ML20132B404
| ML20132B404 | |
| Person / Time | |
|---|---|
| Issue date: | 12/11/1996 |
| From: | Beardslee C NRC (Affiliation Not Assigned) |
| To: | Wichman K NRC (Affiliation Not Assigned) |
| References | |
| PROJECT-689 NUDOCS 9612170198 | |
| Download: ML20132B404 (26) | |
Text
__ _ _.
=
$%f
{
' MEMORANDUM T0: Keith Wichman, Acting Branch Chief
.1 Materials and Chemical Engineering Branch Division of Engineering i
THRU:
Edmund'J. Sullivan, Section Chief i
Materials ano Chemical Engineering Branch j
Division of Engineering i
l FROM:
Cheryl Beardslee, Materials Engineer Materials and Chemical Engineering Branch Division of Engineering
SUBJECT:
SUMARY OF NOVEMBER 6,1996 MEETING WITH NEI\\EPRI REGARDING EDDY CURRENT TECHNIQUE QUALIFICATION On November 6, 1996, the NRC staff met with representatives of the Nuclear 1
Energy Institute (NEI) and the Electric Power Research Institute (EPRI) in i
Rockville, Maryland, to discuss issues concerning eddy current technique i
qualification. Attachment 1 is a list of the meeting attendees. Attachment 2 i
is a copy of the slides that were used in EPRI's presentation.
i I
EPRI informed the NRC that eddy current technique qualifications performed in 1992, as part of the EPRI Appendix H qualifications, were recently updated.
l As a result, two previously qualified techniques no longer meet Appendix H l
qualification requirements.
Steam Generator Management Project (SGMP)
{
utilities and vendors were notified by EPRI.
i i
EPRI also discussed their recently developed eddy current technique for sizing j
inside diameter (ID) initiated circumferential cracks at expansion-transition i
regions.
EPRI stated that this technique was qualified per the EPRI Appendix l
H qualification process.
NRC staff indicated that although this technique was qualified per EPRI Appendix H, this technique could not be used to meet j
{
current Technical Specification (TS) requirements for determination of j
plug / repair limits. The EPRI qualified sizing technique does not demonstrate the ability to detect and size cracks less than 40% throughwall (which is the a
j typical TS plug / repair limit).
l The third issue discussed was related to EPRI SGMP Database Protocol.
Following discussion, NEI indicated that they would send a new, revised f
protocol that would address the issues, contained in our September 24, 1996, j
letter to NEI, and discussed during the meeting.
PROJECT N0. 689 l
Attachments: As stated a
Distribution
((
See Attached List DOCUMENT NAME:
G:\\BEARDSLE\\NEI EPRI.MTG To receive a copy of this document, Indicate lii the box "C% Copy w/o attachment / enclosure "E"= Copy with attachment / enclosure "N"a No copy j
l o m CE DE:EMCB
!7 EMCB:SC 6
C:PGEB _
4 CBeardslee.d TSullivank DMatthd b v
(
WE DATE 42 / { /96 (L/4 /96 l1 / h/96 0FFICIAL FILE COPY 96 - 4 7 170005 pc m CHU S COPY 9612170198 961211 P
PROJ 7
yf~
t
k e
NEI Project No. 689 cc:
Mr. Ralph Beedle Mr. Thomas Tipton, Vice President Senior Vice President Operations and Chief Nuclear Officer Nuclear Energy Institute Nuclear Energy Institute Suite 400 Suite 400 1776 I Street, NW 1776 I Street, NW Washinton, DC 20006-3708 Washington, DC 20006-3708 Mr. Alex Marion, Director Mr. Jim Davis, Director Programs Operations Nuclear Energy Institute Nuclear Energy Institute Suite 400 Suite 400 1776 I Street, NW 1776 I Street, NW Washington, DC 20006-3708 Washington, DC 20006-3708 Mr. David Modeen, Director Ms. Lynnette Hendricks, Director Engineering Plant Support Nuclear Energy Institute Nuclear Energy Institute Suite 400 Suite 400 1776 I Street, NW 1776 I Street, NW Washington, DC 20006-3708 Washington, DC 20006-3708 Mr. Anthony Pietrangelo, Director Licensing Nuclear Energy Institute Suite 400 1776 I Street, NW Washington, DC 20006-3708 Mr. Ronald Simard, Director Advanced Technology Nuclear Energy Institute Suite 400 1776 I Street, NW Washington, DC 20006-3708 Mr. Nicholas J. Liparulo, Manager Nuclear Safety and Regulatory Activities Nuclear and Advanced Technology Division Westinghouse Electric Corporation P.O. Box 355 Pittsburgh, Pennsylvania 15230
I h
J l
Distribution Central File Docket File Public 4
WKropp Blake 1
Stoffin
[
9 PFredrickson SMagruder Modes IBarnes a
JStrosnider PRush JTsao
(
JMuscara i
KKarwoski EMurphy MHalloy DMatthews J
1 l
A I
i 1
4
. ~.
~
l 1
NEI\\EPRI MEETING TO DISCUSS EDDY CURRENT j
TECHNIOUE OVALIFICATION LIST OF ATTENDEES NOVEMBER 6. 1996 N8tlE ORGANIZATION C. Beardslee NRC/NRR P. Rush NRC/NRR T. Sullivan NRC/NRR G. Kammerdeiner Dusquesne Light /EPRI C. Welty EPRI D. Steininger EPRI C. Calaway NEI R. Pearson NSP S. Bernhoft Wisconsin Public Service Corp.
G. Henry EPRI NDE Center C. Eames Maine Yankee Atomic Power Co.
J. Tsao NRC/NRR J. Muscara NRC/RES K. Karwoski NRC/NRR E. Murphy HRC/NRR D. Mayes Duke Power K. Wichman NRC/NRR J. Strosnider NRC/NRR l
ATTACHMENT 1
.._ =.
=_;,=.;;___-
t I
l EPRI/ SGMP i
EDDY CURRENT TECHNIQUE I
l QUALIFICATION UPDATE Presentation to the NRC November 6,1996 1
?
i ATTA0ffNT 2
- - - ~.~ i, v,, _ww-........av.v4 am....
- - - - - ' - " - ^ ' - ' - ' ~ ' - ~ ~ "
^~
rAA 414 osa sueW V r NLULA.AR DLCO (qb og2 j*
i a
i i
AGENDA
}
Introduction 1
i ET Technique for Circumferential Crack i
Sizing i
i i
EPRI SGMP ET Technique Qualification l
Update qualification status change i
i NRC Questions regarding EPRI SGMP Database Protocol 4
e i
l t
l l
1 1
_. _ ; y,
,7, m, m_,,, m__ y_m.
gy t
ET TECHNIQUE QUALIFICATION UPDATE i
l e
EPRI performed eddy current technique qualifications in 1992 in conjunction with QDA Program development o
best representative samples sets used for qualification Technique qualifications are being updated j
e additional data available from laboratory and pulled tube samples o
on going effort to upgrade the quality of the data sets used for i
Appendix H qualification i
i l
f
gj g g-g g-id d M d id ididO69_,
- - - - - - - - - - - - - - - - - ~ ~ - ~ ~ ~ ~ ~ " ~ ~
Y P NUCllMR DLCO
@ 005 l
i.
e ET TECHNIQUE l
QUALIFICATION UPDATE 4
{
Update effort has identified two previously j
qualified techniques that do not meet i
Appendix H qualification requirements for j
the detection oflocation specific Outside Diameter IGA / SCC
~
i o
0.080" Mid-Range Rotating Pancake j
Coil-top of tubesheet expansion i
transitions l-l c
Bobbin coil prime / quarter mix within j
open tubesheet crevice Although performance to Appendix H e
I requirements not demonstrated with new data, nothing suggests that either technique could not detect structurally significant degradation flaws " missed" during qualification attempt would not have challenged structuralintegrity
yg ET TECHNIQUE QUALIFICATION UPDATE Results of Technique Qualification Update e
effort were reviewed within EPRI SGMP Advisory Structure i
o ISI/NDE Issues Resolution Group o
Issues Integration Group Executive Group EPRI SGMP Members formally notified of
=
the change in qualification status for these two techniques
=>
discussed at Technical Advisory Group Meeting (October 2-4,1996) c letter issued on October 11,1996 providing details of the update results and recomendations l
id U Ei b' ~ ~'R's 'N ' 0'4'[AI 4 5 $ 6 4 3 80 6 9 i
" ~ - " ~ ~ ~ ^ " ~ " ' ' ' ' ^ ~ "
Y P NUCLEAR DLC0
@ 007 1-i i.
ET TECHNIQUE j
QUALIFICATION UPDATE 1
o avoid reliance on these techniques for detection of OD i
IGA / SCC at the specific locations i
identified l
j o
alternative techniques are available each utility should review the o
supplied information for applicability
)
to their unit (s) 1 l
4 1
s 4
i
O Appendix H Circumferential Crack Sizing for PWSCC <@ Expansion Transitions t
November 6,1996 i
.I l
[
Technique Qualification Process i
Select Technique t
- Frequencies
- Extraneous Variables
- Probe 1
- Acquisition System
- Analysis System
- Analysis Parameters
- Select Sample Set h
Technique Qualification Process
~
PWSCC Cire. Cracking @ Expansion Transitions 300 or 400 kHz i
Hard Rolls, Explansions, Wextex Mid Range Plus Point
)
Miz 18, Miz 30, or TC6700 1
EDDYNET or ANSER
- Capability of Axial Lissajous and Phase Measurement Pulled Tubes, Lab Cracks Total 16 Samples
- 5 Pulled Tubes
- 11 Lab Cracks l
t i
Acceptance Criteria
~
j Technique performance compared to Appendix H Supplement 2 acceptance
- 80% POD @ 90% C/L f
- Sizing error <25% RMS j
i All Appendix H technique qualifications rely on Max. Depth from Metallurgical (Single dimension)
Appendix H currently does not address acceptable length error
i PERFORMANCE DEMONSTRATION DATA BASF Appetx!us A TECHNIOUE SPECIFICATION SHEETS
\\
..................................................................... Augus t t 996 A ev 0 m %.t. %
.m -
w.-
m.-
u
- e n. w>>w.e %w a E.a.,...na us ecifica %.on Shee,
xam,.num a:Tec, r
n.
w su
- m. m u.w..m
~
..~.w
- n-
,,a ETSS #96701 Page lof 7 mrjpt_pwscc_s amp. doc
.d.5.)..,',^'$hSmh.k.N...A,h.-,b... i.[jI.U.nauu$%. ~ rijM_.jpgiMe@
i sin
. s,p m _ __ - _
]
Material: Inconel 600 00: 0.75'.f,.875*
Wall: 0.043" 048*,
f
.050*
h i
. t.;
Test App'ication: This technique is qualified for detection and sizing by length or depth per-cent thru wall of circumferential PWSCC at expansion transitions. This technique meets the requirements for detection and sizing in accordance with Appendix H at 400 or 300 kHz.
Additional ACTS which would be applicable are #'s: 96508,96509,96510. Caution: Specific training on sizing by length and depth should precede implementation of this technique.
This technique received industry peer review on 8/13/96.
{
- 3. T@M._@dNs.@.,..C, Q tJI SI.TIOSTE..C H N IQU E C,.$s.ff. *%,mm..E.
dM A
a..~
u.
,~
Bobbin Probe Rotating Probe ___X Other h$5E'
'g,DATARQ.UISITION4,g4.;
$.g68.{gy n >NM..
Ins'tr.O. ment VM.. M..,. ? @
5 Prob 8- @hMsMTjR<.
l J'C
$. e ".7
.~. n e7.%,
- n
~.
Manufacturer: N/A Manufacturer: Zetec Model: N/A Diameter / Coil Dimensions: MR Plus Point
'- A. IAdiqu._i.s.,iti.6.n..'Syst.e.m_ S.o.W.,. a'r.e EM.a.h.
Part Number: Plus pt.610 MRPC/FH 52 PH Manufacturer: N/A Probe Cable Length:83'- MRPC-52 MU TM Description or
Title:
Eddynet95 or 2 .'M.w c,'. Analo"g'#
.. robeE",xt.ension ~ s~ ~
- T*
- P n my {
Equivalent.
o i
Manufacturer: Zetec (Low Loss Cable) 1 Version / Revision: 2 or equivalent Length: 50'
' iMh@dhMhghhncggggh,ptipn Moqejidfg/jjf%$
d $hhf[.2Abjobt@@ysdjyQ % Q 3 M (ute M g, k f M. Q fy
' c.,( Channel / Coll /Frequ_ enc,_ie..s;
/Gh; yp.
Channet/ Coll /FrequenglesQ33^f-...
n.
'g 6/5/400 kHz 7/5/300 kHz e
, s. m m,~. ru ne..s.3, r,.nu~
o ~ ~
v ~
og y
>=w
@Ab%$h. A?fQf.pa,ta Recogog E~ulpment g.s q
.: ~. $m
. c.,hg.3g+%ag,' '
N.s Manufacturer: Hewlett Packard or equivalent Model: 650 Mb Re-wntable or equivalent A-217
PERFORMANCE DEMONSTRATION DATA BASE N.
Appendix a e c.Cn..lOUE SPEGIFICATION SHEETS
..................................................................... Augus t 1996 R ev 0 b
ETSS #96701 Page 2 of 7 mr +pt_pwscc_s_ amp. doc I U.Q f Dj$My@MQdAScQ%%QiMg Nb[dh, M)hhPkhAk$$Ud$hkNh4kikh Digitizing Rate Min (DR):'
Digitizing Rate Min (DR)* 30 samples / inch circumferentially and axially Sample Rate Min (SR)
Sample Rate Min (SR)
Probe Speed (PS)
Withdrawal Speed Max (WS)
Scan Direction Rotation Speed Max (RPM)
- Note-Digsbring rate applies in the axial direction.
- Note' Digibzing rate applies in both the axial and cir-SR min = DR men x PS max cumferential directions; for the circumferential direction.
SR min = OR min x (1/ RPM) x (1Mube diameter) x 19.09
". kl. b h k4 h@
N
$b h
Ikh b
- o..,.p m. ~
wp Lips,tr.u.m..g-en.,.. m~,. g;g.5..,v 4... q
.m..
g y
.w
- +.m'+,, Analysis,...
.+,S.o,.,,n.,.w. m.n.u.,,,*y:
a,s
~. t,
v
, n..S. ystem...
.~
e Manufacturer: Hewlett Packard Manufacturer: Zetec Model: 710 or equivalent Title /Rev.: Eddynet95/Ver 2 or equivalent EsWQWWM&W AnalY liChannels
OW :w PBk."W$De
~i n *w-d 0.1 nkovm h* vM t%4fie.c - -,. v a.., ; n -
-+%wn su nns~1sw:ntkk
.....c...g; 3,p,
,, g.r go. p YUOY3I
[ b 'NMt'k'rk,h
' " N3k.
- EM UkkhhY,.y,,.hM Se' ttin ~e,wse
- s..
.Sp.ag3-
+ e cg b't*WA T.
40% 10 circ 1 div 40% 10 circ 1 div
'PhliieT y
40% 10 cire at is degrees 40% to cire at 15 degrees NE$N{EtEtTo'@7j;h[i MN (circ flaws going up)
(circ Maws going up)
I $libr3dNk %
100%,60%, &40% cire 100%,60% &40% circ CEQpKj@l 10.100% axial EDMs ID,100% axial EDMs
- Calibii
(
Phase curve. axial lissa.
Phase curve, axiallissa-
).*;{;hfi jous circ. 100.60. & 40 ID jous circ. 100.60. &4010 j
notches notches
,.'tYO d.I th 20 volts on 100% circ 20 volts on 100% cite Sinole Fr'Okb.e.bbf..:D*
ukNibfNAma.m.se M-[s=i
.Y'-
M. u :. h ND g m. c, ' d @
d h
~
.u a :=
-w
-e fpa g gA Q g
.~
.Pha,,se Rotatio.,x@.,f n
mucwakk s.
-.Calib'rahilisisj{y_;;.,
www 4
VoitsM j@n.::ynI7A M
l
.n A-218
3 PERFORMANCE DEMONSTRATION DATA BASE
(
)
Appendu A,m':HNIOUE SPECIFICATION SHEETS
.............................................................. _...... - August 1996 Rev 0 Yr
. Y.
b
\\
ETSS #96701 Page 3 of 7 mr_+pt_pwscc_s amp. doc Nb hkNg(Qgs,,hp,fjjCgnt%[$pd$${fl@f dif$in5532!*Mi&MhMTW!$fM*!iGP FWl#M
,{,,3 @ ! i.
P; 40% 10 circ 1 div 40% 10 ctre 1 div
( rg. /
<- c v
40% ID cire at 15 degrees 40% ID circ at 15 degrees
- c. : c. f. '. c,
- 4.g
,j (circ flaws going up)
(circ flaws going up) h ib ';rkk h
Amplitude based on max Amphtude based on max fQ g_, (.,
depth phase depth phase YoltsYg D[.,g 7
20 volts on 100%
20 volts on 100% cire,
-d3hb :
$li; circ. axial hssa;ous anal tissagous a
TsiaNWME Analysis Guidelines:
Voltage normalization is performed in the axial lissajous window and is set on the 100%
circumferential notch at 20 volts. Adjust the span such that the 40% ID circ notch is 1 div for 400 kHz. Set phase so that the 40% ID circ notch is 10 to 15 degrees on the raw fre-quencies and 190 to 195 on the process channels for axialindications. Monitor the 400 raw and process channels on the strip chart and scroll the region of interest while view-ing the lissajous. Terrain plot the 400 or 300 kHz raw and process channels in the area of interest.
With the raw channels set so circumferential indications form in the positive direction, axial indications will form in the negative (180 degrees out) direction on thn same chan-nel.
An additional procese channel will be required for the amplitude curve. This channel will be a duplicate of the 300 or 400 kHz raw channel, the circumferential notch response will be in the positive direction. This channel will be used to establish the amplitude peak __ peak measured response linear line curve based on the phase measurement.
Each intersection will require a new linear peak _ peak amplitude curve based on the volt-age and the phase % at maximum amplitude. if the voltage at maximum amplitude from the indication exceeds the voltage of the notch set at 20 volts in the axiallissajous win-dow, use a curve where 20 volts eqmis 100%. This provides a conservative approach should this be required.
A phase curve is established on the raw channel using 100, 60,40, and 0% values.
A-219
PERFORMANCE DEMONSTRATION DATA BASE
(
Apfot$x A TECHtdOUE sPECIF** A~~
iEETs j
...@h$dQQ h
ETSS #96701 Page 4 of 7 mr +pLpwscc_s amp. doc Analysis Guidelines:
Phase and amplitude measurements are performed on the lissajous response from the axial lissajous window. Dent responses may also form in the same plane as the flaw response. Careful analysis should be performed watching specifically for any change in the lissajous signal. Record a zero percent call prior to the first call of the indication and after the last call unless the indication is 360 degrees. Record only those indications which provide a flaw-like lissajous response at a maximum of 10 degree increments. Apply-ing an axial to-from may be necessary to reduce the affect of geometry on the indication phase measurement. Filters are acceptable for detection but are not applied for sizing. Axial averaging may be used on low signal-to-noise ratio indications at expansion transitions.
At maximum amplitude measure the % TW based on the phase curve, then in a process channel establish a linear curve using the amplitude and %TW values extrapolated to zero. Caution: Don't use the 1pt magnitude curve in the EDDYNET95* software to create the curve.
~
~ ??:1 C 400'6. wcaf300 kHz TeEhnllq'.ue Perforrhsnci?;A-Mcn.;,S.TA?.
E
- u-
.ne
- .r.-+
'Dp @ yn @ h,$ @ @ g.@ MD6' ', RMS,E,Sizin$ Efr@dgM l
0.83, POD @ 90% CL
_ 9.84_, % TW Max Depth l
_.12.42_, PDA (Percent Degraded Area) Error
_25.11_, Length Error Degs.
A-220
NT a
PERFORMANCE DEMONSTRATION DATA BASE h-Appsndix A TECHNIOUE SPECIFICATION SHEETS
..................................................................... Augus t t 9% R ev 0 kMN
-0 5
ETSS #96701 Page 5 of 7 mr +pt_pwscc_s_ amp. doc PWSCC CIRCUf1FERENTI AL CRACKING 13/13 1
0%-
0.00 -
3/4 f 0.70 -
e4 l
7 060-
^
- 0.50 -
j u Fracthm Oetected
! 0 40 -
l t
u
[ 0.30 -
0 20 0.10 l
l 0 00 -
I 32%-49%
50 & l00 %
'J5 Thruvall PWSCC Sizing Max Depth Based on Maximum Amplitude Signal G
?
g 50 l
i l
y = 10285x 3.2521 3 m
,/.
R' = 0 8437 70 RMSE = 0 84 N = 10
=
a
/
I w C I
3 0
i' m
h i
c j
0 to 2
40 m
60 70 m
'm G
Met Trut1 A-221
N PERFORMANCE DEMONSTRATION DATA BASE
' ('
Appondix A TECHNtOUE SPECIFICATON OHEETS
....................................................................,u,,,,,,,,sg,,n PWSCC Circumferential Extent Based on Amplitude Sizing n..
i tr0 y = 0 0827x. 7 2882 f
R8 = 0 9381 a
7 RMSE = 25.11 N=16
+
)
l e
l r s
+
0w
.y 0
0 su 13) 270 E
Wt Truf t (Osgrees)
Percent Degraded Area Based on Max Amplitude Voltage Normalaation im I
m I
ai i
y = 0,7809x. 3.7663 10 R8=0.8133 RMSE = 12.42 N = 10
% to s.
I
/
A f
/
Z
\\
10
- -- - A y
. +.
t 0
O IG 23 E
C
'D (O
TO El 90 tCD MET Trutt A-222
y PERFORMANCE DEMONSTRATION DATA BASE Appondix / ECHNIOUE SPECIFICAT10 4 SHEETS
.....................................'.................................... Augu 02 sed]_(~ Max, Amfl7udej7oltJge Nor$JhzJtion' "'
~dR PibiPoini"
,AM3E COEF
~
~
~
~
~
Len gth,.
MJx Depth _ _ 360 Depth.
S amp le */Lo c..... M e t..
Est., _ _ _ Met Est Met E st.
%TW j
i B GE 51 113_, _ __ __00_ _ _,
, 71 94, 100_. 10 98 6 78 13.37 0.95, l
l 15 23 TVA
,220.
_ 222__.
81, 90 26.30 17 55 19 43_.
_ 0.84, 4400 A 238
~204 100 Oc 47.76 30 83 30.43 0.88 4406[B ~ ~ ] [22 { _,[__158 [.
I 54 1 _',,48_ 21.76 _7.41 ['[.
1 ^ 26[1,.5.,_^ '. 0.62 4400 C
.-203.... - 170.. 67. 44.27.08 6 45...
... 38 14-... 0.68 5000.B 180 185 70 76 24 98 22 27 8.07 0.93 5096.C 108 167 55 So 18.71 16.10 13.10 0.76 5006.E 100 130 32 48 9 94 0 05 12 97 0 50 5096F, _ __
~}75][~[]S7] ~~50[~50[~i8'03 10.53 [, _
12.00 0.78 15.701 [ 0]86 MY.87 78 360 360 38 38 24.75 12.00 MY.00 57 300 360 57 42 20 75 10 44 10 29 0.88 MY79 00. __,, 300 4596;F_._,
_113
, 300 _
45__,30 25 33 7.73 18 67, 0;45 139,_.
53.
50,G81 11 00 11 20 0 79 RMSE i, ~ [25.11 9 84 12.42 Avera g e.
'18'84 0 77 Percent 32%.4G %
$0 %.100 %
POD @ 00% C/L 0.32 0.83 fraction detected 0 75 1
3/4 13 /13 l
l A-223
Flaw Profile for TVR R15-C23 Pulled Tube Based on Max Amplitude Normalized Voltage 300 kHz MR Plus-Point PWSCC Flaw Length Degraded Area = 43.04Z Length = 220 de9 RMSE - 19.43 NET 360 Degree Degraded Area = 26.30Z Max Depth = 81Z COEF_= 0.84 Flaw Length Degraded Area = 28.35::
Length = 222 deg.
Dia. = 0.8750 EST.
360 Degree Degraded Area = 17.55%
Max Depth = 96I Wall = 0.0500 k
V
- - + - - - MET Estimate Ext. Volts 100--
r i
.3
^
~
/d s' y
[
.4
,' I e
'e 60 -
ZTW t
e l
.E I
40 -
1 l
e t
,i
,i '.
l 20 -
i.
5 90 180 270 360 t
Circumferential Extent (degrees) 10:29 07/08/% (ver 12) r' i
+
b
. - -. = - - - - -. _ - _ _ _ _ _ _ _. _ _ _ _ _. - - _ _ _ _ _ _ - - _ _. _ _ _ _ _ _ _ _ - - - _ _. _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ - _ _ _ _ - - _ _ _ _ _ _ -,
... - - ~ - - -
1 M ~. s=f -
4M st f
(
A.A,3bodyed M
.' ~
p.'.x
'l J
TVR R1C-C23 300 kHz +pt
% gf ggg/p J l
PMSCC Flaw Length Degraded Area = 43.04Z Length = 220 deg.
RttSE = 20.88 ET
+
360 Degree Degraded Area = 26.30%
Max Depth = 81Z COEF = 0.85 Flaw Length Degraded Area = 57.27Z Length = 225 deg.
Dia. = 0.8750 EST*
360 Degree Degraded Area = 35.90Z Max Depth = 98Z uall = o,0500 i
__.o..-
MT Estimate Est. Volts (1.0v) 100--
i
/
~
l
,o '
60 --
l
./
s j
t Im b
l 40 -
l
{
l g
l l
~.
l l '.
b 20 -
l I
R l
I I
t _.-
i.
d 90 180 270 360 Circumferential Extent (degrees) 14:14 05/30/96 (ver 09) i
l '
Flaw Profile for 4596 Exp F Based on Amplitude Normaltred Voltage 300 kHz NR Plus-Point PWSCC Flaw Length Degraded Area = 31.25Z Length = 113 des.
Rr1SE = 11.26 WT 360 Degree Degraded Area = 9.81I Hax Depth = 532 COEF = 0.73 Flaw Length Degraded W ea = 28.65Z Length = 139 deg.
Dia. = 0.7500 EST*
360 Degree Degraded Area = 11.09%
Max Depth = 56%
uall = 0.0430
---o-..
ngg Estimate Ext. Volts 100--
80 -
60 -
ITW t
40 -
f **,
8 8
e s g
l
~,.-
20 -
a c
l
'n 1-90 180 270 360 Circumferential Extent (de9rees) 11:37 07/03/96 (ver 11) m m
-m m
o 42= _ _
-wm..
es-. am euaua. a a. u
._44-.m._
x,__
.s,_e.4.mm a
e
=
w.a.-,4,..
-.-.-.-_..a.s..--
.a.a
_..%,.--.w.
..%as---s.-#-.
_.-_m__-
...m.-m, 9
4 C
4n d
l I
w l
.N 1
w I
e k
e a
W l
3 h
o Q
4
~
l 4
0 4
9 3
A1 i
NO
(
t e
f
\\.
N 1
L o
c)
J e-
..l.l l
Conclusions Two Techniques Meet the Requirements of Appendix H for ID PWSCC at Expansion i
Transitions i
- Phase
- Phase and Amplitude Both Techniques Compliment Each Other Additional Tools for the Toolbox Only Provides a Measure of the Techniques Capability
~
-