ML20128F022

From kanterella
Jump to navigation Jump to search
Summary of 930105 Meeting W/Bwrog in Rockville,Md Re Low Upper Shelf Energy Equivalent Margin Analysis
ML20128F022
Person / Time
Issue date: 02/01/1993
From: Mcdonald D
Office of Nuclear Reactor Regulation
To: Richardson J
Office of Nuclear Reactor Regulation
References
GL-92-01, GL-92-1, NUDOCS 9302110211
Download: ML20128F022 (82)


Text

- __ . _ _ . ___ . _ _

1

[

/ \,,g UNITED STATES NUCLEAR HEGULATORY COMMISSION n W ASHING ton. D. C. 20%6 February 1, 1993 k.....

MEMORANDUM FOR: James E. Ricnardson, Director Division of Engineering Technology Office of Nuclear Reactor Regulation FROM: Daniel G. Mcdonald, Senior Project Manager Project Directorate I-l Division of Reactor Projects - 1/11 Office of NLclear Reactor Regulation

SUBJECT:

SUMMARY

OF MEETING HELD WITH BOILING WATER REACTOR OWNERS GROUP (BWROG) TO DISCUSS THE BWROG'S LOW UPPER SHELF ENERGY EQUIVALENT MARGIN ANALYSIS BACKGROUND The subject meeting was held on January 5, 1993, at the Nuclear Regulatory Commi;sion (NRC) Heaaquarters located at One White Flint North in Rockville, Maryland. This meeting was held as a follow-up to the previous meeting with the BWROG relating to Charpy upper shelf energy (USE). Enclosure 2 provides a list of attendees and Enclosure 3 provides the BWR0G's presentation.

Appendix G to 10 CFR Part 50 requires that reactor vessel beltline materials maintain an USE throughout the life of the vessel of no less than 50 ft-lb unless it is demonstrated that lower values of USE will provide margins of safety against fracture equivalent to those required by Appendix G of the American Society of Mechanical Engineers (ASME) Code.

In response to Generic letter 92-01, all licensees indicated that, by their analyses, they are in compliance with Appendix G to 10 CFR Part 50 requirements. However, some plants indicated their estimated USE is below 50 ft-lbs based on NRC staff criteria. Additional information is required from these and a number of other plants to determine if acceptable methods were used to determine their reactor vessel upper shelf energies. Typical information required includes the bases for correlation factors used to convert test results from longitudinal to transverse specimen orientations and the bases for establishing initial USE in the absence of unirradiated test data. In addition, discrepancies between data in some of the generic letter responses and previously reported data need to be resolved. It is anticipated that, as the reviews proceed, some of the plants may not have adequately demonstrated that their reactor vessel upper shelf energies are above 50 ft-lbs, or that they will remain above 50 ft-lbs, through their end of life.

The BWROG provided a Topical Report, "BWR Beltline Material Upper Shelf Energy )

Estimation Methods," dated June 1992 (GE-NE-523-18-1191) and requested that s the NRC staff review and approve the report. This report was provided as a ,.

basis for establishing initial USE in the absence of unirradiated test data.

A meeting was held on July 13, 1992, to discuss the report. The NRC staff- 'N))(,%

indicated that additional information was needed and that additional d justification may be required to support the proposed methodology.

g_4/

05004G RElllRN 10 [GU.AIDRY CEA_ ? .!S ##&

En 22 M sl?8PDR L -

' ' ' ' ' '

  • I C -

)

u  %

s James E. Richardson February 1,1993 An NRC/ Industry Meeting on the Coordination of Reactor Pressure Vessel Integrity Issues was hold at the Crowne Plaza Holiday Inn, Rockville, Maryland, on September 2 and 3, 1992. Recognizing the issues noted above the NRC staff suggested that the industry perform generic bounding analyses. The B&W Dwners Group Reactor Vessel Working Group and some individual licensees had already begun to perform such analyses. Enclosure 1 lists the Owners Groups and the other plants who have submitted preliminary analysis. In addition, the NRC Office of Research has performed independent analyses to bound the different plant types and materials used in reactor vessels.

SUMMARY

The BWROG representatives presented tle information included in Enclosure 3 on BWR low USE equivalent margin analyses. The presentation included an introduction, scope of the analyses, method used, bounding nature, and conclusions. The BWROG indicated that it is postponing any additional effort on the USE estimation methods report discussed in the background section of-this meeting summary pending the outcome of the current equivalent margin analyses work.

The BWROG further indicated that the equivalent margins analyses is applicable to all BWR-2 through BWR-6 vessels. This is based on evaluating the bcundin conditions of the material chemistries, vessel fluences, vessel geometries, g-and plant transients.

The methodology, J-R curve (resistance to ductile crack extension) development, generic loading cases, limiting transients, materials,-and weld considerations used in performing the equivalent margin analyses were discussed in detail as outlined in Enclosure 3. The BWROG concluded adequate fracture toughness exists for the licensed life of the BWR vessels. They also stated that additional work and J-R curve testing is being done and that the:

results of this testing may demonstrate even greater safety margins for some vessel materials.

The NRC staff indicated that more rigorous statistical analysis and deterministic evaluation is needed to support the safety margins resulting from the analyses. Clarification is also needed on the temperature and sulfur content effects on the overall results. This will be taken into consideration i

during the additional J-R curve studies and testing. The NRC staff also indicated that additional-information on the Japanese (IHI); weld material is needed.  :

The effects of Anticipated Transients Without Scram (ATWS) on reactor vessel integrity were also discussed. The BWROG indicated that the peak pressure for the generic ATWS event would be bour,ded by the gressures assumed in their l

initial equivalent margins analyses hr WRs. The NRC staff indicated that l

its independent equivalent margins analyses for BWRs supports the.BWROG's l

1 A

1 1

James E. Richardson February 1, 1993 conclusion. The NRC staff det frequency of approximately 10', perermined conservative reactor year, peak for the four pressures, Nuclear Steamat an ATWS Supply System (NSSS) type vendors. The results of the NRC staff's evaluation for the four NSSS vendors is summarized as follows:

Vendor Peak Pressure (PSIG)

Babcock and Wilcox (B&W) 3800 Combustion Engineering (CE) 4100 Westinghouse (W) 3400 General Electric (GE) 1350 The NRC staff noted that the above results of its evaluation should be considered by the various owners groups when assessing the affects of an ATWS event when performing equivalent margins analyses.

Questions were raised by the BWROG representatives and Nuclear Management and Resources Council (NUMARC) representatives, who were present at the meeting, as to the review process for the equivalent margins analysis and'their use as the licensing basis. The initial request by the NRC staff for generic i bounding equivalent margins analyses was to assure that no significant vessel integrity issues exist while the staff completes its detailed review of the responses to Generic letter (GL) 92-01 to resolve uncertainties in the methods used in estimating actual USE and other discrepancies as previously noted in the background section of this meeting summary. This is also.the case for the individual licensees noted in Enclosure 1.

Appendix G to 10 CFR Part 50 requires that the equivalent margins analyses .

performed to demonstrate values of USE lower than 50 ft-lb provide margins of safety against fracture equivalent to those required by Appendix G of the ASME Code be approved by the Director, Office of Nuclear Reactor Regulation.

Where uncertainties or discrepancies exist, licensees, individually or as members of owners groups, may request NRC staff review and approval by the Director, Nuclear Reactor Regulation, of the plant specific or bounding equivalent margins analyses as their licensing basis. The staff strongly suggested that the review and approval of the various-owners group bounding equivalent margins analyses should be requested as topical report reviews if-several licensees chose to reference them as licensing bases. An'early decision by' individual licensees or members of owners groups, where uncertainties or discrepancies exist, to use the equivalent margins analyses.

as their licensing bases would assist the staff in effective use of its resources. Separate review efforts, topical re) orts or plant specific, would be initiated and fees-charged in accordance wit 1 current NRC policy. It was

m

.i i I

  • i i

James E. Richardson February 1, 1993 l agreed that the NRC staff would continue to coordinate work on reactor vessel issues through NUMARC, and that NUMARC would inform licensees through their owners groups of the available options for officially submitting equivalent margin analyses to the NRC.

Daniel G. Mcdonald, Senior Project / Manager Project Directorate 1-1 Division of Reactor Projects - I/11 Office of Nuclear Reactor Regulation

Enclosures:

1. List of Plants and Owncrs Groups Performing Equivalent Margins Analyses
2. Attendance List
3. BWROG Presentation cc w/ enclosures:

R. Dyle (BWROG/SNC)

K. Cozens (NUMARC) t.

1

  • t James E. Richardson February 1,-1993 agreed that the llRC staff would continue to coordinate work on reactor vessel issues through 11VMARC, and that 11VMARC would ir. form licensees through their owners groups of the available options for officially submitting equivalent margin analyses to the NRC.

Original Signed By:

Daniel G. Mcdonald, Senior Project Manager Project Directorate 1-1 Division of Reactor Projects - 1/11 Office of Nuclear Reactor Regulation

Enclosures:

1. List of Plants and Owners Groups Performing Equivalent f4argins Analyses
2. Attendance List
3. BWROG Presentation cc w/ enclosures:

R. Dyle (BWROG/SNC)

K. Cozens (NUMARC)

D_LSlRIEV110B:

Central File-NRC & Local PDRs PDl-1 Reading IMurley/FMiraglia,12/G/18 JPartlow, 12/G/18 WRussell, 12/G/18 JRichardson, 7/0/26 SVarga JCalvo RAcapra DMcDonald CVogan-OGC JStrosnider, 7/0/3 ACRS (10)

VMcCree

  • See previous concurrence / ,

3 OFFICE PDI-1:LA PDI-1:PM PDI-1:D EMCB* DE $N N CVogan Od l DMcDonalddvk RAcapra JStrosnider JRicha[dson~

DME 1 I/S/93 1/43/93 / /4T/93 01/27/93 2/)/93 0FFICIAL RECORD COPY FILENAME: G:\CCl-2\CCBWROG.MTS

-j

ENCLOSURE 1 k

e f

l t

Plants and Owners Groups Providina Eauivalent Marains Analyses

{

Individual Plants i

Nine Mlle Point 1  ;

Oyster Creek Haddam Neck Turkey Point 3 and 4 Zion 1 and 2 ,

Owners Groups B&WOG (Reactor Vessel Working Group)

BWROG CE0G WOG f

re .

. y:'

' ENCLOSURE 2 4

hMary 6.1993 tiRCIRWROG MEETING Et(ERIC LETTER 92-01 REACTOR __VE5jiEl STRUCTURAL INTEG111H AIILWANCE LIST PARTICIPANil ORGANIZA11QN Daniel G. Mcdonald NRC/NRR/DRPE Robin L. Dyle Bl'Q0G/SNC ,

Tom Caine GE Har Mehta GE Shane Plaxton GE Joe t.afferty New Yo:o ',ower Authority Lothar E. Willertz Penna Power Light Co.

Bill Maher PSEGG Jeff Wright Entergy Robert H. Zong Phila. Electric Co.

Christopher N. Orsini NRC/NRR/DRPE Keith R. Wichman NRC/NRR/EMCB Jack Strosnider NRC/NRR/EMCB Bob Jones NRC/NRR/DSSA Robert A. Casra NRC/NRP./DRPE Carolyn Fairsanks NRR/DE/EMCB Kurt Cozens NUMARC ED Hackett NRC/RES/MEB Kevin Graney Serch Licensing /BRCHTEL B. D. Liaw _

NRC/NRR/DE Alan Beard Ha111barton NUS Shah Malik NRC/RES/DE Lynn Conroe STS Barry J. Elliot NRC/NRR/EMCB

,y ., y ------<

~

.'. ENCLOSURt 3 l

BWR LOW UPPER SHELF ENERGY EQUIVALENT MARGIN ANALYSIS PRESENTED BY THE-BWR OWNERS' GROUP JANUARY 5, 1993 ROBIN'DYLE, SNC,-CHAIRMAN

' MATERIALS ISSUES COMMITTEE TOM CAINE, GE '

HAR MEHTA, GE l

1

4 l

BWR LOW UPPER SHELF ENERGY EQUIVALENT MARGIN ANALYSIS AGENDA 9:00- 9:30 INTRODUCTION DYLE BACKGROUND SCOPE OF ANALYSIS RESULTS OF WORK ON ASME EXAMPLES 9:30-11:00 EQUIVALENT MARGIN ANALYSIS MEHTA METHODS J-R CURVE DEVELOPMENT GENERIC LOADING CASES LEVEL A & B RESULTS LEVEL C & D RESULTS 11:00-11:30 BOUNDING NATURE OF ANALYSIS CAINE BWR/2 PLATES BWR/3-6 PLATES LINDE 80 AND "0THER" WELDS 11:30-11:45 BREAK 11:45-12:00 BWROG CONCLUSIONS & NRC FEEDBACK ALL L ,

Ilf1R0ECIL0lf DACK010MQ {

0 THE BWROG HAS BEEN WORKING PROACTIVELY ON THE UPPER SHELF ENERGY (USE) ISSUE FOR SINCE 1991

- CONCERNS WERE RAISED AS A RESULT OF GENERIC LETTER 88-11 WORK THAT A SIGNIFICANT NUMBER OF BWRS DID NOT HAVE INITIAL USE DATA FOR THEIR BELTLINE MATERIALS

- LOW USE WAS NOT EXPECTED TO BE AN ISSUE, JUST A LACK OF USE DATA TO QUANTIFY COMPLIANCE WITH THE APPENDIX G LIMIT OF 50 FT-LB THE BWROG FRACTURE TOUGHNESS COMMITTEE PRESENTED A REPORT TO THE NRC IN JULY 1992 WITH PROPOSED METHODS OF ESTIMATING USE BASED ON BELTLINE DATA AVAILABLE TO ALL BWRS THE NRC REQUESTED FURTHER WORK ON THE REPORT, WHICH HAS BEEN POSTPONED PENDING THE OUTCOME OF THE EQUIVALENT MARGIN ANALYSIS WORK

===================================

BWROG NEEDS TO KNOW WHETHER 50 FT-LB COMPLIANCE MUST BE DEMONSTRATED ONCE EQUIVALENT MARGIN FOR LOWER USE VALUES HAS BEEN SHOWN

===================================

, di IRIRQDHCIl08 DACKGRQUND ,

O IN SEPTEMBER, THE NRC, IN DISCUSSING THE PRELIMINARY REVIEW 0F RESPONSES TO GENERIC LETTER 92-01, STRONGLY RECOMMENDED THAT EQUIVALENT MARGIN ANALYSES BE DONE BY THE OWNERS' GROUPS NEEDED TO COVER PLANTS THAT COULD NOT QUANTITATIVELY DEMONSTRATE, USING NRC-APPROVED METHODS, THAT USE WOULD REMAIN ABOVE 50 FT-LB

- VIEWED AS A " SAFETY NET", 50 THAT IF A PLANT COULD NOT SHOW 50 FT-LB COMPLIANCE, IT WOULD NOT BE SUBJECT TO REGULATORY ACTION 0 THE BWROG AUTHORIZED THE EQUIVALENT MARGIN ANALYSIS IN OCTOBER 1992 ACCORDING TO THE FOLLOWING PLAN:

PRESENT PRELIMINARY RESULTS TO THE NRC - (THIS MEETING)

PERFORM J-R CURVE TESTING OF 302B MODIFIED PLATE - 3/93 SUBMIT FINAL EQUIVALENT MARGIN ANALYSIS REPORT - 4/93 0 BWROG OBJECTIVE OF THIS MEETING IS TO GET NRC FEEDBACK ON THE FOLLOWING:

COMPLETENESS OF THE EQUIVALENT MARGIN ANALYSIS PRESENTED BOUNDING NATURE OF ANALYSIS FOR BWR/2-6 PLANTS NEED TO DEMONSTRATE 50 FT-LB COMPLIANCE IN THE FUTURE

, t l ,

INTRODUCTION SCQPE OF ANALYSIS l 0 THE BWROG EQUIVALENT MARGIN ANALYSIS IS APPLICABLE TO ALL BWR/2 THROUGH BWR/6 VESSELS, BY EVALUATING THE BOUNDING CONDITIONS OF MATERIAL CHEMISTRY VESSEL FLUENCE VESSEL GE0 METRY ,

LEVEL A THROUGH D PLANT TRANSIENTS.  :

0 THE ANALYSIS ADDRESSES THE FOLLOWING MATERIALS:

302B MODIFIED PLATE IN THE TRANSVERSE AND LONGITUDINAL  !

ORIENTATIONS 533B PLATE IN THE TRANSVERSE AND LONGITUDINAL ORIENTATIONS

- SUBMERGED ARC, SHIELDED METAL ARC AND ELECTROSLAG WELDS LINDE 80 FLUX SUBMERGED ARC WELOS ARE TREATED SEPARATELY (4 VESSELS HAVE LINDE 80 CIRCUMFERENTIAL WELDS)-

a~r a -

r y

. l l

IRIR0D.UCTION ,

i I

REiULTS-0F WORL0fLASMLELAliP_LE.S O ASME SECTION XI WORKING GROUP ON OPERATING PLANT CRITERIA PREPARED SEVERAL LEVEL C & D EXAMPLE CASES T0 " BENCHMARK"  ;

THE EQUIVALENT MARGIN ANALYSIS METHODS  :

RESULTS WERE PRESENTED AT THE DECEMBER MEETING BY SEVERAL ORGANIZATIONS, INCLUDING THE NRC (BWR- AND PWR-TYPE CASES) AND GE (BWR-TYPE CASE)

- NRC AND GE RESULTS AGREED CLOSELY, SHOWING CONSISTENT APPLICATIONS OF THE METHODS l

l l

AS M E S E C. Tion .D .

OWR-TYPE PROBLEM >

Problem #4 (Level C Event)

Vessel ID = 240 inches Vessel thickness = 6 Inches Fla . orientation: axlal & circumferential Material: plate Initial RTNoT = 0.0'F Cu - 0. 35 Wt %

NI = 0.30 Wt  %

Unitradiated Charpy V Notch energy in longitudinal dirootton = 108 ft Ib Untrradiated Charpy V Notch energy in transverse direction = 70 ft Ib The J R curve is determined from Attachment 2 Fluid temperature, T, at vessel surface at any time, t, during the transient is T = 550 250(1 e o.it).

~

~

ASME Section XI, USE Sepdge 1,eyel C and D Bench Mark Problema .,

' Analyst Ref ' " " * " *

  • Probl6m #2 ." **...

Problem # 4 Ki Thermal K1 Pressure ' K1 Thermal K1. Pressure Ki Thermal KI Pressure Ki Thermal K] Pressure - ..

Circ. Circ. Axial ~ Axlat l Circ. Circ.

Axial Axial 1'- depth 1* depth 1* depth -

1" depth 1* depth 1" depth 1' depth 1" depth 20 min p = 1 ksi 20 min p = 1 ksi - 20 min p = 1 ksi 20 min p = 1 kal ABBCE B&W '.

se 37.6 19.T /1.2 219 ORNL W , ,

8.1, 48.0 38.5 1 36,8 17.4 32.3 Scrtrex 20.5 48.9 ac n.1 <t1, s.1 97 l37 -

so.s u.s so.s d j -

i l

s

ASME Nection XI, USlE S9pdge.1,eyol O and D Bench Mark PrtMess Analyst Pressuie That Just Satisities Stable Crack Extension Criterion in Appendix X. (psi)

Problein #3 Prob!om #4a j Problem #<

  • Problem #5 Problem #1 hroblem #2a Problem #2b Plate Wald Plate-  ! Plate ' Plate Wald Plate Axial Circ. Axlet Axial ' Circ ' Axial Axlal

~

ABBCE su = r B&W ' Yf7h " =_

$' \ ~

So75 l00

- ~

ti 09NL v.

W ..

> 8,000 5,750 5,250 :r8,000 2,880 Sartrax 4,420 7,820

$Os l$SbD _

fh ) ,

3300

. ~ = = ,

I k 4

Kr B ased an . A ec: 0. / 'I .

o k

ASME Section 'L, JSIE Smiga.t.cyel C and D Bench Mark Problems Analyst Pressure That Just Satittifies 0,1,-Inct) Crack Extension Criterion in Appendix X, (psi)

Problem' #2a Problem #2b Problem #3 Problem #4a Problem #4b Problem #5 Problem #1 Plate Plata Wald Plate - Plata Plate Wold '

Axial Circ. Axial Axial

  • Ciro Axial Axlal ABBCE

~

B&W ff 8IO f

~

^

c,B 4950l 1300 ORNL I .c.

F' W ==-

3 Sartrex 3,970 7,320 > 8,000 5,830 5.i80 28,000 2,850 nRc ssso 4ss01 3300 GE! 3 40l S)@ ' ~

l

~

a

. 9 BWROG EVALUATION OF UPPER SHELF ENERGY REQUIREMENTS FOR BELTLINE REGIONS OF BWR REACTOR PRESSURE VESSELS JANUARY 5,1993 PRESENTED BY HAR MEHTA GE NUCLEAR ENERGY SAN JOSE, CA 1

U

,\

o 4

OUTLINE e Appendix X methodology and criteria postulated flaws level A and B conditions criteria level C and D conditions criteria evaluation procedures

  • Determination of material J-R curves BWR RPV beltline materials

- technical approach e Evaluation of level A and B conditions pressure and temperature conditions Jo 1 evaluation

- crack stability evaluation ,

  • Evaluation of level C conditions limiting transient evaluation Jo 1 and stability evaluation
  • Evaluation of level D conditions e Summary

~

. 9' APPENDIX X METHODOLOGYLAND CRITERIA-

  • 1:6 interior axial and circumferential flaws are:

postulated-K calculation formulasLfor--pressure and:

thermal loading (< 100 F/ hour- ch'ange) are provided applied J-integral values calculated from-plastic zone size corrected K total values material J-R curve shall correspond to: flaw orientation e Three-equivalent evaluation-procedures;specified

- J-R, J-T and FAD J-R procedure-used in this: evaluation  ;

e Criteria for Level A and-B loadings flaw depth = 1/42t1 conservative:-J-R curve applied 1J integralf at:- 1<.15xPaccu.iplus thermal loading -should be less than J0.1 flaw extension shall be stable 'at!

1.25xPaccu. plus thermal loading-0 $

7

<-<w' -

,- 4 l .

  • Criteria for Level C loadings flaw depth = -0.1 t plus clad thickness, but less than 1 inch;. smaller flaw: size:may be.

used if-justified conservative J-R curve-l

- same evaluations as Level- A and B, but-withL Paccu. multiplier of 1.0  ;

e Criteria for Level D-loadings flaw depth same as Level C-case same pressure-load multiplier as -Level C, with ductile crack extension up to 0.75t best-estimate J-R curve-T 5

I y!

-'c,

- Material Ja J

s Applied J. ,

i Evaluation Point  !

q ao

-a

. l.

-Fro. x-4310-1 courAnzsom or Tus storss or TuS ArrLIso J-INTEGRAI, CURVE AND TER J-R CURVE l

]

1 l -.

X-13 I

- ~ _ _ . . ..

1 DETERMINATION OF MATERIAL J-R CURVES:

  • Review of domestic BWR fleet beltline materials basically shows three types of plate -materials-(SA-3028,. -

only 2 plates; SA 302B modified, and SA -

533B-1) few Linde 80 circumferential welds and-~

mostly other welds "

  • J-R curve representations for various loadings mean - 2 sigma J-R curve for Levels A,B:and C loadings mean J-R curve for Level D loadings
  • For SA302B, J-R-curve based on Jlc data and observed size effect by Hiser the same J-R curves conservatively used for SA302B modified plates -.
  • BWROG test program underway to generate.J-R curves for vintage SA3028 modified plates

~

combined data base model for SA5338 and non-Linde 80 welds copper fluence model used for Linde 80 welds

7 9

' DATA ON BWR GEOMETRIES AND MATERIAL TYPES Iyf_L_ R(IN) - T(IN)_ PR/T WELD TYPE' PLATE Tygg.

BWR-2 106.7- 7.13 18706 SAW,ARcoS B5 3028-mod BWR-2 106.7 7.13 18706 SAW.Ancos B5 302B+B-mod BWR-3 125.7 6.13 25632 -ESW,LINDE 124* -302B-mod BWR-3 113.1 5.50 25705 SAW,LINDE 1092 3028-mod BWR-3 103.2 5.06 25494 SMAW 5338 BWR-3 113.9 5.53 25746 SAW,LINDE 1092 5338.-

BWR-3 125.7 6.13 25632 ESW,LINDE 124* 3028-mod BWR-3 125.7 6.13 25632 ESW,LINDE 124 3028-mod BWR-4 125.7 6.13 25632 SAW,LINDE 80 302B-mod BWR-4 125.7 6.13 25632 ESW,LINDE 124- 3028-mod BWR-4 110.2 5.38 25604 SAW,LINDE 124 533B:

BWR-4 110.4 5.38 25651 SAW,LINDE 1092 533B-BWR-4 92.7 4.47 25923 SMAW: 5338 BWR-4 127.0- 6.13- 25897 SAW,LINDE.1092 533B BWR-4 110.4 5.38 25651 SAW,LINDE 1092 5338 BWR 110.4 5.38 25651 SAW,LINDE 1092 533B" BWR-4 110.4 5.38 25651 SAW,LINDE 0091 - 533B BWR-4 126.5 6.10 25922 SAW 5338-BWR-4 126.7 6.19 25586 SAW,LINDE.124 533B BWR-4 125.7 6.13 25632 ESW,LINDE 124 3028-mod BWR-4 126.7 6.19 25586 SMAW'- 533B-BWR-4 103.2- 5.06- 25494- SHAW 5338 BWR-5 127.0 6.13 25897- .SAW,LINDE 1092- '533B BWR-5 126.5 '6L20- 25504 SAW,LINDE 124 533B BWR-5 126.7 6.19 25586 SAW,LINDE 124: 5338 BWR-5 126.7 6.19 25586 SAW,LINDE 124 5338 BWR-6 110.4 5.38 25651 SAW,LINDE 124 533B BWR-6 126.7 6.19 25586 SAW,LINDE 124 533B' BWR-6 120.2 6.00 25042 SAW,LINDE.124 533B BWR-6 110.2 '5.41 25462 -SAW.LINDE 124 '533B

  • THESE PLANTS'ALSO HAVE LINDE 80 CIRCUMFERENTIAL WELDS SAW=SusMERGED ARC WELD SHAW= SHIELDED METAL arc WELD-ESW=ELECTROSLAG WELD

. . . -- - ...._.-... .-.. -.=. - - .. . - . . - . . . . - . . . - . . . . , .

+

11

^

4.

1000 000 t

500 700 ,,

i N

  • 00 u h _

~

, . Nena '.

k gan I- n TO i

~ c ,s%C O 2 .m P O , ness-te M f--y p r

~

goa .

Af /

Ad r-200

", / " #

~

100 0 .-

0 10 20 30 40 SO80 70 40- 90100 Cv, ft Ibs-Figure 3-5 Least. Square Fit Mean and Mean Minus 2: Sigma Unes. A3023 Plate, LT and ~TL- Directions,- 400-sso F (Re ference : -Report YAEC-1735, July 1990) -

a-N

-- y eaw-

, i.

s e

u ta e,,,,. .

elf M : . , ,, ,,, . .s

,3 g , IJ't in w a :ta a a'e

.44 - *" Z

, s j.*

t 4 ' 174 h

a. 's 1ME
u-a ay ,t , g,4%g4! o-. -

.%,.,..y 4

. .,'g *_ , q ' ,? 'g e*

  • s e e

" 3 01 'm, e e*. J

  • . . , c.c. ., ..
a' e ..,t.t . e .g.. .

93 * . J f -:1 , .9 g

a 45 it it u d 1:. . e, Re ference :

m 'a 4 ... .

NOREG/CR-5256 a e .4 4.n a is 8 .. au

.et I

M 42 9 ' ate 'v50>

we m s Jan For 6T Specimen Test:

x1.3 ,

ame Jmax% JIc ,.

p% ,

n . I 2

j 208q

.e + *"'*,'".',1

'e e e im s hl

< IM, , , v, ee O 'o/

e eo e

_a

.et a 3#

l a 3 St<t , . 4t<1 e - t1.Cf e . 4f<1 l e .. g1.Ct

i. 1 ,

i,1 5. 8 7.5 14.0 iJ.5 i5.,4 e

Lin a noen KLTA a tia,a 0 9.% i tt 1.54 2.M J 14 1.00 iM i i i ,

Ml: 9 8 tate tvian 02* C. * %

238 190 -

, 0.5 T . nog

- IT '

t

'n #

2M # 2T 4T- -

tase -t

. ..,,'"a

        • N, 6T' .a

-e 00 e ,

e smsmene e e e e **

  • p ,

iM - 5#

i a .. g.Sf-(f , 4t<1 e - ti<1 e .- ( f < f I . .. ri <t i.

'? a. ..'s n. I.1 -

nr. . . .

Fig. 51 Comparison of the J -R curves f ar all temtm.

ohth19. plate.

g.

LEVEL A. & B EVAL.,1.15P, A302B J: R .

126.7. in. Ri, t= 6.19 in., CIRC. CRACK 500

~

400 -

~

m N

< t 3 300 -

-x m y  :  ;' ,

j  :  :  :  :  :  :  :  : .

z -c c

c c C' 200 - - -

? i 35 'f t-lbs

~

100'-

a 4 5 ft-Ibs >

x 4 50 ft-lbs 0 ., , .. ,

,0 -0.2 : 0.<1 DELTA La L(IN.);

\.

P 9 .N.. r --

e - ' ^ m sw ,r e - %- m y e

k J~ da J e, .$>--- An-2 & y

- g ,. _

a m

b

+

l

- t WU p'y- ,y g 4 4. 4.4 I I I -- I a o -s a a a,

- 0 c- 0 e C - 4 c -' D _

co < > o -# 4 x -e; g- x o

i

, x .

2 c ,

O a

s

~

to x .

2- o. _

M < .n

  1. e e-

.- . , , , o _s==ss.

^

O C"J

,4 p.

g

&  : - 1 o . .: a a

ll oa

^a ,

% .J*

wRe .

- , o g x <

a o= -

N v . . ,

. A: , , , , c.

M; -o o . o- e o o e o o o -0 LO v M N

  • m (2.NI/8'I- NI)
g PP

+

Z

=4 3_ .

  • i 1

q APPENDIX B - 1, Models Without the Thickness Terms -

For those practical applications in which a reasonable value of thickness cannot be determined, models for1, have been recalibrated without the thickness terms. The  !

general model form remains unchanged:

J, = Cl (Aa)C exp[C3(Aa)Cd] (B 1)

The expressions for C2 and C3 without the t'dekness terms are:

C2 = di + 4 InC1 . (B 2)- ,

C3 = 4 + d 3InC1 (B 3) j Parameter C1 is calculated from the following expressions:

CVN, model for RPV welds and Linde 80 welds:

InC1 = a3 4 a Cu(dr)*

2 + a T3 + a inCVN, g _ (B4)  ;

Cu-fluence model for Linde 80 welds:

InC1 = at + a 3Cv(dt)'8 + a 3T. (B 5);

CVN, model for RPV base metals: '

- InC1 = at + a3 1nCVN, + a3 T + a3 dt .(B 6) -

Charpy model for the combined database:

InC1 = ai + aa inCVN + a3 T . (B 7)~.

1 l

l i,

? %

( g y=z- *- = 7 w a* -w-*

Table B 1. RPV Welds and Linde 80 Welds,1, Model Without B Terms RPV Welds Linde 80 Linde 80 Parameter Variable CVN, Model CVN, Model Cu4r Model Incl ai (constant) 3.99 -4.27 2.413 as Cu(4t)** -0.584 -0.588 0.506 a3 7 -0.00266 0.00307 -0.00250 a, (exponent) 0.469 0.498 0.634

a. InCVN, 1,47 1.59 2

4 (constant) 0.0770 0.0770 0.0770 4 InC1 0.I16 0.116 0.116 2

4 (constant) -0.0812 -0.0812 -0.0812 4 inC1 -0.00920 -0.00920 -0.00920 f_4 (exponent) -0.474 0.489 -0.491

  1. Points 4152 3667 3667 S, in units 0.194 0.202 0.234 Ratios

-1.645 S, 0.727 0.717 0.681

-1 S, 0.824 0.817 0.791 2 3,... 0.679 0.667 0.626

-3 S " 0.559 0.545 0.496

i.

Table B 2. RPV Dase Metals and Combined Database,1, Model Without B. Tenns RPV Base Metals Combined Database Parameter Variable CVN, Model Chagy Model InC1 ai (constant) 2.89 -4.13 a2 InCVN or InCVN, 1.22 1.48 a3 T -0.00270 .00239 as $t -0.0104 G

di (constant) 0.0770 0.0770-d3 Incl 0.116 0.116 2

d. (constant) 0.0812 0.0812 d3 InC1 -0.00920 0.00920 4

p_4 (exponent) -0.417 -0.455

  1. Points 2295 8463 S, in units 0.150 0.229 Ratios 1.645 S, 0.781 0.686

-1 S, 0.861 0.795

-2 S, 0.741 0.632

-3 S, 0.637 0.503

.r . .

.g.

LEVEL A & B FOR 533B PLATE AND "0THER" WELDS 126.7 in. Ri, t= 6.19 in.,. AXIAL CRACK 1

l 0.9 -

0.8'-

0.7. -

~

m -  :-

z wo 0.6 - .- -

N c' CQ e . a L a m .- ^

s 95-n l

Zo

.- p

~g n Q 0.4 - .

% 0.'3 - i CVN VALUES:

35 ft-lbs 0.'2 - A 40 ft-lbs

  • 50 ft-Ibs.

0.1 -

= 60 ft-lbs..

0+ .. .. . i L 0 0.2 0.4 DELTA a (IN.).

l l-

_ _ F

LEVEL AL & B:: EVAL.,1.15P, LINDE 8.0 J R 126.7 in. Ri, t= 6.19 in., CIRC. CRACK 1

1.2-

-111 -

1-0.9 -

. N- . 0.8 '-

x.

z}u) m m.

' O.7 -

T g 0.6 -

Zo C A 0.5 -

V

.v g 0.4 -

0.3 -

0.'2 -

0.1 -

L

~0 . .

0 0J2 -0.4 DELTA a- (IN.)

L ,

aq e_ _ - _ _ .

- ':  :=

^~

7 4 j ,' ,

.e g ,

s.

EVALUATION OF LEVEL AEAND B CONDITIONS-u e Pressure and temperature conditions lused -

design pressure ~ = 1250 psi accumulation pressure,: 1250x1!.1 or 13.75: -  :

< psi .

q 1.15xaccum._ pressure = 1581 psi __

1.25xaccum, pressure = :1719 psi heatup-cooldown rat'e z = 100 F/ hour-transient with: higher heatup-cooldown rated has lower pressure c

  • Cases evaluated BWR 2s and:SA302B J-R curves BWR 3s-4s~ and SA 3028 J R ~ curves-BWR13s-6s: with' S Av533B 1,LLinde 80 -

(circumferential flaw case orily) andsother::

welds J-R-curves j

  • Vessel geometries considere'd ,

s BWR-2: Ri = 106.79in.,;t=7.13Lin., ztclad =

7/32 inch-- '

'All:others: Ri = 126.7, t = 6;19,- tclad - = 0.19 inch-

  • . As expected,. CVN:: requirements arel highest for:

SA- 302B plates in:BWR 3s-4s.

  • AllTend-o.f-life; projected;CVN values forcdomestici BWR fleet above?the calculated minimum required: ~

CVN values .

{ l.

, i:

DATA ON BWR GE0METRIES AND MATERJAL TYPES TYPE-- R1181 T(IN) PR/T WELD TYPE ELATE TYPE BWR-2 106.7 7.13 18706 SAW,ARcoS B5 3028-mod BWR-2 106.7 7.13 18706 SAW.Ancos B5 302B+B-mod BWR-3 125.7 6.13 25632 ESW,LINDE 124* 302B-mod BWR-3 113.1 5.50 25705 SAW,LINDE 1092 3028-mod BWR-3 103.2 5.06 25494 SMAW 533B BWR-3 113.9 5.53 25746 SAW,LINDE 1092 533B BWR-3 125.7 6.13 25632 ESW,LINDE 124* 3028-mod BWR-3 125.7 6.13 25632 ESW,LINDE 124 302B-mod BWR-4 125.7 6.13 25632 SAW,LINDE 80 3028-mod BWR-4 125.7 6.13 25632 ESW,LINDE 124 3028-mod BWR-4 110.2 5.38 25604 SAW,LINCE 124 533B BWR-4 110.4 5.38 25651 SAW,LINDE 1092 - 533B BWR-4 92.7 4.47 25923 SMAW 533B BWR-4 127.0 6.13 25897 SAW,LINDE 1092 5338 BWR-4 110.a 5.38 25651 SAW,LINDE 1092 5338 BWR-4 110.4 5.38 25651 SAW,LINDE 1092 5338 BWR-4 110.4 5.38 25651 SAW,LINDE 0091 533B BWR-4 126.5 6.10 25922 SAW 533B j

BWR-4 126.7 6.19 25586 SAW,LINDE 124 533B BWR-4 125.7 6.13 25632 ESW,LINDE 124 3028-mod BWR-4 126.7 6.19 25586 SHAW 5338 BWR-4 103.2 5.06 25494 SMAW 533B BWR-5 127.0 6.13 25897 SAW,LINDE 1092 5338 BWR-5 126.5 6.20 25504 -SAW,LINDE 124 5338 BWR-5 126.7 6.19 25586 SAW,LINDE 124 533B BWR-5 126.7 6.19 25586 SAW,LINDE 124 5338 BWR-6 110.4 5.38 25651 SAW,LINDE 124 5338 BWR-6 126.7 6.19 25586 SAW,LINDE 124 5338 BWR-6 120.2 6.00 25042 SAW,LINDE 124 533B BWR-6 110.2 5.41 25462 SAW.LINDE 124 5338

  • THESE PLANTS ALSO HAVE LINDE 80 CIRCUMFERENTIAL WELDS SAW= SUBMERGED arc WELD L SMAW= SHIELDED METAL arc WELD ESW=ELEcTROSLAG WELD

EVENT 20 Upset Condition 600 -

567 567

.A 561 561 0

4 550 -

3e 528 w 525= '

v (* +

485 a 500 -

j ,,

b l; 490.,

I.

e '

[-= i 450 -

l M 9 min -* 7 min *- --*- 7 m i n -* -

6 min --*- *- i ' -* + 17 min 50 sec 10 see f* ,-- & -- 10 sec

! -*- *- 8 min indefinite time

  • l' 14 min 50 seel N  ;,

4 it  !

1180 ,

!!I80 1200 - ,

I i

i f!

1100 -

1125 2 1125 'l1125 i

$ 1000 -

! a 900 -

w , , i

$ 800 -

833 l

( en E 700 -

l A N 579 600 -

607 500 -

NOTE: Time is not to scale.

l-l

- AJ L . - _ _ _ _ . .. . . . . . . . . . - . . . . . . . . .

1

.O .

p K-cur vo fit (ovont20) 36 Eqn 192 y=Ca+bx+cx2+dx2+ex 4) r 2=0. 999262517 a=2.6395184 b=25.026923 c=-28.787874 d=16.635486 e=-3.8333904 13 . .

1 t

12 ...............=..............:.........._............:....

. . . . >.. a.. a . : .

t.

1 . .

3 .

..............:....-- - ..: ............c ..............;..............c w 10

t.  :.  :  :  :

4.............................

4 4

. ............. 4 ....... ................... 4 ............................ . 4 s . . .

.  :  : l t  :  :. .

c- .

. . . . . . . . . . . . , . . ..........3..............g.. . . . . . . . . . . . . . .. . . . . . . . . . . . . . , ................s..............

v .

I  : 8 1 *

. ,4 .

M 7 ............4...............g..............J,................g..............<.......... ....g...............

M / . . . .

1 i

t .

2 3

.....g...... ...... ,

s ......... ... 4...............g..............q.......... ...g....... .....g........ '

Y s

. .t t 1 i

5 ............t......................~.:..............t.........~....:............................

2 1 3 1 1

.t .

4 .. .........

1  :

  • 1 2 2 . .

5 3 5- 4 5 5 4 1.75 0.25 O.75 ,

L. 25 A, tn se

LEVEL AT& B EVAL.,1.15xACCU. PRESSURE 35 FT-LB USE, MEAN - 2' SIGMA J-R CURVES- (BWR-2) 500 m

< j

- gM C " '

400 -

.n N

<( 300 -

Z A-3-

1

...Z

' ; .: G [

.y.

200 -

, _::::: : : ): :  :  ;- :  :  :

7 ,

100 -

0-O . -y ., , ,. , , , ,

., i..

~

O O.2 0.4 0.6. 0.8 - 1 DELTA o (IN.)

0: ' 3028 MOD.. -+ '3028 'O J-AFPU ED

-'  : Figure.4-2. Evaluation Based on Jo,1 Criterion' Based 35.ft-lbs USE in ;

4 , _ -

5 L & 4. 1 - -

,=

LEVEL A & :B EVAL.,1.25xACCU. PRESSURE 35 FT-LB USE, MEAN - 2* SIGMA J-R CURVES (BWR-2).

500.

m

.g m u u r3-a- n.

400 -

n

'N T -

300 -

Z_

\

-l. g

-l.

'Z

2.- O [ , li E.

D

' 2 0 0 -- _ p :::: : : : : :  :

~) '

r ... ;

4 100 -

~

^

o 0 0

.- >  ;  :  : v. -

_g .: 0.

v - " "

O !;

i ., .. . .

i. i i ..

.O. O.2- L O.4 : 0. 6 '- 0.8 - 1 LDELTA a (IN.).' .

- O .' 3028 - MOD.- t: :3028 ' 0?  :"J-APPLIED b

Figure'4-3 Stability Assessment'for Level A and B Loadings Based Lon 35'ft-lbs USEL

, _ . . . , . . ; .. , , - , . ~-- - , - . . , - . - . . . - -- . - - , ~ . . . . - - -- .

o ,

c.,

LEVEL A & B EVAL.,1.15 ACCUM. PRESSURE MEAN - 2* SIGMA J-R CURVES, AX1AL CRACK (BWR-2) 500 400 -

S /

300 - / , .-c a a a a a a k

%' f/

b /

4 O

200 - 0 *-- J. Applied "O

~)

100 -

O .. i i , i

-0 0.2 04 DELT A .)' (IN )

O 53 8 ft-lbs + 62 f t-Ibs FIGURE 1

LEVEL A & B EVAL.,1.25 ACCUM. PRESSURE MEAN - 2* SIGMA J-R CURVES, AXIAL CRACK (BWR-2) 500 - -

400 -

j,-: ,

^ m

-C C O

- e Z' ~

/

MW h

i

/ J. Applied 200 -

?

100 -

O ., , , ,

O O2 04 0 53.8 ft-lbs + 62 f t-Ibs TIGul:E 2 2

EVAL.,1.15P, A302B J R LEVELHA .& :B 126.7 in.- Ri, t= 6.19 in., CIRC. CRACK 500'

.- 4 0 0 - ._..

m N

3

.x-300'-

m ,: .

J . . . . . . . . .

m .

.Z .c c '; c  ; -

0  ; y ->-

200-(

2 .i 35 ft-lbs-

- o ' 4 0. ft-lbs 100-

  1. pplied A- J- a 4 5 ': f t-lbs -

- x 50 ft-1bs -

0- .

l0- 0 . 2 .-- -0.4

. DELTA' a -(IN.):

_..____._.___.____________.-_=__m _

_ _ _ . _ . _ -. ,;~,. ,, . , , . . . - - - - - - - , , , , . ,-

I -

DEVEL A l& 3 EVAL.,1.25P, A3023 J R:

126.7 in. Ri, t= 6.19 in., CIRC. CRACK 500 i 35 ft-lbs-o 4 0 f t-lbs-400 - a 45 ft-lbs x 50 ft-lbs-N

.x

.300 - _

x g .

a .

m m

.m m m m m m

m g

c e c  : e Z-e  ; e 200 -

m Applied J 0 . .. . .

L01 ;0.2 .- 0.4

~

DELTA a (IN.)-

,,.,g

_~

- f - .- , , . , , , . , , ,,. . g , , f; _ ,.

d V , .s 4.,,w., ., ..

8 8

n, "3 , ,  ; ,

.c .c .c .o I l l l

, - 1 a a a a O in C ic C @ @ b b

@ *1 o o x 'd sso x o

"A e Z a l

U 1

t.n s 3

& ,5 n

~7

.b a en c I ~$ *C A #

ll n .. - ~U C La y% a o ts , W

'O -t

= a m

b g . , < .

<t ay C O O

O O

, -r o O

O O O O O

'p to y M N **

N (2.Ni/Q'I- NI) Pi g

. 1-e 4

x w w w AA A A h- ' . ) <

l l s s s o 1 l O D O D O '

"J

@ @ (w tw 4 l l

e ,2 0 4 X f

c, n  % .

3 0

J to d -

)

ry

- - =

H C Z r .,

e O d.

u d <

N E-"

3 -> . . A il s CW Q

N .

g .

N f e

3 .

e sas e .

3 < .

N b I"

/

4 , t , , o N

t O

O o

O O

O e

O e

O w

-e k D v M N N

W (2.NWI- NI) Pr

l l l

. a R

J 0

8 E

D

  • 4 0

NK I

C A

L R C

C P R I

C 5 ,

)

1 N i

n I

. (

1 9 1

a 6

A

, 2 TL

= O E L t D

A i R

J d

V n i

l e

E i 7 .

p p

A

+

  • B 6 2

1 A i0

- -- ~ _ _ - - - . - -

L 2 1

] 9 a. 7 s. 5 4 3 2 1

0 E. 1 1 0 0 O o. o O 0 0 0 V 7ocC l Cw _

E. ,v.g~&4 f e yb L. .

i - , , 4 ,

LEVEL A & B EVA:1.,1.25?, :1::NJ3 80 J-R 126.7 in. Ri, t= 6.19 in., CIRC. CRACK 1.2 -

1.1 -

1-0.9 -

N_ 0.8 -

zq ]= 0.7 -

9c Tm 0.6 -

25 O ~ 0.5 -

t

$ 0.4 -

0.3 -

l 0.2 - Applied J

' 0.1 - l f

0 . . . .

0 0.2 0.4 DELTA a (IN.)

i l l ! 1 1l

+ _

5 _

3 _

N .

V _

C .

4 .

R K 0 .

C A .

J R C .

B C R

3 I C -

)

3 n N

5 i (

I 9 a

,1 A

P 6

=

2 TL 5 t 0 E D

1 i J

. R d e

1 n i

l i p p

, 7 A 6 + .

L 2 1

A V

E /

0 B 0 0 0

0' 0 0

0 0

0 0

0 0 5 0 5 0 5 0 5 0 5 5 3 3 2 2 1 1

& 4 .

4 .

AF$ hts ~ c' A

6

G

, e-t i

ro Z

~

[

U

~

C$

u "C m U

T. .-

g -

c.

  • c -

i.n .c c Cn e "7 <

\0 "

11 O tza O

N .

\

.c O

e f *

<t

~ ,

[

M

-O o o o o o O O O O O c e a o e c 0 o O e c 7 y M M N N * *

(2 NIMI-NI) PP

ill l l1 a

0 ,-

6 N _

V C .

, 4 R K 0

C A

J R C .

L B A I

X .

3 A )

3 ,

N n

5 i I

(

9 a

,1 A

P 6 2 TL 0 E 5 t

=. D 1 i J

. R d e .

1 . i ,

i n l p

p 7 A

. + .

6 L 2 1

A V

E 0

B 1 9 8

7 6

5 4

3. _

2 1

0 0 0 0 0 0 0 O 0 0

& m tcc$5 h-c n<z.NA,'

r

- T xO t" A

!l

. ^

0 6 _

N -

V C

4 R K 0

C -

A J R C J -

L d B A I

X i

l e

3 A A

P P

)

3 ,

/ N n

5 i (

I -

9 a

,1 A

P 6

, 2 TL 5 =. 0 E t

D 2 .

i R

1 n i

, 7 .

6 L 2 1

A _

V E (

0 B 1 9 8

7 6

5 4

3 2

i 0

O 0 0 0 0 0 0 0

& m c c c$o c.E-.*

Q b h , I 2; O A

. *'O .

{ ..

~

LEVEL A & B FOR 533B PLATE AND "OTHER" WELDS 1

126.7 in. Ri, t= 6.19 in., AXIAL CRACK

1-i i

4 f

0.9 -

0.8 -

cv 0.7 - .-

, .<m 1 7 .me . 0.6 - ,.'.

. r s# ,

m ..

r

. , ^

T . y;;;

^

0.5 -

, J: ' , , . ,

^

ZO , ^

3

^

(. C'$ 04 - .'.  ?

.e .,

' O.3 -7,-

CVN VALUES:

x - 35 ft-Ibs 0.2 - APPlied J ^ 40 ft-Ibs

!~ 0.1 -

  • 50 ft-lbs m' 60 ft-lbs 0P . . . . .

O. 0.2 0.4 DELTA a (IN.)

T t

4

?

Category Req. Min. CVN Values Long. Trans. ,

BWR-2 (plate) < 55 < 35 ,

BWR-3,4 59 <35 -

(SA3028, mod) ,

.I BWR-3,4,5,6 35 < 35  :

(SA 5338-1)

Linde 80 welds *~

All other welds 35

<35 Satisfies App. X requirements with- max.

reported copper of 0.31 % and highest end-of-life fluence .

4 ya', ,. .m. - , , . ,,4-. .,,..,-......sm

-... ,r-- . _ . . . ~a-.,, - - , , ...-,.-.7,.m- -

r.,-.. ,-

1' LEVEL C (EMERGENCY) CONDITIONS EVALUATION e Significant transients are automatic blowdown (event 23) and improper start of cold recire, loop (event 24)

- event 24 not applicable to_BWR 2s _

- event 24 stresses higher

  • Raju-Newman method used to-calculate K values for axial flaws conservatively assumed same values for circumferential flaws e K due to clad stresses calculated using. a- point force at the edge of a semi-infinite plate
  • Postulated flaw is 10%-of base metal thickness plus clad thickness of 0.19 inch- >

e Margins:are larger than .those for Level'A and B1 -

conditions at the s'ame CVN values

.1

,'eTw g7- e-( +ye r G-- 9 --t ,gry.mq .w - i u - t v+ .w w w w+=-5 v-a+y* 4- w es T*e we wevew *+ eve-+v. * ~ -+ - -.# wcr.w---r -sc --e6=- - = <m-

I J< ll'llll >

B 1 i

. s r

u o .

h s e

/

F er

  • hu tt n 0 0 o-a r i

o 3 9 5

t sp e

2 t =

n dm i

i n e ot n m e d i p

se l a

3 n m33 ev ro c

s 2 o 2 rb o

o ca t

T C 3 t 2 - e o

=. ;' h n Ny .

nt o e

, H ir Ec 8 t

afo i T

m V n 2 5

5 7

i r

ae E Ee 3 v ru T

O g e ss N r me e i r Tp en m - - - - - - - - r. o uit E 0 0 0 0 0 0 0 0 sa s

0 5 0 5 0 5 0 5 er 6 5 5 4 4 3 3 2 ru Pats 4, o43cLe A6ch

. ^

ll lflllrllll\flI , 1

, 9 s

,A O

  • M

& V

.s to O O T, C 8 $ E ,

No ~

h MO N

H No

>c Nv i i i i i- i i i g i i i

'- 8 8-8 8, 8, 8n 8 8 888 e o e c n n  : ae 3* aanquaodusal DISd oanssaad N

t u

~, . . . . . . . . . . . .......-.ua

-

  • 4,

, o Inside Radius a 106.7" Low Alloy steel

- 7/J2" $5 claddseg

/

/ -

In sid e ,

Radius

/ l 3

/

M -

7 11/ J2" >

Axisymetric Finite Element Model of RPV Wall BWR-2

~~~  ;-

Y

.t ,j t m-

_. 2  ;$ -

.n p(1 x

. r's '

N  :

e, gj-

/ ,,

n .A se

'~

7

[ ~

$w h

3

/ <

m

/  ;

~

R >- ,

.J >

1 u }_,  ;

9

- >4

_w w4.- :

a m

m. (,,

l (M,,,

e e. ;e - =

3 m fy: -

9 . &, 4p -

R rj -

u a.

O 1 y At

- 1 1  !- I i i i i -ra l

o.

ANSYS 4.4A 1

DEC- 7 1992 13:42:01 POST 1 u

5TEP-29 L

ITER =1

  • =

' ) l TIME =31 PATH PLOT NOD 1-1

)

NOD 2-37

- Sz

! STRESS GLOBAL sra. } ZV =1 DIST=0.6666 XF =0.5 msr YF =0.5 ZF =0.5

..m 13717 9998

.ur-

. N' l ~.~,

l ..m  :* , m, 3. .a I s...e +

. 2n

. or,. .. m . . . . t-BWROG RPV UPPER' SHELF ENERGY ANALYSIS, EVENT 24 PLOT VALUE..ALONG. PATH FROM NODE 1 TO NODE 37 OF St DSYS- O

. POST 1 -INP=

i. --

i

s n su >>

K-curvo fit (ovont24,

. c) 35 Eqn 182 y=(a+bx+cx2+dx2+ex4) r2=0.995990964 a=8.8312877 b=74.9259+9 c=-107.68107 d=63. 62888 e=-14.341593 30  :  :

27*5

-: + - = - -+-

-- --- -+: - --

i---------

25- ---  :  :  :

W .

C -

A .

i

(* .

I v.

v  :.

2

. ,4 . .

...s.... .. . -

y .

..g . .. ... g . -

17.5

... ... . _ .r- .... ... .- 4 .

g . . . .

M ....._-;

:._ - ... - q.
.g . . + .. ~ . ; - .......

12.5 10 O.25 O.75 L. 25 1.75 A, in

K-curvo fit (ovent23, D.C. )

35 Eqn 192 y=(a+bx+cx2+dx 2+ex )4 r 2=0.998380911 a=7.7405549 - b=61.143743 c=-67.027108

'd=33.686558 e=-6.6766267 35 ,

t 2

1  :

2  :. .

i i- i i i i i 30-  :

+:  :

-+-----

i--

+-----

:  : I LO I  ! 3 l 5  :
  • l

!  : i i i w<.25.. -

.4....._,

t

.r C s' s t t

2 5

v  :

A i  ! i i i i  !

- IA -  :  : -

m 20- - - - - - - - - - - - - '--- - --4 - - - - - -+- -- --

=+---------'

y A 5 i

. .I i

. .i.

5

. i.

:  :  : .:  :- I t
  • s 3 1 2 15- -

t e

: - *:  :  :*  :  :* i
. t i
:  :  : ':  :  : I
-.  :  : t  :  :  !

10 .

J

-O.25 'O.75 1.25 1.75  :

A, in. 1

[

i l

F i

[, ' q

. . - . . . -.- . . . . . . . . . - . - - . - - - - . , . . u~ ,. . - . . -- - ~ . - . ...

. . ii

. - l IQ Z

~  ;

/ \

C l l

r

'd D

x N M oc -

a cQ  :

c Z M '"

e O

c 9 x m o N b i 3

' ~ c3 d o

N .-

?. _

M C.

E d Z; .

m

~ ~s f

M v

U i i i i O

O O O O O- O O O- O O O O v M N *

> (2.NI/EI'l- NI) PC N

A

my

. 4 0

6 .

N .

V C

R 0 4

K J C A

R B C L

2 A I

0 X .

A )

3 ,

N A i n (

L I

a 9

,1 ~

) . A 6 .

2 L T 4 t

=

J d

O E D

2 i

, i l

e .

R p .'

p T n

. A Ni 7 E 6 V 2 1

E

(

C - .

0

'0 0 'O l

0 0. 0 L 0 5

0 0 3

0 M;

0 1

W E 4 '

V nN<3D1zO q E '

- L

. ' i  ::i . :; <;l!i! j :1[! .

. bI

, n e -

6 LEVEL D (FAULTED CONDITION EVALUATION

  • Limiting event is pipe rupture and blow down recirculation line break
  • Postulated flaw and K calculation methods same as those used in Level C conditions evaluation
  • Margins are larger than those,for Level A and B conditions at the same CVN values

4

, *( .

C 8 o o ~ y

$M 8

  • /

% C N *T '

C 1, HO 8 8 ZU N

~, t MM U i i l i I I i l 'l l l 1 1 I I Ys o o o 8$88?888 o e o o o o- o 8888?8 o o o o g --

4 d o aanguaodtual disci aansso;,i >

I ANSYS 4.4A DEC 14 1992 9:57:10

. POST 26 ZV =1 DIST-0.6666

  • 2"'* XF =0.S YF =0.5 ZF =0.5

_ j i

.sm.

==

uw

.m.

.>.m roa

.= ~

M .M .9% 95 SK BWROG RPV UPPER SHELF ENERGY ANALYSIS. EVENT 27 CURVE VARIABLE- NAME 1 2 6 2 i'OST26-INP=

l

i1 l , ; l.

0 L

A A 42 8 6 =

9 O 6 S 49 T L 6 Y 10 5O G 6555 S 2 5 2L 7 - D S4: S 10000 Y14I 311_P13

==-

S 1TPREH1Z

-e S E

=

T NC:SEEMTDD R S AEHOTTIAOO_eT VIFFF Z D1PSITPNNSS ZDXYZ S f

F O

7

. 3 ,

. m m

=.

s 27 E

D T O e

. N N s E O V T E

. 1 S

I m S Y

N N x.

x L

A N

A Y

G E

D O

N t

i

. R E

t O

R N F E

3 l

. F i T

L A E P H

n S G R N s

E O L

.m PP A U E =

\{' V UP.

LN w q4 :! .

P A1 R V-G TI O OT n R

m. _

m m LS m

n ** _ .. = - e r

w n

W B PO.

I P

a

~

a K-curvo fit (ovont27

- 36' Eqn 182 y=(a+bx+cx 2 +dx 3 +ex4,125s) r2=0.999020765 a=14.009636 b=130. 90874 c=-155. 72661 d=89.844731 e=-20.639747 70 .

t  : .  :*  :  :

g. -._Q -.~)_- -J_ .:.. ....

M . . : - _. . _.:r-

; i . . . ..
:;

i LO ' 50 -

i==- ,

--r-- - -

t-- -

r

.4  :  :-  :  :

-^  :'  :  :  :  :

C. * .'* h. . . .

.-4 -

~ ,

v

. __....-c.

.s 4

m  :  :  :  :  :  :

Ja -

t -

a t-  :

  • ' - - 1.

)). . . - .-. ~ - _ . . - - .- <

Y .

t

't

: I  :  :

I e.

4U

.. . - .s _ . 4... - .s. . . -

s - -.<

10 . . . . . .

0.25; 0.75 .

1. 25 1.75 4

A, p. n a

4

, S

w i

t

^

LEVEL D (EVENT 27}, A302B J-R, CVN 35 126.7 in. Ri, t= 6.19.in., CIRC. CRACK 600 500 -

L

  • cv . 400 -

(

Z-

~

.N.

4 p.

  • f 300;-

7 C

t

m. '200 '-

4 g pplied.J A ..

' y i-100.-

1 ,

0 . . . ,

l0 - 0.2 0.4 l .

-DELTA a (IN.)

a __,

l ' ,ii il!I il iI lI l !1l, il

. + ._

0 6 -

N .

V C

R 4 0

K C

J A R

C B L .

2 A I

X 0 A

)

3 n N.

A i.

9 I

( .

, 1 a .

A

) '6 2 TL .

7 '=..

't J

0 E 2 ,

d e D

i. i l

R p p

T n A

N i.

7 E 6 2

V 1

(

E D; 0 0 0 0 0 0. 0 0.

L 0 0 -0 0 0 ~0.

E 6 5 4 3 2 1 V . N(zEcTzO a mm E

L ~

SUMMARY

  • An Appendix X evaluation of BWR domestic fleet ,

RPV beltline materials has been conducted  :

  • Level A and B conditions CVN requirements (axial
  • flaw) govern
  • The minimum CVN requirements for the various ~

beltline materials are the.following Category Req. Min. CVN Values Long. Trans.

BWR-2 (plate) <55 < 35 BWR-3,4 59 = < 35 (SA302B, mod)

BWR-3,4,5,6 35 < 35

) (SA 533B-1)

Linde 80 welds i All other welds 35 < 35 i

)

  • Satisfies App. -X requirements with max.

reported copper of 0.31 % and- highest end-of-life fluence

1

. q:

EtJDl @_NaI E E_.0F ANALYSIS BWR/2 PLATES 0 BWR/2 PLATES ARE 302B (2) AND 3028 MODIFIED (10) 7.1" THICK FABRICATED IN 1964

- ALL INITIAL USE DATA KNOWN; RANGE IS76-106 FT-LB r

0 CONSIDERING THE CONSERVATIVE EQUIVALENT MARGIN.RESULTS AND THE 1.99 USE DECREASE FOR THE MAXIMUM COPPER AND FLUENCE, THE BWR/2 PLATES ARE ACCEPTABLE FOR 32 EFPY OF OPERATION BWR/3-6 PLATES 0 BWR/3-6 PLATES ARE 302B MODIFIED AND S33B 4.5" .2" THICK FABRICATED IN 1966 - 1974 TIME PERIOD

- 40% OF INITIAL USE DATA KNOWN; RANGE IS91-177 FT-LB 0 CONSIDERING THE CONSERVATIVE EQUIVALENT MARGIN RESULTS AND THE 1.99 USE DECREASE FOR THE MAXIMUM COPPER AND FLUENCE, THE BWR/3-6 PLATES ARE ACCEPTABr.E FOR 32 EFPY OF OPERATION

- 3028 J-R CURVES WERE USED, WHICH IS VERY CONSERVATIVE THE RESULTING ALLOWABLE INITIAL USE IS 3.5 SIGMA BELOW THE DATA' BASE MEAN VALUE

. q-

[

^

DATA ON__BWR_RELILINE PLATES YESiE.k 1 CAL ljiLCX %5 ELATE TYPE Avo. USE BWR-2 0.27 7.13 .026 .034 3028-Moo 92 BWR-2 0. EZ 7.13 .021 .030 302R&E-Moo 86 BWR-3 0.23 6.13 .010 .040 3020-Moo 139 A BWR-3 0.24 6.13 .017 .020 302B-Moo 132 A BWR-3 0.23 5.50 .018 .027 302B-Moo 104 BWR-3 0.17 5.06 .010 016 5338-1 109 A,8 BWR-3 0.14 5.53 .012 .018 533B-1 121 BWR-3 0.27 6.13 .015 .024 3028-Moo 105 A BWR-3 0.18 6.13 .010 .022 3028-Moo 136 A BWR-4 0.15 6.13 .010 .016 302B-Moo BWR-4 0.17 6.13 .013 .015 3028-Moo BWR-4 0.15 6.13 .013 .017 3028-Moo BWR-4 0.15 5.38 .014 .016 533B-1 BWR-4 0.19 5.38 .014 .016 533B-1 BWR-4 0.21 5.38 .014 .018 533B-1 118 BWR-4 0.15 4.47 .010 .015 5338-1 163 A BWR-4 0.12 6.13 .010 .018 533B-1 133 BWR-4 0.18 5.38 .015 .018 533B-1 123 BWR-4 0.17 5.38 .012 .015 5338-1 128 BWR-4 0.11 5.38 .016 .019 533B-1 129 BWR-4 0.09 6.10 .008 .014 533B-1 91(T)A BWR-4 0.12 6.19 .014 .016 5338-1 BWR-4 0.15 6.19 .015 .020 533B-1 .

BWR-4 0.13 6.13 .015 .018 3028-Moo 126 A BWR-4 0.15 6.13 .015 .018 3028-Moo 137 A BWR-4 0.14 6.19 .010 .019 5338-1 135 A BWR-4 0.13 6.19 .006 .015 533B-1 120 A BWR-4 0.14 5.06 .013 .017 5338-1 137 A BWR-5 0.15 6.13 .012 .015 5338-1 141 BWR-5 0.12 6.20 .015 .020 5338-1 96(T)^

BWR-5 0.11 6.19 0.015 533B-1 87(T)

BWR-5 0.15 6.19 .013 .020 533B-1 BWR-6 0.07 5.38 .011 .015 5338-1 104(T)

BWR-6 0.04 6.19 .012 ,015 5338-1 106(T)

BWR-6 0.06 6.00 .013 .025 533B-1 100(T) 8WR-6 0.09 5.41 .012 .020 5338-1 91(T)

A USE BASEo ON oATA FoR oNLY 1 HEAT (E.G., SURVEILLANCE PLATE).

B USE BASED oH IRRADIATED DATA, F=3x1017

a+' '" .

~ I

'. 1.

,' QA.TA ON BWR BELTLINE MATERIALS FOR 1.99 USE EVAL.UATION BWR PLATE WELD 32 EFPY PLATE WELD I_ug_. .LCu A Cu_ ,_E.LuLut. ADECR IDE.R BWR-2 0.27 0.22 1.8x10^18 24.0 24.0 BWR-2 0.27 0.35* 2.4x10^18 21.0 11 A BWR-3 0.23 0.30 2.5x10'17 13.5 19.0 BWR-3 0,24 0.30 3.5x10^17 15.0 20.5 BWR-3 0.23 0.26 1.2x10^18 20.0 24.5 BWR-3 0.17 0.10 3.8x10^18 21.9 19.0 BWR-3 0.14 0.35* 1.4x10^18 14.5 32.0 BWR-3 0.27 0.30 2.4x10^17 15.5 19.0 BWR-3 0.18 0.30 3.4x10^17 12.5 20.5 BWR-4 0.15 0.31 5.3x10^17 12.0 22.5 BWR-4 0.17 0.28 7.4x10^17 14.0 23.0 BWR-4 0.15 0.28 7.4x10^17 13.0 23.0 BWR-4 0.15 0.05 1.4x10^18 15.0 12.0 BWR-4 0.19 0.06 1.4x10^18 18.0 12.5 BWR-4 0.21 0.22 1.5x10^18 19.5 23.5 BWR-4 0.15 0.03 3.5x10^18 19.0 14.0 BWR-4 0.12 0.32 4.0x10^17 10.0 23.0 BWR-4 0.18 0.33 1.7x10^18 18.0 32.0 BWR-4 0.17 0.28 1.8x10^18 17.5 28.0 BWR-4 0.11 0.23 1.0x10^18 11.5 22.0 BWR-4 0.09 0.09 1.2x10^18 11.0 14.0 BWR-4 0.12 0.09 1.2x10^18 12.5 14.0 BW , 0.15 0.09 1.1x10^18 14.5 13.5 BWR-4 0.13 0.21 5.5x10^17 11.0 18.5 BWR-4 0.15 0.21 5.0x10^17 12.0 18.0 BWR-4 0.14 0.04 5. 3x1'J^17 11.5 9.0 BWR-4 0.13 0.06 5.3x10^17 11.0 10.0 BWR-4 0.14 0.04 1.7x10^17 9.5 7.0 BWR-5 0.15 0.37 3,9x10^17 11.5 26.0 BWR-5 0.12 0.04 4.2x10^17 1C.0 8.5 BWR-5 0.11 0.07 1.2x10^18 12.0 12.5 BWR-5 0.15 0.09 6.6x10^17 13.0 12.5 BW2-6 0.07 0.10 4.9x10^18 14.0 20.5 BWR-6 0.04- 0.06 1.9x10^18 10.0 13.5 BWR-6 0.06 0.06 3.0x10^18 12.0 15.0 BWR-6 0.09 0.09 4,8x10^18 15.0 19.0

  • 0.15% CU USED WHEN DATA NOT AVAILABLE

r - ' -

180 170 -

160 -

.150 -

140 -

130 - LOWEST BWR/2 INITIAL USE 76 FT-LB

-.120 -

m 110.- ,

m y . 100 - ga a.5 ALLOWABLE INITIAL USE

.c b v

~ 90 - 8 74 FT-LB g 80 - A, ,8 - j U

70 - R. G.1.99 32 EFPY' DECREASE'IN USE 60 -

50 - Y 40 -

ANALYZED 'USE LEVEL 30.- WITH EQUIVALENT MARGlN

' 20 - 55 FT-LB .

.10 -

.n s .s 0 a w s s s s s

-20 40 '60. 80- 100-0' 10F. IMPACT ENERGY (FT-LB)- ..

BWR/'2 PLATE: LONGITUDINAI? DATA a',

. g,

-120 110 -

100 -

90 -

LOWEST BWR/2 INITIAL USE g 80 - 49 FT-LB

$ ' 70 - a x

g ig . . e J L60 - m" ALLOWABLE INITIAL USE

a. 47 FT-LB h ,-

" - 50 - aa N R.'G.1.99 32 EFPY DECREASE IN USE 3' --

-40 _

30 -

20 - ANALYZED USE LEVEL WITH EQUIVALENT MARGIN

'10'-

35 FT-LB

'0- ... ., , i. , , , .. . .,

0 20 40 60 80 100-

'10F IMPACT; ENERGY (FT-LB)

LBWR/'2 ? P LATE J E Q UIVALENT3 TRANSVERSE USE L D ATA.

- 2 - .

2

e 180 ,

170 -

160 ~ m sa m 150 - E'u I" 140 - ap, Es g 5g[ m, a

,2o - ".g ..~. '- { gag:/-igf&".h.

120 - . ... ..t ,, -

110 - " " " "G, .

3".

$i 100 - 8 m[a O aa U

ALLOWABLE IN;TIAL USE LOWEST INITIAL C USE DATA y 0 76 Fi-LB 80 _ 91 FT-LB' j 3

70 - R. G.1.99 32 EFPY DECREASE IN USE 60 y 50 -

40 - ANALYZED USE LEVEL 30 - WITH EQUlVALENT MARGIN m 533B 60 FT-LB 20 -

0 3028 Modified 10 -

0 , i i e i .i i e 1 6 0 20 40 60 80 100 10F IMPACT ENERGY (FT-LB)

BWR/3-6 PLATE LONGITUDINAL DATA 2

120 m

110 - , j u aa a 100 - a a"= EN 5EAata "s*Y l%8 90 - a O iP m  ! Pao  % m,=

80 - ", ' k ,e o a "

..,,'w. . ,p te s ". u .c x 70 - ,

g gg g ,a m ,p g b O y 60 ~ LOWEST INITIAL O ALLOWABLE INITIAL USE t USE DATA 44 FT-LB

]

50 - 59 FT-LB g 3

40 1 1R. G.1.99 32 EFPY DECREASE IN USE 3

30 -

20 - ANALYZED USE LEVEL

= 5338 WITH EOU' VALENT MARGIN 10 - .

O 3028 Modified 35 FT-LB 0 , , , , , ., , , , ,

0 20 40 60 80 100 10F IMPACT ENERGY (FT-tB)

.BWR/3-6 PLATE EQUIVALENT TRANSVERSE USE DATA a

+ .~. -m;mg h '-

BOUNDING NATURE OF-ANALYSIS -

LINDE 80 ND "0THER" WELDS 0 'NUR'EG CR-5729 PROVIDES A J-R' CURVE CORRELATION:FOR.LINDE 801 '

WELDS BASED ONLY ON Cu CONTENT AND FLUENCE-r 0 ONLY 4 BWRS HAVE LINDE 80 BELTLINE WELDS, AND ALL ARE CIRCUMFERENTIAL .

TYPE- i_Cy FLUENCE (N/CM T BWR/3 0.21 2.5x1017 -' ,

BWR/3 0.29 3.5x1017 i BWR/3 0.22 2.4x1017-i BWR/4 0.31 5.3x1017. ' .

O THE LINDE 80 J-R CURVE ASSUMED WAS-BASED;0N 0.31% Cu-AND Af 4

FLUENCE OF 1x1018N/cMa,WHICHlB'0VNDS=ALLCASESABOVE _

i

_._N

i

~ .,JJ ~.L.- . , , , . , ,. . - ,, e

- . r EDUNDING__ NATURE 0F ANALYSIS LINDE 80 AND "0THER" WELDS 0 "0THER" WELDS, WHICH REPRESENT THE GREAT MAJORITY OF BWR WELDS, INCLUDE THE FOLLOWING:

- SUBMERGED ARC WELDS WITH FLUXES OF ARCOS B5, LINDE 0091, LIllDE 0124 AND LINDE 1092 SHIELDED METAL ARC WELDS WITH 8018 STICK ELECTR0 DES ELECTROSLAG WELDS WITH LINDE 0124 FLUX 0 WELD USE VALUES IN THE DATA BASE REPRESENT AT.LEAST 25% OF ALL BWR BELTLINE WELDS THE DATA BASE CONTAINS COMPLETE OR LIMITED (E.c., SURVEILLANCE) WELD USE DATA FOR 50% OF THE BWRS CGNSIDERING THE NUMEROUS CASES WHERE THE SAME WELD HEAT / FLUX TYPE WAS USED IN DIFFERENT VESSELS, THE DATA BASE MAY REPRESENT AS MUCH AS 40% OF THE BWR BELTLINE WELDS 0 CONSIDERING THE CONSERVATIVE EQUIVALENT MARGIN RESULTS AND THE 1.99 USE DECREASE FOR THE MAXIMUM COPPER AND FLUENCE, THE "0THER" WELD 5 ARE ACCEPTABLE FOR 32 EFPY OF OPERATION

- THE ALLOWABLE INITIAL USE IS 3 SIGMA BELOW THE DATA BASE-MEAN VALUE

' f' t 4 4:

n 4  :

r .a j,I -

0 4

E E 1 OO O S S N U U LG I

0 L ER A N VA aa I TI I

EL M E

aO N I

- S A E T N L B 0 E E S E - 2 U, aO L R U LT 1 B C AF g A E D EI V5 W D ZU 3 m ",s,f og O

A L

L Y

P F

YQ LE A

NH A

T D

p ,m E

2 3

9 AT I W

i0 0

1 A

D 9

mggO i E

g

/j 1

e m N )

B

, m

[ G 0

L S oa s R

i 8 T F

(

U a

. E 4'a a i Y

G D e

R E

L m N E

E a ," u' )

0' 8

0 6 T C

W 3 e A

, O a 4 p d P 6 n . M

- M i L

I m F

,' o 0 4

2 (A

ncr 0 4

/

L A R I

TAB I

NA TL Atcr la W I D -

e~

B T de Mg T

SE F g l a

ES 2 E rds~

WU7 e eo 0 e O A md r l t 2 L biec N uh le y!@& SSE .

a0m 0

~ - - - -  : - - -

0 9

0 0 0 0 7 6 5 4 3 0 0 0 0 0 0 0 0 0 0 1 0 9 8 7 6 5 4 3 2 0

1

~0 1 1 1 1 1  ; 1 1 mg["og t

7 -

4*

g, BWROG-CONCLUSIONS 0 ALL BWR/2 THROUGH BWR/6: VESSEL- BELTLINE MATERIALSL HAVE ADEQUATE FRACTURE-TOUGHNESS FOR USE VALUES EXPECTED DURING THE REMAINDER OF LICENSED OPERATION 0 FURTHER WORK SHOULD, AND WILL, BE DONE IN DETERMININGITHE APPLICABILITY OF.THE 302B J-R CURVE SIZE EFFECT TO BELTLINE:

PLATES OF EARLY BWRS IMPORTANCE OF MELTING PROCESS AND-SULFUR CONTENT WILL BE INVESTIGATED

- J-R CURVE TESTING'WILL BE DONE, IN CONJUNCTION WITH-ORNL, ON-SEVERAL OLDER HEATS OF BWR PLATE (302B MODIFIED-AND POSSIBLY 533B)

L 0 ONCE IT IS AGREED THAT ADEQUATE FRACTURE TOUGHNESS EXISTS-AT USE VALUES LOWER THAN ARE EXPECTED IN BWRS,-THERE'SHOULD BE NO NEED IN FUTURE APPENDIX G EVALUATIONS TO-DEMONSTRATE?

' COMPLIANCE WITH THE 50'FT-LB USE REQUIREMENT ^ .

l ,

g-L L

.. - _ , , .- . ,_ . _ - . . _ _