure measurements were arranged as level measurements on all vertical components to  ; measure the rate of mass change in the component. There were also diffe;rential pressure j measurements between components to measure the frictional pressure drop, both for single- and  ; two-phase flow. 'Ihe CMTs were instrumented with wall and fluid thermocouples to measure the

              - CMT condensation and heat-up during their operation. The PRHR HX was also instrumented with wall and fluid thermocouples so that the tube wall heat flux could be calculated from the data. There were thermocouples in the simulated IRWST to measure the fluid temperature distribution and assess                           l the amount of mixing that occurred. Rod bundle power was measured accurately to obtain rod heat                              }

flux and total power input to the test facility. l Test Matrix /Results The overall objectives of the AP600 SPES-2 integral system test were:

                =

To simulate the AP600 thermal-hydraulic phenomena and behavior of the passive safety systems following specified SBLOCAs, SGTRs, and SLBs -

  • To obtain detailed experimental results for verification of safety analysis computer codes The SPES-2 tes: matrix (Table 2-7) examined the AP600 passive safety system response for a range of i SBLOCAs at different locations on the primary system, SGTRs with passive and active safety systems, and an MSLB transient.

AP600 Test Program Overview m:\3334w-2.wpf.1b-110796 October 1996

 . _ _ - _ .-         .      _ - - . .        - -           - . . . - - . ~ .         .-    .-    . .    .. .       -      . ._

2-57 Key results and observations for the SPES-2 test are: .

  • The core remained covered following all simulated events, included a double-ended guillotine (DEG) DVI line-break with only passive safety systems operating.

P

  • There was no CMT draindown; therefore, no ADS actuation occurred following the single  ;

SGTR with no operator action or nonsafety systems operating.

   .                                                                                                                               I
                =         Nonsafety system operation had no adverse interaction with passive system operation, and actually added margin to the plant safety response.
  • All passive safety systems functioned as expected with no adverse occurrences including CMT  ;

recirculation and draindown, PRHR HX heat removal, ADS depressurization, and IRWST gravity draining. l l

  • Timely RNS operation following a LOCA can limit CMT draindown and present ADS  ;

fourth-stage actuation. Documentation i Additional information on the SPES-2 tests may be found in the following documents: Scalme

                .         WCAP-13277, Revision 1, " Scaling, Design and Verification of SPES-2, The Italian Experimental of the AP600; Scaling Update," (References 37)

Facility Descriotion

  • WCAP-14073, "SPES-2 Facility Description," (Reference 38)
  -             Final Data Report
  • WCAP-14309, Revision 1, "AP600 Design Certification Tests, SPES-2 Final Data Report,"

(Reference 39) Test Analysis Report

                 .        WCAP-14254, Revision 1, "AP600 Full-Height, Full-Pressure Integral Systems Test: SPES-2 Test Analysis Report," (Reference 40) l I

AI%00 Test Program Overview m:\3334w-2.wpf:1b-110796 October 1996

2-58 Table 2-7 Matrix Tests, Full-Pressure, Full-Height Integral Systems Test (SPES-2) 1 Test l Number Description 3 2-in. cold leg break with nonsafety systems off I l-in. cold leg break with nonsafety systems off 4 2-in. cold leg break with nonsafety systems on 5 2-in. DVIline break with nonsafety systems off , 6 DEG break of the DVIline with nonsafety systems off 7 2-in. break of cold leg to CMT balance line with nonsafety systems off , 1 8 DEG break of cold leg to CMT balance line with r.onsafety systems off ) l 9 Design basis SGTR with nonsafety systems on and operator action to isolate SG 10 Design basis SGTR with nonsafety systems on and no operator action 11 Design basis SGTR with manual ADS actuation 12 Large SLB 13 1-in. cold leg break with three PRHR HX tubes, with non-safety systems off 1 I l AP600 Test Program Ch'erview m:\3334w-2.wptib-110796 October 1996 I i

2-59 a Table 2 7 Matrix Tests, Full Pressure, Full-Height Integral Systems Test (SPES-2) (Cont.) Test Test Category Number Description Cold shakedown C-01 Single-phase flow through the pressurizer surge line, four flow rates tests C42A,B Single-phase flow through the pressurizer to CMT balance lines, four flow rates per

 ,                                 balance line C-03A,B  Single-phase flow through the cold leg to CMT balance lines, four flow rates per bMance line C-04A,B  CMT draindown using cold leg to CMT balance line C-05A,B  CMT gravity draindown using pressunzer to CMT balance line C-06A,B  SI accumulator blowdown C-07A,B  IRWST gravity draindown, three water levels C-08     CVS, RNS, and SFWS pump flow rate verification C-09     Operation of primary system with two RCPs running C-10A,B  Operation of primary system with one RCP running Hot shakedown        H-01     Facility heated and heat at five constant temperatures tests H-02     Starting from nominal conditions, power will be shut off and SGs isolated H-03     Facility operated at normal full-pressure, temperature, and power H-04     Facility transitioned from full power operating cor.ditions to hot shutdown / natural circulation mode of operation H-05     low-pressure safety system actuation using the ADS with CMT draindown and accumulator delivery H-06     Full-power, full-pressure safety system actuation initiated by the opening of the first stage of the ADS AP600 Test Program Overview m:\3334w-2.wpf:1b-112096                                                                                      October 1996

2-60 2.4.4 Low-Pressure,1/4-Height Integral Systems Test (OSU) General Description / Purpose ) i l The low-pressure,1/4-height integral systems test was conducted at the Corvalis campus of OSU.

                                                                                                                       )

Scaling studies indicated that a scaled low-pressure test facility could be constmeted to capture the . thermal-hydraulic phenomena of interest for the lower pressure behavior of the AP600 ne OSU test facility is a new facility constructed specifically to investigate the AP600 PXS behavior. The test design accurately modeled the detail of the AP600 geometry including the primary system, I

                                                                                                                   ~

pipe routings, and layout for the passive safety systems. The primary system consisted of one hot leg . ) and two cold legs with two active pumps and an active SG for each loop, shown in Figure 2-10. There were two CMTs connected to one primary loop; the pressurizer was connected to the other l primary loop, as in the AP600 plant design. Gas-driven accumulators were connected to the DVI l lines. The discharge lines from the CMT and one-of-two IRWST and reactor sump lines were , connected to each DVI line. The two independent tiers of ADS 1-3 valves were lumped together as a l single ADS stage. The two-phase flow from the ADS stages one, two, and three were separated in a > swirl-vane separator. De liquid and vapor flows were measured to obtain the total ADS flow rate. ) The separated flow streams were then recombined and discharged into the IRWST through a sparger. l Thus, the mass-flow and energy-flow from the ADS into the IRWST were preserved. l l The time period for the simulation included not only IRWST injection, but aise taining of the - IRWST and lower containment sump (LCS) injection to simulate long-term cooling of the Ar$00.  ; The duration of this simulation was from several hours to a half day. The time scale for the OSU test facility was about one-half, i.e., phenomena occur at twice the rate of OSU as in the AP600. 1 To model the long-term cooling aspects of the transient, two-phase flow from the break was separated in a swirl-vane separator, and the liquid and vapor portions of the total flow were measured. The , liquid fraction of the flow was discharged to the reactor sump, as in the AP600 plant; the vapor was discharged to the atmosphere; and the equivalent liquid-flow was added to the IRWST and LCS to simulate condensate return from passive containment. A similar approach was used for the fourth-stage ADS valve on the hot leg. Two-phase flow was separated in a swirl-vane separator; the two - streams were measured; the liquid phase was discharged into the reactor sump, the vapor-flow was discharged to the atmosphere, and the liquid equivalent was added to the IRWST and LCS. The IRWST and LCS can be pressurized to simulate containment pressurization following a postulated LOCA. ) A multi-tube PRHR HX is located in the IRWST. The HX uses the same C-tube design as the AP600 and has two instrumented tubes to obtain wall heat fluxes during tests. There are primary fluid thermocouples, wall thermocouples, and differential pressure drop measurements to determine when the HX begins to drain. The IRWST is also instrumented with strings of fluid thermocouples to AP600 Test Program Ovemew m:\3334w-2.wpf:1b-110796 October 1996

l 2-61 l l T

                                                                                                / o Pressurizer Steam Generator                i f{f              /l%1
                                         %72                             \
                                                                                           \

C \  ! i l

                                      .        d                            (                         '

Hot Leg  : \-.. - _ Top - ADS 4th Sta e

                                                      /                        Bottom Break Sim lation df        "

(Typicaleach Hot Leg) l 1 -- t l Reactor Vessel 5 -- I

                                                               )
                               "i               _  _J l                                             l I

J - - E l if ..

                                                   ~

Direct VesselInjection Cold Leg sieses.10 - Reactor Coo l ant Pump Figure 2-10 OSU Test Facility Primary System Schematic 4 AP600 Test Program Overview l m:\3334w-2.wpf-Ib-110796 October 1996 l l l

 -.       .- -. -.                     _   - -          -....-            .-        . - - . ~ - - . . -               - - - - . .   -

2-62 determine the degree of mixing in the tank and assess the temperature of the coolant delivered to the test vessel. The reactor vessel for the OSU tests included a 3-foot heated core simulator consisting of forty-eight (48) 1-inch diameter heater rods. The heater rods had a top-skewed power shape. There were wall , thermocouples swaged inside the heater rods to measure the heater rod wall temperature. There were also five thermocouple rods in the heater rod bundle, including fluid thermocoupies, to measure the axial coolant temperature distribution. The scaled flow area in the core and flow area in the test vessel - upper plenum were preserved. There were simulated reactor internals in the upper plenum to preserve the flow area and the correctly scaled fluid volume. The reactor vessel included an annular downcomer into which the four cold legs and the DVI lines were connected. The hot legs penetrated the reactor annulus and connected with the loops. The AP600 reactor vessel neutron reflector was

                - simulated using a ceramic liner to reduce the metal heat release to the coolant.

There was about 1.5 E09 J/hr 540 kW) of electrical power available at the OSU test site, which corresponds to a decay heat of 2 percent of full power in the AP600. Test Matrix /Results l l The OSU experiments examined the passive safety system response for the SBLOCA transition into long-term cooling. A range of SBLOCAs was simulated at different locations on the primary system, such as the cold leg, hot leg, CMT cold-leg pressure balance line, and DVI line. The break orientation (top or bottom of the cold leg) was also studied. Different single failure cases were exammed to confirm that the worst situation was used in the AP600 SSAR analysis. Selected tests continued into the long-term cooling, post-accident mode in which passive SI was from the reactor sump as well as the IRWST. A larger-break, post-accident, long-term cooling situation was also simulated. A summary of the test matrix is provided in Table 2-8. A specific test was performed at the OSU test facility to examine the effects of a higher backpressure J on an SBLOCA transient. A sensitivity study was also performed on the effects of containment backpressure, verifying the test assumptions. The OSU test data was analyzed to determine the long-term cooling behavior of the system. The calculated mass and energy balances from the OSU test facility were used to determine these effects. The key results and observations for the OSU test are: i

                   .       The core remained covered for all design basis transients.                                                 )

l

                   =       All passive systems functioned as expected, with no adverse consequences, including CMT                    !

recirculation and draindown, PRHR HX heat removal, ADS depressurization, accumulator injection, IRWST gravity draining, and stable long-term sump injection. j 1 AP600 Test Program Over@w m:\3334w-2.wpf:1t>110796 October 1996

i 2-63 i l i  ! i Table 2-8 Matrix Tests, Low Pressure,1/4 Height, Integral Systems Test (OSU) l Test Number Description SB01 2-in. cold-leg break, bottom of pipe, loop A with continuation into long-term cooling mode fail

                     % lines in one ADS-4 stage S 8 04          2-in. cold-leg break, bottom of pipe, loop A with nonsafety systems on (2il % lines in one ADS 4 stage SB10            DEG break of cold-leg balance line, horizontal loop, loop A with continuation into LTC fail
                     % lines in one ADS-4 stage SB12            DEG break of DVI line, continuation into LTC, loss of one train of ADS-1 and ADS-3 SB13            2-in. break of DVI line, continuation into LTC fail % lines in one ADS-4 stage LB01            Large cold-leg break, higher decay heat, continuation into LTC fail % lines in one ADS-4 stage SB03            2-in. cold-leg break, top of pipe, loop A fail % lines in one ADS-4 stage l

SB05 1-in. cold-leg break, bottom of pipe, loop A, with continuation into LTC fail % lines in one ADS-4 stage SB07 2-in, cold-leg small break, bottom of pipe, loop A, fail train of ADS 4-1 1 SB09 2-in. break on cold-leg balance line, horizontal loop, loop A fail % lines in one ADS-4 stage SBil DEG break of DVI line with continuation into LTC fail % lines in one ADS-4 stage i SB14 Inadvertent ADS stage 1 open, with continuation into LTC fail % lines in one ADS-4 stage SB15 2-in. hot-leg break, bottom of pipe, loop A fail % lines in one ADS-4 stage SB19 SB01 with simulated containment backpressure fail % lines in one ADS-4 stage d AP600 Test Program Ovemew m:\3334w-2.wpf:1b-110796 October 1996

l . 2-64  ! ! Additional observations include: l l The CMTs refilled due to condensation effects during long-term recirculation. Steam condensation events occurred in the upper downcomer region. - Thermal stratification occurred in both the hot and cold legs. For most tests, regular oscillations occurred during long-term recirculation. These results are discussed more fully in the final test reports. - Documentation Additional information on the OSU tests may be found in the following documents: Scaling a WCAP-14270, " Westinghouse AP600 Long Term Cooling Test Facility Scaling Report," (Reference 41) Facility Description Report WCAP-14124, "AP600 Low Pressure 1/4 Height Integral Systems Tests - Facility Description Report," (Reference 42) Final Data Report WCAP-14252, "AP600 Lcw Pressure Integral System Test at OSU: Final Dr.ta Report," (Reference 43) Test Analysis Report WCAP-14292, Revision 1, " Low Pressure Integral System Tests at OSU Test Analysis Report," (Reference 44)

  • WCAP-14471, " Steam Condensation Events at the OSU AP600 Test Facility," (Reference 45)

I I i i AP600 Test Program Overnew m:\3334w-2.wpf.lb-110796 October 1996

3-1

3.0 CONCLUSION

S An integrated test program has been developed and completed for the AP600 design cenification process. Four classifications of tests in the program support the engineering design needs as well as the safety analysis needs. Those classifications are basic research tests, engineering tests on components, component separate effects tests, and integral systems tests. The needs for the tests were derived from an analysis of the design differences of the AP600 design from existing PWR design and the expected thermal-hydraulic phenomena that the AP600 SSAR safety analysis computer codes would have to model and calculate with confidence. The primary objective of the test program was to provide the needed data to develop or modify the existing correlations or models in the safety analysis codes so that these codes could represent the performance of the AP600 passive safety systems. Each new AP600 system was tested both in a separate effects test which covers the range of application of that component, and in an integral systems test, so that the possibilities of system interaction will be examined. There are two integral systems tests using different scaling rationales that rrxxiel all the AP600 passive safety injection and core cooling systems. There are similar basic research, engineering, and separate effects component tests and integral systems tests, at two different scales, which support the development and verification of the AP600 containment safety analysis code. These data, along with the analysis effort, form a comprehensive program that will result in successful licensing and final design certification approval of the AP600 design. AP600 Test Program Ovemew m:\3334w-3.wpf-lb-110796 October 1996

4-1

4.0 REFERENCES

I

1. WCAP-13328, " Tests of Air Flow Path for Cooling the AP600 Reactor Containment"
2. WCAP-13884, " Water Film Formation on AP600 Containment Surface" i
3. WCAP-14048, " Passive Containment Cooling System Bench Scale Wind Tunnel Test"
4. APWR-0452-P, "AP600 Vonex Mitigator Development Test for RCS Mid-Loop Operation"
5. WCAP-13294, " Phase 1 Wind Tunnel Testing for the Westinghouse AP600 Reactor"
6. WCAP-13323 " Phase 2 Wind Tunnel Testing for the Westinghouse AP600 Reactor"  ;
7. WCAP-14068, " Phase 4A Wind Tr.inel Testing for the Westinghouse AP600 Reactor" ,
8. WCAP-14169, " Phase 4A Wind 'lunnel Testing for the Westinghouse AP600 Reactor, Supplemental Report"
9. WCAP-14091, " Phase 4B Wind Tunnel Testing for the Westinghouse AP600 Reactor"
10. WCAP-13353, " Passive Containment Cooling System Water Distribution Phase 1 Test Data Report"
11. WCAP-13296, "QCS Water Distribution Test Phase 2 Test Data Report"
12. WCAP-13960, "PCS Water Distribution Phase 3 Test Data Report"
13. WCAP-12668, Revision 1, "AP600 High Inertia Rotor Testing Phase 1 Test Repon"
14. WCAP-13319, "AP600 High Inertia Rotor Testing Phase 2 Report"
15. 'WCAP-13758, "High Inertia Rotor Test Phase 3 Report" l
16. WCAP-13298, "RCP Air Model Test Report"
17. WCAP-12648, Revision 1, "AP600 In-core Instrumentation System Electromagnetic  ;

Interference Test Report"

                                                                                                          ]
18. WCAP-13351, " Studies of Hydraulic Phenomena in the Reactor Vessel Lower Plenum Region
          - Test Report" i

AP600 Test Program Overview m:\3334w-3.wpf:1b-1115% October 1996

 - _ -     .  - - . . .            ..        -.  . - - .  . - . -    ~~. - .-     ..- -- -                     .- -
                                                                                                                      +

4-2 i

19. ' WCAP-12980, AP600 Passive Residual Heat Exchanger Test Final Report" f
20. WCAP-14371, "AP600 Low Flow Critical Heat Flux Test Data Analysis"
21. WCAP-14149, "VAPORE Facility Description Repon, AP600 Automatic Depressurization l System, Phase A Test"  !
22. WCAP-13891, "AP600 Automatic Depressurization System Phase A Test Data Report" -

l

23. WCAP-14303, " Facility Description Report, AP600 Automatic Depressurization System Phase B1 Tests" l
24. WCAP-14324, "AP600 Design Certification, ADS Phase B1 Tests, Final Data Report"
25. WCAP-14305, "AP600 Test Program, ADS Phase B1 Test Analysis Report" l
26. WCAP-13%3, Revision 1, " Scaling Logic for the Core Makeup Tank Test" {

i

27. WCAP-14132, "AP600 CMT Program - Facility Description Repon" l
28. WCAP-14217 " Core Makeup Tank Test Data Report"  !
29. WCAP-14215, " Core Makeup Tank Test Analysis Report"  !
                                                                                                                      \

i

30. WCAP-14442, "AP600 Core Makeup Tank Level Instrument Test Data and Evaluation Repon" i

i

31. WCAP-12665, " Test of Heat Transfer and Water Film Evaporation on a Heated Plate  ;

Simulating Cooling of the AP600 Reactor Containment" l

32. WCAP-14134, " Final Test Report for Integral Small Scale Tests"  !
33. " Scaling Analysis for AP600 Containment Pressure During Design Basis Accidents," j Westinghouse Letter NSD-NRC-96-4790, August 8,1996 l l
34. WCAP-13566, "AP6001/8th Large Scale Passive Containment Cooling System Heat Transfer  !

Baseline Data Report"  ! 1

35. WCAP-14135, " Final Test Report for PCS Large Scale Phase 2 and Phase 3 Tests" ,

J

36. PCS-T2R-050, "Large Scale Test Data Evaluation" i

I  : I AP600 Test Program Oveniew m:\3334w-3.wpf:1b-110796 October 1996 , i

l ' l i i L '4-3  ! I I

l.  !

I-

37. WCAP-13277, Revision 1, " Scaling, Design, and Verification of SPES-2, The Italian l

Experimental of the AP600, Scaling Update"

38. WCAP-14073, "SPES-2 Facility Description" l
39. WCAP-14309, Revision 1, "AP600 Design Certification Tests, SPES-2 Final Data Repon"
  ' 40,     WCAP-14254, Revision 1, "AP600 Full-Height, Full-Pressure Integral System Tests: SPES-2                            i Test Analysis Report"                                                                                              !
41. WCAP-14270, " Westinghouse AP600 Long-Term Cooling Test Facility Scaling Repon"
42. WCAP-14124, "AP600 Low-Pressure,1/4-Height, Integral Systems Tests - Facility Description Report
43. WCAP-14252, "AP600 Low-Pressure Integral System Test at OSU: Final Data Report" t
44. WCAP-14292, Revision 1, " Low-Pressure Integral System Tests at OSU: Test Analysis Repon"
45. WCAP-14471, " Steam Condensation Events at the OSU AP600 Test Facility" 9

l i l l AP600 Test Program Overview m:\3334w-3.wpf:1t>110796 October 1996

i i i s ). 1 APPENDIX A ( Program Overview l TABLES OF CONTENTS ! References 1-45

  • Key Sections m:\3334w-a.wpf:1b-112096  !

l 1

2 l REFERENCE #: 1 ! i REPORT #: WCAP-13328 TITLE: 1 Test of Air Flow Path for Cooling the AP600 Reactor Containment l DATE: March 28,1988 1 1 ) I i d v d i i l I m:\3334we wpf.lb-1104% A-1

l l 1 Table of Contents 4 I l

                                       =

l Page Abstract .................. . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

  • 1. intrwucti ...................._................1
2. m. uw.i .w intrum.ne. tion ... .... .... . . ... . ...._ 4
3. n.uit. ..... .. .... ._ ... _. _. ...... .. _ is g 3.2 4 ir.i. .t o.= is l
  • 3.2 uwiriw omisa .... .. . ... . .__ .. ... ........ .._. 17 1
     .w. 4. oi. coni      .. ... ..._  . . ................. ......                    . .. .    .............. ... ...            22
5. Conclusions ..... . . . . . . .. . ... . .. 24
6. References .... .. . _ _.... . ..l......- .... . _. .... ._.._.... ..-. 25
7. no nci.eur. ... ........ _...... .. . ............ 2e  !

i j j 1 1 9

                                                                         . g.

REFERENCE #: 2 REPORT #: WCAP-13884 TITLE: Water Film Formation on AP600 i Reactor Containment Surface DATE- November 1993 l l

                                                           }

I m:\3334w-a.wpf:1b UO496

i Table of Contents Page Abstract ................................................................................................... iii g 1. Introduction ..................................................................................... 1 1

2. Fi!m Flow Conditions . . ... ... ................. . .. ....... . .... .. . . .. ... . ... ... . ... .. . . .. . . . ... . . . 3
3. Tes t App a ra t u s . . . . . . . .. . . .. . . . . . . . . . . . . . . . . .. ... . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . .. . 5 g 4. Results .............................................................................................11
5. Conclusions.......................................................................................... 18 l
6. R eferences . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. ... . . . . . . . . . . .. . . . . . . . . . . . .. . .. . . .. . . . . . . . . . . . . . . . . 19
7. N omencla t u re . . . . . . . . . . . . . . . . . . .. . .. . .. . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 e

I i I I e

                                                                                                      -H-4 l

1

l i , REFERENCE #: 3 I i REPORT #: WCAP-14048 !* TITLE: Passive Containment Cooling System Bench Scale Wind Tunnel Test

DATE
April 1994 i

l l 1 4 a t i 4 ) i. + i i j J 1 l m:\3334w-a.wpf:1b-1104% A-3 4

i l l TABLE OF CONTENTS 1 PAGE

1.0 BACKGROUND

1 2 $ 2.0 TEST RESULTS . p

3.0 CONCLUSION

S 3 l I l

V)8000883.wpf:lbC42694 i

t l l I LIST'OF FIGURES , PAGE l k 2 AP600 Shield Building and Containment Wind Tunnel Model 4

 .           FIGURE 1 l

~ AP600 Model Shield Building and Air Diffuser Pressures 5 .

   .         FIGURE 2                                                                                                       !

in Wind AP600 Model Containment Cooling Annulus Pressures and Air 6 l FIGURE 3 i* Diffuser Pressure l l

                                            .                                                                                j e                                                                                                                        l 1

l l i i l l l l ( l t I l i l. l f 1 l l l 5

00000883.wpf:ltv042694 ii
 . -                 ..      . _ ~ -  .- _ - -     . _ . _ _ - _ . - - - __-

i REFERENCE #: 4 REPORT #: APWR-0452-P TITLE: AP600 Vortex Mitigator Development Test for RCS Mid-Loop Operation DATE: September 1988 I l ( m:\3334w-a.wpf:1b 110496 A-4

TABLE OF CONTENTS . l TITLE PAGE l SECTION 1.0 ABSTRACT i

2.0 BACKGROUND

INFORMATION AND INTRODUCTION

2.1 BACKGROUND

INFORNATION

2.2 INTRODUCTION

3.0

SUMMARY

AND RECOMMENDATION ( 4.0 TEST PROGRAN i 4.1 TEST PURPOSE AND OBJECTIVES 4.2 TEST MODEL DESCRIPTION 4.3 TEST MODEL INSTRUNENTATION 4.4 TEST.MODELING TECHNIQUE

5.0 DESCRIPTION

OF TEST OPERATIONS 6.0 DISCUSSION OF TEST RESULTS AND SUW4ARY 7.0 BIBLIOGRAPHY . 8.0 APPENDIX APPENDIX A - SAMPLE CALCULATIONS APPENDIX B - VOID NETER DESCRIPTION / CALIBRATION l 8051e:1d/101288 i l

l LIST OF ILLUSTRATIONS i FIGURE  ! TITLE PAGE NUMBER 4.1-1 Simulated RHR Installed with Cruciform 4.1-2 Simulated RHR Pipe With Step Nozzle . 4.2-1 Test Model General Assembly (2 Sheets) i i 4.2-2 Test System Flow Diagram \ 6.1 Vortexing Water Level vs. Froude Number l 6.2 Comparison of Test Results 6.3 Comparison of Test Results 6.4 Comparison of Test Results 1 6.5 Comparison of Test Results 6.6 Comparison of Test Results - 3" Intermediate Pipe vs. Simulated RHR Pipe 6.7 Air Entrainment vs. Water Level l 6.8 Vortexing Water Level vs. Froude Number 6.9 Comparison of Test Results 6.10 Vortexing Water Level'vs Froude Number 6.11 Comparison of Test Results 6.12 Vortexing Water Level vs. Froude Number .l 5.13 Comparison of Test Results l 6.14 Comparison of Test Results 6.15 Compar'ison With MHI Test 6.16 Vortexing Water Level vs. Froude Number 6.17 Comparison of Data With Different Simulated RHR Pipe sosiew1ouse ii j l

1 LIST OF TABLES . ! TABLE NUMBER TITLE PAGE l , l. 4.1 Equipment Parameter Summary

     ,       6.1                    Summary of Test And Predicted Plant Results (3 Sheets) 0 l

t 1 I i 80ste:1d/101233 jjj

                                          ,                                                 ,                                     y..

1

                                                         )

i REFERENCE #: 5 REPORT #: WCAP-13294 TITLE: Phase 1 Wind Tunnel Testing for the Westinghouse AP600 Reactor DATE: April 1992 l l l I m:\3334w-a.wpf:IM104% A-5

i I TABLE OF CONTENTS l

 .                                                                                                      PAGE

SUMMARY

11

 .             ACKNOWLEDGEMENT $                                                                                  111 1 INTRODUCTION                                                                                        1 2 EXPERIMENTAL PROCEDURE                                                                              1 2.1 Modelling Of The Surroundlag Site And The Wlad                                             1 2.2. Modelling Of The Containment Bulldlag                                                    2 2.3 Pressure Measurements                                                                     2 3 EXPERIMENTAL RESULTS AND DISCUSSION                                                  -

3 l 3.1 General 3 3.2 Results Of Varless Cases 4 3.3 Results Of Time History Analysis *4 REFERENCES 5 TABLES 6 FIGURES 7 l APPENDIX A PROVING OF'IBE EXPERIMENT Al APPENDIX B COMPUTER LISTINGS OF PRESSURE COEFFICIENIS B1 APPENDIX C GRAPBS OF PRESSURE COEFHCIENTS VERSUS AZIMU11 C1 FOR DATA GATHERING RUNS i + l i I I i i I

REFERENCE #: 6 REPORT #: WCAP-13323 TITLE: Phase 2 Wind Tunnel Testing for the Westinghouse AP600 Reactor DATE: November 1992 m:\3334w-a.wpf 1b-1104% A-6

d 4 TABLE OF CON 11!NIS , t I PAGE l

SUMMARY

11 \.

ACENOWLEDGEMENIS El l i  !

!- 1 INTRODUCTION 1

 .                                                                                                                                  \

l 2 EXPERIMENTAL PROCEDURE 1 4 ' 2.1 Modelling Of The Surrounding Site And The Wind 1 l , 2.2 Modelling Of The Containment Building, Including The Flow Path 2 l 2.3 Pressure Measurements 2 3 EXPERIMENTAL RESULTS AND DISCUSSION 3 ! 3.1 General 3 3.2 Results Of Main Tests 3 i e 3.3 Results Of Time History Analysis 4 4 3.4 Summary Of Baffle Loads 5 l i

REFERENCES 7 s

1 TABLES 8 1 FIGURES 13 1 APPENDIX A-MODELLING OF FLOW LOSSES A-1 3 1 APPENDIX B - COMPUTER LISTING OF PRESSURE COEFFICIENTS B-1 i i ! C.1 APPENDIX C GRAPES OF PRESSURE COEFFICIENTS VERSUS AZIMUlli

                                                                                                                                    )

APPENDIX D - DISCUSSION OF DESIGN DYNAMIC PRESSURES D.1 l E.1 APPENDIX E - GRAPES OF PRESSURE DISTRIBUI10NS AROUND 11EE CIRCUMFERENCE

REFERENCE #: 7 REPORT #: WCAP-14068 TITLE: Phase 4A Wind Tunnel Testing for the Westinghouse AP600 Reactor ~ DATE: May 1994 1 I i m:\3334w-a.wpf:Ib11Gl% A-7

l I i TABLE OF CONTENTS

l l

l PAGE

  • 111

SUMMARY

l' f. l

             ' ACKNOWLEDGEMENTS v

l I ! 1 DrrRODUCTION 2 4 2 EXPERIMENTAL2.1 Modelling Of The PROCEDURE Surrounding Sit? And UWO'IESTS The Wind 2 3 2.2 Modelling Of The Containment Building, Including The Flow Path 3 l 2.3 Pressure Measurements 4 I 3 EXPERIMENTAL PROCEDURE NRC 1:30 SCALE'IESTS 4 l 3.1 Modelling Of The Surrounding Site And The Wind 5 3.2 Modelling Of The Containment Building 5 3.3 Pressure Measurements 5 ! 4 EXPERIMENTAL PROCEDURE NRC 1:30 SCALETESTS 5 4.1 Modelling Of The Surrounding Site And The Wind 6 4.2 Modelling Of The Containment Building 6 i, 4.3 Pressure Measurements 7 d 5 EXPERIMENTAL'RESULTS AND DISCUSSION 7 5.1 General

l. 7 5.2 Main Results 9

5.3 Effects Of Tornado Profile 9 5.4 Effects of The Cooling Tower 19 5.5 Residual Uncertaintles 12 REFERENCES ! TABLES l FIGURES

A1 APPENDIX A CALIBRATION OF FLOW LOSSES 1 B1 APPENDIX B. COMPUTER LISTING OF PRESSURE COEFFICIENTS C1 APPENDIX C . COMPU'IER LISTING OF ADJUSTED PRESSURE COE D1 APPENDIX D . INVESTIG ATION OF SPEED DEPENDENCY IN THE N DATA e l l

I

                                                                                      \

REFERENCE #: 8 l l REPORT #: WCAP-14169 TITLE: Phase IVa Wind Tunnel Testing for the AP600 Reactor - l Supplemental Report DATE: September 1994 I l l l i 1 m:\3334w-a.wpf Ib-1106% A-8

h TABLE OF CONTENTS List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ;y . Lis t o f Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , , , , , , , , , , , , , , , , y S umm a ry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , , , , , , , , , , , , , , , , , , , , , , , , y References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Appendix A - Graphs of Mean Pressure Distributions Around the Circumference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , , , 11 1 1 1 i I i J i I m:\31Mw-a.wpt:1b 1106% iij

i i k '

List of Tables 4

i-n i j Table 1 Tap Number Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 ! J. ] *  !

)..

j i ) '. h e l-t - i 4 1 i . 4 1 1

;                                                                                                                                     I i                                                                                                                                      1 1               .

1 l . I e i 4 1 a N 1 l i 1 l t - d I ( ? .f i 4 i i 4 l 1  ! 4 1 4 l E 1

                 . m:\3334w-a.wptib-11M                                                                  iv

l l List of Figures 1 Figure 1 Force Coefficients for Taps Defined in Table 1 . . . . . . . . . . . . 4 , Figure 2 Force Coefficients.for Taps Defined in Table 1 . . . . . . . . . . . . 5 Figure 3 Force Coefficients for Taps Defined in Table 1 . . . . . . . . . . . . 6 .

  ^

Figure 4 Circumferential Distribution of Pressure Coefficients at the Instant When the North Load is Maximum. I Level 3; Wind ' Azimuth 210 . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 5 Circumferential Distribution of Pressure Coefficients at the Instant When the North Load is Minimum. Level 3; Wind Azimuth 210' . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 6 Circumferential Distribution of Pressure Coefficients at the Instant When the East Load is Maximum. Level 3; Wind Azimuth 210' . . . . . . . . . . . . . . . . . . . . . . . . . . . ' 9 Figure 7 Circumferential Distribution of Pressure Coefficients 1 at the Instant When the East Load is Minimum.  ! Level 3; Wind Azimuth 210* . . . . . . . . . . . . . . . . . . . . . . . . . . 10  ! l L-l 4 m:\3334w-a.wptib1106% v

                  -r                           r                              ,n

j l

1 i

l REFERENCE #: 9 REPORT #: WCAP-14091 TITLE: Phase 4B Wind Tunnel Testing

for the Westinghouse AP600 i- Reactor i
DATE
July 1994 e

t i l l J l i l l 1 I i 1 W s l, rrt\3334w-a.wpf-1b-110496 A-9 j

 . - . .       .--..           - .- . ..-.=_            _-. -.. . - . . -   - - - . . - ~ . . - . . . . . - - -         . . _ - . _ -

l l TABLE OF CONTENTS i i PAGE . 11 SUhLMARY 111 ACKNOWLEDGEMENTS 1 g 1 INTRODUCTION l 1 2 EXPERIMENTAL PROCEDURE . COOLING TOWER MODELLING 1 2.1 Preliminary Measurements at the NRC Wlad Tuasel 2 2.2 Modelling of the Wind at the UWO Wind Tunnel 2 2.3 Measurements at UWO 3 3 EXPERIMENTAL RESULTS AND DISCUSSION COOLING TOWER , MODELLING l 1 4 4 EXPERIMENTAL PROCEDURE . MAIN TES'!5 4 4.1 Modelling of the Containment Buildlag and the Surroundings 4 4.2 Pressure measurements 5 g 5 EXPERIMENTAL RESULTS AND DISCUSSION 5 5.1 General ' 5 5.2 Main Results 7 REFEREI CES - S TABLES 9 FIGURES i A1 APPENDIX A COMPUTER LISTING OF PRESSURE COEITICIENTS i

i 1 4

REFERENCE #: l 10

! REPORT #: WCAP-13353 l* TITLE: Passive Containment Cooling System Water Distribution

Phase 1 Test Data Report DATE: April 1992 4

4 4 i l 4 4 ) I m:\3334w-a.wpf:1b-1104% A-10

 . - - . .   .- ~ - ~ ~ , . - - . . . _ _ . . .                . . - -
                                                                     .     - _ . . . - .        -   . . . - . - .   . . . - . ~ . - . . . . . . . - .       . . - .

1 1

                                                                                                                                                                     )

i i i I 1 I* TABLE OF CONTEarTS 1.0 SCOPE 1 g 2.0 TEST OBJECTIVES 1 3.0 TEST OPERATIONS 1 .

                       $ 4.0                   TEST DATA AND EVALUATICIf                                          1 1

REFERENCES 5 ATTACEMENT 1 ATTAC30dEarT 2 i ATTACENE3fT 3 , e 6 1 i e n F P l t k 1 i i 5 t

l 1 l l l REFERENCE #: 11 REPORT #: WCAP-13296 1 l TITLE: PCS Water Distribution Test Phase 2 - Test Data Report DATE: April 1992 4 t-j i m:\3334w-a.wpf:1b-112096 A-11 ,

i i TABLE OF CONTENTS 1.0 SCOPE 1 2.0 TEST OBJECTIVES 1 3.0 TEST FACILITY DESCRIPTION 1 , 4.0 TEST MODEL DESCRIPTION 7 l - ! 5.0 TEST OPERATIONS 8 < 1 REFERENCES 45 ATTACHMENT 1 ATTACIMENT 2 1 ATTACHMENT 3 ATTACHMENT 4 ATTACHMENT 5 l ATTACHMENT 6

       .                            ATTACHMENT 7 ATTACHMENT 8 ATTACHMENT 9 ATTACHMENT 10 l

O PCC8aEP: Pets:2 i e

3 TABLE OF CONTENTS 1

LIST OF FIGURES l l

i FIGURE 1 TEST MODEL/ FACILITY OVERALL FRONTAL VIEW 2 FIGURE 2 MODEL WATER SUPPLY SYSTEM & CONTROLS 3 i

   ,                     FIGURE 3                         CENTER                                                                4                  I FIGURE 4 l                                                          CENTER VIEW OF MODEL AFTER RE-PAINTING                                5 FIGURE 5                              WATER DISTRIBUTION SYSTEM INSTALLED ON MODEL SURFACE 6                              i 4

FIGURE 6 PRELIMINARY CONSTRUCTION OF MODEL SUPPORT FRAME 8 . SUPERSTRUCTURE i FIGURE 7 TRUSS ASSEMBLY INSTALLATION IN PROGRESS 9 FIGURE 8 UPPER VIEW OF THE MODEL CENTER DURING TRUSS INSTALLATION 10 FIGURE 9 TRUSS INSTALLATION ON MODEL SUPERSTRUCTURE 11 FIGURE 10 LOWER SECTION OF TWO-INCH FORMING PIPES INSTALLED ON TRUSS 12 ASSEMBLIES FIGURE 11 MODEL SHAPE WITH TWO-INCH FORMING PIPES INSTALLED ON TRUSS 13 ASSEMBLIES FIGURE 12 UPPER MODEL SKIN INSTALLATION 14 FIGURE 13 MODEL SKIN INSTALLATION NEARING COMPLETION WITH PANEL 15 SEAMS PUTTIED FIGURE 14 PUTTY SANDING OPERATIONS 16 FIGURE 15 FLOOR GUTTER WITH SELF PRIMING DEWATERING PUMPS USED 17 FOR WATER COLLECTION FIGURE 16 GUTTER COLLECTION LOCATIONS 18

   -                                                                                                                                               i 1

FIGURE 17 OVERALL VIEW 0F MODEL WITH CONTROL POINTS FOR SURFACE 19

                                                         $URVEY FIGURE 18                        MODEL SURFACE SURVEY OPERATIONS SETTING A CONTROL POINT            20 FIGURE 19                        TYPICAL MANIFOLD PIPE                                              22 FIGURE 20                        TYPICAL SPRAY N0ZZLE ASSEMBLY                                      23 FIGURE 21                        GENERAL VIEW 0F CRACKS IN THE PAINT ON THE PtTTTIED SEAMS          24 i

l PctsatP: Pets:3 i

TABLE OF CONTENTS LIST OF FIGURES FIGURE 22' CLOSE-UP VIEW OF CRACKS IN THE PAINT ON THE PUTTIED SEAMS 25 FIGURE 23 VACUUM BLASTING 0F TEST MODEL SURFACE 26 FIGURE 24 TEST PANEL WITH PUTTY OVERLAY ON EP0XY RESIN 27

  • PUTTY FIGURE 25 CLOSE-UP VIEW 0F PAINTED TEST PANEL BEFORE WETTING 28 FIGURE 26 CLOSE-UP VIEW 0F CRACKS ON PAINTED TEST PANEL AFTER WETTING 29 FIGURE 27 RE-PUTTY OF PANEL SEAMS WITH PUTTY ON THE TEST 30 MODEL

! 31 FIGURE 28 CLOSE-UP VIEW 0F RE-PUTTIED PANEL SEAMS IN PROGRESS WITH PUTTY FIGURE 29 SANDING OPERATIONS OF RE-PUTTIED PANEL SEAMS ON THE 3: TEST MODEL l FIGURE 30 TYPICAL 34 j PLATE AND ! FIGURE 31 TYPE 2 AS3EMBLY INSTALLATION IN PROGRESS WITH 35 j SPACING

                      ~ FIGURE 32             TYPE I       PLATE ASSEMBLIES INSTALLED WITH                        36 SPACING l                            FIGURE 33                                          5 PACING                   PLATE   37 FIGURE 34         TYPE I      . PLATE ASSEMBLIES INSTALLED WITH M00!FIED              38 PLATES FIGURE 35         TYPE 2       PLATE ASSEMBLIES INSTALLED WITH MODIFIED               39 PLATES FIGURE 36         OVERALL VIEW 0F TEST MODEL WITH N00!FIED                            40 PLATES INSTALLED FIGURE 37         CLOSE UP VIEW 0F CAPACITEC FILM THICKNESS MEASUREMENT               41 PROBE & MOUNTING FIXTURE FIGURE 38         CAPACITEC FILM THICKNESS MEASUREMENT PROSE & SIGNAL                 42 CONDITIONER
FIGURE 39 CLOSE UP VIEW 0F THE RE-PAINTED SURFACE PRE-TEST 43 l

FIGURE 40 CLOSE-UP VIEW 0F THE RE-PAINTED SURFACE POST-TEST 44 ? PCCSREP:PetEd l

1 1 REFERENCE #: 12 j l 1 REPORT #: WCAP-13960 I l l* TITLE: PCS Water Distribution Phase 3 i Test Data Report l DATE: December 1993 l 5 l i I j i I l } i e 1 i 4 ) 1 4 1 i a 5' m:\3334w-a.wpf.lb-1104% A-12 1

i TABLE OF CONTENTS l I

1. 0 SCOPE 1 l yir 2.0 TEST OBJECTIVES 1 1

3.0 TEST FACILITY, MODEL, AND WEIR DESCRIPTION 1  ; l 4.0 TEST OPERATIONS 3 1 REFERENCES 21A ATTACHMENT 1 UPPER WEIR, LOWER WEIR, & SUPPORT . l DETAIL DRAWINGS i ATTACHMENT II COLLECTION DRUM DATA SHEETS l ATTACHMENT III VOLUMETRIC COLLECTION DATA SHEETS ATTACHMENT IV FILM THICKNESS DATA SHEETS j ATTACHMENT V DAILY TEST LOG BOOK ENTRIES ATTACHMENT VI AS BUILT INSTALLED POSITIONS OF WEIR CHANNELS

                      & SUPPORTS l

1 l

i-i e TABLE OF CONTENTS 1 LIST OF FIGURES FIGURE NO. 1 OVERALL VIEW OF THE TEST FACILITY 2 i FIGURE NO. 2 UPPER WEIR ASSEMBLY 4 i i FIGURE NO. 3 LOWER WEIR ASSEMBLY 5

FIGURE No. 4 VIEW OF THE DISTRIBUTION BOX, COLLECTION TUBE, i AND BACK STIFFENER 6 FIGURE No. 5 DISTRIBUTION BOX DRAIN HOLE 7 FIGURE NO. 6 CHANNEL DRAIN BACK HOLES AND OUTLET SIDE PLATE 8 FIGURE No. 7 CHANNEL DIVIDER PLATES WITH CROSS OVER HOLE
  • 9 1

. FIGURE NO. 8 UPPER ASSEMBLY NOTCH PLATE SPACING 10 j , AND STOP PLATE 4 TIGURE NO. 9 LOWER ASSEMBLY NOTCH PLATE SPACING 11,12 j & 10 AND STOP PLATE FIGURE No. 11 WEIR CHANNEL END SUPPORT 13 i ! FIGURE No. 12 DISTRIBUTION BOX MOUNTING PLATE AND CHANNEL END 14 l SUPPORT l ,' FIGURE No. 13 POSITION OF UPPER WEIR ASSEMBLY 15 l l f FIGURE No. 14 UPPER & LOWER "V" NOTCH PLATE 16 1 <

FIGURE NO. 15 FIVE FOOT VOLUMETRIC COLLECTION GUTTER 18 i

FIGURE NO. 16 CAPACITANCE PROBE FIXTURE, CONDITIONERS, AND 19

INSTRUMENTATION FIGURE No. 17 SIMULATED BAFFLE PLATE SUPPORTS 20 i

J 4 i i - 4 4

REFERENCE #: 13 REPORT #: WCAP-12668, Rev.1 TITLE: AP600 High Inertia Rotor Testing - Phase 1 Test Report DATE: 1992 l l l nu\3334w-a.wpf:1b-11%% A-13 j l

9 Contents  :

  .                                                                                                                                                   I
   -                               Abstrset .......................................................                                                 y i-                                  List of Tab 1ee..................................................                                              vi List of         Figures.................................................                                      vii
                                  -1.

l

  • Introduction ............................................... 1-1 g 2. Summary .................................................... 2-1 2.1 Conclusions ........................................... 2-2 2.2 Recommendations ....................................... h2
3. Journal and Test Bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~

3.1 ligh Inertia Rotor ........................... 31$ 3-1 1 3.2 Bearings and Test Housing ............................. ......... 3-4

4. Test Facility .............................................. 4-1 4.1 General Dessiga ....................................... 4-1 4.2 Descripties of Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 4.2.1 Foundation, Base Flate, and Support Bases ...... 4-8 4.2.2 Support Beariass, Rossings, and Seals .......... 4-11 4.2.3 Shaft and Coupling ....................... 4-22 l

4.2.4 Drive Motor and Controller ..................... ...... 4-25 4.2.5 Thrust Leading Systes . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28 4.2.8 tadial Systaa .......................... 4-32 4.2.7 T Measur Systes ........................ 4-35 4.2.8 til ly Systes .............................. 4-40 4.2.9 Water ly Systes and Shaft Seals ............ 4-45 4.3 Assembling The ter and Test Bearing Eeusings . . . . . . . . 4-55

5. Test Methods ............................................... 5-1 5.1 Instrumentaties .......................................

5.1.1 Temperature .................................... 5-1 _ 5-1 5.1.2 Thrust Lead and Pressure ....................... 5-6 5.1.3 Radial Lead and Torque ......................... 5-7 ' 5.1.4 Other Instrumentaties . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9 5.1.5 Data Le 5-10 5.2 Test Progras .gging ...................................

                                                                    .........................................                                  5-11 l
6. Bearing Test Results ....................................... 6-1 l

l . 111 I l

6.1 Original Freload .................... 6-1 6.2 Reduced Freload ..................... .................

                                                                                                   .................                       6-11 6.3 Post-Test Inspection ......................                                                                   6-20 6.4 Discussion ............................................                       ............                    6-23 7.

References ................................................. 71

8. Acknowledgme nts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Appendix - Bearing Test Data from All the Tests la Chronological Order ................................. A-1 -

1 e 1Y

I REFERENCE #: 14 l REPORT #: WCAP-13319 l' TITLE: AP600 High Inertia Rotor Testing Phase 2 Report DATE: April 1992 l I I i I l l l l l l i ? l m:\3334w-a.wpf;1t>110496 A-14

    . . .       .              .--.. - . . .---=_- - -.                                               .         _ . _                  _ _ .     . -    .

1 (:ontents i Pare Abstract..................................................... iv L i s t 'o f T ab l es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures.............................................. vii -

1. Introduction ................................................ 1-1 pp 2. Suasary ..................................................... 2-1 .

2.1 Conclusions ............................................ 2-1 2.2 Recommendations ........................................ 2-2

3. Phase 2, Task 1 - Testing With Smooth End Covers . . . . . . . . . . . . 3-1 3.1 Modifications to Journal and Test Bearings . . . . . . . . . . . . . 3-1 3.2 Modifications to Test Facility and Instrumentation ..... 3-2 3.3 Bearing Test Results ................................... 3-4 3.4 Post-Test Inspection ................................... 3-6 3.5' Discussion ...'.......................................... 3-7
4. Phise 2, Task 2 - Testing Without End Co' vers . . . . . . . . . . . . . . . . . 4-1 4.1 Modifications ...........................'............... 4-1 4.2 Bearing Test Results ................................... 4-2 4.2.1 Flow Plugs Removed .............................. 4-2 4.2.2 Flow Pluss Installed ............................ 4-4 4.2.3 Flow Pluss and Bumper Plate Removed . . . . . . . . . . . . . 4-6 i 4.3 Discussion ............................................. 4-7
5. Acknowledgemente ............................................ 5-1  !
6. References .................................................. 6-1 Appendix - Bearing Test Data from All the Tests in Chronological 0rder........................................ A-1 l

I 1

  • l

1 i i List of Tables l Table 3-1 Results of Bearing Loss Measurements for Forward Direction i Tests with 47% Preload and Smooth End Covers (Phase 2, Task 1)  ; Table 3 Results of Bearing Loss Measurements for Reverse Direction , Tests with 47% Preload and Smooth End Covers (Phase 2,  ! Task 1)  : l Table 3-3 Suasary of Power Losses at 1750 rpa with 475 Preload and  ! Smooth End Covers l . Table 3-4 Summary of Average. Power Losses at 1750 rps with 475 ' l Preload l l Table 4-1 Results of Bearing Loss Measurements for Forward Direction i ! Tests with 47% Preload, No End Covers, and All Six Plow l Plugs Removed (Phase 2, Task 2, Part 1) 1 Table 4-2 Results of Bearing Loss Measurements for Reverse Direction l Tests with 47% Preload, No End Covers, and All Six Flow l l Plugs Removed (Phase 2, Task 2, Part 1) { l Table 4-3 Suasary of Power Losses at 1750 rps with 47% Preload, No i End Covers, and Flow Plugs Out l Table 4-4 Results of Bearing Loss Measurements for Forward Direction Tests with 47% Preload, No End Covers, and All Plow Plugs in Place (Phase 2, Task 2, Part 2) Table 4-5 Results of Bearing Loss Measurements for Reverse Direction Test with 475 Preload, No End Covers, and All Flow Pluss in Place (Phase 2, Task 2, Part 2) Table 4-6 Summary of Power Losses at 1750 rps with 47% Preload, No End Covers, and Flow Plugs In - i Table 4-7 Results of Bearing Loss Measurements for Forward Direction l Tests with 47% Preload, No End Covers, Flow Pluss Removed, l and Bumper Plate Removed (Phase 2, Task 2, Part 3) Table 4-8 Results of Bearing Loss Measurements for Reverse Direction Tests with 475 Preload, No End Covers, Flow Plugs Removed, and Bumper Plate Removed (Phase 2, Task 2, Part 3) Table 4-9 Suasary of Power Losses at 1750 rpa with 47% Preload, No End Covers, Bumper Plate Removed, and Flow Plugs Out f I

I J Table 4-10 Effect of Renoval of Flow Pluss on Power Losses at 1750 rps , with 47% Preload, No End Covers, and Bumper Plate In i Table 4-11 Effect of Removal of Bumper Plate on Power Losses at 1750 rps with 47% Preload, No End Covers, and Flow Plugs Out Table 4-12 Average Temperatures at Maximus Speed for Tests with No End Covers, Task 2 . 9 4 e 9 O vi l

l List of Figures Figure 3-1 Smooth end cover f astened to the bumper plate end of the rotor over the canopy welds and balance cutout areas Figure 3'2 Smooth end cover f astened to the thrust runner end of the rotor over the canopy welds and balance cutout areas l Figure 3-3 Thrust bearing assembly with smooth covers fastened to the retaining ring

  ^

Figure 3-4 Housing shroud with bumper plate showing smooth cover over the outer bolting circle of the bumper plate , Figure 3-5 Instrumentation and flexible water connections on the housing shroud j Figure 3-6 Radial bearing pad thermocouple lead installation and anchoring Figure 3-7 Test data at 1666 rps with smooth end covers Figure 3-8 Support bearing temperatures and other data related to the' l test shown in Figure 3-7

Figure 3-9 Schematic plot of temperatures in th's radial and thrust  ;

bearings at 1666 rps with smooth end covers l Figure 3-10 Variation of power losses in the test bearing with l rotational speed and direction for tests with smooth end covers Figure 3-11 Influence of thrust load on power loss in the test bearing. l with end covers at 1667 rpm and various radial loads j i ! Figure 3-12 Influence of radial load on power loss'in the test bearing with end covers at 1667 rpm and various thrust loads Figure 3-13 Bearing test housing with shroud removed showing rub marks j en the end cover '

    . Figure 3-14   Enlarged view of the loosened and rubbed end cover Figure 3-15    Housing shroud with bumper plate showing rub marks on the cover over the outer bolting circle of the bumper plate Figure 3-16    Enlarged view showing lifting of the cover on the bumper plate l

vii a e I

Figure 3-17 Comparison of power losses between current testing with end covers and Phase 1 testing without end covers at the same 475 preload Figure 3-18 Pressure variation with radial position on the shroud and bumper plate - comparison between the current testing at 1666 rps with end covers and Phase 1 testing at 1784 rps without end covers at the same 47% preload - Figure 4-1 Housing shroud with the bumper plate removed for testing with a large end gap , Figure 4-2 Test data at 1748 rpa (1687 indicated rpm) with end covers and flow plugs removed and bumper plate installed Figure 4-3 Support bearing temperatures and other data related to the l test shown in Figure 4-2 Figure 4-4 Schematic plot of temperatures in the radial and thrust bearings at 1748 rpm with end covers and flow plugs removed and bucper plate installed Figure 4-5 Yariation of' power losses in the test bearing with i rotational speed and direction for tests with end covers and flow plugs removed and bumper plate installed Figure 4-6 Test data at 1727 rps with end covers removed and flow plugs and bumper plate installed Figure 4-7 Support bearing temperatures and other data related to the test shown in Figure 4-6 Figure 4-8 Schematic plot of temperatures in the radial and thrust bearings at 1727 rps with end covers removed and flow plugs and bumper plate installed Figure 4-9 Variation of power losses in the test bearing with rotational speed and direction for tests with end covers , removed and flow plugs and bu=per plate installed Figure 4-10 Test data at 1739 rpm with end covers, bumper plate, and . flow plugs removed Figure 4-11 Support bearing temperatures and other data related to the test shown in Figure 4-10 Figure 4-12 Yariation of power losses in the test bearing with rotational speed and direction for tests with end covers, bumper plate, and flow plugs removed viii

       ._ -_ _ .           . -        - - = _ _ _ _ . . -        - -- .    . _ . -.-- -   . - - -

Figure 4-13 Influence of flow plugs on power loss in the test bearing at 47% preload with no end covers and with bumper plate installed Figure 4-14 Influence of bumper plate on power loss in the test bearings at 47% preload with no end covers and with flow plugs removed I , l Figure 4-15 Influence of rotational speed on the pressure variation  ! I with radial position on the shroud and bumper plate for ) forward direesion tests with end covers and flow plugs  ! removed i Figure 4-16 Influence of direction on the pressure variation with radial position for tests with end covers and flow plugs removed and bumper plate installed,1751 rps forward and 1731 rps reverse l Figure 4-17 Influence of flow plugs on the pressure variation with radial position for tests with end covers renoved and i 1 bumper plate installed,1741 rps for plugs otat and 1726 1 rps for plugs in , Figure 4-18 Influence of bumper plate or axial gap on the pressure ' variation with radial position for tests with end covers j j and flow plugs removed, 1741 rps for bumper plate in and ) l 1740 rpa for bumper plate out I l l l l 1X

  • 1 i  !

REFERENCE #: 15 REPORT #: WCAP-13758 l TITLE: High Inertia Rotor Test Phase 3 ' l Report DATE: June 1993 l m:\3334w-a.wpf.lb1104% A-15 l

      . -        -        ~.              .          - . . - . -                         _ -             . - . -                   -                . - .          .   ..

i l Contents f.32!! Abstract........................................................................................ iv List o f Tabl es ..... .. ........ . . . .. . .... . ... . ........ . . ... .. ......... ... . ... .... . . .. .. . ... . .. .. v Ust o f Figu res. .............. ..... .. ...... ...... ............. .. .. .......... . . .. vi \ ! 1. I ntrodu cti on . .... .............. ....... .. .. .......... .. .. . ... ... .. .... ........ ... ........ .. .. ... . 1-1 2-1 l i$ 2. S u m m ary ... .. .............. . . . .. . . .... . .... . ............ ..... . ......... ... .. .. .... .. 2.1 Con clusio ns..... ..... ........................ ..................... ...... .. .......... 2-1 2-2 2.2 Recom.mendations ..... ...... .. . .. .. ...... ............. .. ...... .. ..

3. Testing With Half inch Radial Gap ... ...... .. ......... .......... .. .. ........ 3-1 3.1 Modifications ........... ...... ..... ............................. . ....... ......... 3-1 3.2 Bearing Test Results .... ..... . . . .. ..... .. .. ............. 3-3
3.3 Discussion ... . .. ........... ......... .. .. .. ................. ......... 3-7
4. Acknowledgements . .. .. . .. . .. .. .......... .... ..... ...... ........ 4-1 ,

l i

5. References ... . .. .... .. . .. .. .. .. .. ..... .. .. .. ...... ......... 5-1  ;

Tables. .. .. . . .. .. .. .. . .. . .. .. ..... .. .. . . . .. . ... 6-1 l Fig u res . ...... .... ..... .. .. . .. .. ..... ..... .. .. .. .. ..... .. . .... 7-1 l . l, Appendix - Bearing Test Data from All the Tests in Chronological Order. ...... .. .. . .. .. .. .. .. .. .. ..... .. .. ...... 81 I f . t l l 4 J leeil

l List of Tables Table 1 Thermocouples Connected to the Data Logger Table 2 Results of Loss Measurements for Forward Direction Tests with Half-inch . Radial Gap Table 3 Results of Loss Measurements for Reverse Direction Tests with Half- . Inch Radial Gap l Table 4 Results of Loss Measurements for Reverse Direction Tests at Different ' Thrust Loads with Half-inch Radial Gap l l Table 5 Results of Loss Measurements for Forward Direction Tests at Different 'l Thrust Loads with Half-inch Radial Gap

                                                                                               \

Table 6 Summary of Power Losses at 1750 rpm with Half-inch Radial Gap Table 7 Effect of Replacement of Radial Bearing Pads by Half-Inch Radial Gap on Avera0ed Power Losses at 1750 rprn '  ; Table 8 Summary of Power Losses at Different Speeds and Thrust Loads Table 9 increase in Power Loss due to increasing Thrust M Table 10 Summary of Starting Torques and Speeds Table 11 Summary of Starts and Operating Time Table 12 Avera0e Temperatures at Maximum Speed Y l l

I l List of Figures Figure in Cylindrical shroud for producing a half-inch radial gap around the high inertia test rotor l Figure 1b Details of the cylindricalshroud Figure 2a AP600 high-inertia rotor and test housing with half-inch gap Figure 2b AP600 high inertia joumal and bearing at.sembly Figure 3 Cylindrical shroud for half-inch radial gap Figure 4 Installing the cylindrical shroud in the test housing Figure 5 Test rotor with Nbcarta spacer for transporting the rotor / housing assembly to the test facility Figure 6 Schematic of thermoccuple locations on the eleven thrust shoes { Figure 7 Non-w.^-4 displacement transducers mounted between the coupling { and the thrust-loading cylinder i Figure 8 Non-wins displacement transducers mounted near the large support bearing housing l Figure g Test housing with support framework holding the non-contacting displacement transducers Figure 10 l l Test housing with instrumentation '

Figure 11 End viewof test housing l

Figure 12 Opticaltachometer

   ,             Figure 13          Test data at 1754 rpm with half-inch radial gap Figure 14 Support bearing temperatures and displacement gauge readings for the test shownin Figure 13 Figure 15 Schematic plot of temperatures in the thrust bearing at 1754 rpm with half-            >

inch radialgap 9 $ l vi 9

                                                                               --         . . - . - - _ ~

i

                              .                                                                              1 I

i

                                                                                                       . I Figure 16 Variation of power losses from torque and speed and from flow and temperature rise with rotation speed and direction for tests with half-inch radial gap Figure 17 Influence of thrust load on power loss for tests with half-inch radial gap Figure 18 Examples of torque and speed oscilloscope traces for testing with 10000 lb thrust load. (Upper) Start No. 4. (Lower) Slow running after start No. 4.

Figure 19 influence of replacement of radial bearing pads by a half-inch radial gap on powerloss Figure 20 Influence of rotation direction on the pressure distribution with radial position for tests with half-inch radial gap,1752 rpm forward and 1744 rpm reverse Figure 21 Influence of removal of radial bearing pads on the pressure distribution 1 with radial position,1724 rpm with radial pads installed (Phase 2) and 1748 rpm with radial pads replaced by a half-inch radial gap (Phase 3) Figure 22 Variation of presure at two radial positions with speed showing influence of replacement of radal bearing pads by a half-inch radial gap i 9

REFERENCE #: 16 REPORT #: WCAP-13298

   ~

TITLE: RCP Air Model Test Report DATE: April 1992 i i l 1 I i, 4 1 m:\3334w-a wpf.1b-1104% A-16

i i l

                                ..                                            TABLE OF CONTENTS EAILt RECORD 0F REVISIONS . . . . . . . . . . . . . . . . . . . . . . .                             i ABSTRACT         ,...........................                                                11
                %e 

1.0 INTRODUCTION

                  ..........................                                      1-1

2.0 CONCLUSION

S AND REC 0 m EN0ATIONS . . . . . . . . . . . . . . . . . 2-1 . 3.0 DISCUSSION OF RESULTS . . . . . . . . . . . . . . . . . . . . . . 3-1 4.0 TEST PLAN . . . . . . . . . . . . . . . . . .,. . . . . '. . . . . ~4 1 l 4.1 Component Design . . . . . . . . . . . . . . . . . . . . . . 4-1 1 4.2 Loop Configurations .................... 4-5 4.2.1 Straight Inlet Testing ............... 4-5 4.2.2 Full Loop Configuration . . . . . . . . . . . . . . . . 4-4 4.2.3 N-1/Startup Configuration . . . . . . . . . . . . . . 4-10 4.3 Test Procedure and Data Acquisition ............ 4-10 5.0 ANALY315 0F TEST RESULTS .................... 5-1 5.1. Performance Testing .................... 5-4 5.2 Swirl Testing .......................

                                                                          .                                          5-10 5.3 Smoke Testing                .......................                                   5-30 5.4 Flow Stability Testing . . . . . . . . . . . . . . . . . . .                           5-31, 5.5 Homologous Curve Testing . . . . . . . . . . . . . . . . . .                           5-33 6.0 AC MOWLEDGD elTS                 ........................                                    6-1 7.0 015 M ICR ..........................                                                         7-1
                                 ==

APPEWIX A - Drawing Li st . . . . . . . . . . . . . . .' . . . . . A-1 APPDWIX B - Photographs .................... B-1 APPEN0!X C - Test Specification . . . . . . . . . . . . . . . . . C-1 t APPENDIX 0 - Microfilm of Test Results .............. D-1 i 1 111 t l

LIST OF TABL M Tab 1'e

                  !f9.a      11112                           -

EA2.1 1 Design Requirements for the AP600 Air Test . . . . . . . . . 1-3 2 Summary of AP600 Air Test Results at Design Conditions . . . 3-2 3 Test Matrix Status Summary . . . . . . . . . . . . . . . . . 4-4

   ~
 .                4          Final Need vs Flow Data -                              .............                               5-7 5          Final Head vs Flow Data -                              .............                               5-8 6          Final Swirl Analysis Results . . . . . . . . . . . . . . . .                                       5-13 7          Homologous Curve Checkpoint Test Results . . . . . . . . . .                                       5-37 i-I e

e I O I 1 iv

I l l LIST OF FIGURES Figure

              !!9.4 11118                                                                                        ?428 1       AP600. Air Test Model Pump Schematic                      . . . . . . . . . . . .            4-2           1 2        Straight Inlet Air Test Configuration                        . . . . . . . . . . .           4-6 3        AP600 Full Loop Configuration                     . . . . . . . . . . . . . . .              4-7           l
                                                                                                                             ~
                                                                                                                               \

4 Probe Ring Orientation for Air Test Pump Assemblies . . . . 5-2 5 Traverse Dete Velocity Triangle llamenclature . . . . . . . . 5-3 6 Final Head vs Flav Perfomance . . . . . . . . . . 5-5 7 Final Head vs Flow Perfomance - . . . . . . . . . 5-6 8 Axial Flow Vector Plot - Full Loop Cunfiguration  !

                                                                        . . . . . . . .. . . . . .              5-15 9         Tangential Flow Contour Plot - Full Loop Configuration
                                                                    .   . . . . . . . . . . . . . .             5-16 10         Tangential Flow Vector Plot - Full Loco Configuration
                                                                        . . . . . . . . . . . . . .             5-17 11         Axial Flow Vector Plot - Full Loop Confiouration
                                                                          ,.  . . . . . . . . . . . .           5-18 12         Tangential Flow Contour Plot - Full Loop Configuration
                                                                           . . . . . . . . . . . . .            5-19 13         Tangential Flow Vector Plot - Full Loop Configuration l
                                                                           . . . . . . . . . . . . .            5-20 14         Axial Flow Vector Plot - Full Loop Confiauration -
                                                                           . . . . . . . . . . . . .           '5-21 15         Tangential Flow Contour Plot - Full Loop Configuration
                                                                           . . . . . . . . . . . . . .          5-22 y

O

l l

  • LISTOFFIGURES(Continued) i

! Figure

                        }kb       11118                                                                          f.itt l                     16            Tangential Flow Vector Plot - Full Loop Configuration
                                                                             , .............                     5-23 l,                    17           Axial Flow Vector Plot - Full Loop Configuration
                                                                            ..............                       5-24 18           Tangential Flow Contour Plot - Full Loop Configuration                        --
                                                                            . .............                      5-25 19           Tangential Flow Vector Plot - Full Loop Configuration
                                                                            .    .............                   5-26 20             Axial Flow Vector Plot - N-1/Startup Configuration
                                                   ..........................                                    5-27 21            Tangential Flow Contour Plot.- N-1/Startup Configuration
                                                   ..........................                                    5-28 22            Tangential Flow Vector Plot - N-15tartup Configuration
                                                   ..........................                                    5-29 23            Flow Monitoring Test - Steady State Traces of Venturi'Ap vs Time . . . . . . . . . . . . . . . . . . . . .                    5-32 24            Flow Monitoring Test -               Puno Destabilization . . . . . . .         5-34
   .               25            Flow Monitoring Test .                Pump Destabilization    ......            5-35 l

l f vi P

l REFERENCE #: 17 l REPORT #: WCAP-12648, Rev.1 TITLE: AP600 Incore Instrumentation ' l System Electromagnetic l l Interference Test Report - DATE: August 1990 l l l l l m:\3334w-a.wpf:1b-1104% A-17

                                                    -   ..   . - . -   . . . .. .-~ .-.     .. . - . .

e d d AP600 INCORE INSTRUNENTATION SYSTEN ELECTRONAGNETIC INTERFERENCE TEST REPORT l 4 1 TABLE OF CONTENTS j 1.0 Abstract

                         . 2.0 System Configuration 3.0 Analysis /Assump'tions 4.0 Test. Description 4.1 Materials 4.2 Test Configuration                                        j 4.3 Test Procedure                                            !

4.4 RPI Detector Test 5.0 Test Results 6.0 Conclusions i 0833npb:am:081690 4

l l l 4 i l 4 REFERENCE #: 18 REPORT #: WCAP-13351 TITLE: Studies of Hydraulic Phenomena ' in the Reactor Vessel Lower l Plenum Region - Test Report ~ l

\

l DATE: April 1992 1 i i i l I ! l J m:\3334w-a.wpf:1b-1104% A-18

I i TABLE OF CONTENTS f Page April 18, 1991_ Progress Report 1  ; Test Facility Drawings 8 l September 30, 1991 Progress Report 19 December 31, 1991 Progress Report 59 l O h s 9

REFERENCE #: 19 REPORT #: WCAP-12980, Rev. 2 TITLE: AP600 Passive Residual Heat - Removal Heat Exchanger Test - Final Report - DATE: September 1996 l l l t m:\3334w-a.wpf:1b-112096 A-19

s l TABLE OF CONTENTS l @ I101 fBRE 1.0 AB STRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 i

                                                                                                                                                            \

42.0 INTRODUCTION

. . . . . . . . . - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .              21     I 1

I

      .                                                                                                                                                    i i

I 3.0 ~1EST OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 ' l 4.0 FACILITY DESCRIFFION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 1 4.1 Scaling Basis for the Passive Residual Heat Removal Tests . . . . . . . . . . . . . . . . . . 4-1 4.2 Summary Description of the Test Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 4.3 Heat Exchanger Characteristics, Operating Parameters, and Instmmentation S ummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 4.4 Detailed Description of Test Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 4.4.1 Test Heat Exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 4.4.2 High-Pressure Prunary System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 4.5 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 l 4.5.1 Thermocouples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 4.5.2 Flowmeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9 4.5.3 Pressure and Level Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10 4.5.4 Wattmeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10 4.5.5 Data Acquisition and Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10 4.6 Testing Prems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11 5.0 TEST MATRIX AND DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 i 6.0 DATA REDUCTION METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 6.1 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 1 { 6.2 Calibration and Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... 6-3 I

  • l'
             $ 7.0 DATA ANALYSIS METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                         7-1 8.0 TEST RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-i 1

8.1 Configuration Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1  ! 8.2 . Plume Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 83 Steady-State Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............. 8-3 8.4 Transient Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......84 8.5 Uncovery Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................ 8-5  ; l l \ l l 1 r adap600c821w\2821w.l.wpf It>l10796 iij Remon 2

i TABLE OF CONTENTS (Cont.) Section Ilds .tast , 9.0 ANALYSIS OF THE PASSIVE RESIDUAL HEAT REMOVAL DATA ............. - 9-1  ; 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9- 1 9.2 Passive Residual Heat Removal Modes of Heat Transfer . . . . . . . . . . . . . . . . . . . . 9-1 9.3 Prunary Tube Side Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 9.4 Free Convection Heat Transfer on the Outside of the Passive Residual Heat Reinoval Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 9.5 Boiling Heat Transfer Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 9.6 Flow Analysis of the Passive Residual Heat Removal Data . . . . . . . . . . . . . . . . . . 9-8 , 9.7 Correlation of the Passive Residual Heat Rernoval Boiling Data . . . . . . . . . . . . . . . 9-9 9.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9- 14

10.0 CONCLUSION

S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1 ' 1

1.0 REFERENCES

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         1 1 -1 APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APP                                                                                                                                                ;

APPENDIX B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APP-7 m.ptwus21w.l.wpf;1btl0796 jy Revmon 2

LIST OF TABLES Intet Il!!r. East 41 . List of Instruments . . .

                        .                        ............................................4-14 4-2      Thermocouple Locations in Center and on Surface of PRHR Heat Exchanger Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16          .

4-3 Thermocouple Locations in Secondary Side ' Tank of PRHR Heat Exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-17

            '4 4     Additional Instrumentation of PRHR Heat Exchanger Test
                                                                                              ....................                        4- 19
            '5-1 Passive Residual Heat Removal Heat Exchanger Test Marnx . . . . . . . . . . . . . . . . . 5-3                          ...

6-1 Data Reduction Coefficients

                                                   ..........................................                                              6-5 6-2 Plow Orifice Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-6                          ...........
     ,      6-3 i              List of Lw ume.ots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7                   ..........

6-4. Summary of Specification Error Ee=~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8 7-1 Examples of PRHR Data from Steady-State Test . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 . 8-1 Summary of Configuration Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 8-2 Effect of Various Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-8 8-3 Tank Heatup Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-9 8-4 Summary of Steady-State Passive Residual Heat Removal Tests . . . . . . . . . . . . . . . 8-10 . 8-5 Summary of the Passive Residual Heat Removel Transient Tests . . . . . . . . . . . . . .8-14 .. EhIw\2:2Iw.l.wyf:1b-110796 y h2

_ . . .. .. _ -_ _ _ ._. _ . ._. . . ~. _ ._ _ _ l 1 LIST OF TABLES (Cont.) Ishit 11.01 1 fast i 8-6 Initial Passive Residual Heat Removal Tank Temperatures for Test TV2 . . . . . . . . . . . 8-14 8-7 l Passive Residual Heat Removal Tank '.emim.uuss for Test TD2 After 5172 8-15 Second 8-8 Passive Residual Heat Removal Tank Tempi.Luos for Test 702 After 7983 Seconds . 8-16 8-9 Passive Residual Heat Removal Tank Temperatures for Test TV2 After 14178 Seconds .8 . 1 1 9-1 PRHR Reduced Data from Test S07 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-16 ....... 9-2 I Values of the Coefficient C, for the Rohsenow Equation for Various Lagmd Surface ' Cn=hi== ions (r = 033) [ Reference 23] . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17

                                                                                                                      ......        i l                                                                                                                                    l l         .

t 1 1 4 l 1 1 4 l [ 1 f l l l s.WluA2821w.l.wpf:Ib.110796 vi Revume 2

l LIST OF FIGURES ElEIE1 Dit fBER 2-1 AP600 Passive Residual Heat Removal Heat Exchanger . . . . . . . . . . . . . . . . . . . . . . . 2 3 2-2 Passive Residual Heat Removal Support Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 4-1 Plan View of the Passive Residual Hear Removal Heat Exchanger Test Section . . . . . 4-20

               '4-2             Passive Residual Heat Removal Heat Exchanger Test Facility . . . . . . . . . . . . . . . . . .                            4-21 4-3             Passive Residual Heat Removal Inlet Configuration and Thennocouple L-=*= . . . . .                                       4-22

, 4-4 Detailed Cross-Section View of Test Heat Exchanger . . . . . . . . . . . . . . . . . . . . . . -. . 4-22 )* 4-5 Passive Residual Heat Removal Heat Exchanger Test Tank and Work Platforms . . . . . 4-24 4-6 Passive Residual Heat Removal Heat Exchanger Pnmary Circuit Pump Shown on left. Tank in Middle, Exchanger Tube Return Lmes on Right on l Top of Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25 l 47 High Pressure Electrical Heater and Power Contml Cabmet ! . . . . . . . . . . . . . . . . . . .. 4 26 4-8 Instrumentation Outside the Heat Exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27

4-9 Rotaung 'Ihermocouple Traverses (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28 4 10 Onfice Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29 4-11 Data Acquisition and Recording EM ==t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 30

, 6-1 Comparison of Tube 1 and Tube 2 After 48 Hours No Flow . . . . . . . . . . . . . . . . . . . . 6-9 I 62 History of Tube Temperatures for Test S07 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10 7-1 Instrumentation Locanons and Layout to C=1~1='- Local Tche Wall Heat Fluxes . . . . . 7-8

           . 72                Measured and Fitted Pnmary Fluid Enthalpy Data . . . . .                        . . . . . . . . . . . . . . . . . . . .. 7-9 3

r*1=1=ed Wall Heat Flux from Fitted Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10 8-1 Passive Residual Heat Removal Heat Exchanger Configuration Tests . . . . . . . . . . . . . 8-18 8-2 Local Wall Heat Flux for Configuranon 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-19 8 I.ocal Wall Heat Flux for Configuranon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 20 8-4 Local Wall Heat Flux for Configuranon 3 (Test C03) . . . . . . . . . . . . . . . . . . . . . . . . . 8 8-5

                                                                                                                                                        .-21 Local Wall Heat Flux for Configuranon 4 (Test C04) . . . . . . . . . . . . . . . . . . . . . . . . . 8-22
  .-           8-6             Transient Tant Heamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-23 8-7'            Plume Temperame Traverse for Plume Test P01. . . . . . . . . . . . . . . . . . . . . . . . . . . 8-24 8-8             Plume Temperature Tra.erse for Plume Test P02 . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-25 8-9             Plume Temperature Traverse for Plume Test P03 . . . . . . . . . . . . . . . . . . . . . . . . . . .                      8-26 8-10            Plume Temperamre Traverse for Plume Test POS . . . . . . . . . . . . . . . . . . . . . . . . . . .                       8-27 l               8-11            Plume Tes,- - =; Traverse for Configuration Test CO2 . . . . . . . . . . . . . . . . . . . . . 8-28 8-12            Plume Temy = Traverse for Configuration Test C03 . . . . . . . . . . . . . . . . . . . . . 8-29 8-13            Plume Temperature Traverse for Configuration Test C04 . . . . . . . . . . . . . . . . . . . . . 8-30 1

1 1 ! l ' i

              *W1w\2s21w.l.wyttb-IIC796                                        vij                                                                 h2 i

l _._y,y_ m--. .. , _

IJST OF FIGURES (Cont.) Dann Ibh East 8-14 Composite Plot of Pnmary Fluid, Wall Temperature and Tank Tem Data for Tests S02 Tube 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . .peratme *

                                                                                                                   ............... 8-31 8-15        NE,.yh of Boiling at the Bottom of the Passive Residual Heat Removal                                                                   !

8-16 Tubes for Test S02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-32 ....... ' Nicy.,1 of Boiling at the Mid-Plane of the Passive Residual Heat Removal 8-17 Tubes for Test SO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-33 ....... t Photograph at the Top of the Passive F= Anal Heat Removal Tubes for Test S02 . . . . 8-34 8-18 Passive Residual Heat Removal Heat Flux, Boiling Curve Data for Steady-State Tests . 8-35 8-19 Local Wall Heat Plux for Steady State Test S11 (Three Tubes at I spm each) . . . . . . . 8-36 8-20 Imcal Wall Heat Flux for Steady-State Test S14 (Tubes 2 at I spm each) .......... 8-39 8 ' Local Wall Heat Plux for Steady-State Test SOS (Tubes 1 and 3 at I spm each) . . . . . 8-38 8-22 Compenson of Overall Tube Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-39 8-23 Passive P=An=1 Heat Removal Tank 'Ibermocouple La.aws . . . . . . . . . . . . . . . . . 8-40 8-24 Transant Heatmg of the Center of the Passive Residual Heat Removal Tank for Test 'IV2 8-41 8-25 Transient Heating of Passive Paeidn=1 Heat Removal Tank at Various Radal Locations at the 13.92 Foot Elevation for Test T02 . . . . . . . . . . . . . . . . . . . . 8-42 ..... 8-26 Passive Residual Heat Removal In-Containment Refueling Water Storage Tank Uncovery Tempera me Data (25% Uncovery) for Tube 1

                                                                                ............................. 8 43 8-27        Passive Feeldnal Heat Removal In.r ~*ht Refuehng Water Storage Tank Uncovery Temperstme Data (25% Uncovery) for Tube 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .             8 44 8-28 Passive Resuinal Heat Removal In-Containment Refueling Water Storage Tank Uncovery Temperature Data (75% Uncovery) for Tube 1
                                                                               ............................. 8-45 8-29 Passive Residual Heat Removal In-Contamment Refueling Water Storage Tank Uncovery Temperature Data (75% Uncovery) for Tube 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .            8-46 9-1 AP600 Passive Residual Heat Removal Transfer Modes on Outside of Tubes . . . 9-18                              ....

9-2 Compenson of Precheted and Measured Nusselt Number for Turbulent Flow

  • of Water in a Tube 26.7'C: Pr = 6.0). [From Kreith-Bohm. Reference 2]
                                                                                                                           .......... 9-19 9-3        Compenson of Passive Residual Heat Rernoval Pnmary-Side Heat Transfer with Single-Phase Correlatix.s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-20 9-4        I.ow Heat Flux Test Data From Test S07 Compensons to Eckert. Jackson and McAdams Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-21 9-5        Low Heat Flux Test Data From Test S08 Ccmpansons to Eckert. Jackson and McAdams Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-22 9-6        Test Senes S07 Versus Rohsenow, Original Conelation . . . . . . . . . . . . . . . . . . . . . .                9-23 9-7 Test Series S07 Versus Jens-Lottes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-24 9-8        Test Series S07 Versus McMamm, et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-25 l

l o

                                    -y                                   m              ,              , - - - - -     . . , -             -

LIST OF FIGURES (Cont.) Zisutt ,

                                                                             .Thlt                                                                       East 9-9               Test Series S07 Versus Collier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                  9-26 9-10              Test Series S07 Versus Forster-Zuber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                      9-27
      .      9-11              Test Series S07 Versus Forster-Greif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                    9-28 9-12              Passive Residual Heat Removal Heat Flux Used in Flow Calculation from Test S12                                            9-29 9-13              CalcatM Quality Along the Passive Residual Heat Removal Tubes for Test S12 .                                              9-30 9-14              Calculated Void Fraction Along the Passive Residual Heat Removal Tubes for Test S 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         9-31 9-15              Calculated Mixture Velocity Along Passive Residual Heat Removal Tubes
                             ' for Test S 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         9-32 9-16              Data of Rohsenow-Clark for Nickel-Water Interface for Forced-Convection Surface Boiling [ Reference 5] .....................................                                                      9-33 9-17              Data of Kreith-Summerfield for Stainless Steel Water Interface for Forced-Convection Surface Boiling (Reference 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                   9-34 9-18              Passive Residual Heat Removal Boiling Data Fined Using Rohsenow's Approach .                                              9-35 9-19              Rohsenow Bodmg Cortelation for Platmum-Water Interface for Pool Boiling [ Reference 5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .               9 36                 ,

9-20 Best Fit and 95th Percentile Limits for Passive Residual Heat Removal Data . . . . . 9-37 l 9-21 Test Senes S07 Data Versus Rohsenow, Original Conelation with P,," . . . . . . . . 9-38 1 9-22 Test Senes S07 Data Versus Forster-Zuber with Modified Wall Superheat . . . . . . . 9-39 l l l l i e 1 i s i l l hlw\2:21w.l.wyf Ib-110796 ix Remnos2 i l

                                                            --                                ,-    mu                                                                    ,.&

REFERENCE #: 20 REPORT #: WCAP-14371 TITLE: AP600 Low Flow Critical Heat Flux (CHF) Test Data Analysis DATE: May 1995 m:\33Xs-a.wpf:1b-1104% A-20

LOW Row CHF Tts7 DATA A%4LYW5 l l . TABLE OF CONTENTS l jgtlo!! Title g

         & l.0         INTRODUC110N                                                                        g.g 2.0    1EST FACILi1Y 21 3.0    TEST SECTIONS
 .                                                                                                        33 4.0     1EST PROCEDURE                                                                     4.g 5.0     TEST PARAMETERS 51 6.0     DATA 

SUMMARY

6-1 l 7.0 DATA ANALYSIS 71 M 8.0 ADJUSTMEfG TO WRB-2 CORRELATION g.1

                                                                                      .                                l
          -)f- 

9.0 CONCLUSION

9.; I 1

10.0 REFERENCES

i 30 1 1 l l l 1 . l 4 8

                * ~20s t. .yf Ib0530e$

iii REVISION: 0 G

                                                . ~ . . . .   . . - . - - - - - - . . _ - . .   .   . - . - - . . . - - -
1 l

l l Low Flow CHF 7tst DATA ANattas z > LIST OF TABLES

                         .TMlli                                              E                                              M           !

6-1 AP600 CHF Test Results 5x5 Typical Cell 6-2 6-2 AP600 CHF Test Results 5x5 ' Thimble Cell 6-4 I l J f 6 l l 1

  • N ii==priw ms ,

av REVISION: 0 i e

               ,,      ..m.,
    . _                    __ _          _      .~            - . _ _ _ _ _ . _      _     . . _ . . . . . _   _ - _ __ . _ _ _ _ . .

Low Flow CHF TEST DATA ANA1.YSIS l . LIST OF FIGURES g Title g 21 Elevation View of the Pressure Vessel and Test Section 2-2

    +

33 Typical Cell Cross Section 3-2 3-2 Thimble Cell Cross Section 33 3-3 Axial Geometry '

  • 34 3_: Axial Power Profile for Westinghouse CHF Test 3-5
l. 73 WRB 2 Measured-to-Predicted vs. Local Mass Flux 72 7-2 WRB 2 Measured-to-Predicted vs. Local Pressure 73 ,

g.l Adjusted WRB 2 Measured-to-Predicted vs. Local Mass Flux

              ~

8-3

        , g.2         Adjusted WRB-2 Measured-to-Predicted vs. Local Pressure 8-4 9

( 1e I i I 4 I l v REVISION: 0 l..

l REFERENCE #: 21 REPORT #: WCAP-14149 TITLE: VAPORE Facility Description Report, AP600 Automatic Depressurization System, Phase A Test DATE: August 1994 i i I m:\3334w-a.wpf:1b-1104% A-21

i t i Table of Contents

          -3it 1.0      Introduction   .................. ....                       ............................ ..                                  5 2.0     . General Description . . . . . . .      .... ......................                            ..............6 2.1      Facility Requirements        ... .. .............. ................... ..                                              .. 7 3.0      Facility Dimensions . . . . . . .       ......................... ................                                            8 :

4.0 Facility Characteristics . . . . ................... ....................... 9 4.1 Components .......................................................9 l 4.2 Piping and Valves . . . . . . . . . . . . . . . . . . . . . ........................ . . 10

              '4.3      Instrumentation      ...........             .................................                                   . . . . 12 4.4      Data Acquisition System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        .... ......               13  )

4.5 H'e at Loss Information . . . . . . . . . . . . . . . . . . .................... ....... 13 4.6 Control and Safety Systems . . . . . . . . . . . . . . . . . . ......................... 14 g 5.0 Facility Scaling . . . . . . . ............. ....................... . . . . . 14 6.0 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Dimensional Summary of Test Facility Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Appendix A - Facility As-Built Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 Appendix B - Relevant Instrumentation for Phase A Tests: Methods for its Classification j and Calibration Control . . . . . . ......................... ........B-1 + I 1 1 I i t J l i d i I i i mal 264w.wpf:ltM41894 4 l

l l REFERENCE #: 22 l REPORT #: WCAP-13891 TITLE: AP600 Automatic Depressurization System, Phase A Test Data Report - l DATE: May 1994 l l l t l i i m:\3334w-a.wpf:1b-1104% A-22 l

TABLE OF CONTENTS Section Title Pjtste,

 . $ 1.0               Introduction                                                      1 2.0           Test Description                                                  2
 ~

3.0 Instrumentation and Data Acquisition 5 44.0 Test Results 12 l 5.0 References 14 Appendix A Selected Test Data Plots - Test A1 Through A19 Appendix B Selected Temperature Data i I l l t ] l . iv

   .                                                                                                           I

l l . l 1 LIST OF TABLES l Table Title Pgge, 1 l- 1 Test Matrix 15 2 List of Transducers 16

                                                                                                                 ~                                                              ~

l 3 List of Transducers and Channel Assignments - 22 FM Tape Recorder No.1 i l 4 List of Transducers and Channel Assignments - 23 FM Tape Recorder No. 2 5 List of Transducers and Channel Assignments - 24 FM Tape Recorder No. 3A 6- List of Transducers and Channel Assignments - 25 FM Tape Recorder No. 3B . 1

                                                      .                                                                                                            .              l 7                    List of Transducers and Channel Assignments -                                                                  26 FM Tape Recorder No. 4 9

l V

t l

                                                       ~

l  ! l LIST OF FIGURES fiquLe Title g i 1 Schematic of VAPORE Plant Configuration for Phase A ADS Test 27 2 Transducer Locations on Pressurizer and Discharge Piping 28 3 Locations of Transducers on Discharge Piping and 29

    ~

In Quench Tank - Elevation View 4 Location of Transducers on Sparger 30 5 Location of Transducers in Quench Tank and 31 on Sparger Arms - Plan View 6 Schematic of Data Acquisition System 32 7 Schematic of Data Reduction Equipment Setup 33 4 l l I Vi i e

REFERENCE #: 23 REPORT #: WCAP-14303 TITLE: Facility Description Report AP600

                                                                                     ~

Automatic Depressurization Phase B1 Tests

                                                                                    ~

DATE: March 1995 l l l

                                                                                 /

nt\3334w-a.wpf 1b-1104% A-23

TABLE OF CONTENTS gggti2R Title M

1.0 INTRODUCTION

1-1 2.0 ADS PHASE B1 TEST DESCRFTION 2-1 2.1 Test Method 2-1 2.2 Test Facility Requirements 2-2 3.0 TEST FACIQTY DESCRFFION 3-1 3.1 Principal Components 3-1

.               3.2    Steam / Water Supply Tank              3-1 3.3    Piping                                 31 3.4    Saturated Water Flow Control Valves    3-3 3.5    ADS Valve Package                      3-3 3.6    Sparger and Quench Task                3-4 3.7    Instrumentation                        3-4 3.8    Data Acquisition System                3-8 3.9    Control and Safety Systems            3-9

4.0 REFERENCES

4-1 APPENDIX A - VAPORE FACILITY AS-BUILT DRAWINGS A-1 i n:M766w.wpf:1W31295 ill

i

;           REFERENCE #:                           24 REPORT #:                              WCAP-14324 l            TITLE:                                 Final Data Report for ADS Phase B1 Tests i            DATE:                                  April 1995 5

4 l I m:\3334w-a.wpf-Ib 1104% A-24

l 1 I TABLE OF CONTENTS

  • l Section Title M

SUMMARY

1 i

1.0 INTRODUCTION

1-1 i l 1.1 Test Objectives 1-3 1.2 Test Matri:t 14

      .            2.0      TEST FACILITY DESCRIPTION                                                                    2-1 2.1    Components                                                                            2-1 2.2    Instrumentation                                                                     2-10 l                            2.3    Data Acquisition Systems                                                            2-22 2.4    Control and Safety Systems                                                          2-24      l

! 2.5 Facility Operation and Quality Assurance 2-26 3.0 DATA REDUCTION AND ANALYSIS 3-1 3.1 Data Handling 3-1 ) 3.1.1 IBM Data 3-1 I 3.1.2 Prosig Data 3-1 3.2 Error Analysis 3-5 3.3 Test Evaluation 3-5 3.3.1 Test Acceptance Criteria 3-5 3.3.2 Test Analysis 3-6 i l

4.0 ADS PHASE B1 'IEST AND TEST RESULTS 4-1 '

l 4.1 100-Series Tests 4-2 4.1.1 General 100-Series Test Procedure .4-2 4.1.2 100-Series Test Results . 4-3 ! 4.1.3 Summary of Evaluation of 100-Series Tests 4-5 4.2 200-Series Tests 4-23 4.2.1 General 200-Series Test Procedure 4-23 4.2.2 200-Series Test Results 4-24 j 4.2.3 Summary of Evaluation of 200-Series Tests 4 ; 4.3 300-Series Cold Quench Tank Tests 4-79 4.3.1 General 300-Series Cold Quench Tank Test Procedure 4-79 l 4.3.2 300-Series Cold Quench Tank Test Results 4-80

l. 4.3.3 Summary of Evaluation of 300-Series Cold Quench Tank Tests 4-83 l

l ill u:W1776w.wpf:1b 041295

TABLE OF CONTENTS (Cont.)  ! him Title h 4.4 300-Series Hot Quench Tank Tests 4-121 4.4.1 General 300-Series Hot Quench Tank Test Procedure 4-121 4.4.2 300-Series Hot Quench Tank Test Results 4-122 , 4.4.3 Summary of Evaluation of 300-Hot Quench Tank Series Tests 4-124

                  -)le              4.5                  Summary of Phase B1 Test Program Results                                                4-149   .

5.0 CONCLUSION

S 5-1

6.0 REFERENCES

6-1

 ~

APPENDICES A DATA REDUCTION METHODS A-1 B DATA ANALYSIS MEDIODS AND RESULTS B-1 C SELECIED DATA PLOTS C-1 i D FAILED INSTRUMENT LIST D-1

                               'E                        DATA ERROR ANALYSIS                                                                       E-1 F                       ELECTRONIC DATA FILES                                                                     F-1 i

I i a:W1776w.wpf.!W1295 iv

LIST OF TABLES

Table No. Title g l

! 1.2-1 ADS Phase B1 Text Matrix 1-5 2.1-1 ADS Package Piping Specifications 2-4 l 2.2-1 List of Instruments 2-11 '

   ,    2.5-1    Instrument Modifications for Phase B1 Tests                                       2-27 3.1-1    Data Reduction Coefficients                                                          3-3
    . 3.3-1    ADS Phase B1 Test Specification Critical Instrumentation List                    3-11    '

3.3-2 Mass Measurement Comparison 3-13 3.3-3 Valve VLI-2 Characterization Test Results 3-15 l 4,1-1 Summary of ADS Phase B1 100-Series Test Conditions 4-6 4.2 1 Summary of ADS Phase B1200-Series Test Conditions 4-30 4.3-1 Summary of ADS Phase Bl 300-Series Cold Quench Tank Test Conditions 4-85 4.4-1

  • Summary of ADS Phase B1300-Series Hot Quench Tank Test Conditions 4-126 4.5-1 Overview of ADS Test Article Performance 4-151 4.5-2 Comparison of Intended and Achieved Conditions 4-153 4.5-3 Summary of ADS Phase B1 Test Runs 4-153 l

l i l 1 u:W776w.wpf:Ib.041395 y

LIST OF FIGURES Finure No. Titlt Page 1.2-1 ADS Phase B1 Test Specification Plant Performancerrest Prediction Map for ADS Stage 1 Open 1-7 1.2-2 ADS Phase B1 Test Specification Plant Performance / Test Prediction Map for ADS Stages 1,2, and 3 Open 1-8 , 1.2-3 ADS Phase B1 Test Specification Plant Performance / rest Prediction Map ! for ADS Stages 1 and 2, or Stages I and 3 Open 1-9 1.2 4 ADS Phase B1 Test Specification Plant Performance / Test Prediction Map for ADS Stage 2 Open 1-10 2.1 1 VAPORE Plant Arrangement for Phase B1 Testing 25 2.1-2 VAPORE Facility Configuration for Steam Blowdown Tests 2-6 2.1 3 VAPORE Facility Configuration for Water Blowdown Tests 27 2.1-4 Orifice Simulating 4-in. Gate Valve (Stage 1) 2-8 l 2.1 5 Orifices Simulating 8-in. Globe Valves (Stages 2 and 3) 2-9 2.2-1 ADS Phase B1 Test Specification VAPORE Facility Process , Piping & Instrumentation 2-15 l 2.2-2 Location of Sensors on Discharge Piping and in Quench Tank - Elevation View 2-17 2.2-3 Location of Sensors on Quench Tank and on Sparger Arms - Plan View 2-18 2.2-4 Location of Instrumentation on Sparger 2-19 2.2-5 Location of Strain Gauges on ADS Piping Loop 2-20 2.3 1 VAPORE Facility Control and Data Acquisition System Computers 2-23 2.4-1 Control Sequence for Saturated Water Blowdowns 2-25 3.3-1 Comparison of Supply Tank and Venturi Mass Flow Calculations 3-16 3.3-2 Flow Area Versus Stem Travel for VLI-1 3-17 i 4.1-1 Mass Flow and Quality Measurements for Test A040110 4-7 4.1-2 Flow Path Pressure Plot for Test A040110 4-8 4.1-3 S,mr Temperatures for Test A040110 4 ,. 4.1-4 Quench Tank Temperatures for Test A040110 4-10 4.1-5 Mass Flow and Quality Measurements for Test A041120 4-11 4.1-6 Flow Path Pressure Plot for Test A041120 4-12 4.1-7 Sparger Temperatures for Test A041120 4-13 4.1-8 Quench Tank Temperatures for Test A041120 4-14 4.1-9 Mass Flow and Quality Measurements for Test A038130 4-15 4.1-10 Flow Path Pressure Plot for Test A038130 4-16 4.1-11 Sparger Temperatures for Test A038130 4-17 I e i

                                                                                                                                                )

unap60m1776w.wp01MW1395 vi

   - - - . - ,                    . . _ . .. - - - - . - __. - _.                         . - - . - ~ . . . - . . .   . . - . . . - . -

LIST OF FIGURES (Cont.) . Finure No. . Tith g 4.1-12' Quench Tank Temperatures for Test A038130 4 18 4.1-13 ' .' Mass Flow and Quality Measurements for Test A039140 4-19 4.1-14 Flow Path Pressure Plot for Test A039140 4 20 4.1-15 Sparger Temperatures for Test A039140 4-21

   ,              4.1-16      Quench Tank Temperatures for Test A039140                                              4-22 l

l 4.2-1 Series 200 Tests Intended Performance Versus Achieved Performance l . for Stage ! Operation 4-31 l- 4.2-2 Series 200 Tests Intended Performance Versus Achieved Performance i for Stages 1 and 2 and Stages 1 and 3 Operation 4-32 ! 4.2-3 Series 200 Tests Intended Performance Versus Achieved Performance 4-33 for Stages 1,2 and 3 Operation

             . 4.2 4        Series 200 Tests Intended Performance Versus Achieved Performance for Stage 2 Operation                                                                 4-34 4.2-5        A037210 Mass Flow / Quality                                                           4-35 4.2-6        ADS Flow Path Pressure Plot for Test A037210 (ADS Stage 1 Only)                       4-36 4.2-7        Sparger Temperatures for Test A037210                                                 4-37 4.2-8        Quench Tank Temperatures for Test A037210                                             4-38 4.2-9        A026211 Mass Flow / Quality 4-39

( 4.2-10 ADS Flow Path Pressure Plot for Test A026211 (ADS Stage 1 Only) 4-40 l 4.2-11 Sparger Temperatures for Test A026211 4-41 4.2-12 Quench Tank Temperatures for Test A026211 4-42 4.2-13 A027212 Mass Flow / Quality 4-43 4.2-14 ADS Flow Path Pressure Plot for Test A027212 (ADS Stage 1 Open) 4-44 4.2-15 Sparger Temperatures for Test A027212 4-45 , 4.2-16 Quench Tank Temperatures for Test A027212 4-46 4.2-17 A030220 Mass Flow / Quality 4-47 4.2-18 ADS Flow Path Pressure Plot for Test A030220 (ADS Stages 1 and 2 Open) 4-48 4.2-19 Sparger T+ dms for Test A030220 4-49 4.2-20 Quench Tank Temperatures for Test A030220 4-50 4.2-21 A028221 Mass Flow / Quality 4-51 , . 4.2-22 ADS Flow Path Pressure Plot for Test A028221 (ADS Stages 1 and 2 Open) 4-52 4.2-23 Sparger T+ ores for Test A028221- 4-53 4.2-24 Quench Tank Temperatures for Test A028221 4-54 4.2-25 ADS A031230 Mass / Flow Quality 4-55 4.2-26 ADS Flow Path Pressure Plot for Test A031230 (ADS Stages 1 and 3 Open) 4-56 4.2 Sparger Temperatures for Test A031230 4-57 4.2-28 Quench Tank Temperatures for Test A031230 4-58 4.2-29 A029231 Mass Flow / Quality 4-59 4.2-30 ADS Flow Path Pressure Plot for Test A029231 (ADS Stages 1 and 3 Open) 4-60 l 4.2-31 Sparger Temperatures for Test A029231 4-61 l  ! l i-u:W1776w.wpf:lt 041395 ' vii

                                                                                                    . - -                              . - - ..~   -...            - -. -

LIST OF FIGURES (Cont.) Finure No. Title fage

                              .4.2 32                              Quench Tank Temperatures for Test A029231                                                    4-62 4.2-33                           A035240 Mass Flow / Quality                                                                   4-63

[ 4.2-34 ADS Flow Path Pressure Plot for Test A035230 (ADS Stages 1,2, and 3 Open) 4-64

l. 4.2-35 Sparger Temperatures for Test A035240 4-65 4.2 36 ~ Quench Tank Temperatures for Test A03524 4-66 ,

4.2-37 A033241 Mass Flow / Quality 4-67  ; 4.2 38 ADS Flow Path Pressure Plot for Test A033241 (ADS Stages 1,2, and 3 Open) 4-68 4.2-39 Sparger Temperatures for Test A033241 4-69 ~ 4.2 40 Quench Tank Temperatures for Test A033241 4-70 4.2-41 A034242 Mass Flow / Quality 4-71 , 4.2-42 ADS Flow Path Pressure Plot for Test A034242 (ADS Stages 1,2, and 3 Open) 72  ! 4.2-43 Sparger Temperatures for Test A034242 4-73 4.2-44 Quench Tank Temperatures for Test A034242 l 4-74 i 4.2-45 Mass Flow / Quality for Test A036250 4-75 l' l 4.2-46 ADS Flow Path Pressure Plot for Test A036250 (ADS Stage 2 Open) 4-76 4.2-47 Sparger Temperatures for Test A036250 4-77 4.2-48 Quench Tank Temperatures for Test A036250 4-78 l 4.3-1 Series 300 Cold Quench Tank Tests Intended Performance.Versus  ! Achieved for Stages 1,2, and 3 Operation , 4 86 4.3-2 Series 300 Cold Quench Tank Tests Intended Performarw Versus - Achieved for Stages 1 and 2 Operation 4-87 i 4.3-3 Series 300 Cold Quench Tank Tests Intended Performance Versus Achieved for Stage 2 Operation 4-88 [ 4.3-4 Mass Flow and Quality for Test A044310 4-89 l 4.3-5 Flow Path Pressure Plot for Test A044310 (Stages 1,2, and 3 Operation) 4-90 4.3-6 Sparger Temperatures for Test A044310 4-91 ! 4.3-7 Quench Tank Temperatures for Test A044310 4-92 , 4.3-8 Mass Flow and Quality for Test A002311 4-93  !

                             .4.3-9                             Flow Path Pressure Plot for Test A002311                                                      4-94                    !

4.3-10 Sparger Temperatures for Test A002311 4-95 4.3-11 Quench Tank Temperatures for Test A002311 4-96 4.3-12 Mass Flow and Quality for Test A042312 4-97 4.3-13 Flow Path Pressure Plot for Test A042312 6 98 I 4.3 Sparger Temperatures for Test A042312 4-99 4.3-15 Quench Tank Temperatures for Test A042312 4-100 4.3-16 . Mass Flow and Quality for Test A004330 4-101 4.3-17 Flow Path Pressure Plot for Test A004330 4-102

                           - 4.3-18                             Sparger Temperatures for Test A004330                                                        4-103 4.3-19                           Quench Tank Temperatures for Test A004330                                                    4-104 4.3-20                           Mass Flow and Quality for Test A003331                                                       4-105' i

1 i unap6000776w.wpf:lb.o41395 ,. Vill l

  .                                                                                                                                                                                    1

LIST OF FIGURES (Cont.) l Fleure No. Title Page i  ! ! 4.3-21 Flow Path Pressure Plot for Test A003331 4-106  ! 4.3 22 Sparger Temperatures for Test A003331 4 107 , 4.3-23 Quench Tank Temperatures for Test A003331 4-108 4.3-24 Mass Flow and Quality for Test A043331 4-109

 .       4.3 25    Flow Path Pressure Plot for Test A043331                          4-110

! 4.3-26 Sparger Temperatures for Test A043331 4-111 4.3-27 Quench Tank Temperatures for Test A043331 4-112

 .       4.3 28    Mass Flow and Quality for Test A006340                            4-113 4.3-29    Flow Path Pressure Plot for Test A006340                          4 114     !

4.3-30 Sparger Temperatures for Test A006340 4-115 ! 4.3-31. Quench Tank Temperatures for Test A006340 4-116 4.3-32 Mass Flow and Quality for Test A046340 4117 l Flow Path Pressure Plot for Test A046340 4-118 4.3-33 ) 4.3-34 Sparger Temperatures for Test A046340 4-119 4 4.3-35 Quench Tank Temperatures for Test A046340 4-120 I 4.4-1 Series 300 Hot Quench Tank Tests Intended Performance Versus , Achieved Performance for Stages 1,2, and 3 Operation 4-127 4.4-2 Series 300 Hot Quench Tank Tests Intended Performance Versus Achieved Performance for Stage 2 Operation 4-128 4.4-3 Mass Flow and Quality for Test A051320 4-129 4.4-4 Flow Path Pressure Plot for Test A051320 4-130 4.4-5 Sparger Temperatures for Test A051320 4-131 i 4.4-6 Quench Tank Temperatures for Test A051320 4-132 4.4-7 Mass Flow and Quality for Test A048321 4-133 4.4-8 Flow Path Pressure Plot for Test A048321 4-134 4.4-9 Sparger Temperatures for Test A048321 4-135 4.4-10 Quench Tank Temperatures for Test A048321 4-136 4.4-11 Mass. Flow and Quality for Test A047322 4-137 l 4.4-12 Flow Path Pressure Plot for Test A047322 4-138 4.4-13 Sparger Temperatures for Test A047322 4-139 4.4-14 Quench Tank Temperatures for Test A047322 4-140

 .       4.4-15     Mass Flow and Quality for Test A050350                           4-141 4.4-16     Flow Path Pressure Plot for Test A050350                         4-142 4.4-17     Sparger Temperatures for Test A050350                            4-143 4.4 18     Quench Tank Temperatures for Test A050350                        4-144 4.4-19     Mass Flow and Quality for Test A049351                           4-145 4.4-20     Flow Path Pressure Plot for Test A049351                         4-146 4.4-21     Sparger Temperatures for Test A049351                            4-147 4.4-22     Quench Tank Temperatures for Test A049351                        4-148 4.5 1     Summary of ADS Phase B1 Test Conditions                          4-157 unsp601A1776w.wptitW1395                         ix

REFERENCE #: 25 REPORT #: WC/ .P-14305 TITLE: ADS Phase B1 Test Analysis

                                                                                             ~

Report DATE: 1995 j m:\3334w-a.wpf:1b-11M% A-25

      .      .. _ -.              . ..          _.       . _ . ..     . . - .       - . . .   .. _. . . .-       ~.

f ] TABLE OF CONTENTS { Section Title h

SUMMARY

1 i ]*

                     . p 1.0 -    INTRODUCTION

1.1 Background

1-1 11 1.2 Facility Description 1-2 1.3 Pre-Operational Tests 1-3  ! 1.4 Matrix Tests 1-3 j 1.5 Analysis Objectives 1-4 I i 1.6 ADS Test Relationship in the Small-Break LOCA PIRT 1-5 l i 2.0 COMPONENT SINGLE-PHASE LOSS COEFFICIENT CALCULATION 2-1 2.1 100-Series Steam Blowdown Tests Description 2-1 2.2 Calculation Methodology 2-2 2.3 Loss CoefBeient Calculation 2-2 . 2.4 Flow Splits in 100-Series Tests , 2-3 2.5 Loss Coefficient and Flow Split Uncertainties 2-4 i' 2.6 Time Deper.dence 2-5

2.7 Flow Splits for Two-Phase Matrix Tests 2-6 f

I l 3.0 TWO-PHASE 'IEST ANALYSIS METHODOLOGY 3-1 l 3.1 ~ Introduction 3-1 4 3.2 Fluid Quality Calculation 3-1 3.3 Two-Phase Multiplier Calculation 3-4 l 3.4 Critical Flow Assessment 3-6

                     $ 4.0        TWO-PHASE BLOWDOWN MATRIX TEST RESULTS                                   4-1 4.1      200-Series Tests                                                4-1
-- 4.2 300-Series Cold Quench Tank Tests 4-8
4.3 300-Series Hot Quench Tank Tests 4-14 4 4.4 Test Evaluation 4-17 4.4.1 Flow Quality 4-17 l 4.4.2 Two-Phase Multipliers 4-18 4 '4.4.3 Critical Flow Assessment 4-21 1 4.5 Uncertainty Evaluation 4-22

5.0 CONCLUSION

S 5-1 4 mAap60042073w.wgth 062195 ill d 4

                               ,-                    m ~
             .     .      .. - ~ _ _ . - . .-       .-   . .         .     . - . . -. ... .- -    . - __   ...

l

                                                                                                                   \
i. 1 1

l TABLE OF CONTENTS (Cont.) E3S!!21 Jidt .P.agg l

6.0 REFERENCES

61 APPENDIX A - Single-Phase Loss Coefficient Calculation Method I A1  : APPENDIX B - Two-Phase Flow Multiplier Uncertamty B1 )

                                                                                                               ~
  ,           APPENDIX C - Losses in Fittings with Two-Phases Flowing                            C-1 APPENDIX D - Critical Flow in Systems with Multiple Choke Locations                D-1 G

[ t 9 e l m:Ww.wpf:1N IV __r- _ - . _ _ _

LIST OF TABLES

             &                                                    Title                               h 1-1       ADS Phase B1 Test Analysis Report Specified ADS Performarw Test Matrix           1-6 l             1-2       ADS Phase B1 Test Analysis Report Phenomena identification Ranking Table for

!. AP600 Small-Break LOCA 1-8 2-1 Loss Coefficient Summary for ADS Valves and Orifices 2-9 l

  • 2-2 Comparison of Calculated and Measured Mass Flow for Test 140 2-10 2-3 Assessment of Likelihood of Choking at Different Times in Tests 2-l'1 l 2-4 Flow Split Fractions for 200-Series Tests 2-12 2-5 Entrance / Exit Pressure Loss Coefficients 2 12 l 2-6 ADS Flow Path Loss Coefficients 2 12 2-7 ADS Flow Split Fractions for 300-Series Tests 2-12 3-1 Flow Splits Used in Critical Flow Assessment 3-8 i l

l l 4-1 Two-Phase Multipliers for ADS Valves and Orifices . 4-24  : 4-2 Percent Uncertainty in Measured Two Phase Flow Multiplier 4-27  ; I l l i l i i t m:WW3=.wp:1b.062295 y 4

                                                                                     ~

LIST OF FIGURES 39: .Ildt _Pagg 11 AP600 Passive Safety System Design 1-10 1-2 Schensatic of VAPORE Facility as Modified for ADS Phase B1 fests 1-11

  • 2-1 Pipe Data 2-14 2-2 Valve Data 2-15 j

2-3 Orifice Data 2-16 j 2-4 ADS Single-Phase Loss Coefficients and Flow Splits - Calculational Paths '2-17 ) l 3'-1 Pressure Gauge and Thermocouple Locations on ADS Phase B1 Test Facility 3-9 3-2 Control Volume: General Case 3-10 l 3-3 Control Volume: ADS Phase B1 Test 3-11 3-4. E-Wotal Critical Pressure Ratio Data as a Function of Length / Diameter Ratio (Ref.12) 3-12' 4-1 Test A026211 Tctal Mass Flow Rate 4-28 4-2 Test A026211 Flow Quality , 4-29 4-3 Test A026211 Pressure Variation in Facility at Tune 20 Seconds 4-30 4-4 Test A026211 Plow Quality la Facility at Time 20 Seconds 4-31 4-5 Test A026211 Liquid Mass Flow Rate Variation in Facility at Time 20 Seconds 4-32 4-6 Test A026211 Vapor Mass Flow Rate Variation in Facility at Time 20 Seconds 4-33 47 Test A026211 Two-Phase Multiplier for ADS Stage 1 Globe Valve 4-34 4-8 Test A027212 Total Mass Flow' Rase 4-35 4-9 Test A027212 Flow Quality 4-36 , 4-10 Test A027212 Pressure Variation in Facility at Tune 20 Seconds 4-37 l 4-11 Test A027212 Flow Quality V&idion in Facility at Time 20 Seconds 4-38 ) 4-12 Test A027212 Liquid Mass Flow Rate Variation in Facility at Time 20 Seconds 4-39 4-13 Test A027212 Vapor Mass Flow Rate Variation in Facility at Time 20 Seconds 4-40 . 4-14 Test A027212 Two-Phase Multiplier for ADS Stage 1 Globe Valve 4-41 , 4-15 Test A028221 Total Mass Flow Rate 4-42 4-16 Test A028221 Flow Quality 4-43 4-17 Test A028221 Pressure Variation in Facility at Tune 20 Seconds 4-44 4-18 Test A028221 Flow Quality Variation in Fadlity at Time 20 Seconds 4-45 , 4-19 Test A028221 Liquid Mass Flow Rate Variation in Facility at Time 20 Seconds 4-46 4-20 Test A028221 Vapor Mass Flow Rate Variation in Facility at Tune 20 Seconds 4-47 4-21 Test A028221 Two-Phase Multiplier for ADS Stage 1 Gobe Valve 4-48 4-22 Test A029231 Total Mass Flow Rate 4-49 4-23 Test A029231 Flow Quality 4-50 4-24 Test A029231 Pressure Variation in Facility at Tune 20 Seconds 4-51 4-25 Test A029231 Flow Quality Variation in Facility at Time 20 Seconds 4 52 m: w w..pra m 95 vi

l LIST OF FIGURES (Cou.)

               &                                                Title                                page 4-26     Test A029231 Liquid Mass Flow Rate Variation in Facility at Time 20 Seconds   4-53 4-27     Test A029231 Vapor Mass Flow Rate Variation in Facility at Tune 20 Seconds    4-54  i 4-28     Test A029231 Two-Phase Multiplier for ADS Stage 1 Globe Valve                 4-55 4-29     Test A030220 Total Mass Flow Rate                                            4-56 4-30     Test A030220 Flow Quality                                                    4-57 4-31     Test A030220 Pressure Variation in Facility at Time 20 Seconds               4-58 4-32     Test A030220 Flow Quality Variation in Facility at Time 20 Seconds            4-59   i 4-33     Test A030220 Liquid Mass Flow Rate Variation in Facility at Time 20 Seconds   4-60 4-34     Test A030220 Vapor Mass Flow Rate Variation in Facility at Tune 20 Seconds    4-61 4-35     Test A030220 Two-Phase Multiplier for ADS Stage 1 Globe Valve                 4-62 4-36     Test A031230 Total Mass Flow Rate                                             4-63 4-37     Test A031230 Flow Quality                                                     4-64 4-38     Test A031230 Pressure Variation in Facility at Tune 20 Seconds                4-65 4-39     Test A031230 Flow Quality Variation in Facility at Time 20 Seconds            4-66 4-40     Test A031230 Liquid Mass Flow Rate Variation in Facility at Time 20 Seconds   4-67 4-41     Test A031230 Vapor Mass Flow Rate Variation in Facility at Tune 20 Seconds    4-68 l               4-42     Test A031230 Two-Phase Multiplier for ADS Stage 1 Globe Valve                 4-69 4-43     Test A033241 Total Mass Flow Rate                                             4-70 l               4-44     Test A033241 Flow Quality                                                     4-71 4-45     Test A033241 Pressure Variation in Facility at Time 20 Seconds                4-72 4-46     Test A033241 Flow Quality Variation in Facility at Time 20 Seconds           4-73 l               4-47     Test A033241 Liquid Mass Flow Rate Variation in Facility at Time 20 Seconds   4-74 l               4-48     Test A033241 Vapor Mass Flow Rate Variation in Facility at Tune 20 Seconds   4-75 l               4-49     Test A033241 Two-Phase Muitiplier for ADS Stage 1 Globe Valve                4-76    ;

4-50 Test A034242 Total Mass Flow Rate 4-77 i 4-51 Test A034242 Flow Quality 4-78  ; 4-52 Test A034242 Pressure Variation in Facility at Time 20 Seconds 4-79 i , 4-53 Test A034242 Flow Quality Variation in Facility at Time 20 Seconds 4-80 1 4-54 Test A034242 Liquid Mass Flow Rate Variation in Facility at Time 20 Seconds 4-81 4-55 Test A034242 Vapor Mass Flow Rate Variation in Facility at Time 20 Seconds 4-82  ! 4-56 Test A034242 Two-Phase Multiplier for ADS Stage 1 Globe Valve 4-83 4-57 Test A035240 Total Mass Flow Rate 4-84 4-58 Test A035240 Flow Quality 4-85 4-59 Test A035240 Pressure Variation in Facility at Time 20 Seconds 4-86 l 4-60 Test A035240 Flow Quality Variation in Facility at Time 20 Seconds 4-87 4-61 Test A035240 Liquid Mass Flow Rate Variation in Facility at Time 20 Seconds 4-88 4-62 Test A035240 Vapor Mass Flow Rate Variation in Facility at Time 20 Seconds 4-89

     .         4-63     Test A035240 Two-Phase Multiplier for ADS Stage 1 Globe Valve                 4 90 m:\np600C073w.wpf: b.06229s                        vii l

l

LIST OF FIGURES (Cont.) hat Illit Etat 4 Test A036250 Total Mass Flow Rate 4-91 4-65 Test A036250 Plow Quality 4-92 4-66 Test A036250 Pressure Variadon in Facility at Time 20 Seconds 4-93 4-67 Test A036250 Flow Quality Variation in Faci 5ty at Time 20 Sec0nds 4-94 4-68 Test A036250 Uquid Mass Flow Rate Variation in Facility at Time 20 Seconds 4-95 , 4-69 Test A036250 Vapor Mass Flow Rate Variation in Facility at Tune 20 Seconds 4-96 ) 4-70. Test A036250 Two-Phase Multiplier for ADS Stage 1 Globe Valve 4-97 4-71 Test A037210 Total Mass Flow Rane 4-98 j 4-72 Test A037210 Flow. Quality 4-99

                   ~4-73          Test A037210 Pressure Variation in Facility at Tune 20 Seconds                            4-100 4-74           Test A037210 Plow Quality Variation in Facility at Time 20 Seconds                        4-101 l                   4-75           Test A037210 Uquid Mass Flow Rate Variation in Facility at Time 20 Seconds                4-102                l 4-76 Tea A037210 Vapor Mass Flow Rate Variation in Facility at 'Ilme 20 Seconds                          4-103 4-77 Test A037210 Two-Phase Multiplier for ADS Stage 1 Globe Valve                                       4-104                I 4-78           Test A002311 Total Mass Flow Rate                                     .                   4-105 4-79           Test A002311 Plow Quality                                                                 4 106 4-80 Tea A002311 Pressure Variadon in Facility at Time 20 Seconds                                        4-107                j I

4-81 Test A002311 Flow Quality Variation in Facility at Time 20 Seconds 4 108 4-82 Test A002311 Uquid Mass Flow Rate Variation 'in Facility at Time 20 Seconds 4 109 4-83 Test A002311 Vapor Mass Flow Rate Varianon in Facility at Tune 20 Seconds 4-110 4-84 Test A002311 Two-Phase Multipher for ADS Stage 1 Gobe Valve 4-111  ; 4-85 Test A003311 Total Mass Flow Rane 4-112 4-86 Test A003311 Flow Quality 4-113 4-87 Test A003311 Pressure Vanation in Facility at Tune 20 Seconds 4-114 , 4-88 Test A003311 Ploir Quality Variation in Facility at Tune 20 Seconds 4-115 4-89 Test A003311 Uquid Mass Flow Rate Variation in Facility at Time 20 Seconds 4-116  ; 4-90 Test A003311 Vapor Mass Flow Rate Variation in Facility at Time 20 Seconds 4-117 . 4-91 Test A003311 Two-Phase Multipher for ADS Stage 1 Globe Valve 4-118 4-92 Test A004330 Tota' Mass Flow Rate 4-119 4-93 Test A004330 Plow @ality 4-120 4-94 Tea A004330 Pressure Variation in Facility at Tune 20 Seconds 4-121 4-95 Test A004330 Plow Qualhy Variation la Facility at Time 20 Seconds 4-122 l 4-% Test A004330 Uquid Mass Fiow Rare Variation in Facility at Time 20 Seconds 4-123 4-97 Test A004330 Vapor Mass Flow Rate Variation in Facility at Tune ,20 Seconds 4 124 4-98 Test A004330 Two-Phase Multiplie" ADS Stage 1 Gobe Valve 4-125 4-99 Test A006340 Total Mass Flow Rate 4 126 4-100 Test A006340 Flow Quality 4 127

       -           4-101 Test A006340 Pressure Variation in Facility at Tune 20 Seconds                                     4-128 1

l

  • ar p w.wyt:1Hrvs5 viii

h i l l LIST OF FIGURES (Cont.) l  ; Sta - Ildt frat  ! i l 4-102 Test A006340 Flow Quality Variation in Facility at Time 20 Seconds 4-129 l j 4-103 Test A006340 Liquid Mass Flow Rate Variation in Facility at Time 20 Seconds 4-130  ! 4-104 Test A006340 v por a Mass Flow Rate Variation in Facility at Tune 20 Seconds 4-131  ! i 4-105 Test A006340 Two-Phase Multiplier h ADS Stage 1 Globe Valve 4-132  ! 1 . 4-106 Test A042312 Total Mass Flow Rate 4-133 I

  ,                      4-107 Test A042312 Flow Quality                                                                       4-134 l

4-108 Test A042312 Pressure Variadon in Facility at Time 20 Seconds 4 135  ; 4-109 Test A042312 Flow Quality Varimion in Facility at Time 20 Seconds 4-136 4-110 Test A042312 Liquid Mass Flow Rate Variation in Facihty at Time 20 Seconds 4-137 ,

        ,               4 111 Test' A042312 Vapor Mass Flow Rate Variation in Facility at Tune 20 Seconds                      4-138 4-112 Test A042312 Two-Phase Multiplier h ADS Stage 1 Globe Valve                                      4-139 4-113 Test A043331 Total Mass Flow Rate                                                                4-140 4-114 Test A043331 Flow Quality                                                                       4-141   l 4-115 Test A043331 Pressure Variadon in Facahty at Tune 20 Seconds                                     4 142 4116 Test A043331 Flow Quality Vaistion in Facility at Time 20 Seconds                                 4-143 4-117 Test A043331 Liquid Mass Flow Rae Variation in Facility at Time 20 Seconds                      4 144   ;

( ' 4-118 Tea A043331 Vapor Mass Flow Rate Variation in Facility at Tune 20 Seconds 4-145 4-119 Test A043331 Two-Phase Multiplier & ADS Stage 1 Globe Valve 4-146 l 4120 Test A044310 Total Mass Flow Raae 4-147 4 121 Test A044310 Flow Quality 4-148 4-122 Test A044310 Pressure Varianon in Facility at Tune 20 Seconds 4-149 4-123 rest A044310 Flow Quality Variation in Facility at Time 20 Seconds 4-150 4-124 Test A044310 Liquid Mass Flow Rate Variation in Facility at Time 20 Seconds 4-151 4-125 Test A044310 Vapor Mass Flow Rate Variadon in Facility at Tune 20 Seconds 4-152 _4-126 Test A044310 Two-Phase Multiplier & ADS Stage 1 Globe Valve 4-153 4-127 Test A046340 Total Mass Flow Rate 4-154 l 4-128 Test A046340 Plow Quality 4-155 i . 4-129 Test A046340 Pressure Variation in Facility at Tune 20 Seconds 4 156 4-130 Test A046340 Flow Quality Variation in Facility at Time 20 Seconds 4-157 4-131 Test A046340 Liquid Mass Flow Rate Variation in Facility at Time 20 Seconds 4-158 4-132 Test A046340 Vapor Mass Flow Rate Variation in Facility at Tune 20 Seconds 4-159 4-133 Test A046340 Two-Phase Multiplier & ADS Stage 1 Globe Valve 4 160 l l 4-134 Test A047322 Total Mass Flow Rate 4-161 4-135 Test A047322 Flow Quality 4-162 4-136 Test A047322 Pressure Variation in Facility at Tune 20 Seconds 4-163 l 4-137 Test A047322 Flow Quality Variation in Facility at Tsme 20 Seconds 4-164

4-138 Test A047322 Liquid Mass Flow Rate Variation in Facility at Time 20 Seconds 4-165

) < 4-139 - Test A047322 Vapor Mass Flow Rate Variation in Facility at Tune 20 Seconds 4-166

,     =                                                                                                                      .

l mfep600G073w.wyf:H>462295 ix

1 t t 1 t LIST OF FIGURES (Cont.) l I M9 .T.I. tit. Enu [ 4-140 Test A047322 Two-Phase Multiplier for ADS Stage 1 Globe Valve 4-167 4-141 lest A048321 Total Mass Flow Rate 4-168 -! 4-142 Test A048321 Flow Quality 4-169 t 4-143 Test A048321 Pressure Variation in Facility at Tune 20 Seconds 4-170 4-144 Test A048321 Flow Quality Variation in Facility at Time 20 Seconds 4-171- - 4-145 Test A048321 Liquid Mass Nw Rate Variation in Facility at Time 20 Seconds 4-172 4-146 Test A048321 Vapor Mass Flow Rate Variation in Facility at Tune 20 Seconds 4-173  ! 4-147 Test A048321 Two-Phase Multiplier for ADS Stage 1 Globe Valve 4-174 - 4-148 Test A049351 Total Mass Flow Rase 4-175 4-149 Tea A049351 Pkw Quality 4-176 i 4-150 Test A049351 Pressure Variation in Facility at Time 20 Seconds 4-177 4-151 Test A049351 Flow Quahty Variation in Facility at Tune 20 Seconds 4-178 l 4-152 Test A049351 Liquid Mass Flow Rate Variation in Facility at Time 20 Seconds 4-179 l

                 '4-153 Test A049351 Vapor Mass Flow Rate Vananon in Facihty at Thne 20 Seconds     4-180 4-154 Test A049351 Two-Phase Multipher for ADS Stage 1 Globe Valve                4-181     !

4-155 Test A050350 Total Mass Flow Rase 4-182 4-156 Test A050350 Flow Quality 4-183 4-157 Test A050350 Pressure Vananon in Facilky at Tune 20 Seconds 4-184 4-158 Test A050350 Flow Quality Variation in Facility at Thne 20 Seconds 4 185 4-159 Test A050350 Uquid Mass Plow Rate Variation in Facility at Time 20 Seconds 4-186 4-160 Test A050350 Vapor Mass Flow Rate Vanation in Facilky at Tune 20 Seconds 4-187 4-161 Test A050350 Two-Phase Muluplier for ADS Stage 1 Globe Valve 4 188 4-162 Test A051320 Total Mass Flow Rane 4-189 4-163 Test A051320 Flow Quality 4-190 4-164 Tea A051320 Pressure Vananon in Facility at Tune 20 Seconds 4-191 4-165 Test A051320 Flow Quahty Variation in Facility at 'nme 20 Seconds 4 192 4-166 Test A051320 Uquid Mass Flow Rate Variation in Facility at "Hme 20 Seconds 4-193 4-167 Test A051320 Vapor Mass Flow Rate Vananon in Facility at Tune 20 Seconds 4-194 '! 4-168 Test A051320 Two-Phase Y ;,1;c for ADS Stage 1 Gobe Valve 4-195 4-169 - Quality vs. Pressure for 6 ADS Tests 4-1% i 4-170 Comparison of Imandart and Actual Test Points for Tens A026211, A027212, l and A037210 4-197 l 4-171 Comparison of intendarf and Actual Test Points for Tests A028221, A029231. I A030220, and A031230 4-198 4-172 Comparison of farentiari and Acnial Test Points for Tess A033241, A034242, and A035240 4-199 4-173 Comparison of Tarantiari and Actual Test Points for Test A036250 4-200  ! I mMp6002073w.wyfdbo62295 , x

     ..   - _       _ _ _ _           m. - __ _ _ _ .             _ . _ _ . _        _ _ ~ _ _ _ _ _ . _ _ . . . _ _ _           .

t 5 LIST OF FIGURES (Cont.) Mk- Ildt fast i ! 4-174 Comparison of Intended and Actuct Test Points for Tests A002311, A042312, and A044310 4-201 .

  .              4-175 Comparison of Intended and Actua. Test Points for Tests A003331, A004330,                                   f
                                                             '                                                                     i and A043331                                                                                  4-202 4-176 Comparison of Intended and Actual Test Points for Tests A006340, and A046340                      4-203 4-177 Comparison of latended and Actual Test Points for Tests A047322, A048321,                                   ;

and A051320 4-204  ; F 4-178 Comparison of Intended and Actual Test Points for Tests A349351 and A050350 4-205  ; l 4-179 ADS Orifice Two-Phase Multiplier Results for All Tests 4-206 i f 4-180 ADS Valve Two-Phase Multiplier Results for All Tem 4-207 i l 4-181 ADS Stage 1 Orifice Two-Phase Multiplier Variation w:th Plow Quality and Pressure 4-208 ~  ! 4-182 ADS Stage 2 Orifice Two-Phase Multiplier Variation with Flow Quality and Pressure 4-209 l j 4-183 ADS Stage 3 Orifice Two-Phase Muluplier Vananon with Flow Quality and Pressure 4-210 4-184 ' ADS Stage 1 Globe Valve Two-Phase Multiplier Vananon with Plow Quality and l Pressure 4 211 ! 4-185 ADS Stage 2 Globe Valve Two-Phase Mulupher Variation with Flow Quahty and j Pressure 4-212 , 4-186 ADS Stage 3 Globe Valve Two-Phase Multipher Variation with Plow Quality and J Pressure 4-213 4-187 Measured vs. Predacted Two-Phase Multipher for ADS Gaae Valves (Grimth, C=1.5) 4-214 !' '4 188 Variation with Pressure of Ratio of Predicted to Measured Two-Phase Multiplier _for j ADS Gate Valves (Griffith, C=1.5) 4-215 4-189 Variation with Flow Quality of Ratio of Predicted to Measured Two-Phase Multiplier for i ADS Gase Valves (Grimth, C=1.5) 4-216 4-190 Measured vs. Predicted Two-Phase Multipher for ADS Globe Valve (Griffith, C=1.7) 4-217 - 4-191 Measured vs. Pre &cted Two-Phase Mulupher for ADS Globe Valve (GrifBth, C=1.1) 4-218 4-192 Variation with Pressure of Ratio of Predicted to Measured Two-Phase Multiplier for ADS Globe Valve (Grif8th, C=1.1) 4-219 4-193 Variation with Flow Quality of Ratio of Predicted to Measured Two-Phase Multiplier I for ADS Gobe Valve (Griffith, C=1.1) 4-220 4-194 Measured vs. Pre &cted Two-Phase Multiplier for ADS Orifices (GrifSth, C=0.8) 4-221 4-195 Measured vs. Pre &cted Two-Phase Multiplier for ADS Onfices (Griffith, C=1) 4-222 4-196 Variation with Pressure of Ratio of Predicted to Measured Two-Phase Multiplier for ADS Orifices (Griffith, C=1) 4-223 4-197 Variation with Flow Quality of Ratio of Predicted to Measured Two-Phase Multiplier j for ADS Orifices (Griffith, C=1) 4-224 i 4-198 Variation with Pressure of Ratio of Predicted to Measured Two-Phase Multiplier for l ADS Gate Valves (Chisholm C2=1.5) 4-225 L

              - mnap600G073w.wpf:ll>462295                              11

l l LIST OF FIGURES (Cost.) Eh Ildt fast 199 Variation with Pressure of Rado of Predicted to Measured Twc,-Phase Multiplier for ADS Globe Valves (Chisholm C2=2.3) 4-226 - 4-200 Variadon with Pressure of Rado of Predicted to Measured Two-Phase Multiplier for ADS Orifices Valves (Chisholm C2=1.0) 4 227 l 4-201 Uncertainty in ADS Component Two-Phase Muldplier Results 4-228

  • l l

l 9 m:ww.=pt:1962295 xil

REFERENCE #: 26 REPORT #: WCAP-13963, Rev.1

  ~

( TITLE: Scaling Logic for the Core Makeup Tank Test DATE: January 1995 i l l l l l I I ) m:\3334w-a.wptib-11N% A-26

l TABLE OF CONTENTS 19S112R , .T.idt Iage. SUMMAhtY l

         . y 

1.0 INTRODUCTION

1-1 . 1.1 Purpose 11  ! 1.2 CMT Design and Operation 1-1 1.3 Description of CMT Test Facility 1 10 - 1.4 Phenomena Identification and Ranking Table (PIRT) for the CMT 1 15 1.4.1 CMT Rectrculation 'Ihermal-Hydraulic Phenomena 1-15 1.4.2 CMT Draining Phenomena 1-16 1.4.3 CMT PIRT of Key Thermal-Hydraulic Phenomena 16 g ' 2.0 CMT RECIRCULATION BEHAVIOR SCALING ASSESSMENT 21 2.1 CMT Recirculation Behavior 2-1 2.1.1 CMT Rectreulation Behavior-Top-Down Analysis 2-1 2.1.2 CMT Recirculation Behavior-Bottom-Up Scaling Analysis 25 2.2 Discussion of CMT Recirculation Scaling 2 18 2.3 Heat Transfer in the CMT During Recirculation 2-21 2.4 Conclusion on CMT Test Facility Recirculation Scaling Behavior 2 24

          % 3.0          CMT DRAINDOWN BEHAVIOR SCALING ASSESSMENT                                                   3-1 3.1     Introduction                                                                        3-1 3.2     Scaling of the CMT Diffuser                                                         3-1 3.3     Core Makeup Tank Pressurizanon Equation - Top Down Scaling Analysis                 3-5 3.3.1     Introduction                                                              3-5 3.3.2     Core Makeup Tank Vapor Space Pressure Equation                            3-5 3.3.3     Core Makeup Tank Homogeneous Mixture Pressure Equation                    3-8 3.4     CMT Draming Processes at Constant Pressure                                        3-14 3.4.1     Introduction                                                            3-14 3.4.2     Governing Equations for Constant-Pressure CMT Draining Process          3 14 3.4.3     Application of the Governing Equations for CMT Draining                 3-16 3.5    Bonom-Up Scaling Analysis for CMT Transient Processes                             3-34 3.5.1     Condensation on CMT Walls                                               3-34 3.5.2     Interfacial Condensation at the CMT Diffuser                            3 35 3.5.3     Interfacial Condensation When the CMT has Drained and a Level Exists                                                      3 36             1 I

i i I I a:\1628w.wyf:1b Rev.1 iii

l l j TABLE OF CONTENTS (Cont.)

      .       Section                                                 Jit!g                                                       .Page ;

i

           $ 4.0       COMPARISON CALCULATIONS OF THE AP600 PLANT CMT DRAINING                                                          t BEHAVIOR AND THE CMT 'IEST DRAINING BEHAVIOR                                                                 4-1 4.1     Introduction and Approach                                                                            4-1 4.2     Calculated Results for Condensation at the CMT Diffuser for the i  .                            AP600 Plant and the CMT Test                                                                         4-1 l

4.2.1 Calculated Results at 1100 psia for Different Mixing Depths 4-2 4.3 Calculated Results for Wall and Surface Condensation Behavior for the AP600 CMT and the Test CMT, When the CMT is Partially Drained 4-19

                                                                                                                                        ]

4.3.1 Normalized Condensate Comparison 4-23 l I 4.3.2 Condensation TI Groups and 'Iheir Ratios 4-24 5.0 CMT TEST MATRDC 5-1 5-1 I 5.1 Pre-operational Tests 5.2 Test Matrix 5-1 4

6.0 CONCLUSION

S 6-1

7.0 REFERENCES

7-1 8.0 NOMENCLATURE 8-1 ! 8.1 Nomenclature for Section 2.0 8-1 l 8.2 Nomenclamre for Section 3.0 8-2 i I l I L i t k 4 i a:\l628w.wpf:Ib Rev.I jy l l

 . . _ . _ ...       _ _ - _ -          - _ _ _ _ . _ . _ . - _ _ _ _ _ . - _ _ _ .                     _ _ _ _ _ _ ~._              _

l t l i LIST OF FIGURES f.!EIK1 T

                                                                                          -.,[1lg                       ,P, agg 1.2-1         - AP600 Passive Safety System Design                                                         1-4 l.2-2          AP600 Core Makeup Tank                                                                      15 1.2-3          AP600 CMT Piping Layout                                                                    1-6 1.24           Plant CMT Diffuser                                                                         1-7 1.25           AP600 SSAR Calculation of CMT Draining Flow for 2-in. Cold leg Break                       1-8 1.2-6          Cold Leg Balance Line Void Fraction for 2-in. Cold Leg Break                               1-9   ,,      ,

1.3-1 AP600 CMT Test Facility 1-13 i . '1.3 2 Steam Distributor Used in CMT Tests 1-14 2.1-1 CMT Test Facility and AP600 Plant 2-9  ! 2.1 2 Calculated Recirculation Flow for the AP600 CMT at 1100 psia 2-10 2.1-3 Calculation of the Hot Liquid Layer Thickness for the AP600 CMT at 1100 psia 2-11 l 2.1 4 Calculation of the Recirculation Flow for the CMT Test Facility at 1100 psia 2-12 2.15 Calculation of the Hot Liquid Layer 'Ihickness for the CMT Test, Facility and Cold Liquid Layer Thickness in the Reservoir at 1100 psia 2-13 2.1-6 Recirculation Ratio of the CMT Tem to the AP600 CMT at 1100 psia 2-14 2.1-7 Comparison of Hot Layer Thickness of the CMT Test and the Plant CMT at 1100 psia 2-15  ! 2.1-8 Comparison of the Recirculation Ratio of the CMT Test to the AP600 CMT , at 2250 psia- 2-16 ( 2.1-9 Comparison of the Hot Layer Thickness of the CMT Test and Plant at 2250 psia 2 17 Comparison of'AP600 Plant Head Cross-Sectional Area and AP600 i 2.2-1 CMT Test Head Cross Sectional. Area 2-20 3.2 1 Model for CMT Diffuser Momentum Approach 3-4 . 3.3-1 Control Volume Boundaries for CMT Draining Analysis 3-13 3.4-1 Diffuser Steam Condensauon Behavior for a Full CMT 3-32 3.4-2 Idealized Model for Scaling CMT Condensation Behavior, with a Level in the CMT 3-33 3.5-1 Postulated Steam Recirculation Flow Panern for Partially Drained CMT 3-39 4.2-1 Calculated CMT Test Li:luid Layer Temperature for Different Mixing Depths at 1100 psia for Diffuser Condensation 4-4 4.2-2 Calculated CMT Test Liq. aid Layer Temperature for Different Mixing Depths at 60 psia for Diffuser Condensation 4 l uA1628w.wpf:Ib Rev.1 V

i LIST OF FIGURES (Cont.) i l flau .ngt _PJEt 1 4.2-3 Calculated Interfacial Condensation Heat Transfer Coefficient from Catton et. al. l l for Different Mixing Depths for the CMT Test at 1100 psia for Full CMT 4-6 l 4.2-4 Calculated CMT Test Condensation Rate at 1100 psia for Different Mixing Depths 4-7 4.2 5 Calculated CMT Test Condensation Rates at 60 psia for Different Mixing Depths 4-8

      ,              4.2-6        Calculated Plant Liquid Layer Temperature for Different Mixing Depths at 1100 psia for Diffuser Condensation                                                   4-9 4.2-7        Calculated Plant Layer Temperature ('F) for Different Mixing Depths at 60 psia for Diffuser Condensation                                                       4-10 4.2-8        Calculated Plant Interfacial Condensation Heat Transfer Coefficient (Btu /hr-ft' *F)

( from Catton et al., for Different Mixing Depths at 1100 psia for full CMT 4-11 l 4.2-9 Calculated Plant Condensanon Rates (Ibm /sec) at 1100 psia for Different Mixing Depths 4-12 4.2 10 Calculated Plant Condensation Rates (Ibm /sec) at 60 psia for Different Mixing Depths 4-13

l. 4.2 11 Calculated Condensate Mass Flux Ratio at 1100 psia 4-14 4.2-12 Calculated Condensate Mass Flux Ratio at 60 psia 4-15 4.2-13 Comparison of Different Interfacial Heat Transfer Condensation Coefficients

! (Btu /hr-ft2 _.F) for 1100 psia and a Mixing Depth of 1.5 ft. for the Plant 4-16 4.2 14 Calculated Plant Liquid Layer Temperature ('F) for Different Mixing Depths at 1100 psia Using Cumu Heat Transfer Correlation 4-17 4.2-15 Calculated Plant Liquid Layer Temperature (*F) for Different Mixing Depths at 1100 psia Using Young Heat Transfer Correlation 4-18

                   . 4.3-1        Calculated CMT Test Wall and Dome Surface Temperatures (*F) for                                       i Different Liquid Levels at 1100 psia                                                    4-26 4.3-2        Calculated CMT Test Wall and Dome Surface Temperatures (*F) for Different Liquid Levels at 60 psia                                                      4-27 4.3-3        Calculated Plant Wall and Dome Surface Temperatures (*F) for                                         >

Different Liquid Levels at 1100 psia 4-28 4.3-4 Calculated Plant Wall and Dome Surface Temperatures ('F) for Different Liquid Levels at 60 psia 4-29 4.3-5 Average CMT Test Wall and Dome Surface Temperatures (*F) for Different Liquid Levels at 1100 psia 4-30 4.3-6 Average CMT Test Wall and Dome Surface Temperatures ('F) for

Different Liquid Levels at 60 psia 4-31 i 4.3-7 Average Plant Wall and Dome Surface Temperatures (*F) for Different Liquid Levels at 1100 psia 4-32 4.3-8 Average Plant Wall and Dome Surface Temperatures ('F) for Different Liquid levels at 60 psia 4-33 I

l uA1628w.wpLib Rev.I vi

L 3 l (

                                                                                                                                            )
                         ,                                                       LIST OF FIGURES (Cont.)

fiEE1 I !13.1 _PIEt 2

                  ~ 4.3 9           Calculated Plant Wall Condensation Coefficient (Btu /hr ft *F) for Different Liquid Levels at 1100 psia -                                                                 4 34 4.3 10         Normalized Laminar and Turbulent Film Condensation Heat Transfer                                    "

Coefficients

  • 4-35 4.3 11 Calculated CMT Test Wall Condensation Coefficient (Btu /hr-ft' 'F) for j Different Liquid Levels at 1100 psia 4-36 .

j 4.3-12 Calculated Plant Wall Condeacation Mass Flow Rates Obm/sec) for Different

        .                           Liquid Izvels at 1100 psia                                                                   4-37 l                     4.3-13         Calculated Plant Wall Condensation Mass Flow Rates (Ibm /sec) for Different I               .                    Liquid Levels at 60 psia                                                                     4-38 4.3-14         Calculated CMT Test Wall Condensation Mass Flow Rates Obm/sec) for Different Liquid Levels at 1100 psia                                                         4-39 l                     4.3 15         Calculated CMT Test Wall Condensation Mass Flow Rates Obm/sec) for Different Uquid Levels at 60 psia                                                            4 40 l                     4.3-16         Calculated Plant Uquid T+. -es ('F) for Different Liquid Levels at l                                    1100 psia and a Mixing Depth of 1.5 ft.                                                      4 41 4.3-17         Calculated Plant Liquid Temperatures (*F) for Different Liquid I.evels at 60 psia and a Mixing Depth of 1.5 ft.                                                        4-42 4.3 18         Calculated CMT Test Uquid Temperatures ('F) for Different Liquid Levels at 1100 psia and a Mixing Depth of 1.5 ft.                                                   4-43 4.3-19         Calculated CMT Test Uquid Temperatures ('F) for Different Liquid Levels at 60 psia and a Mixing Depth of 1.5 ft.                                                     4-44 4.3 20         Sensitivity Study to the Assumed Liquid Layer 'Ihickness for the Plant CMT                              j at 1100 psia, Temperatures in 'F                                                             4-45 2

4.3-21 Calculated Plant Condensanon Heat Transfer Coefficients (Btu /hr-ft ,.p) o, , the CMT Liquid Surface at 1100 psia 4-46 4.3 22 Calculated Plant Condensanon Heat Transfer (Btu /hr-ft' *F) on the CMT Liquid Surface at 60 psia 4-47 - 4.3-23 Calculated CMT Test Condenantion Heat Transfer Coefficients (Bru/hr-ft' *F) on the Liquid Surface at 1100 psia 4-48 4.3-24 Calculated CMT Test Condensation Heat Transfer Coefficients (Bru/hr-ft' *F) on the Liquid Surface at 60 psia 4-49 4.3-25 Calculated Plant Condensation Flow Rates Obm/sec) on the Liquid Surface at 1100 psia 4-50 4.3-26 Calculated Plant Condensation Flow Rates Obm/sec) on the Liquid Surface at 60 psia 4 51 4.3 27 Calculated CMT Test Condensadon Flow Rates Obm/sec) on the Liquid Surface at 1100 psia 4-52 aA162sw.wpf:1b Rsv. I vii

LIST OF FIGURES (Cont.) 4.3-28 Calculated CMT Test Condensation Flow Rates (Ibm /sec) on the Liquid Surface + at 60 psia 4-53 4.3-29 Ratio of the CMT Test Wall Condensate Mass Flux to the Plant Condensate , Mass Flux for Different CMT Levels at 1100 psia 4-54 4.3 30 Ratio of the CMT Test Wall Condensate Mass Flux to the Plant Condensate Mass Flux for Different CMT Levels at 60 psia 4-55 4.3-31 Ratio of the CMT Test Wall Surface Condensate Mass Flux to the Plant Water Surface Condensate Mass Flux or 1100 psia 4-56 l 4.3-32 Ratio of the CMT Test Water Surface Contieneste Mass Flux to the Plant l - Water Surface Contiencare Mass Flux at 60 psia 4-57 4.3-33 Calculated CMT Test IL Group for Different Liquid Levels at 1100 psia and a Mixing Depth of 1.5 ft. 4-58 4.3-34 Calculated CMT Test IL Group for Different Liquid Levels at 60 psia and a Mixing Depth of 1.5 ft. 4-59 4.3-35 Calculated Plant Ib Group for Different Liquid Levels at 1100 psia and a Mixing Depth of 1.5 ft. 4-60 4.3-36 Calculated Plant Ib Group for Different Liquid levels at 60 psia and a Mixing Depth of 1.5 ft. 4-61 , 4.3-37 Calculated Ratio of the CMT Test IL Group to the Plant CMT Ib j Group for Different Liquid Levels at 1100 psia and a Mixing Depth of 1.5 ft. 4-62 4.3-38 Calculated Ratio of the CMT Test L Group to the Plant CMT Ib Group for Different Liquid Levels at 60 psia and a Mixing Depth of 1.5 ft. 4-63 4.3-39 Calculated CMT Test IL Group for Different Liquid Levels at 1100 psia l and a Mixing Depth of 1.5 fL 4-64 4.3-40 Calculated CMT Test Ib Group for Different Liquid Levels at 600 psia and a Mixing Depth of 1.5 ft, 4-65

    .                  4.3-41        Calculated Plant Ib Group for Different Liquid Levels at 1100 psia and a Mixing Depth of 1.5 ft.                                                  4-66 4.3-42        Calculated Plant Ib Gmup for Different Liquid Levels at 600 psia and a Mixing Depth of 1.5 ft.                                                  4-67 4.3-43        Calculated Ratio of the CMT Test b Group to the Plant CMT Ib Group for Different Liquid Levels at 1000 psia and a Mixing Depth of 1.5 ft. 4-68 4.3-44        Calculated Ratio of the CMT Test L Group to the Plant CMT Ib Group for Different Liquid Levels at 60 psia and a Mixing Depth of 1.5 ft. 4-69 I

i uM628w.wpf:Ib Rev.I viii

LIST OF TABLES P T hlt

      ..a                                               . Tit!t                       _P.iggt    ,

1.4-1 Phenomena Identification and Ranking Table for the AP600 CMT 1 18 3.4-1 Top-Down Subsystem Level Scaling Analysis: Control Volume . Balance Equations for Core Makeup Tank Draining (with Simplifying Assumptions) 3-17 3.4-2 Set of Initial and Boundary Conditions Used to Non-Dimensionalize - the Core Makeup Tank Balance Equanons 3 17 3.4-3 Non-Dimensionalized Balance Equations for CMT Constant Pressure Draining 3-18 3.4-4 Balance Equations for Top-Down Scaling Analysis of the CMTs 3-25 3.4-5 CMT Boundary and Initial Conditions 3-26 3.4-6 Dimensionless Balance Equations for Top-Down Scaling of the CMTs When Condensation Occurs at the Diffuser 3-27

    - 3.4-7        CMT 'Ilme Constant, Specafic Frequency, Characteristic Time Ratios When Condensation Occurs at the Diffuser                            3-28       .

3.4-8 Dimensionless Balance Equations for Top-Down Scaling of the. CMTs, When a Level Exists in the CMT 3-29

                                                                                                  )

3.4-9 CMT Time Constant, Specific Frequency, Characteristic Time Ratios When Level Exists in the CMT 3-30 5-1 AP600 CMT Test Matrix 5-3 5-2 Phenomena Identification and Ranking Table for the AP600 CMT-Compared to the Test Matrix 5-5 4 r uA1628w.wp:1b Rev.1 ix

d 9 ) REFERENCE #: 27

REPORT #
WCAP-14132
    ~

TITLE: AP600 CMT Program - Facility Description Report DATE: July 1994 l l l i m:\3334w-a.wpf:1b-1104% A-27

FActuTV DESCRJmON REroaT TABLE OF CONTENTS Section Ill!t East

1.0 INTRODUCTION

1.1 Background 1-1 1.2 Test Objectives 1-1 , 1.3 Facility Scaling Summary- 1-2 1.4 - Facility Modifications 1-2 2.0 TEST FACILITY DESCRIPTION - 2.1 Introduction 2-1 2.2 Components 2-2 2.2.1 Core Makeup Tank 2-2 2.2.2 CMT Prototype Level Instrument 2-3 2.2.3 Steam / Water Reservoir 2-4 2.2.4 Steam Supply System 2-5 2.3 Piping 2-6 2.3.1 Steam Line #1 2-7 , 2.3.2 Steam Line #2 2-8 2.3.3 CMT Discharge Line 2-9 2.3.4 CMT Level Control System 2-10 2.4 Instrumentation 2-11 > 2.4.1 Temperature Instrumentation 2-11 2.4.2 Level Instrumentation 2-13 2.4.3 Pressure instrumentation 2-13 . 2.4.4 Differential Pressure Instrumentation 2-14 2.4.5 Flow Instrumentation 2-15 2.5 Data Acquisition System 2-16 2.5.1 DAS Components 2-16 2.5.2 Input Channels 2-18 2.5.3 Sampling Rates 2-18 2.5.4 On-Line Data Storage 2-19 2.5.5 On-Line Display 2-19 2.5.6 Test Validation 2-19 2.6 Facility Operation 2-20 2.6.1 Test Safety 2-21

3.0 REFERENCES

3-1 APPENDIX A - Facility Drawings - 1:\FACDEsl4.AP6:o72794 il

REFERENCE #: 28 REPORT #: WCAP-14217 1 l TITLE: Core Makeup Tank Test Data Report l DATE: November 1994 l i l l l i l l i m:\3334w-a wpf 1b-1104% A-28

_ __ _ __ m _ - . _ .,,- . _ . _ _ - _ _ _ . _ _ . - _ _ _ _ _ _ . ..._..__m - . . . 4 1 l l TABLE OF CONTENTS 1 itElina .T.1111 .taat i

SUMMARY

1 I

                - g1.0           Introduction                                                                                       1-1
1.1 Background 1-1 -

1.2 Test Objectives 1-2 , I 1.3 Test Matrix 1-5 l_ 1.4 Facility Scaling Summary 17 - 2.0 Test Fecility Desenption 2-1

2.1 Introduction 2-1 l 2.2 Facility Component Desenption 2-2 j 2.3 Instrumentation 2-6 2.4 Data Acquisition System (DAS) 2-10 1

{ 2.5 Facility Operation 2-13

3.0 Test Acceptance 3-1 i 3.1 Introduction 3-1 l 3.2 Critical Instruments 3-1 j 3.3 AO
ep-- 'e Criteria 3-2

~ 3.4 Mass Balance 3-5 i 3.5 Depressunzation Rate 3-6 3.6 Pre-Operational Tests 3-6 i 3.7 Matrix Tests 3-13 l

                 @ 4.0           Test Results                                                                                       4-1 l
4.1 Introduction 4-1.

j 4.2 Pre-Operational Test Results 4-1 4.3 Matrix Test Results 4-7 l i 4.4 Test Data Comparison 4-10 . l 4.5 CMT Level Instrument 4-14 -i 5.0 Conclusions 5-1 . I 6.0 References 6-1 mAap60thl466w.wpf:Ib120294 lil

i I i TABLE OF CONTENTS (Cont.)

smalna . Ildt na i

i APPENDICES I i l A Data Reduction for CMT Matrix Tests A-1 l B Data Amy== Rescits B-1 j , C Failed and Wa.=ad Insinunents C-1 7 D Instrument Error Analysis D-1 l } E *Iher=ampe Measurement Bias Corrections E-1 i i F Data Plots for all Valid Tests F-1 G Data Files G-1 l . H Facility Drawings H1 i l 1 I l 1 mNgdOO41466w.wpf:1b120194 IV

._ . _ . . . _ ~ . _ . _ . . . _ _ _ _ _ . _ _ . _ _ _ _ . _ . . _ _ _ . . . _ _ _ _._ _ . _ . __ LIST OF TABLES - Table No. Title EBat  : 1.1-1 AP600 CMT Test Matnx 1-9 1.3-1 Matrix Test Steam Pressure 1-11 1.4-1 Phenomena Idennn ation and Rankmg Table (PIRT) for the AP600 CMT 1-12 2.3-1 AP600 CMT Test Instrument List 2-14 3.2-1 Critical Instrumentc for 100 , 300,400 , and 500-Series CMT Tests 3-14

            .3.2-2                           100-Series Test-SpeciSc Critical Instruments                            3-16 3.2 3                           300-Series Test-Specific Critical Instruments                           3-16 3.2-4                          400-Series Test-Specific Critical Instruments                            3-17               ,

3.2-5 500-Series Test-Specific Critical Instruments 3-17 3.4-1 Mass Balance 100-Series Matrix Tests 3-18 3.4-2 Mass Balance 300-Series Matnx Tests 3-19 3.4-3 Mass Balance 400-Series Matrix Tests 3-20

           '3.4-4                            Mass Balance 500-Series Matrix Tests                                    3-20 3.5-1                          400-Series Matrix Tests Average D% 5--- :m^ ion Rate                     3-21 3.5-2                          500-Series Matrix Tests Average Depressurization Rate .-                 3-22 3.6-1                          CMT Test Program Pre-Operational Tests                                   3-23               '

3.6-2 Distributor Comparisons 3-24  ; 3.7-1 100-Series Matrix Tests 3-25  ; 3.7-2 - 300-Series Matrix Test Runs 3-26 3.7-3 400-Series Matrix Tests 3-27 3.7-4 500-Series Matrix Tests 3-28  : 3.7-5 CMT 100-Series Matrix Test Acy e 3-29 i 3.7-6 CMT 300-Series Matrix Test AO-;--=e 3-30 3.7-7 CMT 400-Series Matrix Test Acv~a 3-32 i 3.7-8 CMT 500-Series Matrix Test Acvanca 3-33 I l 4.2-1 'Iharmacalpe Positions 4-16 - 4.2-2 A04 with First Mag-Wafer Flow Meter 4-17 4.2-3 A04 wita Second Mag-Wafer Flow Meter 4-18 4.5-1 CMT Matrix Tests Used to Evaluate CMT 12 vel Instrument 4-19 m:\sp600J466w.w%1b-120294 - v i

LIST OF FIGURES Finure No. .Ildt Eggt t 1.1-1 AP600 Passive Core Cooling System 1-13 3.61 Steam Line DP and Steam Pressure - 0.877-in. Inlet Nozzle - 3-34 3.6-2 Drain and Steam Line Flows - 0.877-in. Inlet Nozzle 3-35 l 3.6-3 Overall Temperature Distribution - 0.877-in. Inlet Nozzle 3-36 3.64 Steam Line DP and Steam Pressure - 1.338-in. Inlet Nozzle 3-37

  '3.6-5           Drain and Steam Line Flows - 1.338-in. Inlet Nozzle                            3-38 3.6-6           Overall Temperature Distribution - 1.338-in. Inlet Nozzle                      3-39 3.6-7           Steam Line DP sad Steam Pressure - Model 1 Steam Distributor                   3-40 3.6-8           Drain and Steam Line Flows - Model 1 Steam Distributor                  -

3-41 3.6-9 Overall Temperature Distribunon - Model 1 Steam Distributor 3-42 3.6 10 Model 1 Steam Une DP and Steam Pressure 3-43 3.6-11 Model 1 Drain and Steam Une Flows 3-44 3.6 12 Model 1 Overall Temperamre Distribution 3-45 3.6-13 Model 1 *Ihermal Mixing Layer 3 46 3.6 Model 2 Steam Line DP and Steam Pmssure - 3-47 3.6-15 Model 2 Drain and Steam Une Flows 3-48 3.6 Model 2 Overall Temperature Distribution 3-49 3.6-17_ Model 2 Thermal Mixing Layer 3-50 3.6 18 Model 3 Drain and Steam Line Flows 3-51 3.6-19 Model 3 Overall Temperature Distribution 3-52 3.6-20 Model 3 Steam Une DP and Steam Pressure 3-53 4.2-1 CMT Upper Head Volumes 4-21 4.2-2 First CMT Fill Test 4-22 4.2-3 First CMT Drain Test - 4-23 4.2 4 Fmal CMT Fill Test 4-24 - 4.2-5 Fmal CMT Drain Test 4-25 4.2-6 S/WR Fill Test 4-26 4.2-7 S/WR Drain Test 4-27 4.2-8 First Mag-Wafer Flow Meter 4-28 4.2-9 Second Mag-Wafer Flow Meter 4-29 4.2 10 - PD"11A - Line Resistance with Spool Paces 4-30 4.2-11 PD71A - Line Resistance with Vortex Flow Meter 4-31 4.2-12 PDT11 - Line Resistance without Check Valves 4-32 4.2-13 PDT8C - Une Resistance 4-33 4.2-14 PDT13 - Line Resistance 4-34 4.3-1 Test Run C047101 Steam Mass Flow and CMT Pressure 4-35 4.3-2 Test Run C047101 - Full Heatup 4-36 4.3-3 Test Run C047101 - Temperature Pro 61e 4-37 m.4p600(1466w.wyf:Ib 120294 vi

       - .- __- ..                          . . - - . - . . -        - . -       _ - - _ - , _ - - _ . - _ - . _ ~ . - .        - . . _ _ -

i ? ! LIST OF FIGURES (Cont.) 4 ! Fleure No. .II.l!! .EMt j 4.3-4 Test Run C050319 - Full Dramdown 4-38  ! ( 4.3-5 Test Run C050319 - Heatup Prior to Steady Draindown 4-39 ) l 4.3-6 Test Run C050319 - Thermal Mixing Layer 4-40 j 4.3-7 Test Run C050319 - Overall Temperanre Profile 4-41 4.3-8 Test Run C050319 - CMT Pressure and Steam Flow 4 42 l ' l 4.3-9 Test Run C065506 - CMT Drain Flow, Pressure, and level 4-43 ! 4.3-10 Test Run C065506 - CMT Drain Flow and Temperature 4 44 , i 4.4-1 100-Series CMT Fluid Temperature without Noncondensibles '4-45 ) l 4.4-2 100 Series Effect of Steam Pressure on Condenamion Steam Mass at Vaious Steam Pressures 4-46 l 4.4-3 100-Series CMT Level 3 Wall Te=====e with Noncondensibles 4-47 4.4-4 100-Series CMT Level 4 Wall Temperanne with Noncondensibles 4-48 l' . . 4.4-5 100-Series CMT Fluid Temperanue with Noncondensibles 4 49 '

j. 4.4-6 100-Series CMT TC59 Temperature with Noncondensibles 4-50 4.4-7 100-Shes CMT Steam Mass with Noncondensibles 4-51 4.4-8 300-Series Drain Mass Flow Rates at 45 psig 4-52 >

}

  • 4.4-9 300-Series Steam Mass at 45 psig 4-53 4.4 10 300-Series Dome Temperature at 45 psig 4 54  ;

4.4-11 300 Series Drain Mass Flow Rates at 16 gpm Drain Line Paeie 4-55 i _ 4.4-12 300-Series Dome Temperange at 16 gpm Drain Line Resistance 4-56 l i , 4.4-13 300-Series level 1 T+ . at 16 gpm Dram I. Joe Resistance 4-57 4.4-14 400-Series Drain Mass Flow Rates 4-58 l 4.4-15 400-Series Steam Mass 4-59 4.4-16 500-Series Drain Temperanse 4-60 i

4.4-17 500 Series Effect of CMT Heating During Draindown - Drain T+Tu-o 4-6'1 4.4-18 500-Series Effect of CMT Heating During Draindown - Drain Flow 4-62 l

4.4-19 500-Series Drain Flow 4-63 l 4-64

4.5-1 CMT Level Instrument - Level 2 RTD i.

l 1 1 I J J m:W4di6w.wyf:Ib-t20294 vii

i i REFERENCE #: 29 i l REPORT #: WCAP-14215 l l TITLE: Core Makeup Tank Test Analysis l Report DATE: December 1994 l l I I l l i m:\3334w-a.wpf-1b-1104% A-29 l

. -. . . . .- . -- .. - .. - .. ~. - . - 1 1 l TABLE OF CONTENTS f.SS1191

                                                                        .T.1111                               .tast

SUMMARY

1 l 1.0 Introduction 11 - 1.1 Background 1-1 I 1.2 Analysis Objecdves 17 ] 1.3 CMT Test Matrix 1-9 - l

            $ 2.0 CMT Analysis Methodology                                                                        21 2.1 Analysis Modeling Introduction                                                    21 l

l 2.2 Facility Characternation 2-4 2.3 Plow Calculations 2-5 2.4 CMT Level and Mass Balance 2-12 ] 2.5 CMT Local Heat Transfer 2-20 2.6 CMT Wall Effects Modeling 2 42 2.7 CMT Wall Condensation. 2-48 i 2.8 CMTInterface Modeling 2-57 3 2.9 A==*eemear of CMT Recirculation Tests 2-65

            -je 3.0 Analysis of Core Makeup Tank Test Data                                                        3-1 3.1 Introduction                                                                      3-1   .

3.2 Analysis of the 100-Senes Tests 3-1 3.3 Analysis of the 300-Series Tests 3-49  ! 3.4 Analysis of the 400-Series Tests 3-97 3.5 Analysis of the 500-Series Tests 3-123 skl 4.0 Phenomenological Modeling Results 4-1 4.1 Introduction ,4-1 4.2 Steam-Region Wall Heat Transfer 4-1 4.3 Mixing Charactenstics in 300-Series Tests 4-30 4.4 Liquid-Region Wall Heat Transfer 4-37 4.5 Compenson of 500-Series Namral Circulation Tests to Calculation Model 4-44 l 4.6 Addressing the Core Makeup Tank Test PIRT 4-50 5.0 Conclusions 5-1 6.0 References 6-1 m:W152sw. sac:1b.121594 ill

I i i TABLE OF CONTENIS (Cont.) S95119 1 . Tit.lt fast i APPENDICES A Calibration Functions Used in Analysis A-1 B Steam Line Flow Calculations B-1 C Effects of Flow Measurement Uncertainty on Mass Balance Error C1 i l D CONTRA Sensitivity D-1 l E Integration Cell Size Sensitivity E-1 l i l l l 6 m:W528w. soc:1b-121594 iv

LIST OF TABLES Table No. .This, g 1.2-1 Phenomena Identification and Ranking Table (PIRT) for the AP600 CMT 1-8 1.3 1 100-Series Test Matrix 1-10 1.3 2 300-Series Test Matrix 1-10 . 1.3-3 400-Series Test Matrix 1-10 1.3-4 500 Series Test Matrix 1-11 2.1-1 Comparison of Test Series 22 3.2 1 100-Series Tests Matrix 3-6 3.3-1 300-Series Tests Matnx 3-55 3.3-2 CMT 300-Series Tests Mass Balance Results 3 56 3.4-1 400-Series Matrix Tests 3-101 3-133 l 3.5-1 500-Series Matnx Tests 4.5-1 Key Parameters for Natural Circulation Analysis 4 45 I l l

                                                                                                                   .         I I

m: Nap 601A1528w. soc:1b-121594 Y

      . _      _ _ . _     - .              .   . _ _ _ _ . . . _._._ ___ ..                     . _ ._.m  ._ _ _ _ _ _ _ _ _

t LIST OF FIGURES l Firure No. Ildt fBER 1.1-1 AP600 Core Makeup Tank 1-3 1.1 2 AP600 Passive Safety System Design 1-4 l 1.1-3 AP600 SSAR Calculation of CMT Draining Flow for 2-In. Cold Leg Break 1-5 ' ' 1.1-4 AP600 SSAR Cold leg Balance Line Void Fraction for 2-In. Cold < ! leg Break 1-6 2.1 1 CMT Test Control Valves 2-3 2.3-1 Typical Recorded Steam Line 1 Flow and Pressure Drop Signals for Test C053322 2-8 2.3 2- Steam Line 1 Plowrates from Vanous Measurements for Test C053322 2-9 2.3-3 Periods of Validity for Various Steam Une 1 Flow Indicators for Test C053322 (One is Valid and Zero is Invalid) 2-10 2.3-4 Steam Line 1 Integrated Flows and Selection of Flow Indications for Test C053322 2-11 2.4-1 CMT DP Cells and 'Iher-ow.ples 2-15 2.4-2 CMT Level and Mass Mo& ling - 2-16 2.4-3 CMT Level for Test C047101 2-17 2.4-4 CMT level for Test C053322 2-18 2.4-5 Mass Balance Error for Test C053322 2-19 j 2.5-1 ' Local Wall Heat Transfer Modeling 2-24  ! 2'.5-2 Fluid and Wall Temperatures at Five Analysis Bevations for Test C047101 2-25 , 2.5-3 Fluid and Wall Temperamre Gradients at "Ihree Analysis Elevations for Test C047101 2-26 2.5-4 Inside-Surface Local Heat Flux at Five Analysis Elevations for _ Test C047101 2-27 2.5-5 Calculated and Measured Surface Tew.mc at Four Analysis Elevations for Test C047101 2-28 2.5-6 Comparison oflocal Heat Flux at Adjacent Analysis Elevations for Test C047101 2-29 2.5-7 Comparison of Measured Fluid Temperature to Calculated Samrated Steam Temperature for Five Analysis Bevations for Test C047101 2 30 2.5-8 Comparison of Calculated Surface Temperature at Adjacent l ! Analysis Bevations for Test C047101 2-31 2.'-9 Fluid and Wall Temperatures at Five Analysis Elevations 2-32 ( for Test C053322 i m:W52swJoc:1&l21694 vi

LIST OF FIGURES (Cont.) Firure No. .Ilgt h 2.5-10 Fluid and Wall Temperature Gradients at Three Analysis Bevations for Test C053322 2 33 2.5-11 CMT Level and Analysis Elevation Uncovery Tinnes - for Test C053322 2-34 2.5-12 Inside-Surface I4 cal Heat Flux at Five, Analysis Bevations for Test C053322 2 35 ' 2.5-13 - Calculated and Measured Surface Temperature at Four Analysis Bevations for Test C053322 2-36 , 2.5-14 Mapping of Heat Flux at Analysis Bevations to and from Axial l Heat Flux Pro 61e 2 37 2.5-15 Coinpenson of Time-Shifted I4 cal Heat Flux at Adjacent Analysis Bevation for Test C053322 2-38 2.5-16 Comparison of Time-ShiAed Calculated Surface Temperanne at Adjacent Analysis Bevations for Test C053322 . 2-39 2.5-17 Comparison of Measured Fluid Temperature to Calculated Saturated Steam Temperature for Five Analysis Elevations for Test C053322 2-40 2.5-18 Measured Fluid Temperamre versus Bevation for Selected Test "I1mes for Test C053322 2-41 2.6-1 Modeling of CMT Wall Effects 2-44 2.6-2 Steam Wall Heat Transfer for Test C047101 2-45 2.6-3 'Ilme Shifting and Averaging for a 300-Series Test 2-46 2.6-4 Steam- and Pluid-Region Wall Heat Transfer for Test C053322 2-47 2.71 Wall Condan==rian Model - Control Volume for an Integration Cell 2-54 2.7-2 Wall Condanention for Test C047101 2 55 I 2.7-3 Wall Condensation for Test C053322 2-56, 2.8-1 Liquid Energy Balance Control Volume 2-61'

                          .2.8-2                     Wall and Interfacial Condenention Based on Steam Mass Balance for Test C047101                                                       2-62
  • I 2.8-3 Wall and Interfacial Condensation Based on Steam Mass Balance for Test C053322 2-63 2.8-4 Comparison of Interfacial Condensation Models for Test C053322 2-64 2.9-1 CMT Test Facility and AP600 Plant 2 70 2.9-2 Calculation of the Recirculation Flow for the CMT Test Facility at 1100 psia 2 71 2.9-3 Calculation of the Hot Liquid Layer Thicirnamn for the CMT Test Facility and Cold Liquid Layer Thickness in the Reservoir.at 1100 psia 2 72 m:\np600(1528w. soc:Ib 1215M vil

LIST OF FIGURES (Coot.) l Finure No.- T.htt h l 3.2-1 System Pressure, Drain Flow, and Inlet Steam Flow for

 .                             Test C047101                                                             3-7 3.2-2              Mass Balance for Test C047101                                            3-8  l 3.2-3              Wall Temperamres at Different Bevations for Test C047101                 39
  -         3.2-4              Calculated Wall Heat Flux at Different CMT Bevations for                      l Test C047101                                                            3-10 3.2-5              Calculated Wall Condensation Heat Transfer Coef6cients at Different CMT Bevations for Test C047101                                3-11 3.2-6              CMT Axial Fluid Twy -- Distributions for Different Times for Test C047101               ,

3-12 3.2-7 System Pressure, Drain Flow, and Inlet Steam Flow for Test C078102 3-13

       . 3.2-8              Mass Balance for Test C078102                                           3-14 3.2-9              Wall T= mees at Different Bevations for Test C078102                    3-15 3.2-10             Calculated Wall Heat Mux at Different CMT Bevations for Test C078102   '3-16 3.2-11             Calculated Wall Condensation Heat Transfer Coefficients at Different CMT Bevations for Test C078102                                          3-17 3.2-12             CMT Axial Fluid Temperature Distributions for Dtfferent Times for Test C078102                                                                 3-18 3.2-13             System Pressure, Drain Flow, and Inlet Steam Flow for Test C079103                                                        3-19 3.2 14             Mass Balance for Test C079103                                           3 20 3.2-15             Wall Temperatures at Different Bevations for Test C079103               3-21 3.2-16            Calculated Wall Heat Flux at Different CMT Sevations for Test C079103                                                            3-22 3.2-17            Calculated Wall Condensanon Heat Transfer Coefficients at Differest CMT Bevations for Test C079103                               3-23  :

3.2-18 CMT Axial Fluid Temperature Distributions for Different Times l for Test C079103 3-24 3.2-19 Systetr 1.iessure, Drain Flow, and Irlet Steam Flow for Test C042104 3-25 l 3.2-20 Mass Balance for Test C042104 3-26 3.2-21 Wall Temperatures at Different Bevations for Test C042104 3-27 3.2-22 Calculated Wall Heat Flux at Different CMT Bevations for Test C042104 3 28 3.2-23 Calculated Wall Condensation Heat Transfer Coefficients at Different CMT Bevations for Test C042104 3-29 3.2-24 CMT Axial Fluid Ts-gra--s Distributions for Different Times for Test C042104 3-30 m:hp600(152sw.km:1b121594 viii

.. . ._ ~ . _- .. . . - - - - . . . - . . - . - . - - - . - . . . _ - . - - . - - .-- LIST OF FIGURES (Cost.) mure No. T. ids fann 3.2-25 System Pressure, Drain Flow, and Inlet Steam Flow for Test C044106 3-31 3.2-26 Mass Balance for Test C044106 3-32 - 3.2-27 Wall Temperatures at Different Elevanons for Test C044106 3 33 3.2-28 Calculated Wall Heat Flux at Different CMT Bevations & Test C044106 3-34 3.2-29 Calculated Wall Condensation Heat Transfer Coefficients at Different CMT Bevations for Test C044106 3-35 3.2-30 CMT Axial Fluid Temperamre Distributions for Test C044106 3-36 3.2 31 System Pressure, Drain Flow, and inlet Steam Flow for , Test C045107 , 3-37  : 3.2 32 Mass Balance for Test C045107 3-38 3.2 33 Wall Temperatures at Different Bevations for Test C045107 ~3-39 3.2-34 Calculated Wall Heat Flux at Different Chfr Bevations for Test C045107 , 3-40 3.2-35 Calculated Wall Condensation Heat Transfer Coefficients at Different CMT Bevations for Test C045107 3-41 3.2-26 CMT Axial Fluid Temperature Distributions for Different Times for Test C045107 3-42 3.2-37 System Pressure, Drain Flow, and Inlet Steam Flow for Test C046108 3-43 3.2-38 Mass Balance for Test C046108 3-44 3.2 39 Wall Temperatures at Different Bevations for Test C046108 3-45 3.2-40 Calculated Wall Heat Flux at Different CMT Bevations for Tea C046108 3-46 3.2-41 Calculated Wall Condensation Heat Transfer Coefficients at Different CMT Bevations for Test C046108 3-47 3.2-42 CMT Axial Fluid Temperature Distributions for Different Times for Test C046108 3-48 3.3-1 CMT and Steam / Water Reservoir Pressure, CMT Inlet Steam Flow, and CMT Drain Flow for Test C027304 3-57 3.3-2 CMT Axial Fluid Temperature Distribution for Different

                                            'Ilmes & Test CO27304                                                            3-58 3.3-3               CMT Level for Test CO27304                                                       3-59 3.3-4               CMT Wall Temperatures at Different Bevations for Test CO27304                    3-60 3.3-5               Calculated Wall Heat Flux Values at Different Eevations for Test C027304                                                                3-61 3.3-6               Calculated Wall Heat Transfer Coefficients at Different Elevations for Test CO27304                                                     3-62             l I

1

                                                                                                                                              ]

mr\np600J52sw. soc:1b-121594 , ix

LIST OF FIGURES (Cont.) Finure No. 'Dgg Egag 3.3-7 Calculated Vapor Region and Liquid Region Heat Transfer Rates;

   .                              Wall Condeaema and Interfacial Condanese Mass for Test CO27304                                    3-63   '

3.3-8 Calculated Mass Balance for Test CO27304 3-64 i 3.3-9 CMT and Steam / Water Reservoir Pressure, CMT Inlet Steam Flow, l

    .                             and CMT Drain Flow for Test C049318                                                               ".1-65 l                3.3-10            CMT Axial Fluid Temperature Distribution for Different Times for Test C049318                                                                                   3-66  !

3.3-11 CMT Ievel for Test C049318 3-67 3.3-12 CMT Wall Temperatures at Different Bevations for Test C049318 3-68 3.3-13 Calculated Wall Heat Flux Values at Different Bevations for Test C049318 3-69 3.3-14 Calculated Wall Heat Transfer Coefficients at Different Bevations for Test C049318 3-70 3.3-15 Calculated Vapor Region and Liquid Region Heat Transfer Rates; Wall l Condenema and Interfacial Condanema Mass for Test C049318 3-71 3.3-16 Calculated Mass Balance for Test C049318 3-72 3.3-17 CMT and Steam / Water Reservoir Pressure, CMT Inlet Steam Flow, and CMT Drain Flow for Test C080305 3-73 3.3-18 CMT Axial Fluid T+- Distributions for Different Times for Test C080305 3-74 3.3-19 CMT Level for Test C080305 3-75 3.3-20 CMT Wall Temperatures at Different Elevations for Test C080305 3-76 3.3-21 Calculated Wall Heat Flux Values at Different Bevations for Test C080305 3-77 3.3-22 Calculated Wall Heat Transfer Coefficients at Different Bevations for Test C080305 3-78 3.3-23 Calculated Vapor Region and Liquid Region Heat Transfer Rases; Wall Coadaae** and Interfacial Condensate Mass for Test C080305 3-79 l 3.3-24 Calculated Mass Balance for Test C080305 3-80 3.3-25 CMT and Steam / Water Reservoir Pressure, CMT Inlet Steam Flow, and CMT Drain Flow for Test C052321 3-81 3.3-26 Axial Fluid Temperature Distributions for Different Times for Test C052321 3-82 l 3.3-27 CMT Level for Test C052321 3-83 3.3-28 CMT Wall Temperatures at Different Elevations for Test C052321 3-84 3.3-29 Calculated Wall Heat Flux Values at Different Bevations for Test C052321 - 3-85 i l 3.3-30 Calculated Wall Heat Transfer Coefficients at Dtiferent Bevations for Test C052321 3-86 z%dGA152Sw.aac:ltr121594 x i

LIST OF FIGURES (Cont.)

                                                                                                                                    )

Fiaure No. .T.idt fast 3.3-31 Calculated Vapor Region and Uquid Region Heat Transfer Rates; Wall , Condensate and Interfacial Condensate Mass for Test C052321 3-87 3.3-32 Calculated Mass Balance for Test C052321 3-88 , 3.3-33 CMT and Steam / Water Reservoir Pressure, CMT Inlet Steam Flow, and CMT Drain Flow for Test CO29306 3-89 i 3.3-34 CMT Axial Fluid Temperature Distribution for Different Times for . Test CO29306 3-90  ; 3.3-35 CMT Level for Test CO29306 3-91 3.3-36 CMT Wall Temperatures at Different Bevations for Test CO29306 3-92 3.3-37 Calculated Wall Heat Flux Values at Different Bevanons for Test CO29306 3-93 3.3-38 Calculated Wall Heat Transfer Coefficients at Different Bevations , for Test CO29306 3-94 j

                   ,    3.3-39                 . Calculated Vapor Region and Uquid Region Heat Transfer Rases; Wall                 <

Coadanema and Interfacial Condensate Mass for Test CO29306 3-95 l 3.3-40 Caladead Mass Balance for Test CO29306 3-% 3.4-1 CMT Test Facility Schematic 3-102  ; 3.42 C055401 CMT Uquid Level 3-103 1 3.4-3 C055401 CMT Pressure and Flow Rates 3-104  ; 3.4-4 C055401 CMT Axial Muid Temperatures 3-105 l 3.4-5 C055401 CMT Axial Wall Heat Transfer Coefficients 3 106 l 3.4-6 C055401 CMT Axial Wall Heat Mux 3-107 i 3.4-7 C056402 CMT Uquid Level 3-108 3.4-8 C056402 CMT Pressure and Flow Rates 3-109 1 3.4-9 C056402 CMT Axial Fluid Temperatures 3 110 3.4-10 C056402 CMT Axial Wall Heat Transfer Coefficients 3-111 3.4-11 C056402 CMT Axial Wall Heat Mux 3-112 3.4-12 C057403 CMT Uquid Level 3-113 3.4-13 C057403 CMT Pressure and Flow Rates 3-114 . 3.4-14 C057403 CMT Axial Fluid Temperatures 3-115 3.4-15 C057403 CMT Axial Wall Heat Transfer Coefficients 3 116 3.4-16 C057403 CMT Axial Wall Hest Flux 3-117 3.4-17 C058404 CMT Uquid Level 3-118 3.4-18 C058404 CMT Pressure and Flow Rates 3-119 3.4-19 C058404 CMT Axial Muid Te+--os 3-120 3.4-20 C058404 CMT Axial Wall Heat Transfer Coefficients 3-121 3.4-21 C058404 CMT Axial Wall Heat Mux 3-122 3.5-1 C059502 CMT Pressure and Flow Rates 3-134 3.5-2 C059502 CMT Axial Muid Temperatures 3-135 l m:W52sw. soc:Ib 121594 , xi w, - -- , -- -

i  : l l l l t LIST OF FIGURES (Cont.) mure No. Tidt h i 3.5-3 C059502 CMT Axial Wall Heat Transfer Coefficients 3-136

  .                3.54                  C059502 CMT Axial Wall Heat Flux                                                     3-137 l                    3.5-5                C061504 CMT Pressure and Flow Rates                                                  3-138         .

3.5-6 C061504 CMT Axial Muid Temperatures 3 139 l . 3.5-7 C061504 CMT Axial Wall Heat Transfer Coefficients 3-140 3.5-8 C061504 CMT Axial Wall Heat Flux 3-141 l 3.5-9 C064506 CMT Pressure and Flow Rates 3-142  : l- 3.5-10 C064506 CMT Axial Fluid Te+.--es 3-143 I 3.5-11 C064506 CMT Axial Wall Heat Transfer Coefficients 3-144 3.5-12 C064506 CMT Axial Wall Heat Flux 3-145  ; 3.5-13 C065506 CMT Pressure and Flow Rates 3-146 3.5-14 C065506 CMT Liquid Level 3-147  : 3.5 15 C065506 CMT Axial Muid Temperansres 3-148  ! 3.5-16 C065506 CMT Axial Wall Heat Transfer Coefficients 3'149 3.5-17 C065506 CMT Axial Wall Heat Flux 3-150 1 3.5-18 C066501 CMT Pressure and Flow Rates 3-151 l 3.5-19 C066501 CMT Axial Fluid Temperatures 3-152 3.5-20 C066501 CMT Axial Wall Heat Tmnsfer Coefficients 3-153 3.5 21 C066501 CMT Axial Wall Heat Flux 3-154 3.5-22 C067501 CMT Pressure and Flow Rates 3-155 3.5 23 C067501 CMT Liquid Level 3-156 3.5-24 C067501 CMT Axial Muid Temperatures 3-157 3.5 C067501 CMT Axial Wall Heat Transfer Coefficients 3-158 3.5-26 C067501 CMT Axial Wall Heat Flux 3-159 3.5-27 C068503 CMT Pressure and Flow Rates 3-160 - 3.5-28 C068503 CMT Axial Fluid Temperatures 3-161 3.5-29 C068503 CMT Axial Wall Heat Transfer Coefficients 3-162 3.5-30 C068503 CMT Axial Wall Heat Flux 3-163 3.5-31 C069503 CMT Pressure and Mow Rates 3-164 3.5-32 C069503 CMT Liged Level 3 165 3.5-33 C069503 CMT Axial Fluid Tme : .s 3-166 3.5-34 C069503 CMT Axial Wall Heat Transfer Coefficients 3-167 3.5-35 C069503 CMT Axial Wall Heat Flux 3-168 3.5 36 C070505 CMT Pressure and Flow Rates 3-169 3.5-37 C070505 CMT Axial Fluid Temperatures , 3-170 3.5-38 C070505 CMT Axial Wall Heat Transfer Coefficients 3-171 3.5-39 C070505 CMT Axial Wall Heat Flux 3-172 3.5-40 C07.1505 CMT Pressure and Flow Rates 3-173 j l C07150; CVT Liquid level 3-174  ! 3.5-41 anAny60m1528w. soc:1b.121594 Kil i l'

       . . - - . . _     - . - - . . _ . . .           - -          _ _ - -     _ _ _ . . ~ . - - . - - - - - . . . - - - - . - -

i LIST OF FIGURES (Coot.) I Finure No. Ildt Engg 3.5-42 C071505 CMT Axial Fluid Temperatures 3-175  ! 3.5-43 C071505 CMT Axial Wall Heat Transfer Coefficients 3-176  ! 3.5-44 C071505 CMT Axial Wall Heat Flux 3-177 . i 3.5-45 C072509 CMT Pressure and Flow Rates 3-178 l 3.5-46 C072509 CMT Axial Fluid Temperatures 3-179 l 3.5-47 C072509 CMT Axial Wall Heat Transfer Coefficients 3-180 . l 3.5-48 C072509 CMT Axial Wall Heat Flux 3-181 3.5-49 C073509 CMT Pressure and Flow Rates 3-182 3.5-50 C073f0) CMT Liquid Level 3-183 3.5-51 C073509 CMT Axial Flaid Temperatures 3 184 3.5-52 C073509 CMT Axial Wall Heat Transfer Coefficients 3-185 3.5-53 C073509 CMT Axial Wall Heat Flux 3-186 Fim T 1 l 3.5-56 C074508 CMT Axial Wall Heat Transfer Coefficients 3-189 l 3.5-57 C074508 CMT Axial Wall Heat Flux 3-190 3.5-58 C075508 CMT Pressure and Flow Rates 3-191 3.5-59 C075508 CMT Liqmd level 3-192 3.5-60 C075508 CMT Axial Fluid Temperatures 3 193

                      . 3.5-61               C075508 CMT Axial Wall Heat Transfer Coefficients                                        3-194 3.5-62               C075508 CMT Axial Wall Heat Flux                                                         3-195      j
                                                                                                                                                 ^

3.5-63 C076507 CMTPressure and Flow Rates 3-196 3.5-64 C076507 CMT Axial Fluid Temperatures 3-197 3.5-65 C076507 CMT Axial Wall Heat Transfer Coefficients 3-198 3.5-66 C076507 CMT Axial Wall Heat Flux 3-199 3.5-67 C077507 CMT Pressure and Flow Rates 3-200 3.5-68 C077507 CMT Liquid level 3-201 3.5-69 C077507 CMT Axial Fluid Temperatures 3-202 3.5-70 C077507 CMT Axial Wall Heat Transfer Coefficients 3-203 - 3.5-71 C077507 CMT Axial Wall Heat Flux 3-204

 ^

4.2-1 Local Normalized Wall Condensation Heat Transfer Coefficients for Test C047101 4-5 4.2 2 Local Normalimt Wall Condensation Heat Transfer Coefficients for. Test C078102 4-6 4.2-3 Local Normalized Wall Condensation Heat Transfer Coefficients for Test C079103 4-7 4.2-4 local Normalized Wall Condensation Heat Transfer Coefficients for Test C042104 4-8 mAsp60m1528w.noc:lt>1:1594 xill

l LIST OF FIGURES (Cont.) Flaure No. J193. Inst 4.2-5 Local Normalized Wall Condensation Heat Transfer Coefdcients for - Test C044106 4-9 4.2-6 Local Normalized Wall Condensadon Heat Transfer Coefficients for Test C045107 4-10 4.2 7 Local Normalized Wall Condensation Heat Transfer Coefficients for Test C046108 4-11 4.2-8 Local Normalized Wall Condensation Heat Transfer Coefficients for All Bevations & Test C047101 4-12 4.2-9 Local NormalirM Wall Condensadon Heat Transfer Coefficient for All Bevations for Test C078102 4-13 4.2-10 Local NormalirM Wall Condensadon Heat Transfer Coefficients for All Bevations & Test C079103 4 14

         ~
    ~

4.2-11 Local NormaltrM Wall Condensadon Heat Transfer Coef5 dents for All Eevations for Test C042104 4-15 4.2-12 Composite Plot of All 100-Senes Tests without N' oncondensible Gas; Norm *1erM Wall Heat Transfer Condannarian, CoefBcients 4-16 4.2-13 Local Normalized Wall Condansanon Heat Transfer Coefficients for All Elevations for Test C044106 with 0.2 psia of Inidal Air Pressure 4-17 4.2-14 Local NormalirM Wall Condensadon Heat Transfer Coefficients & All Elevations for 'Iest C045107 with 1.0 psia of Inidal Pressure 4-18 4.2 15 Local Normalized Wall Condensanon Heat Transfer Coefficients for All Bevations & Test C046108 with 2 psia of Initial Air Pressure 4-19 4.2-16 Effects of Noncondensible Gases on Wall Condensadon from Spanow, et al. 4 20 4.2 17 Comparison of the Wall Heat Flu for Test C047101 (without air) and Test C044106 (with air) at the lowest Measuring Station 4-21 4.2 18 Comparison of the Wall Heat Flu h Test C047101 (without air) and Test C045107 (with air) at the Lowest Measuring Station 4-22 4.2 19 Comparison of the Wall Heat Flu for Test C047101 (without air) and Test C046108 (with air) at the Lowest Measuring Stanon 4-23 4.2-20 Comparison of the Calculated Heat Flu Rado to the Noncondensible Mass Fraction Ratio for the 100 Series Tests, and Sparrow's Results 4-24 4.2-21 Senes 300 Wall Condensation Normalized Heat Transfer CoefBcients at 25 psia (10 psig) 4-25 4.2-22 Series 300 Wall Condensation Normalized Heat Transfer Coefficients at 60 psia (45 psig) 4-26 4.2-23 Series 300 Wall Condensation Normalized Heat Transfer Coefficients at  ; 150 psia (135 psig) 4-27 mws2sw.=db.121594 xiv

r l LIST OF FIGURES (ConL) Haure No. . Tit!r. .Pagg I 4.2-24 Series 300 Wall Condensadon Normalized Heat Transfer Coefficients at 700 psia (685 psig) 4-28 4.2-25 Series 300 Wall Condensation Normalized Heat Transfer Coefficients at . 1100 psia (1085 psig) 4-29 4.3 1 Mixing Depd1 and Mixed Region Subcooling at End of Mixing Period for 300-Series Tests 4-33 - 4.3-2 CMT Axial Fluid Temperature Distributions for Test C032310 4-34 CMT Muid Temperature vs. Tune for Test C032310 4-35 4.3-3 4.3-4 Norinahzed Mnal Mixed Region Subcooling and Drain Delay for 300-Series Tess 4-36

  • 4.4-1 Calculated Local Heat Flux for 300-Series Tea C037301 at 86.1" Elevation 4-40 4.4-2 Expandad Scale for Calculated Local Heat Flux and Tank I.evel for 300-Series Test C037301 at 86.1" Elevation 4 41 )

4.4-3 Plots of Saturation Temperature, Wall Temperature, and Bulk Fluid Temperature for 300-Series Test C037301 at 86.1" Elevation 4-42 4.4-4 Comparison of McAdams Convective Heat Transfer Correlation with Experimental Data for Heat Transfer from Heated Water Layer to the CMT Walls for the 300-Series Tests 4-43 4.5-1 Hot Liquid Imyer 'Ihickness Comparison, Test C064506 4-46 i 4.5 CMT Discharge Flow Comparison, Test C064506 4-47 l 4.5-3 ' Hot Liquid Layer 'Ihickness Comparison, Test C072509 4-48 4.5-4 CMT Discharge Flow Comparison, Test C072509 4-49 i wW528w. soc:Ib 121594 xy

REFERENCE #: 30 REPORT #: WCAP-14442 TITLE: AP600 Core Makeup Tank Level Instrument Test Data and Evaluation Report DATE: July 1995 1 m:\33Mw-a.wpf;1b1104% A-30

I l TABLE OF CONTENTS gggjp,g Title g , 1 1.0 Introduction 1  ; 1.1 Background '! 1. i l' l.2 CMT Level lnstmment 3 -. 2.0 CMT Level Instrument Description 5

                .3.0    Test Data                                                                                         7 3.1          CMT Test Numbering                                                                  7            .

3'.2 CMT Level Instrument Data 7 e

                                                      '                                                                                 i 4.0    Evaluaden                                                                                        28 4.1           Discussion                                                                         28            4 4.2           Results                                                                            30 l

5.0 Conclusions 60 i 6.0 References 62 , 1 Appendix A - Drawing 93-388951, Multi-Point Level System, Model ML89HT 63 I 2 i l

  • Nh *pfe$

Ili

                                           . , . . .      , . . ,           s.-  --..w-              -
 .-                              -    -                 -       . . . - . . _    ~       ~ . - . . . .        . --

WEsmCBoCSE PaoramTARY CLASS 2 l LIST OF TABLES Table No. Title g l 31 Post-Test Measurements of CMT Level Instrument Heater Circuits s 27 41 Level Instrument Performance, Tests C037301 and C025302 ' - 36 4-2 Level Instrument Performance, Tests C036302 and C038303 ' 37 4-3 Level Instrument Performance. Tests C027304 and C028305 38 4-4 Level Instrument Performance, Tests C080305 and C029306

  • 39 45 Level Instrument Performance, Tests C031307 and C034308 1 40 4-6 Level Insuument Performance, Tests C039309 and C032310 {

41 47 Level Instrument Performance, Tests C033311 and C004315 42  ! 4-8 Level Instrument Performance, Tests C005316 and C048317 43

        ~

49' Level Instrument Performance, Tests C049318 and C050319 44 4,10 Level Instrument Performance, Tests C051320 and C052321 45 4-11 Level Instrument Performance, Tests C053322 and C054323 46 4 12 Level Instrument Performance, Tests C055401 and C056402 47 4 13 Level Instrument Performance, Tests C057403 and C058404 3 48 4-14 Level Instrument Performance, Tests C067501 and C069503 49 4-15 Level Instrument Performance, Tests C071505 and C065506 50 4 16 Level Instrument Performance, Tests C077507 and C075508 51 4 17 Level Instrument Performance, Test C073509  ! 52 i 4-18 Levei 'nstrument Performance, Recirculation Tests C066501 and C059502 53 4-19 Level Insuument Performance, Recirculation Tests C068503 and C061504 54 4 20 Level Instrument Performance, Recirculation Tests C070505 and C064506 55  ! 4-21 Level Instrument Performance, Recirculation Tests C076507 and C074508 56 4-22 Level Instrument Performance, Recirculation Test C072509 57 4-23 CMT 300-Series Matrix Test Runs 58 4-24 CMT 400-Serks Matrix Test Runs 59 4-25 CMT 500-Senes Matrix Test Runs 59

i l I

  • l l

t l 1 LIST OF FIGURES i Finure No. Title g  ! 33 Test C076507, Active RTD Temperature, Sensor Head I 11  ; l 3-2 Test C076507. Reference RTD Temperature, Sensor Head 1 11 3-3 Test C076507, Active R7D Temperature, Sensor Head 2 12 - 34 Test C076507 Reference RTD Temperature Sensor Head 2 12 35 Test C076507, Active RTD Temperature, Sensor Head 3 13 3-6 Test C076507. Reference RTD Temperature, Sensor Head 3 13 37 Test C076507, Active RTD Temperature, Sensor Head 4 14 3-8 Test C076507, Reference RTD Temperature, Sensor Head 4 14 39 Test C076507, CMT Water Temperature at Elevation of Sensor Head 1 15 3-10 Test C076507. CMT Water Temperature at Elevation of Sensor Head 2 15 3 11 Test C076507 CMT Water Temperature at Elevation of Sensor Head 3 16 3 12 Test C076507 CMT Water Temperature at Elevation of Sensor Head 4 16 l 3 13 Test C076507. Reference RTD Compared to Test Facility T/C, Sensor Head 1 17 3 14 Test C076507, Reference RTD Compared to Ten Facility T/C, Sensor Head 2 17 3 15 Test C076507. Reference RTD Compared to Test Facility T/C, Sensor Head 3 18 3-16 Test C076507, Reference RTD Compared to Test Facility T/C, Sensor Head 4 18 3 17 Test C076507, Delta-T, Sensor Head 1 19 3-18 Test C076507. Delta-T, Sensor Head 2 19 3-19 Test C076507, Delta-T, Sensor Head 3 20 3-20 Test C076507. Delta-T, Sensor Head 4 20 3 21 Test C077507, Active RTD Temperature, Sensor Head _1 21 3-22 Test C077507, Reference RTD Temperature Sensor Head 1 21 3 23 Test C077507, Active RTD Temperature, Sensor Head 2 22' l l 3-24 Test C077507, Reference RTD Temperature, Sensor Head 2 22  ! 3 25 Test C077507, Active RTD Temperature, Sensor Head 3 23 l 3-26 Test C077507 Reference RTD Temperature Sensor Head 3 23 l 3-27 Test C077507, Delta-T, Sensor Head 1 24 3-28 Test C077507, Delta T, Sensor Head 2 24 - 3 29 Test C077507. Delta-T, Sensor Head 3 25 3 30 Test C077507, CMT Pressure ' ' 25 3 31 Test C076507, Water Level from Top of CMT 26 i 3-32 Test C077507, Water Level from Top of CMT 26 4-1 Effect of Setpoint Filter Length, Recirculation Test 32 4-2 Effect of Data Filter Length, Recirculation Test 32

43. Trip Algorithm, Recirculation Test,15 Second Data Filter 33 A4 Trip Algorithm, Recirculation Test,35 Second Data Filter 33 45 Effect of Setpoint Filter Length, Draindown Test 34 4-6 Effect of Data Filter Length, Dramdown Test 34
                   '7 Trip Algorithm, Draindown Test,15 Second Data Filter                     35 4             Trip Algorithm [Draindown Test,35 Second Data Filter                     35
                    " 9te22e* *pM80095 y

r-r-

REFERENCE #: 31 REPORT #: WCAP-12665, Rev.1 TITLE: Tests of Heat Transfer and Water Film Evaporation on a Heated Plate Simulating Cooling of the AP600 Reactor Containment , DATE: 1992 l O j, 1 4 m:\3334w-a.wpf.1b-110496 A-31

Table of Contents . Page Abstract .................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . , , , , , . . . . , Introduction .. 1

41. .......... ....... .. . .. . ...................
      '2. Experimental Apparetus and Procedwes ... .................. . .......... ... 7                                                                l A3. Results .............:.. ............... . ..... ...... .. . ............... ... ........... .. 34
                                                                                                        . ....                  ...... 79
     $4. Conclusions ........................ .. ............. ... ......
                                                                                                                                  ..,,,,, 31
5. .L^--- ' w' . .t ............ .. . .... ..... ... . .. ............
6. Referenens ... . .............. .. .. .... .. .. ...... .. .. ... . ... .... ... ... ......... . 82
7. hmenclatwe .............. ....... .................. . ....... ...... .. ..... 84 C

e e e

                                                                ..g.

i i REFERENCE #: 32 REPORT #: WCAP-14134 TITLE: Final Test Report for Integral Small-Scale Tests l DATE: August 1994 l 1 l l l I I m:\3334we.wpf 1b-1104% A-32

o TABLE OF CONTENTS t l ESEl.isa .T.!!It Pagg

SUMMARY

1

1.0 INTRODUCTION

-                                                                                                   1-1  ,

1.1 Background 11 1.2 Test Objectives - 12 l 1.3 Test Matrix 12 . 2.0 TEST FACILITY DESCRIPI1ON 2-1 2.1 Introduction 2-1 2.2 Facility Component Description 2-2 2.3 Instrumentation 2-7 l i 2.4 Data Acquisition System (DAS) 2 12 ! 2.5 Facility Operation 2-13 ! 3.0 DATA REDUCI10N 3-1 3.1 Introduction 3-1 l 3.2 Test Validation 3-2  ; 3.3 Test Analysis , 3-2 3.4 Matrix Tests 3-4 l 3.5 Test Summary 3-6 l { 4-1 g 4.0 TEST RI".SULTS 4.1 Matrix Tests Description 41

                                     ' 4.2    Comparison of Results                                                                                     4-4 y

5.0 CONCLUSION

S 5-1 1

6.0 REFERENCES

6-1 i l l l mA1307w.wyf:lNM lii

   -                 ,           , .             .     -~    .      -            -                                                              ,e .

TABLE OF CONTENTS (Cont.) D .I.illt fan l APPENDICES 1 l Appendix A - Drawings .A1 Appendix B Data Files B1 i i l I i l 1 l

                                                                                                                                                                       .i l

i 1 I 1 1 l l l 1 I I eu m .pt $ os2594 iv l

LIST OF TABLES Table No. .T.!t.l!1 .PBEt 1.3-1 Test Conditions Applicable to AP600 Small-Scale PCS Integral Test Extension Final Report 1-4

                                                                                                                   ~

2.3 1 Summary of Test Instrumentation 2-15 2.4-1 Data Logger Functions 2-16 3.5-1 Summary of Reported Tests and Failed Channels 3-7 l 3.5-2 Summary of Test Runs 3-8 4.1-1 Summary of Test Conditions for Reported Tests 4-5 4.1-2 Vessel Wall Temperature Summary-Test 105-15U, Run 9A 4-7 ) 4.1-3 Vessel Wall Temperamre Summary-Test 106-15U, Run /.7 4-8

                                                                                                                     ]

! 4.1.-4 Vessel Wall Temperamre Summary-Test 106-15U, Run 41 4-9 i l 4.1-5 Vessel Wall Temperature Summary-Test 10615U, Run 39 4-10 4.1-6 Vessel Wall Temperature Summary-Test 107A-15U, Run 3 4-11  ! 4.1-7 Vessel Wall Temperature Summary-Test 107C-15U, Run 7B 4-12 4.1-8 Vessel Wall Temperature Summary-Test 106-5U, Run 74 4-13 , 4.1-9 Vessel Wall Temperature Summary-Test 106-5U, Run 71 4-14 4.1-10 Vessel Wall Temperature Summary-Test 107A 5U, Run 72 4-15 4.1-11 Vessel Wall Temperamre Summary-Test 109B 15U, Run 9B 4-16 4.1-12 Vessel Wall Temperamre Summary-Test 113A-15U, Run 14 4-17 4.1 13 Vessel Wall Temperature Summary-Test 113B-15U, Run 15A 4-18 i 4.1-14 Vessel Wall Tempersmre Summary-Test 114A-15U, Run 7C 4-19 4.1-15 Vessel Wall Temperature Summary-Test 114B-15U, Run 7D 4-20 4.1-16 Vessel Wall Temperature Summary-Test 107A-5P, Run 76 4-21 4.1-17 Vessel Wall Temperamre Summary-Test 111-5P, Run 84 4-22 4.1-18 Vessel Wall Temperature Summary-Test 117C-15U, Run 12C 4-23 4.1 19 Vessel Wall T+--e Summary-Test 120A-15U, Run 12A 4-24 + l-4.1-20 Vessel Wall Temperature Summary-Test 121-15U, Run 18A 4-25 4.1-21 Vessel Wall Temperature Summary-Test 131A-15U, Run 6A 4-26 4.1-22 Vessel Wall Temperature Summary-Test 132A-15U, Run 19 4-27 4.1-23 Vessel Wall Temperature Summary-Test 132B 15U, Run 20A 4-28 4.2-1 AP600 Integral Extension Test Results Summary 4-29 4.2-2 AP600 Integral Extension Test Results Summary 4-31 uA1307w.my6lb.0825N y l l -

i ( l LIST OF FIGURES i

Finure No. Title Page

! 2.1-1 Section View of AP600 Integral Small-Scale Test 2-18 i 2.1-2 Passive Containment Cooling System Test Apparatus 2-19 ! 2.2-1 One Section of the Uniform Steam Distributor 2-20 2.2-2 Side and Top View of Prototype Steam Distributor 2-21 i 2.3-1 Temperature Measurement Locations 2-22 j 3.1-1 Data Handling Process 3-11 3.3-1 Comparison of Small-Scale Heat Remova! Rates 3-12 N 4.1-1 Vessel Pressure and Condensate Flow History versus Time-Test 105-15U, ka 9A 4-33 4.1 2 Vessel Pressure and Condensate Flow History versus Time-Test 106-15U, Run 47 4-34 4 . 4.1-3 , Vessel Pressure and Condensate Flow History versus Time-Test 106-15U, Run 41 4-35

4.1-4 Vessel Pre,ssure and Condensate Row History versus Time-Test 106-15U, Run 39 4-36 4.1-5 Vessel Pressure and Condensate Flow History versus Eme-Test 107A-15U, Run 3 4 37

! 4.1-6 Vessel Pressure and Condensate Flow History versus Time-Test 107C-15U, Run 7B 4-38 4.1-7 Vessel Pressure and Condensate Flow History versus Time-Test 106-5U, Run 74 4-39 i 4.1-8 Vessel Pressure and Condensate Flow History versus Time-Test 106-5U, Run 71 4-40 Vessel Pressure and Condensate Row History versus Time-Test 107A-5U, Run 72 4-41  : 4.1-9

                                                                                    ~

4.1 10 Vessel Pressure and Condensate Flow History versus Time-Test 109B-15U, Run 9B 4-42 l 4.1 11 Vessel Pressure and Condensate Flow History versus Eme-Test 113A-15U, Run 14 4-43  ; i 4.1-12 Vessel Pressure and Condensate Mow History versus Time-Test 113B-15U, Run 15A 4-44 4.113 Vessel Pressure and Condensate Row Histcry versus Time-Test 114A-15U, Run 7C 4-45 l 4.1-14 Vessel Pressure and Condensate Row History versus Time-Test 114B-15U, Run 7D 4-46 4.1-15 Vessel Pressure and Condensate Flow History versus Time-Test 107A-SP, Run 76 4-47 i 4.1 16 Vessel Pressure and Condensate Mow History versus Time-Test 111-5P, Run 84 4-48 4.1-17 Vessel Pressure and Condensate Flow History versus Time-Test 117C-15U, Run 12C 4-49 4.1-18 Vessel Pressure and Condensate Flow History versus Time-Test 120A-15U, Run 12A 4-50 4.1-19 Vessel Pressure and Condensate Flow History versus Time-Test 121-15U, Run 18A 4-51 4.1-20 Vessel Pressure and Condensate Flow History versus Time-Test 131 A-15U, Run 6A 4-52 4.1 21 Vessel Pressure and Condensate Flow History versus Time-Test 132A-15U, Run 19 4-53 4.1-22 Vessel Pressure and Condensate Flow History versus Time-Test 132B-15U, Run 20A 4-54 4.21 Vessel Pressure and Heat Transfer History versus Time-Test 105-15U, Run 9A 4-55  ; Vessel Pressure and Heat Transfer History versus Time-Test 106-15U, Run 47 4-56 4.2-2 Vessel Pressure and Heat Transfer History versus Time-Test 106-15U, Run 41 4-57 4.23 Vessel Pressure and Heat Transfer History versus Time-Test 106-15U, Run 39 4-58 4.2-4

  • Vessel Pressure and Heat Transfer History versus Time-Test 107A-15U, Run 3 4-59 4.2-5 Vessel Pressure and Heat Transfer History versus Time-Test 107C-15U, Run 7B 4-60 4.2-6 Vessel Pressure and Heat Transfer History versus Time-Test 106-5U, Run 74 4-61 4.2-7 Vessel Pressure and Heat Transfer History versus Time-Test 106-5U, Run 71 4-62 4.2-8 u:\i307w.wp:st@s1594 Vi

gtgt o g 31 9 n 3 3g )3 oat-( g!anaa NO' Ilifi dW

                #r-6         Aassol diasmo sap Hoet 12susJm H!stoh Aassns 1!ma-18SI 10LV gn* gnu LI                     19E
                #r-tO        Aass81 d2asmo sap Hos112susJoJ H!sioL rossns 1!ma-18811068-tsa' yna 68                     19#

tr tI Aossal dJosmo sap Hos 12susJoJ H!stoh Amsns 1!ma-ios2 itgy-tgn' yna tt 1 95 tr-tg Aossal d2assnJo sap H881128 G 2 H!stoh ADsns tima-ios1 ItEg-tgn' yna tgV 1 99 tr-lE Aossal d3 osmo sap Hos112susim H!sloh ANsns 1!mo-losi 1 tty-tgn' ynu LD 19L yr-tt A ssol d3asmo sap Hos:12susJm H!sioL Amsns 1!ma-iosi Itts-tsa' ynu LG 1 98 , tr-tS Aossal diasmo sap Hosi12susJa2 H!ssah Amsns lima-los1104V-sd' unu L9 9 96 yr-19 Aossal diasmo tup Hos 12susJoJ Hlsloh ADsns 1!ma-iss1111-sd' yna gt tLO

               .PC-tL ' Aossel d3asmo sap Hos112susJm H!sioL ANsns 1!ma-iasa Itta-tgn' yna IED                          tLI tr-18 A3ss31 diasmo sap Hos112susJm H!stoh Amsns 1!ma-iss1 tZOY-Isa' ynu IgV                            tLZ ts 16 Aossal diasma. sap Hos 12susJm H!sloh ANsns lima-iost 1gt-tgn' ynu I8Y                            tLE
                #r-Z0 Aossal d2asmo sap Hos 12susJm H!stoh ANsns itma-iosi tEty-tgn' ynu 9V                             tLt tr-II       A3ssal diasmo sap Hos112susJm H!stoh Amsns 1!ma-losi tggy-tsa' ynu 16                       tLg
                #r tI       Aossal d3asmo mI Hos:12susJm H!stoL ANsns 1!ma-iosi tggg-tgn' ynu 70V                       1 49 s

avtco.taAr$osna pI

                    =-.                        -          ._.           -                     . - _ -                       -

h i l REFERENCE #: 33 4 REPORT #: NSD-NRC-96-4790 TITLE: Scaling Analysis for AP600 l Containment Pressure During Design Basis Accidents 4 DATE: August 8,1996 m:\33Mw-a.wpf:Ib 1120% A-33

l l i i l l

                                                                                                                                                                                         )

TABLE OF CONTENTS Section Title Page a PREFACE . . . 7

SUMMARY

                       .       .                        . .          .         .. ... ..                          .                        .       Il

1.0 INTRODUCTION

              ..          . .. .           . .                 .. .... . ... .                                                      . 13
                                                                      . .. .              . .                 .                .. .. ..               ..        .              15 3 2.0 The AP600 PIRT                 ..      .
                                                                                                              ....                                                             17
              .,ye3.0 Energy. Pressure and Momentum Equadons ......                                                               .....                  ..         .

3.1 Containment Gas Energy and Pressure . . . . . . ........ .. .. . ,..... 17 3.2 PCS Air Flow Path Momentum . . . . . . . . . . . . . . . .. . ......... ..... 18 3.3 Heat Sink Energy Equadons .................. .. . . ... ...... 18 3.3.1 Energy Equation for Internal Drops . . . . . . . . . . . . . . . . . . ........ 19 3.3.2 Energy Equation for the Break Pool . . . . . . . . . .................. 19 3.3.3 Energy Equadon for the IRWST . . . . . . . . . . . . .. . . . . . . . . . . . . . .... 20 3.3.4 Energy Equation for the Liquid Film . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3.5 Energy Equadon for Internal Solid Heat Sinks . . . . . . . . . . . . . . . . . . . 21 3.3.6 Energy Equation for the Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.7 Energy Equation for Baffle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.8 Energy Equation for Shield Building . . . . . . . . . . . . .............. 25 3.3.9 Energy Equation for the Chimney . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

               'jt 4.0 Constitutive ' Equations for Heat. Mass, and Radi4 tics Transfer . . . . . . . . . . . . . . . . . . . . . . 26 4.1 Radiation Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....                                    26 4.2 Convection Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.1 Turbulent Free Convection Heat Transfer . . . . . . . . . . . . . . . . . . . ....                                             26 4.2.2 Laminar Free Convection Heat Transfer . . . . . . . . . . . . . . . . ........                                                 26 4.2.3 TWbules Forced Convection Heat Transfer . . . . . . . . . . . . . . . . . . . . . . 27 4.3 Coedensation and Evaporation Mass Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.4 Cand-marina and Evaporanon Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.5 uguid Film Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.6 Heat Sink Conductances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 34
              #- 5.0 Dimensionless Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34 5.1 Constant Dimensionless Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.2 Variable Dimensionless Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34 5.2.1 Values of Dimensionless Quantaties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2.2 Heat Sink Surface Areas During TrarsLm . . . . . . . . . . . . . . . . . . . . . . 37

ftw. TABLE OF CONTENTS (Cont.) Seggog, Title h 4.12 Test 221.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 15 7 4.13 Test 222.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 175 , 4.14 Test 2 22.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 18 9 4.15 Test 222.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . 4-206 4.16 Test 222.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 223

.               4.17   Test 223.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-240 4.18   Test Results 224.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 249 4.19   Test Results 224.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 257 5.0     C ONCLUSIO NS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...          5-1

6.0 REFERENCES

. . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6- 1 APPENDIX A - Facility Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 APPENDIX B - Sampling Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1 APPENDIX C - Incomplete Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1 APPENDIX D - Official Test Data Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-1 APPENDIX E - Baseline Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-1 1

4 I I n:W1144w.wpf:Ib480194 y

          .                                                                                                                                    Fcw.

TABLE OF CONTENTS (Cont.) Title Page jgstJg,g, i 2.2.5 Steam Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 23 2.2.5.1 3 In. '/ortex Meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23 2.2.5.2 Gilflo Variable Orifice Flow Meter . . . . . . . . . . . . . . . . . . . . 2-24 . 2.2.5.3 6 In. Vortex Meter (Phase 3 Tests) ..................... 2-25 2.2.6 Annulus Differential Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25 4 4 2.2.7 Containment Annulus Air Flow and Temperature . . . . . . . . . . . . . . . . . 2 26 . l 2.2.8 In*ernal Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27 l i 2.2.8.1 Pacer . .......................................227 2.2.8.2 H6ntzsch ......................................228 2.2.9 Containment Vessel Wall Temperatures . . . . . . . . . . . . . . . , . . . . . . . 2 28 2.2.10 Annulus Wall Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 29 2.2.11 Vessel Fluid Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29  ; 2.2.12 Gas Sampling . . . . . . . . . . . ............................. 2-29 { 2 38  ; 2.3 Data Acquisition . . . . . . . . . . . . . . . . . . . . . ......................... ' 2.4 Facility Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-53 l 1 31 3.0 D ATA REDUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Data Acquired . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ 3- 1 3.2 Data Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 i 3-4 3.3 Test Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 Test Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 3.3.2 Test Analysis '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 35 3.3.2.1 Heat Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 l l 3.3.2.2 Pressure Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 3.3.2.3 Steam Flow Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.2.4 Internal Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 3.3.3 Test Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

                                                                                                             ..................                      4-1 3%4.0         TEST RESUL'13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4- 1 4 4.1 Test Results 202. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 1 1 4.2 Test Results 203.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20 4.3 Test 212.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37 4.4 Test Results 213.1 . . . . . . . . . . . . . . . . . . . . . . . . ................... 4-55 4.5 Test 214.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-68 4.6 Test 215.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

                                                                                                                                    .....           4-81 4.7        Te st 216.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
,                                                                                                                                                   4-95 4.8        Ten 217.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4- 1 10 4.9 Test 218.1 . . . '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.10 Test 219.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 125 4- 142

                    .4.11       Test 220.1 . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

unap600(1144w.wgttr080194 jy

FtmL TABLE OF CONTENTS fassn9.a T. ins. .Pagg S UMMARY . . . . . . . . . . . . . . . . . . . . . . ..................................... 1 p 1.0 1moDUCTioN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 - 1 1.1 Test Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 -5 1.2 Facility Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 1.2.1 Test Vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 1.2.2 Heat Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 -7 1.2.2.1 Short Tenn Heat Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 1.2.2.2 Long Term Heat Sinks . . . . . . . . . . . . . . . . . . . . . , . . . . . . . 1-8 1.3 Test Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9 1.3.1 Phase 2 Test Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9 1.3.2 Phase 3 Test Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11

     .,                         1.3.2.1 Test Series 222 g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11 1.3.2.2 Test 223.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12 1.3.2.3 Test Scries 224 . . . . . . . . . . . . . . . . . . . . ..............                           1-12 2.0 TEST FACILITY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                    2-1 2.1 Facility Component Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .             2-6 2.1.1 Foundation and Tower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .               2-6 2.1.2 Pressure Vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          2-6 2.1.3 Steam Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .           2-7 2.1.3.1 Facility Steam Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .               2-7 2.1.3.2 High Capacity Boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                2-7 2.1.3.3 Steam Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .             2-8 2.1.4 Vessel Internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         2-8 2.1.4.1 Baseline Test Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .              2-8

, 2.1.4.2 Phase 2 and Phase 3 Test Series . . . . . . . . . . . . . . . . . . . . . . . 2-9 2.1.5 Condea***e Handhng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 2.1.6 External Cooling Annulus and Air Ducting . . . . . . . . . . . . . . . . . . . . . 2-10 2.1.7 Axial Fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2- 1 1 2.1.8 Helium Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 2-11 2.2 Instrumentanon and Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 2.2.1 Condenente Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 2.2.2 Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 2.2.2.1 Vessel Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 2.2.2.2 Steam Inlet Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 21 2.2.3 Wind Speed and Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21 j 2.2.4 Vessel Water Cooling Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 22 1 1 a

                                                                                                                                              \1
                                                                                                                                              ,1 1

a:Wil44w.wpf:1b 080194 ili

1 1 l l l I REFERENCE #: 35 REPORT #: WCAP-14135 TITLE: Final Test Report for PCS Large-Scale Phase 2 and Phase 3 Tests DATE: July 1994 I 1 I m:\3334w-a.wpf:1b-11N% A-35

         - _ _ . ..           _,     _ . _ _ -  .___.. > _ _._. _.._... .              _.. ~ m. _ ..  .- .. - . _ _ . _ . _ . . . _ . _ . . _ . _ _ . _

F I PC5.DRm3 bision 1 TABLE OF CONTENTS .f i

                                                                                                                                                           )

List of Figures Firure No. pm Section View of AP600 Iarge Scale PCCS Test 13

     ,              3.1-1 Large Scale PCCS Test Internals                                                                             14 3.1-2                                                                                                                                  1' Large Scale PCCS Test Am e                                                                                   15 3.1.3 Steam Diffuser for Internals Tesung                                                                          16 3.5-1 Test Apparatus Baffle Anangemeunt                                                                             17 3.7-1 Water Film Distnbutor                                                                                        18 3.7-2 I.arge Scale PCCS Insuumentation Elevations                                                                  19 3.9-1 Range of Heat Fluxes Measwed Durmg the AP600 Baselme Test Series                                             36 5.1 1 l
                                                                                                                                                           \

i j 4 e D f ... I m

  . . - . - . . . - - - - - . - - - - - . . - - _ . . . . . . - . .                              . . . . - .                - - - - .   - . - - . . . . ~ _ - . .

4 i PCs-T2stm3 Ilmmen 1 TABLE OF CONTENTS

List of Tables 4

Table No. g , 3.9-1 LST Data (hnnal A=='-- - ' 20 4.0-1 AP600 Large Scale Cnnemmmant Cooling Test - Test Matnx 31 5.0.1 Summary Test Run Perfonnance for AP600 Baseline Test Senes 37 5.0-2 Test 201.1 Summary Data 38 5.0-3 Test 202.1 S=-- y Data 40 5.0-4 Test 203.1 Summary Data 42 5.0 5 Test 207.1 Sununary Data 44 5.0-6 Test 207.2 Sununary Data 46 5.0-7 Test 201.2 Sununary Data 48 5.0-8 Test 202.2 Sununary Data 50 5.0-9 Test 203.2 Sununary Data 52 5.0-10 Test 204.1 Sununary Data 54 5.011 Test 205.1 Summary Data 56 5.0-12 Test 206.1 Summary Data 58 5.0-13 Test 2073 Sununary Data 60 5.0-14 Test 207.4 Summary Data 62 5.0-15 Test 208.1 Sununary Data 64 5.0-16 Test 210.1 Summary Data 66 5.0-17 Test 211.1 Sununary Data 68 Vessel Temperature Distribution for Test 201.1 70 5.1-1 Vessel Temperamre Distriheinn for Test 202.1_ 71 5.1-2 Vessel Temperature Disenbution for Test 203.1 72 5.1-3 Vessel Temperature Distnbution for Test 207.1 73 5.1 4 Vessel Tesapaature Duartbunon for Test 207.2 74 5.1-5 Vessel Temperature Distnbution for Test 201.2 75 5.1-6 Vessel Tetaperature Distribunon for Test 202.2 76 5.1-7 Vessel Tenapaature Distnbunca for Test 203.2 77 5.1-8  ! Vessel Temperature Distnbution for Test 204.1 78 . 5.1-9 5.1-10 Vessel Tanperature Distribution for Test 205.1 79 , Vessel Temp. Distribution for Test 206.1 80 5.1-11 81 5.1-12 Vessel Temperature Distribution for Test 207.3 82 , 5.1-13 Vessel Temperature Distnbution for Test 207.4 83 5.1-14 Vessel Tanperature Disaibunca for Test 208.1 84 5.1-15 Vessel Temperature Distribution for Test 210.1 85 5.1-16 Vessel Temperature Disenbunon for Test 211.1 86 5.1-17 Cv-ys-iscs of Heat Loss h=== from Baseline Large Scale Test Series 87 5.1.18 Summary of Test Article Areas 88 5.1 19 Overall Test Performance

I PCS.T2Rm3 j a,v i TABLE OF CONIElfrS

  ,        19E119E                                                                                          M 1

i -

1.0 INTRODUCTION

2.0 REFERENCES

3 4

       $ 3.0           PCCS LARGE SCALE'IEST APPARATUS 3.1 Sununary Desenption                                                                 4 l                                                                                                                5 l                       3.2 Foundation and Tower

' 5 3.3 Pressure Vessel

                      . 3.4 Steam Supply                                                                        6 3.5 Steam Inlet into Vessel                                                             6 3.6 Canaan ==** Handhng                                                                 7 3.7 External Coohng Annulus and Air Ducting                                             7 8

' 3.8 Axial Faa 8 3.9 lastr=amatanian and Measurensets 3.9.1 Steam and enna name* Plow, Tennparature and Pressure 8 3.9.2 Vessel Water Coohng 9 3.93 Ca=*===nmar Vessel Wall Tennperatures 9 3.9.4 Caarni==ane Annetus Air Flow and Tennparature 9 Ananine Wall Temperatures 11 3.9.5 11 3.9.6 Wind Speed and Duecnon 12 i 3.9.7 Data Acquisition and Recordag 30

l. 4.0 TEST CONDITIONS '

l 32 A 5.0 AN00 LARGE SCALE 'IEST RESULTS 5.1 Discussion AP600 Large Scale Test Results 32 APPENDIX A FLOW RESISTANCE OF BAFFLE ASSEMBLY l ! APPENDDC B TABULATED 'IEST DATA NO INTERNALS 'IESTS l APPENDIX C TABULATED TEST DATA INTERNALS 'IESTS ! APPENDIX D TABULATED TEST DATA INCOMPLETE TESTS 5 I 1

                            .                                               i                                          i

! ] i l l

REFERENCE #: 34 l l REPORT #: WCAP-13566 TITLE: AP6001/8th Large-Scale Passive l Containment Cooling System l Heat Transfer Baseline Data ~ Report l DATE: October 1992 i l I l l l l l l l l m:\3334w-a.wpf.1h1104% A-34

l Figure 7 AP600 Containment Pressure during Blowdown . . . . 3g Figure 8. Passive Cooling System Air Flow Path Momentum Parameters .. .. . . 59 l

                                                                                                                                              )

Figure 9 Free Consection Condensation Data from the Large Scale Test Compared to the Correlation and the AP600 Operating Range . . ... . .. . .. . . . . . 64 Figure 10 Forced Convection Evaporation Data Compared to the Correlation and the AP600

  -                   Range of Operation ........... ........               . .. .....      . ....              .                       64    i Figure !I Mixed Convection Heat Transfer Data Comparison to the AP600 Operating Range .                                   67 Figure 12 'Froude Numbers inside Containment for the AP600 DECLG . . . . . . . .              .........                   71 Figure 13 Main Steam Line Break Jet and Volumetric Froude Numbers . . . . . . . . . . . . . . . . . . 71    -

l 1 Figure 14 Steam Mixing Data above and below the Operatmg Deck from the LST , . . . . . . . . . 72 l l l l a l I l l 6

LIST OF TABLES . Table Pagg Table 21 Phenomena identification and Ranking Table Summary . . . 16 Table 41 Heat Sink Conductances .... . . 33 Table 51 Reference Values for Dimensionless Parameters . .. . 36 Table 5-2 Heat Sink Areas During DECLG and MSLB Transients 37 Table 71 Energy Transfer Conductances to Heat Sinks Scaled to Shell . . . . . . 52 Table 7 2 Drop Specific and Characteristic Frequencies . . . . . 53 , Table 7 3 Pool Specific and Characteristic Frequency . . . . .. 54 Table 7 4 Solid Heat Sink Specific and Characteristic Frequencies ... . 54 Table 7 5 Shell Specific and Characteristic Frequencies . . . . ... . . .. . . 55

       . Table 7 6 Baffle and Chimney Specific and Characteristic Frequencies . .. ...                                         .    .... .         55 Table 7 7 RPC PI Gro'up Values               ............ .                  ...       ...... . .. ...........                            56 Table 81 PCS Air Flow Path Momentum Equation Groups .                                  ........ .............                             62 Table 9 1 Test Scaling for AP600 . . . . . . . . . . . . . . . . . . . . .                       .        ... . ........                  63 Table 9 2 Comparison of AP600 Operating Range to Tests for Liquid Film Stability . . . . . . . . 67 Table 10-1 Geometric Parameters and Critical Froude Numbers for AP600 and LST LOCA and MS L B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 LIST OF FIGURES
                                                                                                                                                .Pagg f.!AE1 Figure i PCS Test and Analysis Process Overview . . . . . . . . . . . . . . . . . . .                       .............                  10 Figure 2 One Dimensional Energy Balance and Temperatures for Energy Transfer Resistance to Sotid H e at S i nks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
                                                                                                                                                         ~

Figure 3 One Dimensional Energy Balance and Temperatures for Energy Transfer Co@we through the Comainment Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................. 23 Figure 4 Temperature and'Concentranon Dependence of the Dynamic Viscosity of an Air Steam Gas Mi xture . . . . . . . . . . . . . . . . . . . . . . . .......... ............................ 29 Figure 5 Temperature and Concentration Dependence of the Thermal Conductivity of an Air Steam Mixture ...................................................... ..... .. 30 Figure 6 Temperature and Concentration Dependence of the Prandtl and Schmidt Numbers for an Air. S team Mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . .....,........................ 11 t

i 9.5 Wind Effects . .... . . ..... . . . ... . . 66  ; 9.6 Wetting Stability . . . . .. . . .. . 66 68

       % ino Containment Momenutm Scaling                     .                                 .

10.I Froude Number Relationships ... .. . .. . . .. 68 10.1.1 Forced / Buoyant Jet . .. .. . . . 68 10.1.2 Containment Stability . .. .. . . . . . 69 10.2 Application to AP600 ...... .. ......... . .. . . 70 10.2.1 Loss of Coolant Accident . ... . ... . ...... . 72

  • 10.2.2 Main Steam Line Break . . . . . . . . . ... . . 73 10.3 Application to Large Scale Tests . . . ..... .. . . ... . 73 73 I
  .                          10.2.1 Loss of Coolant Accident . . . . . .                 .       ......... ...                         .            .

74 . 10.2.2 Main Steam Line Break ......................... . ...... 10.3 Application to Large Scale Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 10.3.1 LOCA Configuration . . . . . ................ .. . ... .. .. 77 10.3.2 MSLB Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... 80 11.0 Conclusions ' . . . . . . . . . .. ............................................. 12.0 Nomenclature . . . . . . . ..............................s................... 13.0 R e ferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APPENDICES Development of Containment Pressurization Equation A1 A l B.1 B Tables of PI Group Calculation Results l i l t

5.2.3 Heat Sink Characteristics During Transient . . .. .. .

                                                                                                                                                      .. 39 5.2.3.1 Drops              .                         .                  .        ..           . .            ..                   39 5.2.3.2 Break Pool                                           .                                                                    39 5.2.3.3 Heat Sinks                                                                         . .                   .

40 5.2.3.4 Containment Shell . . . . 41 9 @6.0 Normalized. Dimensionless Rate of Pressure Change Equation . . . . 42 6.1 Pressure Term . .. . . .. . . . . . 42 6.2 Break Source Gas Term . ... . . . . .. ... 42 6.3 Break Source Liquid Term . . . . . . .. .. . . 43 6.4 IRWST Source Term . . .... . . .. . .. .... . 43 6.5 Condensation / Evaporation Phase Change Terms .. .. . .. . ... ... . 43 6.5.1 Phase Change Mass Transfer Term .. . . . . . .. 43 6.5.2 Convection and Radiation Heat Transfer Terms . . . . ... .. ........ 45 6.6 Normalized. Dimensionless Heat Sink Energy Equations . . . . . . . . ....... 45 6.6.1 Source Drops . . . ... ........ .. .. .... ..... .. .. . 45 6.6.2 Break Pool . .. .... ..... .. .... ............. ....... 46 6.6.3 Heat Sinks . . . . . . . . . ..... ...... ...... ..... . ...... 47 6.6.4 Shell . . .... ................. . .... ...... ........ 48

6. 6.5 B affle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.6.6 Chimney / Shield Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 1
                                                                                                                        ..........                           52 y 7.0 Values for PI Groups . . . ......................... ........

7.1 Energy Conductance Pi Values . . . . . . . ...................... ........ 52 7.2 Heat Sink EnerEy Pi Values . . . . . . . . . . . . . ...... .... .......... 53 7.2.1 Drops . . . . . . . . . . . . . ........ ......... ................ 53 7.2.2 Break Pool ..................... ..................... 53 7.2.3 Solid Heat Sinks . . . . . . . . . . . . . . . . . . . . .................... 54 7.2.4 Shell . . . . . . . . . . . .............. ....................... 54 7.2.5 Baffle and Chimney . . ............................... .. 55 7.3 Corumament Pressure Pi Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... 55 58 4 8.0 PCS Air Flow Path Momentum Equation . . . . . . ............................ 8.1 Dimensionless PCS Momentum Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 60 8.2 Dimensionless Normalized PCS Momentum Equations . . . . . . . . . . . . . . . . . . . . . 61 8.3 Numerical Values for Scaled Momentum Groups . . . . . . . . . . . . . . . . . . . . . . .. 61 63 % 9.0 Test Scaling . . . . . . . . . . . . . . . ......................................... 9.1 Condensation Mass Transfer Test Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 65 9.2 Evaporauon Mass Transfer Test Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 9.3 Forced Convection Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... 9.4 PCS Air Flow Path Flow Resistance . . . . . . . . . . . , . . . . . .......... ..... 65

                                                                  .t.

F TABLE OF CONTENTS , s co.. . .u n ze  :

SUMMARY

I

               $ 1.0       - INTRODUCTION                                                                  1-1               !

1.1 Large-Scale Test Facility Description 1-1 i

               $ 2.0         PARAMETRIC EVALUATION                                                         2-1               l 2.1          Film Flow Rate and Coverage                                      22                !

2.2 Film and Air Temperatures 2 10 . 2.3 ' Annulus Air Velocity 2-11 2.4 Steam Injection Location and Flow Rate 2-12 1 23 Effect of Helium lajection 2-15

3.0 CONCLUSION

S 3-1

4.0 REFERENCES

4-1  : 1 l l l i u:Wl985w.mos:lt>051195 lij '

REFERENCE #: 36 REPORT #: PCS-T2R-050 TITLE: Large-Scale Test Data Evaluation ' DATE: May 1995 - m:\3334w-a.wpf:1b-1104% A-36

  • 1 4

Document Rev. Page of SIET l 00183RI92 0 7 214- ' * ****ri ka* Comnonent instrumentation D1 Rod bundle thermocouples D2 Rod bundle thermocouple position scheme D3 Power channel: pressure vessel D4 Power channel: upper riser DPs D5 Power channel: upper riser thermocouples D6 Power channel: annular downcomer D7 Power channel: lower plenum D8 Power channel: tubular downcomer D9 Power channel: downcomer - upper head bypass

  • D 10 Pressunzer D 11 Steam generator A D 12 Steam generator B D 13 Steam generator tube bundle D 14 Core make up tank D 15 Accumulator A D 16 Accumulator B i l

Pipmg instrumentanon E1 Hotleg A E2 Hotles B E3 Cold leg A E4 Coldleg B E5 Pump sucuan A E6 Pump suction B E7 Surgeline E8 Main steemline A E9 Main steam line B E 10 Main feedwater A

   -                         E 11          Main feedwaterB E 12         Core make up tankinjectionlina E 13         Core makeup tankCL balancelines E 14          Core make up tank pressunzer balance lines E 15         Accumulatorinjection lines E 16         RWST injectionlines and DVI E 17         IRWST and PRHR supply and return lines E 18         ADS 1,2,3 lines E 19         ADS 4 line E 20          Start up feedwaterline A E 21          Startup feedwaterline B E 22          NRHRlines i

SIET Document Rev. Page of s- h t*** 00183RI92 0 6 214 B 15 Primary coolant pump: H!Q characteristic curves B 16 Primary coolant pump: speed /flowrate theoretical curves B 17 Steam generator general arrangement B 18 Steam generator: lower part B 19 Steam generator: upper part B 20 Steam generator. U tube geometrical data B 21 Steam generator: U tube bundle supporting cage B 22 Steam generator: cross section of riser and spacer grid detail B 23 Steam generator: dryer details B 24 Accumulator - B 25 Core make up tank: general arrangement B 26 Core make up tank: steam distributor . B 27 IRWST Pinine lavouts i C1 Hot leg A C2 Hot leg B l C3 Cold leg A C4 Cold leg B C5 Pump suction A C6 Pump suction B C7 Surgeline: plan C8 Surge line: longitudinal siew C9 Surge line: isometric drawing C 10 Mam steam line A C 11 Mam steam line B C 12 Main steam line header l C 13 Main feedwaisiline A  ! C 14 Main feedwaterline B l I C 15 Main feedwaterline header C 16 Core make up tank injection lines . C 17 Core make up tank cold leg balance lines C 18 Core make up tank pressunzer balance lines C 19 Accumulator injection lines ~ C 20 IRWSTinjection lines and DVI C 21 PRHR heat exchanger, supply and return lines C 22 ADS 1,2,3 lines C 23 ADS 4 lines C 24 Start up feedwater line A C 25 Start up feedwater line B C 26 NRHRlines C 27 CVCS lines C 28 Piping flange geometrical data h

SitT Document Rev. Sezione Reattori Innovativi Page of 00183RI92 0 5 214 34 CL to CMT balance lines main data 35 CMT A pressurizer balance lines main data 36 CMT B pressurizer balance lines main data 37 PRHR supply line main data

   ,      38- PRHR return line main data 39    DVI main data 40     Steam line main data 41    Auxiliary line main data j          42     Main features of SPES-2 piping 43     ADS orifice sizing l      . 44     Flange dimensions 45     Insulation thickness i

II. List of Sgures Generals j A1 System plan A2 Elevation view A3 P&I diagram A4 Loop Ainstrumentation A5 Loop B instrumentation 3 A6 Data acquisition system configuration i Components l } B1 Power channel: general arrangement f f B2 Power channel: lower plenum and riser (unheated zone) B3 Power channel: heated zone  ; B4 Power channel: annular downcomer and upper riser j B5 Power channel: upper head B6 Power channel: lower plenum sealing system  ! B 7' Power channel: tubular downcomer l B8 Power channel: downcomer-upper head bypass l B9 Power channel: separation plate B 10 Powerchannel:upperpower plate B 11 Power channel: heater rod B 12 Power channel: rod bundle grid B 13 Pressunzer B 14 Primary colant pump: cross section

SIET Document Rev. Page of 5*=io** *aaad 1=*= 00183RI92 0 4 214 L List of Tables 1 Elevation comparison 2 Volume companson 3 List of primary system materials 4 Pressure vessel main characteristics .

 '5     Power channel main data 6     Power channel rod bundle characteristics 7     Pressurizer main characteristics 8'    Primary pumps main chyaracteristics 9     U tube bundle main characteristics 10   U-tube measured elevations 11    Steam generator main charactenstics 12    Steam generator secondary side main data 13    Accumulator main characteristics 14    Core Make-up Tank characteristics 15   IRWST and PRIR heat exchanger main characteristics 16   Flow valve characteristics 17   Safety valve characteristics 18   Venturi tube and orifice characteristics 18A Flow limiting or'ifices 19    Summary of primary and secondary system measurements 20    Summary of passive and mmliary system instrumentation 21    Instrument charactenstics 22    Hotles A main data 23    HotlegB main data                                                             ,

24 Loop A cc!d legs main data 25 Loop B cold legs main data 26 Pump suction main data 27 Surge line main data 28 CMT Ainjectionline main data 29 CMT B injectionline main data 30 IRWSTinjectionline A main data 31 IRWST injectionline B main data 32 Accumulator A injection line main data 33 Accumulator B injection line main data

k Rev. Page of SIET Document 0 3 214 sesione Ks=norilano=i 00183RI92

             .                                                                    ..             . ..                                . . . .               p.29 4.2 Non-safety systems.. ..
                                                                                                                                                 . . . . p.29                ;

4.2.1 Normal Residual Heat Removal System (NRHR).. .

                                                                                                                                    . . . . . . . . . . . p.29 4.2.2 Chemical and Volume Control System (CVCS)..
                                                                                                            . . .            . . . . . . . . .             p.30
5. INSTRUMENTATION.. . . . . . p.30 5.1 Absolute and differential pressure transmitters..
                                                                                                                                        .........           p.31 5.2 Thermocouples and thermoresistances..                     . . . .
                                                                                       . . . . .      . . . . . . . . . .                .. .               p.32 5.3 Flowmeters. . ...... ..                                                                                                     p.32 5.4 Integral mass flowmeters... .._ .
                                                                                                                                        . . . . .            p.32 5.5 Gammadensitometers.... .. . .
                                                                                                           .                              ...                p.33 5.6 Fluid level sensor....... . .. .                                                                                                              '
                                                                                . . . . . . . . . . . . .         ..               .... ..                   p.33 5.7 Power meters....... . .. ..
                                                                                                                                        . . . . .            p.33 5.8 Instrument position .. . ... . .        . . . . . . . . . . . . ..
                                                                                                                                           . . . . ...... . p. 3 5
6. DATA ACQUISITION SYSTEM AND CONTROL LOOPS.. ..p.35
               -              6.1 Control loops.. . ....... . . .... .. .. . ...... . ..
                                                                                       .....................                               . . . . . . .      p.36 6.1.1 Safety devices.. .      . . . . . .
                                                                                                           ..                .............                    p.37 6.2 Data acquisition system ..... . ... .. . . ... ... .                                      "
                                                                                                                                               . . . . .      p.38 6.2.1 Hardware configure                         ..............._..
                                                                                                                                          ..........          p.39 6.2.2 Software configuration... . . .... ..... .. .. ..                        ..
                                                                                                                                    ...............            p.42 6.2.3 DAS verification and validation........ .. . ...
                                                                                                                                                           ... p. 43
7. CONVERSION FORMULAS AND ERROR EVALUATIONS.... p.43.. . ......

7.1 Dirmedy measured quantities...... .................. ... . . . .. .. .. . .. ... ........

                                                                                                                                         ..........            p.43 7.2 Derived quantities... . . ... . .. . ......... .... . .... .. .. . .. ..

p.43 7.2.1 Flowrates measured by nozzles (kg/s).. . p.45 7.2.2 Power channel electrical power (kW).......... .... . .... ..... ..... .

                                                                                                                                            ..........          p.45 7.2.3 Levels (m).................... .. .. .. .... ....... ..... .....

p.46 7.3 Error evaluation.. .... .. .. . ..... . .. ....... . .. . ..... . .......~.. . ... . .. ... . l i I

m _. _ _ . . _ _ _ _ . _ _ _ _ . . . . . _ . _ _ . _ _ . _ . _ __ _ . I Document i Rev. Page of SIET 5== h h- 00183RI92 l C 2 214 l 4 1 INDEX I. . List of Tables... .. . .... ... . . . . . . . . . . . . . . . . . . . . . . . . . p. 4 II. List of Figures.... . ..... . . .. .. . . ... . _. .... . . . . . ~ . . . . . . . . . . . . . p. 5 l III. Nom-l aawe ......... . . .. . . . .. . .. ... . . . . . . .. .. . ...... .................... p. 8 . l l IV. References o.9 p.10

1. INTRODUCTION.. .. .. . .. . . . .. ... . . . . . . . . . . . . . . . .

p.11 .

             . 2. DESIGN CRITERIA. . . .. .                            . . . . . . . . . . . . . . - . .                               . . . . . . . . .

2.1 General design criteria.= . . . . . . . . . . . . . . . . . . . p. I1 2.2 Particular design criteria.. .. .. .. ... . . . . . . . . . . . . . . . . . . . . . . . . . p.12 p.12 2.2.1 Power channel.. . . . . . . . . . . . .... - . . . . . . p.12 2.2.2 PC Downcomer.. . ..... . . . . . . - . . . . . . . . . . . . . . l 2.2.3 Reactor coolant pumps... ... ....... ..................... p.12 p.13  ; 2.2.4 Steam Generators.. . . . . . . . . . . . . . . . . ~ . . . . . . . . . . 2.2.5 Pressunzer...... . . . .. .. . . . . . .... .. . . . . . . . . . . . . . . p.13 2.2.6 Loop piping... .... . . . . . . . . . . . . . . . . . p.13 2.2.7 Passive safcry systems ......... .... . ......................... p.14  ; p.16  !

3. FACILITY DESCRIPTION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
                                                                                                                              ...................                             p.16                  l 3.1 Primary system..... . . ... ....._. ... .. ...~. .~..........

3.1.1 Power channel pressure vessel... ......................... p,17 l 1 p.18 , 3.1.2 Rod bundle.. ....... ...~.. ..... ...... . .. .. . . . . . . . . . . . . . . . . . . 1

                                                                      . . ................... ...... .... ............... . . ....                                             p.18 3 .1.3 Pressurai.r ... .

3.1.4 Reactor coolant pumps...~............. 4..... ...................... p.18 ) 3.1.5 Loop pipins....... . .. ...... ............ - . .- .- .... ... ..... ... . P 19 ) 3.1.6 Steam generstor tube bundle....... ...... .. .. ............. ........... p.20 l l p.21 1 3.2 Secondary coolant system... .~.. .. ...~ .. .. .. ..... .. . . ............ ...... p.21

3.2.1 Steam generators ....... . ......... . . . . . . . . . . . . . .

1 3.2.2 Secondary piping system ..... . .. .. . .................. p.22 , l 1

                                                                      ...............                                  -....................                                    p.24
4. SAFETY SYSTEMS.. ..

p.24 4.1 Passive Safety Systems... ._....... - .. . . . - . . . . . . . . . . . . . . . . 4.1.1 Core Make-up Tanks..... . __ = . _ . . . . . . . ~ . . _ . p.24 4.1.2 Passive Residual Heat Removal System (PRHR)... ........ .. . p.26

                                                                          ~ . . . . -                             . . ~                     ..m..           .                   p.27 l

4.1.3 Accumulators.. 4.1.4 Incontainment Refuelling Water Storage Tank (IRWST)... . ... p.27 4.1.5 Direct VesselInjection (DVI) Line.. .. . . . . . _ . . . . . . . . . p.28 l 4.1.6 Automatic Depressurnation (ADS).. . . . . . . . . . . . . . . . p.28 l l l I i A

 ---.     - -  . . - - . . -                .- --.- . - . - - . _ . - . . .                  . - - -      - . _ - . ~       . . . . .

l SIET Decamen Rev rase or 8**' W 8'"""' 2 39 l s EME < NOMENCLAT1JRE 4 j l, DURODUCT10N 6 REFERENCE DOCUMENTS 7 p Part A SPES-2 SCALING CRITERIA g l . y Part B AP600 DATABASE Bt HOT LEG 11 l l B2 COLD! jig 12 B3 SURGELINE 13 l l B4 REACTORVESSEL I4 i B5 PRESSURIZER 13 B6 PUMP 15 B7 STEAMGENERATOR 16 I B7.1 Inlet pienen 16 l l B7 2 U-tubes 16 B7.3 Outletpienen 17 , 57.4 Secondary side 17 l l 87.5 Compenson between Model F and Delan 75 17 1 58 COREMAKEUPTANK 18 88.1 Cold leg so CMT balance line 18 88.2 Pressumer to CMT balance hae 18 88.3 Dischargeline 19 B9 PASSIVE RESIDUAL HEAT RDIOVAL SYSTEM 20 B9.1 Supply and raurn hae 20 BIO ACCUMULATOR 21 B10.1 Injecuan line 21 Bil IN CONTAINMENT REFUELLING WA1ER STORAGETANK 22 B11.1 Injectionline 22 B12- AUTOMA71C DEPRESSURIZATION SYSTEM 23 B13 PRIMARYSYSTEM

SUMMARY

24 l 8 i

REFERENCE #: 37 REPORT #: WCAP-13277, Rev.1 TITLE: Scaling, Design, and Verification

  • of SPES-2, The Italian i Experimental of the AP600; -

Scaling Update DATE: April 1993 8 l m:\3334w-a.wpf Ib-1104% A-37

SIET Documes Rev Page W I m ammma w 3 39 4 Part C SPES 2 DESCRFTION C1 HOTLEO 25 j C2-COLD UiG 27 C3 SURGELDE 28 4 C4 - PUMP SUCTION 30

C5 REACTORVESSEL 31 C5.1 Downcomer -

31 {

;                                   C6- PRESSURIZER                                                              ,

34 a C7 - PUMP 35 4 j C8 - STEAM GENERATOR 36 1 , j Q9- CORE MAKE UPTANK 37 l j C9.1 Cold leg to CMT belance hae 37- l j C9.2 Pressunser so CMT halance hae 38  ! j C9.3 Dischargeline 38 ! C10 - PAS $!VE RESIDUAL HEAT REMOVAL SYSTEM 40 J C10.1 Heatexchanger 40

C10.2 SupplyIme 40 j C10.3 esturnline 41 Cll- ACCUMULATOR 42 i CII.I lajecnonline 42 )

C12 IN CONTAINMENT REFUELLING WATER STORAGE TANK 43 l Cl2.1 Injecnon line 43 y -

Cl3 - DIRECT VESSELINJEC110N LINE 44 4
Cl4 - AUTOMATIC DEPRES$URIZA110N 5YS11M 45 C14.1 Sange 1.2 and 3 45 Cl4.2 Stage 4 46

) C15 - AP600/SPES 2 COMPARISON 47 j C15.1 Elevanancompenson 47 C15.2 Volumecompenson 48 i C16 - CONCLUSIONS 49 4 6 1 e

l l l l REFERENCE #: 38 REPORT #: WCAP-14073 l TITLE: SPES-2 Facility Description DATE: May 1994 - l i l l l I m:\3334w-a.wpf:1b-1104% A-38

REFERENCE #: 39 REPORT #: WCAP-14309 TITLE: AP600 Design Certification Program SPES-2 Tests Final Data Report DATE: March 1995 I m:\3334w-a.wpf;1b4104% A-39 l

 .- - .            .-       -   - . . - - ~ _ . . . - - . - - .                     .          .        - - . - - . - - - . -                                          .,

1 1 TABLE OF CONTENT 3

                .fttf!i9A                                                        .IIlli                                                                     .P33g         i

SUMMARY

1 ACKNOW1.EDGEMENTS 2

              $1.0         I NTR O D UCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1.1       B ac kground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 - 1                .      ,

1.2 Test Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 -2 i 1.3 Ten Matrix ................................................1-3 l 1.4 SPES-2 Test Runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 -5 l 2.0 TEST FACILITY DESCRIPTION > . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 2- 1 g 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2- 1  ;

                      ' y 2.2        Facility Scaling Sununary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2-1 2.2.1           General Scaling Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 1                      I 2.2.2           Specific Schling Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2-2 2.3       Facility Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 2.3-1 2.3.1           Primary Piping . . . . . . . . . . . . . . . . . . ............ .. . .. . ...                          2.3-2         j 2.3.2           Power Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3-2                    '

2.3.3 Rod Bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3-3 2.3.4 Power Channel Downcomer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3-3 i 2.3.5 Pressuruer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3-3 2.3.6 Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 3 2.3.7 Steam Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3-3 2.3.8 Passive Safety Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 4 2.4 Instrumentation . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4- 1 2.4.1 Absolute and Differential Pressure Transmitters . . . . . . . . . . . . . . . . . 2.4-2 2.4.2 Thermocouples and 1hermoresistances . . . . . . . . . . . . . . . . . . . . . . . 2.4-2 2.4.3 Flowmeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 2.4-2 2.4.4 Integral Mass Flowmeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2.4-2 2.4.5 Gammadensitometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4-2 . , 2.4.6 Power Meters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4-3 2.5 Data Acquisition System (DAS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5-1 2.5.1 Control 140ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5-2 2.5.2 Safety Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5-3 2.6 Facility Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-1 2.6.1 Facility Operation for Test S00303 ........... ...... . . ..... 2.6-2 2.6.2 Facility Operation for Test S00401 ................... . ...... 2.6-7 2.6.3 Facility Operation for Test S00504 . . . . . . . . . . . . . . . . . . . . . . . . 2. 6 12 2.6.4 Facility Operation for Test S00605 . . . . . . . . . . . . . . . . . . . . . . . . 2. 6- 17 2.6.5 Facility Operation for Test 500706 . . . . . . . . . . . . . . . . . . . . . . . . 2.6-22 2.6.6 Facility Operation for Test S00908 . . . . . . . . . . . . . . . . . . . . . . . , 2. 6-2 8 m:W625wVratmer%cc.wpf:Ib 040295 ill

I' l

                                                                                                                                                        '      i TABLE OF CONTENTS (Cont.)

Section _Titjg g i 2.6.7 Facility Operation for Test S01007 . . . . . . . . . . . . . . . . . . . . . . 2.6-34 ( 2.6.8 Facility Operation for Test S01110 . . . . . . . . . . . . . . . . . . . . . . . . 2.6-39 2.6.9 Facility Operation for Test 501211 ........................ 2.6-44 l 2.6.10 Facility Operation for Test S01309 ....................... . 2.6-49 2.6.11 Facility Operation for Test 501512 .................. ...... 2.6-55

     .                          , 2.6.12 Facility Operation for Test S01613 . . . . . . . . . . . . . . . . . . . . . . . .                      2. 6-5 9      -

2.6.13 Facility Operation for Test S01703 ....................... . 2.6-64 3.0 D ATA RED UCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.1 Introductio n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3- 1 3.2 Test Validatio n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.3 Pre-Operational Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 3.4 M atri x Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.5 Error' Analysis . . . . . . . . . . . ................ ....... ......... 3-6 4.0 TEST RESULTS . . . . . . . . . . . . . . . . . ....... . .. . . .. . .. . ... . . . . .. .. . 4.1.1-1 4.1 Pre-Operational Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 1 4.1.1 Cold Pre-Operational Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1-1  ! 4.1.1.1. Text Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 - 1  ; 4.1.1.2 Summary of Test C-02 Through C-07 Results . . . . . . . . . . . 4.1.1-2 4.1.1.3 Summary of Test C-01 and C-09 Results . . . . . . . . . . . . . . . 4.1.1-2 4.1.2 Hot Pre. Operational Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2-1 4.1.2.1 Hot Pre-Operational Test H-01 . . . . . . . . . . . . . . . . . . . . . . 4.1.2 1 4.1.2.2 SPES-2 Hot Pre-Operational Test H-02 . . . . . . . . . . . . . . . . 4.1.2-3 4.1.2.3 Hot Pre-Operational Test H-03 . . . . . . . . . . . . . . . . . . . . . . 4.1.2-3 4.1.2.4 SPES-2 Hot Pre-Operational Test H-04 . . . . . . . . . . . . . . . . 4.1.2 4 4.1.2.5 SPES-2 Pre-Operational Test H-05 . . . . . . . . . . . . . . . . . . . 4.1.2-7 4.1.2.6 SPES-2 Hot Pre-Operational Test H-06 . . . . . . . . . . . . . . . . 4.1.2-8 h4.2 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2-1 4.2.1 Test Transient Phases for less-of-Coolant Accident (LOCA) and

              .                           Non-LOCA Tests .................................                                              ... 4.2 1 4.2.1.1 LOC As . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2-1 4.2.1.2 Non-LOCAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2-1 4.2.2   Two-In. Cold Leg Break without Nonsafety Systems (S00303) . . . . . 4.2.21 4.2.3    Two-In. Cold-Leg Break without Nonsafety Systems (S01703 -
Repeat of S00303 ................................. .. 4.2.3-1
l. 4.2.4 Two-In. Cold Leg Break with Nonsafety Systems (S00504) . . . . . . . 4.2.4-1

, . 4.2.5 One-In. Cold-Leg Break without Nonsafety Systems (S00401) .... .4.2.5-1 l . m:\np600(1625wifrutmeNoc.wpf:Ibo40295 iv

I l l 1

TABLE OF CONTENTS (Coot.)

EfSil21 M .ERRE 4.2.6 One In. Cold Leg Break with Three PRHR HX Tubes, without Non-Safety Systems (S01613) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.6-1 4 4.2.7 Two-In. Direct Vessel Injection Line Break . . . . . . . . . . . . . . . . . 4.2.7-1 4.2.8 ] i Double-Ended Guillotine DVI Line Break (S00706) . . . . . . . . . . . . . 4.2.81  ! ) 4.2.9 Two.In. Cold-Leg / Core Makeup Tank Balance Line Break without . Nonsafety Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.9 1 4.2.10 Double-Ended Guillotine Cold Leg to CMT Balance Line Break without Nonsafety Systems (S00908) . . . . . . . . . . . . . . . . . . . . . 4.2.10 1 . I 4.2.11 Steam Generator Tube Rupture with Nonsafety Systems Operational and Operator Action (S01309) . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.11-1 4.2.12 Steam Generator Tube Rupture without Noosafety Systems (S01110) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.12 1 4.2.13 Steam Generator Tube Rupture without Nonsafety Systems,'with Inadvertent ADS (S01211) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.13-1 1 1 l 4.2.14 Large Steam Line Break at Hot Standby Conditions without Nonsafety Systems ($1512) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.141 p 5.0 TEST DATA COMPARISON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 5.1 Comparison Basis for LOCAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1-1 5.2 Comparison Basis for non-LOCA Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2-1 5.3 Comparison of Break Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3-1 5.4 Comparison of Break Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 1 5.5 Effects of Nonsafety Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5-1 5.6 Other Key Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6-1 5.6.1 Comparison of PRHR Performance . . . . . . . . . . . . . . . . . . . . . . . . . 5.61 5.6.2 Test Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6 2 5.6.3 Comparison of Steam Generator Tube Rupture . . . . . . . . . . . . . . . . . 5.6-2 g 6.0 OBSERVA'IlONS AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-l l

7.0 REFERENCES

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .           7- 1 I

Appendix A Data Reduction Methods and Validation Process . . . . . . . . . . . . . . . . . . . . . . . . A 1 Appendix B Data Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B 1 Appendix C SPES-2 Instrument List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1  ! Appendix D SPES-2 Ir ,::rable and Modified Instruments . . . . . . . . . . . . . . . . . . . . . . . . D- 1 Appendix E Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E 1 Appendix F Full Height Full-Power Integral Systems Test Delta-P lastrumentation Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . F-1 i Appendix G SPES-2 Test Data Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G- 1 m:W1625wWruumsw:.wpt:lt471995 y I

i LIST OF TABLES Table No. Title f, age 1-1 SPES-2. Test Matrix . . . .......... ........... ............... 1-6 12 Test Rungs at SPES-2 . . ...... ......... ............ .. ...... 1-8 2.2 1 Elevation Comparison .. ..... ............ ............ . . 2.2-5 2.2 2 Volume Comparison . . . . . . . . .... .......... ...... . . . . . .. ... 2.2-6 2.3-1 Pressure Vessel Main Characteristics . . . . . . . . . . . . . .. . ....... . 2.3-5

  ,       2.3-2         Power Channel Main Characteristics . . . . . . ....................                                  .. 2.3-6 2.3-3         Rod Bundle Main Characteristics . . ..............                          . .......             ...       2.3-7 2.3-4         Steam Generator Main Characteristics . . . . . . . . . . . . . . .... . . . . . .....                       2.3-8 2.5-1         SPES-2 Power Decay Curve . . . . . . .       ... ..           .. .. . ....               . ......           2.5-5 2.6.1-1       SPES-2 Installed Orifices . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . ..... 2.6-3 2.6.1 2       Programmed Opening of ADS Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-4 2.6.2-1       SPES-2 Installed Orifices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-8 2.6.2-2       Programmed Opening of ADS Valves . . . . . . . . . . . . . . . . . . . . . ...... 2.6-9 2.6.3-1       SPES-2 Installed Orifices . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 2.6-13 2.6.3-2       Programmed Opening of ADS Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6- 14 2.6.4-1       SPES-2 Installed Orifices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-18 2.6.4-2       Programmed Opening of ADS Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-19 2.6.5-1       SPES-2 Installed Orifices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-23 2.6.52        Programmed Opening of ADS Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 24 2.6.6-1       SPES-2 Installed Orifices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     ..      2.6-29    .

i 2.6.6-2 hogrammed Opening of ADS Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-30  ! 2.6.7-1 SPES-2 Installed Orifices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-35 2.6.7-2 Programmed Opening of ADS Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-36 2.6.8-1 SPES-2 Installed Orifices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-40 2.6.8-2 Programmed Opening of ADS Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-41 2.6.9-1 SPES 2 Installed Orifices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-45 2.6.9-2 Programmed Opening of ADS Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-46 2.6.10-1 SPES-2 Installed Orifices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-51 I 2.6.10-2 Programmed Opening of ADS Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-52 2.6.11-1 SPES.2 Installed Orifices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-56 2.6.11-2 Programmed Opening of ADS Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-57 2.6.12-1 SPES-2 Installed Orifices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 9 2.6.12-2 Programmed Opening of ADS Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-o n 2.6.13-1 SPES-2 Installed Orifices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-65 i 2.6.13-2 Programmed Opening of ADS Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-66 l mAape00(1625wWauner\ lor.wp:ltN95 vil

1 I LIST OF TABLES (Cont.) - i Table No. Title M 3-1 Overall Test Acceptance Criteria . . . . . . . . . ........... .. ..... ... 3-8 3-2 SPES-2 Critical Instruments . . . . . . . . ... ......... .... ......... 3-9 33 Typical SPES-2 Data Measurement Errors . . . . . . . . . . . . . . . .. . . . . . . . 3 11 l 4.1.1 1 SPES 2 Cold Pre Operational Test Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1-3 4.1.1 2 SPES 2 Cold Pre-Operational Tests vs. AP600 Comparison of SPES-2 . Safety System Piping Resistances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1-4 l 4.1.1-3 SPES-2 Cold Pre-Operational Tests Comparison of SPES-2 vs. AP600 RCS Resistances (Both RCPs Running) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1-5 41.21 SPES 2 Hot Pre-Operational Test Summary . . . . . . . . . . . . . . . . . . . . . . . 4.1.2-10 4.1.2-2 SPES-2 Hot Pre-Operational Test H-01 Facility Heat Losses vs. l Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2- 1 1 4.1.23 SPES-2 Hot Pre-Operational Test H-01 Major Component Heat Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2- 12 4.1.2 4 SPES-2 Pre-Operational Test H-01 Facility System Heat Capacities . . . . . . 4.1.2-13 4.1.2-5 SPES-2 Hot Pre-Operational Test H-05 Initial Conditions . . . . . . . . . . . . . 4.1.2-14 4.1.26 SPES-2 Hot Pre-Operational Test H-05 Sequence of Events .'. . . . . . . . , . . 4.1.215 4.1.2-7 SPES-2 Hot Pre-Operational Tests Major Event Comparison Between Tests H-05 and H-06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2-16 4.1.2-8 SPES-2 Hot Pre-Operational Test H-06 Initial Conditions . . . . . . . . . . . . . 4.1.2-17 4.1.2-9 SPES-2 Hot Pre-Operational Test H-06 Sequence of Events . . . . . . . . . . . . 4.1.2-18 4.2.2-1 Sequence of Events for Test S00303 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.2-14 4.2.2-2 Water Inventory Before Test S00303 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.2-15 4.2.2-3 Water Inventory After Test S00303 Was Completed . . . . . . . . . . . . . . . . . 4.2.2-16 4.2.2-4 Mass Balance for Test S00303 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.2 17 4.2.3-1 Sequence of Events for Test S01703 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.3-4 4.2.3-2 Water Inventory Before Test S01703 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.3-5 4.2.3-3 Water Inventory After Test S01703 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.3-6 4.2.3-4 Mass Balance for Test 501703 . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.3-7 4.2.4-1 Sequence of Events for Test S00504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.4-14 4.2.4-2 Water Inventory Before Test S00504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.4-15 4.2.4-3 Water Inventory After Test S00504 Was Completed . . . . . . . . . . . . . . . . 4.2.4-16 4.2.44 Mass Balance for Test S00504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.4-18 4.2.5-1 Sequence of Events for Test S00401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.5-15 4.2.5.2 Water Inventory Before Test .................... . . . . . . . . . . . . 4.2.5-16 4.2.5.3 Water Inventory After Test S00401 Was Completed . . . . . . . . . . . . . . . . . 4.2.5-17 4.2.5 4 Mass Balance for Test S00401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.5-18

    -   4.'.6-1           Sequence of Events for Test S01613 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.6-15
  ~

4.2.6-2 Water Inventory Before Test S01613 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.6 16

      . mAsp6000625wVratmar4otwpf:16-040295                      vili

c l LIST OF TABLES (Cont.) Table No. Title M 4.2.6-3 Water Inventory After Test 501613 Was Completed . . . . . . . . . . . . . . . . . 4.2.6-17 4.2.6 4 Mass Balance for Test S01613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.6-18 4.2.7-1 Sequence of Events for Test S00605 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.7 14 4.2.7-2 Water Inventory Before Test S00605 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.7-15 4.2.7-3 Water Inventory After Test S00605 Was Completed . . . . . . . . . . . . . . . . . 4.2.7-16 4.2.7 4 Mass Balance for Test S00605 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.7-17

  .              4.2.8 1             Sequence of Events for Test S00706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.8-15           r 4.2.8 2              Water Inventory Before Test S00706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.8-16           :

4.2.8 3 Water Inventory After Test S00706 Was Completed . . . . . . . . . . . . . . . . 4.2.8-17 , 4.2.'84 Mass Balance for Test S0076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.8-18 4.2.9-1 Sequence of Events for Test S01007 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.9- 15 4.2.9 2 Water Inventory Before Test 501007 . . , . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.9-16 4.2.9 3 Water Inventory After Test 501007 Was Completed . . . . . . . . . . . . . . . . . 4.2.9 17 4.2.9-4 Mass Balance for Test S01007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.9-18  ! 5.1-1 Test-To-Test Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1-3 5.3-1 Comparison of S00605 and S00303 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3-5 i

               ,                                                                                                                                    l l

t I l I l l l i m:\np600(1625wVrman&Lwp:1b.040295 - ix l

LIST OF FIGURES Finure No. Title _Page 2.2-1 SPES-2 Facility P&ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2-7  ; 2.3 1 SPES-2 Simulated Reactor Vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 2.3-9 2.4-1 Loop A Instrumentation . . . . . . . . . . . . . . ... ...... .. .... ....... .. 2.4-5 2.4-2 Loop B Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... 2.4-7 . 1 2.6.11 Break Line for 2 loch Cold-Leg Break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-5 i 2.6.1-2 SPES-2 Break Orifice on CL for 2-in. Break . . . . . . . . . . . . . . . . . . . . . . . . 2.6-6 2.6.2-1 Break Line for 1-in. Cold-Leg Break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-10 - 2.6.2-2 SPES-2 Break Orifice on CL for 1-in. Break . . . . . . . . . . . . . . . . . . . . . . . 2.6-11 i i

   .           2.6.3-1              Break Line for 2-in. Cold-Leg Break . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-15                      i 2.6.3-2             SPES-2 Break Orifice on CL for 2-in. Break . . . . . . . . . . . . . . . . . . . . . . . 2.6-16 l

2.6.4-1 Break Line Configuration for 2-in. DVI-B Break . . . . . . . . . . . . . . . . . . . . 2.6-20 2.6.4-2 SPES-2 Break Orifice on DVI-B for 2-in. Break . . . . . . . . . . . . . . . . . . . . 2.6-21 2.6.5-1 Break Line Configuration for DEG of DVI-B . . . . . . . . . . . . . . . . . . . . . . . 2.6-25 2.6.5-2 SPES-2 DVI-B Break Orifice Used in Position 3 . . . . . . . . . . . . . . . . . . . . 2.6-26 2.6.5 3 'SPES-2 DVI-B Break Onfice Used in Position 2 . . . . . . . . . . . . . . . . . . . . 2.6-27 2.6.6-1 Break Line Con 6guration for DEG of CL-B2 to CMT-B Balance Line . . . . . 2.6-31 2.6.6-2 SPES-2 DEG Break Onfice Used in Position 2 . . . . . . . . . . . . . . . . . . . . . . 2.6-32  ! 2.6.6 3 SPES-2 DEG Break Onfice Used in Position 3 . . . . . . . . . . . . . . . . . . . . . . 2.6-33 l 2.6.7-1 Break Line Configuration for 2-in. Break in the CL-B2 to CMT-B Balance Line 2.6-37 2.6.7-2 SPES-2 Break Orifice Used in Position 1. . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-38 2.6.8-1 Break Line Configuration for Steam Generator Tube Rupture (SGTR) . . . . . . 2.6-42 2.6.8-2 SPES-2 SGTR Break Orifice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-43 2.6.9-1 Break Line Configuration for Steam Generator 'Ibbe Rupture (SGTR) . . . . . . 2.6 47 - 2.6.9-2 SPES-2 SGTR Break Orifice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6-48 2.6.10-1 Break Line Configuration for Steam Generator Tube Rupture (SGTR) . . . . . . 2.6-5,3 2.6.10-2 SPES-2 SGTR Break Orifice . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 2.6-54 2.6.Il 1 SPES-2 Break Orifice for Main Steam Line Break . . . . . . . . . . . . . . . . . . . 2.6-58 2.6.12-1 Break Line Configuration for 2-in. Cold-Leg Break . . . . . . . . . . . . . . . . . . . . 2.6-62 , 2.6.12-2 SPES-2 Break Orifice on CL for 1-in. Break . . . . . . . . . . . . . . . . . . . . . . . 2.6-63 2.6.13-1 Break Line Configuration for 2-in. Cold Leg Break . . . . . . . . . . . . . . . . . . . 2.6-67 2.6.13 2 SPES-2 Break Orifice on CL for 2-in. Break . . . . . . . . . . . . . . . . . . . . . . . 2.6-68 3-1 Data Documentation Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12 3-2 Steps in SPES-2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13 4.2.2-1 Facility Response Summary for S00303 . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.2-18 4.2.2-2 Power Channel Temperatures and Saturation Temperature for S00303 . . . . . 4.2.2-19 4.2.2-3 Accumulator A Pressure and Level br S00303 . . . . . . . . . . . . . . . . . . . . . 4.2.2-20 4.2.2-4 Accumulator B Pressure and Level for S00303 . . . . . . . . . . . . . . . . . . . . . 4.2.2-21 mnap6004625=Wratmenlof.wpf:1b-040295 xi

LIST OF FIGURES (Cont.) Finure No. l

                                                           .Tids.                                                         f.nar.

4.2.3 1 Facility Response Summary for S01703 . . . . . . . . . . . . . ............ 4.2.3-8 i 4.2.3 2 Pressurizer Pressure for S01703 and S00303 . . . . . . . . . . . . . .... ... 4.2.3 9 4.2.3-3 Pressurizer Pressure for S01703 and S00303 . . . . . . . . . . . . . . . . . . . . . . 4.2.3 - 10 4.2.3-4 . Upper Plcnum Temperature for S01703 and S00303 . . . . . . . . . . . . . . . . . 4.2.3-11 4.2.3-5 Upper Plenum Temperature for S01703 and S00303 . . . . . . . . . . . . . . . 4.2.3- 12

   ,        4.2.3-6         Lower Plenum Tempers:ure for S01703 and S00303 . . . . . . . . . . ...               . . 4.2.3-13 4.2.3-7         IRWST Injection Line-A Flow Rate for S01703 and S00303 . . . . . . . . . . .. 4.2.3-14
         , 4.2.3-8          Annular Downcomer dP (Collapsed Level) for S01703 and S00303 . . . . . . 4.2.3-15 4.2.3         Upper Tubular Downcomer dP (Collapsed Level) for S01703 and S00303 . . 4.2.3-16 4.2.3-10         Rod Bundle dP (Collapsed IAvel) for S01703 and SOSiB . . . . . . . . . . . . 4.2.3 -17 4.2.4-1          Facility Re'sponse Summry for S00504 . . . . . . . . . .         . . . . . . . . . . . 4.2.4- 19      1 4.2.4-2          Power Channel Temperatures and Saturation Temperacae for S00504 . . . . . 4.2.4-20 4.2.5-1          Facility Response Summary for S00401. . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.5-19 4.2.5-2-'        Power Channel Temperatures and Saturation Temperature for S00401. . . . . 4.2.5-20 4.2.53           Accumulator A Pressure and level for S00401. . . . . . . . . . . . . . . . . . . . . 4.2.5-21 4.2.5 4          Accumulator B Pressure and level for S00401. . . . . . . . . . . . . . . . . . . . . 4.2.5-22 4.2.6-1          Facility Response Summary for S01613 . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.6-19 4.2.6-2          Power Channel Temperanares and Saturation Temperature for S01613 . . . . . 4.6.2-20 4.2.6-3          Accumulator A Pressure and Level for S01613 . . . . . . . . . . . . . . . . . . . . . 4.6.2-21           i 4.2.64           Accumulator B Pressure and Ievel for'S01613 . . . . . . . . . . . . . . . . . . . . . 4.6.2-22
     . 4.2.7 1          Facility Response Summary for S00605 . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.2-18 4.2.7 2         Power Channel Temperatures and Saturation Temperature for S00605 . . . . . 4.7.2-19 4.2.8-1          Facility Response Summary for S00706 . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.8-19 4.2.8-2         Power Channel Temperatures and Saturation Temperature for S00706 . . . . . 4.2.8-20 l

4.2.8-3 dP (Collapsed level) in Power Channel, Above Rod Bundle for S00706 . . . 4.2.8 4.2.9-1 Facility Response Summary for S01007 . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.9-19 i 4.2.9-2 Power Channel Temperatures and Saturation Temperature for S01007 . . . . . 4.2.9-20. j 4.2.9-3 Accumulator A Pressure and Level for S01007 . . . . . . . . . . . . . . . . . . . . . 4.2.9-21  ! 4.2.9 4 Accumulator B Pressure and level for S01007 . . . . . . . . . . . . . . . . . . . . . 4.2.9-22 4.2.10-1 Facility Response Summary for S00908 . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.10-18 4.2.10-2 Power Channel Temperatures and Saturation Temperature for S00908 . . . . 4.2.10-19 4.2.10-3 Accumulator A level and Pressure for S00908 . . . . . . . . . . . . . . . . . . . . 4.2.10-20  : l

4.2.10-4 Accumulator B level and Pressure for S00908 . . . . . . . . . . . . . . . . . . . 4.2.10-21 4.2.11-1 Facility Response Summary for S01309 . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.11-21 4.2.11-2 Primary to Secondary SGTR Flow Rate for S01309 . . .'. . . . . . . . . . . . . 4.2.11-22 j 4.2.11-3 SGTR Integrated Break Flow for S01309 . . . . . . . . . . . . . . . . . . . . . . . . 4.2.11-23  ;

4.2.11 4 SFW Flow Rate to SG-A and SG-B for S01309 . . . . . . . . . . . . . . . . . . . 4.2.11-24 ,

. 4.2.12-1 Facility Response Summary for S01110 . . . . . . . . . . . . . . . . . . . . . . . 4.2.12 -15 mAsp600\1625wVrouar%(.wy(
ltro40295 xil .

l l l

i. LIST OF FIGURES (Cont.)

? - 1 mure No. i

                                                                                .T.lllt                                                                     Pggg 4.2.12 ,2              Power Channel Temperatures and Saturation Temperature for S01110 . . . . 4.2.1216                                          :

4.2.12-3 Integrated SGTR Flow for S01110 . . . . .................... . . 4.2.12-17  : 4.2.12-4 SG-A and SG-B Level for S01110 . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.12-18 4.2.12-5 Primary to Secondary SGTR Flow Rate for S01110 . . . . . . . . . . . . . . . . 4.2.12-19 , 4.2.13-1 Facility Response Summary for S01211. . . . . . . . . . . . . . . . . . . . . . . . . 4.2.13-17 4.2.13-2 Power Channel Temperamres and Saturation Temperature for S01211. . . . 4.2.13-18 4.2.13-3 Accumulator A Pressure and Level for S01211. . . . . . . . . . . . . . . . . . . 4.2.13-19 . 4.2.13-4 Accumulator B Pressure and Level for S01211. . . . . . . . . . . . . . . . . . . . 4.2.13-20  ; 4.2.13 5 Primary to Secondary SGTR Flow Rate for S01211 . . . . . . . . . . . . . . . . 4.2.13-21 4.2.13-6 SGTR Integrated Break Flow for S01211. . . . . . . . . . . . . . . . . . . . . . . 4.2.13 22 r 4.2.13-7 ' Primary System, SG-A, and SG-B Pressure for S01211. . . . . . . . . . . . . . 4.2.13 23 4.2.13-8 CMT A/ Primary System Pressure Differential, CMT Level dP for S01211. 4.2.13-24  ! 4.2.13-9 CMT B/ Primary System Pressure Differential, CMT Level dP for S01211. 4.2.13-25 4.2.14-1 Facility Response Summary for S01512 . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.14-17 4.2.14-2 SG-B Temperatures and U-tube Collapsed Level (dP) for S01512 . . . . . . . 4.2.14-18 4.2.14-3 PRHR HX Heat Removal Rate for S01512 . . . . . . . . . . . . . . . . . . . . . . 4.2.14-19 4.2.14-4 CMT Heat Removal Rate for 501512 . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.14-20 4.2.14-5 Loop-A Cold Leg Venturi dPs for S01512 . . . . . . . . . . . . . . . . . . . . . . . 4.2.14-21 4.2.14-6 Loop-B Cold I.eg Temperatures for S01512 . . . . . . . . . . . . . . . . . . . . . . 4.2.14-22 4.2.14-7 PRHR HX and CMT Natural Circulation Flow Rates . . . . . . . . . . . . . . . . 4.2.14-23 4.2.14-8 Power Channel Temperamres and Upper Head Collapsed Level (dP) , for S01512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.14 24  ; 4.2.14-9 SG-A Inlet / Outlet and Primary Saturation Temperatures for S01512 . . . . . 4.2.14-25 4.2.14-10 SG-B Inlet / Outlet and Primary Saturation Temperatures for S01512 . . . . . 4.2.14-26

                - 4.2.14-11              Integrated Primary System Mass Addition by CMTs for S01512. . . . . . . . 4.2.14-27

( 4.2.14-12 Integrated Steam Line Break Flow for S01512 . . . . . . . . . . . . . . . . . . . . 4.2.14-28

. i 5.1-1 Rod Bundle Fluid Steam Fraction Before ADS Actuation . . . . . . . . . . . . . . . 5.1-5 l 5.1-2 Fluid Steam Fraction in Core at Minimum Coolant Inventory . . . . . . . . . . . . . 5.1.6 l 5.3-1 Comparison of Break Locations and Total Break Flow . . . . . . . . . . . . . . . . . 5.3-6 l 5.3-2 Comparison of Break Locations and Balance Line dP . . . . . . . . . . . . . . . . . . 5.3-7 l 5.3-3 Comparison of Break Locations and Annular Downcomer @ . . . . . . . . . . . . . 5.3-8 5.3-4 Comparison of Break Locations and Tiibular Downcomer dP . . . . . . . . . . . . . 5.3-9 5.3-5 Comparison of Break Locations and Rod Bundle dP . . . . . . . . . . . . . . . . . . 5.3-10 5.3-6 System Mass In and Out for S00303 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3-11 5.3-7 Change in System Mass Inventory for S00303 . . . . . . . . . . . . . . . . . . .. 5.3-12 1 5.3-8 System Mass In and Out for S00605 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3-13 I

mAap600d625wiframmenlof.wpf:1b 040295 .xiil

i \ LIST OF FIGURES (Cont.) . Finure No. Title h , 5.3-9 Change in System Mass inventory for S00605 . . . . . . . . . . . . . . . . . . . . . 5.3-14 ' 5.3-10 System Mass In and Out for S01007 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3-15  ; l 5.3-11 Change in System Mass Inventory for S01007 . . . . . . . . . . . . . . . . . . . . . . 5.3-16 5.4-1 Change in System Mass Inventory for S00303 and S00401 . . . . . . . . . . . . . . 5.4-3 l 5.4-2 Change in System Mass Inventory for S00908 and S00706 . . . . . . . . . . . . . . 5.4-4 5.4-3 Rod Temperature Relative to Saturation Temperature, S00706 and S00303 . . . 5.4-5 5.5-1 Change in System Mass inventory for S00303 and S00504 . . . . . . . . . . . . . 5.5-2 5.6-1 Pressurizer Pressure for S00401 and S01613 ........................ 5.6-4 5.6-2 Change in System Mass Inventory for S00401 and S01613 . . . . . . . . . . . . . . . - 5.6-5 5.6-3 Change in System Mass Inventory for S00303 and S01703 . . . . . . . . . . . . . . 5.6-6 5.6-4 Primary System Pressure for S01110 and S01309 . . . . . . . . . . . . . . . . . . . . . 5.6-7 5.6-5 Primary and SG-A Secondary Pressure for S01309 . . . . . . . . . . . . . . . . . . . . 5.6-8 5.6-6 Rod Bundle dP (Collapsed level) for S01110 and S01309 . . . . . . . . . . . . . . . 5.6-9 5.6-7 Pressurizer level for S01110 and S01309 . . . . . . . . . . . . . . . . . . . . . . . . . 5.6-10 i l l i l i i l l l l i i I

            =
                 ,m:W1625wWruume%f.wpf:1b o40295                  liv

I REFERENCE #: 40 REPORT #: WCAP-14254, Rev.1 TITLE: AP600 Full-Height, Full-Pressure Integral System Tests: SPES-2 Test Analysis Report - DATE: December 1995 i I 1 b l m \3334w-a.wpf:1b-1104% A-40

TABLE OF CONTENIS VOLUMEI r S.tEdfR .T.idt East i i

SUMMARY

1  ;

  • ACKNOWLEDGMENTS 2 l,

p

1.0 INTRODUCTION

1-1 1.1 Background 1-1 1.2 Important Small-Break IAss-of-Coolant Accident Phenomena 1-3 - 1.3 Important Phenomena for Steam Generator Tbbe Rupmre and 1 Steam Line Break Transients 1-5 1.4 Test Objectives 1-6 , 1.5 Test Matrix 1-6 '

                '                                                                                                                                      l 1.5.1     Small-Break less-of-Coolant Accident Transients                                                      1-6 1.5.2     Steam Generator Tbbe Rupture Treamienta                                                              1-8   ;

1.5.3 Steam Line Break 1-8 1.6 SPES-2 Atypicalities Relative to the AP600 Plant 1-8 l 1 2.0 SPES-2 ANALYSIS METHODOLOGY - COMPONENT ANALYSIS 2-1 2.1 Core Makeup Tank (CMT) 2-3 2.1.1 CMT Mass Balance and Liquid I.evel Calculations 2-3 2.1.2 CMT Energy Balance Calculations 2-8 2.2 Passive Residual Heat Removal System 2-20 2.2.1 In-Containment Refueling Water Storage Tank (IRWST) Mass Inventory ~ 2-20 2.2.2 Energy Balance on the PRHR/IRWST 2-24 2.3 Accumulator 2-31 , i 2.3.1 Accumulator Mass Inventory 2-31 2.3.2 Energy Balance on the Accumulators 2-34

 .                2.4           Steam Generator                                                                                              2-38 2.4.1     Steam Generator Mass Inventory                                                                     2-38 2.4.2     Energy Balance on the Steam Generators                                                              2-45   1 2.5           Pressurizer                                                                                                   2-50    l 2.5.1     Pressurizer and Surge Line Mass Inventory                                                           2-50 2.5.2     Energy Balance on the Pressurizer                                                                   2-56
               ' 2.6            Power Channel and Downcomer                                                                                   2-58 2.6.1     Power Channel Mass Inventory                                                                        2-58 2.6.2     Energy Balance on the Power Channel                                                                 2-76 a:ps92=-1 pr:n.121e5                                         111                                                                 REVISION 1

- - - - . -- . . _ .- _... . - .-. - ~_ ._. - . . - .. . . - . . - . .. - - - - . - TABLE OF CONTENIS (Cont.) VOLUMEI ffEll9.9. 1 1119. .Pagg, 2.7 Hot- and Cold-Leg Piping 2-80 2.7.1 Hot-Leg Mass Inventory 2-80 2.7.2 Cold-leg / Pump Suction Mass Inventory 2 83 - 2.7.3 Energy Balance on the Primary System Piping 2-87  ; 2.8 Fluid Exiting Through ADS and Breaks 2-90 2.8.1 Rate of Mass Loss to ADS and Break Catch Tanks 2-90 2.8.2 Energy Released Thingh the ADS and Break 2-90 2.9 System Analysis 2-94

                                 , 2.9.1       Total System Mass Inventory                                                     2-94 2.9.2      Overall System Energy Balance                                                   2-%

2.9.3 System Event Timings 2-97 2.10 Nomenclature 2-100 g 3.0 ANALYSIS OF SPES-2 TEST DATA '3.1-1 3.1 Introduction 3.1-1 3.2 Analysis of the Two-Inch Cold-Leg Break without Nonsafety Systems (S00303) 3.2-1 3.2.1 Summary of Test Observations 3.2 1 3.2.2 Analysis of the S00303 Test Data 3.2 4 3.3 Analysis of the Two-Inch Cold-Leg Break without Nonsafety Systems (S01703) - Repeat of S00303 3.3-1 3.3.1 Summary of Test Observations 3.3 1 3.3.2 Analysis of the S01703 Test Data 3.3-2 3.4 Analysis of the Two-Inch Cold-Leg Break with Nonsafety Systems (S00504) 3.4-1

  • 3.4.1 Summary of Test Observations 3.4-1 3.4.2 Analysis of the S00504 Test Data 3.4-3 3.5 Analysis of the One-Inch Cold-Leg Break without .

Nonsafety Systems (S00401) 3.5-1 3.5.1 Summary of Test Observations 3.5-1 3.5.2 Analysis of the S00401 Test Data 3.5-3 3.6 Analysis of the One-Inch Cold-leg Break without Nonsafety Systems (S01613) 3.6-1 3.6.1 Summary of Tesc Observations 3.6-1 3.6.2 Analysis of the S01613 Test Data 3.6-3 4 a:W892w.l.wyt:tb.121495 iv REVISloN 1

__ __ .. _ ___m _ . _ . . _ . _ _ _ _ . - - _ _ _ _ _ _ _ - _ _ _ _ . . . _ . _ _ _ . TABLE OF CONTENTS VOLUME II i I finalen Iillt fast  ; i 3.0 ANALYSIS OF SPES-2 TEST DATA (Cont.) 3.7 Analysis of the Two-Inch Direct Vessel Injection Line Break (S00605) 3.7-1 l 3.7.1 Summary of Test Observations 3.7-1 3.7.2 Analysis of the S00605 Test Data 3.7-3 3.8 Analysis of the Double-Ended Guillotine Duect Vessel Injection l l, Line Break (S00706) 3.8 1 l 3.8.1 Summary of Test Observations 3.8-1  ; l 3.8.2 Analysis of the S00706 Test Data 3.8-4 ( .3.9 Analysis of the Two-Inch Cold-leg / Core Makeup Tank Balance ! Break without Nonsafety Systems (S01007) 3.9-1 l 3.9.1 Summary of Test Observations 3.9 1 3.9.2 Analysis of the S01007 Test Data 3.9-3 ! 3.10' Analysis of the Steam Generator hbe Rupture with Nonsafety Systems l Operational and Operator Action for Mitigation (S01309) 3.10 1 l 3.10.1 Summary of Te'st Observations 3.10 1 l 3.10.2 Analysis of the S01309 Test Data 3.10-3 3.11 Analysis of the Steam Generator hbe Rupture without . I Nonsafety Systems (S01110) 3.11-1 l 3.11.1 Summary of Test Observations 3.11-1  ! 3.11.2 Analysis of the S01110 Test Data 3.11-3 I 3.12 Analysis of the Steam Generator Tube Rupture without Nonsafety Systems, with Inadvertent ADS (S01211) 3.12-1 2 3.12.1 Summary of Test Observations 3.12.1 3.12.2 Analysis of the S00908 Test Data 3.12-3 Analysis of the Large Steam Line Break at Hot Standby Conditions 3.13 without Nonsafety Systems (S01512) 3.13-1 3.13.1 Overall Test Observations 3.13-1 3.13.2 Analysis of the 501211 Test Data 3.13-3 3.14 Analysis of Large Steam Line Break at Hot Standby Conditions (S01512) 3.14-1 3.14.1 Summary of Test Observations 3.14-1 3.14.2 Analysis of the S01512 Test Data 3.14-2

        . g 4.0            PHENOMENOLOGICAL MODELING RESUL'I3                                                      4.1 1-4.1    Introduction                                                                     4.1 1 4.2    Behavior of CMrs                                                                 4.2-1 1

4.2.1 AP600 Core Makeup Tank 4.2-1  ! 4.2.2 SPES-2 Representation of the Core Makeup Tanks 4.2 3 i 4.2-3 I 4.2.3 CMT Performance for Selected Tests 4.2.4 Flashing, Swell, and Steam-Water Mixing 4.2-7 l a:wl 92w-1.wpf:1b 121#5 . y REVISloN 1 I

1 l TABLE OF CONTENTS (Cont.) l VOLUME II l Section 1 10.1 h l 4.3 Passive Residual Heat Removal Heat Exchanger 4.3-1 4.3.1 Primary-Side Heat Balance 4.3-1 4.3.2 Energy Transfer from the Tubes to the IRWST 4.3-2 - 4.3.3 Increase in the IRWST Internal Energy 4.3-4 4.3.4 Calculation of the PRHR/IRWST Heat Transfer for Other Tests 4.3-4 4.3.5 Effect of Multiple PRHR 'Ibbes on PRHR Performance 4.3-6 4.4 Accumulator Air Injection and Migration in SPES-2 4.4-1 4.5 Behavior of Other Components 4.5-1 4.5.1 Core Behavior - Oscillations After Reactor Coolant Pump Trip 4.5-1 4.5.2 Timing of Events During Accident Sequences 4.5-3 4.6 Overall Mass Balance 4.6-1 l 4.6.1 Component Masses: A Test-by-Test Comparison 4.6-2 l l 4.7 Overall Energy Balance 4.7 1 4.7.1 I.oss-of-Coolant Accident (LOCA) Tests 4.7-3 4.7.2 Steam Generator Tbbe Rupture (SGTR) Tests 4.7-3

5.0 CONCLUSION

S 5-1 j i

6.0 REFERENCES

6-1 l l l l l a:ps92w.1.wpf:lb.121495 vi REVISION 1 l

_._ _ _ _ _ _ . _ _ _ ._ _ _ _ ____ _ .._ _ _ _ _ _ . _ . _ . . _ _ _ . - _ _ = _ . LIST OF TABLES VOLUME I

                     .T.ahit                                                     T.!!!1                                           .Past 1-1              Phenomena Identification Ranking Table for AP600 Small-Break LOCA                           1 11 1-2              Phenomena Identification Ranking for AP600 Non-LOCA and Steam Generator Tube Rupture Design Bases Analyses                                                          1-13

)* l-3 1-4 SPE5-2, Test Matrix Test Runs at SPES-2 1 15 i 1 17 i j~

                                                                                                                                                         \

2.1.1-1 Insuuments for Calculating CMT Mass 2-7

.2.1.1-2 Instruments for Calculating CMT Mass Inlet Flow 2-7 l
~ 2.1.1-3 Instruments for Calculating CMT Collapsed IJguid Level 2-7 I

2.1.2-1 Tew.ms for Calculating CMT Energy Balance 2-16 ) 2.1.2-2 CMT Wall Masses Associated with Thermocouples 2-17 ] 2.1.2-3 , Guard Vessel Masses Associetsi with Thermocouples 2 17 2.1.2-4 Thermocouples Used to Calculate Internal Energy for CMT-A 2-18 2.1.2-5 Thermocouples Used to Calculate Internal Energy for CMT-B 2-19 2.1.2-6 1hermocouples Used to Calculate Overall CMT Energy Balance 2-19

!                    2.2.1-1 IRWST Instrumentation for Calculating IRWST Mass Inventory                                            2-23 j                     2.2.1-2 Flow Measuring Instruments for Discharge from IRWST to the DVI Lines                                  2-23 l                     2.2.2-1 Instrumentation for Calculating the PRHR/IRWST Heat Balance                                           2 30 1                     2.3.1-1 Instrumentation for Calculating Accumulator Mass Inventory                                            2 33 -

l 2.3.1-2 Flow Measuring Instruments for Discharge from Accumulators to the DVI Lines _ 2 33 2.3.2-1 Instrumentation for Calculating Accumulator Energy Balance 2-37 2.4.1-1 Insuumentation for Calculating Steiun Generator Primary Side Mass Inventories 2-43 2.4.1-2 Instrumentation for Calculating Steam Generator Wary-Side Mass Inventones 2-44 2.4.2-1 Instrumentation for Calculating Steam Generator Energy Balance 2 49 2.5.1-1 Instrumentation for Calculating Pressurizer Mass Inventory 2-55 2.5.1-2 Insuumentation for Calculating Surge Line Mass Inventory 2-55 2.6.1-1 Instrumentation for Calculating Annular Downcomer Mass Inventory 2-73 2.6.1-2 Instrumentation for Calculating Tubular Downcomer Mass Inventory 2 73 2.6.1-3 Insuumentation for Calculating lower-Plenum Mass Inventory 2-74 2.6.1 Insuumentation for Calculating Core Mass Inventory 2-74  ! 2.6.1-5 Instrumentation for Calculating Upper-Plenum Mass Inventory 2-75 2.6.1-6 Instrumentation for Calculating Upper-Head Mass Inventory 2-75 2.6.2-l ' Instrumentation for Calculating the Power Channel Heat Balance 2 79 ) 2.6.2-2 Quantities Needed to Calculate the Power Channel Heat Balance 2-79 2.7.1-1 Instrumentation for Calculating Hot-I.cg Mass Inventory 2-82 2.7.2-1 Instrumentation for Calculating Cold-I.rg Mass Inventories 2-86 I 2-89 2.7.3-1 Insuumentation for Calculating the Piping Energy Balance l u:Wis92w-1.wyf:1b.121495 vil REVISloN 1 y,- - ,- - ,_ _ _. ,-

               -    - - -     _ -- -    . --               = = .    . .  -  . - . -  .            - _ .

i i LIST OF TABLES (Cont.) VOLUMEI Tait . Tit.lg ,P,,ggg 2.7.3-2 Metal Mass and Specific Heat for Determining Piping Metal Energy 2-89 2.8.2-1 Instrumentation for Calculating the ADS and Break Energy Balance 2-93 2.9.3-1 Instrumentation for Determining the Tuning of Transient Events 2-99 3.1-1 Final Data Report and Test Analysis Report Test Cross Reference 3.1 2 3.2-1 Component Mass Variations in Test S00303 3.2 12 3.3-1 Component Mass Variations (LBM) in Test S01703 3.3 5 3.4-1 Component Mass Variations (LBM) in Test S00504 3.4-10 3.5-1 Component Mass Variations (LBM) in Test S00401 3.5-10 3.6-1 Component Mass Variations (LBM) in Test S01613 3.6-10 l l 4 a:vm1892w.1.wyt:1b121495 viii REVISloN 1

                     -   . . . - . _- =_ - - - _.                . - .         . -    . . - - . . .- ,

LIST OF TABLES VOLUME II I l Iam .nla naa  ; 3.7 1 Component Mass Variations (LBM) in Test S00605 3.7 10 3.8 1 Component Mass Variations (LBM) in Test S00706 3.8 10 l 1 3.9 1 Component Mass Variations (LBM) in Test 501007 3.9-10 3.10-1 Component Mass Variations (LBM) in Test S01309 3.10 8 3.11-1 Component Mass Variations (LBM) in Test S01110 3.11-8 l

   . 3.12-1      Component Mass Variations (LBM) in Test S00908                                       3.12-10 3.13-1      Component Mass Variations (LBM) in Test S01211                                       3.13-10 3.14-1      Component Mass Variations (LBM) in Test S01512                                          3.14-7 4.5-1     . Event Timings and System pressures For 2-inch LOCAs                                      4.5-7 4.5 2       Event Timings and System Prte for 1-inch and DEG LOCAs                                   4.5-8 4.5-3       Event Timings and System Prese for SGRTs                                                 4.5-9 4.5-4       Accumulator Injection Start and End 11'nings                                            4.5-10 4.6-1       Mass Omitted from the Mass Balance Model                                                 4.6-4 4.6-2       Component Mass (LBM) Comparison at Start of Transient in LOCA Tests                      4.6-5 4.6-3       Component Mass (LBM) Comparison at Start of Transient in Non-LOCA Tests                  4.6-6 4.64        Component Mass (LBM) Compenson at End of Blowdown in LOCA Tests                          4.67 4.6-5       Component Mass (LBM) Compenson at End of Blowdown in Non-LOCA Tests                      4.6-8 4.6-6      Component Mass (LBM) Comparison at Start of CMT Draindown in LOCA Tests                  4.6-9 4.6-7      Component Mass (LBM) Comparison at Time of ADS-1 Initiation in LOCA Teas                4.6-10 4.6-8      Component Mass (LBM) Comparison at Time First Accumulator Empties in LOCA Tests                                                                                   4.6-11 4.6-9      Component Mass (LBM) Comparison at Time of ADS-4 Initiation in LOCA Tests               4.6-12 4.6-10     Component Mass (LBM) Comparison at Start of IRWST Injection in LOCA Tests               4.6-13 4.6-11     Component Mass Comparison at End of Transient in LOCA Tests                             4.6-14 4.6-12 ' Component Mass (LBM) Comparison at End of Transient in Non-LOCA Tests                    .4.6-15 4.6-13     Minimum Heated Rod Bundle Mass Inventories                                              4.6-16 l

n:Wis92w.1.wpf:1h121#5 ix REVISloN 1

LIST OF FIGURES VOLUMEI Eisut .T.I.111 Enam 1-1 Comparison of AP600 to SPES-2 System Pressure 1-19 1-2 Comparison of AP600 and SPES-2 CMT Injection Flows 1-20 1-3 Comparison of AP600 and SPES-2 CMTIevel 1-21 1-4 Comparison of Pressurizer Level for AP600 and SPES-2 1 22 1-5 Comparison of AP600 and SPES-2 Accumulator Flows 1-23 1-6 Comparison of AP600 and SPES-2 ADS-1 Discharge Flow 1-24 j 1-7 Comparison of AP600 and SPES-2 ADS-2 Discharge Flow 1-25 1-8 Comparison of AP600 and SPESO ADS-3 Discharge Flow 1-26 1-9 Comparison of AP600 and SPES-2 Total Pnmary System Mass 1-27 1-10 Comparison of Ideally Scaled SPES-2 Primary- and M*'y-Side Pressures to SPES-2 with Power Compensation 1-28 1-11 Comparison ofIdeally Scaled SPES-2 Break Flows to SPES-2 Response with Power Compensation 1-29 1-12 Comparison of Ideally Scaled SPES-2 PW orf the CMT Izvel to the SPES-2 Response with Power Compensaison 1-30 1-13 Comparison of the CMT Igjection Flows Between the Ideally Scaled SPES-2 Response to the SPES-2 Response with Power Compensanon 1-31 j 1-14 Comparison of the Pressunzer Collapsed level with the Ideally Scaled Pressunzer and the Existing Pressurtzer for a 2-Inch Cold-Leg Break 1-32 i 1 15 Comparison of the ADS-1 Flows for the Ideally Scaled SPES-2 Pressurizer to the Existing Pressurizer for a 2-Inch Cold-leg Break 1-33 1-16 Comparison of the ADS-2 Flow for the Ideally Scaled SPES-2 Pie 5+ h for the  ! Existing Pressurizer for a 2-Inch Cold-Leg Break 1-34  ; 1-17 Comparison of the ADS-3 Flow for the Ideally Scaled SPES-2 Pressurizer for the Existing Pressurizer for a 2-Inch Cold-Leg Break t 34 1-18 Comparison of the SPES 2 Primary System Mass with the Ideally Scaled Pra-iw and the Existing SPES Pressurizer for a 2-Inch Cold-Leg Break 1-35 3.2 3.2-83 Test Analysis Standard Plot Package Figures 3.21 through 3.2-83 3.2-13 3.3 3.3-83 Test Analysis Standard Plot Package Figures 3.3-1 through 3.3-83 3.3-6 3.4 3.4-83 Test Analysis Standard Plot Package Figures 3.4-1 through 3.4 83 3.4-11 3.5 3.5-83 Test Analysis Standard Plot Package Figures 3.51 through 3.5-83 3.5-11 3.6 3.6-83 Test Analysis Standard Plot Package Figures 3.6-1 through 3.6-83 3.6-11 a:W892w.1.wpf:1b 121495 . xi REVISloN 1

l REFERENCE #: 41 REPORT #: WCAP-14270 1 TITLE: Westinghouse AP600 Long-Tenn  ! Cooling Test Facility Scaling Report DATE: January 1995 i l m:\3334w-a.wptib110696 A-41

I WESTINGm00sE PaoraIETARY Q. ASS 2 l LIST OF FIGURES VOLUME II Flaure Title _Page, l 4 l 3.7 3.7-83 Test Analysis Standard Plot Package Figures 3.71 through 3.7-83 3.7-11 3.8 3.8-84 ' Test Analysis Standard Plot Package Figures 3.8-1 through 3.8-84 3.8-11 ! 3.9 3.9-83 Test Analysis Standard Plot Package Figures 3.9-1 through 3.9-83 3.9-11 , 3.10 3.10-83

 .            Test Analysis Standard Plot Package Figures 3.10-1 through 3.10-83             3.10 9 3.11 3.11-83
             . Test Analysis St'andard Plot Package Figures 3.11-1 through 3.11-83           3.11-9 3.12 3.12-83 Test Analysis Standard Plot Package Figures 3.12-1 through 3.12-83            3.12-11 3.13 3.13 "

Test Analysis Standard Plot Package Figures 3.13-1 through 3.13-83 3.13-11 3.14 3.14-83 Test Analysis Standard Plot Package Figures 3.14-1 through 3.14-83 3.14-8 i u:W1892w-1.wyt:1b.121495 xiii REVIs!ON 1

y i FACILITY SCALING REPORT l TABLE OF CONTENTS 1 i Section .T,jt!g Pggg, j EXECUTIVE

SUMMARY

1 ABSTRACT 6 ACKNOWLEDGMENTS 7 I

1.0 INTRODUCTION

1-1

    ,                    1.1          Scaling Objectives                                                          1-1 1.2          General Scaling Methodology                                                 1-2   j 1.3          Evaluation of Scaling Analysis Methods                                      1-3 1.4          Rationale for Scaling Choices                                              1-12   l
        .                1.5          References                                                                 1-17   ;

1

          -y),2.0 -      EXPERIMENTAL OBJECTIVES AND GENERAL SCALING METHODOLOGY                                                                              2-1 2.1          Test Facility General Modes of Operation                                    2-2 2.2          Fundmental Scaling Requirements                                             2-3 2.3           AP600 System Decomposition and Hierarchy                                    2-4 2.4          Initial Conditions for Long-Term Cooling                                    2-4 43.0            PHENOMENA IDENTIFICATION AND RANKING                                                      3-1 3.1          AP600 Design and Emergency' Core Cooling                                    3-1 3.2          Plausible Phenomena Identi6 cation Rankmg Table                             3-5

! 3.3 References 3-10 ( l ( 4.0 CLOSED LOOP NATURAL CIRCULATION SCALING 4-1 4.1 Single Phase Natural Circulation Scaling Analysis 4-1 4.2 Two-Phase Natural Circulation Scaling Analysis 4-13 I 4.3 Primary Loop Design Speci6 cations 4-51 4.4 Evaluation of the Core Processes SpeciSc Frequencies, Characteristic Time Ratios, and Scaling Distomons 4-51 4.5 Conclusions 4-54 4.6 References 4-55

        # 5.0            OPEN SYSTEM DEPRESSURIZATION SCALING ANALYT3                                             5.-1 5.1          Description of the Depressurization Process                                 5-2 5.2           Governing Equations for the Two-Phase Fluid System Depressunzation          5-2 l                         5.3          Top-Down Subsystem Ixvel Analysis for the Depressunzation of a              5-7 Break Flow Rate Dominated System l                         5.4          Top-Down System Level Depressurization Scaling Analysis                    5-16 mA1471w-1.wyt:1b 013095                                ill l

l-i

I FACILTTY SCALING REPORT TABLE OF CONTENTS (Cont.)

                                                                                                     .P, age Section                                               . Tit lt 5.5        Scaling Synergistic Phenomena                                              5-24 5.6        Bottom Up Scaling Depressurization Scaling Analysis                        5-26 5.7        Evaluation of Depressurization SpeciSc Frequencies, Characteristic Time Ratios, and Scaling Distortions                                       5-55 5.8        Conclusions                                                                5-56 5.9        References               .

5-57 6-1 6.0 CORE MAKEUP TANK SCALING ANALYSIS CMT Phenomena 6-2 6.1 Scaling Analysis for CMT Recirculation 6-4 6.2 6.3 Scaling Analysis for CMT Draming 6 13  ; 6.4 Conclusions 6-30 References 6-31 6.5 VENTING, DRAINING, AND INJECITON SCALING ANALYSIS 7-1 7.0 Depressurization Scaling Requirements for Venting, Draining, 7-2 7.1 and Injection Processes General Scaling Analysis for Tank Draining Processet 7-6 7.2 Acci=1amr Scaling Analysis 7-7 7.3 In-Containment Refueling Water Storage Tank Scaling Analysis 7-13 7.4 Safety injection Line Scaling Analysis 7-17 7.5 Balance and Vent Line Scaling Analysis 7-26 7.6 Bottom-Up Scaling Analysis for Upper Core Support Plate Draining 7-36 7.7 Reactor Vessel Downcomer Scaling Analysis 7-39 7.8 7-48 7.9 Conclusions ' 7-49 7.10 References 8-1 8.0 LCS RECIRCULATION COOLING SCALING ANALYSIS Top Down Scaling for Analysis for LCS Rectreulation Cooling '82 8.1 Bonom-Up Scaling Analysis for LCS Recirculation Cooling 8-3 8.2 Lower Containment Sump Scaling Analysis 8-4 8.3 8.4 Evaluation of Core Process Specific Frequencies, Characteristic Time Ratios, and Scaling Distortions 8-6 8-7 8.5 Conclusions 8-7 8.6 References SCALING ASSESSMENT 91 g9.0 . 93  ; 9.1 References nA1471w-1.wpf:I M 13065 iv

FACILITY SCALING REPORT t TABLE OF CONTENTS (Cont.) Section Title M

SUMMARY

OF RESULTS AND CRITICAL PHYSICAL ATTRIBUTES 10-1 g 10.0 10.1 Dominant Processes 10-1 10.2 Scaling Distortions 10-3 10.3 Critical Attributes 10-4 10.4 Conclusions 10-4 APPENDIX A CONSTITUENT LEVEL CONTROL VOLUME BALANCE EQUATIONS A1 FOR A TWO-PHASE FLUID APPENDIX B STEADY-STATE ANALYSIS OF TWO-PHASE FLUID NATURAL CIRCULATION B-1 APPENDIX C TRANSFORMATION LAWS FOR SCALING POLYNOMIALS C-1 s l 4 a 1 s oA1471w-1.wpf:1b 013095 Y e- ~

_ _ . . __ _ _ _.__ _ _._. _ __ _ _.. _ _ _ _ _._ _ _ _ _ . _ _ . _ __.~._ _ _ l i 1 FACILfrY SCALING REPORT i i LIST OF TABLES

        .T.ahlt                                                                       .T_i.dt                                     Eagt i

Table 1-1 Rationale for Scaling Choices 1-19 , l Table 3-1 Plausible Phenomena Identification Rankmg Table for AP600 Large Break LOCA 3-11 . 1 Table 3-2 Plausible Phenomena Identification Ranking Table (PPIRT) for AP600 Small Break LOCA 3-16 , i !. Table 3-3 Description of AP600 SBLOCA and Long-Term Cooling Phenomena

Ranked (H) or (P) 3-19 1

! Table 4-1 Steady-State IAop Balance Equations for Single-Phase Natural i Circulation Flow 4-57 i , l Table 4-2 Single-Phase Constituent I.evel Scaling Analysis: Control Volume

Balance Equations for the Core 4-58

( Table 4-3 Single-Phase Constituent level Scaling Analysis: Non-Dimensionalized Balance Equations for the Core 4-59 i Table 4-4 Single-Phase Constituent Level Scaling Analysis: Residence Times and Characteristic Time Ratios for the Core 4-60 1 Table 4'S Single-Phase Constituent Level Scaling Analysis: Process Specific Frequencies for the Core 4-61 i l Table 4-6 Steady-State, Single-Phase Natural Circulation loop Scaling Ratios 4-62 . Table 4-7 Steady-State, Single-P%se Natural Circulation loop Scaling Ratios: Isoduonicity 4-63 Table 4-8 Constituent Level Scaling Analysis: Two-Phase Mixture Control Volume Balance Equations for the Core as Derived in Appendix A 4-64 - i j Table 4 9 Constituent Level Scaling Analysis: Two-Phase Mixture Non-4 Dimensionalimi Balance Equations for the Core 4-65 j . Table 4 Constituent Level Scaling Analysis: Two-Phase Mixture Residence Times and Charactensuc Time Ratios 4-66 Table 4-11 Two-Phase Constituent Level Scaling Analysis: Process Specific h 67

 .                                                         Frequencies for the Core i

j Table 4-12 Steady-State Loop Balance and State Equations for Two-Phase Namral Circulation Flow 4-68 4 u:\1471w 1 wyf:1W13095 vi

FACILITY SCALLNG REPORT LIST OF TABLES (Cont.) IRhlt I!!!! .Pagg Table 4-13 Equation for Core Inlet Fluid Velocity Under Two-Phase Natural , Circulation Conditions 4-69 j Table 4-14 Steady-State, Two-Phase Natural Circulation Loop Scaling Ratios for Saturated Conditions 4-70 Table 4-15 Steady-State, Two-Phase Natural Circulation Loop Scaling Ratios: , l . (With Property Similitude) 4-71 ) , Table 4-16 System Scaling Ratios for Steady-State Natural Circulation with Single-l Phase and Two-Phase Flow Regions (Material Property Similitude and Fixed Length Ratio) 4-72 Table 4-17 System Scaling Ratios for Steady-State Natural Circulation with Single-Phase and Two-Phase Flow Regions (Property Similitude and Fixed Letigth Ratio) 4-73 Table 4-18 Summary of System Scaling Results for the 1/4 Length Scale Model I Prmary Imop (Property Similitude) 4-74 Table 4-19 Two-Phase Flow Transitions in the Loop Legs (Fluid Property Similitude) and Pressurizer Surge Line 4-75 Table 4-20 APEX Core Heater Bundle Dimensions and Power 4-75 Table 4-21 Axial Power Fractions for the APEX Core 4-76 Table 4-22 OSU APEX Primary Loop and Core Scaling Ratios 4-77 Table 4-23 OSU APEX Primary Loop and Core Design Specifications 4-78 Table 4-24 Evaluation of Single-Phase Namral Circulation Residence Times, Characteristic Time Ratios, and Specific Frequencies (Isochronicity, Pressure Scaled) 4-79 Table 4-25 Evalu.un of Single-Phase Natural Circulation Residence Times, Chara.:teristic Time Ratios, and Specific Frequencies (Isochronicity, Property Similitude) 4 80 Table 4-26 Evaluation of the Two-Phase Natural Circulation Residence Times, Characteristic Time Ratios, and Speci6c Frequencies (Pressure Scaled) 4-81 l Table 4-27 Evaluation of Two-Phase Natural Circulation Residence Times, Characteristic Time Ratios, and Specific Frequencies (Fluid Property Similitude) 4-82 uA1471w.1.wy(:1W13095 vil 3 . . _ , , _ _ .

   . . . . _ -             - - - -.              _.    - . . - - . . . . - ._ - - - - ._ -                    -.--. . - - ~               - _

FACILITY SCALING REPORT LIST OF TABLES (Cota.) Title Pggg

               .T.shie.

Table 5-1 System Level Scaling Analysis: System Tune Constant and Characteristic Time Ratios 5-58  ! l Table 5-2 Scaling Ratios for System Depressurization Events Dominated by . Break or Vent Path Flow Rate 5-59 Table 5-3 Scaling Ratios for System Depressurization Events Dominated by , Volumetric Expansion 5-60 Table 54 Ideal Initial Conditions for a Depressurization Transient 5-61 Table 5-5 Homogeneous Equilibrium Model (HEM) Critical Mass Flux 0 SX,50.2 5-62  ; Break and Vent Path Flow Diameters 5-63 Table 5-6 Table 5-7 Stored Energy of Reactor Vessel Structural Components 5-67 Downcorner Stored Energy 5-69 j Table 3-8 Table 5-9 Heat Capacity Ratios and Total Energy Release Ratios for Reactor Vessel Structural Components 5-70 Steam Generator Scaling Ratios and Dimensions 5-71 Table 5-10 Pressurizer Scaling Ratios and Dimensions 5-72 Table 5-11 Table 5-12 Passive Residual Heat Removal Heat Exchanger Scaling Ratios and Dimensions (Single Heat Exchanger) 5-73 , Table 513 Evaluation of Two-Phase Fluid Depressurization Residence Times, Characteristic Time Ratios and Specific Frequencies for a Two-Inch Cold leg Break 5-74 Table 5-14 Evaluation of Two-Phase Fluid Depressurization Residence Times, Characteristic Time Rataos, and Specific Frequencies for a 5-75 Double-Ended DVI Break Table 515 Evaluation of Two-Phase Fluid Depressurization Residence Times, Characteristic Time Ratios, and Specific Frequencies for a One-Inch

                                                                                                   -                          5-76 Cold leg Break Table 61                 Top-Down Subsystem Level Scaling Analysis Dunensionless Equations for the CMT Draining Processes (Pre-Heated Walls)                                   6 32 a:\1471w 1.wpf:lb.013095                                                     viii
                     , . -                                     r-   -.-          , . - . -          ,y -

FACILITY SCALING REPORT i LIST OF TABLES (Cont.)

                     .IRhle                                                         Title                                               Page  i Table 6-2                  Top-Down Subsystem Level Scaling Analysis Dimensionless Equations                              ,

for CMT Draining Processes (Cold Walls) 6-33 l l Table 6-3 Model CMT Scaling Ratios and Dimensions 6-35 Table 6-4 Evaluation of CMT Draining Following Prolonged CMT Loop Circulation (Hot CMT Walls). Residence Times, Characteristic Time

      .                                         Ratios, and Specific Frequencies                                                         6-36 Table 6-5                  Evaluation of CMT Draining with Cold Walls. Residence Times, Characteristic lime Ratios, and Specific Frequencies                                     6-37 Table 7-1                  Top-Down Subsystem Level Scaling Balance Equations for Safety i                                                Injection Systems                                                                        7-50

! 4 l Table 7-2 TopDown Subsystem Level Scaling Analysis: Control Volume Balance i Equations for Safety Injection Tank Draining (With Simplifying Assumptions) 7-50 Table 7-3 Set of Initial and Boundary Conditions Used to Non-Dimensionalize  ! 1 the Safety Injection Tank Balance Equations 7-51 Table 7-4 Non-Dimensionalized Balance Equations for Safety Injection Tank Draining 7-52 l Table 7-5 Non-Dimensionalized Balance Equations for Accumulator Injection 7-53 Table 7-6 Model Accumulator Scaling Ratios and Dimensions 7-54 Table 7-7 Model Accumulator Scaling Ratios and Dimensions that Satisfy the Transition Pressure Requirement 7-55 Table 7-8 Accumulator Time Constants, Residence Time Ranos, and Property Ratios 7-55 Table 7-9 Non-Dimensionalized Balance Equations for IRWST Injection 7-56 Table 7-10 Model IRWST Scaling Ratio and Dimensions 7 58 Table 7 IRWST Time Constants, Process Specific Frequencies, Characteristic Time Ratios, and Distortion Factors 7-59 l l L Table 7-12 Control Volume Balance Equations for the i* Section of a Safety Injection Line 7-60 l i Table 7-13 Scaling Ratios for Safety Injection Line Resistance 7-60 i uA1471 l.wp61b013095 IX I

I FACILflT SCALING REPORT LIST OF TABLES (Cont.)

              .T.aMt                                                     IWt                                                             .Pagg Table 7-14                Model Safety Injection Line Scaling Ratios and Dimensions                                          7-61 Table 7-15                DVI Line Scaling Ratios and Dimensions                                                             7-64 Table 7-16                Control Volume Balance Equations for the i* Section of a Vent Line (Two-Phase Homogeneous Mixture)                                                                    7-64 Table 717                 Scaling Ratios for CMT Balance Lines and ADS Vent Lines                                            7-65 Table 7-18                Balance Line Scaling Ratios and Dimensions                                                         7-66 Table 7-19                ADS 1-3 Vent Line Single and Combined Train Dimensions                                             7-67 Table 7 20                ADS 4 Une Scalmg Ratios and Dimensions                                                             7-68 Table 7-21                ADS 1-3 Sparger Scaling Ranos and Dimensions                                                       7-69 Table 7-22                Upper Core Support Plate Perforation Scaling Ratio and Dimensions                                  7-70 Table 7 23                Control Volume Balance Equations for the Reactor Vessel Downcomer                                  7-70 Table 7-24                Non-Dimencionalized Balance Equations for Downcomer Liquid Tr.c.g=1 Processes                                                                                 7-71 Table 7 25                Downcomer Scaling Ratios and Dunensions                                                            7-73 Table 7-26                DVI Diffuser Dimensions                                                                            7-74 Table 7-27                Evaluation of Downconer Fluid Residence Times, Characteristics Time Ratios, and Specific Prequencies                                                              7-75 Table 8-1                Constituent Level Scaling Analysis: Two-Phase Mixture Control Volume                                                              ,

Balance Equations for the Core as Derived in Appendix A 8-8 l Table 8-2 Constituent Level Scaling Analysis: Two-Phase Mixture Non-Dimensionahzed Balance Equations for the Core 8-9 Table 8-3 Constituent level Scaling Analysis: Two-Phase Mixture Residence Times and Characteristic Time Ratios 8-10 Table 8-4 Two-Phase Constituent Level Scaling Analysis: Process Specific Frequencies for the Core 8-11 Table 8-5 Steady-State Recirculation I.mp Balance and State Equations 8-12 eA1471w-1.wpf.lM13095 x

FACILTIY SCALING REPORT LIST OF TABLES (Cont.)

                                                                                                                                                                  .P. age TJ!!1                                                                 .T.i1l1
l. Table 8 6 System Scaling Ratios for Steady State LCS Recirculation with Single- J Phase and Two-Phase Fluid Regions (Property Similitude and j Fixed Length Ratio) 8-13 l l
  • Table 8-7 Lower Containment Sump Recirculation Line Scaling Ratios and Dimensions 8 14
         . Table 8-8                              Control Volume Balance Equation and Non-Dimensionalized Balance Equation for Containment Sump Filling                                                                          8-15
 ~

Table 8-9 Containment Sump Scaling Ratios and Dimensions 8-16 Table 8-10 Evaluation of Two-Phase LCS Recirculation Residence Times, Characteristic Time Ratios, and Specific Frequencies (Fluid Property Similitude) 8-17 Table 9-1 Initial Conditions for APEX Test Facility to Model a Two-Inch Cold Leg , Break 9-4 l Table 9-2 Scale Factors to Relate the AP600 Plant to OSU NO11tUMP Calculations 9-5 i i Table 10-1 Summary of Characteristic Time Ratios and Residence Times for the Dominant 10-5 Table 10-2 Summary of Residence Time Constant Scaling (Desired Value 10-7 (4): = 0.5) Table 10-3 Distortion Factors for the AP600 Dominant Processes IdentiSed Using the H213 Methodology ;10-8 Critical Attributes for the OSU APEX Test Facility 10-9 Table 10-4 l aA1471w-1.wpf:1b.013095 Ki

FACILnT SCALING REPORT LIST OF FIGURES Figyr.g Title Egge Figure 1-1 General Scaling Methodology 1-20 Figure 1-2 Flow Diagram for the Hierarchical, Two Tiered Scaling Analysis (NUREG/CR-5809) 1-21 . Figure 1-3 Decomposition Paradigm and Hierarchy (NUREG/CR-5809) 1-22 Figure 1-4 Friction Factor Ratio (f,/f) as a Function of Single-Phase or Two-Phase Reynolds Number for a 1/4 Length Scale Natural Circulation System with Fluid Property Similitude 1-23 Figure 1-5 Diameter Rataos Required to Satisfy Equation (1-20) I-23 Figure 1-6 Scaling Ratio Variation as a Function of length Scale ("Ihe Diameter Ratio Regw the Minimum Required to Satisfy Equation (1-20) 1-24 Figure 2-1 General Scaling Methodology for the AP600 Test Facility 2-6 Figure 2-2 AP600 Reactor Coolant System Decomposition and Hierarchy (Process) 2-7 L AP600 Passive Safety System Decomposition and Hierarchy 2-8 Figure 2-3 Figure 3-1 Diagram of the Wesunghouse AP600 System 3-26 l I Flow Diagram for AP600 Passive Safety System Operation 3-27 Figure 3-2 AP600 Large Break LOCA Scenario 3-28 Figure 3-3 AP600 Small Break LOC'A Scenario 3-29 Figure 3-4 AP600 LOCA PPIRT Development Methodology 3-30 Figure 3-5 Scaling Analysis Flow Diagram for Single-Phase Natural Circulation 4-83 Figure 4-1 Figure 4-2 Hot and Cold Leg Regions of Single-Phase Natural Circulation Flow Within a PWR 4-84 Scaling Analysis Flow Diagram for Single-Phase Natural Circulation 4-85 l Figure 4-3 Figure 4-4 Regions of Single-Phase and Two-Phase Natural Circulation Within a PWR 4-86 Figure 4-5 Scaling Ratios for Steady-State Natural Circulation vs. AP600 System Pressure (Model Pressure = 375 psia) 4 87 Figure 4-6 Scaling Ratios for Steady-Sute Natural Circulation vs. AP600 System Pressure (Model Psessure = 300 psia) 4-87 a:\1471w.1.wyt:lt413095 Xii

l I FACILITY SCALING REPORT  ; LIST OF FIGURES (Cont.) fiEE1 .Tidt fase Figure 4-7 Scaling Ratios for Steady-State Namral Circulation vs. AP600 System Pressure (Model Pressure = 200 psia) 4-88  ; Figure 4-8 Scaling Ratios for Steady-State Natural Circulation vs. AP600  ; i

  • System Pressure (Model Pressure = 100 psia) 4-88 l Figure 4-9 Model Power Requirements vs. AP600 System Pressure for Steady-State
                       .                                         Natural Circulation (Model Pressure = 375 psia)                                           4-89 l                               ,

Figure 4-10 Model Power Requirements vs. AP600 System Pressure for Steady-State . Natural Circulation (Model Pressure = 300 psia) 4-89 l Figure 4-11 Model Power Requirements vs. AP600 System Pressure for Steady-State Natural Circulation (Model Pressure = 200 psia) 4-90 Figure 4-12 Model Power Reqmrements vs. AP600 System Pressure for Steady State Namral Circulation (Model Pressure = 100 psia) 4-90 i Figure 4-13 Flow Regime Transition Boundaries for AP600 and OSU Model Hot I.egs 4-91 Figure 4-14 Dimensionless Diameter (D*) for the AP600 and OSU Model Hot legs 4-91 Figure 4-15 Dimensionless Diameter (D*) for the AP600 and OSU Model Cold Legs 4-92 Figure 4-16 Dimensionless Diameter (D*) for the AP600 and OSU Model Pressmuer Surge Line 4-92 Figure 4-17 Critical Heat Flux Similarity Criteria for the AP600 Test Facility 4-93 Figure 4-18 Critical Heat Flux Similarity Criteria for the AP600 Test Facility 4-93 Critical Heat Flux Similarity Criteria for the AP600 Test Facility 4-94 Figure 4-19 Critical Heat Flux Similarity Criteria for the AP600 Test Facility 4-94 Figure 4-20 Axial Unear Power Profile (Normalized) for the Model Core 4-95 Figure 4-21 4-96 Figure 4-22 Radial Power Distribution in Power Core Figure 5-1 Scaling Analysis Flow Diagram for System Depressurization 5-77 Typical Depressurization Curve for Small Break Loss-of-Coolant Accidents 5-78 Figure 5-2 Control Volume Representation of the Primary System 5-79 Figure 5-3 i i

                     '             a:u471w.l.wyt:1b.013095                                         xiil

. _ - - - _ _ - - - _ - _ - . - - - - - e - . - - , - - -

                                                                                                                                           ,     e -

l FACILTTY SCALING REPORT l LIST OF FIGURES (Cont.) f.!EEt .T.!Qt .taat Figure 54 Comparison of Critical Mass Flux Ratios (G, /G, ) vs. Pressure Ratio (P/P.) as Predicted by the HEM (Boxes) for Isentropic Expansion and by Equation 5-43 (Solid Line) 5 80 Figure 5-5 Comparison of Equation (5-57) (solid line) to Marviken Data (boxes) and RELAP5 Calculation (crosses) 5-81 l ' Figure 5-6 Pressure Scaling Relationship Between the AP600 and the APEX Model 5-82 Figure 5-7 Fluid Property Scaling Ratios as a Function of APEX Model System Pressure .5-83 l Figure 5-8 Naniral Circulation Scaling Ratios as a Function of APEX Model l 5-84 l Pressure for Depm@ation Transients AP600 Time Dependent Decay Power Based on 1979 ANSI Standard 5-85 Figure 5-9 APEX Decay Power Profile 5-86 Figure 5-10 Integrated APEX Core Power 5-87 Figure 5-11 AP600 Passive Safety System Design 6-38 Figure 6-1 AP600 Core Makeup Tank 6-39 l, Figure 6-2 AP600 CMT Piping Layout 6-40 Figure 6-3 Figure 6-4 AP600 SSAR Calculation of CMT Draining Flow for 2-Inch Cold Leg Break 6-41 Cold Leg Balance Line Void Fraction for 2-Inch Cold leg Break 6-42 Figure 6-5 AP600 Mass Flow Rate in Cold Leg Balance Line 6-4? Figure 6-6 AP600 Plant Hot Water Layer Thickness in CMT 6-44 Figure 6-7 OSU Mass Flow Rate in the Cold leg Balance Line 6-45 Figure 6-8 OSU Hot Water Layer Thickness in the CMT 6-46 Figure 6-9 6-47 Figure 6-10 Ratio of Rescaled OSU to AP600 Plant Mass Flow Ratio of Rescaled OSU to AP600 Plant Hot Water Layer Thickness 6-48 Figure 6-11 Figure 6-12 Scaling Analysis Flow Diagram for CMT Condensation and Draining 6-49 i Processes l a:\l471w.t.wp0lW13095 xiV

FACILITY SCALING REPORT LIST OF FIGURES (Cont.) Figure Title Page Figure 6-13 Idealized Model for CMT Cold Wall Condensation Behavior 6-50 , Figure 6-14 AP600 CMT Wall Heat Up Rate for Different Fluid Volumes at 1080 psia 6-51 l Figure 6-15 AP600 CMT Wall Heat Up Rate for Different Fluid Volumes at 800 psia 6-51 Figure 6-16 AP600 CMT Wall Heat Up Rate for Different Fluid Volumes at 400 psia 6-52 i AP600 CMT Wall Heat Up Rate for Different Fluid Volumes I Figure 6-17 i at 200 psia 6-52 Figure 6-18 AP600 CMT Wall Heat Up Rate for Different Fluid Volumes ' l at 50 psia 6-53 Figure 6-19 APEX CMT Wall Heat Up Rate for Different Fluid Volumes at 385 psia 6-53 Figure 6-20 APEX CMT Wall Heat Up Rate for Different Fluid Volumes at 285 psia 6-54 Figure 6-21 APEX CMT Wall Heat Up Rate for Different Fluid Volumes at 142.6 psia 6-54 Figure 6-22 APEX CMT Wall Heat Up Rate for Different Fluid Volumes at 73.3 psia '6-55 Figure 6-23 APEX CMT Wall Heat Up Rate for Differunt Fluid Volumes - at 17.8 psia 6-55 Figure 7-1 Control Volume Boundaries for Safety Tank Draining Analysis 7-76 Figure 7-2 Flow Diagram for the Accumulator Scaling Analysis 7-77 Figure 7 3 Scaling Analysis Flow Diagram for the IRWST Draining Process 7-78 Figure 7-4 Control Volume for Safety Injection Line (Actual piping will

                          - have various geometries and fittings)                                         '7-79 Figure 7-5            Scaling Analysis Flow Diagram for CMT Balance Lines and ADS Vent Lines                                                                      7-80 Figure 7-6            Control Volume for Sections of a Vent Line or Balance Line (Actual geometries will vary)                                                           7-81 c:\1471=-1.wp61M13095      -

KV

FACILITY SCALING REPORT LIST OF FIGURES (Cont.) [

   . ORE 1                                              .Tidt                                       fBEt                   '

Figure 7-7 Scaling Analysis Flow Diagram for Downcomer Phenomena 7-82 Figure 8-1 Long-Term Recirculation Cooling Mechanism 8-18 . Figure 8 2 Scaling Analysis Flow Diagram for the I.ower Containment Sump Recirculation Subsequent to Sump Flood-up S-19 , Figure 8-3 E GOTHIC Calculation for Containment Pressure During a 2-Inch Break in the AP600 8-20 Figure 8-4 W GOTHIC Calculation for Containment Pressure During a Double-Ended Guillotine Break of the AP600 DVI Line 8-21 Figure 9-1 AP600 Plant Pressurizer and Steam Generator Pressures for a Two-

          ^

Inch Cold Leg Break 9-6 Figure 9-2 APEX Test Facility Pressunzer and Steam Generator Pressures for an Equivalent Two-Inch Cold Leg Break 9-7 Figure 9-3 Normalized Pressure Comparisons Between AP600 Plant and APEX Facility 9-8 Figure 9-4 Normalized CMTl Level for AP600 Plant and APEX Facility 9-9 Figure 9-5 Normalized CMT2 Level for AP600 Plant and APEX Facility 9-10 Figure 9-6 Normalized Accumulator 1 I.evel for AP600 Plant and APEX Facility 9-11 Figure 9-7 Normalized Accumulator 2 Level for AP600 Plant and APEX Facility 9-12 Figure 9-8 Normalized ADS 1-3 Flows for AP600 Plant and APEX Facility 9-13 Normalized Break Flow for AP600 Plant and APEX Facility 9-14 Figure 9-9 Normalind System Mass for AP600 Plant and APEX Facility 9-15 Figure 9-10 Figure 10-1 Characteristic Time Ratios as a Function of Process Specific Frequency for Single-Phase and Two-Phase Natural Circulation and Long Term 10-10 Recirculation (Secuons 4.0 and 8.0) Figure 10-2 Characteristic Time Ratios as a Function of Process Specific Frequency for System Dor 5mization (Section 5.0) 10-11 Figure 10-3 Characteristic Time Ratios as a Function of Process Specific Frequency for all AP600 Transport Processes Identified by SBLOCA PPIRT 10 12 nA1471w-1.wp614413095 xv]

l 1 i REFERENCE #: 42 l: REPORT #: WCAP-14124 i TITLE: AP600 Low-Pressure 1/4 Height Integral Systems Tests - Facility  ! Description Report j DATE: July 1994 1 4 i m:\3334w-a.wpf:1b-1141% A-42

FACurry DESCarnoN Rrront l TABLE OF CONTENTS Volume I Eg1(gg Title g ABSTRACT - 1 I l

1.0 INTRODUCTION

i-1 , j 1.1 Overall Test Objectives 1-1 l 1.2 Specific Test Objectives 1-2 l 1.3 Documentation 1-2 i I g 2.0 DESIGN BASIS OFTHE TEST FACILITY 2-1  ; I 2.1 Methodology 2-1 I 2.2 Facility Scaling Parameters 2-3 j

                         . 2.3    Mass / Energy Balances                                                                                           2-$           i 3.0      FACILITY DESCRFIION                                                                                      ,              3-1 3.1    Overall Facility Description                                                                                     3-1 3.1.1        Reactor Coolant System (RCS)                                                                        3-1 l                                     3.1.2        Steam Generator System (SGS)                                                                        3-8 3.1.3        Passive Core Cooling System (PXS)                                                                   3-8 3.1.4        Automatic Depressurization System (ADS)                                                             3-9 3.1.5        Lower Coneninment Sump (LCS)                                                                       3-10 3.1.6        Normal Residual Heat Removat System and Chemien1 Volume Control System (CVS)                                                               3-10 3.1.7        Break and ADS Flow Measurement System (BAMS)                                                       3-11    .

3.1.7.1 ADS 1-3 Separator and Pipe Route 3-11 3.1.7.2 ADS 4 Separator and Pipe Route 3-12 3.1.7.3 Break Separator and Pipe Route 3-12 3.1.8 Instrumentation System 3 13  ! 3.1.9 Onfices and Nozzles 3-14 3.2 Reactor Vessel 3-15 3.2.1 Function 3-15 3.2.2 Reactor Vessel Scaling Basis 3-15 3.2.3 Vessel Design / Dimensions 3-16 3.2.4 Vessel Instrumentation - 3-16 n:WO43w.wpf:1W1194 3

l

                                                                                            . FAcurry DescarnoN RaromT TABLE OF CONTENTS (Continued)

Section .TJdt fast 3.3 ' Rod Bundle 3-16 33.1 Function 3-16 3.3.2 Rod Bundle Scaling Basis 3-16 333 Rod Bundle Description 3-18 33.4 Rod Bundle Instrumentation 3-19 3.4 Reactor Internals 3-22

         ~

3.4.1 Function 3-22 3.4.2 Reactor Internal Scahng Basis 3-22 3.43 Reactor Internal Description 3-23 3.43.1 Core Panel 3-23

                            ~

3.43.2 Reflectors 3-23 3.433 Grid Ring 3-26 3.43.4 Upper' Internals 3-26 3.5 Hot Leg Piping 3-26 3.5.1 Function 3-26 3.5.2 Hot Leg Scahng Basis 3-28 3.53 Hot leg Description 3-28 Hot leg Instrumentation 3-29 3.5.4 Cold Leg Piping 3-29 3.6 Function 3-29 3.6.1 ficaling Basis 3-29 3.6.2 3.63 Description - 3-29 . Instrumentation 3-30 l 3.6.4 l Pressurizer Surge Line 3-30 3.7 Function 3-30 3.7.1 Scaling Bas s/ Key 'Ihermal Hydraulic Phenomena 3-30  ; 3.7.2 3-30 l 3.73 Design / Dimensions ' Pressunzer Surge Line Instrumentation 3-31 3.7.4 3-31

       ,                3.8      Pressurizer 3-31 3.8.1    Function 3-31 3.8.2     Scaling Basis 3-31 3.83      Description 3-34              !

3.8.4 Instrumentation I 3-34 3.9 Steam Generators I 3-34 3.9.1 Function 3-35 l 3.9.2 Scaling Basis

. 3-35 3.93 Description 3-37 3.9.4 Primary Side Instrumentation 3 37 3.9.5 Secondary Side Instrumentation 1 u:W1043=.wpf.lb481194 4

FAmJrY De RspomT TABLE OF CONTENTS (Continued) Section .T.19.t East 4 3.10 Reactor Coolant Pumps 3-39 3.10.1 Function 3-39 3.10.2 Scaling Basis 3-39 . 3.10.3 Description 3-39 3.10.4 Instrumentation 3-39 3.11 Accumulators 3-41 - 3.11.1 Function 3-41 3.11.2 Scaling Basis 3-41 3.11.3 Description 3-41 3.11.4 Instrumentation 3-43 3.12 Core Makeup Tanks , 343 3.12.1 Function 3 43 3.12.2 Scaling Basis 3 44 3.12.3 Descnpuon 3-44 3.12.4 Instrumentation 3-46 3.13 Incontainment Refueling Water Storage Tank . 3-48 3.13.1 Funcnon 3-48 3.13.2 Scaling Basis 3-49 3.13.3 Description 3-49 3.13.4 Instrn=*=tation 3-50 3.14 Safety Injection Lines 3-53 3.14.1 Furacnon 3-53 3.14.2 Scaling Basis 3-53 i 3.14.3 Desenpuon 3-53  ! 3.14.4 Instrumentation 3-53 3.15 Containment Sumps 3-59  ; 3.15.1 Scaling Basis 3-59 l 3.15.2 Description 3-59 l 3.16 Automatic Depressurization System, Stages 1-3 3-61 j 3.16.1 Funcoce 3-61 3.16.2 Scaling B. asis 3-61 3.16.3 Description 3 3.16.4 Instrumentation 3-62 a:WO43w.wpf:1W1194 $

             .   ..     ~ . - . _ -       -     -.-..- . . . - . . . - -                      . , . . . _ . _ - - .      -    - .-

(

                                                                                            . n o m m a m er i
TABLE OF CONTENTS (Continued) i l Etlal2R .Ild.t fBER ,

! 3.17 Automatic Depressurization System, Stage,4 3-66 , 3.17.1 Function 3-66  ; 3.17.2 Scaling Basis 3-66 3.17.3 Description 3-66 3.17.4 Instrumentation 3-66 l . 3.18 Non-Safety injection Systems 3-68 l 3.18.1 Function 3-68 3.18.2 Scaling Basis 3-68  ; 3.18.3 Description 3-68 1 l 3.1'8.3.1 CVS 3-68 3.18.3.2 RNS 3-69 3.18.4 Instrumentation 3-69 3.19 Passive Fawinni Heat Removal System 3-69 l 3-69 { 3.19.1 Funcuon 3.19.2 Scaling Basis 3-69 3.19.3 Description 3-72 3.19.4 Instrumentation 3-72 3.20 Break System Simulators 3-74 l 3.20.1 Function 3-74 3.20.2 Scaling' Basis for Break Sizes 3-74 3.20.3 Description - 3-75

  • l 3.21 Break and ADS Measurement System (BAMS) 3-78 l

3.21.1 Function 3-78 3.21.2 Scalleg Basis 3-78 3.21.3 Description 3-78 3.21.4 Instrumentation 3-79 l 3.22 Test Support Systems 3

  • 3.22.1 Deminerahzation System 3-80 Fill and Drain System 3-80 3.22.2

! RCP Seal Cooling System 3-80 3.22.3 Electrical System 3-80 3.22.4 3-81 3.22.5 Trace Heaters l 3-81 3.22.6 Insulation Hearing, Ventilation and Air Conditioning System 3 83 3.22.7 Fire Protection System 3-83 a 3.22.8 4 unnp600(10433.wptit41194 6

l FAcnnY DuscarnoN RF. PORT 1 l TABLE OF CONTENTS (Continued)~

                                                                                                                  )

E.tE1!2!! M .P.agg i 4.0 CONTROL SYSTEM 4-1 I 4.1 Function 4-1 4.2 Programmable Control System 4-1 , 4.3 Process Control System 4-4 4.4 Operator Panel 44 5.0 DATA ACQUISITION SYSTEM 51 5.1 System Hardware 5-1 5.2 Architecture 5-1 5.3 Software 5-1 LabVIEW Description 5-4 5.4 l I 6-1 6.0 QUALITY ASSURANCE 6.1 Facility 6-1 Software 6-1 6.2 1.0

SUMMARY

71 i R-1 References l I i u:WO43=.wpf:lbal194 7

FAQUTY DR50UmON Raroat TABLE OF CONTENTS (Continued) Volume II Section Title APPENDIX A HOT FUNCTIONAL TESTS AND TEST MATRIX APPENDIX B KEY FACILITY DRAWINGS APPENDIX C DRAWING LIST APPENDIX D INSTRUMENTATION LISTING APPENDIX E . ORIFICE SIZING DETAILS i i l l I a:W1043w.wpf:Ibatl194 8

. _ . _ __ ~.. _ _ .- . _ _ _ . - _ _ . . . _ . . _ . ___~.__. _.__ ___ _ ____ _ ______ __._ FAQUrY DESCRFHON REromT LIST OF FIGURES f.!sur. _T.11!t Zan 2-1 ' General Scaling Methodology 2-2 3.1 Reactor Vessel and Instrutnentation/ Power Lines 3-2 3.2 IRWST 3-3 3.2-1 Reactor Vessel and Its Internals 3-7 3.3 Primary and Secondary Sump Tanks 3-4 3.4 Upper Level (CMT in Foreground) 3-5 3.4-1 View from Top of Reactor Vessel Showing Partial Installation of Rod Bundle 3-27 3.5 Isometric Sketch of Test Facility 3-6 3.6 Simplified Flow Diagram 3-7 3.9-1 - Stem Generator Tube Bundle Dunng Shop Assembly 3-38 3.9-2 Steam Generator Arriving at Test Facility 3-38 3.10 1 RCP Performance, Head vs. Flow 3-40 3.12-1 CMT-2 Installation in Test Facility 3-47 3.13-1 PRHS Heat Exchange t eneed Inside the IRWST 3-52 3 16-1 Flow Schematic for Automatic Depressurization System 3-65 3.18.3-1 CVS Pump Head vs. Flow 3-70 3.18.3-2 RNS Pump Head vs. Flow 3-71 . 3.22-1' Electrical One-Line Diagram 3-82 4.4-1 Photograph of Operator Panel 4-6 4.4-2 Drawing of Operator Panel 4-7 5.1 1 DAS Hardware 5-2 5.2.1 DAS Architecture 5-3 5.4.1 DAS Software Hierarchy 5-5 c:WO43w.wphlb-081194 9

                                                                                                          - ~   .

FAQUTY DESCRFnON RMoRT 1 l LIST OF TABLES T.ahlt .T.htt Inst Summary of System Scaling Results for the 1/4 Length 2-4

    . 2-1 Scale Model Primary Ioop Rod Bundle Heater Power After Reactor Shutdown                            3-20 3.3-1 Rod Bundle Charactenstics                                                 3-21 3.3-2 Upper Core Support Plate Perforation Scaling Ratio and Dimensions          3 24 3.3 3 Downcomer Scaling Ratios and Dimensions                                    3-25 3.3-4 Pressunzer Scaling Ratios                                                  3 32 3.8-1 Pressunzer Scaling Ratios and Dimensions                                   3-33 3.8-2 Steam Generator Scahng Ratios and Dimensions                               3-36 3.9-1 Model Accumulator Scaling Ratios and Dimensions                            3-42 3.11-1 Model CMT Scahng Ratios and Dimensions                                     3-45 3.12-1 Model IRWST Scaling Ratios and Dimensions                                  3-51 3.13-1 Model Safety Injection Line Scaling Ratios and Dimensions                  3-54 3.14-1 DVI Line Scaling Ratios and Dimensions                                     3-57 3.14-2 3-58 3.14-3        Safety Injection Line Instrumentation Coneninment Sump Scaling Ratios and Dimensions                              3-60 3.15-1 LS Stage 1 through 3 Scaling Ratios and Dimensions                         3            3.16-1                                                                                                  .

3-67 3.17-1 ADS Stage 4 Scaling Ratios and Dimensions Passive Residual Heat Removal Heat Exchanger Scaling 3-73 3.19-1 Ratios and Dimensions (Single Heat Exchanger) l 3-77 l 3.20-1 Dimensions of Brealc Simulations 3-80 3.21-1 Separator Data 3-84 3.22-1 Insulation Applications

                                                                                                      ~

4-2 4.2 1 Programmable Controller Summary 4-5 4-3 Process Control System Components 7-2 71 Critical Attribute Summary a:Wo43. pr:Ib.ast:94 . 10

                                                                                                              ~

l REFERENCE #: 43 l REPORT #: WCAP-14252 ' l TITLE: AP600 Low Pressure Integral i System Test at OSU Find Data Report - DATE: May 1995 l i r l ,

                                                                                \

1 l 1 1 l l l i l l f m:\3334w-a.wplib-1104% A.43

FINAL DATA REPORT LIST OF FIGURES (Continued) fAIEe Tith. Pagg,

              .6.1 20                Comparison of Downcomer Level                                                        6.1                 6.1-21                Comparison of Break Plow
  • 6.1 35  ;

6.1 22 Comparison of Lower Core Levels 6.1-36 6.1-23 Comparison of Lower Core Levels 6.1-37 6.1-24 Comparison of Upper Core levels 6.1-38 6.1-25 Comparison of Upper Core Levels 6.1-39 7.2-1 CMT-2 'Ihrough-the-Wall Temperatures - 20 Percent Volume (14 in.) 7.2-9 , , 7.2-2 CMT-1 Through-the-Wall Temperatures - 20 Percent Volume (14 in.) 7.2 10 ! 7.2-3 CMT-2 Through-the-Wall Temperatures - 50 Percent Volume (29 in.)  ! 7.2 i 7.2-4 CMT-1 Through-the-Wall Temperatures - 50 Percent Volume (29 in.) 7.2-12 > 7.2-5 CMT-2 Through-the-Wall Temperatures - 75 Percent Volume (41 in.) 7.2-13 7.2-6 CMT-1 Through-the-Wall Temperatures - 75 Percent Volume (41 in.) 7.2-14 7.2-7 CMT-2 Temperature-Huid TCs at the Same Elevation 7.2-15 7.2-8 CMT 1 Temperamre-Fluid TCs at the Same Elevation 7.2-16 - 7.2-9 CMT-2 Temperature-Fluid TCs at the Same Elevation 7.2 17 [ 7.2-10 CMT-1 Temperature-Fluid 'ICs at the Same Elevation 7.2-18  ! 7.2-11 CMT-2 Compenson of Fluid Temperatures at the Same Elevation 7.2-19 7.2-12 CMT-1 Compenson of Pluid Temperatures at the Same Elevation 7.2-20 - l 7.2-13 CIC-2 Comparison of Level Versus Pressure 7.2-21 l 7.2-14 CMT-1 Compenson of Level Versus Pressure 7.2-22 (' 7.2-15 CMT-21hrough-the-Wall Temperansres - 20 Percent Volume (14 in.) 7.2-23 l 7.2-16 CMT-1 Through-the-Wall Temperatures - 20 Percent Volume (14 in.)' 7.2-24 7.2-17 CMT-2 Through-the-Wall Temperatures - 50 Percent Volume (29 in.) 7.2 25 7.2-18 CMT-1 Through-the-Wall Temperatures - 50 Percent Volume (29 in.) 7.2 26 l 7.2 19 CMT-2 Through-the-Wall Temperatures - 75 Percent Volume (41 in.) 7.2-27 l' l 7.2 20 CMT-1 'Ihrough-the-Wall Temperatures - 75 Percent Volume (41 in.) 7.2 28 7.2-21 CMT-2 Temperature-Fluid TCs at the Same Elevation 7.2-29 7.2-22 CMT-1 Temperature-Fluid 'ICs at the Same Elevation 7.2-30 7.2-23 CMT-2 Temperature-Fluid TCs at the Same Elevation 7.2-31 7.2-24 CMT-1 Temperature-Fluid 1Cs at the Same Elevation 7.2 32 7.2-25 CMT-2 Comparison of Fluid Temperatures at the Same Elevation 7.2-33 7.2-26 CMT-1 Comparison of Fluid Temperatures at the Same Elevation 7.2-34 7.2-27 CMT-2 Comparison of Level Versus Pressure 7.2-35 7.2-28 CMT-1 Compenson of Level Versus Pressure 7.2-36

l. 7.2-29 CMT-2 Through-the-Wall Temperatures - 20 Percent Volume (14 in.) 7.2-37

! 7.2-30 CMT-1 'Ihrough-the-Wall Temperatures - 20 Percent Volume (14 in.) 7.2-38

7.2-31 CMT-2 "Ihrough-the-Wall T+4-es - 50 Percent Volume (29 in.) 7.2-39
,           7.2-32                 CMT-1 "Ihrough-the-Wall Temperatures - 50 Percent Volume (29 in.)                    7.2-40 n:%p600\1536w.=pf:lkO80995                                   lii

FINAL DATA REpoa7 LIST OF FIGURES (Continued) r Figure Title _Page, 5.7-46 CMT-1 Temperatures 5.7 106 5.7 46x CMT-1 Temperatures 5.7 107 5.7-47 CMT-2 Temperatures 5.7-108 . l 5.7-47x CMT-2 Temperatures 5.7-109 ( 5.7-48 IRWST Temperatures 5.7-110 5.7-48x IRWST Temperatures 5.7 111 - 5.7-49 PRHR HX Temperatures 5.7-112 1 5.7-49x PRHR HX Temperatures 5.7-113 l 5.7-50 Reactor Core Temperatures 5.7-114 5.7-50x Reactor Core Temperatures 5.7-115 5.7-51 Upper-Plenum and Upper-Head Temperatures 5.7-116 5.7-51x Upper-Plenum and Upper-Head Temperatures 5.7-117 l 5.7-52 SG-1 and SG-2 Primary Side DPs 5.7-118 l ' 5.7-53 Primary and Secondary Pressures 5.7-119 l 5.7-53x Primary and Secondary Pressures 5.7-120 5.7-54 IRWST and Primary Sump Flows 5.7 121 5.7-55 Reactor Heater Temperatures @ 46 in, from Reactor' Vessel Bottom 5.7-122 l 5.7-55x Reactor Heater Temperatures @ 46 in. from Reactor Vessel Bottom 5.7-123 ! 5.7-56 IRWST Flow Rates 5.7-124 l 6.1-1 Comparison of Break Flow 6.1-15 6.1-2 Comparison of Break Flow 6.1-16 6.1-3 Comparison of Primary Sump Weight 6.1-17

6.1-4 Comparison of Pnmary Sump Weight 6.1-18 6.1-5 Comparison of CMT-1 Injection Flows 6.1.-19 l 6.1-6 Comparison of CMT-1 Injection Flows 6.1-20 6.1-7 Comparison of CMT-2 Injection Flows 6.1-21 6.1-8 Comparison of CMT-2 Injection Flows 6.1-22 .

6.1-9 Comparison of CMT-1 and CMT-2 Flows 6.1-23 l 6.1-10 Comparison of CMT-1 and CMT-2 Flows 6.1-24 6.1 11 Comparison of CMT-1 and CMT-2 Flows 6.1-25 6.1-12 Comparison of CMT-1 and CMT-2 Flows 6.1-26 6.1-13 CMT Levels vs Primary Sump Weight 6.1-27 6.1-14 CMT Levels vs Primary Sump Weight 6.1-28 6.1-15 CMT Levels vs Primary Sump Weight 6.1-29 6.1-16 CMT Levels vs Primary Sump Weight 6.1-30 6.1-17 Comparison of Downcomer Level 6.1-31 6.1-18 Comparison of Downcomer Level 6.1-32 6.1-19 Comparison of Downcomer Level 6.1-33 a:W1536w.wpfdb 080995

  • li
       .. __. . _ _ _ _ . _ _ . ~ . _ - _ . _ _ . _ _ . _ . _ _ _ . . _ _ _ _ . ~._. . _ _ _

i FLML DATA REPORT $ l LIST OF FIGURES (Continued)  ; f!EEt Ilt gl ,Eggg, , l 7.2-33 CMT 2 Through-the Wall Temperatures - 75 Percent Volume (41 in.) - 7.2-41 7.2-34 CMT 1 Through-the-Wall Temperatures - 75 Percent Volume (41 in.) 7.2-42 7.2-35 CMT-2 Temperature-Fluid Es at the Same Elevation 7.2-43 7.2 36 CMT-1 Temperature-Fluid Es at the Same Elevation 7.2-44 7.2-37 . CMT 2 Temperature-Fluid TCs at the Same Elevation 7.2-45 7.2-38 CMT-1 Temperature-Fluid TCs at the Same Elevation 7.2-46 7.2-39 CMT-2 Comparison of Fluid Temperatures at the Same Elevation 7.2 47 7.2-40 CMT-1 Comparison of Fluid Temperatures at the Same Elevation

  .                                                                                                                                                   7.2-48 7.2-41                                 CMT-2 Comparison of Level Versus Pressure                                               7.2 49 7.2-42                                 CMT-1 Comparison of level Versus Pressure                                               7.2-50 7.2-43                                 CMT-2 'Ihrough-the-Wall Temperatures - 20 Percent Volume (14 in.)

l 7.2-51

7.2 44 CMT-1 'Ihrough-the-Wall T+.i es - 20 Percent Volume (14 in.) 7.2-52 j -

7.2-45 CMT-2 Through-the-Wall Temperatures - 50 Percent Volume (29 in.) 7.2-53 i 7.2-46 CMT-11hrough-the-Wall T+ 7.2-54 es - 50 Percr.nt Volume (29 in.) 7.2-47 CMT-21hrough-the-Wall Tew.i ies - 75 Percent Volume (41 in.) 7.2-55 ' l 7.2-48 CMT-2 Through-the-Wall Temperatures - 75 Percent Volume (41 in.) 7.2 56 7.2-49 - CMT-2 Temperature-Fluid 'ICs at the Same Elevation 7.2-57 7.2 50 CMT-1 Temperature-Fluid TCs at the Same Elevation 7.2-58 7.2 51 CMT-2 Temperature-Fluid TEs at the Same Elevation 7.2-59 l l 7.2-52 CMT-1 Temperature-Fluid TCs at the Same Elevation 7.2-60

7.2-53 CMT-2 Compenson of Fluid T+.
es at the Same Elevation 7.2-61 l 7.2-54 CMT-1 Companson of Fluid Temperatures at the Same Elevation 7.2-62 7.2 55 CMT-2 Comparison of Ievel Versus Pressure 7.2-63 l 7.2 56 ' CMT-1 Compenson of Level Versus Pressure 7.2-64 l  !

l l l l l ! l 4 i 1

  ,                  u:W5%w.wpf:1b 000995                                                               liii

REFERENCE #: 44 REPORT #: WCAP-14292, Rev.1 TITLE: AP600 Low-Pressure Integral

                                                                                ~

Systems Test at Oregon State University - DATE: September 1995 I i m:\3334ws.wpf:1b1104% A-44

l .- - FIML DATA REPORT LIST OF FIGURES (Continued) f!1Et . , .Il!!t _P. RRt

                      .5.7-24                        Accumulator Levels                                                 5.7-69 5.7-25                       CMT-1 and CMT-2 Levels
  • 5.7-70  ;

5.7-25x CMT-1 and CMT-2 Levels 5.7-71 l 5.7-26 Pressurizer and Surge Line levels 5.7-72 5.7-26x Pressurizer and Surge Line Levels

    ~

5.7-73 5.7-27 Separator Levels 5.7-74 5.7-27x - Separator Levels 5.7-75 , 5.7-28 IRWST, Sump, and Break Separator Levels 5.7-76 l 5.7-28x IRWST, Sump, and Break Separator Levels 5.7-77 i . 5.7-29 PRHR HX Levels 5.7-78 ! 5.7-29x PRHR HX Levels 5.7-79 I l 5.7-30 Hot Leg and Cold-Leg Pressures 5.7-80 l 5.7-31 Reactor and DVI Pressures 5'.7-81 5.7-32 Break Pressure 5.7-82 l 5.7-33 Accumulator and CMT Pressures 5.7-83  ! 5.7-34 Pressurizer Pressures 5.7-84 5.7-35 Upper-Head and Downcomer Temperatures 5.7-85 i 5.7-35x Upper-Head and Downcomer Temperatures 5.7-86  ! 5.7-36 CL-1 Temperatures 5.7-87 ! 5.7-36x CL-1 Temperatures 5.7-88 l l_ 5.7-37 CL-2 Temperamres 5.7-89 l 5.7-37x CL-2 Temperatures 5.7-90 ! 5.7-38 CL-3 Temp.hus 5.7-91 5.7-38x' CL-3 Temperatures 5.7-92 5.7-39 CL-4 Temperatures 5.7-93 5.7-39x CL-4 Temperatures 5.7-94 5.7-40 HL-1 Temp.s-s 5.7-95 5.7-40x HL-1 Temperatures 5.7-96 l 5.7-41 HL-2 Temperatures 5.7-97 5.7-41x HL-2 Temperamres 5.7-98 5.7-42 Downcomer Annulus Temperatures at 180 degrees Azimuth 5.7-99 5.7-42x Downcomer Annulus Temperatures at 180 degrees Azimuth 5.7-100 5.7-43 Downcorner Annulus Temperatures at 0 degrees Azimuth 5.7-101 5.7-43x. Downcomer Annulus Temperatures at 0 degrees Azimuth 5.7-102 5.7-44 SG-1 Fluid Temperatures in hbes 5.7-103 5.7-44x SG-1 Fluid Temperamres in Tubes 5.7-104 ! 5.7J5 SG-2 Fluid Temperatures in Tubes 5.7-104 l 5.7-45x SG-2 Fluid Temperatures in hbes 5.7-105 a: Nap 600\1536w.wpf:1b.080995 1

. - . . ~ _ _ - . _- -. . _ . - . . . FINAL D4TA REPORT LIST OF FIGURES (Continued)

    ,Egige                                          Title                                       fage Matrix Test SB15 5.7-la            Primary Loop and Break Pipe Arrangement (Sh. I of 2)                     5.7-31 5.7-lb            Primary Loop and Break Pipe Arrangement, Side View (Sh. 2 of 2)         5.7-32             ,

5.7-2 Accumulator and CMT Injection Rows 5.7-33 5.7-2x Accumulator and CMT Injection Hows 5.7-34 5.7-3 Total DVI Flow 5.7-35 . 5.7-3x Total DVI Flow 5.7-36 5.7-4 PRHR HX Flows 5.7-37 5.7-4x PRHR HX Flows 5.7-38 5.7-5 Separator Flows 5.7 39 5.7-5 x Separator Flows 5.7-40 5.7-6 IRWST Overflow 5.7-41 5.7-7 Core Levels 5.7-42 5.7-8 Separator Steam Flows 5.7-43 5.7-9 IRWST and Primary Sump Steam Rows 5.7-44 5.7-10 BAMS Header Steam Flows 5.7-45 5.7-11 Upper-Head DPs 5.7-46 5.7-11x Upper Head DPs 5.7-47 5.7-12 Cold-Leg Line DPs 5.7-48 5.7-12x Cold-Leg Line DPs 5.7-49 5.7-13 Break DPs 5.7-50 5.7-14 Balance Line DPs 5.7-51 5.7-14x Balance Line DPs 5.7-52 5.7-15 Reactor and Pressurizer Heater Power 5.7-53 5.7-15x Reactor and Pressurizer Hester Power 5.7-54 5.7-16 Reactor and Downcomer Annulus Wide-Range Levels 5.7-55 5.7-16x Reactor and Downcomer Annulus Wide-Range Levels 5.7-56 5.7-17 Upper-Plenum Levels 5.7-57 , 5.717x Upper-Plenum Levels 5.7-58 5.7-18 Cold-Leg Levels 5.7-59 5.7-18x Cold-Leg Levels 5.7-60 5.7-19 Hot-Leg Levels 5.7-61 5.7-19x Hot-Leg Levels 5.7-62 5.7-20 SG 1 Levels 5.7-63 5.7-21 SG-1 Channel Head Levels 5.7-64 5.7-21x SG-1 Channel Head Levels 5.7-65 5.7-22 SG-2 lbbe Levels 5.7-66 5.7-23 SG-2 Channel Head Levels 5.7-67 5.7-23x SG-2 Channel Head Levels 5.7-68 u:W1536w.wpf;1t40995 xlix

l l l FINAL DATA REPCM l l LIST OF FIGURES (Continued) Eggte Title _Pagt i - Matrix Test SB31 5.6-1 Reactor Core Temperatures

  • 5.6-17 I 5.6-2 Reactor and DVI Pressures 5.6-18 5.6-3 Accumulator and CMT Injection Flows 5.6-19 5.6-4 CMT-1 Temperatures
  • 5.6-20 5.6-5 CMT-2 Temperatures 5.6-21 5.6-6 PRHR HX Flows 5.6-22 5.6-7 PRHR HX Temperatures 5.6-23 5.6-8 IRWST Temperatures 5.6-24 5.6-9 Core Levels 5.6-25 5.6-10 Upper-Plenum Levels 5.6-26
      . 5.6-11              Reactor Heater Temperatures @ 46 in. from Reactor Vessel Bottom         5.6-27 5.6-12              Gore Heater Temperatures @ 46 in. from Reactor Vessel Bottom            5.6-28 5.6-13              Reactor and Downcomer Annulus Wide-Range Levels                         5.'6-29 5.6-14              Cold-Leg Levels                                                         5.6-30 5.6-15              Hot-Leg Levels                                                          5.6-31 5.6-16             SG-1 Levels                                                              5.6-32 5.6-17             SG-1 Channel Head Levels                                                 5.6-33 l

5.6-18 SG-2 Tube Levels 5.6-34 5.6-19 SG-2 Channel Head Levels 5.6-35 5.6 20 CMT-1 and CMT-2 Levels. 5.6-36 5.6-21 Accumulator and CMT Pressures 5.6-37 5.6-22 Accumulator Levels 5.6-38 5.6-23 Pressurizer and Surge Line Levels 5.6-39 , 5.6-24 Upper-Plerm ux! Upper-Head Temperatures 5.6-40 5.6-25 Upper-Head and Downcomer Temperatures 5.6-41 5.6-26 CL-1 Temperatures 5.6-42 5.6-27 CL-2 Temperatures 5.6-43 5.6-28 CL-3 Temperatures 5.6-44 5.6-29 CL-4 Temperatures 5.645 5.6-30 HL-1 Temperatures 5.6-46 5.6-31 HL-2 Temperatures 5.6-47 5.6-32 SG-1 Fluid Temperatures in Tubes 5.6-48 5.6-33 SG-2 Fluid Temperatures in Tubes 5.6-49 5.6-34 Primary and Secondary Pressures 5.6-50 ansp60cush wpt:Ims xlviii

. ._ .. . . . . _ ~ . . _ _ _ _ . _ _ . _ _ _ _ _ _ _ _ . _ . _ _ _ _ _ _ _ _ FINAL DATA REPCT LIST OF FIGURES (Continued) fiEER .Tiet fatt

                              .5.5.2-70                           PRHR HX Levels                                                      5.5.2-99 5.5.2-71                           PRHR HX Flows                                                      5.5.2-100 5.5.2-72                           Upper-Head, CL-1, and CMT-2 Temperatures                           5.5.2 101   -

5.5.2-73 - Upper Head, CL-1, and CMT-2 Temperatures 5.5.2-102 , 5.5.2-74 Upper-Head, CL-1, and CMT-2 Temperatures 5.5.2 103 5.5.2-75 Hot-leg and Upper-Head Temperature (Sheet 1 of 2)

  • 5.5.2-104 5.5.2-75 Hot-Leg and Upper-Head Temperature (Sheet 2 of 2) 5.5.2-105 5.5.2-76 Comparison of Hot-Ieg and Upper-Head Temperatures 5.5.2-106 i 5.5.2-77 Comparison of Hot Leg and Upper-Head Temperatures 5.5.2 107 5.5.2-78 Comparison of Hot Leg and Upper-Head Temperatures 5.5.2 108 5.5.2-79 Downcomer Annulus Temperatures between Hot-Leg /DVI Elevations 5.5.2 109 5.5.2-80 Cold-leg Levels 5.5.2 110 5.5.2-81 Cold-leg Temperatures 5.5.2 111 5.5.2-82 Hot-Ieg Levels 5.5.2 112 5.5.2-83 Hot-Leg Temperatures 5.5.2-113 5.5.2-84 IRWST Temperamres 5.5.2-114 I
                            -5.5.2-85                            IRWST Temperatures                                                 5.5.2-115       l 5.5.2-86                           Separator Steam Flows                                              5.5.2-116--     l 5.5.2-87                           Reactor Pressure and Core Level Comparison                          5.5.2-117       I 5.5.2-88                           Reactor Pressure and Core level Comparison                          5.5.2-118       j 5.5.2-89                           Reactor Pitssure and Core Level Comparison                         5.5.2-119        l 5.5.2-90                           Reactor Downcomer Level Comparison                                 5.5.2-120        !

5.5.2-91 Reactor Downcomer Ievel Comparison 5.5.2-121 5.5.2-92 Reactor Downcomer Level Comparison 5.5.2-122 5.5.2-93 Net Flow for Test SB26 from 0 - 2000 Seconds 5.5.2-123 . 5.5.2-94 Net Flow for Test SB14 from 0 to 2000 Seconds 5.5.2-124 5.5.2-95 Net Flow and Core Level Comparison for Test SB14 vs SB26 5.5.2-125 5.5.2-96 Net Flow and Core Level Comparison for Test SB14 vs SB26 5.5.2-126 - 5.5.2-97 Net Flow and Core Level Comparison for Test SB14 vs SB26 5.5.2-127 5.5.2-98 Reactor Pressure, CMT-1, and ACC-1 Flow Comparison 5.5.2-128 5.5.2-99 Reactor Pressure, CMT-2, and ACC-2 Flow Comparison 5.5.2-129 5.5.2-100 Reactor Vessel Response 5.5.2-130 5.5.2-101 Reactor Vessel Response 5.5.2-131 5.5.2-102 Reactor Pressure and IRWST Overflow Comparison 5.5.2-132 5.5.2-103 Reactor Pressure and IRWST Overflow Comparison 5.5.2-133 5.5.2-104 Reactor Pressure and IRWST Injection Flow Comparison 5.5.2-134 5.5.2-105 Reactor Pressure and IRWST Injection Flow Comparison 5.5.2-135 5.5.2-106 Reactor Pressure and IRWST Injection Flow Comparison 5.5.2-136 5.5.2-107 Reactor Pressure and PRHR HX Flow Comparison 5.5.2-137 u:W1536w.wpt:1Mn0995 Ilvil

 ..    .                 .-.               --   . --           ~ -. -       . _ _ - - - - -             - . - .        ~ . _ _ _

? , 1 i

                                                                                                                                 .l l

FINAL DATA RaPORT l , 1 LIST OF FIGURES (Continued) f!EER .TitLt. .P.agg

            .5.5.2-34               CL-3 Temperamres

' 5.5.2-62

    .        5.5.2-35               CL-4 Temperatures                                                   5.5.2-63 5.5.2-36               CMT-1 and CMT 2 Levels                                              5.5.2-64 5.5.2-37               Accumulator and CMTInjection Flows 5.5.2-65 5.5.2           -Reactor and Downcomer Annulus Wide-Range Levels                      5.5.2-66 5.5.2-39              Separator Loop Seal Flows                                            5.5.2-67 l

5.5.2-40 Total DVI Flow 5.5.2-68 5.5.2-41 Reactor Core Temperatures 5.5.2-69 L 5.5.2-42 Upper-Plenum and Upper -Head Temperatures 5.5.2-70 5.5.2-43 Upper-Head and Downcomer Temperatures 5.5.2-71 l 5.5.2-44 IRWST and Primary Sump Flows 5.5.2-72 5.5.2-45 Reactor Heater Temperatures @ 46 in. from Reactor Vessel Bottom'(Top of Core) 5.5.2-73 5.5.2-46 Reactor Heater Temperatures @ 46 in. from - Reactor Vessel Bottom (Top of Core) - 5.5.2-74 , 5.5.2-47 Steam Percentage Conditions in Iower Core Region 5.5.2-75 5.5.2-48 Steam Percentage Conditions in Lower Core Rc;.on 5.5.2-76  ! 5.5.2-49 IRWST, Sump, and Break Separator Levels 5.5.2 77

         - 5.5.2-50               IRWST, Sump, and Break Separator Levels                              5.5.2-78 5.5.2-51              BAMS Header Steam Flows                                              5.5.2              5.5.2-52              IRWST and Primary Sump Steam Flows                                   5.5.2-80
          '5.5.2-53              CMT-2 Temperamre Pro 61e                                              5.5.2-81 5.5.2-54            - CMT 2 Temperature Pro 61e                                           5.5.2-82 5.5.2-55             CMT-2 Upper-Dome Temperatures                                        5.5.2-83 5.5.2-56              CMT-2 Upper-Dome Temperatures                                        5.5.2-84 5.5.2 57              CMT-2 Fluid Temperature Distribution (Sheet 1 of 2)                  5.5.2-85 5.5.2-57              CMT-2 Fluid Temperature Distribution (Sheet 2 of 2)                  5.5.2-86 5.5.2-58              CMT-2 Wall Tes.pr .ime Distribution                                  5.5.2 87 5.5.2-59              CMT-2 Upper-Dome Fluid / Wall Interface                              5.5.2-88 5.5.2-60              CMT-1. Temperatures                                                  5.5.2-89 5.5.2-61              CMT-1 Temperatures                                                   5.5.2-90 5.5.2-62              Accumulator levels                                                   5.5.2-91 5.5.2-63              Steam Percentage Conditions for Pressurizer and Surge Line           5.5.2-92 l           5.5.2-64              Pressurizer Temperamre Profile                                       5.5.2-93 5.5.2-65              ADS 1-3 Separator Discharge Flows                                    5.5.2-94 5.5.2-66              Pressurizer and Surge Line Levels                                    5.5.2-95 5.5.2-67             PRHR HX Temperamres                                                   5.5.2-%

( 5.5.2-68 PRHR HX Temperatures 5.5.2-97 5.5.2-69 PRHR HX Levels 5.5.2-98 l

__ _. .. . ._ _ _ . . _ _ _ -, ~_-._. . _ _ ._ _ _ . _ _ . . _ . . _. ___ RML DATA REpc2T LIST OF FIGURES (Continued) Fimure .T.!11.t .Page 5.5.1-85 IRWST Temperatures 5.5.1-134 5.5.1-86 Transition from IRWST to Primary Sump Injection 5.5.1 135 5.5.1-87 Reactor Vessel Response 5.5.1-136 , 5.5.1-88 Reactor Vessel Response 5.5.1-137 5.52-1 ADS 1-3 Valve Actuation 5.5.2-29 . 5.5.2-2 Separa. tor Loop Seal Flows and IRWST Overflow 5.5.2-30 5,5,1-3 Separator Steam Flows 5.5.2-31 5.52-4 Reactor and DVI Pressures 5.5.2-32 5.5.2-5 Pressurizer Pressures 5.5.2-33 5.5.2-6 Reactor and Downcomer Annulus Wide-Range Levels 5.5.2-34 5.5.2-7 Reactor Core Levels 5.5.2-35 5.5.2-8~ PRHR HX Initial Flow 5.5.2-36 5.5.2-9 PRHR HX Flows 5.5.2-37 i 5.5.2-10 Pressurizer and Surge Line Levels 5.5.2 38 5.5.2-11 Accumulator and CMT Injection Flows 5.5.2-39 5.5.2-12 CMT-1 and CMT-2 Levels 5.5.2-40 5.5.2-13 Cold-Leg Levels 5.5.2-41 5.5.2-14 Hot-Leg Levels 5.5.2-42 5.5.2 15 SG-1 Levels 5.5.2-43 5.5.2-16 SG-1 Channel Head levels 5.5.2-44 5.5.2-17 SG-1 Fluid Temperatures in Ibbes 5.5.2-45 5.5.2-18 Steam Generator DPs and Levels 5.5.2-46 5.5.2 19 Primary / Secondary Pressure Compenson 5.5.2-47 5.5.2 20 Primary / Secondary Temperature Comparison 5.5.2-48 5.5.2-21 Upper-Head and Downcomer Temperatures 5.5.2-49 5.5.2-22 HL-1 Temperatures 5.5.2-50 5.5.2-23 HL-2 Tempi.iuies 5.5.2-51 . 5.5.2-24 Total DVI Flow 5.5.2-52 5.5.2-25 Steam Percentage Conditions at Reactor Vessel and SG-2 5.5.2-53 5.5.2-26 Steam Percentage Conditions at SG 2 and HL-2 5.5.2-54 5.5.2-27 Upper-Head DPs 5.5.2-55 5.5.2-28 Upper-Head DPs 5.5.2-56 5.5.2-29 Upper Plenum and Upper-Head Temperatures 5.5.2-57 5.5.2-30 IRWST and Primary Sump Flows 5.5.2-58 5.5.2-31 Reactor Core Temperatures 5.5.2-59 5.5.2-32 CL-1 Temperatures 5.5.2-60 5.5.2-33 CL-2 Temperatures 5.5.2-61 ansp600\l5%w.wpf:Ib-080995 xlv

L' 1 FLNAL DATA REPORT LIST OF FIGURES (Continued) Figure . Title P_ajte j .5.5.1-47 Steam Percentage Conditions in Lower Core Region 5.5.1-96 l, 5.5.1-48 Steam Percentage Conditions in Lower Core Region 5.5.1-97 l 5.5.1-49 IRWST, Sump, and Break Separator Levels 5.5.1-98 i 5.5.1 50 IRWST, Sump, and Break Separator Levels 5.5.1-99

    . 5.5.1 51                BAMS Header Steam Flows                                                           '

5.5.1-100 5.5.1-52 IRWST and Primary Sump Steam Flows 5.5.1-101 5.5.1-53 CMT-2 Temperature Profile 5.5.1-102 5.5.1-54 CMT 2 Temperature Profile 5.5.1-103 5.5.1-55 CMT-2 Upper-Dome Temperatures J 5.5.1-104 5.5.1 56 CMT-2 Upper-Dome TempoaEwcs 5.5.1-105 l 5.5.1-57 CMT-2 Fluid Temperature Distribution 5.5.1-106 5.5.1 58 CMT 2 Wall Temperature Distribution 5.5.1-107 5.5.1-59 CMT-2 Upper-Dome Fluid / Wall Interface 5.5.1-108 5.5.1-60 CMT 1 Temperatures 5.5.1-109 5.5.1-61 CMT-1 Temperatures 5.5.1-110 l 5.5.1-62 Accumulator Levels 5.5.1-111 5.5.1-63 Steam Percentage Conditions for Pressurizer and Surge Line 5.5.1-112 5.5.1-64 Pressurizer Temperature Profile 5.5.1-113 5.5.1-65 ADS 1-3 Separator Discharge Flows 5.5.1-114 5.5.1-66 Pressurizer and Surge Line Levels 5.5.1-115 5.5.1-67 PRHR HX Temperatures 5.5.1-116 5.5.1-68 PRHR HX Temperatures 5.5.1-117 5.5.1-69 PRHR HX I2vels 5.5.1-118 5.5.1 70, PRHR HX Levels 5.5.1-119 5.5.1-71 PRHR HX Flows 5.5.1 120 5.5.1-72 Upper-Head, CL-1, and CMT-2 Temperatures 5.5.1-121

  ,   5.5.1 73                 Upper-Head, CL-1, and CMT-2 Temperatures                            5.5.1-122 5.5.1 74                 Upper Head, CL-1, and CMT-2 Temperatures                            5.5.1-123 5.5.i-75                 Hot-Leg and Upper-Head Temperature                                  5.5.1-124 5.5.1-76                 Hot-Leg and Upper-Head Temperatures                                 5.5.1-125 5.5.1-77                Hot-leg and Upper-Head Temperatures                                  5.5.1-126 5.5.1-78                Hot-Leg and Upper-Head TempcaEmcs 5.5.1-127 5.5.1-79                Downcomer Annulus Temperatures between Hot-Leg /DVI Elevations       5.5.1-128 5.5.1-80                Cold-Leg Levels                                                      5.5.1-129 5.5.1-81                Cold-Leg Tempcasmes                                                  5.5.1-130 5.5.1-82                Hot-Leg Levels                                                       5.5.1-131 5.5.1-83                Hot-Leg Temperatures                                                 5.5.1-132 5.5.1-84                IRWST Temperatures                                                   5.5.1-133 l

unsp600\l536w.wpf:lt>080995 xliv

1 . , FINA1. DATA REPORT LIST OF FIGURES (Continued)  ; i f.jslLa Title Egge , 5.5.1-10 Pressurizer and Surge Line levels 5.5.1-59 5.5.1-11 Accumulator and CMT Injection Flows 5.5.1-60 5.5.1 12 CMT-1 and CMT-2 Levels 5.5.1-61 . 5.5.1 13 Cold-leg levels 5.5.1-62 , 5.5.1-14 Hot-leg levels 5.5.1-63 5.5.1-15 SG-1 Levels 5.5.1-64 . 5.5.1-16 SG-1 Channel Head Levels 5.5.1-65 5.5.1 SG-1 Fluid Temperatures in Tubes 5.5.1-66 5.5.1-18 Steam Generator DPs and levels 5.5.1-67 5.5.1-19 Primary / Secondary Pressure Comparison 5.5.1-68  ! 5.5.1-20 Primary / Secondary Temperature Comparison 5.5.1-69 5.5.1 21 Upper-Head and Downcomer Temperatures 5.5.1-70 5.5.1-22 HL-1 Temperatures 5.5.1-71 5.5.1-23 HL-2 Temperatures 5.5.1-72 5.5.1-24 Total DVI Flow 5.5.1-73 . 5.5.1-25 Steam Percentage Conditions at SG-2 5.5.1-74 5.5.1-26 Steam Percentage Conditions at SG-2 and HL 2 5.5.1-75 5.5.1-27 Upper Head DPs 5.5.1-76 5.5.1-28 Upper-Head DPs 5.5.1-77 5.5.1-29 Upper-Pienum and Upper-Head Temperatures 5.5.1-78 5.5.1-30 IRWST and Primary Sump Flows 5.5.1 5.5.1-31 Reactor Core Temperatures 5.5.1-80 5.5.1-32 CL-1 Temperatures 5.5.1-81 5.5.1-33 CL-2 Temperatures 5.5.1-82 5.5.1-34 CL-3 Temperatures 5.5.1-83 5.5.1-35 CL-4 Temperatures 5.5.1-84 5.5.1-36 CMT-1 and CMT-2 levels 5.5.1 5.5.1-37 Accumulator and CMT Injection Flows' 5.5.1-86 . 5.5.1-38 Reactor and Downcomer Annulus Wide-Range levels 5.5.1-87 5.5.1-39 Separator Loop Seal Flows 5.5.1-88 5.5.1-40 Total DVI Flow 5.5.1-89 5.5.1-41 Reactor Core Temperatures 5.5.1-90 5.5.1 42 Reactor Core Temperatures 5.5.1-91 5.5.1 43 Upper-Head and Downcomer Temperatures 5.5.1-92 5.5.1 44 IRWST and Primary Sump Flows 5.5.1-93 5.5.1 45 Reactor Heater Temperatures @ 46 in. from Reactor Vessel Bottom (Top of Core) 5.5.1-94 5.5.1-46 Reactor Heater Teinpa. hues @ 46 in. from Reactor Vessel Bottom (Top of Core) 5.5.1-95 ufap600u536w.wp0ltWa0995 xliii

FINAL DATA REPC:::7 LIST OF FIGURES (Continued) B.dfrg .T,1gg ,P,.agg 5.4.3-44 SG-2 Tube Temperatures 5.4.3-73 } 5.4.3-45 Upper Support Plate and Bypass Hole DP's 5.4.3-74 5.4.3-46 IRWST Temperatures 5.4.3-75 5.4.3-47 IRWST and Primary Sump Exhaust Steam Flows 5.4.3-76 l 5.4.3-48 Downcomer Wide Range I.evel 5.4.3-77 ! 5.4.3-49 Downcomer Fluid Temperatures at Hot-Leg Elevation 5.4.3-78 5,4.3-50 Downcomer Fluid Temperatures 5.4.3-75 5.4.3-51 Downcomer Fluid Temperatures 5.4.3-80 l 5.4.3-52 Downcomer Fluid Temperatures 5.4.3-81 5.4.3-53 Downcomer Fluid Temperatures 5.4.3-82 5.4.3-54 Axial Temperature Profile at Center of Core 5.4.3-83 , l . 5.4.3-55 Heater Temperatures at Top of Core 5.4.3-84 5.4.3-56 . Narrow-Range and Wide-Range Core Levels 5.4.3-85 5.4.3-57 Narrow-Range and Wide-Range Core Levels 5.4.3-86 l 5.4.3-58 Core Steam Percent . '5.4.3-87 l 5.4.3-59 Core Steam Percent 5.4.3-88 5.4.3-60 Differential Pressure of Upper Support Plate and Bypass Holes 5.4.3-89

5.4.3-61 Upper-Plenum, Upper-Head, Upper-Downcomer Temperamres ' 5.4.3.90

! 5.4.3-62 SG-1 Tube Levels 5.4.3-91  ; 5.4.3-63 SG-2 Tube Levels 5.4.3-92 5.4.3-64 SG-1 Channel Head Lesis 5.4.3-93 5.4.3-65 SG-2 Channel Head Levels 5.4.3-94 5.4.3-66 SG-1, SG-2 Primary and Secondary Pressures 5.4.3-95 5.4.3-67 CMT-2 and Cold-Leg Pressures 5.4.3-% 5.4.3-68 CMT 2 Levels and Flows 5.4.3-97 5.4.3-69 CMT-1 Long-Rod 'Ihermocouple Temperatures 5.4.3-98' 5.4.3-70 CMT-1 Fluid "Ihau;v.p;e Temperatures 5.4.3-99 5.4.3-71 CMT-1 Inside-Wall Temperatures 5.4.3-100 Matrix Test SB14 5.5.1-1 ADS 1-3 Valve Actuation 5.5.1 50 l l 5.5.1-2 Separator Loop Seal Flows and IRWST Overflow 5.5.1 51 l 5.5.1-3 Separator Steam Flows 5.5.1-52 l l 5.5.14 Reactor and DVI Pressures 5.5.1-53  ! l 5.5.1-5 Pressurizer Pressures 5.5.1 54 l 5.5.1-6 Reactor and Downcomer Annulus Wide-Range Levels 5.5.1-55 5.5.1-7 Reactor Core Levels 5.5.1-56 5.5.1-8 PRHR HX Initial Flow 5.5.1-57 5.5.1-9 PRHR HX Flows ' 5.5.1-58 l a:W1536w.wpf:1b.as0995 xlij l

-.   ~.-    .       ._ -.- . . . - -                           .      _ . . . ~ . - - - . . - - - - - . . . . . - . - .

, FDML DATA REroa7 i LIST OF FIGURES (Continued) U.EER I!gt _Pagg 5.4.3-7 Main Steam Header and Reactor Pressures 5.4.3-35 5.4.3-8 ACC-2 and CMT-2 Injection Flows 5.4.3-36 5.4.3-9 CMT-1 and CMT-2 Balance Line levels 5.4.3-37 . 5.4.3-10 PRHR HX Flows 5.4.3-38 5.4.3-11 ~ PRHR Inlet and Outlet Temperatures 5.4.3-39 5.4.3-12 SG-1 Tube Temperatures 5.4.3-40 . 5.4.3-13 SG-2 Tube Temperatures 5.4.341

   ,       5.4.3 14                   Wide Range Downcomer levels                                                          5.4.342 5.4.3-15                   Pressure Upstream of Break Valves                                                    5.4.3-43 5.4.3 16                    Upper-Plenum and Upper-Head Steam Percent                                           5.4.3 44 5.4.3-17                    Hot-leg Plenum and Elbow Steam Percent                                              5.4.3-45        i 5.4.3-18                    ADS 1-3 Separator Liquid and Steam Flows                                            5.4.3-46 5.4.3-19                   Reactor Pressure                                                                     5.4.3-47 "5.4.3-20                   ADS Separators' Steam Flows                                                          5.4.348 5.4.3-21                   Effect of Pressure on CMT-1, ACC-1, Flows                                            5.4.3-49       i 5.4.3-22                   Heater Temperatures - Top of Core                                                    5.4.3-50        l 5.4.3-23                 . Reactor Wide-Range level                                                             5.4.3-51 5.4.3-24                 ' ADS 4-1 and 4-2 Separator I.Jquid Flows                                              5.4.3-52       ,

5.4.3-25 IRWST and Primary Sump Injection Flows 5.4.3-53  ! 5.4.3-26 Reactor and Downcomer Wide-Range levels 5.4.3-54 5.4.3-27 IRWST, Break Separator, and Sump levels 5.4.3-55 5.4.3-28 ADS 4-1 and 4 2 Separator Liquid Flows 5.4.3-29 5.4.3-56 ) ~ CMT-1 Flows and levels 5.4.3-57 -i 5.4.3-30 CMT-1 and Cold-leg Pressures 5.4.3-58 I 5.4.3-31 Pressurizer and Surge Line Steam Percent 5.4.3-59 I 5.4.3-31x Pressurizer and Surge Line Steam Percent '5.4.3-60  ; 5.4.3-32 Pressurizer and Surge Line Steam Percent 5.4.3-61 5.4.3-33 Pressurizer /RCS and Pressurizer ADS 1-3 . Separator Differential Pressures 5.4.3-62 . 5.4.3-34 PRHR HX Inlet and Outlet Temperatures 5.4.3-63 i 5.4.3-35 PRHR HX hbe and Channel Head Levels 5.4.3-64 5.4.3-36 SG-2 Tube /HL-2 Pressure Difference 5.4.3-65 5.4.3-37 PRHR HX Inlet, Outlet, and hbe Temperatures 5.4.3-66 5.4.3-38 PRHR HX Inlet, Outlet, and hbe Temperatures 5.4.3-67 5.4.3-39 Cold-Ieg Temperatures-Top of Pipe 5.4.3-68 , 5.4.3-40 Cold-leg Temperatures-Bottom of Pipe 5.4.3.69 5.4.3-41 Downcomer level Top of Cold-leg to DVI Elevation 5.4.3-70 5.4.3-42 Cold-Leg Wall Differential Temperatures 5.4.3-71 5.4.2-43 SG-1 hbe Temp.:ratures 5.4.3-72 1 i

                                                                                                                                          )

owss,mosons xn l

FtNAL DATA Rzec*;T l l LIST OF FIGURES (Continued) l l , Flaure Title fage l l 5.4.2-42 Cold-Leg Wall Differential Temperatures 5.4.2-86 5.4.2-43 SG-1 Tube Temperatures 5.4.2-87 5.4.244 SG-2 Tube Temperatures 5.4.2-88 5.4.2-45 Upper Support Plate and Bypass Hole DP's 5.4.2-89 l 5.4.2-46 IRWST Temperatures 5.4.2-90 5.4.2-47 IRWST and Primary Sump Exhaust Steam Flows 5.4.2-91 l 5.4.2-48 Downcomer Wide Range Level 5.4.2-92

          '5.4.2-49          Downcomer Fluid Temperatures at Hot-Leg Elevation               5.4.2-93   l 5.4.2-50          Downcomer Fluid Temperatures                                    5.4.2-94 5.4.2-51          Downcomer Fluid Temperatures                                    5.4.2-95 5.4.2-52          Downcomer Fluid Temperatures                                   5.4.2-96 l

5.4.2-53 Downcomer Fluid Tempunimes 5.4.2-97  ! 5.4.2-54 Axial Temperature Profile at Center of Core 5.4.2-98 5.4.2-55 Heater Temperatures'at Top of Core 5.4.2-99 5.4.2-56 Narrow-Range and Wide-Range Core I.evels 5.4.2-100 5.4.2-57 Narrow-Range and Wide-Range Core Levels - 5.4.2-101 5.4.2-58 Core Steam Percent 5.4.2-102 5.4.2-59 Core Steam Percent 5.4.2-103 5.4.2-60 Differential Pressure of Upper Support Plant and Bypass Holes 5.4.2-104 5.4.2-61 Upper-Plenum, Upper-Head, Upper-Downcomer Temperamres 5.4.2 105 5.4.2-62 SG-1 Tbbe Levels 5.4.2-106 5.4 2-63 SG-2 Tube Levels 5.4.2-107 5.4.2-64 SG-1 Channel Head Levels 5.4.2-108 5.4.2-65 SG-2 Channel Head Levels 5.4.2-109 5.4.2-66 SG-1, SG-2 Primary and Secondary Pressures 5.4.2-110 5.4 2-67 CMT-2 and Cold-Leg Pressures 5.4.2-111 5.4.2-68 CMT-2 levels and Flows 5.4.2-112 5.4.2-69 CMT Long-Rod Thermocouple Temperatures 5.4.2-113 5.4.2-70 CMT-1 Fluid Thermocouple Temperatures 5.4.2 114 5.4.2-71 CMT-1 Inside-Wall Temperatures 5.4.2-115 Matrix Test SB28 Comparison with Matrix Test SB12 5.4.3-1 Primary Loop and Break Pipe Arrangement 5.4.3-29 l 5.4.3-2 ADS 1-3 and Break Separator Liquid Flows 5.4.3-30 5.4.3-3 Break Separator and BAMS Steam Flows 5.4.3-31 1 5.4.3-4 ACC-1 and CMT-1 Injection Flows 5.4.3-32 5.4.3-5 CMT-1 and SMT-2 Wide-Range Levels 5.4.3 33 5.4.3-6 ACC-1 and ACC-2 Levels 5.4.3-34 l n:W536w.wpf:1b 080995 x] l

 ..      ..            .     . _ . - . - . = _ _ . .. - .- ..-.-                    -- - . - - . .                  . _

RNAI. DATA RErc3r i l LIST OF FIGURES (Continued) { f!1Et . Title .Page 5.4.2-9 CMT-1 and CMT-2 Balance Line Levels 5.4.2-48 5.4.2-9x CMT-1 and CMT-2 Balance Line Levels 5.4.2-49 l 5.4.2-10 PRHR HX Flows 5.4.2-50 ,  ; 5.4.2-11 PRHR HX Inlet and Outlet Temperatures 5.4.2 51 l 5.4.2-12 SG-1 Tube Temperatures 5.4.2-52 I 5.4.2-13 SG-2 Tube Temperatures 5.4.2-53 , 5.4.2-14 Wide-Range Downcomer Levels 5.4.2-54 l 5.4.2 15 Pressure Upstream of Break Valves 5.4.2-55  ; 5.4.2-16 Upper-Plenum and Upper-Head Steam Percent 5.4.2-56

      . 5.4.2 17            Hot-leg Plenum and Elbow Steam Percent                                          5.4.2-57         !

5.4.2 18 ADS 1-3 Separator Liquid and Steam Flows 5.4.2-58 5.4.2-19 Reactor Pressure 5.4.2-59 5.4.2-20 ADS Separators' Steam Flows 5.4.2-60 5.4 2-21 Effect of Pressure on CMT-2, ACC-2 Flows 5.4.2-61 5.4.2 22 Heater Temp.Euos-Top of Core 5.4.2-62 5.4.2 23 Reactor Wide-Range level 5.4.2-63 5.4.2-24 ADS 4-1 and 4-2 Separator Liquid Flows 5.4.2-64 5.4.2-24x ADS 4-1 and 4 2 Separator Liquid Flows 5.4.2-65 5.4.2-25 IRWST and Primary Sump Injection Flows 5.4 2-66 5.42-25x IRWST and Primary Sump Injection Flows 5.4.2-67 5.4.2-26. Reactor and Downcomer Wide-Range Levels 5.4.2-68 5.4.2-27 IRWST, Break Separator, and Sump Levels 5.4.2-69 5.4.2-28 ADS 4-1 and 4-2 Separator Liquid Flows and Levels 5.4.2-70 5.4.2-29 CMT-1 Flows and levels 5.4.2-71 5.4.2-30 CMT-1 and Cold-Leg Pressures 5.4.2-72 5.4.2-30x CMT-1 and Cold-I2g Pressures 5.4.2-73 5.4.2-31 Pressurizer and Surge Line Steam Percent 5.4.2-74 5.4.2-31x Pressurizer and Surge Line Steam Percent 5.4.2-75 , 5.4.2-32 Pressurizer /RCS and Pressurizer / ADS 1-3  ; Separator Diff Pressures 5.4.2-76 5.4.2-33 PRHR HX Inlet and Outlet Terop wes 5.4.2-77 5.4.2 34 PRHR HX Inlet and Outlet Temperatures 5.4.2-78 5.4.2 35 PRHR HX Tube and Channel Head Ievels 5.4.2-79 5.4.2-36 - HL-2 Minus SG-2 Tube Pressure Difference 5.4.2-80 3 5.4.2-37 PRHR HX Inlet, Outlet, and Tube Temperatures 5.42-81 5.4.2-38 PRHR HX Inlet, Outlet, and Tbbe Temperatures 5.4.2-82 5.4.2-39 Cold-Leg Temperatures-Top of Pipe 5.4.2-83 l 5.4.2-40 Cold-leg Temperatures-Bottom on Pipe 5.4.2-84 , 5.4.2-41 Downcomer Level Top of Cold Leg to DVI Elevation 5.4.2-85  ! I a:W5%w.wpf:1bm0995 xxxix

FINAL DATA REPORT l LIST OF FIGURES (Continued) f!EE1 T.ith .Pagg

             .5.4.1 48                  Downcomer Wide Range Level                                                   5.4.1-95 5.4.1-49                 Downcomer Fluid Temperatures at Hot-Leg Elevation 5.4.1-96 5.4.1-50                 Downcomer Fluid Temperatures                                                  5.4.1 97 5.4.1-51                Downcomer Fluid Temperatures                                                   5.4.1 98 5.4.1-52                                                                                                                 l
   ,                                  Downcomer Fluid Temperatures                                                   5.4.1-99          I l              5.4.1-53                Downcomer Fluid Temperatures                                                5.4.1-100

! 5.4.1 54 Axial Temperature Profile at Center of Core 5.4.1-101 5.4.1-55 Heater Temperatures at Top of Core 5.4.1-102

           , 5.4.1-56                Narrow-Range and Wide-Range Core Levels                                      5.4.1-103            ,

5.4.1-57 Narrdw-Range and Wide-Range Core Levels 5.4.1-104 I 5.4.1-58 Core Steam Percent 5.4.1-105 5.4.1-59 Core Steam Percent 5.4.1-106 5.4.1-60 Differential Pressure of Upper Support - Plant and Bypass Holes 5.4.1-107 5.4.1-61 Upper-Plenum, Upper Head, Upper-Downcomer Temperatures 5.4.1-108 5.4.1-62 SG-1 'Ibbe Levels 5.4.1-109 5.4.1-63 SG-2 'Ibbe Levels 5.4.1-110 l 5.4.1 64 SG-1 Channel Head levels 5.4.1-111 ! 5.4.1-65' SG-2 Channel Head Levels 5.4.1-112 5.4.1-66 SG-1. SG-2 Primary and Secoudiay Pressures 5.4.1-113 5.4.1-67 CMT-2 and Cold-Leg Pressures 5.4.1-114 l 5.4.1-68 CMT-2 Levels and Flows 5.4.1-115 5.4.1-69 CMT Long-Rod Thermocouple Temperatures 5.4.1-116 5.4.1-70 CMT-1 Fluid "Ihermocouple Temperatures 5.4.1-117. - 5.4.1 71 CMT-1 Inside-Wall Temperatures 5.4.1-118 l

 ,          Matrix Test SB13 5.4.2-1                 Primary Loop and Break Pipe Arrangement                                       5.4.2-37 l            5.4.2 2                 ADS 1-3 and Break Separator Liquid Flows                                      5.4.2-38 5.4.2 3                 Break Separator and BAMS Steam Flows                                          5.4.2-39 5.4.2 4                  ACC-1 and CMT-1 Injection Flows                                               5.4.2-40 5.4.2-4x                 ACC-1 and CMT-1 Injection Flows                                               5.4.2-41
5.4.2-5 CMT-1 and CMT-2 Wide-Range Levels 5.4.2-42 5.4.2 5x CMT-1 and CMT-2 Wide-Range Levels 5.4.2-43 5.4.2-6 ACC-1 and ACC-2 Levels 5.4.2-44 5.4.2-7 Main Steam Header and Reactor Pressures 5.4.2-45 5.4.2-8 ACC-2 and CMT-2 Injection Flows 5.4.2 46
5.4.2-8x ACC-2 and CMT-2 Injection Flows 5.4.2-47 1

u Aap601A1536*.wpf:lb 080995 xxxvii[

FtNAL DATA REroa7 LIST OF FIGURES (Continued) flElEt T

                                                                                  -,.!dt                ,P,,g&t 5.4.1-10        PRHR HX Flows                                                5.4.1 57 5.4.1-11        PRHR HX Inlet and Outlet Temperatures                        5.4.1-58 5.4.1-12        SG-1 "Ibbe Temperatures                                      5.4.1 59          .

5.4.1-13 SG-2 'fube Temperamres 5.4.1-60 5.4.1 14 Wide-Range Downcomer Levels 5.4.1-61 5.4.1-15. Pressure Upstream of Break Valves 5.4.1-62 . 5.4.1-16 Upper-Plenum and Upper-Head Steam Percent 5.4.1-63 5.4.1-17 Hot-Leg Plenum and Elbow Steam Percent 5.4.1-64 5.4.1-18 ADS 13 Separator Liquid and Steam Flows 5.4.1-65 5.4.1-19 Reactor Pressure 5.4.1-66 5.4.1-20 ADS Separators' Steam Flows 5.4.1-67 5.4.1-21 Effect of Pressure on CMT-2, ACC-2 Flows 5.4.1-68 5.4.1-22 Hester T+.u.d-Top of Core 5.4.1-69  ;

                    '5.4.1-23         Reactor Wide-Range I.evel                                     5.4.1-70 5.4.1-24        ADS 4-1 and 4-2 Separator Liquid Flows                        5.4.1-71 5.4.1-25        IRWST and Primary Sump Injection Flows                        5.4.1-72 5.4.1-26        Reactor and Downcomer Wide-Range Levels                       5.4.1-73             !

5.4.1-27 IRWST, Break Separator, and Sump Levels 5.4.1-74 5.4.1-28 ADS 4-1 and 4-2 Separator Liquid Flows and Levels 5.4.1-75 5.4.1-29 CMT-1 Plows and Levels ~ 5.4.1-76 5.4.1-30 CMT-1 and Cold-leg Pressures 5.4.1-77 5.4.1-31 Pressurizer and Surge Ilne Steam Percent 5.4.1 78 5.4.1-32 Pressurizer /RCS and Pressurizer / ADS 1-3 Separmor Diff Pressures 5.4.1 5.4.1-33 PRHR HX Inlet and Outlet Temperatures 5.4.1-80 5.4.1-34 PRHR HX Inlet and Outlet Temperatures 5.4.1-81 5.4.1-35 PRRR HX hbe and Channel Head levels 5.4.1-82 5.4.1-36 HL-2 Maus SG-2 Tube Pressure Difference 5.4.1-83 , 5.4.1-37 PRHR HX Inlet, Outlet, and Tube Temperatures 5.4.1-84 5.4.1-38 PRHR HX Inlet, Outlet, and hbe Temperatures 5.4.1-85 5.4.1-39 Cold-leg Temperatures-Top of Pipe 5.4.1-86 5.4.1-40 Cold-leg Temperatures-Bottom on Pipe 5.4.1-87 5.4.1-41 Downcomer Level Top of Cold Leg to DVI Elevation 5.4.1-88 5.4.1-42 Cold-leg Wall Differential Temperatures 5.4.1-89 5.4.1-43 SG-1 Tube Temperatures 5.4.1-90 5.4.1-44 SG-2 Tube Temperatures 5.4.1-91 5.4.1-45 Upper Support Plate and Bypass Hole DP's 5.4.1-92 5.4.1-46 IRWST Temperatures 5.4.1-93 5.4.1-47 IRWST and Primary Sump Exhaust Steam Flows 5.4.1-94 a:W1536w.wy01NM0995

  • xxxvii

l FINAL DATA REroaT LIST OF FIGURES (Continued) h' . E PRE

                     .5.3.2-75           Upper-Head, CL-1, and CMT-2 Temperatures                                        5.3.2-104 5.3.2-76           Hot-Leg and Upper-Head Temperatures
  • 5.3.2-105 5.3.2-77 Comparison of Hot-Leg and Upper-Head Temperature 5.3.2-107 l 5.3.2-78 Comparison of Hot-Leg and Upper-Head Temperatures 5.3.2 109 5.3.2-79 Comparison of Hot-Leg and Upper-Head Temperatures 5.3.2-111 5.3.2-$0 Downcomer Annulus Temperatures Between HIJDVI Elevations 5.3.2-113 5.3.2-81 Cold-leg Levels 5.3.2-115 5.3.2-82 Cold-leg Teiiipr .uor.5 5.3.2 116 5.3.2-83 -

Hot Leg Levels 5.3.2-117 5.3.2-84 Hot-Leg Teiops.=ues 5.3.2-118 5.3.2-85 IRWST Temperatures 5.3.2-119 5.3.2-86 IRWST Temperatures 5.3.2-120 5.3.2-87 Reactor Pressure and Core Level Compenson 5.3.2-121 3.3.2-88 Reactor Pressure and Core Level Compenson 5.3.2-122 5.3.2-89 Reactor Pressure and Core Level Comparison 5.3.2-123 5.3.2-90 Reactor Downcomer level Comparison 5.3.2-124 5.3.2-91 Reactor Downcomer level Comparison 5.3.2-125 5.3.2-92 Reactor Downcomer level Comparison 5.3.2-126 5.3.2-93 Netflow for Test SB09 For 0-2000 Seconds 5.3.2 127 5.3.2-94 Netflow for SB10 for 02000 Seconds 5.3.2-128 5.3.2-95 Netflow and Core level Comparison for Test SB10 vs SB09 5.3.2-129 5.3.2-96 Netflow and Core Level Comparison for Test SB10 vs SB09 5.3.2-130 5.3.2-97 Netflow and Core Level Comparison for Test SB10 vs SB09 5.3.2-131 5.3.2-98' Reactor Pressure, CW-1, and ACC-1 Flow Comparison 5.3.2-132 5.3.2-99 Reactor Pressure, CMT-2, and ACC-2 Flow Comparison 5.3.2-133 L 5.3.2-100 Reactor Pressure and CMT Level Comparison 5.3.2-134 5.3.2-101 Reactor Vessel Response 5.3.2-135 5.3.2-102 Reactor Vessel Response 5.3.2-136 Matrix Test SB12 5.4.1-1 Primary Loop and Break Pipe Arrangement 5.4.1 48 5.4.1-2 ADS 1-3 and Break Separator Liquid Flows 5.4.1-49 5.4.1-3 Break Separator and BAMS Steam Flows 5.4.1 50 l 5.4.1-4 ACC-1 and CMT-1 Injection Flows 5.4.1-51 5.4.1-5 CMT-1 and CMT-2 Wide-Range Levels 5.4.1-52 l 5.4.1-6 ACC-1 and ACC-2 levels 5.4.1-53 ! 5.4.1-7 Main Steam Header and Reactor Pressures 5.4.1-54 5.4.1-8 ACC-2 and CMT-2' Injection Flows 5.4.1-55 l 5.4.1-9 CMT-1 and CMT-2 Balance Line Levels 5.4.1-56 l l a:W536w.wpf:1b.080995 xxxvi

FINAL DATA Rapont l l LIST OF FIGURES (Continued) l l Eagt ILt!t . East i 5.3.2-36 CL-3 Temperatures 5.3.2-63 i 5.3.2-37 CL-4 Temperatures 5.3.2-64 I 5.3.2 38 Accumulator and CMT Injection Flows 5.3.2-65 . , 5.3.2-39 CMT-1 and CMT-2 Levels l 5.3.2-66 5.3.2-40 Reactor and Downcomer Annulus Wide-Range Levels 5.3.2-67 , ! 5.3.2-41 Total DVI Flow l 5.3.2-68 . 5.3.2-42 Upper-Plenum and Upper-Head Temperatures 5.3.2-69 5.3.2-43 IRWST and Primary Sump Flows 5.3.2-70 5.3.2-44 Upper-Head and Downcomer Temperatures I 5.3.2-71 5.3.2-45 Separator Loop Seal Flows 5.3.2-72 l 5.3.2 46 Reactor Core Temperatures 5.3.2-73 5.3.2-47 Reactor Heater Temperatures @ 46 in. from Reactor Vessel Bottom 5.3.2-74 5.3.2 48 Reactor Heater Temperatures @ 46 in. from Reactor Vessel Bottom 5.3.2-75 5.3.2-49 IRWST, Surap, and Break Separator Levels

             ,                                                                                                       5.3.2 76 5.3.2 50               IRWST, Sump, and Break Separator Levels                                    5.3.2-77 5.3.2-51               BAMS Header Steam Flows'                                                   5.3.2-78 5.3.2-52               IRWST and Primary Sump Steam Flows                                         5.3.2-79 l                   5.3.2-53               CMT-2 Temperature Profile                                                  5.3.2-80 5.3.2-54                CMT-2 Temperature Profile                                                  5.3.2-81 l

5.3.2 55 CMT-2 Upper Dome T+==w 5.3.2-82 l 5.3.2 56 CMT-2 Upper Dome Temperatures 5.3.2-83 l 5.3.2-57 CMT-2 Fluid Temperature Distribution 5.3.2-84 5.3.2-58 CMT-2 Wall Temperature Distribution 5.3.2-86 l l 5.3.2-59 CMT-2 Upper-Dome Pluid/ Wall Interface 5.3.2-87 l 5.3.2-60 CMT-1 Temperatures 5.3.2-89 ' 5.3.2-61 CMT-1 Temperatures 5.3.2-90 ! 5.3.2-62 Accumulator levels 5.3.2-9i 5.3.2-63 Pressurizer Temperature Profile 5.3.2-92 , 5.3.2-64 Steam Percentage Conditions at Reactor Vessel, SG-2, and HL-2 5.3.2-93 5.3.2-65 Steam Percentage Conditions for Pressurizer and Surge Line 5.3.2-94 5.3.2-66 ADS 1-3 Separator Discharge Flows 5.3.2-95 5.3.2-67 Pressurizer and Surge Line Levels 5.3.2 %

               - 5.3.2-68                PRHR HX Temperatures                                                       5.3.2-97 5.3.2-69               PRHR HX Temperatures                                                       5.3.2 98 5.3.2 70               PRHR HX Levels                                                             5.3.2-99 5.3.2-71               PRHR HX Levels                                                           5.3.2-100 5.3.2 72               PRHR HX Flows                                                            5.3.2-101 1

5.3.2-73 Upper-Head, CL-1, and CMT-2 Temp.imd 5.3.2-102 5.3.2 74 - Upper-Head, CL-1, and CMT-2 TemW-mes 5.3.2-103 l l l mAsp60m1536w.wpf:Ib 080995 xxxv

1 FLut DATA REPO':T LIST OF FIGURES (Continued) f.18E1 T.it!t .Pagg ( . 5.3.1-86 IRWST Temperatures 5.3.1-133 I 5.3.1-87 Core Steam Percentage 5.3.1-134 Matrix Test SB10 5.3.2-1 ! 5.3.2-2 5.3.2-3 Break DPs 5.3.2-30 5.3.2-4 Break Pressure 5.3.2-31 5.3.2-5 Reactor and Downcomer Annulus Wide-Range Levels 5.3.2-32' 5.3.2-6 Reactor Core Levels 5.3.2-33 .i 5.3.2-7 , Pressurizer and Surge Line Levels 5.3.2-34 5.3.2-8 CMT-1 and CMT-2 Levels 5.3.2-35 5.3.2-9 Reactor and DVI Pressures 5.3.2-36 5.3.2-10 Pressurizer Pressures 5.3.2-37 5.3.2-11 Accumulator and CMT Injection Flows 5.3.2-38 5.3.2-12 PRHR HX Flows 5.3.2-39 5.3.2-13 Cold-Leg 1.evels 5.3.2-40 5.3.2-14 Hot-I2g Levels 5.3.2-41 5.3.2-15 Hot-Leg and Cold-Leg Pressures 5.3.2-42 I 5.3.2-16 SG-1 Levels 5.3.2-43 5.3.2-17 SG-1 Channel Head Levels 5.3.2-44 5.3.2-18 Steam Generator DPs and Levels 5.3.2-45 5.3.2-19 SG-1 Fluid Temperatures in Tubes 5.3.2-46

        - 5.3.2-20                  Primary /Secomi-y Pressure Comparison                                                             5.3.2-47 5.3.2-21                  Primary /Secoiki.y Temperature Comparison                                                         5.3.2-48 5.3.2-22                   Upper-Head and Downcomer Tew.=n                                                                   5.3.2-49 5.3.2-23                   HL-1 Temperatures                                                                                 5.3.2-50 5.3.2-24                   HL-2 Temperatures                                                                                 5.3.2-51 5.3.2-25                   ADS 1-3 Valve Actuation                                                                           5.3.2-52 5.3.2-26                   Separator Steam Flows                                                                             5.3.2-53 5.3.2-27                   Separator Loop Seal Flows                                                                         5.3.2-54     ,

5.3.2-23 Upper-Head DPs 5.3.2 55 5.3.2-29 Upper-Head DPs 5.3.2-56 5.32 'SO Total DVI Flow 5.3.2-57 5.3.2d1 IRWST and Primary Sump Flows 5.3.2-58 5.3.2 32 Upper-Plenum and Upper Head Temperatures 5.3.2-59 5.3.2-33 Reactor Core Temperatures 5.3.2-60 5.3.2-34 CL-1 Temperatures 5.3.2-61 5.3.2-35 CL-2 Temperatures 5.3.2-62 l nW1536w.wyf:1b.000995 xxxiv _ _ _ -

  • e-_ 1 - - +'- -'

W.a.. .- P'

                -   .-- - _ _ ..-                         .- -.-..~.-             -._   .- -. -.-..- - .-

FLNAL DATA Rn LIST OF FIGURES (Continued) fiEEg .I!!Le. _Pagg 5.3.1-50 IRWST, Sump, and Break Separator Levels 5.3.1-97  ! 5.3.1 51 BAMS Header Steam Flows ' 5.3.1 98 5.3.1-52 IRWST and Primary Sump Steam Flows 5.3.1-99 5.3.1 53 CMT-2 Temperature Profile 5.3.1-100 , 5.3.1 54 CMT-2 Temperature Profile 5.3.1-101 5.3.1-55 CMT-2 Upper Dome T, dres 5.3.1-102 . , 5.3.1-56 CMT-2 Upper Dome Temperatures 5.3.1-103 5.3.1 CMT-2 Fluid Temperature Distribution 5.3.1-104

  • 5.3.1-58 CMT 2 Wall Temperature Distribution 5.3.1-105  !

5.3.1-59 CMT-2 Upper Dome Fluid / Wall Interface - 5.3.1-106 5.3.1-60 CMT-1 Temperatures 5.3.1-107 l 5.3.1-61 CMT-1 Temperatures 5.3.1-108 5.3.1-62 Accumulator levels 5.3.1-109 5.3.1-63 Pressurizer Temperature Profile 5.3.1-110 5.3.1-64 Steam Percentage Conditions at Reactor Vessel, SG-2, and HL-2 5.3.1-111 5.3.1-65 Steam Percentage Conditions for Pressurizer and Surge Line 5.3.1-112 5.3.1-66 ADS 1-3 Separator Discharge Flows 5.3.1-113 5.3.1-67 Pressurizer and Surge Line Levels 5.3.1-114 i 5.3.1-68 PRHR HX Temperatures 5.3.1'-115 5.3.1-69 PRHR HX Temperatures 5.3.1-116 5.3.1 70 - PRHR HX Levels 5.3.1-117 5.3.1 71. PRHR HX Ievels 5.3.1-118 5.3.1-72 PRHR HX Flows 5.3.1-119 5.3.1 73 Upper-Head, CL-1, and CMT-2 Temperatures 5.3.1,-120 5.3.1 Upper-Head, CL-1, and CMT-2 Temperatures 5.3.1-121 5.3.1 75 Upper-Head, CL-1, and CMT-2 Temperatures 5.3.1-122 5.3.1 76 Hot-Ug and Upper-Head Temperatures 5.3.1-123 5.3.1 77 Comparison of Hot-leg and Upper-Head Tew.Eue 5.3.1-124 , 5.3.1-78 Comparison of Hot-Leg and Upper-Head Te+. hues 5.3.1-125 5.3.1 79 Comparison of Hot-Leg and Upper-Head Temperatures 5.3.1-126 5.3.1 80 Downcomer Annulus Temperatures Between HUDVI Elevations 5.3.1-127 5.3.1-81 Cold-Iag Levels 5.3.1-128 5.3.1-82 Cold-leg Temperatures 5.3.1-129 5.3.1 Hot-leg Levels 5.3.1-130 5.3.1 84 Hot-Ieg Temperatures 5.3.1-131 5.3.1 85 IRWST Temperatures 5.3.1-132 I l a:W536=.wpf:1b 0B0995 1xxiii

I l' FINAt. DATA Rs: roar LIST OF FIGURES (Continued) E

            .            fiEl!E.                                                           Illlt                                            EBEP-5 3.1-14                 Hot-Leg Levels                                                                        5 3.1-61   !

53.1-15 Hot-Leg and Cold-Leg Pressures 5 3.1-62 53.1-16 SG-1 Levels 5 3.1-63 53.1-17 SG-1 Channel Head Levels 5 3.1-64 5 3.1-18 Steam Generator DPs and Levels 5 3.1-65 5.3.1-19 SG-1 Fluid Temperatures in Tubes 53.1 66 5 3.1-20 Primary /handa y Pressure Comparison 5 3.1-67

5 3.1-21 Primary / Secondary Temperature Comparison 5 3.1-68 5 3.1-22 Upper-Head and Downcomer Temperatures 5 3.1-69 5 3.1-23 HL-1 Temperatures 5 3.1-70 5 3.1-24 HL-2 Temperatures 5 3.1-71
53.1-25 ADS 1-3 Valve Actuation 53.1-72 5 3.1-26 Separator Steam Flows 5 3.1-73
                        '5 3.1-27                Separator Loy Wal Flows                                                                5 3.1-74 5 3.1-28                Upper Head Dh                                                                          5 3.1-75   ,

! 53.129 Upper-Head DPs 5 3.1-76 5 3.1-30 Total DVI Flow 53.1-77 5 3.1-31 IRWST and Primary Sump Flows 5 3.1-78 5 3.1-32 Upper Plenum and Upper-Head Temperatures 5 3.1-79 5 3.1-33 Reactor Core Temperatures 5 3.1-80 5 3.1-34 CL-1 Temperatures 5 3.1-81 5 3.1-35 CL-2 Temperatures 5 3.1-82 53.1 36 CL-3 Temperatures 5 3.1-83 3 3.1-37 CL-4 Temperatures 53.1-84 5 3.1-38 Accumulator and CMT Injection Flows 5 3.1-85 5 3.1-39 CMT-1 and CMT-2 Levels 53.1 , 531 Reactor and Downcomer Annulus Wide-Range Levels 5 3.1-87 5 3.1-41 - Total DVI Flow 53.1-88 5 3.1-42 Upper-Plenum and Upper-Head Temperatures 5 3.1-89

5 3.1-43 IRWST and Pnmary Sump Flows 5 3.1-90 5 3.1-44 Upper-Head and Downcomer Temperatures 5 3.1-91 53.1-45 Gcp .h. Imp Seal Flows 5 3.1-92 5 3.1-46
Reactor Core Temperatures 53.1-93 5 3.1-47 Reactor Heater Temperatures @ 46 in. from Reactor Vessel Bottom . 5 3.1-94
                      . 5 3.1-48                 Reactor Heater Temperatures @ 46 in. from l                                                 Reactor Vessel Bottom                                                                  53.1-95 l

5 3.1-49 IRWST, Sump, and Break Separator Levels 5 3.1-96

                       .u:\np600\l536w.wpf:Ib41495                                        xxxii

l FINAL DATA Rapoa7 LIST OF FIGURES (Continued) Firure Title P.gge

                        ~

i 5.2.2-31 CMT Flows 5.2.2-47 5.2.2-32 CMT - Cold Leg Balance Line Level 5.2.2-48 5.2.2 33 CMT-1 Fluid Temperatures 5.2.2-49  : 5.2.2-34 CMT-1 Wall Temperatures 5.2.2-50 5.2.2-35 CMT-2 Fluid Temperanves 5.2.2-51  ; 5.2.2-36 CMT-2 Wall Temperatures 5.2.2-52 - ' 5.2.2-37 PRHR HX Flows 5.2.2-53 5.2.2-38 PRHR HX Levels 5.2.2-54 5.2.2-39 PRHR HX Temperatures 5.2.2-55 I

         . 5.2.2-40          -

Steam Generator Steam Flows ~ 5.2.2-56 5.2.2-41 SG-1 Fluid Temperatures in Tubes 5.2.2-57 i 5.2.2-42 SG-2 Fluid Tespnes in Tubes 5.2.2-58 I 5.2.2-43 SG-2 Primary and Secondary Temperature 5.2.2-59 5.2.2-44 SG-2 Primary and Mc -Wy Temperature 5.2.2-60 5.2.2-45 Primary and Secondary Pressures 5.2.2-61

           -5.2.2-46                  Cold-Leg Levels                                                                    5.2.2-62 5.2.2-47                  CL-1 Temperatures                                                                  5.2.2-63 5.2.2-48                  CL-2 Temperatures                                                                  5.2.2-64 5.2.2-49                  CL-3 Temperatures                                                                  5.2.2-65 5.2.2-50                  CL-4 Temperatures                                                                  5.2.2-66 5.2.2-51                  IRWST Temperatures                                                                 5.2.2-67 5.2.2-52                  Break Pressure                                                                    5.2.2-68 5.2.2-53                  Steam Generator Mc h-y Levels                                                     5.2.2-69             1 Matrix Test SBIO                                                                                                      .

53.1-1 ADS 4 to Separator Pipe Arrangement for Matrix Test SBIO 53.1-48 53.1 CMT-1 Balance Line DEG Break Pipe Arrangement 53.1-49 53.1-3 Break DPs 53.1-50 . 53.1-4 Break Pressure 53.1-51 53.1-5 Reactor and Downcomer Annulus Wide-Range Levels 53.1-52 53.1-6 Reactor Cote Levels 53.1-53 53.1-7 Pressurizer and Surge Line Levels 5 3.1-54 5 3.1-8 -- CMT-1 and CMT-2 Levels 5 3.1-55' i 53.1-9 Reactor and DVI Pressures 53.1 53.1-10 Pressurizer Pressures 53.1-57 53.1-11 Accumulator and CMT Injection Flows 5.3.1-58 53.1-12 PRHR HX Flows 53.1-59 53.1-13 Cold-Leg Levels 53.1-60 u \ap600\15%w.wpf.lb-061495 xxxi

_ _ _ _ _ _ . . _ _ _ - _ _ . _ . . - _ . . . _ _ . _ . _ . _ _ . _ . _ . . . . . _ _ = _ _ . . _ _ _ _ _ _ _ _ _ _ . FDML DATA Reoaf LIST OF FIGURES (Continued) , I f.lEIK1 ,T,,. igg Eggg, 5.2.1-51 IRWST Temperatures 5.2.1-113  ! 5.2.1-51 x IRWST Temperatures 5.2.1-114 ' 5.2.1-52 Break Pressure 5.2.1-115 5.2.1-53 Separator Steam Flows 5.2.1-116 5.2.1-53x Separator Steam Flows 5.2.1-117 Matrix Test SB24 Comparison with Matrix Test SB04 5.2.2-la Pnmary Loop and Break Pipe Arrangernent 5.2.2 5.2.2-l b Pnmary Loop and Break Pipe Arrangement 5.2.2-17 l5.2.2-2 Separator Loop Seal Flows 5.2.2-18 j 5.2.2-3 BAMS Header Steam Flows 5.2.2-19 l 5.2.2-4 Reactor and Dowramer Annulus Wide-Range Levels 5.2.2-20 5.2.2-5 Reactor and DVI Pressures 5.2.2-21 5.2.2-6 Pressurtzer Pressures 5.2.2-22 1 5.2.2-7 Pressunzer aad Surge Line Levels 5.2.2-23 5.2.2-8 RNS and CVS Flows 5.2.2-24 f 5.2.2-9 Reactor Core Levels 5.2.2-25 i 5.2.2-10 Core Heater Temperatures 5.2.2-26 5.2.2-11 Reactor Core Temperatures 5.2.2-27 5.2.2-12 Hot-Leg Levels 5.2.2-28 ) 5.2.2-13 HL-1 Temperatures - 5.2.2-29 l 5.2.2-14 HL-2 Temperatures 5.2.2-30 l 5.2.2-15 SG-1 Levels 5.2.2-31. 5.2.2-16 - SG-2 Tube Levels 5.2.2-32 5.2.2-17 SG-1 Channel Head Levels 5.2.2-33

  • 5.2.2-18 SG-2 Channel Head Levels 5.2.2-34 5.2.2-19 Accumulator Flow Rates 5.2.2-35
                  - 5.2.2-20                            Hot-I.eg and Cold-Leg Pressures                                                                                 5.2.2-36
                  - 5.2.2-21                            Accumulator and CMT Pressures                                                                                   5.2.2-37 5.2.2-22                            Accumulator levels                                                                                              5.2.2-38 5.2.2                          CMT-1 and CMT-2 Levels                                                                                          5.2.2-39 5.2.2-24                            Upper Head DPs                                                                                                  5.2.2-40 5.2.2-25                            Upper-Plenum and Upper-Head Temperatures                                                                        5.2.2-41 5.2.2-26                            Downcomer Annulus Temperatures at 180 degrees Azimuth                                                           5.2.2-42 5.2.2-27                            Reactor Core Temperatures -
  • 5.2.2-43 5.2.2-28 ~ Reactor Core Temperatures 5.2.2-44 5.2.2-29 Reactor Core Temperatures 5.2.2-45

' l 5.2.2-30 Top of Core Temperature Profile 5.2.2-46 I 4 u-W1536w.wpf.lb.061495 xxx

FINAL DATA Roomt 1 i LIST OF FIGURES (Continued) Figure Title h 5.2.1-27 Reactor Core Temperatures 5.2.1-76 5.2.1-27x Reactor Core Temperatures 5.2.1-77 5.2.1 28 Reactor Core Temperatures 5.2.1-78 . 5.2.1-28x Reactor Core Temperatures 5.2.1-79 5.2.1-29 Reactor Core Temperatures 5.2.1-80 5.2.1-29x Reactor Core Temperatures . 5.2.1-81 - 5.2.1-30 Top of Core Temperature Profile 5.2.1-82 5.2.1-30x Top of Core Temperature Profile 5.2.1-83  ; 5.2.1-31 CMT Flows 5.2.1-84 l 5.2.1-32 CMT Cold-Leg and Balance Line Levels 5.2.1-85 l 5.2.1-33 CMT-1 Fluid Temperatures 5.2.1-86 l 5.2.1-34 CMT-1 Wall Temperatures 5.2.1-87 5.2.1-35 CMT-2 Fluid Temperatures 5.2.1-88 l 5.2.1-36 CMT-2 Wall Temperatures 5.2.1-89 i 5.2.1-37 PRHR HX Flows 5.2.1-90 5.2.1-37x PRHR HX Flows 5.2.1-91  ! 5.2.1-38 PRHR HX L:vels 5.2.1-92 l 5.2.1-38x PRHR HX Levels 5.2.1-93 5.2.1-39 PRHR HX Temperatures 5.2.1-94 5.2.1-39x PRHR HX Temperatures 5.2.1-95 5.2.1 40 Steam Generator Steam Flows 5.2.1-96 5.2.1-41 SG-1 Fluid Temperatures in Tubes 5.2.1-97 5.2.1-41 x SG-1 Fluid Temperatures in Tubes 5.2.1-98 5.2.1-42 SG-2 Fluid Temperatures in Tubes 5.2.1-99 5.2.1-42x SG-2 Fluid Temperatures in Tubes 5.2.1 100

       ,5.2.1-43                 SG-1 Primary and Secondary Temperature                                 5.2.1-101 5.2.1-44                 SG-2 Pnmary and Secondary Temperature                                  5.2.1-102 5.2.1-45                 Pnmary and &cnaAy Pressures                                            5.2.1-103     .<

5.2.1-46 Cold-Leg Levels 5.2.1-104 5.2.1-46x Cold-Leg Levels 5.2.1-105 5.2.1-47 CL-1 Temperatures 5.2.1-106 j 5.2.1-47x CL-1 Temperatures 5.2.1-l % 5.2.1-48 CL-2 Temperatures 5.2.1-107 5.2.1-48x CL-2 Tempentures - 5.2.1-108 5.2.1-49 CL-3 Temperatures 5.2.1-109 5.2.1-49x CL-3 Temperatures ' 5.2.1-110 5.2.1-50 CL-4 Temperatures 5.2.1-111 I i

   . 5.2.1-50x                CL-4 Temperatures                                                      5.2.1 112 u:\ap60(A1536w.wpf:lW61495                                      xxix

!- 1 l l > l FDdAL DATA REPoaf l LIST OF FIGURES (Contioned) l L  ! l f.iEE1 -Ijfk Pggg 5.2.1-6 Pressurizer Pressures 5.2.1-38

5.2.1-7 Pressurizer and Surge Line Levels 5.2.1-39 5.2.1-7x Pressurizer and Surge Line levels 5.2.1-40 5.2.1-8 RNS and CVS Flows 5.2.1-41 l , 5.2.1-8x RNS and CVS Flows 5.2.1-42 5.2.1-9 Reactor Core levels 5.2.1-43

, , 5.2.1 9x Reactor Core Levels 5.2.1-44 5.2.1 ' Core Heater Temperature 5.2.1-45 5.2.1-10x Core Heater Teswi.Eue 5.2.1-46 52.111 Reactor Core Temperatures 5.2.1 47 i 5.2.1-11 x Reactor Core Temperatures 5.2.1 48 5.2.1-12 Hot-Leg levels 5.2.1-49 5.2.'1 12x Hot-Leg Levels 5.2.1-50 5.2.1-13 HL-1 Temperatures 5.2.1-51 5.2.1-13x HL-1 Temperatures 5.2.1-52 5.2.1-14 - HL-2 Temperatures 5.2.1 53 5.2.1-14x HL-2 Temperatures 5.2.1-54 5.2.1-15 SG-1 Tube Levels 5.2.1-55 5.2.1-15x SG-1 Tube levels 5.2.1-56 5.2.1-16 SG-2 Tube Levels 5.2.1-57 5.2.1-16x SG-2 Tube levels 5.2.1 58 5.2.1-17 SG-1 Channel Head Levels 5.2.1-59 5.2.1-17x SG-1 Channel Head 7.4 vels 5.2.1-60 5.2.1-18 SG-2 Channel Head '..euls 5.2.1-61 . 5.2.1-18x SG-2 Channel Head Leves 5.2.1-62 5.2.1 19 Accumulator Flow Rates 5.2.1-63

     ,               5.2.1-19x                      Accumulator Flow Rates                                                                5.2.1-64 5.2.1 20                       Hot-leg and Cold-Leg Pressures                                                        5.2.1-65 5.2.1-21                     - Acc-l=W and CMT Pressures                                                             5.2.1-66 5.2.1-22                       Accumulator leve's                                                                    5.2.1-67 5.2.1-23                       CMT-1 and CMT 2 Levels                                                                5.2.1-68 5.2.1 23x                      CMT-1 and CMT-2 Levels                                                                5.2.1-69
5.2.1 24 Upper Head DPs 5.2.1 70 5.2.1-24x Upper Head DPs 5.2.1-71 5.2.1-25 Upper Plenum and Upper-Hea.l. Temperatures 5.2.1-72 t 5.2.1-25x Upper-Plenum and Upper-Head Temperatures 5.2.1-73

! 5.2.1-26 . Downcomer Annulus Temperatures 5.2.1-74 5.2.1-26x Downcomer Annulus Temperatures 5.2.1-75 tt u \ap600(1536w.wytIb-061495 xxviii

                         ,     ,                y-                           -
                                                                                                ._-.m..r                 - + , -

FINAL DATA Reoat LIST OF FIGURES (Continued) Flaure Title h 5.1.6-54 CL-3 Temperatures 5.1.6-75 5.1.6-55 ADS 1-3 Flow DPs 5.1.6-76 5.1.6-56 Reactor /HL-2/SG-2 Channel Head Levels 5.1.6-77 5.1.6-57 Reactor /HL-2/SG-2 Channel Head Steam Percent 5.1.6-78 5.1.6-58 Pressurizer and Surge Line Levels 5.1.6-79 5.1.6-59 Pressurizer and Surge Line Steam Percent 5.1.6-80 , 5.1.6-60 DVI Flows 5.1.6-81 5.1.6-61 ADS 1-3 Liquid and Steam Flows 5.1.6-82 5.1.6-62 Break Separator Liquid and Steam Flows 5.1.6-83 5.1.6-63 Pressurizer and Reactor Pressures 5.1.6-84 5.1.6-64 Accumulator Levels 5.1.6-85 5.1.6-65 ADS 1-3 Separator Level 5.1.6-86 5.1.6-66 PRHR HX Flows 5.1.6-87 5.l.6-67 PRHR HX Levels 5.1.6-88 5.1.6-68 PRHR HX Levels 5.1.6-89 5.1.6-69 IRWST Overflow and Associated Pressures 5.1.6-90 5.1.6-70 IRWST Short-Rod and Sparger Tip Temperatures 5.1.6-91 5.1.6-71 IRWST Long-Rod and Top-Half Temperatures 5.1.6-92 5.1.6-72 IRWST Long-Rod and Bottom-Half Temperatures 5.1.6-93 5.1.6-73 BAMS Pressures 5.1.6-94 5.1.6-74 BAMS Pressures 5.1.6-95 5.1.6-74x BAMS Pressures 5.1.6-% 5.1.6-75 BAMS Header Steam Flows 5.1.6-97 5.1.6-76 Separator Steam Flows 5.1.6-98 5.1.6-77 CMT-1 Wide-Range and Balance Line Levels 5.1.6-99 5.1.6-78 CMT-1/ Reactor Vessel /CL-3 Pressures 5.1.6-100-5.1.6-79 CMT-1 Inlet Temperature 5.1.6-101 5.1.6-80 CMT-1 Temperatures 5.1.6-102 , Matrix Test SB04 5.2.1-la Primary Loop and Break Pipe A Tangement 5.1.5-33 5.2.1-lb Primary Loop and Break Pipe Arrangement 5.1.5-34 5.2.1-2 Separator Loop Seal Flows 5.2.1-32 5.2.1-2x Separator Loop Seal Flows 5.2.1-33 5.2.1-3 BAMS Header Steam Flows 5.2.1-34 5.2.1-4 Reactor and Downcomer Annulus Wide-Range Levels 5.2.1-35 5.2.1-4x Reactor and Downcomer Annulus Wide-Range Levels 5.2.1-36 5.2.1-5 Reactor and DVI Pressures 5.2.1-37 uW1536w.wpf:!b061495 - xxvii

FLNAL DATA Rrroat 1 LIST OF FIGURES (Continued) Firure Tide P, age, 5.1.6-19 Upper Head DPs 5.1.6-40 5.1.6-20 DVI Nozzle Temperatures

  • 5.1.6-41 5.1.6-21 Pressurizer Heater Temperature 5.1.6-42 5.1.6-22 Reactor and Downcomer Annulus Wide-Range Levels 5.1.6-43
, 5.1.6-23 IRWST/ Primary Sump Injection Temperatures 5.1.6-44 5.1.6-24 Pressurizer Temperature and kW 5.1.6-45 5.1.6-25 IRWST Overflow and Associated Pressures 5.1.6-46 5.1.6-26 IRWST, Sump, and Break Separator Leveis 5.1.6-47 5.1.6-27 Pressurizer Temperatures 5.1.6-48 5.1.6-28 Separator Loop Seal Flows 5.1.6-49 l 5.1.6-29 ADS 1-3 Pressures 5.1.6 50 5.1.6-30 CMT-1 and Reactor Vessel Parameters during CMT Reflood and subsequent Dramdown 5.1.6-51 6.1.6-31 CMT-2 and Reactor Vessel Parameters during  !

CMT Reflood and subsequent Dramdown 5.1.6-52 5.1.6-32 CMT-2 Fluid Temperatures 5.1.6-53 5.1.6-33 CMT-1 Fluid Temperatures 5.1.6-54 5.1.6-34 CMT-1 CMT-2, and IRWST Levels 5.1.6-55 5.1.6-35 1RWST, Sump, and Break Separator Levels 5.1.6-56 5.1.6-36 Separator Loop Seal Flows 5.1.6-57 5.1.6 37 IRWST and Primary Sump Flows 5.1.6-58 5.1.6-38 Downcomer Annulus Temperatures at 0 degrees Azimuth 5.1.6-59

  • 5.1.6-39~ Total DVI Flow 5.1.6-60 5.1.6-40 PRHR HX Temperatures 5.1.6-61 5.1.6-41 PRHR HX Short-Tube and Long-Tube Temperatures 5.1.6-62
  ,        5.1.6-42                 CL-2 Temperatures                                                             5.1.6-63 5.1.6-43                  CL-4 Temperatures                                                             5.1.6-64 5.1.6-44                  Reactor Heater Temperatures @ 46 in. - Top of Core                            5.1.6-65 5.1.6-45                  Pnmary and Secondary Pressures                                                5.1.6-66 5.1.6-46                  Upper Plenum and Upper-Head Temperatures                                      5.1.6-67 5.1.6-47                  Upper-Head and Downcomer Temperatures                                         5.1.6-68 l           5.1.6-48                 IRWST and Primary Sump Flows                                                  5.1.6-69

! 5.1.6-49 Upper Head DPs 5.1.6-70 l 5.1.6-50 CMT-1 Levelfremperature vs. Time 5.1.6-71 5.1.6 51 CMT-2 Level / Temperature vs. Time 5.1.6-72 5.1.6-52 Cold-Leg Levels 5.1.6-73 5.1.6-53 CL-1 Temperatures 5.1.6-74 i l- u:\ap600\1536w.wpf:lb.061495 xxvi

f1NAL DATA Reoa7 l i LIST OF FIGURES (Continued) l Figgg, Title Eage 5.1.5-69 IRWST Overflow and Associated Pressures 5.1.5-93 5.1.5-70 IRWST Short-Rod and Sparger Tip Temperatures 5.1.5 94 5.1.5-71 IRWST Long-Rod Top-Half Temperatures 5.1.5-95 , 5.1.5-72 IRWST Long-Rod Bottom-Half Temperatures 5.1.5 96 5.1.5-73 BAMS Pressures 5.1.5-97 5.1.5-74 BAMS Pressures 5.1.5-98 . 5.1.5-75 BAMS Header Steam Flows 5.1.5-99 5.1.5-76 Separator Steam Flows 5.1.5 100 5.1.5 77 CMT-1 Wide-Range and Balance Line Levels 5.1.5-101 5.1.5-78 CMT-1/ Reactor Vessel /CL-3 Pressures 5.1.5-102 5.1.5-79 CMT-1 Inlet Temperature 5.1.5-103 5.1.5-80 CMT-1 Temperatures 5.1.5-104 5.1.5-81 Reactor Core Temperatures 5.1.5-105 5,1,5-82 Reactor Core Temperatures 5.1.5-106 5.1.5-83 SG-1 Fluid Temperatures in Tubes 5'.l.5-107 5.1.5-84 SG-2 Fluid Temperatures in Tubes 5.1.5-108 l l Matrix Test SB05 Comparison with Matrix Test SB01

                                                                                                                                     ]

5.1.6-la - Primary Loop and Break Pipe Arrangement 5.1.6-20 l 5.1.6-lb Primary Loop and Break Pipe Arrangement 5.1.6-21  ; 5.1.6-2 Reactor Upper Head Pressure 5.L6-22 l 5.1.63 Reactor and Downcomer Annulus Steam Percent 5.1.6-23 I 5.1.6-4 Upper Plen'um Steam Percent 5.1.6-24 5.1.6-5 Pressurizer and Surge Line Levels 5.1.6-25 5.1.6-6 CMT-1 and CMT-2 Levels 5.1.6-26 ] 5.1.6-6x CMT-1 and CMT-2 Levels 5.1.6-27 5.1.6-7 SG-1 Tube Levels 5.1.6-28 5.1.6-8 SG-2 Tube Levels 5.1.6-29 ., 5.1.6-9 SG-1 Channel Head Levels 5.1.6-30 5.1.6-10 SG-2 Channel Head Levels 5.1.6-31 5.1.6-11 Hot-Leg Levels 5.1.6-32 5.1.6-12 Upper-Plenum Levels 5.1.6-33 5.1.6-13 HL-1 Temperatures 5.1.6-34 5.1.6-14 HL-2 Temperatures 5.1.6-35 5.1.6-15 Reactor and Downcemer Annulus Wide-Range Levels- 5.1.6-36 5.1.6-16 Accumulator and CMT Injection Flows 5.1.6-37 5.1.6-17 Total DVI Flow 5.1.6-38 5.1.6 18 Accumulator Injection Line Temperatures 5.1.6-39 a.W1536w.wpf.It41495 xxy

        ._ _ .___ _. _ _.                                    . . _ _ . . . _ . . _ . _ _ . . _ .          _ . . _ -_.             _ _ _ _ _ _ _ =

FINAL DATA REroRT l LIST OF FIGURES (Continued) l L flEIKt .T.it.!1 Esan 5.1.5-32 CMT-2 Fluid Temperatures 5.1.5-55 5.1.5-33 CMT-1 Fluid Temperatures 5.1.5-56 5.1.5-34 CMT-1, CMT-2, and IRWST Levels 5.1.5-57 5.1.5-35 IRWST, Sump, and Break Separator levels 5.1.5-58 l . 5.1.5-36 Separator Loop Seal Flows 5.1.5-59 l 5.1.5-37 IRWST and Primary Sump Flows 5.1.5-60 i 5.1.5-38 Downcomer Annulus Temperatures at 0 degrees Azimuth 5.1.5-61 5.1.5-39 Total DVI Flow 5.1.5-62 5.1.5-40 PRHR HX Temperamres 5.1.5-63 5.1.5-41 PRHR HX Short-Tube and Long-Tube Temperatures 5.1.5-64 5.1.5-42. CL-2 Temperatures 5.1.5-65 i l 5.1.5-43 CL-4 Temperatures 5.1.5-66 i 5.1.5-44 Reactor Heater Temperatures @ 46 in. - Top of Core 5.1.5-67 5.1.5-44x Reactor Heater Temperatures @ 46 in. - Top of Core 5.1.5-68 l 5.1.5-45 Primary and Secondary Pressures 5.1.5-69 j 5.1.5-46 Upper-Plenum and Upper-Head Teiipret-s 5.1.5-70 1 5.1.5-47 Upper-Head and Downcomer Temperatures 5.1.5-71 5.1.5-48 IRWST and Pnmary Sump Flows 5.1.5-72 5.1.5-49 Upper Head DPs 5.1.5-73 l 5 1.5-50 CMT-1 Levelfremperature vs. Tirne 5.1.5-74 5.1.5-51 CMT-2 Level /remperature vs. Tune 5.1.5-75 l 5.1.5-52 Cold-Leg Levels 5.1.5-76 l 5.1.5-53 CL-1 Temperatures 5.1.5-77 5.1.5-54 CL-3 Temperatures 5.1.5-78 5.1.5 55 - ADS 1-3 Flow DPs 5.1.5-79 1 l 5.1.5-56 Reactor /HL-2/SG-2 Charnel Head Levels - 5.1.5-80 ] i , 5.1.5-57 Reactor /HL 2/SG-2 Channel Head Steam Percent 5.1.5-81 I 5.1.5-58 Pressurizer and Surge Line Ievels 5.1.5-82 5.1.5-59 Pressurizer and Surge Line Steam Percent 5.1.5-83 j 5.1.5-60 DVI Flows 5.1.5-84

                          . 5.1.5-61                ' ADS 1-3 Liquid and Steam Flows _                                                5.1.5-85 l

5.1.5-62 Break Separator Liquid and Steam Flows 5.1.5-86 l 5.1.5-63 Pressurizer and Reactor Pressures 5.1.5-87 5.1.5-64 Accumuhtor Levels - 5.1.5-88 i' 5.1.5-65 ADS'l-3 Separator Level 5.1.5  ! 5.1.5-66 PRHR HX Flows 5.1.5-90 L 5.1.5-67 PRHR HX Levels 5.1.5-91 i 5.1.5-68 PRHR HX Levels 5.1.5-92 I u:\ap60(A1536w.wpf;1t>.061495 xxiv

FtNA1. DATA Rzroat I LIST OF FIGURES (Continued) f i ihm1 Ildt East 5.1.4-86 SG-2 Steam and Downcomer Fluid Temperatures 5.1.4-112 I t Matrix Test SB23 Comparison with Matrix Test SB01 , 5.1.5-la Primary Loop and Break Pipe Arrange.nent 5.1.5-20 5.1.5-lb Primary Loop and Break Pipe Arrangement 5.1.5-21 5.1.5-2 Reactor Upper Head Pressure 5.1.5-22 . a 5.1.5-3 Reactor and Downcomer Annuh.s Steam Percent 5.1.5-23 1

 .                         5.1.5-4                  Upper-Plenum Steam Percent                                                                                 5.1.5-24 5.1.5                 Pressurizer and Surge Line Levels                                                                          5.1.5-25                      l 5.1.5-6                  CMT-1 a'nd CMT-2 I.evels                                                                                   5.1.5-26 5.1.5-7                  SG-1 Tube Levels                                                                                           5.1.5-27 5.1.5-8                  SG-2 Tube Levels '                                                                                        5.1.5                             5.1.5-9                  SG-1 Channel Head levels                                                                                  5.1.5-29                      )

5.'t .5-10 SG-2 Channel Head Levels 5.1.5-30 l 5.1.5-11 Hot-Ixg Levels 5.1.5-31 1 5.1.5 12 Upper-Plenum Levels 5.1.5-32 5.1.5-12x Upper-Plenum levels 5.1.5-33 5.1.5-13 HL-1 Temperatures 5.1.5-34 1 5.1.5-14 HL-2 Temperatures 5.1.5-35 5.1.5-15 Reactor and Downcomer Annulus Wide-Range Levels 5.1.5-36 5.1.5-16 Accumulator and CMT Injection Flows 5.1.5-37 5.1.5-17 Total DVI Flow . 5.1.5-38 5.1.5-18 Accumulator Injection Line Temperatures 5.1.5-39 5.1.5-19 Upper Head DPs 5.1.5-40 5.1.5 20 DVI Nozzle Temperatures 5.1.5-41 5.1.5-21 Pressurizer Heater Temperature 5.1.5-42 5.1.5-22 Reactor and Downcomer' Annulus Wide-Range Levels 5.1.5-43

                          '5.1.5-23                 IRWST/ Primary Sump Injection Temperatures                                                               5.1.5-44                    .

5.1.5-24 Pressurizer Temperature and kW 5.1.5-45 5.1.5-25 IRWST Overflow and Associated Pressures 5.1.5-46 5.1.5-26 IRWST, Sump, and Break Separator Levels 5.1.5-47 5.1.5-27 Pressurizer Temperatures 5.1.5-48 5.1.5-28 Separator Loop Seal Flows 5.1.5-49 5.1.5-29 ADS 1-3 Pressures 5.1.5 50 5.1.5-30 CMT-1 and Reactor Vessel Parameters during CMT - 5.1.5-51 Reflood and subsequent Draindown 5.1.5 52 5.1.5-31 CMT-2 and Reactor Vessel Parameters during CMT 5.1.5-53 Reflood and subsequent Draindewn 5.1.5-54 u Aap601A1536w wpf;1b.061495 xxiii

FIhAL DATA REroRT LIST OF FIGURES (Continued)

       . i

_Flg!ge Title P.gge 5.1.4-50 CMT-1 Levelfremperature vs. Time 5.1.4-75 l 5.1.4-51 CMT-2 Levelfremperature vs. Time 5.1.4-76 5.1.4-52 Cold-Leg Levels 5.1.4-77 5.1.4-53 CL-1 Temperatures 5.1.4-78 l , 5.1.4-54 CL-3 Temperatures 5.1.4-79 I 5.1.4-55 ADS 1-3 Flow DPs 5.1.4-80 5.1.4-56 . Reactor /HL-2/SG-2 Channel Head Levels 5.1.4-81 l 5.1.4-57 Reactor /HL-2/SG-2 Channel Head Steam Percent 5.1.4-82 ) 5.1.4-58 Pressurizer and Surge Line levels 5.1.4-83 5.1.4-59 Pressurizer and Surge Line Steam Percent 5.1.4-84 l 5.1.4-60 DVI Flows 5.1.4-85 i 5.1.4-61 ADS 1-3 Liquid and Steam Flows 5.1.4-86 5.1.4-62 Break Separator Liquid and Steam Flows 5.1.4-87

         '5.1.4-63                Pressurizer and Reactor Pressures                                           5.1.4-88            1 5.1.4-64               Accumulator Levels                                                          5.1.4-89 5.1.4-65               ADS 1-3 Separator Level                                                     5.1.4-90 5.1.4-66               PRHR HX Flows                                                               5.1.4-91 5.1.4-67               PRHR HX Levels                                                              5.1.4-92 5.1.4-68               PRHR HX Levels                                                              5.1.4-93 5.1.4-69               IRWST Overflow and Associated Pressures                                     5.1.4-94 5.1.4-70               IRWST Short-Rod and Sparger Tip Temperatures                                5.1.4-95 5.1.4-71               IRWST Long-Rod Top Half Temperatures                                        5.1.4-%

5.1.4-72 IRWST Long-Rod Bottom Half Temperatures 5.1.4-?7

          '5.1.4-73 '             BAMS Pressures                                                              5.1.4-98 5.1.4-74               BAMS Pressures                                                              5.1.4-99 5.1.4-74x              BAMS Pressures                                                           5.1.4-100
 ,         5.1.4-75               BAMS Headct Stearn Flows                                                 5.1.4-101 5.1.4-76               Separator Steam Flows                                                     5.1.4-102 5.1.4-77               CMT-1 Wide-Range and Balance Line Levels                                   5.1.4-103 5.1.4-78               CMT-1/ Reactor Vessel /CL-3 Pressures                                    5.1.4-104 5.1.4-79               CMT-1 Inlet Temperature                                                   5.1.4-105 5.1.4-80               CMT-1 Temperatures                                                       5.1.4-106 5.1.4-81               Steam Generator Primary Side Differential Pressures                      5.1.4-107 5.1.4-82               Steam Generator Wide-Range Levels                                        5.1.4-108 5.1.4-83               SG-1 U-Tube Wall Temperatures                                            3.1.4-109 l           5.1.4-84               SG-2 U-Tube Wall Temperatures                                            5.1.4-110 l           5.1.4-85               SG-1 Steam and Downcomer Fluid Temperatures                               5.1.4-111 l

l

         .u:W1536w.wpf.Ib.061495                                xxii

FINAL DATA REPoaT i i LIST OF FIGURES (Continued)  ; f]gg.rerg Title .Psge 5.1.4-14 HL-2 Temperatures 5.1.4-39 5.1.4-15 Reacicr and Downcomer Annulus Wide-Range Levels 5.1.4-40 5.1.4-16 Accumulator and CMT Injection Flows 5.1.4-41 . 5.1.4-17 Total DVI Flow 5.1.4-42 5.1.4-18 Accumulator Injection Line Temperatures 5.1.4-43 5.1.4-19 Upper-Head DPs 5.1.4-44 -

                                                                                                           ]

5.1.4-20 DVI Nozzle Temperatures 5.1.4-45 l 5.1.4-21 Pressurizer Heater Temperature 5.1.4-46 5.1.4-22 Reactor and Downcomer Annulus Wide-Range Levels 5.1.4-47 5.1.4-23 IRWST/ Primary Sump Injection Temperatures 5.1.4-48 5.1.4-24 Pressurizer Temperature and kW 5.1.4-49 i 5.1.4-25 IRWST Overflow and Associated Pressures 5.1.4 5.1.4-26 IRWST, Sump, and Break Separator Levels 5.1.4-51 5.1.4-27 Pressurizer Temperatures 5 l.4-52 5.1.4-28 Separator Loop Seal Flows 5.1.4-53 5.1.4-29 ADS 1-3 Pressures 5.1.4-54 5.1.4-30 CMT-1 and Reactor Vessel Parameters during CMT Reflood and subsequent Draindown 5.1.4-55 5.1.4-31 CMT-2 and Reactor Vessel Parameters during CMT Reflood and subsequent Draindown 5.1.4-56 5.1.4-32 CMT-2 Fluid Temperatures 5.1.4-57 5.1.4-33 CMT-1 Fluid Temperatures 5.1.4-58 5.1.4-34 CMT-1. CMT-2, and IRWST Ievels 5.1.4-59 5.1.4-35 IRWST, Sump, and Break Separator Levels 5.1.4-60 5.1.4-36 Separator Loop Seal Flows 5.1.4-61. 5.1.4-37 IRWST and Prunary Sump Flows 5.1.4-62 , 5.1.4-38 Downcomer Annulus Temperatures at 0 depees Azimuth 5.1.4-63 5.1.4-39 Total DVI Flow 5.1.4-64 , 5.1.4-40 PRHR HX Temperatures 5.1.4-65 l 5.1.4-41 PRHR HX Short-Tube and Long-Tube Temperatures 5.1.4-66

                                                                                                           ]

5.1.4-42 CL-2 Temperatures -- 5.1.4-67 5.1.4-43 CL-4 Temperatures 5.1.4-68 5.1.4-44 Reactor Heater Temperatures @ 46 in. Top of Core 5.1.4-69 5.1.4 45 Primary and Secondary Pressures 5.1.4-70 ' l 5.1.4-46 Upper-Plenum and Upper Head Temperatures 5.1.4-71 l 5.1.4-47 Upper-Head and Downcomer Temperatures 5.1.4-72 5.1.4-48 IRWST and Primary Sump Flows 5.1.4-73 5.1.4-49 Upper-Head DPs 5.1.4-74 uAmp60m1536w.wpf.Ib-061495 xxi

FINAL DATA REromT LIST OF FIGURES (Continued) Figure .Tjijt .P_ age 5.1.3-59 Pressurizer and Surge Line Steam Percent 5.1 3-84

 ,         5.1 3-60                        DVI Flows                                                            5.13-85 5.1 3-61                        ADS 1-3 Liquid and Steam Flows                                       5.13-86 5.1 3-62                        Break Separator Liquid and Steam Flows                               5.13-87
   .       5.1.3-63                        Pressurizer and Reactor Pressures                                    5.13-88 l           5.1.3-64                        Accumulator Levels                                                   5.13-89 5.1.3-65                        ADS 1-3. Separator Level                                             5.13-90 5.1.3-66                        PRHR HX Flows                                                        5.13-91 l           5.1.3-67                        PRHR HX Levels                                                       5.13-92            I 5.1.3-68                        PRHR HX Levels                                                       5.13-93 5.1 3-69                        IRWST Overflow and associated Pressures                              5.13-94 5.13-70                         IRWST Short Rod and Sparger Tip Temperatures                        5.13-95 l           5.1 3-71                        IRWST Long-Rod Top Half Terrgwmes                                   5.13-%

l 5.1 3-72 IRWST Long-Rod Bottom Half Temperatures 5.1 3-97 5.1 3-73 BAMS Pressures 5.13-98 5.1.3-74 BAMS Pressures 5.13 99 5.13 74x BAMS Pressures 5.13-100 5.1 3-75 BAMS Header Steam Flows 5.13-101 5.1.3-76 Sepamtor Steam Flows 5.1 3-102  ! 5.1.3-77 CMT-1 Wide-Range and Balance Line Levels 5.1 3-103 5.1.3-78 CMT-1/ Reactor VesselCL-3 Pressures 5.13-104 5.1.3-79 CMT-1 Inlet Temperature 5.13-105 I 5.1.3-80 CMT-1 Temperatures 5.13-106 Matrix Test SB19 Comparison with Matrix Test SB01 5.1.4-1 Primary Loop and Break Piping Layout 5.1.4-30 g 5.1.4-2 Primary Loop and Break Pipe Arrangement 5.1.4-31 5.1.4-3 Reactor and Downcomer Annulus Steam Percent '5.1.4-28 5.1.4 Reactor Core Steam Percent 5.1.4-29 5.1.4-5 Pressurizer and Surge Line Levels 5.1.4-30  ; 5.1.4-6 CMT-1 and CMT-2 Levels 5.1.4-31 5.1.4-7 SG-1 Tube Levels 5.1.4-32 5.1.4-8 SG-2 Tube Levels 5.1.4-33 5.1.4-9 SG-1 Channel Head Levels 5.1.4-34 , 5.1.4-10 SG-2 Channel Head Levels 5.1.4-35

5.1.4-11 Hot-Leg Levels - 5.1.4 36 5.1.4-12 Reactor Core Levels 5.1.4-37 5.1.4-13 HL-1 Temperatures 5.1.4-38 uAap600\l536w.wpf It461495 xx

FINA1. DATA RooRT LIST OF FIGURES (Continued) Figure Title h 5.1 3-23 IRWST/ Primary Sump Injection Temperatures 5.13-48 5.1 3-24 Pressurizer Temperature and kW 5.13-49 5.1 3-25 IRWST Overflow and Associated Pressures 5.13-50 , l 5.13-26 IRWST, Sump, and Break Separator Levels 5.13-51 l 5.1 3-27 Pressurizer Temperatures 5.13-52 l 5.13-28 Separator Loop Seal Flows 5.13-53 - 5.1 3-29 ADS 1-3 Pressures 5.1 3-54 5.1 3-30 CMT-1 and Reactor Vessel Parameters during CMT Reflood and subsequent Dramdown 5.1 3-55 5.13-31 CMT-2 and Reactor Vessel Parameters during l CMT Reflood and subsequent Draindown 5.13-56 I 5.13-32 CMT-2 Fluid Temperatures 5.1 3-57 5.13-33 CMT-1 Fluid Temperatures 5.1 3-58 5.1 3-34 . CMT-1, CMT-2, and IRWST Levels 5.1 3-59 5.13-35 IRWST, Sump, and Break Separator Levels 5.13-60 l 5.1 3-36 Separator Loop Seal Flows 5.1 3-61 5.1 3-37 IRWST and Pdmary Sump Flows 5.1 3-62 5.13-38 Downcomer Annulus Temperatures at 0 degrees Azimuth 5.13-63 5.13-39 Total DVI Flow 5.1 3-64 5.13-40 PRHR HX Temperatures 5.1 3-65 5.13-41 PRHR HX Short-Tube and Long-Tube Temperatures 5.1 3-66 5.13-42 CL-2 Temperatures 5.13-67 5.13-43 CL-4 Temperatures 5.1 3-68 5.13-44 Reactor Heater Temperatures @ 46 in. - Top of Core 5.1 3-69 5.13-45 Pnmary and Secondary Pressures 5.13-70 5.13-46 Upper-Plenum and Upper-Head Temperatures 5.13-71 5.1 3-47 Upper-Head and Downcomer Temperatures 5.13-72 ) 5.13-48 IRWST and Primary Sump Flows 5.13-73 , 5.13-49 Upper-Head DPs 5.1 3-74 5.13-50 CMT-1 Level / Temperature vs. Time 5.13-75 5.13-51 CMT-2 Level / Temperature vs. Time 5.13-76 5.13-52 Cold-Leg Levels 5.1 3-77 5.1 3-53 CL-1 Temperatures 5.13-78 5.1 3-54 CL-3 Temperatures 5.13-79 5.1 3-55 ADS 1-3 Flow DPs 5.1 3-80 5.13-56 Reactor /HL-2/SG-2 Channel Head Levels 5.1 3-81. 5.1 3-57 Reactor /HL-2/SG-2 Channel Head Steam Percent 5.1 3-82 . 5.13-58 Pressurizer and Surge Line Levels 5.1 3-83 u:\ap607.1536w wpf:Ib 061495 xix

FeiAL DATA REPCOT LIST OF FIGURES (Continued) i l fjangg Title Egge 5.1.2-68 PRHR HX Levels 5.1.2-93 5.1.2-69 IRWST Overflow and Associated Pressures 5.1.2-94

  ~

5.1.2-70 IRWST Short Rod and Sparger Tip Temperatures 5.1.2-95

f. 5.1.2-71 IRWST Long Rod Top Half Teapi-uws 5.1.2-% ,

5.1.2-72 IRWST Long Rod Bottom Half Temperatures 5.1.2-97 5.1.2-73 BAMS Pressures 5.1.2-98 '

   ,                    5.1.2-74                      BAMS Pressures                                                                      5.1.2-99 5.1.2-74x                     BAMS Pressures                                                                     5.1.2-100 l                       -5.1.2-75                      BAMS He'ader Steam Flows                                                           5.1.2-101 t

j 5.1.2-76 Separator Steam Flows 5.1.2-102 5.1.2-77 CMT-1 Wide-Range and Balance Line Levels 5.1.2-103  : 5.1.2-78 CMT-1/ Reactor Vessel /CL-3 Pressures 5.1.2-104 5.12-79 CMT-1 Inlet Lor.sure 5.1.2-105 5.1.2-80 CMT-1 Temperatures 5.1.2-106 , l ! Matrix Test SB19 Comparison with Matnx Test SB01 5.13-1 Primary Loop and Break Piping Layout 5.1 3-26 5.13-2 Pnmary Loop and Break Pipe Arrangement 5.1.3-27 l 5.13-3 Reactor and Downcomer Annulus Steam Percent 5.13-28 5.134 Reactor Core Steam Percent -5.1 3-29 5.13-5 Pressunzer and Surge Line Levels 5.1 3-30 5.13-6 CMT-1 and CMT-2 Levels 5.13-31 . 5.13-7 SG-1 Tube I.evels 5.1.3 5.13-8 SG-2 Tube levels 5.13-33 . 5.13-9 SG-1 Channel Head Levels 5.1 3-34 5.1 3-10 SG-2 Channel Head Levels 5.13-35

  ,                     5.1 3-11                      Hot-Leg Levels                                                                      S.13 36 5.1 3-12                      Reactor Core Levels                                                                 5.1 3-37
                       .5.1 3-13                      HL-1 Tea.r.euws                                                                     5.13-38 5.1 3-14                      HL-2 Temperatures                                                                   5.13-39 5.1 3-15                      Reactor and Downcomer Annulus Wide-Range Levels                                     5.13-40 5.1 3                     Accumulator and CMT Injection Flows                                                 5.13-41 5.1 3-17                     Total DVI Flow                                                                       5.1.3-42
                      ' 5.1 3-18                     Accumulator Injection Line Temperatures                                              5.13-43 5.1 3-19                      Upper-Head DPs                                                                      5.13-44 l                        5.1 3-20                      DVI Nozzle Temperatures -                                                           5.13-45

( 5.1 3-21 Pressurizer Heater Temperature 5.13-46 5.1 3-22 Reactor and Downcomer Annulus Wide-Range levels 5,13-47 ,. u:\ep600(1536w.wpf:ll>061495 xviii - ( l

FINAL DATA Rzpoat LIST OF FIGURES (Continued) ElBill .T_idt P_gge l 5.1.2-31 CMT-2 and Reactor Vessel Parameters during CMT Reflood and subsequent Draindown 5.1.2-56 5.1.2-32 CMT-2 Fluid Temperatures 5.1.2-57 ' . 5.1.2 33 CMT-1 Fluid Temperatures 5.1.2-58 5.1.2-34 CMT-1, CMT-2, and IRWST Levels 5.1.2-59 ) 5.1.2-35 IRWST, Sump, and Break Separator Levels 5.1.2-60 - I 5.1.2-36 Separator Loop Seal Flows 5.1.2-61

           ._ 5.1.2-37                IRWST and Primary Sump Flows                                                           5.1.2-62 5.1.2-38              Downcomer Annulus Temperatures at 0 degrees Azimuth                                    5.1.2-63 5.1.2-39              Total DVI Flow                                                                         5.1.2-64 5.1.2-40              PRHR HX Temperatures                                                                   5.1.2-65 5.1.2-41              PRHR HX Short-Tube and Long-Tube Temperamres                                           5.1.2-66 5.1.2-42              CL-2 Temperatures                                                                      5.1.2-67 5.1.2-43              CL-4 Temperatures -                                                                    5.1.2-68 5.1.2-44              Reactor Heater Temperatures @ 46 in. - Top of Core                                     5.1.2-69 5.1.2-45              Primary and Secondary Pressures                                                        5.1.2-70 5.1.2-46              Upper-Plenum and Upper-Head Temperamres                                                5.1.2-71
             '5.1.2-47                Upper-Head and Downcomer Temperatures                                                  5.1.2-72 5.1.2-48              IRWST and Primary Sump Flows                                                           5.1.2-73 5.1.2-49              Upper-Head DPs                                                                         5.1.2-74 5.1.2-50              CMT-1 Levelfremperature vs. Time                                                       5.1.2-75 5.1.2-51              CMT 2 Level / Temperature vs. Time                                                     5.1.2-76 5.1.2-52 =            Cold-leg Levels                                                                        5.1.2-77 5.1.2-53              CL-1 Temperatures                                                                      5.1.2-78 5.1.2 54              CL-3 Temperatures                                                                      5.1.2-79 5.1.2-55               ADS 13 Flow DPs                                                                        5.1.2-80 5.1.2-56               Reactor /HL-2/SG-2 Channel Head Levels                                                 5.1.2-81                      l 5.1.2-57               Reactor /HL2/SG2 Channel Head Steam Percent                                            5.1.2-82                  .

5.1.2-58 Pressurizer and Surge Line Levels 5.1.2-83 5.1.2-59 Pressurizer and Surge Line Steam Percent - 5.1.2 5.1.2-60 DVI Flows 5.1.2-85 5.1.2-61 ADS 1-3 Liquid and Steam Flows 5.1.2-86 5.1.2-62 Break Separator Liquid and Steam Flows ' 5.1.2-87 5.1.2-63 Pressurizer and Reactor Pressures 5.1.2-88 5.1.2-64 Accumulator Levels 5.1.2-89 5.1.2-65 ADS 1-3 Separator Level 5.1.2-90 5.1.2-66 PRHR HX Flows 5.1.2-91 5.1.2-67 PRHR HX Levels SLI.2-92 j l uAap600\l536wspf:ll461495 xvii

         .            .        _ _                                                                 ~ _ _                           _                     -

FINAL DATA RoonT LIST OF FIGURES (Continued) h - M EMI. 5.1.1-77 CMT-1 Wide-Range and Balance Line Levels 5.1.1-122

 ,         5.1.1-78                       CMT-1/ Reactor Vessel /CL-3 Pressures                   5.1.1-123 5.1.1-79                       CMT-1 Inlet Temperature                                 5.1.1-124 5.1.1-80                        CMT-1 Temperatures                                      5.1.1-125 Matrix Text SB18 Comparison with Matrix Test SB01 5.1.2-1                         Primary Loop and Break Piping Layout                      5.1.2-26 5.1.2-2                         Primary Loop and Break Pipe Arrangement                   5.1.2-27 5.1.2-3                         Reactor and Downcomer Annulus Steam Percent               5.1.2-28 5.1.2-4                         Reactor Core Steam Percent                                5.1.2-29 5.1.2-5                       - Pressurizer and Surge Line Levels                         5.1.2            5.1.2-6                         CMT-1 and CMT-2 byels                                     5.1.2 31 5.1.2 7                         SG-1 Tube Levels      -

5.1.2-32 5.1.2-8 SG-2 Tube Levels 5.1.2-33 5.1.2-9 SG-1 Channel Head Levels 5.1.2-34 5.1.2-10 SG-2 Channel Head Levels 5.1.2-35 5.1.2-11 Hot-leg levels 5.1.2-36 5.1.2-12 Reactor Core levels 5.1.2-37 5.1.2-13 HL-1 Temperatures 5.1.2 38 5.1.2-14 HL-2 Temperatures 5.1.2-39 5.1.2-15 Reactor and Downcomer Annulus Wide-Range Levels 5.1.2-40 5.1.2-16 Accumulator and CMT Injection Flows 5.1.2-41 5.1.2-17 Total DVI Flow 5.1.2 42 5.1.2-18 Accumulator Injection Line Temperatures 5.1.2-43 5.1.2-19 Upper Head DPs 5.1.2-44 5.1.2-20 DVI Nozzle Temperatures 5.1.2-45 0 5.1.2-21 Pressurizer Heater Temperamre 5.1.2-46 5.1.2-22 Reactor and Downcomer Annulus Wide-Range Levels 5.1.2-47 5.1.2-23 IRWST/ Primary Sump Injection Temperatures 5.1.2-48 5.1.2-24 Pressunzer Temperature and kW 5.1.2-49 5.1.2-25 IRWST Overflow and Associated Pressures 5.1.2-50 5.1.2-26 IRWST, Sump, and Break Separator Levels 5.1.2-51 5.1.2-27 Pressurizer Teirc.e e 5.1.2-52 5.1.2-28 Separator Loop Seal Flows 5.1.2-53 5.1.2-29 ADS 1-3 Pressures 5.1.2-54 5.1.2-30 CMT-1 and Reactor Vessel Parameters during CMT Rdlood and subsequent Draindown 5.1.2-55 u:\ap600\l5%w.wpf:lt461495 xvi

FINAL DATA Ruoat i LIST OF FIGURES (Continued) i Figure Title _Pgg, 5.1.1-40 PRHR HX Temperatures 5.1.1-84 5.1.1-41 PRHR HX Short-Tube and Long-Tube Temperatures 5.1.1-85 5.1.1-42 CL-2 Temperatures 5.1.1-86 , 5.1.1-43 CL-4 Temperatures 5.1.1-87 5.1.1-44 Reactor Heater Temperatures @ 46 in. - Top of Core 5.1.1-88 5.1.1-45. Primary and Secondary Pressures 5.1.1 5.1.1-46 Upper-Plenum and Upper-Head Temperatures 5.1.1-90 5.1.1-47 Upper-Head and Downcomer Temperatures 5.1.1-91 5.1.1-48 IRWST and Primary Sump Flows 5.1.1-92 5.1.1-49 Upper Head DPs 5.1.1-93 5.1.1-50 CMT-1 Level / Temperature vs. Time 5.1.1-94 5.1.1-51 CMT-2 Level / Temperature vs. Time 5.1.1-95 5.1.1-52 Cold-Leg Levels 5.1.1-%

         , 5.1.1-53                CL-1 Temperatures -                                        5.1.1-97 5.1.1-54              CL-3 Temperatures                                          5.1.1-98 5.1.1-55              ADS 1-3 Flow DPs                                           5.1.1               5.1.1-56              Reactor /HL-2/SG-2 Channel Head I2vels                    5.1.1-100 5.1.1-57              Reactor /HL-2/SG-2 Channel Head Steam Percent             5.1.1-101 5.1.1-58              Pressurizer and Surge Line Levels                         5.1.1-102 5.1.1-59              Pressurizer and Surge Line Steam Percent                  5.1.1-103 5.1.1-60              DVI Flows                                                 5.1.1-104 5.1.1-61             ADS 1-3 Liquid and Steam Flows                             5.1.1-105 5.1.1-62              Break Separator Liquid and Steam Flows                    5.1.1-106 5.1.1-63             Pressurizer and Reactor Pressures                          5.1.1-107 5.1.1-64             Accumulator Levels                                         5.1.1-108, 5.1.1-65           - ADS 1-3 Separator level                                    5.1.1-109 5.1.1-66             PRHR HX Flows ~                                            5.1.1-110
           - 5.1.1-67             PRHR HX Levels                                             5.1.1-111     -

5.1.1-68 PRHR HX Levels 5.1.1-112 5.1.1-69 IRWST Overflow and Associated Pressures 5.1.1-113 5.1.1-70 IRWST Short-Rod and Sparger Tip Temperatures 5.1.1-114 5.1.1-71 1RWST Long-Rod Top-Half Temperatures 5.1.1-115

 ,           5.1.1-72             IRWST Long Rod Bottom-Half Temperatures                    5.1.1-116 5.1.1-73             BAMS Pressures                                             5.1.1-117-5.1.1-74             BAMS Pressures                                             5.1.1-118 5.1.1-74x            BAMS Pressures                                             5.1.1-119 5.1.1            BAMS Header Steam Flows                                    5.1.1-120 5.1.1-76             Separator Steam Flows                                      5.1.1-121 u:W1536w.wpf:lb-061495                              XV

FINAL DATA RapomT l LIST OF FIGUU" (Continued) l h Title P.ge,, 5.1.1-4 Reactor Core Steam Percent 5.1.1-48 5.1.1-5 Pressurizer and Surge Line Levels 5.1.1-49 i 5.1.1-6 CMT-1 and CMT-2 Levels 5.1.1-50 i 5.1.1-7 SG-1 Tube Levels 5.1.1-51 l

      ~

5.1.18 SG-2 Tube Levels 5.1.1-52 5.1.1-9 SG-1 Channel Head Levels 5.1.1 53

5.1.1 10 SG-2 Channel Head Levels 5.1.1-54 )

4 5.1.1-11 Hot-Leg Levels 5.1.1-55 5.1.1-12 Reactor Core I.evels 5.1.1-56 5.1.1-13 HL-1 Temperatures 5.1.1-57  ; 5.1.1-14 HL-2 Temperatures 5.1.1-58  ! j 5.1.1-15 Reactor and Downcomer Annulus Wide-Range Levels 5.1.1-59  ! 4 5.1.1-16 Accumulator and CMT Injection Flows 5.1.1-60 5.1.1-17 Total DVI Flow 5.1.1-61 1 5.1.1-18 Accumulator Injection Line Temperatures 5.1.1-62 . 5.1.1-19 Upper Head DPs 5.1.1-63 5.1.1-20 DVI Nozzle Temperatures 5.1.1-64 1 5.1.1-21 Pressurizer Heater Temperature 5.1.1-65 5.1.1 22 Reactor and Downcomer Annulus Wide-Range I.evels 5.1.1-66 5.1.1-23 IRWST/ Primary Sump Injection Temperatures 5.1.1-67 5.1.1-24 Pressurizer Terrp.hus and kW 5.1.1-68 5.1.1-25 IRWST Overflow and Associated Pressures 5.1.1-69

                                                                                                                                                     ~

5.1.1-26 IRWST, Sump, and Break Separator Levels 5.1.1-70 5.1.1-27 Pressurizer Temperatures 5.1.1 5.1.1-28 Separator Loop Seal Flows 5.1.1-72 5.1.1-29 ADS 1-3 Pressures 5.1.1-73 5.1.1-30 CMT-1 and Reactor Vessel Parameters during CMT Reflood and Subsequent Dramdown 5.1.1-74

                 -5.1.1-31                 CMT-2 and Reactor Vessel Parameters during CMT Reflood and Subsequent Dramdown                                                                 5.1.1-75 5.1.1-32                CMT-2 Fluid Temperatures                                                                            5.1.1-76
                 .5.1.1-33                 CMT 1 Fluid Temperatures                                                                            5.1.1-77 5.1.1-34                CMT-1, CMT-2, and IRWST Levels                                                                      5.1.1-78 5.1.1-35                IRWST, Sump, and Break Separator Levels                                                             5.1.1-79 5.1.1-36                Separator Loop Seal Flows                                                                           5.1.1-80
                '5.1.1-37                  IRWST and Primary Sump Flows                                                                        5.1.1-81 5.1.1-38                 Downcomer Annulus Temperatures at 0 degrees Azimuth                                                 5.1.1-82 5.1.1-39                 Total DVI Flow                                                                                      5.1.1-83 u:W1536w.wpf:ltW1495                                    xiv

FDiAL DATA RooaT LIST OF FIGURES (Continued) Fjggge Title Page 4.2-12 ACC-2 Injection Test Flow Path 4.2-71 4.2 ACC-1 Injection Line Pressure Drop Versus Flow Square 4.2-72 4.2-14 ACC-1 Injection Line Pressure Drop Versus Flow Square 4.2-72 , 4.2-15 ACC-1 Injection Line Pressure Drop Versus Flow Square 4.2-73 4.2-16 ACC-2 Injection Line Pressure Drop Versus Flow Square 4.2-73 4.2-17 ACC-2 Injection Line Pressure Drop Versus Flow Square 4.2 74 - 4.2-18 ACC-2 Injection Line Pressure Drop Versus Flow Square 4.2-74 . 4.2 19 ACC-1 Injection Line Pressure Drop Versus Flow Square 4.2-75 4.2 20 ACC-2 Injection Line Pressure Drop Versus Flow Square 4.2-75 4.2-21 IRWST Injection Test Flow Path 4.2-76 4.2 22 IRWST-1 Injection Line Pressure Drop Versus Flow Rate 4.2-77

                ~4.2-23                      IRWST-1 Injection Line Pressure Drop Versus Flow Rate                          4.2-77 4.2 24                      IRWST-1 Injection Line Pressure Drop Versus Flow Rate                          4.2-78 4.2-25                      IRWST-2 Injection Line Pressure Drop Versus Flow Rate                          4.2-78       ,

4.2-26 IRWST-2 Injection Line Pressure Drop Versus Flow Rate 4.2-79 l 4.2 27 IRWST-2 Injection Line Pressure Drop Versus Flow Rate 4.2-79  ; 4.2-28 Primary Sump Tank Injection Test Flow Path 4.2-80 4.2-29 Primary Sump Tank Injection Pressure Drop Versus Flow Rate 4.2-81 4.2-30 Primary Sump Tank Injection Pressure Drop Versus Flow Rate 4.2-81 4.2-31 CMT-l' to CL-3 Balance Line Injection Test Flow Path 4.2-82 4.2-32 CMT-2 to CL-1 Balance Line Injection Test Flow Path 4.2-83 4.2-33 CMT-1 to CL-3 -Balance Line Injection Pressure Drop Versus Flow Rate 4.2-84 4.2-34 CMT-1 to CL-3 Balance Line Injection Pressure Drop Versus Flow Rate 4.2-84 , 4.2-35 ADS 1-3 Injection Test Flow Path 4.2.-85 I 4.2-36 ADS 143 Test I.evel Comparisons 4.2-86 4.2-37 Pressure Drop Via ADS-1 4.2-87 l' 4.2-38 Pressure Drop Via ADS-2 4.2-87 4.2-39 Pressure Drop Via ADS-3 4.2-88 .  ; 4.2-40 Pressure Drop Via ADS-1 4.2-88 , 4.2-41 Predicted Pressure Drop Versus Flow Rate Square 4.2-89 4 4.2-42 Pressure Drop Via ADS-1 4.2-89 4.2-43 Pressure Drop Via ADS-2 4.2-90 .

               ' 4.2-44                     Pressure Drop Vis ADS-3                                                         4.2-90       l 4.2-45 '                   RNS Injection Test Flow Path                                                    4.2-91       }

Matrix Test SB01 5.1.1-l '- Pnmary Loop and Break Piping Layout 5.1.1-45 5.1.1-2 Primary Loop and Break Pipe Arrangement 5.1.1-46 5.1.1-3 Reactor and Downcomer Annulus Steam Percent 5.1.1-47 uAap60 mis %w wpf-lb.06149s xiii

  -       .-               .    .          -. . . .   .    -_      . ~ . . . . . . - . - . . - - - . - . - . . - - . . -                    .

__ FINAL DATA Ruoat I l l LIST OF FIGURES l f.!M1 .T.I.U.t P

                                                                                                                                    -,,gg!t 2.1-1                     Reactor Vessel                                                                               2.1-8
    ,        '2.1-2                     IRWST and Reactor Vessel                                                                    2.1-9 2.1-3                    Pnmary Sump Tank and Break Separator                                                        2.1-10 2.14                     Upper Level (Reactor Vessel Cover in Foreground)                                            2.1-11 e       2.1-5                    Isometric Drawing of OSU Test Facility                                                      2.1-12 2.1-6                    Simplified Flow Diagram of the OSU Test Facility                                            2.1-13     l l              2.2-1                    General Scaling Methodology                                                                  2.2-5 l            -2.3-1                     RCP Performance Head Versus Flow                                                            2.3 27 l              2.3-2                    Flow Schematic for the ADS                                                                  2.3-28     l 2.3-3                    CVS Pump Head Versus Flow                                                                   2.3-29 l

2.3-4 RNS Pump Head Versus Flow 2.3-30 1 2.3-5 Electrical One-Line Diagram 2.3-31 2.5-1 DAS Hardware 2.5-4

             '2.5-2                    DAS Architecture                                                                             2.5-5 2.61                     Photograph of Operator Panel                                                                2.6-20 2.6-2                    Drawing of Operator Panel                                                                   2.6-21 3.2-1                    Data Documentation Steps                                                                     3.2-9 3.2 2                    Steps in OSU Data Processing                                                                3.2-10 4.1-1                    Schematic of Accumulator Volume Test Setup                                                 4.1-39 4.1-2                    Schematic of CMT Test Setup                                                                4.1-40 4.1-3                    CMT-1 Volume versus Height from Bottom                                                     4.1-41

!- 4.1-4 CMT-2 Volume versus Height from Bonom 4.1-42 4.1-5 Schematic of Pressunzer Test Setup 4.1-43

            '4.1-6                     IRWST Test Setup                                                                           4.1-44 4.1-7                    Schematic of Contamment Sump Test Setup                                                    4.1-45 4.1-8                    Schematic of SG Secondary-Side Volume Test Setup                                           4.1-46 o         4.19                   . Schematic of ADS and BAMS Separator Test Setup                                             4.1-47 4.1-10                   Schematic of ADS and BAMS Separator Test Setup                                             4.1-48 4.2-1                    CMT-1 Injection Test Flow Path                                                             4.2-64 4.2-2                    CMT-2 Injection Test Flow Path                                                             4.2-65 4.2-3                    CMT-1 Injection Line Pressure Drop Versus Flow Square                                      4.2-66 4.2-4'                   CMT-1 Injection Line Pressure Drop Versus Flow Square                                      4.2-66 4.2-5                    CMT-1 Injection Line Pressure Drop Versus Flow Square                                      4.2                4.2-6                    CMT-2 Injection Line Pressure Drop Versus Flow Square                                      4.2-67 4.2-7                    CMT-2 Injection Line Pressure Drop Versus Flow Square                                      4.2-68 l

4.2-8 CMT-2 Injection Line Pressure Drop Versus Flow Square 4.2-68 ! 4.2-9 CMT-1 Total Line Pressure Versus Flow Rate Square 4.2-69 [' 4.2-10 CMT-2 Total Line Pressure Versus Flow Rate Square _ 4.2-69 i 4.2-11 ACC-1 Injection Test Flow Path 4.2-70 u:\ap600\l536w.wpf:lt461495 xii l _- -

FINAL DATA Itzroat LIST OF TABLES (Continued)

     .T,able                                                Title                                       Page 5.2.1-3            Matrix Test SB04 Sequence of Events                                        5.2.1-27 5.2.2-1             Matrix Test SB24 Initial Conditions                                          5.2.2-9 5.2.2-2             Matrix Test SB24 Inoperable Instruments / Invalid Data Channels            5.2.2-11                    ,

5.2.2-3 Matrix Test SB24 Sequence of Events 5.2.2-13 5.3.1-1 Matrix Test SBIO Initial Conditions 5.3.1-35 5.3.1-2 Matrix Test SB10 Inoperable Instruments / Invalid Data Channels 5.3.1-37 - 5.3.1-3 Matrix Test SB10 Sequence of Events 5.3.1-40 5.4.1-1 Matrix Test SB12 Initial Conditions 5.4.1-34 5.4.1-2 Matrix Test SB12 Inoperable Instruments / Invalid Data Channels 5.4.1-36 5.4.1-3 Matrix Test SB12 Sequence of Events '5.4.1-39 5.4.1-4 Temporary Test Thermocouples 5.4.1-47 5.4.2-1 Matrix Test SB13 Initial Conditions 5.4.2-24 5.4.2-2 Matrix Test SB13 Inoperable Instruments / Invalid Data Channels 5.4.2-26 5.4.2-3 Matrix Test SB13 Sequence of Events 5.4.2-29 5.4.3-1 Matrix Test SB28 Initial Conditions 5.4.3-16 5.4.3-2 Matrix Test SB28 Inoperable Instruments / Invalid Data Channels 5.4.3-18 5.4.3-3 Matrix Test SB28 Sequence of Events 5.4.3 20 5.4.3-4 Temporary Test 'Ihermocouples 5.4.3-28 5.5.1-1 Matrix Test SB14 Initia! Conditions 5.5.1-34 5.5.1-2 Matrix Test SB14 Inoperable Instruments / Invalid Data Channels 5.5.1-36 5.5.1-3 Matrix Test SB14 Sequence of Events 5.5.1-39 5.5.2-1 Matrix Test SB26 Initial Conditions 5.5.2-18 5.5.2-2 Matrix Test SB26 Inoperable Instruments / Invalid Data Channels 5.5.2-20 5.5.2-3 Matrix Test SB26 Sequence of Events 5.5.2-22 5.6-1 Matrix Test SB31 Initial Conditions 5.6-6. 5.6.2 Matrix Test SB31 Inoperable Instruments / Invalid Data Channels 5.6-8 5.6.3 Matrix Test SB31 Sequence of Events 5.6-10 5.7-1 Matrix Test SB15 Initial Conditions 5.7-17 - 5.7.2 Matrix Test SB15 Inoperable Instruments / Invalid Data Chaanels 5.7 19 5.7.3 Matrix Test SB15 Sequence of Events 5.7-22 6.2.1-1 Sequence of Events for Effects of Noosafety Systems on 2-in. Breaks 6.2-3 7.2-1 Matrix Test SB13 CMT-2 Fluid Temperature Condition Changes Summary 7.2-7 7.2 2 Matrix Test SB13 CMT-1 Fluid Temperature Condition Changes Summary 7.2-7 7.2-3 CMT Superheating Parameters Summary 7.2-8 ' u Aap600(1536w.wpf:!b-061495 xi l s

  .     -          _- - - --.-.-. - _ . - - . - - . - -                                          . . - . = . - - . - . . - .           . . - . . .

l i FDut. DATA REromT l LIST OF TABLES (Continued)

          .IaMt                                                     . Tit.lt                                                     East 4.2-5                    RCP Total Developed Head Summary                                                            4.2 44 4.2-6                    Summery of Line Resistance for Reactor Vessel and Primary Loops                            4.2-45 4.2-7                     CMT-1 and CMT-2 Injection Test Raw Data                                                    4.2-52 4.2-8                     ACC-1 and ACC-2 Injection Test Raw Data                                                    4.2-53 4.2-9                     IRWST-1 and IRWST-2 Injection Test Raw Data                                                4.2-55 4.2-10                   Primary Sump Tank Injection Flow Test - Test Data Summary                                   4.2-56              )

l- 4.2-11 CMT to Cold-Leg Balance Line Injection Flow Test - Test Data Summary 4.2-57 ! 4.2-12 ADS 1-3 Flow Test - Test Raw Data Summary 4.2-58 l 4.2-13 Comparison of Calculated and Measured Pressure Drop for ADS 1-3 Lines 4.2 59

          .'4.2-14                 Line Resistance FIJD+K From Point 0 to Point 3                                              4.2-60 4.2-15                   RNS Injection Data                                                                          4.2-61 4.2-16                   Comparison of Test Results for Injection Lines                                              4.2-62 4.3-1                    Raw Data File Identification and Description                                                  4.3-3 4.3-2                    Failed Instrumentation                                                                       '4.3-4 4.3-3                    Instmmentation Outside Test Boundary But Affected By CMT Cooldown                             4.3-5 4.3-4                    Instrumentation Outside Test Boundary But Affected By IRWST Cooldown                          4.3-6 5.1.1-1                  Matrix Test SB01 Initial Conditions                                                       5.1.1-30 5.1.1-2                  Matrix Test SB01 Inoperable Instruments / Invalid Data Channels                           5.1.1-32 5.1.1-3                  Matrix Test SB01 S~=we of Events.                                                         5.1.1-35 5.1.2-l'                 Matrix Test SB18 Initial Conditions -                                                     5.1.2-12 5.1.2-2                  Matrix Test SB18 Inoperable Instruments / Invalid Data Channels                           5.1.2-14 5.1.2-3                  Matrix Test SB18 Sequence of Events                                                       5.1.2-16 5.1.2-4                  Data Recorded in SB18 Test Log                                                            5.1.2-25.

5.1.3-1 Matrix Test SB19 Initial Conditions 5.1.3-14 5.1.3-2 . Matrix Test SB19 Inoperable Instruments / Invalid Data Channels 5.1.3-16 " 5.1.3-3 Matrix Test SB19 Sequence of Events - 5.1.3-18 5.1.4-1 Matrix Test SB21 Initial Conditions 5.1.4-16 5.1.4-2: Matrix Test SB21 Inoperable Instruments / Invalid Data Channels 5.1.4-18 5.1.4-3 Matrix Test SB21 Sequence of Events 5.1.4-21 5.1.5-1 Matrix Test SB23 Initial Conditions - 5.1.5-7 5.1.5-2 Matrix Test SB23 Inoperable Instmments/ Invalid Data Channels 5.1.5-9

  .       5.1.5-3                 - Matrix Test SB23 Sequence of Events                                                      5.1.5-12 5.1.6-1                  Matrix Test SB05 Initial Conditions                                                         5.1.6-9 5.1.6-2                  Matrix Test SB05 Inoperable Instmments/ Invalid Data Channels                             5.1.6-11 5.1.6-3                  Matrix Test SB05 Sequence of Events 5.1.6-13 5.2.1-1                  Matrix Test SB04 Initial Conditions                                                       5.2.1 22 5.2.1-2                  Matrix Test SB04 Inoperable Instruments / Invalid Data Channels                           5.2.1-24 unap600\l536w.wpf lb-061495                                 x
 - . .. _. - . _ -.                 _ _ _ . . _ . . . - _ . . . _ _ _ - _ _ _ _ . . _ . _ _ _ = _ _ _ . _ _ _ _ _ _ . _

FINA1. DATA REront LIST OF TABLES

               .Tahl.e  t                                                                          Title                                     Egge 1.3-1              OSU Matrix Test Summary                                                                                    1.3-2 2.2-1              Summary of System Scaling Results for the 1/4-Length Scale Model Primary Loop .                                                                                              2.2-4   -

2.3-1 Rod Bundle Characteristics 2.3-25 2.3-2 Insulation Applications 2.3-26  ! 2.6-1 Programmable Controller Summary 2.6 16 - 2.6-2 Process Control System Components 2.6-19 3.2-1 Overall Acceptance Criteria 3.2-3 - 3.2-2 Critical Instrument List 3.2-4 . 3.6-1 Data Files - Correction of Zero Time 3.6-4 4.1-1 ACC-1 Volume Raw Test 4.1-17 1 4.1-2 ACC-1 Volume Test Results Versus Design 4.1-18 , 4.1-3. ACC-2 Volume Raw Test 4.1-19 4.1-4 ACC-2 Volume Test Results Versus Design 4.1-20 _ 4.1-5 CMT-1 Volume Test Data 4.1-21 4.1-6 CMT-1 Volume Test Data 4.1-22 4.1-7 Comparison of Test Results with Design Values 4.1-23 4.1-8 Pressurizer Volume Test Raw Data 4.1-24 4.1-9 Summary of Test Results 4.1-25 4.1-10 IRWST Volume Data 4.1-26 4.1-11 Summary of IRWST Volume 4.1-27 4.1-12 Primary Sump Volume Data ' 4.1-28 4.1-13 Secondary Sump Volume, Data 4.1-29 4.1-14 SG-1 Secondary-Side Volume Data 4.1-30 4.1-15 SG-2 Sasei=y-Side Volume Data 4.1-31 4.1-16 Summary of SG Secondary-Side Volume 4.1-32 i 4.1-17 ADS 1-3 Separator Volume Data 4.1-33' I 4.1-18 ADS 4-1 Separator Volume Data 4.1-33 '- 4.1-19 ADS 4-2 Separator Volume Data 4.1-34 4.1 20 Break Sepantor Volume Data 4.1-35 4.1 21 Reactor Vessel Volume Data 4.1-36

             . 4.1-22            Reactor Vessel Volume Summary                                                                              4.1-38 4.2-1             Summary of Reactor Vessel and Primary Loop Instrumentation Used in Flow Tests -                                                                                       4.2-34 4.2-2             Reactor Vessel Test Data Summary - First Flow Test Series                                                  4.2-38         ;

4.2-3 Reactor Vessel Test Data Summary 'Ihird Flow Test Series 4.2-40 4.2-4 Comparison of OSU-F-01 and OSU-F-02 Data for Reactor Vessel 4.2-43 u:\ap600(15W.wpf:Ib.061495 ix

FINAL DATA REPORT TABLE OF CONTENTS (Contlaued) Se9 tion Title h APPENDICES A DATA REDUCTION ME11IODS AND VALIDATION PROCESS

 .                                                                                             A-1 B   DATA ACCEPTANCE RESULTS                                                B1 C    INSTRUMENTATION DATA BASE                                             C-1 D     DATA ERROR ANALYSIS                                                   D-1 E     MASS BALANCE                                                          E-1 F    DECAY HEAT COMPARISONS                                                 F-1 G    PIPING AND INSTRUMENTATION DRAWINGS                                    G-1 H    KEY FACILITY DRAWINGS                                                  H-1 I     DATA FILES                                                              1-1 u:W15%w.wpf:lt461495                                  vill

FDuL DATA RepomT TABLE OF CONTENTS (Continued) Section Title _Pagg

                                                                                                                                               )

5.6.2 Inoperable Insuuments 5.6-2  ; 5.6.3 Sequence of Events 5.6-2

                                                                                                                                               )

5.6.4 Test Results and Evaluation 5.6-3 1 5.6.5 Mass Balance 5.6-4 5.6.6 Conclusions 5.6-5 5.7 Hot-Leg Break (Matrix Test SB15) 5.7-1 , 5.7.1 System Configuration and Initial Conditions 5.7-1

 .                                       5.7.2           Inoperable Instruments                                                   5.7-2 5.7.3           Sequence of Events                                                       5.7-3 5.7.4           Test Results and Evaluation                                              5.7-5 5.7.5           Component Responses                                                      5.7-8 5.7.6           Mass Balance                                                          5.7-16 5.7.7         ' Conclusions                                                           5.7-16 g 6.0            MATRIX TEST GROUP COMPARISONS                                                                             6-1 6.1          Effect of 2-In. Break Location (Matrix Tests SB13 and SB15 Comparison with Matrix Test SB01)                                                        6.1-1 6.2          Effects of Nonsafety Systems (Matrix Test SB04 Comparison with Matrix Test SB01)                                                                        6.2 1
           . g 7'0
                 .          O'IIIER TEST OBSERVATIONS                                                                                 7-1 7.1          Condensauon Events                                                                       7.1-1 7.2          CMT Tempe ature Measurement                                                              7.2-1 7.2.1           Matrix Test SB13 (U0113) Observation and Evaluation                      7.2-1 7.2.2        . Matrix Test SB12 (U0112) Observation and Evaluation                    ,7.2-4 7.2.3           Matrix Test SB01 (U0001) Observation and Evaluation                      7.2-5 7.2.4           Matrix Test SB10 (UO110) Observation and Evaluation                      7.2-6 7.2.5           Summary                                                                  7.2-6      ,

8.0 REFERENCES

8-1 1 j l a:W1536w.wpf:1M161495 vil

1 FDhL DATA Raroaf TABLE OF CJNTEN'IS (Continued) Etiett 1101 ERRt. 4.2.10 Normal Residual Heat Removal Flow Balance 4.2-32 4.3 HS01 Ambient Heat Losses 4.3 1 4.3.1 Ambient Heat Loss Data at 100'F (Test Procedure Step 4.1.3) 4.3-2 4.3.2 CMT Cooldown 4.3-2

        ,                         4.3.3    IRWST Cooldown                                                       4 3-2 4.3.4    Conclusion                                                           4.3-2 h5.0         MATRIX 'IESTS RESULTS                                                                     5-1 5.1      Cold-Leg Breaks with a Single Failure                                            5-2 5.1.1    Reference 2-In. Cold-Leg Break (Matrix Test SB01)                  5.1.1-1 5.1.2    Test Repeatability (Matrix Te~st SB18 Comparison with Matrix Test SB01)                                                  5.1.2-1 5.1.3    Effect of Backpressure (Matrix Text SB19 Comparison with Matrix Test SB01)                       .
                                                                                     .                       5.1.3-1 5.1.4    Effect of a Larger Break Size (Matrix Test SB21 Comparison with Matnx Test SB01)                                             5.1.4-1 5.1.5     Effect of a Smaller Break Size (Matrix Test SB23 Comparison with Matrix Test SB01)                                            5.1.5-1 5.1.6     Effect of an Intermediate Break Size (Matrix Test SB05 Comparison           ,

with Matrix Test SB01)) 5.1.6-1 5.2 Cold-Leg Breaks with Operation of Nonsafety Systems 5.2-1 5.2.1 Reference 2-In. Cold-Leg Break (Matrix Test SB04) 5.2.1-1 5.2.2 Effect of a Smaller Break Size (Mainx Test SB24 Comparison with Matrix Test SB04) 5.2.2-1 5.3 Core Makeup Tank / Cold-Leg Balance Line Breaks 5.3-1 5.3.1 Reference Double-Ended Guillotine Line Break (Matrix Test SB10) 5.3.1-1

    ,                            5.3.2    Effect of a Smaller Break Size (Mannx Test SB09 Coutperison with Matrix Test SB10)                                 5.3.2-1 5.4      Duect Vessel Injection L.hr Breaks                                            5.4-1 5.4.1    Reference Double-Ended Guillotine Line Break (Matrix Test SB12)    5.4.1-1 5.4.2    Effect of a Smaller Break Sia ; Matrix Test 1B13 Comparison with Matrix Test SB12)                                  5.4.2-1 5.4.3     Effect of Additional Failures (Matrix Test SB28 Comparison with Matrix Test SB12)                                  5.4.3-1 5.5     Automatic Dem-iwion System Impact                                              5.5-1 5.5.1     Inadvertent ADS Actuation (Mainx Test SB14)                        5.5.1 1 5.5.2     Multiple ADS Failures (Mannx Test SB26)                            5.5.2-1 5.6     Inadvertent S Signal (Matrix Test SB31) ,                                      5.6-1   k 5.6.1     System Configuration anc' initial Conditions                         5.6-1 unspo0R1536w.wpf:lt>06145                           Vi
 .     .       .- - .~                       _    . - - _ ~ - - _                     . - . .   , - - - . -          _ . _ .

RNAL DOTA REPORT r l TABLE OF CONTENTS (Continued) Section .Tjlt fBEt 2.6.20 Steam Generator-2 Main Steam Valve 2.6-12 , 1 2.6.21 Main Steam Control Valve Control 2.6 12 ' [ 2.6.22 Large-Break BAMS Control 2.6-12 , l 2.7 Pre Test Operation 2.7-1 2.8 Drawings 2.8-1  ; 1

  • 3.0 DATA REDUCTION 3-1 3.1 Introduction 3-1 3.2 Test Validation 3.2-1 3.3 Pre-Operationa' Tests 3.3-1 3.4 Matrix Tests 3.4-1 I 3.5 Instrumentation Error Analysis 3.5-1 3.5.1 General 3.5-1
         .                  3.5.2        Definitions                                                              3.5-3 3.5.3        Results                                                                  3.5-3 3.6  Zero-Time Shift File Correction                               .                       3.6-1           1 l

3.6.1 Test Data Collection Timing 3.6-1 3.6.2 Time Com crion Method 3.6-1 I 4.0 PRE-OPERA'I1ONAL 'IEST RESULTS 4-1 4.1 Cold Volume Determinations 4.1-1 4.1.1 Accumulator Volume Test 4.1-1 4.1.2 CMT Volume Test 4.1-4 4.1.3 Pressurizer Volume Test 4.1-8 4.1.4 IRWST Volume Test 4.1-9 4.1.5 Primary and Secondary Sump Tank Volume Test 4.1-10 4.1.6 SG-1 and SG-2 kmW-Side Volume Test 4.1-12 4.1.7 ADS and BAMS Moisture Separators Volume Test 4.1 14 . 4.1.8 Reactor Vessel Volume Test 4.1-15 4.2 Pressure Drop Determtnation 4.2-1 4.2.1 Background Information 4.2-1 4.2.2 Test Procedure, Instrumentation, and Results 4.2-4 4.2.3 RCP Flow Test 4.2-7 4.2.4 CMT Injection Flow Test 4.2-9 4.2.5 Accumulator lajection Ilow Test 4.2-15 4.23 IRWST Injection Flow Test 4.2-18 4.2.7 Primary Sump Tank Injection Flow Test 4.2-24 l 4.2.8 Cold-Leg Balance Line Injection Flow Test 4.2-26 l 4.2.9 ADS 1-3 Flow Test 4.2 28 l l - ( i a:W1536w.wpf:ll>061495 y l ,

i FINAL DATA Raroat TABLE OF CONTENTS (Continued) Sag. tion Title ,P, gg 2.3.13 Safety Injection Lines 2.3-15 2.3.14 Containment Sumps 2.3-15

 ~

2.3.15 Automatic Depressurization System, Stages 13 2.3-16 2.3.16 Automatic Depressurization System, Stage 4 2.3-17

   ~

2.3.17 Nonsafety Injection Systems 2.3-18 2.3.18 Passive Residual Heat Removal 2.', 19 2.3.19 Break Simulators 2.3 20 2.3.20 Break and ADS Measurement System (BAMS) 2.3-21 2.3.21 Test Support Systems 2.3-22 2.4 Instrumentation 2.4-1 2.4.1 General Information on Instrumentation 2.4-1 2.4.2 Calibration Methods and Standards 2.4-6 2.4.3 Phenomena Affecting Readings 2.4-11 2.5 Data Acquisition System ' 2.5-1 2.5.1 System Hardware 2.5-1 2.5.2 DAS Architecture 2.5-1 2.5.3 Software 2.5-1 2.5.4 LabVIEW Description 2.5-2 2.5.5 Sequence-of-Events Log 2.5-2 2.6 Test Facility Control System 2.6-1 2.6.1 Operator Panel 2.6-1 2.6.2 Test Signal or Safety Signal (S Signal) 2.6-2 2.6.3 CVS Pump and Discharge Valve Control 2.6-3 2.6.4 RNS Pump Control 2.6-4 2.6.5 IRWST Valve Control 2.6-5 2.6.6 Main Feed Pump and Discharge Valve Control 2.6-5 2.6.7 Pressurizer Pressure Control 2.6-5 2.6.8 RCP Gland Seal Cooling System Control 2.6-6 2.6.9 CMT Valve Control 2.6-6 2.6.10 CMT Steam Trap Isolation Valves 2.6-6 2.6.11 RCP Control 2.6-7 2.6.12 Reactor Heater Control 2.6-7 2.6.13 Passive Heat Removal 2.6-8 2.6.14 Condensate Return Pump Control 2.6-9 2.6.15 Reactor Heater Sheath High-Temperature Trip 2.6-9 2.6.16 Automatic Depressurization System Control 2.6-9 l 2.6.17 Steam Generator-1 level Control 2.6-10 2.6.18 Steam Generator-1 Main Steam Valve 2.6-11 i 2.6.19 Steam Generator-2 Control 2.6-11 a:WJ536w.wpf;1b.061495 iv

FDkl DATA Raront . TABLE OF CONTENTS S.taloa T.ldt .Pagg

SUMMARY

1 ACKNOWLEDGMENTS 2

1.0 INTRODUCTION

1-1 1.1 Background 1.1-1 1.2 Pre-Operational Test Objectives 1.2-1 - 1.2.1 Cold Pre-Operational Tests 1.2-1 1.2.2 Hot Pre-Operational Tests 1.2-1 1.3 Matrix Test Objectives 1.3-1 2.0 "IEST FACILITY DESCRIPTION 21 2.1 Overall Facility Description 2.1 1 2.1.1 Reactor Coolant System 2.11 2,1.2 Steam Generator System 2.1-1  ; 2.1.3 Passive Core Cooling System 2.1-2 2.1.4 Automatic Depressurization System 2.1-3 2.1.5 Lower Containment Sump 2.1-3 2.1.6 Normal Residual Heat Removal System and Chemical and Volume Contml System 2.1-4 , 2.1.7 ' Break and ADS Measurement System 2.1-4 2.1.8 Orifices and Nozzles 2.1 2.2 Facility Scaling ' 2.2-1 - 2.2.1 Methodology 2.2-1 2.2.2 Facility Scaling Parameters 2.2-2  ; 2.2.3 Mass / Energy Balances 2.2-3 2.3 Facility Component Description 2.3-1 2.3.1 Reactor Vessel 2.3 1-2.3.2 Rod Bundle 2.3-2 . 2.3.3 Reactor Internals 2.3-4 ' 2.3.4 Hot-Leg Piping 2.3-5 2.3.5 Cold-Leg Piping 2.3-6 2.3.6 Pressurizer Surge Line 2.3-7 2.3.7 Pressmizer 2.3-8 2.3.8 Steam Generators 2.3-9 2.3.9 Reactor Coolant Pumps 2.3-11 2.3.10 Accumulators 2.3-11 2.3.11 Core Makeup Tanks 2.3-12

 .                        2.3.12     In-Containment Refueling Water Storage Tank                           2.3 14 1

u:W1536w.wpf:1W1495 111

TEST ANALYSTS REpor! TABLE OF CONTENTS fiestina .T.Ltit East

                                                       < < < VOLUME 1 > > >

ACKNOWLEDGMENTS xvi l

SUMMARY

I !" M

1.0 INTRODUCTION

1-1 ! 1.1 Background 1.1-1 1.2 Test Objectives l.2-1 1.3 Imporunt Small-Break Loss-of-Coolant Accident and Long-Term Cooling 1.3-1 l Phenomena Identification and Rankag Table 1.3.1 Small-Break Loss-of-Coolant Accident 1.3-1

                                                          ~

1.3.2 Long-Term Cooling Transient 1.3-3 1.4 Test Facility Scaling 1.4 1 1.5 Test Scaling Asseament and Dimensions 1.5-1 2.0 FACILITY DESCRIP'I1ON

SUMMARY

2-1 l 2.1 Overall Facility Description 2.1 1-2.2 Facility Instrumentation 2.2-1 2.2.1 Differential Pressure Transminers (FDP, LDP, DP) 2.2-1 2.2.2 - Pressure Transmitters 2.2-1 l 2.2.3 Magnetic Flow Meters .2.2-1 2.2.4 Heated Phase Switches 2.2-2 2.2.5 Heat Flux Meters 2.2-2 ( 2.2.6 Load Cells 2.2-2, 2.2.7 'Iku 0w. pies 2.2-2 3.0 TEST

SUMMARY

31 3.1 Test Vahdation 3.1-1

  ~

3.2 Test Matrix 3.2 1 4.0 DATA REDUC'IlON hEnf0DOLOGY 4-1 4.0.1 Nomenclature 4-1

4.0.2 Energy Equation Approximation 4-3 l 4.0.3 Ambient Conditions 4-4 4.1 LDP Compensadon Function 4.1 1  ;
4.2 Selected Level Compensations 4.2 1 4.3 Accumulators 4.3-1

, 4.3.1 Fluid Mass Conservation Equations 4.3-1

4.3.2 Fluid Energy Conservation Fquanons 4.3-5 i i m
p w.wpf:lt4 92795 111 REVISION: 1 i

TusT ANA1.YWs REPORT TABLE OF CONTENTS (Continued) Section _T.11lg .Pagg 4.4 Core Makeup Tanks and Cold-Leg Balance Lines 4.4 1 4.4.1 Core Makeup Tank Fluid Mass Conservation Equations 4.4-1 - 4.4.2 Core Makeup Tank Fluid Energy Conservation Equdions 4.4-7 4.4.3 Core Makeup Tank Metal Energy Conservation Equations 4.4-10 4.4.4 Cold-leg Balance Line Fluid Mass Conservation Equations 4.4-14 - 4.4.5 Cold-Leg Balance Line Fluid Energy Conservation Equations 4.4-18 4.4.6 Cold-Leg Balance Line Metal Energy Conservation Equations 4.4-20 4.5 .In

                  -Containment Refueling Water Storage Tank (IRWST)                            4.5-1 4.5.1     General Mass and Energy Balarn Formulanon                           4.5-1 4.5.2     Case 1                                                              4.5-3 4.5.3     Case 2                                                              4.5-6    .

4.5.4 Case 3 4.5-7 4.5.5 Case 4 4.5-9 4.5.6 Direct Vessel Injection Line Fiow Reversal 4.5-10 4.5.7 Energy I.oss due to Aminent Heat Transfer Rate 4.5-11 4.5.8 Energy Loss to Metal 4.5-13 4.5.9 Fluid Stored Energy 4.5-13 4.6 Automatic Depressurization System 1-3 Separator 4.6-1 4.6.1 Automade Depressurization System 1-3 Separator Liquid Inventory 4.6-2 4.6.2 ' Steam Flow Rates 4.6-4 4.6.3 Liquid Flow Rates 4.6-4 4.6.4 Total Row Rate 4.6-5 4.6.5 Energy Balance 4.6-6 4.7 Automatic Depressurization System-4 Separators 4.7-1 4.7.1 Automanc Depressurization System-4 Separatot Liquid Inventory 4.7-2 4.7.2 Steam Flow Rates 4.7 4 4.7.3 Liquid Flow Rates 4.7-5 , 4.7.4 Total Flow ~ tate 4.7-5 4.7.5 Energy Balance 4.7-7 4.8 Break Separator 4.8 1 4.8.1 Break Separator Liquid Inventory 4.8-2 4.8.2 Steam Flow Rates 4.8-4 4.8.3 Liquid Flow Rates 4.8-5 4.8.4 Total FMw Rate 4.8-5 4.8.5 Energy Balance 4.8-6 4.9 Sumps 4.9-1 4.9.1 Sump Liquid Inventory 4.9-2 4.9.2 Sump Steam Exhaust Flow 4.9-4 m: p .-pt:tb o92795 . iv REVISION: 1 l

    -   .    ..           . - - -     . . - .  - . . . - . ~ - . . - _      . , _ ~ . . - . . - -._ - - -. .-.         . - .

TABLE OF CONTENTS Stdhta M Erat g

1.0 INTRODUCTION

1-1 1.1 - Detection of Condensation Events 13 1.2 Measurement of Pressure Spikes during Category III Tests 1-3 , 1.3 Analysis of Upper Head Noise Sour:e 1-4 i g2.0 ANALYSIS OF UPPER HEAD NOISE DURING OSU MATRIX TEST SB01 2-1 2.1 Video Record 2-1  ; I 2.2 Event Timing 2-1 2.3 DAS Scan Rates 2-2 2.4 Data Analysis 2-2 ' 2.5 Pre-Transient Conditions 2-3 I 2.6 Analysis of Transient 2-4 g 3.0 ANALYSIS OF UPPER HEAD NOISE DURING OSU MATRIX TEST SB18 3-1 3.1 Purpose of Test 3-1 3.2 Analysis of SB18 and Companson to SB01 3-1 I g4.0 ANALYSIS OF UPPER HEAD NOISE DURING OSU MATRIX

                    'IESTS SB03, SB05, AND SB07 4-1 4.1       Sinularities with Matrix Test SB01                                                4-1.

4.2 Analysis of Matrix Test SB03 4-1 43 Analysis of Matnx Test'SB05 4-3 4.4 Analysis of Matrix Test SB07 4-4

                - 4.5 -       Empirical Scoping Calculations                                                   4-4 5.0       Conclusions 5-1 Appendices                                                      -

l L A Transient Data Summary for OSU Test SB01 A B Transient Data Summary for OSU Test SB18 B-1 C Summary of Upper Downcomer Temperature Transients for OSU Test SB03 C-1 D SB05 Supportmg Plots D-1 1 E SB07 Supporting Plots E-1

F Some Empincal Scoping Calculations Related to the Oregon State University l AP6001.ow-Pressure Integral Systems Test Facility F-1

) G. Drawings G-1  ! t 1 l eM735w wpf;1b-021996 ggj

.. - . _ _ _ _ _ m.- .- . . _ . _ _ _ . _ _ _ _ _ _ _ . _ _ . _ . _ . _ _ . . . _ . _ . _ _ _ _ . _ TIsT AW.Ysts RErogrr TABLE OF CONTENTS (Continued) ablai2A TJM1 .EBER , 4.9.3 Sump Injection 4.9-5 4.9.4 Total Flow Rate Out of the Sump 4.9-6 4.9.5 Energy Balance 4.9-6 - 4.10 Passive Residual Heat Removal 4.10-1 4.10.1 Fluid Mass Conservation Equation 4.10-1 4.10.2 Fluid Energy Conservation Equation 4.10-6 - l 4.10.3 Tube Meta! Energy Conservation Equation 4.10 10 l

   .                      4.11        Reactor Pressure Vessel                                                                             4.11-1 4.11.1        Core Vessel Model                                                                     4.11-2       l 4.11.2        Core Power and Flow Model                                                             4.11-3      ;

4.11.3 Energy Balance 4.11-7 I 4.12 Downcomer 4.12 1 4.12.1' Downcomer Level and Mass 4.12-1 4.12.2 Fluid Stored Energy 4.12 1 4.13 Steam Generator Primary Side 4.13-1 1 4.13.1 Inlet Plenum 4.13-1 4.13.2 Steam Generator 7bbes 4.13 4.13.3 Outlet Plenen 4.13 4.14 Steam Generator Mr Ly Side 4.14-1 4.14.1 Inputs and Assumptions 4.14 1 4.14.2 Mass Balance Calculations 4.14-2 4.15 Pressurizer 4.15-1 4.15.1 Inputs and Assumptions 4.15-1 4.15.2 Mass Balance Calculation 4.15-2 4.15.3 Energy Balance 4.15-5 4.16 Pressunzer Surge Line 4.16-1 4.16.1 Inputs and Assumptions 4.16-1 4.16.2 Mass Balance 4.16-2 , 4.16.3 Energy Balance 4.16-3 4.17 Cold Legs 4.17-1 3 4.17.1 Cold Leg with Core Makeup Tank Balance Lines (CL-1 and CL-3) 4.17 1 4.17.2 Cold Leg without Core Makeup Tank Balance Lines , (CL-2 and CL-4) 4.17-7 4.18 Hot Legs 4.18-1 l 4.18.1 Mass Storage in the Hot Legs 4.18-2 4.18.2 Energy Terms 4.18-3 l m: p .wpr:1 w 2795 y REVIslON: 1

P TssT ANALYSIS Roosrr -

.I I

i TABLE OF CONTENTS (Continued)  ! i

Sden .T.idt East

) 4.19 Pressure Conversions 4.19-1  ; i 4.20 Adjusted Data 4.20-1 4.21 System Mass Analysis 4.21-1 ]- 4.21.1 Total System Mass Inventory 4.21-1  ! 4.21.2 Primary System Mass Balance 4.21-2  : l 4.21.3 Sump Mass Balance 4.21-4 - 2 4.21.4 In-Containment Refueling Water Storage Tank Mass Balance 4.21 [ 4.21.5 Variations in Mass Balance Models with Break 14 cation 4.21-5 i j . 4.22 Overall System Energy Balante 4.22-1  ; } 1 l g 5.0 ' ANALYSIS OF OSU TEST DATA 5-1 1 5.1 Analysis of Matrix Test SB01 5.1-1 i

;                                     5.1.1             Facility Performance                                                5.1.1-1 5.1.2             Short-Term Transient                                                5.1.2-1 i                                      5.1.3             Long-Term Transient                                                 5.1.3-1          i
- ' 5.2 Analysis of Matrix Test SB18 - 5.2-1 l

5.2.1 Facility Performance 5.2.1-1 l l ! 5.2.2 Short-Term Transient 5.2.2 ' !- 5.2.3 Long-Term Transient 5.2.3-1

5.3 Analysis of Matrix Test SB06 5.3-1 5.3.1 Facility Performance 5.3.1-1 5.3.2 Short Term Transient 5.3.2-1 l 5.3.3 Long-Term Transient 5.3.3-1 j 5.4 Analysis of Matrix Test SB09 5.4-1*

5.4.1 Facility Performance 5.4.1-1 5.4.2 Short-Term Transient 5.4.21 1 5.4.3 Long-Term Transient 5.4.3-1 5.5 Analysis of Matrix Test SB10 5.5-1 ) 5.5.1 Facility Performance 5.5.1-1 5.5.2 Short-Term Transient 5.5.2-1 5.5.3- Long-Term Transient 5.5.3-1 5.6 Analysis of Matrix Test SB12 5.6-1 5.6.1 Facility Performance 5.6.1-1 5.6.2 Short-Term Transient - 5.6.2-1  ! 5.6.3 - Long-Term Transient 5.6.3-1  ! l m p..mpub-o92795 vi REVISION: 1

. . .. .. .- - . - - - - ~ . . - . - - . . _ TEST ANA1.Ysts REPORT l TABLE OF CONTENTS (Continued) Section Title Page

                                               < < < VOLUME 2 > > >

1 5.7 Analysis of Matrix Test SB13 ' 5.71 5.7.1 Facility Performance 5.7.11 5.7.2 Shc:t-Term Transient 5.7.2-1 5.7.3 Long-Term Transient 5.7.3-1 5.8 Analysis of Matrix Test SB14 5.8-1 5.8.1

                                                                                                                  )

Facility Performance 5.8.11  ! 5.8.2 Short-Term Transient 5.8.2-1 I 5.8.3 Long-Term Transient 5.8.3-1  ! 5.9 Analysis of Matrix Test SB15 5.9-1  ! 5.9.1 Facility Performance 5.9.11 3 5.9.2 Short-Term Transient 5.9.2-1  ! 3.9.3 1.oug-Term Transient 5.9.3-1 ) 5.10 Analysis of Matrix Test SB19 5.10-1 5.10.1 Facility Performance 5.10.1 1 5.10.2 Short-Term Transient 5.10.2 1 5.10.3 Long-Term Transient 5.10.3 1 5.11 Analysis of Matrix Test SB21 5.11 1 5.11.1 Facility Performance 5.11.1-1 5.11.2 Short Term Transient 5.11.2 1 5.11.3 Long-Term Transient 5.11.3-1 5.12 Analysis of Matrix Test SB23 5.12-1 5.12.1 Facility Performance 5.12.1 1 5.12.2 Short-Term Transient 5.12.2 5.12.3 Long-Term Transient 5.12.3-1 g 6.0 *EST FACILITY PERFORMANCE 6-1 - 6.1 Observed Thermal-Hydraulic Phenomena 6.1-1 6.1.1 Core Makeup Tank Reflood Response 6.1.11 6.1.2 Passive Residual Heat Removat System Performance 6.1.2-1 6.1.3 ' Flow Oscillations During Long-Term Cooling 6.1.3-1 6.1.4 Effects of Accumulator Nitrogen - 6.1.4-1 6.2 Data Evaluation 6.2.1 Core Energy 6.2.1-1 6.2.2 Mass Balance 6.2.21 6.2.3 Overall Energy Balance 6.2.3-1 m:ww.wpotbwm vil REVIs!ON: 1

1 i I l TEST ANALYSIS REPOftf l l TABLE OF CONTENTS (Continued) l l F.tEll2!! Ilgt _Pagg j% 7.0 SYSTEM ANALYSIS FOR SMALL-BREAK LOSS-OF-COOLANT ACCIDENTS

  ~

AND LONG-TERM COOLING 7.0-1 7.1 Variations in Break Size 7.1-1 7.1.1 Passive Residual Heat Removal Behavior 7.1.1-1 ) 7.1.2 Event 'Ilming Discussions 7.1.2-1 7.1.3. Downcomer Condensation Phenomena 7.1.3-1 7.1.4 Break Flow and Flow Integrals 7.1.41 I

                   .7.2      Variations in Break Location                                                  7.2-1 7.2.1     Event Timing / Phenomena                                          7.2.1-1 7.2.2      Core Makeup Tank Drain / Refill Behavior                          7.2.21 7.3   Closure on the Phenomena identification and Ranking Table for AP600 Small-Break Loss-of-Coolant Accident and Long-Term Cooling for the OSU Tests                                                             7.3-1

8.0 CONCLUSION

S 8-1

9.0 REFERENCES

9-1 l 1 i i l h m:\ap60m2344w.wpf:lt492795 - viii REVISION: I j

Tarr ANu,YEs RaForr t r LIST OF TABLES Intgg Title Egge 1.3-1 Phenomena Identification Ranking Table for AP600 SBLOCA and LTC Transient-1.4 1 General System Hierarchy: OSU/AP600 Scaling Analy,is 1.4-7 - 1.51 Initial Conditions for OSU Test Facility to Model a 2-in. Cold-Leg Break 1.5-3 1.52 Scale Factors to Relate the AP600 Plant to OSU NOTRUMP Calculations 1.5-4 1.5 3 Distortion Factors for the AP600 Dominant Processes Identified Using

  • the H2TS Methodology 1.5-5 3.1-1 Overall AcceF = Criteria 3.1 2 3.2-1 OSU Matrix Test Summary 3.2 3 4.2-1 Pressures and T+.unw for Compensated LDPs 4.2-2 j 4.3-1 Instrumentation Employed for Accumulator Fluid Calculations 4.3-8 4.4-1 Instrumemmion Employed for CMT Fluid Calculations 4.4-25  ;

4.42 Volume Versus Height Tables for CMT Fluid Volume Calculations 4.4-26 4.43 - CMT Metal Wall A-+: :'e Instrumentation 4.4-27 - 4.4-4 Data for CMT Metal Energy Calculations 4.4 28 4.4-5 Specific Heat Capacity Versus Temperamre Table for 4.4-29 CMT Metal Energy Calculations 4.4-6 Instrumemmian Employed for Cold-Leg Balance Line Fluid Ca' .ations 4.4-29 4.4-7 Volume Versus Height Tables for Cold-Leg Balance Line FivA Volume Calculations - 4.4-30 4.4-8 Data for Cold-Leg Balance Line Metal Energy Calculations W segment) 4.4-30 4.4-9 Data for Cold-I4g Balance Line Metal Energy Calculations 4.4-31 4.4 10 Specific Heat Capacity Versus Temperamre Table for Cold-Leg Balance 4.4-31 Line Metal Energy Calculations 4.5-1 IRWST Mass and Energy Calculaticas identification of Fluid 4.5-15 Thermacanples and Elevation . 4.5-2 Volume Versus Height Table for IRWST Fluid Volume Calculations 4.5-15 4.5-3 Data for IRWST Metal Energy Calculations (per segment) 4.5-16 4.5 4 Data for IRWST Metal Energy Calculations 4.5-16 4.5.5 Data for IRWST Energy Loss Due to Ambient Heat Transfer 4.5-14 4.6-1' Instrumentadon to be Used for ADS 13 levels Instrument Correction 4.6-9 4.6-2 Volume Versus Height for ADS 1-3 Volume Calculations 4.6-9 4.6-3 ADS 1-3 Separator Steam and Liquid Pressure and Temperature 4.6-9

                 - lastrument Channels m:p=. prm92795                                ix                                      REVISION: 1 1
                                                                   .-_ _ .. - - - -               .-     .     .- - ~ - -

l l Tarr ANAIY5Es Rapoet l LIST OF TABLES (Continued) -l Tait Eli Zant i 4.7-1 Instrumentation to be Used for ADS-4 Separator Levels Instrument Correction 4.7-12

  ,     4.7-2             ADS-4 Separator Steam and Liquid Pressure and Temperature Instrument Channels                                                             4.7.12 4.7-3            Instruments to be Used in Calculation of Local Flow Qualities                  4.7-1?
    . 4.7-4            Volume Versus Height for ADS 4-1 Fluid Volume Calculations                     4.7-14 4.7-5            Volume Versus Height for ADS 4-2 Pluid Volume Calculations                     4.7-14
       .4.8-1            Instrumentation to be Used for 3reak Separator Mass and Energy Balance            4.8-9 4.8-2            Break Separator Steam Exhaust and Liquid Pressure and Temperature Instrument Channels                                                               4.8-9 4.8-3          ' Volume Versus Height for Break Separator Pluid Volume Calculations             4.8-10 4.9-1            Instrumentation to be Used for Sump Mass and Energy Balance                    4.9-10 4.7-2            Sump Steam Exhaust and Injection Pressure and Temperature                      4.9-10 Instrument Channels       .

I '4.9-3 Data for Sumps Metal Energy Calculations (per segment) 4.9-11 4.94 Data for Sumps Metal Energy Calculations 4.9-11 i

       . 4.9-5           Specific Heat Capacity versus Temperature Table for                            4.9 12 Sumps Metal Energy Calculations
s. 4.10-1 Instrumentation Employed for PRHR Pluid Calculations 4.10-12 4.10-2 Volume Versus Height Tables for PRHR Pluid Volume Calculations - 4.10-12 i 4.10-3 Data for PRHR Tbbe Metal Energy Calculanons'(per segment) 4.10-13 l
4.10-4 Specific Heat Capacity Versus Temperature Table for PRHR Thbe 4.10 13 l J

Metal Energy Calculations 1 4.11-1 Core Vessel Model Geometry 4.11-10 j 4.11-2 Mass Methodology Effects 4.11-10 4.11-3 Heater Rod Instrumentation 4.11-10 4.11-4 Power Distribution 4.11-11  ; 4.11-5 Constant Multiphers for the Free Convection Heat Transfer Coefficient 4.11-11  ; 4.11-6 OSU Test Analysis Plot Package for Section 4.11 4.11 12 4.12-1 Volume Versus Height Table for Downcomer Pluid Volume Calculations 4.12-3 4.13-1 Data Channel ID for SG Inlet Plenum Mass and Energy Calculations 4.13-13 j 4.13-2 Volume Versus Height Table for Steam Generator Inlet Plenum 4.13-14

4.13-3 Volume Versus Height Table for Steam Generator Tubes (Down-Hill Side) 4.13-15 l 4.13-4 Volume Versus Height Table for Steam Generator Tubes (Up-Hill Side) 4.13-15

' 4.13-5 Volume Versus Height Table for Steam Generator Outlet Plenmn 4.13-16 l 4.14-1 Instrument Channel ids for SG-?. Secondary-Side Mass and Energy 4.14-7 l Calculations j

    . m: W 344 ..pt:m 492795        .

x REVISION: 1

                                                     , , -                                           n                    -e

i i i TtrT ANALYRs REPORT LIST OF TABLES (Continued)

                 .T.idils                                          .T.1111                                          fast l

4.14-2 Instrument Channel ids for SG-2 Secondary-Side Mass and 4.14-8 l Energy Calculations 4.14-3 Instrument Channel ids for SG System Secondary-Side Mass 4.14-9 - and Energy Calculations 4.14 4 Fluid Height Versus Volume for SG Monry-Side Mass and 4.14-9 Energy Calculations - 4.15-1 Instrument Channel ids for Pressurizer Mass and Energy Calculations 4.15-11 4.15-2 Fluid Height Versus Volume for Pressurizer Mass Calculations 4.15-12 4.15-3 Metal Data for Pressunzer Metal Energy Calculanons 4.15-12 4.15-4 Temperamre Versus Heat Capacny for Pressunzer Metal Energy Calculations 4.15-13 4.16-1 Instrument Channel ids for Pressurizer Surge Line Mass and 4.16-8 ) Energy Calculations 4.16-2 Fluid Height Versus Volume for Pressurizer Surge Line Mass Calculanons 4.16-8 4.16-3 Metal Data for Pressurizer Surge Line Metal Energy Calculations 4.16-9 4.16 4 Temperature Versus Heat Capacay for Pressurizer Surge Line Metal 4.16-9 Energy Calculations , 4.17-1 Data Channel ids Used to Calculate Iecal Fluid Properties for Flow Meters 4.17-13 4.17 Data Chaenel ids Used to Calculate Fluid Properties for levels Trnadrars 4.17-13 l 4.17 3 Data Channel ids Used to Calculate Iacal Fluid Properties for Flow Meters 4.17-14 4.17-4 Data Channel ids Used to Calculate Fluid Properties for levels Treadwars 4.17-14 4.18-1 Data Channel ids Used in Hot-leg Mass and Energy Calculations 4.18-5 4.19 1 Pressure Conversions 4.19-2 4.20-1 Channels for Data Smoothing 4.20 2 4.20 2 OSU Test Analysis Plot Package for Secuon 4.20 4.20-6 4.21-1 Data Channel ids Used for Flow Meter Calculations 4.21-10 5.1.1-1 OSU Test Analysis Plot Package for Subsection 5.1.1 5.1.1-8 5.1.2-1 . OSU Test Analysis Standard Plot Package for Subsecuon 5.1.2 5.1.2 10 , 5.1.3-1 OSU Test Analysis Standard Plot Package for Subsecuon 5.1.3 Long-Term 5.1.3-6 Transient 5.2.1-1 OSU Test Analysis Plot Pa::kage for Subsection 5.2.1 5.2.1-6 5.2.2-1 OSU Test Analysis Standard Plot Package for Subsection 5.2.2 5.2.2 10 5.2.3-1 OSU Test Analysis Standard Plot Package for Subsection 5.2.3 5.2.34 Long-Term Transient 5.3.1-1 OSU Test Analysis Plot Package for Subsection 5.3.1 5.3.14 5.3.2-1 OSU Test Analysis Standard Plot Package for Subsecuon 5.3.2 5.3.2-5 w w 3m ...,cib.092795 xi REVISION: 1

TEST ANALYSIS REPorr l - LIST OF TABLES (Continoed) Dbh Title Pm 5331 OSU Test Analysis Standard Plot Package for Subsection 5.33 533-4 Long-Tenn Transient 5.4.1-1 OSU Test Analysis Plot Package for Subsection 5.4.1 5.4.1-4 l 5.4.2-1 OSU Test Analysis Standard Plot Package for Subsection 5.4.2 5.4.2-5 5.43-1 OSU Test Analysis Srnndard Plot Package for Subsection 5.43 5.43-4 Long-Term Transient 5.5.1-1 OSU Test Analysis Plot Package for Subsection 5.5.1 5.5.1-4 5.5.21 OSU Test Analysis Standard Plot Package for Subsection 5.5.2 5.5.2-5 l 5.53-1 OSU Test Analysis Standard Plot Package for Subsection 5.53 5.53-4 Long-Term Tmosient ! 5.6.1-1 OSU Test Analysis Plot Package for Subsection 5.6.1 5.6.1-4

          . 5.6.2-1           OSU Test Analysis Standard Plot Package for Subsection 5.6.2                  5.6.2-5 5.63-1            OSU, Test Analysis Standard Plot Package for Subsection 5.63                  5.63-4             ,

l Long-Term Transient  ! i 5.7.1-1 OSU Test Analysis Plot Package for Subsection 5.7.1 5.7.1-4 i 5.7.21 OSU Test Analysis Standard Plot Package for Subsection 5.7.2 5.7.2-5 I 5.73-1 OSU Test Analysis Standard Plot Package for Subsection 5.73 5.73-4 ! Long-Term Transient I l 5.8.1 1 OSU Test Analysis Plot Package for Subsection 5.8.1 5.8.1-4 j 5.8.21 OSU Test Analysis Standard Plot Package for Subsection 5.8.2 5.8.2-5 l l 5.83-1 OSU Test Analysis Srnndard Plot Package for Subsection 5.83 5.83-4 I Long-Term Transient 5.9.1-1 OSU Test Analysis Plot Package for Subsection 5.9.1 5.9.1-4 5.9.2-1 OSU Test Analysis Standard Plot Package for Subsection 5.9.2 5.9.2-5 5.93-1 OSU Test Analysis Standard Plot Package for Subsection 5.93 5.93-4 l Long-Term Transient l 5.10-1-1 OSU Test Analysis Plot Package for Subsection 5.10.1 5.10.1-4 5.10.2-1 OSU Test Analysis Standard Plot Package for Subsection 5.10.2 5.10.2 5 ! 5.103-1 OSU Test Analysis Standard Plot Package for Subsection 5.103 5.103-4 i Long-Term Transient 5.11.1-1 OSU Test Analysis Plot Package for Subsection 5.11.1 5.11.1-4 5.11.2-1 OSU Test Analysis Standard Plot Package for Subsection 5.11.2 5.11.2-5 5.11 3-1 OSU Test Analysis Srnnaard Plot Package for Subsection 5.113 5.113-5 l Long-Term Transient 5.12.1-1 OSU Test Analysis Plot Package for Subsection 5.12.1 5.12.1-4 5.12.2-1 OSU Test A.ialysis Senndard Plot Package for Subsection 5.12.2 , 5.12.2-5 5.123-1 OSU Test Analysis Standard Plot Package for Subsection 5.123 5.123-4

 . .                          Long-Term Transient neap 60m23a ..pr:ltw92795                          xil                                     REVISION: 1

Terr ANA1.Ysts Rrroaf I

                                                                                                                     .                     1 LIST OF TABLES (Contioned)                                                    .;

Tabli .T.!!A.t .taar. l 6.1.11 OSU Test Analysis Plot Package for Subsecdon 6.1.1 6.1.1-3 6.1.2-1 Instrurnentation for Calculating the PRHR/lRWST Heat Balance 6.1.2-6 6.1.2-2 Key Parameters for Calculating the PRHR/IRWST Heat Balance ' 6.1.2-6 , 6.1.3-1 OSU Test Analysis Plot Package for Subsection 6.1.2 6.1.2-7 6.1.3-1 Summary of Flow Osciliadon Data 6.1.3-31 6.1.3-2 OSU Test Analysis Plot Package for Subsection 6.1.3 6.1.3 32 . 6.1.41 Summary of Accumulator Behavior for Test SB01 6.1.4-3 6.1.4-2 OSU Test Analysis Plot Package for Subsection 6.1.4 6.1.4-3 I 6.2.1-1 Saturated Water Properties 6.2.1-8 6.2.1-2 OSU Test Analysis Plot Package for Subsection 6.2.1 6.2.1-9 6.2.2-1 OSU Test Analysis Plot Package for Subsection 6.2.2 6.2.2-6  ! 6.2.22 Steam Flow during Short- and Long-Term Transients 6.2.2-8 6.2.3-1 OSU Test Analysis Plot Package for Subsection 6.2.3 6.2.3-6 7-1 Sequence of Events Comparison for Matrix Tests 7-3 7.1.1-1 PRHR Behavior for Various Cold-Leg Break Sizes '7.1.1-2 l 7.1.4-1 Subsection 7.1.4 Plot Package .7.1.4 2 7.2.2-1 OSU Test Analysis Plot Package for Subsection 7.2.2 7.2.2-5 I l 1 l l l l I l 4 m.4p60tR2344=.wpf:1b492795 xlii REVISION: 1

  -      - . - . .-.     ..  -          . .   .    .~.. . - .            . . . - . . . . . - - . - . .  . _ . - - ~ . - . - . - - . - -

t TEST ANALYSIS Rarorr LIST OF FIGURES E.ElEf. T.i ! _P_agg,

1.4-1 Decomposition Paradigm and Hierarchy 1.4-8 l* 1.4 2 AP600 SBLOCA Scenario 1.4-9 1.4-3 Scaling Analysis Flow Diagram for System Depressurization 1,4-10

, , 1.5-1 Normalized Pressure Comparisons between AP600 and OSU Facility - 1.5-6 l 1.5-2 Normalized CMT-11.evel for AP600 and OSU Facility 1.5 7 l 1.5-3 Normalized CMT-2 level for AP600 and OSU Facility 1.5-8 1.5 4 Normalized ACC-1 Level for AP600 and OSU Facility 1.5-9 l' 1.5-5 Normalized ACC-2 level for AP600 and OSU Facility 1.5-10 i . 1.5-6 Normalized ADS 13 Flows for AP600 and OSU Facility 1.5-11 i 1.5-7 Normalized Break Flow for AP600 and OSU Facility 1.5-12

1.5 8 Normalized System Mass for AP600 and OSU Facility 1.5-13 I
                 .1.5-9        Comparison of OSU and SPES-2 CMT 1 Injection Flow Rate                                             1.5-14     !

1.5-10 Comparison of OSU and SPES-2 2-In. Break Pressure Histories 1.5-15 1.5-11 Comparison of OSU and SPES-2 CMT-1 Liquid level Histories 1.5-16 1.5-12 Comparison of OSU and SPES 2 ACC 1 Liquid Level Histories 1.5-17 j 1.5-13 Comparison of OSU and SPES-2 ACC-1 Injection Flow Rate 1.5-18 ,i 1.5 14 Compenson of OSU and SPES-2 IRWST-1 Flow Rate 1.5-19 , 2.1-1 Isometric Drawing of the OSU Test Facility 2.1 4

2.1-2 Simplified Flow Diagram of the OSU Test Facility 2.1-5 l

1 l l i 1 m:p .*: bo92795 xiy REVISION: 1

i i REFERENCE #: 45 REPORT #: WCAP-14471 TITLE: Steam Condensation Events at the OSU AP600 Test Facility DATE: February 1996 l I

                                                                                                       )

I t l 1 m:\3334w-a.wpf;1b 1104% A-45 u.}}