ML20127H395
| ML20127H395 | |
| Person / Time | |
|---|---|
| Site: | Monticello |
| Issue date: | 09/14/1977 |
| From: | Guibert J Office of Nuclear Reactor Regulation |
| To: | Office of Nuclear Reactor Regulation |
| References | |
| NUDOCS 9211180503 | |
| Download: ML20127H395 (50) | |
Text
,
UNIT E3 STAf t$
(e,\\
.d NUCt. EAR REOULATORY COMMIT $10N M
wAswworow,o.c. m es SEP 14 577 DOCKETS NOS.:
50-219, 50-220, 50-237, 50 $.45, 50-249, 50-254, 50-259, 50-260, 50-263, 50-265, 50 '.71, 50-277, 50-278. 50-293, 50-296, 50-298, 50-321, 50-324, 50-325, 50-331, 50-333, 50-341, 50-354, 50-355, and 50-366.
LICENSEES:
Boston Edison Company, Carolina Power & Light Company, Conrnonwealth Edison Company, Detroit Edison Company, Georgia Power Company, Iowa Electric Light & Power Com-pany, Jersey Central Power & Light Company, Nebraska Public Power District, Niagara Mohawk Power Corporation, Northeast Nuclear Energy Company, Northern States Power Company, Philadelphia Electric Company, Power Authority of the State of New York, Public Service Electric and Gas, Tennessee Valley Authority, Vermont Yankee Nuclear Power Corporation FACILITIES:
Oyster Creek Nuclear Generating Station, Nine Mile Point Unit No. 1, Pilgrim Unit No. 1, Dresden Units Nos. 2 and
- 3. Millstone Unit No. 1. Quad Cities Units Nos. 1 and 2, Monticello, Peach Bottom Units Nos. 2 and 3. Browns Ferry Units Nos.1, 2 and 3. Vermont Yankee, Hatch Units Nos.1 and 2, Brunswick Units Nos. 1 and 2. Duane Arnold Energy Center, Cooper, Fitzpatrick, Enrico Fenni Unit No. 2, and Hope Creek Units Nos. 1 and 2. --
SUBJECT:
SUMMARY
OF MEETING HELD ON AUGUST 8,1977 WITH REPRESENTA-TIVES OF THE MARK I OWNER'S GROUP i
On August 8,1977, a meeting was held in Bethesda, Maryland with represen-l tatives of the Mark I Owner's Group and the Generic Electric Company (GE).
The purpose of the meeting was to discuss the structural acceptance.cri-I l
teria for the Mark I Containment Long Term Program. Enclosure 1 is a list I
of the meeting attendees. Enclosure 2 is a copy of the meeting agenda, i
l Summary The primary purpose of this meeting was to continue the discussions initiated at a previous meeting held on' June 17, 1977 related to (1) the assignment of service levels for containment structures and supports subjected-to particular postulated load combinations and (2) the assign-ment of basic allowable stress limits to be utilized in the analyses of r
i 921'1180503-770914 PDR -ADOCK 05000263
'P PDR
(
(
l'
' these structures. is a preliminary table of the service levels proposed by the Mark I Owner's Group for the load combinations under consideration. is a sumary of the material presented by the Mark I Owner's Group at this meeting.
T. Mulford, GE, provided an introduction to the meeting (1) by briefly discussing the areas where the Mark i Owner's Group believes that they areinagreementwiththeNRCstaff,and(2)byidentifyingtheareas where the Mark I Owner's Group believes it can provide justification for deviations from a " traditional" interpretation of the Code for ser-vice level assignments.
W. Cooper, Teledyne, indicated that the discussions would not include piping, piping supports, or the Brunswick concrete containment, but s
\\
that these areas would be discussed at a future date. He also indicated that possible increases in allowable stresses on the basis of the dynamic nature of the loadings would not be discussed, but that any such increases which can be justified will be presented at a future date.
W. Cooper discussed the Mark I Owner's proposal that SM1 allowable stress intensities be utilized for the LTP structural acceptance criteria rather than SMC allowable stress intensities.
(TheSM1 values are 11 to 21 per-cent higher than the SMCvalues.) The detailed justifications for this proposal are presented in Enclosure 4 With respect to the above-mentioned proposal, the NRC staff stated that it would consider Sg3 allowable stress intensities for application in the Mark I LTP only if the ASME Code Comittee would approve such an approach for application "across-the-board". However, the staff expressed a concern that such a ruling by the Code Comittee would most likely re-quire a reinvestigation and subsequent revision of related requirements for fabrication procedures and preservice and inservice inspections.
W. Cooper presented a table (Chart No. 2 of Enclosure 4) of service level assignments (for certain structural components) and load combina-tions for which the Mark 1 Owner's believe they are in agreement with the NRC staff's previously stated (June 17, 1977 meeting) positions.
The NRC staff stated that the general philosophy behind this table seemed appropriate, but that the staff needs some time to consider the matter further. The staff comitted to provide coments to the Owner's l
Group within two weeks.
W. Cooper proceeded to discuss areas where the Mark I Owner's Group believes that justification for deviations from " traditional" interpre-tations of the Code for service level assignments are available.
These areas are highlighted in Charts 3, 4 and 5 of Enclosure 4.
In general, these proposed deviations would allow local plastic deformation of containment structures which provide a " channeling" function, e.g., the i
l I
(,
(
3 vent header between downcomer penetrations, the vent header in the pool swell impingement region. The staff reexpressed its position that external and internal pressure boundaries, in general, should be treated the same since they are both classified as MC by the Code. However, the staff also restated its position, as expressed in the June 17,1977 meeting, that certain deviations allowed by the Code Le.g., local dynamic loads, jet impingement loads, impulsive loadsj would be con-sidered if adequately justified. With respect to deviations based on the dynamic nature of the loadings, the NRC staff requested the Mark !
Owner's Group to discuss their programs, if any, designed to meet this The NRC staff further expressed its opinion that efforts by objective.
the Mark I Owner's Group in this regard would have a higher likelihood of success.
~
The NRC Staff requested information related to the schedule for discussion on piping, aipe supports, pumps, valves, etc.; the Mark I Owner's Group -
indicated t1at such discussions would take place in late August or early September 1977.
in conclusion, the NRC staff reconsnended that the Mark 1 Owner's Group =
submit their argunents formally with bases for any deviations from the Code, including a description of any analytical or experimental pro-grams which they were conducting to support these exceptions.
.,/4b(hr ohn C. Guibert Technical Assistant Division of Operating Reactors i
Enclosures:
As stated
\\
\\
l l
l l
1
-*g
.--.-,p
, g g, w.
rw...,-,.,,,.,mm--w.-,,.,,,,,9g7ym,,
,w,iy,v-,,,
w,m.g.,,,m_,y,y,,,,,,y..w_g,,,_m %,w, r
,,v,rv w - w-
,,w. m w w e,.. ee,-er n m
w wr w-r -ce e M
)
J g
)
l o
i i
i ATTENDANCE LIST j
MARK I CONTAINMENT PROGRAM GE/TRC/NRC WORKING MEETING STRUCTURAL ACCEPTANCE CRITERIA i
j AUGUST 8, 1977 i
j NAME REPRESENTING K. Herring NRC/ DOR /EB l
J. Guibert NRC/ DOR j
George O'Connor Yankee Atomic Electric Co.
Randy Broman Bechtel San Francisco Larry Steinert GE 4
l Elmer Mangbum GE Chris Grimes NRC/ DOR /PSB Sal Mucciacciaro Stone & Webster, Cherry Hill, NJ Isa Sihwell NRC/ DSS /SEB t
I C. P. Tan NRC/ DSS /SEB N. W. Edwards NUTECH j
B. D. Liaw NRC/ DOR /EB D. Lynn Whitt CBI 4
R.'J. Stuart NRC/ DOR /EB K. R. Wichman NRC/ DOR /EB L. C. Shao NRC/ DOR /EB l
T. J. Mulford GE I
Pei-Ying Chen NRC/ DSS /MEB j
G.-Bagchi NRC/ DOR /EB F.-E. Gregor DECO i
i 1
i
,.-.--41,,--..f+~
y y-
,.my
,7
.-5,,, y,,.~..,,,,,, ~
,g.,
,e
-,-._,5m.,m,
.w..
- mor,
.~%,..
_y-e v-
1 I'
j AGENDA MARK I CONTAINMENT PROGRAM STRUCTURAL ACCEPTANCE CRITERIA' MEETING WITH NRC AUGUST 8, 1977 0900 INTRODUCTION MULFORD 0915 BACKGROUND COOPER 0930
' DISCUSSION OF S VS, S COOPER g3 Mc ALLOWABLE STRESS INTENSITIES 1015 DISCUSSION OF LEVEL COOPER ASSIGNMENT AGREEMENTS BETWEEN NRC AND UTILITIES 1130 LUNCH 1230 DISCUSSION OF LEVEL COOPER ASSIGNMENT DISAGREEMENTS BETWEEN NRC AND UTILITIES 1500 CLOSURE -
STEINERT DISCUSSION OF FUTURE ACTIONS 1530 ADJ0URNMENT i
TJM 8/8/77 i
MARK 1 CONTAINMENT PROGRAM STRUCTURAL ACCEPTANCE CRITERIA ACTIVITY 3.1.3 PLANT UNIQUE ANALYSIS APPLICATION GUIDE August 8, 1977 Presentation to NRC Concerning COMPONENT-LOADINGS - SERVICE LEVEL ASSIGNMENTS l
l WTELEEME ENGPEERNG SEFWICES 303 BEAR HILL ROAD WALTH AM, M ASSACHUSETTS 02154 617 890-3350 i
i
g I
MARK I CONTAINMENT - STRUCTURAL DESIGN CRITERIA PURPOSE OF MEETING:
TO EXCHANGE THOUGHTS WITH NRC CONCERNING SERVICE LEVEL ASSIGNMENTS FOR CONTAINMENT STRUCTURES AND SUPPORTS AND THE BASIC ALLOWABLE STRESS TO BE USED.
COMMENTS:
1.
CHARTS DISCUSSED G0 IN SECTION 5 0F PLANT UNIQUE ANALYSIS-APPLICATION GUIDE.
2.
PIPING AND PIPING SUPPORTS AND THE BRUNSWICK CONTAINMENT WILL BE DISCUSSED AT A LATER DATE.
3.
ONLY-LOAD COMBINATIONS INVOLVING "NEW" LOADS ARE DISCUSSED.
LOAD AND LOAD COMBINATION DEFINITION ARE NOT PART OF THE SDC EFFORT.
4 THE CONTAINMENTS WERE ORIGINALLY CONSTRUCTED USING DESIGN PRESSURES AND DESIGN TEMPERATURES WHICH ARE NOT CHANGED AS A RESULT OF THE NEW. LOADS.
S.
POSSIBLE INCREASES IN ALLOWABLE STRESSES AS A' RESULT OF.THE DYNAMIC NATURE OF THE LOADINGS ARE NOT YET INCLUDED _.
ANY WHICH CAN BE JUSTIFIED WILL BE-PRESENTED AT A LATER DATE.
%y he a.sp u uhM & W M A 4.a a g L w & & auxa~.
5
f I
PAM I CONTAINMENT APPROACH TO STRUCTURAL DESIGN CRITERIA 1.
PLANT UNIQUE ANALYSIS APPLICAT'. GUIDE (TES TR-2278(c)) WILL:
A.
CODE CLASSIFY THE STRUCTURAL ELEMENTS B.
REFER TO LOADS AND LOAD COMBINATIONS CONTAINED IN THE LOAD DEFINITION REPORT C.
REFERENCE THE CODE AND STANDARD RULES TO BE APPLIED, OR APPROVED ALTERNATIVE CRITERIA D.
WHEN NECESSARY, PROVIDE ANALYSIS GUIDANCE [4 e -
M #tY'T
"*+
cly m a~,J de M
~~
y 2.
IN GENERAL, THE CODE RULES DEFINED ARE:
cLy w n-ffds v(9&)
CLASS MC VESSELS - SUMMER 1977 ADDENDA COMPONENT SUPPORTS - WINTER 1976 ADDENDA 3.
'JEN COMPLETE APPLICATION OF THESE CRITERI A RESULT IN HAPDSHIPS '
CR UNUSUAL DIFFICULTIES WITHOUT A COMPENSATING INCREASE IN THE ba LEVEL OF QUAllTY AND SAFETY, OTHER STRUCTURAL ACCEPTANCE CRITERIA MAY BE CONSIDERED ON A PLANT SPECIFIC BASIS AFTER NRC APPROVAL, a
_ _ _ __ ]
0 b~
p
- ff g
RESTORATION OF THE ORIGINAL DESIGN MARGIN 1.
DESIGN MARGIN IS A OVALITATIVE ASSESSMENT OF RISK THAT INCLUDES CONSIDERATION OF THE EXTENT OF KNOWLEDGE OF THE APPLIED LOADINGS, THE EXACTNESS OF THE STRESS ANALYSIS, AND THE EXTENT TO WHICH THE DESIGN CRITERIA ADDRESS SPECIFIC FAILURE MODES.
IT IS NOT A NUMERICAL QUANTITY TO WHICH A SPECIFIC VALUE CAN BE ASSIGNED.
2.
EARLY VESSEL DESIGNS, FOLLOWED A " DESIGN BY RULE" APPROACH CONSIDERING ONLY A STATIC DESIGN PRESSURE AND SEISMIC ACCELERATION UlTH THE STRESSES EVALUATED BY SIMPLE MEMBRANE ANALYSIS AND LIMITED TO 28 PERCENT OF THE MINIMUM TENSILE STRENGTH OR, FOR BUCKLING, NOMINALLY 25 PERCENT OF CRITICAL LOAD.
LATER VESSEL DESIGt!S SUPPLEMENTED THE AB0VE PROCEDURES WITH MORE S
3.
DETAILED, BUT STATIC, LOAD AND STRESS EVALUATIONS.
SUPPORT DESIGNS FOLLOWED STRUCTURAL STEEL PRACTICES (AISC) WHICH CONSIDERED THE SAME TYPES OF LOADS AND ANALYSIS AND LIMITED THE STRESSES TO 60 PERCENT OF THE MINIMUM YIELD STRESSES.
5.
TES TR-22781bl REVIEWS THE HISTORY OF THE CODE RULES IN DETAIL.
J
- Qwn.
hA h %~g+&4he A dh~g4~
4,Arg'
i
(
BASIC ALLOWABLE STRESS VALUE y
RECOMMENDATION:
THE BASIC ALLOWABLE STRESS VALUE USED BE THOSE NORMALLY
,/
USED FOR SECTION III CLASS 2 VESSELS DESIGNED TO SUBARTICLE NC-3200 c'
8 RATHER THAN THOSE NORMALLY USED FOR CLASS MC VESSELS.
NUMERICAL EXAMPLE:
USING THE VARIOUS GRADES OF SA-516 AS A TYPICAL VESSEL MATERIAL:
GRADE:
60 65 70
[\\
VALUE OF:
S b
b b
b MC M1 MC M1 MC M1 h
100F 16.5 20.0 17.8 21.7 19.3 23.3 U
200F 16.5 19.5 17.8 21.3 19.3 23.1 hh 30]F 16.5 18.9 17.8 20.7 19.3 22.5 8h 400F 16.5 18.3 17.8 20.0 19.3 21.7
/
THE S ; VALUES ARE 11 TO 21 PERCENT HIGHER THAN THE S VALUES.
g MC NOTES:
1.
SA-36, IF APPLICABLE, DOES NOT HAVE S VALUES, S0 THE S VALUE gy MC WOULD BE USED.
2.
FOR LEVEL C SERVICE LIMITS THERE WOULD BE N0 EFFECTIVE CHANGE SINCE S
IS LARGER THAN 1.2 S OR 1.2 S FOR THE MATERIALS OF INTEREST.
y gt MC
(F i o% %QJch t.%_ wh %_ % LM 6 4 6 Oh.
9 gc.n o o
< w dd WD Q &5 ht u%D m L
~_
4 JUSTIFICATION FOR RECOMMENDED ALLOWABLES i
1.
CLASS 2:
RULES ARE ACCEPTED FOR COMPONENTS WHICH FUNCTION IN PARALLEL WITH THE CONTAINMENT SYSTEM, INCLUDING (R.G. 1.26):
A.
EMERGENCY CORE COOLING SYSTEMS f
Q'.kM B.
POST-ACCIDENT CONTAINMENT HEAT REMOVAL SYSTEMS gde M C.
POST-ACCIDENT FISSION PRODUCT REMOVAL SYSTEMS JJM D.
REACTOR SHUTDOWN SYSTEMS
- J T
E.
RESIDUAL HEAT REMOVAL SYSTEMS jv 2.
MATERI ALS:
ALL MATERIALS PERMITTED FOR CLASS MC VESSELS ARE
( wQ p M*EN PERMITTED FOR NC-3200 VESSELS.
3.
DESIGN:
NEXT SHEET 4.
FABRICATION:
SINCE 1963, CLASS 11C WELD JOINT DESIGNS FOR ALL CATEGORIES HAVE BEEN AS RESTRICTIVE AS FOR NC-3200 VESSELS.
5.
EXAMINATION:
THERE ARE NO SIGNIFICANT DIFFERENCES BETWEEN CLASS MC AND NC-3200 VESSELS FOR MATERIALS LESS THAN 2-1/2 INCHES THICK.
6.
TESTING:
THE TEST PRESSURE FOR CLASS MC VESSELS IS HIGHER THAN-THAT REQUIRED FOR NC-3200 VESSELS.
( ps%
m.
25$).
4 y a u c. xqk A Y &' '
p+Apta -
j i
(
4 DESIGN JUSTIFICATION FOR RECOMMENDED ALLOWABLES I
1.
SUMMER 1977 ADDENDA DESIGN AND ANALYSIS REQUIREMENTS FOR CLASS l
MC VESSELS ARE THE SAME AS THOSE REQUIRED FOR NC-3200 VESSELS JXCEPT FOR THE BASIC ALLOWABLF STRESS VALUE. THAT IS, A " DESIGN BY ANALYSIS" l
[
APPROACH IS USED.
2.
" DESIGN BY ANALYSIS" REQUIRES DETAILED LOAD DEFINITION AND STRESS l
I ANALYSIS AND COMPARISON OF THE CALCULATED STRESS INTENSITIES WITH DESIGN CRITIERA RELATED TO IMPORTANT Ft.! LURE MODES, INCLUDING FATIGUE.
i I
3.
EXCEPT FOR CLASS MC VESSELS, WHERE CONSIDERATION HAS NOT YET BEEN GIVEN, THE CODE APPLIES A NOMINAL FACTOR OF SAFETY OF THREE ON THE MINIMUM TENS!LE STRENGTH WITH THE " DESIGN BY ANALYSIS" APPROACH AND A NOMINAL FACTOR OF FOUR WITH THE "0ESIGN BY RULE" APPROAEH.'
~
4 CONCLUSION AS IS DEMONSTRATED BY THE ACCEPTANCE OF THE " DESIGN BY ANALYSIS" APPROACH AS AN ALTERNATIVE TO THE " DESIGN-BY RULE" APPROACH FOR SECT:0N III, CLASS 2 AND SECTION VI!! VESSELS, BOTH APPROACHES (WHEN COUPLED WITH THEIR RESPECTIVE RULES FOR MATERIALS, FABRICATION, EXAMINATION AND TESTING) l ARE CONSIDERED TO RESULT IN EQUIVALENT DESIGN MARGINS.
O 1
l
" %"r Y"Y sw~
q 9 % g n..
+
'mg M[
g _ _,
l L
( oqw _6be an
\\
. \\v.. - \\lw
,t. ~
+nb x~Mq.
\\
X M k'\\
y tu,a4,g %- w L
~ - - - -. _,,
i l 4 F
S IMPLEMENTATION OF THIS RECOMMENDATION Y ',.
I y
l Revise Table NE-3221-1 as Shown:
03'
[
[
mn TMtt NC.3221 1 - StM1 ART OF STRES,S t,hitNstTY LIMITS y
6 sum 1 n na u
O
{
j
- 1
{
l 10ADInc LtVtl LIVIL 8 5tRY!CE LEYtL C 5tRYtCE STRESS LtVtl 3 SERVtt!
Ltitt 3 StRVICE r*
CDs.DIT!QM A
STRESS INTEN5ITT InitRSITY LIMIT 44rtat Tilt 512155 InitRSITV sin [55 twitastit t
9tstCM Staf!CE limit AN3 ttytt C STRUCTURE 15 iniCGaAL LIMIT taitR[ TIC LIMIT tastat THC 51Rt35 STR155 5tRvitt 5 TRESS AND CCrIT!MUGUS Ap3 STRtfCTL1tt 15 sist,ttutt Is initN581T 14TENSITT LIMif lattRE 1 tt Ltvtl D SERitCE STRIS$
INitCML 4 C0af, thitCRAL AND LIMIT LIMIT STRUCit;RE Is MST LIM: na'ttL Titt (eta 5 TIC AMLf515)
CC3finuot:5 j
^
i l'Ht*fL ?2'D (C"!CO 1.-....-...
(1 2 15T:0 IMitCRAL MD (Civitsuc%
A,At7515)
Att3 AT PARTIAL (4)
(4)
Stect (5)
(5) etnunATion wttes (5) f u
e, i.o 5,,
1.0 S 1.0 5,3 1.2 S,1 or
- 5, 5,
d 1.o 5, tr e
1.s 1.c 1.5 S,g 1.5 S l83 0#
- t m1 i, $ m1 t5 Pt + P, 1.5 5,,e 1.5 5,1 1.5 S 1.8 S,1 or
- 1.s s, 5,
d j
1.5 5,
I3I III III
^
WA III L4 Pt*Pb+q 4/A (3 3.0 5,1 2.0 5,3 N/A WA
,y UI n/A WA DI UI f
+Q+F M/A 5,
5,I3I UI ^
WA Pg+Pb i
3
,T i
IIOTC5:
w s
/
\\
jr 1.
R/A - fle evolvation retutrad.
Z.
Limits identifled by (*) tadicates a chetco o, the larger of two lletts.
A,I' r
til 4
3.
Eveisation not re'quirte for Level C Service.
L-jh 4.
S is 655 of the general primary meersne allowette permitted. In the applicatten of g
j the rules of Appendia F. 5,*g. If applicehle, shall be as spectried in Table 1 1.0.
p S. If SA-36 material is used, S values'from Table I-1.10 shall be used.
8}
[
mc l
s k
r w
?
4 t
c'
(
STRUCTURAL-ELEMENT _
R0W External Class MC Torus Shell (General, Ring Girder, at Supports andPenetrations),
External Vent Pipe, 1
Bellows, Drywell (at Vent), Attach.
ment Welds, Torus Supports, Seismic Restraints t
Internal Vent Pipe General and 2
Attachment Welds
I At Penetrations 3
(e.g., Header) t Pool Swell 4
q' s
., \\ ;,,
Impingement Region s
f g'\\
Vent Header d A General and 5
, j\\
A Attachment Welds Ty
[*/
At Penetrations 6
7 g3
'y (e.g., Downcomers) h Pool Swell 7
impingement Region Downcomers General and 8
Attachment Welds l
Pool Swell 9
y' Impingement Region i
f, i
an Internal Supports 10 gy 1
I@
('
Internal Structures
(
Submerged 11 U
\\ T Non-Submerged 12 t
1
/
COMPONENT - LOADIES - SERVICE LEVEL ASSIGMMEMTS
(&s,
6v / re t )
{.,: p ia e s : O (b&
I EVENT COMBINATIONS 8 5RV SRY SBA IBA SBA IBA SBA IBA
+
+
+
+
+
- 3RY, SRY, PS CD.
PS CO, CH EQ EQ EQ SRY SRV EQ EO Of Type of Earthquake 0
5 0
5 0
5 0
S 0
S 0
S 0
5 COMBINATION NUMBER 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 LOADS Normal N
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I (D + L + T, + R,)
Earthquake EQ I
I I
I I
I I
I I
I I
I I
I I
I I
I I'
I I
I I
I I
LOCA Thermal T,
I I
I I
I I
I I
I I
I I
I I
I I
I I
LOCA Reactions R
I I
I I
I I
I I
I I
I I
I I
I I
I I
g LOCA Quast-Static P
I I
I I
I I
I I
I I
I I
I I
I I
I I
g Pressure LOCA Pool Swell P
I I
I p3 LOCA Condensation P
I I
I CG Oscillation LOCA Chugging P
I I
I I
I I
I I
I I
I I
I I
I g
- 6 33 (
M) 4.,y g_L t
<g4w akg_p { L D't)
R 3^e.
g( 4 A w\\ e b d'V~
g _4) g ca uA sa 4 %M b "'
c,,su4 t
(
(~
THE FOLLOWING CHARTS CONTAIN THE COMPONENT-LOADINGS - SERVICE LEVEL ASSIGNMENTS, EXCEPT FOR PIPING. ALL CONTAIN THE SAME INFORMATION WITH RESPECT TO i
EVENT COMBINATIONS, COMBINATION NUMBERS AND LOADS.
THE REMAINDER OF EACH CHART MAY BE DESCRIBE 0 AS FOLLOWS:
CHART CONTENT 1
COMPLETE CM6 j
2 CONSISTENT WITH PREVIOUS NRC 4
COMMENT A'3 \\
MAY DEVI ATE FROM PREVIOUS p
d NRC COMMENT f(P 3e
- s iy>> ro
.Ws 2 t
DEVIATION BECAUSE OF POOL 4
,j gj g
C I
SWELL CONCERNS pt 5
DEVIATION BECAUSE OF CHUGGING CONCERNS I
f 6
SUMMARY
CONCERNING POOL SWELL 7
SUMMARY
CONCERNING CHUGGING l
i 8
SUMMARY
CONCERNING SRV l
i p,
,..w
-g (pesontet. toA0fect. stettygI g J'
iM f StA.
IM.
eta.10_P5
. CO Cai
!/
(Viet C0selmAfl0ml pf P*
$4A 184 18A ISA
$4A
.__34,*84
- 18 9 p t.
- f 10 10 01 fppe of torthevote 0l1 0
1 0
5 0i 5 0
0 5
0 i $
i ain c iwi0..te t
a n
u n
a n
a o
a a
en hereal 0
I 8
8 8
8 8
1 1
1 1
1 I
8 I
I I
I 1
1 1
1 (0
- L
- f,* 4,)
tartheaste to 1
8 8
1 1
1 I
a a
a a
a a
a 14v Otscharge WV 8
8 8
8 I
3 I
I LOCA thereal t
I I
I I
I I
I 1
i f
2 I
I I
I I
1 A
g LOCA Aesctions 8
I I
I I
i 1
1 1
I I
I I
I I
1 1
I I
g LOCA 0945t*Statte P
1 8
8 8
8 8
8 I
8 1
3 1
8 3
8 3
1 1
a Pressvee LOCA Pool Snell P
I I
I pg LOCA Concennation PCO Oscillation t0CA Chugging P
i a
a a
I a
a 1
I a
CM StavCT;t AbitMat RN taternal Clut "C focus Snell (General, klag Gleser, at Supports and Penetrationt).
Esternal Vent Ptpe.
1 6
8 C
A A
9 C
8 C
A A
B C
B C
B 0
B C
B C
6ellost. Drywell (at Vent). Attacha e*nt beidt, foret Supports. Selwatc Restraints laternal vent et e t
General and 2
A B
C A
A C
B C
A A
B C
C 4
0 0
C 4
C Attachment holdt At Penetrationt 3
A B
C A
A B
C 8
C A
A ~ I C
C C
C C
C C
C (e.g., header)
Pool leell 4
N.'A R/A h/A N/A N/A N/A R/A 8/A N/A N/A h/A N/A N/A N/A N/A 0
0 0
0 0
0 lempingrernt Region Vent koader General and 5
A 9
C A
A 8
C 5
C A
A 8
C 8
C 5
0 8
C l
C Attaclement Weldt At Penetrationt 6
A 8
C C
C C
D C
D C
C C
0 C
0 C
C C
C 0
0 le.g.. Downcom es)
Pool Swell-7 m/A N/A N/A N/A t/A R/A N/A N/A N/A n/A h/4 N/A N/A N/A N/A 0
0 0
0 0
0 laptagement Region Dow'ic tuaert General and 8
a B
C 4
A 8
C S
C A
A B
C B
C C
C C
_C C
D AttacWat welds Pool Svell 9
N/A n/A N/A N/A 4/A s/A N/A 3/A R/A N/A N/A N/A N/A N/A R/A 0
0 0
0 0
0 laptagement legion internal %pports 10 A
B C
A A
B C
B C
A A
B C
B C
8 8
8 C
S C
lateenal Structu et r
btumerged 11 n
9 C
A A
C O'
C 0
C C
0 t
0 t
t t
t t
t I
non.Sutamerged 12 t/A 4/A n/A n/A n/A n/A e/A n/A R/A N/A N/A 4/A N/A 4/A N/A 0
0 t
C i
C l
~
[
c/DEM,
Ctwomf tf L(401=Cl. stavlttjlett allti.stl Con 515f tet vita PattlM s*C CJetati ty?nt (orsinan;mj sa y
$8A 184
- 58A, IBA.
ISA DBA + (0 sa y, La w, Pl CO, Pl CO, Cu 10 IQ (0
MV WV to to 1pe of tarthemate 0
0 1
0 1
0 1
0 1
0 1
0 1
Cptsatt0a sargg 1
)
e l
8 7
8 9
10 11 !! 13 14 15 16 17 18 19 F0 !!
LCdd wt a
1 1
1 I
I I
1 I
I I
I I
I
)
I I
I I
8 I
I
( 0
- L
- 1,
- 8,1 t arthovat e to 1
A I
I I
I 2
8 1
I
)
I I
I I
i 1
$Av Discherpe 5Av I
I I
I 1
I I
F 1
LOCA thermal 1
I I
I I
I I
I I
I I
1 I
I I
I A
I 3
LOCA teactioat l
1 1
1 1
1 1
I I
I A
3 8
I I
I I
I A
a (OCA Ovest Static P
1 I
I I
I I
I I
I I
3 I
I I
I I
I I
a Presswee
!DCA Pool $well P
I I
I pg LOCA Condeetation P
t l
I C0 0x111stion
{DCA Chugging P
I I
I I
I I
I I
I I
I I
I I
I
). s{
str.tctupas tt f rf tf row titernet tiau mc g/ 7 O
t or vi sh,e l.l 9p Jp d,
wer a...,
a D
streer, at Supports and Penetr at Dat).
taternal veet Pipe, 1
A 8
C A
A B
C B
C A
A B
C B
C 8
8 8
C 8
C Be lices, Drywell (at Vent ), Att ach.
+
meet b*lds, forun Supports, Seismic aestraints jeternal Vent etre Geaeral ang F
A B
C A
A 8
C 8
C A
A 8
C 8
C C
8 g
Attactvwat belos At Penettattont 3
A 8
C A
A B
C 8
C A
A 8
C C
C C
}
(e.g., Hesser) k A
NN
}
neat nesper f*neral and 5
A B
C A
A 8
C B
C A
A B
C 8
C(
8 8
8 C
8 C
g Attactvwnt Welds 4
At Penetrattoel B
A B
C C
s
( e. g.. bc c=er s )
j q 3
w ecarri t D General and 8
A B
C A
A 8
C 8
C A
A 8
C 8
C C
y Attachment heldt hS 1
y a
laternet Suffo3 10 A
B C
A A
B C
8 C
A A
8 C
8 C I 8
8 8
C 8
C
[
taterna? Str etures Y
w
$wtnerged 11 A
B C
A A
C 0
C 0
C C
D E
D t
t I
t t
t I-y goe.$wtweer ged 12 N/A N/A t/A N/A N/A N/A R/A R/A N/A N/A g/A g/A N/A h/% R/A 0
0 t
t t
I d /C4 C b? gM ct.4 *. g o s e*
p.g ggf andJ w/ pn~
d et4< J4*d-c;) AXwx, = tt JJ ~ s. /a.
\\
f..
e CtpP0stNT. LeAptess. $tsvitt LiffL Alslepttf1 ET OtVIAft FA0M PetV!0US NBC C90ENTS
[ytut Ctpel44tions pf Mr 5M IM
$8A IM SM IM
$t4, 104 DBA C?A + CQ
+
+
+
+
+
D y, sav.
PS CD, PS CD,CN to EQ to my sat (Q
1 0
0 5
0 5
0 0
5 0
cm etaAftou rs erit 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 - 11 18 19 20 21 1991!!
Normel N
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I (D + L + T,+R,)
tarthevake
[Q I
I I
I I
I I
I I
I I
I I
I I
I I
I
$AV Discherpe
$RV I
I I
I I
I I
I I
LOCA Thermal 7
I I
I I
I I
I I
I I
I I
I I
I I
I I
4 LOCA teactions R
I I
I I
I I
I I
I I
I I
I I
I I'
I I
g WA Quest.$tatic P
I I
I I
I I
I I
I I
I I
I I
I I
I I
3 Pre. wre LOCA Pool $well Pp3 I
I I
LOCA Condensatier.
P Oscillation C0 I
I I
I LOCA Chugging P
I I
I I
I I
I I
I I
I I
I I
I CH EUCTURAL.IttWNT g
Internal Vent Pio, At Penetrations 3
(e.g., Header) f g
g Pool Swell 4
!aoingement Region 0
0 0
0 D
D vent Header At Penetrations 6
(~
C 0
C D
C C
C D
C 0
C C
C D
D (e.g., Downcomers)
Pool $. ell 7
lapingement Region 0
0 0
0 0
D i
4 DDemComers General and 8
Attachment Welds C
C C
0 Pool Swell-9 Imoingement Region D
-0 0
0 0
0 c
e
\\
t
/
l_
.. ~. -
A LtNEMT - LOADt%S - Stavitt Ltytt 455tGareENT5 ctTI ATIOR BECAUSE OF POOL SELL C04CER4 tytti COP 8tmailom5 SP V SRT SBA IBA 58A ISA SSA 18A
- S8A, ISA.
08A DSA
+
+
+
+
+
3RV.
SIV.
P5 CD.
P5 CD. O EQ EQ EQ 9V SIV EQ EQ m
Type of Earthquake 0
D 5
0 5
0 5
0 5
0 5
0 1
CarsthAT10m wJuBER 1
2 3
4 5
6 7
8 e
10 11 12 13 14 15 16 17 18 19 20 21 LOADS nomal n
I I
I I
I I
I I
I I
I I
I I
I I
I E
I I
I (D + t + T,+ R,)
EartNuake EQ I
I I
I I
I 1
F 1
I I
I I
I E
I I
I 5R7 Discharge SRV I
I I
I I
I I
I I
I I
I I
1 1
I I
I I
I I
E E
R r
I I
LOCA Thermal 7,
LOCA peactions R
I I
I 1
1 1
I 1
I I
I 1
I I
I I
I I
g LOCA Quest-Static P
I I
I I
I I
I I
R I
I I
I I
I I
E I
g Pressure I
I I
LOCA Pool Swell Pp3 I
I I
LOCA Coadcasation PCO Oscillation x
I I
x I
I I
I 1
1 I
I I
a a
?
tocA Cwagging P,
STRUCTunst-EttnEnt g
o P Sr Int enal vent Pt e
\\v P
C C
C C
At Penetrations 3
(e;- WaW5 Y
0 0
9 9
9 9
G t Pool Swell 4
/
p*
lepingement 9egion Yeet Meade-C C
At Penetration-E (e.g., Denncteers) 0 D
D 9
9 9
Pool $= ell 7
laptet Region De=ncomers C
C General and 8
Attwhment Welds 0
9 9
9 9
0 Pool Swell 9
Igl..,
t Region
= _ _
1 e
Co@0NENT - LOADINGS - SERVICE LEVEL ASSI9sIENTS DEVIATIGN DECMfSE OF CMUGGI4G concert EVENT COMB! NATIONS SRV SRV SBA IBA 58A ISA
+
+
+
+
+
P5 CD.
P5 CD. CM EQ EQ EQ 3RV 3RV EQ EQ W
t Type of Earthquake 0
5 0
5 0
5 0
5 0
5 0
5 0
5 4
COMBIMATION MUMBER 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 t
6 LOADS Normal N
I X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X 4
7 (D + L + T, + R,)
l Earthquake EQ X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
j T
I I
I I
X X
X X
X X
X X
X X
X X
X X
'LOCA Thermal g
LOCA Re=<tions R
X X
X X
X X
X X
X X
X X
X X
X X
X 1
A 5 i LOCA Quest-Static P
X X
X X
X X
X X
X X
X X
X X
X X
X X
g Pressure f
LOCA Pool Swell P
X X
X pg
'y LOCA Condensation P
I I
I O
I
' Oscillation LOCA Chugging P
1 I
1 1
I X
X X
X X
X X
X X
X g
[
D.$
J J
STRUCTURAL-ELEMENT ROW Vent Header 1
g At Penetrations 6
C C
C 0
C 0
C s.
C 0
C 0
C S
9 (e.g.. Downcomers)
\\
d Downconers General and 8
C C
D
. Attachment Welds 3
S 3
f
+ i Lwoaf #f t0A0j.u,C1 5tavi(( tiett A5tIcoyst lieuA CspirtaeIas P00t tet'.t
=
plaft>eittatt,pe}
$1A [$A
$&A,
{&A, hg4 ptA
- t0 1A v.
$A v.
il CD.
is Co. CM I4 la til MV DV 40 84 CM tiPe er teethavata o
s o s e
s e
s o
e s o s
CrMtution sagte.
I 2
3 4
6 4 7
8 9
10 11 12 13 le 18 16 17 le 19 20 21 3
CO*115fitt WifM WC Dfa[4,I}
j 1
bit. ras! Cot.5
\\
forve Shell f 4 (Geaeral, Alag t
.f @k C9roer, at tupports
.J e
a d feaetratloatl.
0 I
C O
taternal feat *Ipe.
1 D
se t to.s. Dry-e ll (at vent). Attach-eeat welds. Torut kpports. $elle1C nettraiatt lateenaltaatPipe sene ai aae a
c:4,
- Q 5>
+
AttacWat Weldt N
C
. '\\
At 8enetrat toat 3
(e. g., M ader )
Q veat Hea1e*
~'s T r
g se e,si sad s
(.s Attacwat Meldt
(
C At Penetrattoas (c g., Do sec=ers)
,f,
\\
h s-a
-7g q{
/
C u e, a s a a e
Attacwat meldt late *aat Lppnr.tt 10 C
Inte aal Strwturet k w eged 11 t
E s
noa.5u w eged 12 0
I f
APPtf Ltff t C WO( WC MAS _9 jateraat Veat Pipe
~ C C N At Peaetraltoat 3
g
( e. g., Me a der )
\\
(___
veat Meader_
At Penetrations 6
i C
'Cr (e.g.. Dmoners)
C-
_Dwomr et f
General sad 8
[ C C j AttacWat Wlds
\\
APPtv ttvit 0 WDE GC MAS S On C t, ate aal vent Pipe teat Messe*
Dw wwe t Pool 5. ell 4.7,1 0
0 0 0
0 0
m.. ---
h
% _t 'Logg wJ-
Caruutu? LOA 0tacs. Srav1(t iivtL Alt*[afj Suletast Coattta1ac CMuGC1eG i
Evtat (Os9tnAf ton 1 91 DV SSA lha SM 104
$4A ISA SaA.
tea.
sea geA
- 10
+
WV.
28 P5 CD.
P1 CO. CM 14 80 M
SV DV E0 et at type et tertne. ae e
f 8
5 0
1 0
8 0 8
0 1 0 5 (tpisinnflose aunsta 1
2 3
8 8 6 7
8 9
10 11 12 13 14 il 14 17 le 19 20 !!
StouttuaAt.tttutet ogw Cast 1TIWY wttu mRC Casq[att laternal Class sef forvs Shell (General. R iat Girder, at Supports I.M/4"i';#;*"'h.
i A
A C
e C
A A
e C
e e
. C
.ii
- s. Or,weii (at vent). Attach.
eent wids focus kaports, Settate t
Aestraints
)
l jaternal weat Pipe General and 2
A A
8 C
8 C
A A
B C
8 C
8 8
C Attactineat teelds At Penetrations 3
A A
8 C !$
C A
A B
C B
C C
(e.g.. Header)
Vent Header 3
Generet and 5
A A
C C
A A
B C
g C
g g g Attusement welds Dowacomers General and 8
A A
8 C
8 C
A A
8 C
8 C
AttacNarnt Welds Internal Supports 80 A
A 8
C 8
C A
A 8
C 5
C 0
5 C
laternel $tructures
% bmerged 11 A
A C
0 C
0 C
C 0
t 0 t i
E C
hon-%tuserged 17 R /A N/A N/A N /4 g/4 N tA s tA 4 /A RfA ett a.
a tA M/A 6
f f
Aept? Livil C wHEtt 4RC MA$ 4 OA 6 laternal yeat Pipe At Penetrations 3
C C
(e.g., nesser)
A W1%Sk' At Penetrations 6
C C C C
C C C
C C
(e.g.. Dowacomers)
Dawacamers l
Geaeral aad 8
C C
1
/
Attacament Welds APRV LEVEL D tettRt mRO HA$ 8 OR C Vent teraer At Penetrations 6
0 O
O O
O O (e.g., Downcomers)
Ema comtes Generat and 8
0 AttKAnt welds O
e
)
j f(ikmtm&u,;k) g
$9 h 8
] Jk A
- -,. - ~.
1
\\
CtMpontNT - LOADINGS - 50VICt ttFEL 4%$1689ENT1 Su w AV CouCD m!NS S V
[VtNT C M luAT10N5 RV RV 54A ISA laA 18A 584 IBA SaA.
ItA.
BRA DBA + tt
+
+
+
+
+
DV.
M V.
P5 CO.
P5 CD. CM EQ EQ E4 RV DV tQ tQ CM Tyse of tarthevake 0
5 0
5 0
5 0
1 0
5 0
9 5
i Cmel4Afl0N NUMB (R 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 4
SitucnmAL-fttMEnt g
COM515fENT WITH NRC C@e c ts tuternal Class MC Torus Shell (General. R1ng Girder, at Supports and Penetrations).
Esternal Vent Pipe.
1 A
B C
A A
B C
B C
Bellows. Drywell (at Vent), Attach-ment Welds. Yorus Supports. SeisalC Restraints Internal Vent Pipe General and 2
A B
C A
A B
C B
C Attachment Welds At Penetrations 3
A B
C A
A B
C B
C (e.g.,Hirader) b Vent Header General and 5
A B
C A
A B
C B
C Attacrunent Welds At Penetrations 6
A B
C (e.g.,Downconers)
Dawnconers, General and B
A B
C A
A 8
C B
C a
Attachment Welds Internal %pports 10 A
B C
A A
B C
B C
Internal Structures Sutaerged 11 A
B C
C C
D E
D t
Non. Submerged 12 N/A N/A N/A N/A N/A N/A N/A N/A N/A APPtY LEVEL C WERE NRC HAS A OR 8 4
J Vent Header At Penetratiors 6
C C
C C
(e.g. Dow'camers)
APPLY LEVEL 0 WERE NRC HAS C Vent Header At Penetrations 6
0 D
~
j q.
r ADDITIONAL FATIGUE EVALUATION I
4 NORMALLY, EVALUATION OF SECONDARY AND FATIGUE STRESSES IN CLASS MC VESSELS
]
IS NOT REQUIRED WHEN LEVEL C SERVICE LIMITS ARE PERMITTED.
I V FOR THE MARK I CONTAINMENTS, SECONDARY AND FATIGUE STRESS EVALUATION
'l WILL BE REQUIRED FOR ALL CASES WHERE PREVIOUS NRC COMMENTS WOULO INDICATE A LEVEL A OR 8 ASSIGNMENT AND LEVEL C HAS BEEN USED, EXCEPT FOR POOL.-
1 SWELL LOADING.
i_.
5 THI$ ADDITIONAL REQUIREMENT WILL BE APPLIED T0:
R0W COLUMNS 4
3 17, 20 6
4-6, 8, 10-12, 14 i
8 17, 20 l
f ALSO, A NOTE TO THIS EFFECT WILL BE ADDED ON FIGURE NE-3221-1.
I i
l i
P 4
cowon nee nu,-w fo
\\'
f 5
PROBABLE LIMITING STRESS LEVEL THE NEXT, AND LAST CHART INDICATES A PRESENT ESTIMATE AS TO WHICH OF THE VARIOUS LEVELS WILL BE LIMITING FOR EACH STRUCTURAL-ELEMENT, OF THE 13 LIMITING CONDITIONS IDENTIFIED, NINE APPLY LEVELS CONSISTENT l=
WITH PREVIOUS NRC COMMENTS. THE REMAINING FOUR APPLY LIMITS WHICH MAY BE INCONSISTENT WITH PREVIOUS NRC COMMENTS.
ONE OF THESE POSSIBLE DEVIATIONS IS AT THE 00WNCOMER PENETRATION IN THE VENT llEADER WHEN SUBJECTED TO IBA + SRV + OBE, WHERE LEVEL C IS PERMITTED.
THE REMAINING THREE POSSIBLE-DEVIATIONS OCCUR AT THE POOL SWELL-IMPINGEMENT-REGION OF THE VENT HEADER, THE DOWNCOMERS AND THE IhTERNAL VENT, WHERE l
LEVEL D IS PERMITTED.
AT THE PRESENT ONLY THE FIRST OF THESE IS FELT l
TO 3E OF SIGNIFICANCE.
THEREFORE, THE PRESENT JUDGEMENT IS THAT ONLY TWO LIMITING REGIONS WILL HAVE LIMITS WHICH MAY DEVIATE FROM PREVIOUS NRC COMMENTS.
't
-v w
c-
-n.
4 --
e.
,,.,,s..
,,,-,.%,,-w,,
,e,.
-,.y-E,
,,n,,
e 4v,y m
-w-..
.-----4
i ;
i I.
Ceementet. teamerA
'.tavtet tritt A,genrrts Pros A nLY t.sMariNg CDs).If
[
yt CMitaf f 0s1 lAt 99 544 ISA tha ISA SH ik [
14A.
18 9 SA V,
P5 I to
_g t0 80 _
99 99 10 80 CM e
0,
,,.e..., t
.s e I
t CDGitAfl0s ang i
3 4
6 0
7 8
9 10, il 18 13 14 il 14 17 le 19 ; la Il i
LM1 kgel R
I I
1 8
8 8
8 3
5 5
8 8
8 I'
I I
I 8
I I
A (9
- L
- 1,
- 8,) -
larthovese 80 8
3 I
I 3
3 3
8 3
3 I
I I
E 3
3 3
3 DV 01tenerge wv s a a a a a I
a I
LOCA thereal T
8 I
I I
8 I
I E
5 1
3 1
3 8
8 I
8 8
g LOCA teactions S
8 2
3 3
I 1
2 3
1 4
3 3
1 4
1 3
I I
g LOCA Ovest.$tatic P
i I
1 1
3 J
A 8
8 8
I I
3 3
3-3 I
e g
Pressere 3
1 I
LOCA Fool 5well Ppg I
I 3
LOCA Coadcasatica PCO Ost t ilat ion LOCA Chegglag P
I I
I I
I I
I I
I I
I I
I I
CM 2.
5ftuCTJA4 Ett*Itsf M
tatreaal Class n:
forus 5nell (Graeral, e tag 6 tree *, at %pports and Penetrat tend, taternal vent P$pe.
1 A
9 C
A A
9 C 8 C A
A 8 C C
0 g
C 4 C tellows. Drywell (at Dent), Attach.
meat wits. Terms kpoorts. Seheit tes tra tat t laternal Veat Dipe General and
?
A 9
C A
A C
3 C
A A
9 C 9
C S
0 5
C 6
C attacheat welds QC At Penetrat lens 3
A 9
C A
A S
C $ C A
A 1 C B
C C C C C
(e.g.. Header)
O' 0 l
Peel 5= ell 4
4/A 4/4 n/A g/A e/A n/a e/A N/A N/A 4/A N/A N/A N/A g/A 3/A 0
0 0
0 laptagesent Regian j-vent hoew j
eeneral sad 5
A 8
C A
A
$ C 8
'C 4
A 8
C C
6 8
C 4
~C Attachment eles (8,
i i
At Penetrattoal 6
A B
C C C C 0 C g C C
.C 0
C 0
C C
C C 0 0
(e.g.. M = rst j
Pool 5.ett 7
A/A N/A N/A N/A N/A N/A R/A h/A t/A n/A m/A t/ A ' 4/4 N/A 5/A O
O O
O O
O laptageernt Region 08""C "3
~ C.Q C t'
General and 8
A 8 C A
A 9 C 6 C A
A I
C
'C C C C 0
Attacharat Iselds -
Pool $ ell 9
N/A N/A N/A t/A t/A g/A g/A n/A g/A n/a g/A R/A R/A R/A R/A 0
0 0
0 0 laptagguent Region laternal hppoats 10 A
8 C
A 4
I C
3 g
A' A
l C
S C 5
4 C
8' C
hakefaa IMkWPek h0 t
0 t t
t t
t t
(
5deerted 11 A
B C
A A C 0 C 0 C
90
,, t E
s-r,e.
1,
,,4
./A./A
.,,,/A.in iA./A./,
./A.iA.. A.iA.iA,/A l
= c o *S 6""r "Ifeedto*A d
(~"'
csl 46C 6.
O o
a w
@=
m Amm %
a4c5T fw9#LA Co6JeL d e441*S (01% tit i
- t zu t% %A9 1 b
- - Wo m e _,3 f
i i
i I
- G w&Sda/
C gastet. toef tet.1
- Sf**1Ct tiett Ay,tgey 4A l lt4 I
044
/
gnigpe nnat tosj lav sv WA ISA SM ! ItA 5
54A.
t ea.
,98 i Co. ~P1 08A,+ (Q:
1 54 1 sa v,.
Co. Cu
- * +
10 t0 80.
9T _ Siv i 10 to t Cn l
~Le.niein e.e o;
ojs
.e j i
- ; o,s o
0 s
o i t
i 19 20
- 1 13 14 15 le if { 14 CMinAY_10m impets I
3 4
5 4
7 8
9 10 11 { 11 i
r m
accost a
1 I
I
& fI I
8 8
I I
t I
I 5
8
'1 3
8 1
1 JO*L*f,*8,1 4
_ _,4, -,,,,,
E arthq set e tQ II I
l I
I I. I.
5 1
1 I I I I
I g8
.' t 8
I I
g WV Duchsete 91 1
8 1
I{8 I, l 8 I
1 I
,I 1 I. t a'1 I
8 I
I I
A a
LOCA The*mel v
A I
8 8
8 I
}A g
jI
- i I
1 1
I t0CA nenti.at e,
j j
8, 8
A, I
t 8
A 4
I I
A LOCA Queil Static P
I III
,1 1
I I
I I; t I
a a Ie 8 I
f
_l.
=
.i
. 4 g
- a -'
i f
}
I I
I., _
(fCA Peel bell
.P,g
)
3 1
I I
._LOCA Condensatten P
e l
U i
.)I l
Oscillat. ion-t.
ji I
I a' s I
At LOCA Cneggtag P
I I
I I
I I
i y
l l
f
{i Steurt@ A(4ttetet now l
5 e
h tateraal C1sts,5
}
i I
i i
I i
1
{
l vorn saeil Cireer, at %, ports
[
(Gener el. 3)ag and Peaeteatieas),
Al4 C
A B
C 8
C A ' A 6-' Cj l C 5 9 C 3
-C lateenal weat Pipe.
1 telle.s, Drywell l.
(et weat). Attact.
{
j l
seat midt.1oest i
lettretats l
i l
1 kosoets, Svante l
l.
1 I
l laternal veat eipe senere1 *ad 2
A 8
C A
3 C
0 C
A}~A I Cfg C 3
8 C ~
C 5
Atteouwat widt
,j,,
4 L.
At Penetrattens 3
A B
C 4
A 8
C I
C Ai A 8:
C.
O C
C C
C C C C te.g.. Needee)
Pool % ell 4
n/A n/A n/t s/A 4/A N/A t/A N/A R/A E/41 N/A N/A 5/A, S/A E/4 0i0 0'
O O
leptagensat segton
{
.{
lO l
f e{C.
let'.w ader A
i e
C e;s eI C s
C se er i.ad 5
A i C
A A
e C
s C
A;
_Attac*usat teelds
. _ _.[
At Pecetrattent 8
A 8
C C
C C
0
[ O C
C.
O C
0 C C Ce C 0 0 l
(e.g.. Downcaree st __
.!--. m 9 R/t g/A g/A R/A R/A 5/4 t/A n/a 4/4 m/A R/A t/A t/A 0l0 01 0 0
0
.,., Poet kin
?
4/Al' 4/A
{
tapiapuvat 8estaa f
C}t 4
n wf==e s e
Ge eca) and 9
A B
C A
A
-3 C
5 C
A A
8, C*
8 C
C C C C 0 N Y"*M' h.__--.
,' j..
Peel kli 9
4/4 R/A R/t s/4 g/4 g/A R/A R/A t/A 4/A N/A N/A E/4 R/A N/A 0 0
0=
0 0
0 teot=pmeat, nestoa g
3 f 3f 3 8fC C
C 3
C
'jateca41 %occets -
10 A
B C
A A
8 C
C-A A
jatecast 5tewctvees whereged 11 A
8 C
A A
.C
'O C O
' C C
0 t
0 t
t tl t t
t t
man bmech 12 m/A s/A 4
t/A E N/A 8/A n/4 m/A e/A n/4 4/A N/A N/A 0 0 t C
o4
.s e c emer a n in t-322 8.4 ) ' a~t - Fa+ip e (Nt-32ts.s>
+ A n al9sts p+ reye s is req u tr ed.
t
~)
i e E*. c = = t. M g N===.
',_ m ei.r gMg
.ec i
e
.=" -
_ em m
g
.,a n
_a g
i ag g
,.w
== e..
..=
ge=.a" e
n..
==
O.WgM.M.="',,g em e,
s fo W
e n
- t..,
=
u.,,m,,,_e mw. e n..
M g
~.=="
-,M m
i o
e
.n O
,b 9 g. 3,
, -.e.
e s
r e
"-..-. =-
WqMg6 w
=
8 e
g e
.'m
,m..,,
- g,,, e. m C =m. r.,= =. 4 g*gg M e, t s
m
,,,m
- mm_,
e<
s i e a
mw,..
s
,, e.
a
,-. u s
- e i.,
g a.
=
.s a
=
. o = =
't.
Lp
- o. s u u
=.
m
=si.e.
a aa=,,.
e..
=.
a-
="
t n =,,,,
m
=
i,
.ig.
e u =.
nc,,
B
, s m
Y-E A
4
-Ws-i M v i
u I
1
}
n,
. i7;.1 f
,!l i ii I_.
U n,;liI
,-4
- Tij_
i 6
m tg_ *-g.*.
ii1l u
I s
9f;i.
.i f:
.I A
M1(Tl44g.7.,,
w 2
n,Ia l
.I
,l I
t -
n.
Igph_I s
i
(
Wm;hI
,I(,
iiis ii i
f,j
.i I
t
- j. W3.r 4
e_:vL e
e e c
e e '
c
(
rt os{
ea e
C X
a e
z f,;i l!j:t;I l
+
E.
i r
a n
d.
a_.
.i f.
I1s m< w e
e
. c e c e g. c [.
e C:r' ec e:
c w.l-je M. *+_.p+ g.
.i1 iia I n
.e-w -
1 i
2 a
D lm, e
1 g
I)6v%
.._*p.a-rm
.I I
o.
1 f
w r
e u e e c e e t
5.
e C-2c es[
e; c
L w
, _,.. a 4
,t44 y
i;i4t f=
1ij:
.i i
N.n t
4 y *4 _
t
[g+l M.s r
ii iiiiI f,'
rj ip4 e
i z
p 1
v
)
t u
4,t7. a..
s n.
i
- I i.
ij-'
,i e
_.- {p, e
).
a t
G n-i i
,i w+
t g
- p.
I n
, +4. 441
.,:;l A.
. em a
ip f.
- g...,
7 3
vk %
d4 4!
e a.. *. _. _.
s
+w e
n.,*.3..
tt1,lG 5
9, f.
- f*..
7
'9,iii4e{i11 t
t 2
2 G w J:tjt4_ 1JJ_.
'.n s
s
~
8 -
'0
- M *_
- 4.,*.
f,I a*
t 1
W s.
w 'pJ t
?
a p
-..,, L..
- t I.q h.sk.v*a3 4._. _
=- r A
c
'M.W
- f. e_.4 6 nm.;
.i
.i h
5 a
z a
dw:.g
- s
_,.g 1'.
9 C
a 4 *_..4
~
.A e.
4 v
2 i
F, 1
Ie.
l S
0 a
r
- q.,_ _
3 s
l fm
- p
-O n
Z A_. _ _*._...
- 2. o m
e 2
'.c 0
,t n
g 3
n E
m
,!,l l
s.a..
f9_
9 4W 3
1 2
Wa
%s,4.49i!.i1i!i 7
l F
=
?
5 r
3-i W4
.,i 1
7 s,
t I
l t
I ip.
I S
e F.
Q v"
s E
}M r
I h
ev m
5 I
4,o eo a
Y u
w v
ec e D.
4 e_35 o c c e e c [c e
0=
n at e_aY 9n 4
t ow t
a 3
e,,E e o c ee e le 9,
a ea e mi v
o f..
t 14 f
t 1
%i A_"%
e.
N g_ e 4.
at o,,E e e e e a o Ie a
e
'e,
- r_s3 o.
h J.m e
f~T 16e
=
t e,,B e e e e e e
- g %r W
ne e
mqqi #. m 4Q,,
~
p=s
. m "N -.,-
~
5 s
b E
N 0
s.
o,s w
0 et m r.
g a
1 e
5 n
r 9
w
. w.,~,
,mm
..mr" 4
e.
m.m u
m m -...
O t
n, e.,
~
.=
)
t u
g
.G t
4m
.'d, t
3s.
9 is tM 4
W sI d
s a'
Le, t
e
-.m
. L.v 9
U n n *"
t o
a
.,. n.
.m,a
.ts eJ e,g w
r m.
74 s
uS E
s w
Wr Pm d
V'.
,.. 'mt
.rt
,. a.e $
mg c.
w a
eB, s t
n-u t
4 s
Wp.
d
.s ts P
W gs
. t. G 8
e ee s
ft e
51 i Wl g e
c.
ua
. _.,o m
s.
a
- _m D
a
.,. aMte s m **
e..tc t
=..m,,,.f t
m nt.lWm a
s
..s e
m a
u.% r e ***
a
.a J
4 w=
.g eG 1 v t
C a.8 Gm u -
ee s
=.e
.caE
,. e.
T m a
r
="a w Fm n.8e.9n
_Gu 4
f,;
d.9 0=..s,. au. ma rs 1
g 0
a 2
m.e m
m m
TE g
s e
n-a
<w '*
t A
S m,
t e k
, me; g
wZ gM 4
u
- .,4 E
l,
[a3 gJq*
'ay mo
{
,,8
=
I&
,L
- tvI~
l 6 e
g;
'=
..,n......
........ a p
$o-P,43 4
.a c lulip, t
Distribution:
- NRC PDR
- Local PDR M ket Files E. G. Case V. Stello J. Reece K. R. Goller T. J. Carter
- D Eisenhut A. Schwencer D. Ziemann G. Lear R. Reid
- W. Butler D. Davis
- L.
Shao
- 0 ELD
- 01&E(3)
- NRC Participants
- ACRS ('6)
W. Paulson P. O'Connor D. Jaffe R. Snaider T. Wambach C. Tranmell M. Fletcher P. Riehm L. Kintner
- G. Lainas
- I. Sibweil
- J. Knight
- R. Tedesco
- R. Stuart J. Siegel R. Bevan S. Nowicki D. Verre111 G. Vissing
- with enclosure i
l
\\
jyM 'J P
Y l
l L