ML20129K322

From kanterella
Jump to navigation Jump to search
Rev 3 to Monticello Nuclear Generating Plant COLR for Cycle 18
ML20129K322
Person / Time
Site: Monticello Xcel Energy icon.png
Issue date: 11/11/1996
From: Bonneau C, Rohrer R, Wegener D
NORTHERN STATES POWER CO.
To:
Shared Package
ML20129K321 List:
References
NUDOCS 9611200246
Download: ML20129K322 (13)


Text

. _.

1 i

l I

MONTICELLO NUCLEAR GENERATING PLANT Core Operating Limits Repon for Cycle 18 Revision 3 i

Prepared By:

Y

!/~ O' fS l

R. J. Rdint Date Senior Nuclear Engineer, Fuel Resources Reviewed By:

MMOd 4e "P.G. @tunte tll12l%

D.G Wegener ~

Date Superintendent, Nuclear Engineering - Monticello i

Reviewed By:

f[/ w[ /

Lset

// -//- 9 [

cs 1 C.

. Bonneau /

Date P ess anager, Fuel Resources

// N h

Reviewed By:

erson Date Director ' kensing and Management Issues l

9611200246 961114 PDR ADOCK 05000263 j

p PDR Monticello Cyc!c 18 Core Operating Limits Report. Rev. 3 Page 1 of 13

This report'provides the values of the limits for Cycle 18 as required by Technical Specification Section 6.7.A.7.

'Ihese values have been established using NRC approved methodology and are established such that all applicable l

limits of the plant safety analysis are met.

This COLR incorporates the SLCPR change described in Reference 1. The SLCPR has changed from 1.07 for j

GE10 and Gell fuel to 1.08 for all fuel in cycle 18 with the exception of the four GE12 LUA bundles. The SLCPR for the GE12 LUA bundles is not impacted by the Reference 1 analysis, The GE12 results presented in this report are based on a SLCPR of 1.09.

This report complies with the verbal agreement between GE and the NRC with regard to modification of the MCPR operating limits (Reference 1) to reflect the 0.01 change in SLCPR for Monticello Cycle 18. Also, the power and flow dependent MCPR curves (Figure 3 and Figure 4) account for the 0.01 change in SLCPR.

l

{

This report includes an additional MCPR penalty for operations with a single recirculation loop (Reference 2).

1 This revision includes stability exclusion region definition, buffer region definition, and power distribution limits s

as required by amendment 97 to Monticello's operating license approved by the NRC in Reference 3.

Reference 1:

Letter from C. Papandrea (GE Nuclear) to K. S. Schnoebelen (NSP), " Safety Limit MCPR Calculation for Monticello Cycle 18", May 8,1996.

Reference 2:

Letter from David Pribyl (NSP) to Dan Wegener (NSP), " Monticello Cycle 18 - CPR Penalty in Single Loop Operations", May 17,1996.

Reference 3:

Letter from Tae Kim (USNRC) to Roger O. Anderson (NSP), "Monticello Nuclear Generating Plant - Issuance of Amendment Re: Implementation of Boiling Water Reactor Owners Group Option I-D Core Stability Solution (TAC No. M92947)", including enclosures, September 17, 1996.

Rod Block Monitor Operability Reauirements The MCPR limit associated with the Rod Block Monitor operability is:

MCPR < 1.65 Whenever the monitored core MCPR is less than 1.65, a limiting control rod pattern exists and the RBM system is required to be operable.

Reference Technical Specification Section 3.2.C.2.a

- Rod Block Monitor Unscale Trio Setooints Low Trip Setpoint (LTSP) s 120/125 of full scale Intermediate Trip Setpoint (ITSP) s 115/125 of full scale High Trip Setpoint (HTSP) s 110/125 of full scale Reference Technical Specification Sections: Table 3.2.3 Item 4.a. Table 3.2.3 Note 8.

4 l

Monticello Cycle 18 Core Operating Limits Report. Rev. 3 Page 2 of 13 w

. - ~ - -

l l

i j

l Minimum Critical Power Ratio

. The Minimum Critical Power Ratio (MCPR) limit shall be determined for two Recirculation Loop Operation as follows:

l If thermal power > 45%, then the MCPR for GE10, Gell, and Siemens Fuel is the greater of:

1.43

  • Ke (Kr from Figure 3) or MCPRr from Figure 4.

If thermal power > 45%, then the MCPR for GE12 Fuel is the greater of:

l l.47

  • Kp (Kp from Figure 3) or MCPRr from Figure 4.

If thermal power s 45%, then the MCPR limit is obtained from Figure 3, if in operation of a single recirculation loop, then the MCPR limit as defined previously by two recirculation loop operation is increased by the following adders:

0.01 AMCPR to account for core flow measuring and TIP reading uncertainties.

l 0.07 AMCPR to preclude fuel failures for a 1 out of 2 Pump Seizure Event (Reference 2).

l l

l Reference Technical Specification Section: 3.11.C.

i l

Power Flow Operatine Man i

i l

The Power-Flow Operating Map based on analysis to support Cycle 18 is shown in Figures 5 & 6.

Anoroved Analytical Methods NEDE-24011-P-A Revi1

" General Electric Standard Application for Reactor Fuel" NSPNAD-8608-A Rev 4 "Re!oad Safety Evaluation Methods for Application to the Monticello Nuclear Generating Plant" NSPNAD-8609 A. Rev 3

" Qualification of Reactor Physics Methods for Application to Monticello" ANF-91-048 (P)(A) Rev 0

" Advanced Nuclear Fuels Corporation Methodology for Boiling Water Reactors-EXEM BWR Evaluation Model," Siemens Power Corporation NEDO-31960-A "BWR Owners' Group Long-Term Stability Solutions Licensing Methodology," June 1991.

NEDO-31960-A, Supplement i "BWR Owners' Group Long-Term Stability Solutions Licensing Methodology (Supplement 1)," March 1992.

l l

4 Monticello Cycle 18 Core Operating Limits Report. Rev. 3 Page 3 of 13

Maximum'Averare Linear Heat Generation Rste as a function of exposure When hand calculations are required, the Ma.imum Average Linear Heat Generation Rate (MAPLHGR) for each fuel bundle design as a function of average p'.anar exposure shall not exceed the limiting lattice (excluding natural Uranium) provided in Table 1 (based on straight line interpolation between data points) multiplied by the smaller of the two MAPFAC factors determined fram Figures 1 and 2.

The MAPLHGR limits in Table I a:e conservative values bounding all fuel lattice types (excluding natural Uranium) in a given fuel bundle design and are intended only for use in hand calculations as described in Technical Specification 3.11.A. No channel bow effects are included in the bounding MAPLHGR values below because there are no reused channels. MAPLHGR limits for each individual fuel lattice design in a bundle design as a function of axial location and average planar exposure, with appropriate channel bow adjustments (no channel bow effects for Cycle 18), are determined based on the approved methodology referenced in Monticello Technical Specification 6.7.A.7.6 and loaded in the process computer for use in core monitoring calculations.

The SPC 9x9-IX Qualification Fuel Assemblies (QFAs) will be monitored to the GE10-DXB333-10GZ M'.PLHGR and LHGR limits to protect the steady state LHGR limit of the QFAs. When hand calculations are re. aired, the GE10-DXB333-10GZ MAPLHGR and LHGR limits can be used to calculate the appropriate limits for the QFAs.

)

Reference Technical Specification Section 3.11.A.

1 Core Stability Reauirements Stability Exclusion Reeion The stability exclusion region is shown in Figure 5 and is given in greater detail in Figure 6.

Stability Buffer Reeion The stability buffer region is shown in Figure 5 and is given in greater detail in Figure 6.

Power Distribution Controls Prior to intentionally entering the stability buffer region, the hot channel and core wide decay ratios will be shown to be within the stable portion of Figure 7. While operating in the stability buffer region, the hot channel and core wide decay ratios will be maintained within the stable portion of Figure 7.

Reference Technical Specification Section 3.5.F.

Monticello Cycle 18 Core Operating Limits Report, Rev. 3 Page 4 of 13

Table 1 MAPLIIGR for each fuel type (kW/ft) i

Exposure GE10

.GE10 -

GE10.

GE10. L

,G Elo,

MWD /STU l

' 10GZ

'-11GZ 10GZ1 -

- 10GZ'

< 11GZ,

l 200 10.92 10.36 11.19 11.64 10.71 1000 11.05 10.47 11.42 11.70 10.82 5000 12.01 11.55 12.20 12.30 11.78 l

10000 13.17 12.95 12.65 12.88 13.17

)

15000 12.95 12.97 12.47 12.65 12.88 20000 12.21 12.22 11.81 11.97 12.25 25000 11.52 11.52 11.21 11.31 11.60 30000 10.90 10.90 10.67 10.67 10.95 35000 10.29 10.28 10.14 10.02 10.30 40000 9.63 9.61 9.55 9.21 9.61 45000 8.98 8.94 8.97 8.40 8.92 50000 6.50 6.45 6.49 5.93 6.43 Exposure

. Gell-Gell-GE12- ~

l DUB 348 DUB 347 '

DSB330-l MWD /STU

-10GZ

-10GZ 12GZ.

l 200 10.32 9.96 8.54 l

1000 10.47 10.02 8.57 5000 11.21 11.04 9.31 10"X) 12.21 12.32 10.25 15000 12.06 11.93 10.I3 20000 11.40 11.32 9.78 25000 10.71 10.73 9.45 30000 10.03 10.15 9.08 35000 9.37 9.56 8.66 40000 8.7 I 8.91 8.19 45000 8.05 8.27 7.46 50000 7.38 7.59 6.70 55000 6.70 6.62 5.99 57680 6.28 l

58050 6.06 60060 5.31 l

Note: Table 1 is for two recirculation loop operation. For single loop operation, multiply these values by 0.85.

l l

l l

Monticello Cycle 18 Core Operating Limits Report. Rev. 3 Page 5 of 13

l j

l Linepr Heat Generation Rate Table 2 LHGR for Each Fuel Type (kW/ft) l GElo-

GE10-

- GE10 -

GE10-

- GElo- -

. Gell.

..! Gell.;,

'HXB324 HXB324 HXB324. '

DXB333 DXB324 z.

DUB 347- -

' DUB 348.

_s GE12 ;,

DSB330 '

l

-10GZ.

11GZ

' 10GZ1

.10GZ 110Z,

10GZ :

- 10GZ.

12GZ 14.4 14.4 14.4 14.4 14.4 14.4 14.4 11.8 l

Reference Technical Specification Section: 3.11.B.

l I

t i

t i

l l

l l

l t

Monticello Cycle 18 Core Operating Limits Report. Rev. 3 Page 6 of 13 l

j Monticello Cycle 18 w

j Power Dependent MAPLHGR Limits e

i i

i i

I i

1 I

I I

I i

I O

g i

I l

I i

l I

g i

i i

l I

i i

-s i

1 1

1 I

I a

E g"*

1 I

I I

I.

I I

l

{

0.8 - - - - - - - - l- - - - - - - - j- - - - - - - j - - - - - - - - l - - - - -

- - - - - - j - - - - - - - -l - - - - -

G I

I I

I I

I I

M i

I i

l i

l j

i I

I i

i I

i g

s v

i l

i i

i i

1 0.6

- - - - f- - - - - - - - - - - - - - - -.

I' R P < 2 5 liffRh 1.1MITS ItEQUlitED l

i l

I g

A I

I' I

FOR 45% 2 P 2 25%:

,"i g

i i

I l

l l

MAPFAC = 0 635 t 0.0075 (P - 45)


l-p L_______L____-.__l______-.

FOR CORE Ft OW $ 50%

O 0.4 l

CORE FLOW > 50%

l A

g cd l

M APFAC - 0.530 + 0.0075 (P - 4 5) g i

i p

CZ l

l 1

I I

l t

t FOR CORE Ft.OW > 50%

M l

l 1

I I

0.2 - - - - - ' - - - - - - - ! - - - - - - -- - h -- - - - - -

't- - - - - -.

FOR P > 45%

r l

l l

l I

MAPFAC = 1.0 + 0.006909 #.P - 100) p l

l 1

1 1-I I

I i

l t

i I

i P = POWER (% RATED) i I

i 1

0.0 I

i 20

.30 40 50 60 70 80 90 100

,e

{

POWER (% 11ATED) c

l Monticello Cycle 18 i

w j

Flow Dependent MAPLHGR Limits a

E; 1.00

,-i i

i

/

9 i

i i

i i

i i

I i

g g

l l

l l-l

]#

i I

l 100% Power MAX FLOW = 107%

7 0

0.9 g- _ 3- - _ r - - _r _- r - - r - -

I_ _

_I-r r - - - -

t 45% Power MAX FLOW =112%

j R

4 I

I i

1 MAPMULT i r

5' DW I

I I

I I

I I

I I

I E

0.90 -- - - L - - L - - L - -

L- - -

l- - - L - - I -

I - - L - - - -

5 l

l

]

l l

l l

l MAPFAC,.= MINIMUM (MFRPD,, MAPMULT,)

v I

i 1

1 1

1 I

i "j'

g 0.85 - - - - p - - - p - - - l- - - j- - - - I- - - - l- - - l - - - - j - - - i - - ~ MAPMULT,* = 1.00 FOR FLOW > 80%

,1 l

,1 1

= 0.94 FOR FLOW < 80%

1 I

1 3


r---r-a,---

O 0.80 r

- - - l- - - - r - - - -

- r - - r - - - -

[

l l

l MFRPD, = MINIMUM (1.0, nF t-b)

{

t 3

I I

I l

L S

0.75 - - - - h - - - h -

r - - 'r - - - b - - - b - - b

- I - - - j._ _ _

F = CORE FLOW (% RATED) n = 0.006758 O

i i

i i

i i

i i

b = 0AH4 0.70 --- t -

L___L_--

_____-_L__-

g i

i i

I I

i i __- I

()

I i

i l

I i

i i

i 1

I i

I i

l i

i I

3 0.65 - - - - i - - - a- - - - i - - - - l- - - - l- - - - i - - - -- i - - - - i - - - i - - -

i I

I I

I i

i I

I g

I I

I i

i 1

1 I

i h

0.60

'r - - 'r - - - l- - - - l- - - - E - - - h - - [ - - - - - [ - - -

1 I

I I

l 1

I I

I i

l i

i i

i l

i I

0.55

- - ' - - b - - - l- - - ~ }- - - - b - - - b - - b - -- h - - - l - -.

  • MAPMULT,= 0.94 BETWEEN 80% AND r

I 1

I i

i i

I I

90% CORE FLOW IF RATED MCPR LIMIT l

l l

l l

l l

j j

(MCPR(100)H 1.28 0.50 30 35 40 45 50 55 60

-65 70 75 80 85 90 95 100 105 110 J

l CORE FLO.W (% RATED) i 2

a l

Monticello Cycle 18 w

K Power Dependent CPR. Limits W

f 3.6 i

R I

I I

i o

3.3 L------

L------

L------

L--

FOR P < 25%: NO TIIERMAL LIMITS MONITORING

--- I CORE FLOW > 50% i i

REQUIRED - NO l.lMITS SPECIFIED g-3.0


t--------i-------t---

g- - - - t- -

l l

h

- - - g - - - - l - - - - - - i- - - - - - - - - - - - - r - -

~

FOR 45% > P > 25%:

2.7 g

McPRp - 2.06 + 0.02i (45 - P)

- - - - l-- -

l- - - - - - - FOR CORE Ft.OW 5 50%

2.4 L-2.1 l-- - 1

-)- - - - i- - - - - - - - t- - -

MCPRp = 2.64 + 0.031 (45 - P) a I

i t--------s-f l

1 CORE FLOW 5 50%

1 FOR CORE Fl.OW > 50%

b 1.8 - - - - l- - - - l- - - - - - - - j- - - - - - - - l- - - - - - - j- - -

P - POWER (% RATED) 3 I

i l

I a

1.5

}

l l

l 1

I I

I FOR 100% > P > 45%

W l

1 1

I I

1.4 - - - - [- -

L - - - - - - - l- - - - - - - L - - - -- - - p -

Ke - 10 ' 0 M397 (t"- P)

I I

I I

1 i

i l

i P = POWEll(% RATED)

[

l I

i I

g g

g g

g l

1 1

1 1

1 I

I

[

1 5

l i

I I

r 1.2 ----l---tl--------i-----%------r-------t--------t------1--------

I I

i I

I i

I i

l i

i 1

I i

t l

l 1

l I

I I

I I

I I

I l

t 1

1 I

i l

I

^

I l

l l

l 1.0 1

20 30 40 45 50 60 70 80 90 100 l

,e f

POWER (% RATED) t c

i

.. ~.,,

m

[

Monticello Cycle 18 y

Flow Dependent CPR Limits E

1.7

,[

l l

l l

FOR W (% RATED CORE FLOW) > 40%

c a

i i

i I

i i

i i

MCPR = MAX (1.25, A W /100 + B )

g, g

g c y

1,6

_______S______#______-l_______I__--_-__

=

E l

l l

FOR W (% RATED CORE FLOW) < 40%

l e

E L

i I

i l

l MCPR =(A W /100 + B )

4' 1

1 r

r c g

7

?

1.5 - - - - - - - j- - - - - - f - - - - -j - - - - - - - -l - - - - - - -

  • [1 + 0.0032 (40 - W )1 c

.i 1

i l

i i

l l

I m

I i

i i

MAX FLOW A,.

Il g

,,3 Cd i

I I

I d;i-


b,------t,----

r, ------l-------

107.0 %

-0.454 1.636 b

1.4 i

u I

I I

i 100% Power MAX Ft.OW = 107%

l l

1 I

I 45% Power MAX Fl.OW - t 12%

1.3 - - - - - - - l- - - - - -

- - - - - - d - - - - - - - l - - - - - - -i-

- - - - I- -

- - - [ - - - - - -! - - - - - -

1 I

I I

I I

I l

i I

I I

I I

I I

I I

i l

i I

i i

i l

i i

i I

i i

i i

i i

1.2 ------ l4- - - - - - ; - - - - - - j - - - - - - - j - - - - - - l - - - - - - - l - - - - - - l - - - - - - - -i - -- - - - -

1 I

I I

I I

I i

I I

i l

i i

l i

l i

i l

i i

i i

i l

i l

I i

i 1

i 1.1 g

20 30 40 50 60 70 80 90 100 110 1

o CORE FLOW (% RATED) m i-

r o

q.

n

?

MonCicel1o Nuclear Generating P1anL n

5 Power-Flow Operat.1.ng Map 9

i-;
y g:i-

-g::

Operation not

.v.-

n h

w allowed in the iii O

l %

slanted shading area.

li

~

3 D

Tit.;; :.

'NI45

-i-5 1750-psin:!siMEs!9U'5!

Rated iEXCLUSIONll

}

E;

~

gg Power l REGION:

p E

iImmediate i!

i-J 1500-3-

y-f-

.f-Iexit

'kd)di B

required 3

in the i

}

dotted l

j, '

l area.

u i

g o

7-I-

  • 1250-

'i!?!

Ni:^k uvit%H i--

5 jb; i

5Il g

La ni

/

a g

4
  1. 5 ll lih!

g d- -i- -

+

- -i - -

t.si 1

  • i i

3 k2000-dd$

g

$jjykis di,rj gr "".

O BUVFER REGIONE u

'v l

--Poker dist-ribd t ion -

U 750-

'O cobtrols required in f.-

thy double-

^

hatched area.

500-

-~ -

+-

l

~

Legend z

o.r u.

es.c.i.c w 250-hCMSL.NSCM)..C KQUlM50n..

n

[

.tes % w.o t

o * * = =*d

~

y'$ y,lC

could differ from.

mm%,

that sfiown.

im 2m auder_essu i

tssn ness La ts. ten w.r.sa cess sta e

8' '81 "- -

l O!..

,u.

s,.

0 10 20 30 40 50 60 I

~

Rated 1

2-Total Core Flow (MLb/Hr)

~

Flow i

4

=

0 m

f Monticello Nuclear Generating Plant ft i

Power-Flow Operating Map en O

90 o

nm,-,,i, im.a, nuiin,iniy 1

Operat2on not nitt..

a 4

allowed in the 3

!!@i!!!:ji.;

lanted shading area.

9Ts! :i, iigiij g

lg,

. g.

. 4 o

ss -i d.$

U 4!4i!VYiEli Vh %

Ni p

?

b 85-V h

3

8%

i!!i--

. 3..r

..IE.;I!:n.

- -~5

8"!

-li im,i.

M.

r n;:

i

xts:::..

h'd A$dS3h '4!!Hari kr. jj' i'., } "

E~.

80- d r.4 =!

sii tEi E'I d.W

))i if 3

Mn:

IN 5!.

W!!} L

=

E 75-h i

.n3'M 5

. :: 3.

ji!!-

-i.-

1:"-n i iti"n-m i

+

i i

m

a:i E!i:-

ji iri

.:E

8 :-"

O

=

me!!ir 1

d

$ij

'j P;!'.

h 70- il

- 5 h

g

i'!:"i'i!!!

' ~i 5

. m is i] 6::a=2mim si!!!!i.!!!!!!!di!Eini!!!j i

iii Fi
! !!! EXCLUSION

!!I'!!.

SiI !!! I!!!l

~

3

. ::' "iht, REGION:

it?NE!Elidi!!.lw BUFFER 5-

"k 65-d$A' b.E!l'}

j

' !![

i REGIONE

..:r

'i l'

!! !!! 1mmediate exit i!

S

' U

..2 diijil i:

m:

.gi J

O

$,;;,j !? required in the 4 60- ="

iP, "E dotted area.

9"!y' {;jN !"!

. F P5iJBF"ifistFibdiFrs'

.l ib controls requ ired in

': ! 75=='F"*?* =

ni!

2 i

h

..i r in siipigi!!4nillii ii!!iliij!!lti'i9t:!n!

"'lY$;ijp;;

i ;.g che do^b1e-

!i E:ii u

gg i

. ;i

+

^,

~

- {- "

hat-chett areas f 55-9 m

@ 50-

~+-

-~+- - -

i DG 45-

~}"

"+

?-

"k-

~

..l..

40

..i..

..+..

I.

Actual Natdral iculation could differ E omithat shown.

^

35- -


:-------~----- --

r u

30

3 15 16 17 18 19 20 21 22 23 24 25 26 Total Core Flow (MLb/Hr) o s

h m

. m

Figure 7 1

Stability Criterion Map 1.0 1

0.3 -

0.8 PotentiallI Unstable 0.7 -

c.

0.6 -

K

-l

<o 0.5 -

c

[

Stable I

0.4 -

oo l

0.3 -

t

.\\

I 0.2 -

l 0.1 -

0.0 i

i 6

O.0 0.2 0.4 0.6 U

P f

CHANHEL DECAY RATIO g

l j

e i

I i

Monticello Cycle 18 Core Operating Limits Report, Rev. 3 Page 13 of 13 l

.