ML20128K152
| ML20128K152 | |
| Person / Time | |
|---|---|
| Site: | Comanche Peak |
| Issue date: | 05/08/1984 |
| From: | Popplewell L TEXAS UTILITIES ELECTRIC CO. (TU ELECTRIC) |
| To: | Williams N CYGNA ENERGY SERVICES |
| References | |
| NUDOCS 8507100495 | |
| Download: ML20128K152 (18) | |
Text
{{#Wiki_filter:, ) i hLf TENAS UTILITIES GENERATING COMPANY P. O. BOX 1003 CLEN ROSE. TEXAS 18043 May 8, 1984 ,C P':'--- 'I,} I'E*2 LCCGID: S//p ff y CYGNA Energy Services Los wo,, g /# 101 California Street Suite 1000 IEE8 .2. /. / f,,, g San Francisco, California 94111 I /' /e a A Attention: Ms. Nancy Williams. Project Manager u
SUBJECT:
COMANCHE PEAK STEAM ELECTRIC STATION CYGNA REVIEW QUESTIONS ~
Dear Ms. Williams:
Attached are TUGCO's responses to CYGNA's question 2 of March 16, and q(uestion 2 and 3 of the April 23 telecon between Mr. CYGNA) and Mr. D. Rencher (TUGCO). If you have any questions or comments regarding these or previous responses, please contact me or Mr. George Grace (Ext. 500). Very truly yours. TEXAS UTILITIES GENERATING COMPANY ~ ENGIN ERING DIVISION e0 L. M. Popp ewell Project Engineering Manager LMP/GG/1p Attachment cc: D. Wade J. Finneran File bmm % ~
- 82"28 tar 888886 fc W
^ a s ~ ca) MdVD fW be.p& j,.A e ^
I ,t March 16, 1984 CYGNA COMMENT: In reviewing a number of supports inside containment (foriexample, MS-1-003-008-C72K), CYGNA has noted tube steel with bolts through 2. In all cases, the rotation about Z in the the steel into inserts. In most cases, the rotation "STRUDL" model is released at the bolts.While this is conservative for the memb about X is also released. the subsequent calculations do not account for the possibility of A calculation by CYGNA prying by the tube / washer on the concrete. indicates potential design impact ~. 'Has the prying effect been con-sidered? If so, where is this documented? TUGC0 RESPONSE: As noted by CYGNA, standard practice for modeling tube steel attachment is to release the moment about the Z axis. the X axis is left to the designers' judgement depending on th ~ Mz was not considered because it was not felt to be signific configuration. existed at all. that there is no prying effect. CASE 1 - WHEN NO Mx IS PRESENT A finite-element model of a 6"x6"x3/8" tube supported by 2 bolts wasA STARDY defined using plate elements to model the tube. the tube model with a vertical loading indicates that the tube deflection due to bolt elongation and tube deformation exceeds the calculated tube Therefore, the tube displacement due to rotation at the pin support.will not make con In addition, since the tube is free to rotate bolt loading due to prying. by the amount indicated from the STRUDL output, modeling the support as See attached computations. pinned was correct for the STRUDL analysis. A ... 9. I.,,~.; ........g.. .*.;.,r,..'.
- . ;,'..':, :... r" h, ?.:
.o. J .?. .'. y. .. ).- .... (m,e... ' *:2 *- a..;t.':' I =X /;.:.- t 3 T3 A0#/8 lL -~t Z ]A TV88'CMNr4.5 4TYP,) $d'C r/o M 'g ~
Page 2 ) CASE 2 - WHEN Mx IS PRESENT A parametric study.of the loading was performed to analyze the effect the of bending moment Mz on the prying action which occurs due to g torsional load. For the study, a 4x4x3/8" tube with Ih" diameter inserts located at 20 inches on center was analyzed. The bending moment is introduced by the addition of a vertical load at the center of the attachment assembly. Two parameters were analyzed: a. Variable applied bending load with constant torsional load, Variable torsional load with constant bending load. b. below. Additional data Analyses were performed for the load cases shown presented includes the fixed end moment (FEM) calculated for th ~ pull load, had the connection been modelled as fix load. Loading No. Torsional Load Vertical Load FEM FEM / Torsion (in.lb) (lb) (in.lb) 1 4000 2000 5,000 1.25 8000 20,000 5.0 2 4000 50,000 12.5 3 4000 20000 ~ 4 4000 40000 100,000 25.0 40000 100,000 100 5 1000 100,000 40000 6 Each load case was analyzed to identify the mode of resistance of the assembly. Results for the first five analyses showed the l by the eccentricity due to translation of the torsional the tangent point of the tube corner. the end of the tube. l was developed in the absence of a torsional moment. Information The.following table summarizes the results for each load case. tabulated includes the following items: Loading torsion (in.lb); pull (1b) Expected bolt reactio a. b. Bolt reaction from analysis (1b) Maximum possible ben c. d. governs prying action (in. Ib) Sending resistance from analysis (in.lb) e. In computing the bolt reaction, the axial load was added to th
- by the point of tangency method.
/ f i ) Page 3 Loading loading. Expected Actual Bolt Max Bending
- A'ctual Bend'ns No.
Torsion Pull Bolt Load Reaction Resistance Resistance I 1 4000 2000 2600 2600 3200 1618 l 2 4000 8000 5600 5600 3200 2684 ~ 3 4000 20000 11600 11500 3200 2966 2886 4 4000 40000 21600 21400 3200 ~~ 5 1000 40000 20400 20300 800 600 40000 20000 20001 6-The flexibility of the connection under bending is due to the elongation of Loading No. 6 demonstrates that there is l the bolt from the tensile loads. no bearing between the tube and the washer plate if torsion is not present. Based on the results of this study, it is evident th considered when torsional loads are present. lated directly from th 4 l It is also evident that line to the tangent line of the corner of the tube. modelling the point with the Mz moment released is a more correct manne I modelling it as fixed.
- This moment resistance is established by assuming (from finite elem that the reaction to the combined torsion and axial load (wh l
Mz moment) occurs at the intersection of the line of tangency and the edg the washer (point C of figure 1). The distance between that point and the The reaction center of the bolt is 2 inches in the X direction (Mz lever i 4000 ). (this computed from 2(1.25) [ The resistance to the moment about the Z axis due to the t No increase in bolt tension would occur until However, when the actual this case is thus 3200 in.lb. this resistance is exceeded as a result of the pull. bending both torsion and bending (Mz)) is compared to the maximum bending resis due to pure torsion, it is seen that the actual value is always lower, ind ting njl prying action from the bending. i I i i i f ,~
_ j 4 lJ b i' ii 9 jI I t m ~ o f d- [t ~ (2 n u bl 7 W/dI ( 3 8 5 %.1 1 9 s i p 8 p I MU tf ~ l e ] J 3 G 0 e s 7 G 6 j S o 8 I 2 [l I nt. t l I s " Et 7 l ) zs [ 2 V sj i 2 1 m y i 2 ( b' z 8 i ] t N @ 2 1 9 i @Q> 9 /' 7 M [1 0 I 4 'r,'\\G^ ~ Teiv a m o a l4 s 1
- a 1
s w o d 's ~ ~. A ( 0 iy i l i f t ]4 _]P. GO h ] i c h 4 i d' a f 9 h' E' ** t 7 8 s 0 s [L D i r 0 4 G il J 1 ? e o O a 4 l W 6 s @}(@ J S l [ i I s S a D7 r 0 9 e; 51 [s e 7 7 6 4E t 1 f i 6 7 P x-A t Q 7 ] ] 8 o 9 7 b
- I' o
c r I 8 0 t fF G [s 5 7 ,2 C-7 d +- I 4 [ e D D w-1 ( I 'S ( j 0 t h' Tj G w l 0 o Sg o8 0 ! DT t 1 I l C [ 9 lo ( O O m ] 2 ( G 7 .w' i "4 Q [l Z( Q~ 2, f D t 7 I i' 3 t Yg 5. ~ j ]9 l ]g C 7 o 0 1 }p [ [ g* y 0 2 0 y j6T [ On l~ [3 u &. h ] ( q s i ~ n E l i} 3 s I %- , _1lg
- l
?.m i iI t y, "**n. E E %" ;,1_ 2 / TFB ,.T .~ _~ P . \\ O .? T~A.O UT.- ..t .~ h ' ..' rg l. l.
- llll l
.,ilIlt l1 ll i'
- j,'
~ ~ . ~... OF _ - ~.... SHEET _ ENGR.Y.d"L3 DATE b/8 /R ' _ CHK'DDDATE I'A E'Q: ~
- c..
CLIENT /PROJEb7 _ ' L SUBJECT .% ~ fBL ~/ STR Dh' euTPur i 7//C TM 80s.7 3 l'"4 0 M 7 sv0DE 0* 7..$/PS_ S 5 is Di= RE A C T *od C /1.5 2 5 f$ A TO LOA D C A $ G-f.o AD A a ...pu E DJECCTf DN e Y .2 : eme<4sAsc Y rNE csse iss ol= cons un A roon LOAD ......./.. p.__..... 3: DEAD ~ pf T#6 Sol 7 Cn sG RE AtrioM i Cf fyg aas) 7 pg y THE. To Tu is Loro ority ;.( P y =I~' toco rw ..... domen eE MODGL sri 1RDfpE F.E S.. t T- _. Ego.y THE
- tiv vca ric A u u
. j7,4 THE wmt rus R.G6CTlotJ 3 a. ,9 TH E 8 7 K!P M ULTIPLIE o SY. .. _ _FD A RE WIL L TdF Tv6 6 1-rA R D'I N E CgyGES'of AT THE t r MG MT.S , _ _,,,f,,, _ d17 4 v Statow Ndarassy D a s p t. A s N.o c wo.'srAtowc neuu - 2,'S / w to ' ru e ' mini.4vus V E It.T s c AL knP Scraen c.144 w lo* caeras.n (soi) 46 0.-I44v no'* - 2 5 l
- to'*':
AN D THE -2.54 10 THE TubG ~ gg 7g_,,6, ' (sos) 50 o r J A b l o ' ** -2.,548 lo -2 tacx 2.qly10' (50s) 6 6 --O.14t,wlo' - 2 5 6
- IO~1 cg.rt
- 2.5 6 Y Ip"L! ro,e ')7xe (sio) 7
- o. I47
- 10 BoLY (ass) 76 warg A
-o. 47xto** - 2. 5 9 v. to'*IY 10'i.L...g.gMft.QN..
- sts) 80
- o. i+9xio*' - h59 d.7 i xers l3u) 96 -o.14 9 s te * - 2,64 x lo'1 j ~ '.410.) loo - o,152 x to? - 2 6 4 x lo <szi) 106 - c>. ts2 s to - 2, 64 x 10'**'~ GYtN8...fA!cu4riod ~ i (us) ll 0
- o. 152 rio"
- % 4
- l0*
SNONS! Ar rCo.co36 6 %) (7b
- o. I S 2
- 10
- 2 5 9 v.10-2.. t (no) 180 4 O. /19x/0 - 2. 5 9 - x 10-*' '551) 196 4 i ..-o./49r10 - 2.5 6 v.10'T go$1">0.00p9 'J35) 20e -0..}47xt0** - 2. 5 6 t 10'* '33Q 206 1 -0.f47110~*~ - 2.5 + x to 2 l og (14o)210 - c.14felo~ - 2.'5 4 V l0 2-Y (3 41) 2 26 c.14 6x fo **~ -- 2. 5 l 5 l0' 3-1 f345)730 - c.14 A t 10' ~ 2.5 I u 10 1346) 2 56 - o. I4 4* Itf ' i % ) 240 1
i l. e April 23,1984 Telecon_ CYGNA QUESTION: In reviewing supports with welded attachments to the pipe, CYGNA confirms that stress in the pressure boundary is the resbonsibility 3. of the pipe stress organization (ref. CPPA-25,234 and TSBR #092). However, the pad or rolled plate is not qualified by Gi l l 1-001-005-C72K), a note appears on the design drawing that "W/A l In qualified in accordance with App. G of the ASME B&PV Code." l
- general, a) What is the basis for this check?
Please provide justification that pad stresses meet required Code b) i allowables if qualified per App. G. TUGC0 RESPONSE: The basis for the check in accordance with Appendix G is to assure that the stresses are low enough that protection fromThese stre 3. a) non-ductile failure is provided. involved are lower than the design allwable stresses, Since the Appendix G allowable stresses are lower b) The attachment welds are designed utilizing the NC-3000 allowable ' stresses. i
t Agrjl 23,1984 Telecon_ CYGNA COMt1ENT: CYGNA has noted instances where bolt holes in baseplates' are 2. than permitted in NF-4721 (a)-1. (1" Q Hilti with a 1-1/8" hole) and CC-1-087-004-A3 What documentation justifies the use of oversize with a 2k" hole). holes? TUGC0 RESPONSE: Part (a) addresses the com-This response is considered in two parts.ponent cooling an addresses 1" Hiltis with 1-1/8" holes in general. It is general practice on site to provide 2-1/8" diameter Similarly a) This is an isolated case. holes for 2" bolts. designed pipe supports in the main steam and feedwater systems were reviewed for oversized bolt hole conditions and shear)*, the oversized holes will be grouted or shimmed to comp found. with Code requirements. Enveloping the worst case load conditions gives an interaction 1 of: T V 20142 1236 i. , VA, R OT6, N U6T = 0.366 61.0 TA using SA-36 bolt allowables, b) See attached. f +... 9
) DESCRIrl: 1: C i r.it cite pradtic s permit the use of 1 -1/8" holes (1/8" omrsized) hilti in r he m: port ie..2 plate installations ining 1" hilt inl l.4. 1" to !a ov.frsized 1/16".In addition, the attached letter from iscli ".1 for loits 1...ger than 1". 1/4" -11c.'.t a 1 1/8" lole for a 1" Hilti. Iti. f up to 1/d" for 1" bolts fabricated from lulting ma Si: : Site design have conservatively assumed the hilti
- 1. 3 1:.n (10XSI.
Engineerin3 has a ' g.ar-hilti toits to be around this strength.s. - ifically ad e: ..us thc.o oversize provisions. 'r.a v!o : !!ilti lietter indicates the minir. n yield for Hilti 'Ihe co.>'ition. ' Ale /!aficiency is a code violation. b its is W SI. is vlica!>1e to cipproximately 400 Unit 1 supports. COMMFAfS: Pasad ugon Hilti load dJflection curves (attached) for the 1" and 1-1/4" hilt i bolts,1" tolts have essentially the same flexibility Ebr as 1-1/4" laolts for loads up to 30 KIPS in 4000 psi concrete.te instance, the deflection of the 1" bolt at 30 KIPS is.35." At ultimate deflection of the 1-1/4" bolt at 30 KIPS is.30." Ir ad, the deflection of the 1" bolts was.56", and the deflection of the 1-1/4" bolts was.60". ite - Tbse curves were for the 10-1/2" embedment and were a composWe have at of 3 tests on each bolt at that embedment.4-1/2", 8-1/2", and 10-1/2" emb actual test data also for Tie following table summarizes the results: Average Displacement at Ultimate Ioad (in.) Embednent (in.) Bolt Size (in.)_ .32 1" 4-1/2" .38 1-1/4" 5-1/2" .52 1" 8-1/2" .32 1-1/4" 8 .48 10-1/2" .42 1 1-1/4" 10-1/2" Based on these averages the safety factor to failure based on ultim deflection, and assuming a worst case condition of 1/8" deformatio 1 bolt to bring others into bearing is: .32 2.56 M = 4 1" 1/2" Emb. = .52 4.16 M = 1" 1/2" Dnb. = .48 3.84 1" 1/2" anb. = ~TK = L ....-~w.- -w n.n.
) It must be noted In reality these' typesof deforrral.i.a..vly excur.i1 loit.<, actually could result 4 that the Code allot.able. of 1/16" f. r. te) for bolted plate mnnections. in as nuch as 1/6" defornution (t. ' et. I'..s2 novements average lins In addition field pcactice has d.< than 1/32". "N4Y: ' Ele condition will rot result in C.i' re of a 4upport or support 2nts &cs not constitute 'Ihe variance from code re p.'. ;;a will proceed with presenta-system. a condition adverne to plant safety. tion of our position to the ASoE Coh o wrii.Lc's. P' ~.. -........
_~ .--~ --... -. _..-... _. - ~. _.. _.- 1 - _ _ - ~ -.. - - a.._... -.... .. _..-. ~ ~.._ _.- - -.. - _ _ ~-. _ ~ - ~ ~.. - ... ~.....- -. wM._ h
- .ph 4... _ _.6_..
-.6-_ -N. 4. 6 6 e. .-M*M .CL...-_._ =. w.._ -:_ _.=..: ~~.:.;'""".---_ -7*--~..___ .~.e.._ ---._.wgww .is h .w. - .n=,- . = - - =s.-um.w- .m.m=-=.-m...m-s.e-=..mm.m.,.. .- =. - =.. - - -6.= e mim d= mm m. em - N-w..&.-m..--._. h- _ _...._w6 -m m waw e-= .pw6_..u.4mmMN.hh. e em._ --me.m.msp,.-mN.e m..mgw uum,. ~ w h 6mM e --em .em W.mumme N-mem.mN mud. gm-MGm. h w e 6. WGM4m.W***m w e.im.m.m.-.- 6 e emme m.m6--gums ..MWM.N'.mmm igm N" gi mN. . w.e w m--.h. men.e4e 9.h.Nm._um_m> --- - w'm.6mgm. me N@ .69_.m.m -- a semm. h.m m.6_ .WN_ W.M..m.e6m.w_.m. ems Mm um-w m guh.mme a.mW6mem w 6 W ee Www y .m e...m .a.mm.e. .__-._-..o.w>..=.j --u.f .e.- -. =. - .-w w mem.. -__N -m=.-m..e - ~. --dB'Eh .= %.= --.-gm.-,.. M p'e -W. m. m.f' . em .tu .e-m.m 6-ey6-WM h -.mm.m. N_6 66-- ..=..e -- e.mmnym._ --W-w em m m - ^ .mmunes.mme6 -We w - w . eum.h.-.m-b g .mm e -.m.=m. ..p p.- -.-.--i-5"g-o.w _ _..m_ W ..mme. O~ ._.T) e.m.me - &A--._--M.i_ _%..mm__. --me_..- ~ -- _ N.
-mm_
.=. ..m-...em-..w m i-* ~ s-4..66 e -um=. -.uwdame uD. 5 ~ - ^ S.u.... .. -. - - = = =me.- m - = m. m.m.d _..w em.- . W m_- % em-m.. .mmmmG6m .N _m = - - -. .-j,____--_--.-6p w-es,. eum@.- 6.. h es -g - 6 g hm._ w..ww ..w N_ g.m e m M m.6 mw mWepNwWw 4 .m.h O w-m m..W-h ow ..pg gm*.m h6W._.w.mim,.,__ W -- wp _ - m m N N- -.e,. -6_.- _ _- 6 '- %e N. - r ---m. om-.- N .._.c. -. gene. --w.aw_ -ei.e.- _-_~ s.-.u_~._-__.~_.-.- m _ .mmmme,_ ,...v.m - --ew e w .-6 M mmm.m m --m.. .~~. - ~, W _h_-m.umiee .m -. Nw-'N .6 ..N-6 N 6 h m --..m p.mmmmmmummm.Mw .Me. seameW9 .-e-w NM h._; .p. -. 4 ..w,_.._,,,, -qb. - - -. = = = - -- ,m, .O... . -1 ~ _ _ *.. = =. w m u =*-- M.-.. .ee.,, _m_- - ~--- - - - - =. + M ---N..u..e_ .mme m.6.mm.*w ..eh mm s p w%g. i...m. N- .g.-- 6 m. w . m mum h M... - -. -b.=.M-~ '-N_ ---mme.oww m.m m-mm =.- ~-6 MM%SG &.mg pw-- .=.m. - = * - - = - M e 6 m 6' --.= 6_ M W = N6meme 6 N .h emN g. .(-.=-+ene= -. NM'66eem__._N&w W,. N W=D 6+Ne 6 w e t.- -.,-.--._ 6.M m - m mNe e .MeM I a -. = m.- g -M 9,====,...-__ A_.-= mm e- =.-. -- = =. _..e-- .. i=m-..m==.=...e. --e.-.J --e== w-e ew M =--...=-umi m.m.---
==~==3 m__a.
o-T b..e. O .-m.n-=.-.__ -g. >.h www--.. _N. ...S -.t>gumm.mmmm.-- _---N_ _u 66*.N 6 6, ..me-d m.m.m.mmmm. --ge NN--- e e e.s. e.m mmm.m,e -mmmm q .S._ ---M_ -ew.=.---.%.m we e e.nyg 5 i~t ~.. - -@e-W 9.m .=.m=='- ,. p ~..imm e-N,.W.-.em. m.tmm e.m.- 'Q .n-g ,O .e m. A. -g em. . -. = - - _ _-- e ..-e.
==_.- Me .ammu==u. =g__ ._.-._=_-=:. O Y. 9,! -._ 4. _ _._ _. A _ _ --- m e um-emmme pMed, _ ..w F ,.p hm. _ -.__.A_-.___-.%* w emm em .~_.- 3 1."L... ~%_ f9,.. N. 'mm. 1 1 .e empu- ~ _ g. ww W w M OM. Qom +.w- ,,w .eb 1 -
- i. -~-._
3
- _-mk~.
x_- w-O_ . g e m N -w._ m --g_._.== . M _. E-N e w N m... .mme --M _h h, g - -.- - --... - = = --- . - _ _g y___ - s.~_- .. - a =. r g -..b-. = = _ _ _ =. = -. _.. -_ x .-~.- _.m, _. 1.-_ m -- c._ __N.-=.=;.__-.. - _ wa e.. .x. a;g __ 2 - = _N _ =- - ;. - g -*hw e e e..e. -w ~ - ~... N-N--
- .'D.#.N.=N..e mg 4
.unsmummumy. e w, ese 4N.. ~ ...en. -..e... --Nm gu .e. N.- -. = _a.m.e._m_.-.~_ --* p=.gb 7 . - - _e. -{.._.. -== N ..-.D..m.m sus .e-wmmu up- .e.... m. eeO 6-m e.e.m ewe.e ee.'.. . me.e.eo .w e 2 -.n-. -.mu e_. .e
- e. e
+# O.N 6 gum, em ..m.. w _
mm--
-w..w-6.Wem m..
- e. N m W
mei mm.e - aM. e b e. u e mu.mmb.wa... --mu -me.. m.m=.60 mmm ex =w.m.u-.m.mme .m.p e an Oe, W. h _M . amen w.e. e .g e.. ggm m w '-e w ..mmmm ..w eum.um wN_.6m'--- -eq... +em,e mD-a. w eWh h. _.6-e .m-.-eme. e_._ mmmme e,.mm=-i.s. .a 6-e,__MM -. e e..6. m.em. e .Me_ M.. e n.mm ---.e-i= = -e
- e. wee gw e
e. Nh -.6'_-__ W- - - _ _ e_.m.mm.m... e. ... w --m_.m-.=u..ee_.ew w-.ummm. .e_.e-em...sm e e p .e. ....M .h. .n'&.m e u.- bm ....._r .9..... gm... 8um w.m e-.._ m... N_..tA--_ e .m g g g...!_. ._.~-h._.e._.e.t* gw gw gh. N.w ,.m. mumm-_. .M. .*..a..a. w w ,e.. N ON.. em. -p mm ..W_
- 6. em.6. e..e.mp.__.
.m.... r_ p.p e p .e_m._.e.D.. .p e u.u -.~m+. M....,......... . ~..... .*6M6-M ** w h. mmy.. e...w ( . %.....~. _ I ..u,.y .g. e e_h m.e .-.....G.,....m... . D, g e...... ~ - ~5O........... .-_...u,.- m ..e_. M.. gun...*m. e6 gg.g,4epgmm** . p _. gw -. tem,.,s e-e.==...... --._...-.e..~.....o..--....v..... y@.w 4.m.m ..sm.quee.,,..,...g.,eamusee. . mu.-* .Q
- - ' "'=
m
- . 8
.ee.. e-. u m.=-. ..... = -. -_.......==-.=,. . ~..e 6_m.gp ,e .N (%.. h e.m._.uw. meam...... a.m .m. e.+. em me . w ,e. e e emam44. N.N h._e.-- .mm-...
- e... # g D..
m. e. 4 e.- e m. ex-.p*6M .h a .-..==.=s=== W g. - + - ,-h e .6awmem .h.wNww immpy 'm w.mm weem..m. .w w w wpN..g e.u.s.g G M M.u-h'NM. -.mu.m.-i...m.=........e. -. .mh. paSw. um.* w. S. unmm .m e .M M..-MDMW-Im.6memW66. a S. -4 .eg g. ..ge .e N 2 .-6.m_4.m... .N.-w.m. ...w eux.. a y 6+e.. ma g.-'N' m.m
- e eg.
e.-.. --e p a g men .e..e.e==.w.- e.
- 0 ".e. e s, .o.. a e e ~ _ _ .~_ j . _. _. - - -~. _ _ _ _ -. _.".Ly-.-.. .. ~. _ - ~ ~ ~ r* _ ~ ____. ~-__ i_.f...... _C_.. ~-_ . w_.. - -~ __w.- -_,, -N - m 2 _~ - g, _^ ~r'_-_-_ _3 1 ~, - .- %,.. f _ __... _-... _ _,. _ ___ _ y ---.7 ',g, =,* ., _,,, _ _.r. Q.., ~. - a _g _w-g .m y__ _.w-_- ~ _.... -f. -.~_4 g t 2 1...- ~. - y ,.u.......-_- . ~....- - ._e.._ 4 ._s i""~""N_ -w. . L' y _ p~ _ - ~ - .--t._. g_. -u - =- -_. g. n- ---_ -. _... n._ -. v. ~
- ~ " " " *
( .D s. _-t%.""."" """~"~2- -..4 y ~ - .A~ w -:. q .4.- s __ vi._...tb._ ~_- @g 6-.-. ,' -\\m _ i _ -_-.=.'*;-. - 1 e s .w as _~e ~.- E = G y. g g_._... .h ~ t-S y,,. ,w p w X IU - _n 3. em m l_g. I m ) Q -a_- l8a,f - p l 0 I - w' -- - -:n q_ 7 - - _ _.._v._. swig _ . m ___ es. g= x~ w---- r- --. _. _ -.y j n, a ~. = ~ tg 1 --.i-_ . x.,,. ' \\. M ( .._w. 2 -_ p ..1... _.....5_ t l __.%..._ ~ _... -. - -... i ,.4 .n....._- -.. ~ _ - _ _ - -.., -. - - - -.. -... ~.,. ..,._.__.,,,,wj,,,. -.=... I g ~_ _-.g. . m ... =. m-- 1 ..... = ...g..._.w... .......... ~.. .. _.....~ ......%.~.._.._.... ~ is...... . ~.. _.. ~ = - ....._._W..__.._-.%.._n.)._......... _. ,.._....w..___.._. _. l g ... ~... - %s . R.M..F... - i ~ _.. . _..a ~, _. "" ::";:* J.:- "l: :".- :... -. ~:"*'.0"*.:".**"__ --. _. ~ l .~
- '*"*~..:"*:*"*J-**.
l l I
.3 IRil l.: 181151 "U Z 5
- )-
DRll.t. BIT: Titif 1" ~ ) 3'" (. h i. ' 4000 PSI (IN#'RfiTl? SIE' Alt 1. SLIP IN.TIMATF* Hl.T
- FAllt.'Rii ;t'AMI tmtM!S lilE5?iTR
!!N!I.T'93.T SLIP tsAn DISPl.. IDAD DI SPl.. 23549 280 Shear 2" Melone Conc. 3" Spall Anchor licscription: 1 4 1/2 ., s :, 'Pj. 3" lx9 29971 39ti
- ", 2"
't Catalog i1 9 n ga H 3" 27117_ 285, ,l 0.1- ..~. ' 26879 Avg Ult. Lo id *~ 97
- t. :
~ . n. J. :.- I R1/2' 0'O *. 43887 .445+ Shear in Bolt 9a Spall Anchor ik:scription: 10 1/2" 1 x 12 47455 .500+ 9" Catalog #1-12 45671 620+ s 45671 Avg, Illt. to ed ,4 * ? i 34 % 7 440+ Shear in ' threads 4" Spall 1 le 1/2 4" 33539 .445 4" g 34 % 7 .560' 34491 Avg. Ult. Ir. al g e ~. ,i g i I i . % tual concrete Strength: 4027 pst
Ld:Lt.: ilit:rt it. ;..., i. y': - )g;r l ) IRII.I. RIT: llet 1 1 g f <j. ,. '.. Qjle CONCRim!* ;; ..r 4000 16
- SINMit.
4 St.IP LN Til4 ATE til.T-FA1Inste nanti nr..n::<i : ut.csga 11.'siit:2 swr si.ie ton 0 ,, 3,,,, ~' 40675 530 Siionr in Threads 7" Spa 11 AnchorDescripticiI: 11/.I 5 1/2
- I.:p-e I 1/4 x 9
,,- ii 37107 325+ 5" ('atalog 8114-9 ' g;e,,k,El 42816 l285+ - ;t. li 4" .g f. ' 8 i.t.':- 40199 Avg Ult. Lo :d.- i e.-
- g
., I s.t;. i s . i. r. s.,. G '
- s[y..c. l ;.
7" Spall Anchor
Description:
,.c. s 1 e y '. t i.. '. r .,.' l-51379 280+ Shear 8 Wedge 1 1/4 8 1 1/4 x 12 < ;: -i,! ' 49952 350* 12" Catalog #114-12 . ;- l 'r, 53520 340+ 9" 51617 Avg. Ult. Lo al s.. .t . i,(f,i :.
- */.
.? 0 s.
- i. k..y
.,1.. r; ..y 25690 .320 Shear in Threads 10" S n11 i ~ 1 1/4 10 1/2 47811 .340+ 8" ..g. 1 33539 .6006 16" V . Ult. fo ut (T.,, 35680 Avt 8 i. e- .iy s ',:.:.i.s I !s, a:e;..*6. s.:,. s - t b 1 1 4027 ps1 8'\\Ctilal ConCTcte Strength:_ ' _; ',. t I :o. r?. f 3,
, ', l _ ~ u =.. ..a .s.,. ) =_ .g W f?. na Hilti, Inc. Southwest Division Headquarters 2775 Villa Creek Drive D llss, Texas 75234 i (214)247 9044 March 27, 1984 Texas Utilities Services Co. Comanche Peak Nuclear Project P. O. Box 1002 Glen Rose, Texas 76043 Barry Hill - ITI Pipe Support Engineering Attn: (817) 897-4881, x. 418
Dear Mr.'*f.11:
22, 1984, pertaining to the Responding to your request on March d physical / technical characteristics of the Hilti Kwik-Bolt, enclose for your information, s a copy of the Hilti Kwik-Bolt ProductYour i Additionally, it should Management brochure. description is detailed on pages 2 and 3.be noted that Hilti Kw ASTM A108. Industry standard for baseplate bolt hole clearance is 1/16" for s greater . bolt diameters less than one inch and 1/8" for diameter ide-than or equal to one inch g in accordance to manufacture l lines. page 13. Barry, if you should need any further information, please do not hesitate to contact me at my Dallas office. Respectfully submitted, HILTI, Inc. e Jose Ramon Rivera, Jr. Division Engineer JRR/fw Enclosure t ec: G. Lyons .E. Lindsey \\ ~-_.._.;.-.......-
...,. c: a..,:. a... 4.,.-.,..',:.; ;. a,.m..,.,..,.gg .y..q.3_. ;.., g _
- = = s & :,=,a e,
-.,,.. r.' e .s 39,,__ ,y- .-r e.: .~.- p. Tc: All .d Safes Persennel " ? " "" W"N* From: Procuct Mrnag; ment
Subject:
HILTIKwik-Bolts Date: January,1984 S M f An _ cf g gg.yg b X;c '.y.m3 y - m c a.in u T'is s _ A m ^ ^ ' e o e e HILTl KWIK-BOLTS l l e f l l l 9 9 o e a v ~~ --. 2 - -
r ..:..l.a
- .;.1 =
-. e =.;;:~* - Ju* i - w .s .v.. .c.., ~- 4 4. v
- 1. INTRODUCTION 1.1 The HRtl Kwk Bolt is the modem means of fastening to concrete. The Kwk Bok is a f economic fastener. It has a proven record of performance under chaDenging conditions b a of constructen.
1.2 Essentie0y, the Kwk Bolt is a stud type expansion anchor. Its holding power resuRs kom segments which are forced apart against the side of a drined hole. "[nn M hM lhfN[.1(h5NIN;I; The KB is tapped into its hole. Since the ?TiQj'Si'$'.'M ("ENT.4$*3{q?....,ij.. diameters of the hole and anchor are the iM*E." same, the sides of the spring-steel expan-fk.d,*dhTM i.*.?.6 h Nfn. sion wedges, which protrude slightly from L.ph!' -q the anchor body, are pressed toward the hhh. M'Ih, ---LL_ c M tapered section by the hole wall. [7A iIM. I[NS I- $..w:cidf.:.i,k+$,$...N.$$}n.5,Nl}jh..i3hNiNd e.. g /QQs4&f&)WQ@I,;.p'@AEMM The nut is now tumed with a wrench. The ~ ?$'V.5 ' 1/$i.9.ht .'F TA wedges, being held in pos'rtion against the 2Q f,*;. x.T. '*:N.W i: M'~,I.fT' f *. hole wall by their initial tension, are forced !}.' 02.'W outwards against the side of the hole as H @f(C5 hy the tapered secten la pulled through them. . i.- . J""~~3-- .i;*.'s." The holding power of the anchor thus M.4[*.M'l't,3,y?.,V'J',,*<p',76'iM.kM,W.).?dW I) y ~ h ME d,. results from the force of expansion of 3 $55h23#E 'h* **d9'*-
- 2. PRODUCT DESCRIPTION 2.1 The Kwk BoR is simplied to the customer rea& W hstsIIntion. The Kwh Bolt co desctption provided h Federal Specncation FF S 325, Groyp II, Tpe 4, Cless 1, w 1
espansion anchors Tapered section Anchor body Nut q Wedges 1 [ m y, W..- E.xternal thread . Tape to hold wedges during transport and installation .}}