ML20127B312
| ML20127B312 | |
| Person / Time | |
|---|---|
| Site: | 07109222 |
| Issue date: | 05/16/1990 |
| From: | SCIENTIFIC ECOLOGY GROUP, INC. |
| To: | |
| Shared Package | |
| ML20043A108 | List: |
| References | |
| STD-R-02-016, STD-R-02-016-R03, STD-R-2-16, STD-R-2-16-R3, NUDOCS 9005180065 | |
| Download: ML20127B312 (133) | |
Text
{{#Wiki_filter:_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ 9 4 SAFETY ANALYSIS REPORT FOR THE 14-215 RADWASTE SHIPPING CASK REVISION 3 Referencing 10CFR71 TYPE "A" Packaging Regulations STD-R-02-016 Scientific Ecology Group, Inc. 1560 Bear Creek Rd. P. O. Box 2530 Dak Ridge, TN 37831 [ OLY I .. - -. ~. - - ([cc 5t 5'tocp py, ( 1 p 2
Document Numbort Rev R:v Dcto WESTINGHOUSE STD-R-02-016 3 .5-16-90 HITTMAN NitCLE AR INCORPORATED Dl'8 SAFETY ANALYSIS REPORT FOR THE 14-215 RADWASTE SHIPPING CASK Prepared Checked Olrector Technical Q.A.
- Rev, Rev Date By By Engineering Product Manager EWR sn.e la t t s t -
j ? ?- I d ECN 1 3-24-88 g, gc [ 88-033 2 3-20-90 011 N 1" d)dJ 013 3 5-16-90 u s FORM 01(3) _p.g. I or 13o -__-..-.,-..-._....-._..-....---._a..-
..._._m.___. O STD-R-02-016 TO Tile USER-This document and the referenced drawings have been compiled to facilitate the U.S. Nuclear Regulatory Commission review and certification process by presenting in a consolidated form all of the information pertinent to the certification of this cask. As such, this document is extensively based on j excerpts of information and precedent in the public record associated with NRC { certificate 71-9176, which describes casks similar in design to the one described herein. However, this document _and the referenced drawings have been prepared to embody all of the design detail and commitments sufficient to warrant licensure and be appropriate for reference in_a cask certificate. I a n I I I f l i e 0024k i 2 u. -. _ _. _, .a.
t STD-R-02-016' J . TABLE OF CONTENTS Part 1.0 GENERAL INFORMATION 1-1 1.1 Purpose 1-1 1.2 Package Description 1-1 1.2.1 General Description 1-l' 1.k.2 Materials of Constructien, 1-1 Dimensions 6 Fabricating Hetnods 1.2.3 Containment Vessel 1-2 1.2.4 Neutron Absorbers 1-2 t -1.2.5 Packag Weight 1-2 1.2.6 Receptacles-1-2 1.2.7 Containment Penetrations 1-2 1.2.8 Tiedown Lugs. 3 1.2.9 Lifting Devices 1-3_ 1.2.10 Pressure Relief System 1-3 L 1.2.11 Ileat Diesipation 1-3 1.2.12 Coolants 1-3 1.2.13 Protrusions 'l-3 1.2.14 . Shielding 1-3~ 1.3 Operational Features 1-3 1.4 -Contents of. Packaging 1-4 2.0' STRUCTURAL EVALUATION 2-l' 2.1 Structural Design = 2-1 3 2.1.1 ' Discussion 2-11 2.1.2 Design Criterit 2-1 t 0024k 11 -..+ ~...
+ 1 STD-R-02 G16 l t + -TABLE OF CONTENTS (continued)- l l t Page 2.2 Weights and Center of Gravity 2-1 l 2.3 Hechanical Properties of Haterials 2-1 2.4 General Standards for all Packages 2-2 i 2.4.1 Chemical and Galvanic. Reactions 2-2 2.4.2 Positive Closure 2-2 [ 2.4.3 Lifting-Devices 2-3 .{ i 2.4.3.1 Package Lifting Lugn 2-3 j 2.4.3.2 Primary & Secondary Lifting. 2-6 Lugs 2.4.4 - Tiedowns 2 f 2.5 Standards for Type "B" and Large Quantity Packaging 2-20 2.5.1 Load Resistance 2-20 2.5.2 ~ External Pressure 2-21 2.6 Normal Conditions of Transport 2-22. 2.6;l Heat 2-22 l 2.6.2 Cold 2-22 2.6.3 Pressure 2-23 -1 2.G.4 Vibration 2-24 2.6.5 Water Spray 2-24 ) 2.6.6 Free Drop 2-24 2.6.6.1 Flat End Drop 2-25 3 2.6.6.2 LSide Drop 2-26. 2.6.6,3 Corner Drop 2.2.6.7 Cornce, Drop 2-51 2.6.8 Penetratton= 2-511 i' 0024k .iii ~. '
STD-R-02-016 ) e i TABLE,0F CONTENTS (continued)- j Page' J 2.7 Hypothetical Accident Conditions 2-59 2.8 Special Form 2-51 q 2.9 Fuel Rodo 2-51 2.10 Appendix 2-52 t 2.10.1 Intentionally Blank 1-52 2.10.2 volume and Area Estimates Corner 2-53 Impact-on a cylinder-2.10.3 Cask Binder Specification 2-57 t 2.10.4 Intentionally Blank-2-66 i 2.10.5 ANSYS Capabilities 2-67' 2.10.6 Cask Lid Analysis 2-75 3.0 THERMAL EVALUATION 3-1 3.1 Discussion 3-1 3.2 Summary of Thermal Properties of Haterials 3 3.3 Technical Specification of Components 3-3 3.4 Thermal Evaluation for Normal Conditions of. 3-3 Transport 3.4.1 Thermal Model 3, 3.4.2 Maximum Temperatures 3-4 3.4.3 Minimum Temperatures 3-4 3.4.4 Maximum Internal Pressures 3 -4 3.4.5 Maximum Thermal Stresses '3-5 L 3.4.6 Evaluation of Package Performance 3-5 for Normal Conditions of. Transport 3.5 Hypothetical Thermal Accident Evaluation 3-5 "0024k-iv ia y y p eq qr-g-- i -v m r-g ,,w yw- ---m-+- y-- Sw,
i STD-R-02-016' f TABLE OF CONTENTS (continued) Page 3.6 Appendix 3-5 I 4.0 CONTAINHENT 4-1 4.1 Containment Boundary 4-1 4.1.1 Containment Vessel 4-1 4.1.2 Containment Preparation 4-1 4.1.3 Seals and Welds 4-1 4.1.4 Closure 4-1 4.2 Requirements for Normal Conditions of Transport 4-1 i 4.2.1 Release of Radioactive Material 4-1 a 4.2.2 Pressurization of Containment Vessel 4-2 4.2.3 Coolant Contamination 4-2 4.2.4 Coolant Loss 4-2 t 4.3 Containment Requirements for the Hypothetical. 4 ; Accident Conditions 5.0 SHIELDING EVALUATION 5 ! 5.1 Discussion and Results 5-1
6.0 CRITICALITY EVALUATION
6-1 7,0 OPERATING PROCEDURES 7-1 7.1 Lifting 7-1. 7.2 Removal / Installation of Casks Lids 7-1 7.3 Cask Loa 0 tog 7-3 7.4 Removal / Installation of Cask From Trailer 7-4 7.5 Containment Penetration Seals-5 - 7.6 Preparation-for Shipment-7-5 7.7 Receivingla Loaded Cask-7 ; 0024k' tv-3 7~p-e p e,_ p . ~.,, 9 m 99 ..sf.
STD-A-02-016 TABl.E OF CONTENTS (continued) -Page; A
- 8. ')
~JCEPTANCE TESTS AND MAINTENANCE PROGRAM l ' 8,1 Acceptance Testa 8 -; 8.2 General Maintenance Program 8-2 1 r e i t 0024k-vi
STD-R-02-016 ~ MAR'2101990 : 7 _-1.0 CENERAL INFORMATION-1.1 Purpose The. purpose of the following document is to~ provide the information' and engineering analysis that demonstrates the-performance capability and structural integrity of _ the 14-215 :Ra+4 ste. Shipping Cask and its compliance with the requiremer*r
- t. 3 10CFR71..
1.2 Package Description 1.2.1 General Description The 14-215 Shipping Cask is a-top-loading, shielded 'I container designed specifically for theJsafe transport-of low specific activity _ radioactive waste materials between nuclear facilities and waste disposal sites. The radioactive materials can be packaged in a variety. of different type' disposable containers. The 14-215 Shtpp.ng Cask is n' primary containment l-vessel for radios tive materials.--It consists of a cask body, cask lid, and a-shield plug being basically - a top-opening right circular cylinder _which is on its vertical axis. Its principal dimensions are 83-1/2 inches outside diameter by 92-1/4 inches _high with a cavity of 77-1/4 inches diameter by 80-1/4 inches high. 1.2.2 Materials of Construction, Dimensions and Fabricating Methods The cask certification drawing for the..i-215 Ca sk,- - l drawing STD-02-077, provides.the overall dimensions-.as well as the materials of construction. I The walls of the cask contain a. lead thickness of 1-7/8-inches encased-in a 3/8 inch thick inner steel shell and.a 7/8 inch thick outer steelishell. The_ top and bottom ends of the cylindrical cask are constructed of a pair'of-2' inch-thick' stacked steel-plates. The top serves as a-removable cask lid and is secured to the cylindrical cask-body by eight high strength: ratchet binders. A 29 inch secondary _ cask lid is located in the center of-the primary lid-and-is ~ secured to the primary lid =by eight 3/4 inch studs. Lifting lugs and ticcawn lugs-are a structural part of .the package. a 0024k 1-1.
-9[ STD-R-02-016 ~ _y MAR 2 01E0. 1.2.3-- ' Containment Vessel The-inner,shell andLinner end plates of each cask- - serve as the--containment vessel and its mechanical- - configuration is described!1n the-foregoing paragraph.: A 50 Durometer neoprene gasket is employed in both.the primary and secondary lid-interfaces. Waste products _ vill be contained in-55 gallon drums, ~ in heavy gauge' disposable' steel liners, in high integrity containers, in crates or other suitable palletieed forms. 1.2.4 Neutron Absorber There are no materials used as neutron absorbers or-moderators in the.14-215 package. l-1.2.5 Crocs Package Weight The respective gross weights of the cask components and its designated maximum payload are as followet' Cask Body 31,800. ^ Closure 1.id -5,450-Shield Plug 1,150 Total Cask (unloaded) 38,400-lbs 1 Maximum Payload 20,000 lbs Gross Package Weight 58,400 lbs 1.2.6 Receptacles There are no internal or external structures supporting or protecting receptacles.-
- 1. 2. 7 =
Containment Penetrations l The cask is provided with a 3/4, inch pipe drain line7 sealed with a pipe plug. Its use is for' removal-of-entrapped liquids, such'as rain or decontamination fluids. A pressure tap is also included in_the primary lid - design.. It consists-of:a 1/4 inch diameter hole __ drilled at a-30* angle through the lid-top plate sealed with a pipe plug. 0024k 1-2
STD-R-02-O'16 - ~ ^ Tiedown Luas _J A F/ y g i-1.2.8 -- Tiedown ;1ugs Lare a1 structural > :part (of the'- . package.- From the cask certification drawing,= - ic-can be seen that L four reinforced -tiedown - lug ~ location <are'provided. Refer to Section. ~ 2.4.4 ~for.=a detailed analysis. of _.their-structural integrity. 1.2.9 Liftina Devices LiftingTdevices areLaistructural5part ofLthe-package.; From the cask ~ certification drawing, it can be seen that three reinforced 111fting: locations -are provided. -Refer to~ Section .[ 2.4.3 .for-a-. detailed Janalysis of_:their-structural integrity. 1.2.10 Pressure Relief System There are no pressure relief valves.- 1.2.11 Heat Dissination There - are no s p e c i a l id e v i c e s.- u s e d for the, dissipation of heat.- The packageLJmaxim'um: - structural design-: capacity -isc 400.. watts.-
- However, decay heat -limi_ts - based. Lupon c the shielding / capabilities ' of _ the cask L are egiven -
on.page 3-2. 1.2.12 Spolants There are no coolants involved. 1.2.13 Protrusions-There are -no outer < Dor!'innerE protrusions, except for thei-lifting-.and tiedown lugs:- described above. ' 1.2.14. Shieldina - The contents 'will be limited - such :that ithe' radiological - shielding provided will ensure-- compliance __. with -DOT and-IAEA iregulatory requirements. ~ShouldElead= slump occur,:as the result of a flat end drop,>the deeplyfsteeped' lid!will provide full _ shielding. protection; - As'an option,-the cask contents-may include?a-~ removable E solid steel, close fittingisleeve which. provides shoring Jand1 ' additional' shielding to the waste disposal; container. This open-ended sleeve. or insert = is _ not 1-3 1 e r-. r 2-r + .t
-MART (ijn f STD-R'-02-0161- ~ attached
- to; J the ;
cask Lor 1the diisposall
- container._ cit serves to._ augment anyjshielding1 inherent-in the waste? container design and thet c
self-shielding of: the. wastei form.- 'The--. inserts used vary. from 3/4"j thick toi1"1/2"' thick. They. fit the:"inside diameter of 4 the' cask to within 1/2" on a side.'. Insert heights vary from il"1/4 ".. to L 213/4 " shorter than thel L cask cavity height. Each insert is; capable of: 3 withstanding all conceivable normal conditions of transport without deflection _or dislodging.' i Although-one ?would --expect.this = insert: Lto: remain etfective in a hypothetical-accident, no: credit is taken for the-shielding;byithei insert to_ satisfy the 110CFR711 post-accident - cask contact dose rate limit of 1 R/ hour. 1.3 Onerational Featurag Refer to the cask certification drawing of.the packaging. There are no complex-operational requirements c.onnected; with the-14-215 package and none that have any transport - -li l significance. E 1.4 Contents-of Packaaina. F This.' application is _for transporting the following radioactive materials as defined in - the U.S.A. .and I.A.E.A.-regulations: a. Type "A"1 quantities-in.r.ormal or special form; b ', -Fissile _ quantities are those limited-to the; amounts '~ as-generally licensedlunder 10CFR71.18Tand-71.22; c. L.S.A. materials' greater.than Type "A". quantities;; d. .The chemical..and-l physical form of: the - package contents will be in allEforms, other than liquids. This-Lwill include ~lon exchange resins. inL a dewatered or solidified _ state,_typicallPWR'or1BWR? solidified. radioactive -waste andE' miscellaneous contamin'ated. materials: such asLpipe, wood, cmetal ' scrap,.etc._ All wastes will be'containedEwithin'a: e separate - disposable ' contai'ner. - These. containers 1 will' isolate'the contents from the cask.. i ,4 l 1-4 r
STD-R-02-016' ~ MAR 2 01E3 2.0 STRUCTURAL EVALUATION 2.1 Structural Design 2.1.1 Discussion The principal structural member of the 14-215 package is the l containment vessel described in Section 1.2.1. The above components are identified on the cask certification drawing, drawing No. STD-02-077. A detailed discussion of the structural design and performance of these components will be provided below. 2.1.2 Design Criteria I The 14-215 cask has been designed to be a simple, strong package that will provide maximum flexibility for usage as well as minimum potential exposure to operating personnel. Its size and shielding capacity will allow a variety of payloads to be safely transported. The shield top and bottom are constructed of two laminated steel-plates. Cylindrical side walls have an external skin of:.875 inches and an internal skin of.375 inches thick plate. These two plates encase a 1.88 inch thickness of lead. Pertinent dimensions of the 14-215 package are provided on the cask certification I drawing. The package has been designed to provide well defined load paths which lend themselves to simple, highly reliable structural analysis methods. No new state-of-the-art approaches have been used for analytical evaluation. All analytical techniques used throughout the SAR are proven methods that have been used in past submittals. Details of these methods are given where used. Regulatory Guide 7.8, " Load Combinations for the Structural Analysis of Shipping Casks", was used in evaluating the 14-215 package. Materials _ properties used in the analysis can be j found in Section 2.3. 2.2 Weights and Center of Gravity The weight of the 14-215 cask and payload is summarized in Section 1.2.5. l The center of gravity for the assembled package is located at the approximate geometric center of gravity. 2.3 Mechanical Properties of Materials The 14-215 package is fabricated of ASTM A516 Gr. 70 steel except as noted I below. Material properties of the A516 steel are as follows: 70,000 psi F = tu 000 psi F = tu F, 42,000 psi (.6 F = tu 22,800 psi- (.6 Fty) F = 0024k 2-1
S"D-R-02-016 ~ t AR 2 01990 The vertical plates of the _ lifting /tiedown lugs are constructed of ASTM A514 steel. Material properties used for these steels are as follows:- F,,= 110,000 to 135,000 psi F,7 100,000 psi = 66,000 to 81,000 psi (.6 Fw) F = eu F,y 60,000 psi (.6 Ftu) - = The lid standoffs are constructed of AISI 1018 or equivalent steel plate. Material properties used are as follows: 69,000 psi P = te 40,000 psi F = ty 41,400 psi (. 6 F,,) F = su F,y 24,000 psi (.6 F,,) = Lead shielding will possess those properties referenced in ORNL-NSIC-68, Table 2.6, page 84. The optional removable shielding inserts occasionally installed as _ part of the contents are constructed of ASTM A 36 plate. Lid studs are fabricated of ASTM A320 Grade L-7 or equivalent steel. Properties used for analysis are as follows: Bar Pronerties (Per ASTM A320-78) 125,000 psi F = ru 2.4 General Standards This section demonstrates that the general standards for the package are met. 2.4.1 Chemical and Galvanic Reactions The cask is constructed from heavy structural steel
- l plates.
All exterior surfaces are primed; and - painted with high quality epoxy paint. There will be no galvanic, chemical or other reaction in air, nitrogen or water atmosphere. 2.4.2 Positive Closure As described -in Section 1.2.1, the positive' closure system consists of a primary lid secured by eight high strength ratchet binders and a secondary lid affixed with eight ' 3/4 inch diameter studs. In
- addition, each package will - be sealed with an approved tamper indicating seal to prevent inadvertent and undetected opening.
2-2 ~
STD-R-02-016 2.4.3 Lifting Devices There are four lifting lugs for the package, three lifting lugs for the lid assembly (primary and secondery lids) and a single lif ting lug for the secondary lid. All lifting lugs are evaluated versus the requirements of 10 CFR 71, Section 71.45. 2.4.3.1 Package Lifting Lugs For conservatism, the package is assumed to be lifted by only two of the four identical lifting lugs. The maximum package weight is 58,400 lbs. The lug load is calculated as: Wa /N; where W Package Weight P = = Load Factor, 3 g's a a g Number of lugs li = (58,400) (3)/2 87,600 lbs, P = l R 4'8 -,8 e- /3 A sn $14/517 2 ' 12 Il 2.s O-o ~.5h r7 0024k-2-3
.STD-R-02-016 -a Using the conventional-40' shear expressions-d- yld 21F,y t(e cos 40') P = d. 2(60,000)'2(2.5 2.5 cos 40')' 2 370,200 lbs. = yld,3 M.S. = L -370,200 -1 +3.23 = = 87,600 The veld stresses are composed of pure shear and tension / compression due to the moment. L i Pure shear on veld: F, = AW Where: F, Shear Stress = Weld Area = Lv x tv A = 2(8" + 11") = 38" (Considering only-L = y the vertical welds attaching. the ASTM A514 plate to the i cask.) t =. (.5") (1.00) + (.5")(. 707) -.854" (Groove + . fillet veld) 38 (.854") = 32.3 in. 8 A = w L., l 87,600
- Then, F
= 2,712 psi = 8 l-32.3 . Moment force.on Weld: [ Maximum Moment = M = 87,600 (2.5") = 219,000_in-lbs. L 0024k-- 2 STD-R-03-016 Calculate weld neutral axis assuming'no contribution from 'the-horizontal lug: 'd = Distance from horizontal lug center line to: ~ neutral axis-(NA) Section ~ A d -Axd-1 (.854)(8) = 6.83 5.0 34.16 2 ( 854)(11) = 9.39 6.5 -61.06 16.22 -26.90- -26.90 .66 in. d= = 16.22 The stress due to the moment is M Fg =7 Where M = 219,000 in-lbs I z 2 I = 2(13.+ A dgg +1 +A022) I (.854) (8)5 = 36.4 in' l g 12 n A = (.854) (8) = 6.83 in 1 y = 1.66 + 1.0 + 8.0 d - 6.66 in-2 = d (.854) (11) * = 94. 7 in 1 2 12 a A = (.854) (11) = 9.39 in 2 d = 1.0 + 5.5 - 1.66 - 4.84 in 2 I =-2(36.4 + (6.83)(6.66)2 + 94,7 + (9.39)(4.84)2) = 1308 in i 9.0 + 1.66 = 10.66 in C = 1308 8 = 122.7 in z- = 10.66 0024k 2-5
y- : ~ STD-R-03-016-f Then',;. 219,000 I y = 1785 psi. 122.7-Combined Stress:- 7 = /(F;)' + -(F )2 F g = /(2712)2 + (1785): . 3247 p,g. The allowable stress for E70 weld rods is 30%_of the_ tensile strength of 70,000 psi,_or 1 F, = (.30)(70,000)~= 21,000 psi The lug veld Margin of Safety is: F 21,000 ~ M.S. = - 1 =~ 3,247- - 1 = +5.'47 Therefore, it can be safely _ concluded that the lifting. lugs will-not yield under a load equal to-three times.- the. weight of the package.: Should.a lug experience a-load.in excess of=370,200 lbs., it will beginito shear-out locally,through the eye, and will have no adverse effects upon the package's: ability t'o meet other requirements. 2.4.3.2 Primary and Secondary Lid Lifting Lugs'- s The primary and secondaryslid. lifting lugs are identical in size and 'shepe.1.The following analysis conservatively considers-the. maximum.1ug load in order to assess both primary._and: secondary. lid-lugs. The maximum lid weight--isL5,450 lbs. 1 Using-three lugs-the-load'per lug is: (5,4501bs):(3 g's)/3 lugs P = 5,450 lbs/ lug P = This is greater-than the secondary lug' load of: 3(1150 lbs) - 3450 lbs. 8% / T g.'$ + ,k ,,,(,,, q,,,,, 9 1 7 0024k: 2, u-r w y
- STD-R-02-016-Using the conventional 40' shear _out equation, the yield capacity is:--
e s_40') P, = F 2t- (e d F,y = 22,800 psi *(yield)- Where - t = 1.0 in, d = 1.0'in.- E d (22,800)(2)(1.0)(1.3 - (1.0) cos 40*) P = 8 2 P,= 41,810 lbs. The yield Margin of Safety, using the maximum lug - load, 18: M.S. = [s_ -1= 1 P .5,450 - +6.67 The yield capacity of the. lug-to-lid veld may be estimated as: F
- A P
= a sy w Where: 21,000'(E70 Weld Rod)- F- = sy L,
- t A
= y y 2(6.0" + 1.0") = 14.0" L = (0,5)(.707) =.354" (Fillet Weld), t g (14.0)(.354) - 4.95'in.2 A = Then: P, (21,000)(4.95) = 103,929 lbs. = The lug-to-lid weld Margin-of Safety is: M.S. = b - 1 = 103,929 1 = +18.07 P 5~,450 --0024k 2-7 +-
c 3 STD-R-02-016 x HAR.2 01990 m Therefore; it can be _ concluded that the primary and - secondary > lid lifting:1ugs-are more than adequate to resist a load equal to.three times'their maximum loads. As_for.the-package liftingilugs,(the lid lifting. lugs fail:byrlocal shearout through the eye; and therefore..have no' adverse effect upon the.- package's ability to meet other requirements _of: _ 10CFR71. Since the lid-lifting lugs'are not_-capable of reacting the full-package. load, they will be-- covered:during transit.. 2.4.4 Tiedowns Four tiedown lugs are provided to resist transportation induced loads. -The required load factors aret A =-10g'(longitudinal) A = 5g- (lateral) y A, = 2g (vertical) The four tiedown lugs are located at.90' intervals around the. package sidewall-at an elevation above the package base. -The tiedown: arrangement for the 14-215 - cask is shown in Figure - l' - 2.4.4-1. - Tiedown cables are assumed : to be - f astened to the trailer -at the same elevation as the base:of the cask as:shown--(i.e., top; of trailer deck). From the geometry given in the sketch, the cable tension due~to horizontal accelerations can be determined by summing moments about the opposite bottom corner _of the package. For the longitudinal-acceleration.caset A,Wc.'= 2(P b Ph} y
- But, A Wc = 2P (B d -+ B h)_
T g g Solving for P
- T
^" P x T =W( ) long 2 .B,d ~+.B,h Similarly,'the cable tension due to the lateral acceleration ist-Ac P ,Y ) T = W (- I"U 2Bd-+Bh .z y i p 0024k'. 2-8! .~
a ,STD-R-02-016 3 f 4 ,. c' 4 46" .4 -- X. gs, L.- .1 r 5' ~ t x g., Lk d', t 1 1- -4 h e- ,e t f/filiff/ / / // / // / /// / l' 4 h . r n _ R v-w B,B,B are cable direction cosines. If-1 is the cIblelength: Bx " X/t P =B P or B P h g y/t -P =BP B = Y v zt h/t B = z Figure 2.4.4-1 0024k 2-9
STD-R-02 016 MAk i 0 iw The cable tension due to the vertical acceleration is simply - 4P = A W = 4B P v z zT Solving for P I T P AW vert " A 4Bz For conservatism, these three loads may be assumed to coincide for the most severely loaded cable: Ac Ac A P =X( + ,Y + . ) r 2 Bd +Bh Bd +Bh 2B z x z y z TABLE 2.4.4-1 CASK TIIDOWN CABLE FORCES Gross Outside Outside d' h Cable Cable Cask Weight Diameter. Height . length Tension Model (ib.) (in.) (in.) (in.) (in.) (in.) Ex, By Bt (Ib.) 14-215 58,400 83.5 88.25 73.0 70.6 74.5 .224 .948 257,900 l s 0024k 2-10
...f. STD-R-02-01'6'- LMAR:2 0 EEL yy. I: ,l The' cable force c'alculated for the 144215: 1 cask:is 257.900.'1bs utilizing the above' equations.o The tiedown lug.is_made;of:three . plates welded.together:as shown in:the. sketch below. The.tiedown-- cable is attached to-the: lower hole. The-cable lies'in:a-vertical y -plane which'also is the lug plane of symmetry. Therefore, no, - twisting moments are; induced in theLh g. j
- . 3.F4edI*
j g s gf f+, - e. + i{ l
- gog.
v-y ,.,y,.c. t. n .F \\ ~ 'c 7 0 v i -l-. W o-I- The tiedown lug capacity is calculated using the 40* shearout expression at-the tiedown' eyes. d g 2F, t (e ~ cos 40') P = d-2 i h-0024k-11 ,c_
STD-R-03-016 + From the-figure.above: 2" t = ed~~ 2.5" d = Thent P = 2(60,000)(2")(2.5 - M cos 40') 2 = 370,200 LBS. Using the maximum cable tension of 257,900 lb. the yield Margin of Safety is: M.S. 370,200 - 1 = +0.44 257,900 The cable load consists of both horizontal'and vertical components. The cask produces a cable load which introduces both,a bending moment and-a shear-load into the outer shell through the lug to shell weld.- The weld stresses in the lug-to-shell veld are-composed of pure shear and tension / compression due-to the moments. Pure shear on weld due to vertical component of the lug load, P :- y v s"Tw The vertical component.of force is: P = (.948)(257,900) = 244,489 lbs. v 'From'Section 2.4.3.1, Package Lifting Lugs: A = 32.3 in.8
- Then,
= 7,569 psi F = s 32.3 The moment-force on the weld is the summation of the moments _due to the horizontal and vertical components of the force, or: Fe + M F 'H = H y 0024k 2-12
STD-R-02-016 Where F = 244,489'lbs.- y e = 2.5" y F = (.224)(244,489)- = -54,766 1bs. g e ~ 4*84" H Then, assuming a CCW moment is positivet M = (244,489)(2.5) - (54,766)(4.84) = 346,155 in-lbs - Again, from Section 2.4.3.1, Package Lifting Lugs: 8 2 = 122.7 in 46,155 2821 pai F = = g 122.7 Combined Stress: F = /(7569): + (2821)8 = 8078 psi The lug-to-shell weld Margin of Safety is: F 21,000 M.S. 2 -1= - 1 = 1.60 Fc 8,078 The stresses induced into the outer.shell-by the tiedown-lugs were determined using the finite element analysis program ANSYS, Revision 3. Update 67L,.available on the. Boeing Computer Services (BCS) National Network, MAINSTREAM - EKS. The capabilities are outlined in Appendix 2.10.5. The Finite Element model consisted of a 45' section of'the cask outer shell, cask wall top plate, and'one-half the-lug..The length-of the cask model below the.tiedown lug was sufficient.co eliminate-any end-(boundary condition) effects from affecting the. final-results. 'To react-to the lug loads, the nodes along the bottom of the inside and outside shells were constrained from displacing vertically. For symmetry, the nodes along the sectional _ cuts were constrained from displacing circumferential1y and rotating about the X (radial) and Z (vertical) axes. Springs were introduced between the' inner and outer shells at locations where the shells displaced radially towards each other (compression only) to account for the presence of the lead.. The corresponding spring stiffness was estimated for a column of lead 0024k 2-13
STD-R-03-016 MAR 2 0 E90. as k = AE/L. Since the purpose of the springs was to prevent fictitious localized bending stresses, placement of the lead spring was conservatively. chosen as one every four inches. The model, with exception of the spring elements, was. defined entirely of quadrilateral shell elements. The geometr.v plots are illustrated in Figures 2.4.4-2 to 2.4.4-5. Figures 2.4.4-2 and -3 have omitted the side lug plate for clarity. The quadrilateral shell element has both bending and membrane stress capabilities with six degrees of freedom at each nodet. translations in the nodal x, y, and z directions and rotations about the nodal x, y, and z axis. Each element, either triangular or quadrilateral in shape, was defined by four nodes that lie in a plane. The thickness at each node in an element was defined in a real constant table for each element type. The element size was decreased in the area of the lug for greater accuracy. Furthermore, to enhance to model definition, the node directly adjacent to each of the lug attachment nodes was linerly constrained to move with that node (e.g., Node 2 was linearly constrained to move with Node 1, Node 14 with Node 13. Nodes 99 and 123 to move with Node 111, etc.) to simulate the presence of the two-inch wide lug plates. ~ A 281,000 lb. load was introduced as a 89,000 lb. outward radial component combined with a 26i,000 lb. downward vertical component at Node 622. This is conservatively higher than the cable tension for the 14-215 cask. The. lug hole was omitted to decrease the l complexity of the model as any local effects of the hole would not directly affect the reaction of the outer shell. Other than the springs between the inner and outer shells, the contribution of the lead strength was neglected. Also, for conservatism, the cask wall top plate was defined as being one-half inch thick. The maximum combined stress occurred at Element 232,'directly below the lug, on the outside of the outer shell. The 20,749 psi combined stress was comprised of a 22,792 psi-compressive longitudinal stress, a 5004 psi compressive circumferential stress, and a 164 psi shear stress as shown on page 2-19a. A description of how to interpret element stress output is provided in Appendix 2.10.5. The second highest stress area in the outer shell occurred around the end of the horizontal lug. In this area, the element with the highest stresses, Element 88, contained a combined stress of 18,203 psi. The largest outward radial displacement of the outer shell, 0.0417 inches, occurred at Nodt 1. The largest inward radial displacement on the outer shell, 0.0331 inches, occurred at Node 386. 0024k 2-14
STD-R-02-016' The Margin-of Safety of the outer shell-1st M'.S. = 000 _ ,_3 - +0.83 20,749.- In order to preclude damage to the cask under extreme loads, the tfedown lug is designed.to fail prior to the. weld or cask shell. The ultimate shearout capacity of the lug, using roughly the: highest strength A517 steel (F = 135,000 psi), which occurs F, =.6 (135,000) = 81,000 psi The minimum ultimate capacity of the weld or shsi! (using a minimum-value of F, for A516 plate): ,, 281,000 (.6)(70,000) p - 1,186,000 lbs'. weld 9922 ,, 281,000 (.6)(70,000) p 567,179 lbs. = 20,749 Thus, failure of the lug will.not damaae the cask. .0024k 2-15 l
4 -9yEe, e m t ~. s n I, o s u. em t maa n u. o. o. 'd m I\\ e a. 8 1 i f i' o. 9, o V"'., / /, n, 8, \\. / /. f o. o, \\6 ,g. y,3h,. o.S4m 1 l o 1, i 7]. / o, TT T P ,T* f'vTrPP ,q<r*f o, o "' vvT'eT'i 4, 7, ei T'vT' s F t' o .q [. o o, sf ** f' vi vT' vT'f f 7 \\., prT'T T'vivTT 7, pi'T vTT'vvvPT o. d. 7, T'T'V'vT'vvT'7 o, y7,7, r'T'T'vT'vT'v y F T'T'vP o,
- o. 7<'
e ' Y'vvPPT y
- o. o, M
vPP T r o,
- a. 7, c
vT'vT VvvY'PPX 4, o, 7, y i T'T'vT'vFT'K 1 v o. o, o. o, -o, p, d p, 9'9PeU y -UM?y 1 9, P 7y q 4, P 9n PM9 nMMW . q y nM pq P9 m 9 MMW y o 4 .q999M o, q LPmP 9 19 vU 'PMWy . qqq 9 Mq'DMP3%Q q3, i i, q3, o q n U iP\\P\\ l i a, \\ qy 1l 7 8%x 7; 2
STD-R-02-016 t s R. t s-Ia 1 - - s a s ,r i t p -- s - i ---- E g g ____ 1 gg 5 B s-5 - I -- 5 _ g - t_tS O 3_s5s- .---._ s.___._ ; 5 5 s=s- = t 5 ? sti s -- 5 --._ s J ,1 y '~d 3 3 _s__2 1 w __: d d i 5 J\\ p3-NJ gg/ ., / J, _J. /J.h.4.s\\ /d.hgy-s43.3 1 ---_ t -s 32,= s ms 3. 0 3 3 3 3 3 1 4-! s-ss333 NJ a/J-d 4 3_3.3.3.s-s-s = =3; \\ k N_q,.s.334_1415311 i - -- t ___ s s_s3 -s-s-s e.a /d_d2iijlllls"33k$$'l'%3511 d_ *3-l-$$$5 '-s 5 5 x.c i'd. h g1uaw34-ss3rd-ss s 5-ss33ee L I J**-!l1s333-a__so ssan.s!l11 v) L I - g ----. /J -s-s t L h / J J n 3 11: [e333JsJpsj. y ss q ' - s __ n _as a a 3j a ad ad J~d $$bsfk$$$ gj N$ a a ~a 3 NJ i a a 33a Js s l s /h~}B)idsss'8884s ~ JJ _ s ~ ~ N 4~ s /a Missidd:922$ 4 5 - t -__ 5 .s 3 0024k 2-17 = 4
STD-R-02-016 ~ = s 2 4 ~. 2 a. s .. f_ b lg- = I{: lM6A l \\ \\ t -\\' -g. l '.z - 5 g I e !,s. i .e - .c N l S y ~ g i g nt Z 8 x E R I N s a I N E .e n x y I N 3 2 = R C A g n n .e R k C 5 g 3 .2 C R g t a ~ g = N N g g. N ? k A 5 5 y h N R S ~ a .e i N t R R R E g ~ 2 0024k 2-18 = {--
4 a 3o 4,-s-s 4 4 e __ 3 4 -u_e;- A 4 4 +m e a -d t-A L 4-2 4 m,. 2-a 4 9 ~ STD-R-02-016" l 1. y 4.- g g- .. u N R -. E
- s..
I [f 7I I n. a e -I I d I D I d._n -. y y: 57-7[yIj7.77 gi ~ 6. - 2 g 5E y g 2 $y E ---. I ~ ~ a s. T -. k V f - ---,n. ~ -2 s ~e 5 ~ t R e = - .M 2 =.% y g ~ - - ~ ~ E .g g. <e 2 e E -E -=--~- -- --- I g 1 2 2 3 = f. - y [ R = = . 2. ,g ~ $5 ^ 5 y g 1 ~~~ ~ = a $.'s 3 E' - y y A .2 2 = G .g g -E 5 h G g -~----.m R E~ 3 e 2 - - - - - - G ~
- ~~~~~"
y 0024k 2 _
.I
- EL: 228 HDDES: 251 252 248 239 MAT: 1 AREA:
1.80 1 TOP.1801: 78.8 78.8 PRESS: 8. CUAD 5tiEtt 43 fax, MY.MXY: 257.14 25.658 198.54 ItX.HY: -36.287 -11.373 XC YC.ZC: 48.8 18.4 -19.5 TOP SX.SY,TXY: 2872.3 -3577.4 2594.4 SMX.5MH.1MX: 3082.9 -4588.8 3835.4 A: 68.7 STGE: 6685.7 I MID 5X.5Y.1XY: 57.139 -3778.5 1833.5 5tfx. 5MH. ittX : 328.2? -4841.6 2188.9 is: 75.8 5IGt: g:38,9 80T 5X.5Y 1XY: -1958.8 -3979.5 -517.31 SMX stt% TMX: -1833.3 -4104.2 1135A A: -76.4 SIGE: 3561.1 l 2 1 EL: 221 HDDES: 253 254 242 241 Malt i AREA: 'I.88 110P.TBDT: 78.5 78.8 PRESS: 8. QUAD SHEtt E3 MX,MY.MXY: -171.38 -571.28 .12176E-89 NX.HY: .38658E-89 1677.8 XC.YC.ZC: 41.3 .5ft -28.5 TCP SX.5Y.TXY: -4918.5 -16368. -8.7L98 SMX.5 Mil.TMX: -4948.5 -I5368. 5729.8. A2 -98.8 SIGE: 14549., MID 5X.5Y.TXY: -3567.4 -11891. -B.7198 5f tX. 5MN. T MX: -3567.t -11892. 4162.8 A: -89.9 SIGE: 19569. BDT 5X.5Y.TXY: -2224.4 -7414.5 -6.7198 5f1LSMN f tlX: -2224.3 -7414.G 2595.1 A: -89.9 SIGE: 6598.2 EL: 232 HDDES: 254 253 265 266 MAT: 1 AREA: 1.88 ITOP.fBOT: 78.8 78.8 ' PRESS: 8. QUAD SHEtt 63 NX.MY.MXY- -994.86 -1235.7 74.948 -NX.HY: 196.28 -223.38 XC,YC ZC: 41.3 .588 -21.5-89.5 SICL$1bu 10P 5X Y XY: -5884.3 -22792. 163.98 SMX.5MN IttX: -5902.8 -22796. 8L95 4 Ax HifM XY: -2H9.9 -15318. -235.66 sliGRtdtlX: -2 HD -15384. 667Mi A: -88.8 SIGE= 4 801 5X.5Y 1XY: 924.42 -7964.8 ~735.29 SilX. StiH. IttX: 9.14.84 -8824.4 4584.6 A: -85.3 SIGE: 8559.4 EL: 222 HODES: 242 254 255-243 MAT: 1 AREA: 1.88 TTCP.1801: 78.4 78.8 PRESS: 8. SUAD SMEtt f3 MX.ftY.MXY: -827.94' -351.89 -234.19 HX.itY: -2088.4 638.86 XC.YC.ZC: 41.3 1.58 -28.5 10P 5X.5Y.TXY: -15417. 329.54 -5883.5 5f tX. 5MM. ittX: 2285.0 -17373. 1828.8 R: -13.4 SIGE: 18621, HID 5X.SY.1XY: -19438. 2446.9 '-4473.4 5ttX,5f tH. ittX: 3844.8 -11853. 7848.4 A: -17.4 5 IGE: 14171. BOT SL 5Y 1XY: -5482.5 4552.2 -3873.3 58 tX. 5MH e itti: 5418.6 -6348.4 5583.5 A -s5.7 SIGE: 18281. EL: 233 H0 DES: 254 256 267 255 Nht: 1 AREA: 1.88 110P.180T: 78.8 78.8 PRESS: 8. (UAD 5NEtt 63 , m ttX.MY.tiXY: -1862.9 -563.11 -95.538 HX.HY: 431.83 885.43-XC.YC.ZC: 41.3 1.58 -21.5 TOP $X.5Y.TXY: -28895. -2999.7 ~3346.2 5ttX. 5MM.1MX : -2394.6 -21582. 9553.5 A2 -18.3 5 IGE: 28418.- ~ illD SX.5Y. f XY: -13641. 844.95 -2694.5 5 ftX. $t*H.1MX : 1329.8 -14125. 7727.6 A -18.2 SIGE: 19835. -6384.8 4689.6 -2841.9 5f tX. 5rtH. IttX: 5851.1 -6749.3 5981.7 A: -18.1 SIGE: 18257. fBDISX.5Y,rXy: EL: 243 NODES: 277 278 266 265 FIAT: 1 AREA: 1.88 1TDP 780T: 78.8 78.8 PRESS: 8. (UAD SHELL F3 MX MY.MXY: -397.48' -731.88 28.165 HX.HY: -79.656 -953.33 XC YC.ZC: 41.3 .588 -22.5 10P SX.5Y.TXY: -2737.1 -21445.. 1318.2 SMX.5MN.TMX: -2645.8 -21537 9445.4 A: 86.8 SIGE:- 28343. MID SX.5Y.TXY:.377.19 -15716. 1152.2 SilX. 5MH. ittX: 459.1*7 -15798. 8128.6 A: 85.9 SIGE: 16833. 801 SX.5Y.1XY: 3491.5 +9986 7 994.15 SMV.Stiti.IMX: 3564.4 -13862. .6812.8 A: 85.8 SIGE: 12238. EL*- 244 IIODE5: 278 '279 267 266 MAY: 1 AREA: 1.88 TiOP.TBOT: 78.8 78.8 PRESS: 8. 9UAD SHELL.oi MX.MY.MXY: ~347.97 -637.75 7.3224 MX.NY: 294.63 -378.86 XC,YC ZC: it.3' 1.58- -22.5 TOP SX.5Y.TXY: -2938.9 -18467. 2629.4 5tiX. 5MH. TitX: -2497.9 -18988. 8281.2 A: 88.7 5tGE: 17784 ftID SX.5Y.1XY: -283.89 -13478. 2572.8 Sf tX. 5 TIN. TttX: 277.34 -13951. 7114.1 A: 79.4 SIGE: 14892. SOI SX.5V.1XY: 2523.1 '-8471.6 2514.7 Stix. 5 Mil. irtX: 3878.9 -9319.5 6845.2 A: 77.7 SIGE: 18885. EL: 223 HUDE5: 255 256 244 243 MAT: 1 AREA: 1.88 TTDP.180T: 78.8 78.8 PRESS: 8. SUAD SHEtt 43 ML MY.MXY: 36.279 -486.89 255.21 NX,NY: 389.96 597.98 XC.YC;,ZC: 41.2 2.58 -28.5 i 10P 5X.5Y.TXY: 1754.6 -13342. 5216.2 ~5MX.5MN.fMX: 3415.8 -15884. 1289.7 A: 72.5 SIGE: 16971.- to filD SX. SY. TXY: 1978.3 -18154 327A.2 Sitt. $ tit!.1MX: 2338.1 -11814. 6671.8 A: 75.3 SIGE: 12395. -t BUT SX.5Y.1XY: 1186.8 -6965.1 1276.2 SIIX.5 Mil. T MX: 1381.2 -7168.2 4278.7 A: 81.3 SIGE: '7941.4 y EL:' 234 NODES: 267-268 256 255 MAT: 1 AREA: 1.88 TTdP,TBOT: 78.8 78.8 PRESS: 4. 9UAD SNELL 63 7 MX.MY.MXY: -88.983 -688.52 !!4.54 tax.tfY: 439.32 .-36.888 XC,YC,2C: 41.2 2.58 -21.5 o '10f SX.5Y.TXY: -339.27 -15185. 3576.1 SMX. 5HH. ittX: 477.23' -16882. 8239.6 A: 11.1 STGE: 16296. MID SX.SY.1XY: 295.37 -18417. 2678.5 ' 5f tX.5MN e litX: 927.88. -13849. 5988.4-A: 76.7 SIGE: 11541.
- 80T SX.5Y.TXY
- .938.81
-5&47.7 1788.9 ' 5MX. 5flH.111X: 1381.2 -6899.8 3748.1 A: 75.8 SIGE: 6894.2 2 EL: 245 HDDE5: 279 288 268 267 t1 A T: 1 AREA:- 1.88-T10P.T80T: 78.8 78.8 PRESS: 8. 'tVAD SHELL 63 i i. _,tiX. MY. ttXY 2 -123.18 -498.84 26.881 HX.HY: 373.54 -159.48 XC YC.ZC: 41.2 2.58 --22.5 l .10P SX.5Y.1XY: -1489 2 -19712. 2876.6 SftX.5MN ittX: -813.75 -15387. 7246.'7 .A 78.3 SIGE: 19917. MID SX.5Y.1XY: -444 A5 -18871. 2672.2 SitX. Stift. ittX: 208.49 -11516.. 5858.4- 'A 76.4 SIGE: 11638. I ~ BOT SX SY.TXY: 528.25 .-7031.1 ~2467.8 ' $NX. 5MN. itlX: ~1255.2 -7766.1 4518.7 A:.'73.4 SIGE: 8463.8 i 4-m f
STD-R-02-0161 1 ~ -i -2.5 ' Standards for Type "E" & Large Quantity Packaging This section demonstrates that the standards of-Section-71.13 and 71.51, 10CFR71,-for Type "B" and_large quantity packagin6s'are met. 2.5.1 Load Resistance-The requirement for load resistance is-that. vhen-simply supported at its ends, the cask must be able-to withstand a uniformly distributed _ load equal to five times the ' cask veight. Conservatively, the _ outer shell alone is assumed to support this-Ioad as a beam. Accordingly, the stress is:- MC S = - - - f 1 M = -5WL = (5)(1/8) (58,400)(88.25) = 3.221 x 106 in-lb 8 C = D = 83.5 = 41.75 in. 2 3 d -d i 0 4 I= - -. = c (83.50 - 81.75 ) 64 34 --193,843 in and the corresponding stress is: 0 = U = (3.221 x 10 )(41.75) = 694= psi S f 1 193,843 which results in-a Margin of Safety of: MS = Fty - 1.- 38,000 - 1 = +53.75 ~ S 694 f Therefore, the package can. safely react'the " Load Resistance" condition. 0024k 2..
p 1 - STD-R-02-016 2.'5.2 External Pressure-An external pressure of-25-psig is-reacted by the external shell in-hoop compression. 1The stress can.be' calculated as-fo11ovat F = Pr/t-Where: P = 25 psig-(83.5 .875)/2 = 41.31 inches' - r - t -.875 in. (outside shelllonly) (25)(41.31)/.875 =L1180 pai F = Margin of Safety: 4 M.S. - (F F)-1 ty = (38,000/1180) + 31.2' The analysis is conservative due to the presence _of the11ead and internal shell._ The lead assures buckling. stability-of the shell. Pressure across the end is' carried in plate bending by a' minimum off two inch thick steel plates top and bottom. Assuming a circular.. plate, uniformly loaded and with edges simplyLsupported, thefstress can be calculated as follows: 2 3W(3M41)/8vMt (Per " Formulas for Stress-i = and ' Strain" by Roark) Where: W= (25) w(83.50)*/4 ='136,900 t = 2" M =-1/.33 = 3 f = [ (3)(136,900x10)]/[8n (3)(2)2) r f = 13,618-psi r Margin of Safety:- M.S. - 38,000/13,618 - 1 M.S. = +1.79 0024k 2-21
STD-R-02-016' MAR 2 01990-It is therefore safe to conclude that the containment vessel can react a 25 psig external pressure without loss of_ contents. 2.6 Normal Conditions of Transport The 14-215 cask has been designed and constructed, and the contents are i limited'(as described in Section 1.2.3 above), such that the performance requirements specified in _10CFR71 will be met when the package-is subjected to the normal conditions of transport specified in Subpart F of 10CFR71. The ability of the 14-215 package to satisfactorily withstand the normal I conditions of transport has been assessed as described on the following pages. 2.6.1 lleat A. detailed thermal analysis can be found in Section 3.4 vherein the package was exposed to three combinations of solar heating, internal decay heat and 130*F ambient air. The steady state analysis conservatively assumed a 24-hour day as maximum solar heat load. The maximum steady state temperature vac found to be 192*F. These temperatures will have no detrimental effects on the package. 2.6.2 Cold The 14-215 cask containment components are constructed of A516 l Grade 70 ferritic steel. This material provides appropriate resistance to brittle fracture failures in accordance with the recommendations for Category III payloads as setforth in NUREG CR-1815. Specifically, package materials selections comply with criteria established in Section 5.3 of NUREG CR-1815. 0024k 2-22
STD-R-03-016 2.6.3 Pressure l / A differential pressure of 0.5 atmospheres vill be reacted by the lid and its associated clnsures comprised of ratchet binders for the primary lid and studo for the secon(- y lid. Loads on th-primary lid ratchet binders are calculated ast = SD8 P = AP/N1 wheret A s 4 14.7/2 psi P = 8 N = For the worst case loading P = w(81.82)8 x 14.7 x1 4,831 lbs. s 4 2' 'I~ The rated load of the ratchet binder is 100,000 lbs._(see Appendix 2.10.3). Thus, the Margin of Safety 1st M.S. = 100,000_--! = 19.69 4,831 For the secondary lid studs, the load ist P = vf33.87)8 x (14.7) x 1 = 828 lbs 8 4 2 8 The tensile strength of the 3/4-10 UNC, ASTM A320 Grade L-7 studs (minor thread dia. = 0.309) ist P = (105,000)(.309) = 32,450 lbs. A Thus, the margin of safety 1st M.S. = 32.450/838 - 1 = 37.72 Stresses. induced in the cylinder portion of the cask are conservatively estimated by assuming the pressure differential is totally borne by 3/8 inch thick inner :; hell. The hoop and longitudinal stresses ares. = PR/t = ( ) ( ) = 757 psi fh 2 .375 (
- )(
) (1) = 379 psi f = PR/2t = g 2 .375 2 Assuming these biaxial stresses are additive, f,,,= fp+ fg = 757 + 379 - 1136 psi -0024k- .2-23
STD-R-02-016 Halt 20 G3 The margin of safety ist 38,000/1,136 - 1 = 32.45 H.S. = pressure across the end is carried in plate bending by the 2 inch (minimum) thick steel plates top and bottom. Assuming a circular plate, uniformly loaded and with edges simply supported, the stress can be calculated as fo11ovas f = 3W(3M+1)/8tHt' (per " Formulas for Stress and Strain" by r Roark) Where: W = (7.35) (w) (83.50)*/4 = 40,250 lbs. t = 2" H = 1/ 33 = 3 i - (3)(40250)(10)/8s (3)(2)8 r f = 4,006 psi + r Hargin of Safety: M.S. = 38,000/4006 - 1 = + 8.48 It can therefore be concluded that the packaging can safely react an atmospheric pro ute of 0.5 times standard atmospheric pressure. 2.6.4 Vibration Shock and vibration normally incident to transport are considered to have negligible effects on the package. 2.6.5 Water Spray Since the package exterior is constructed of steel, this test is not required. 2.6.6 Free Drop The free drop height specified by Subpart F of 10CFR71 for the 14-215 package is 12 inches, since the package is greater than I 30,000 lbs. gross weight. Three drop orientations are possible f'at end drop, side drop.and cotner drop. For the flat end drop, the most critics.1 condition will be settlement of the unbonded lead shield at the end opposite the point cf impact. For the side drop, local flattening and impact onto a lifting lus will be evaluated. For the corner drop, the most critical conditions will be impact on the lid edge and its effect on the closure. 0024k 2-24
STD-E-02 016 a 2.6.6.1 Flat End Drop l The evaluation of flat end impact'upon settlement of lead shielding closely follows Shappert's approach for a cylindrical lead shield, outlined in Section 2.7.3 of his Cask Designer's Guide, ORNL-NSIC-68 February i 1970 The lead settlement distance is given by: f AH = 8.- r') (t,o, 4Ro 3) e(R Whe"et [ AH = Settlement depth (in.) l Drop lleight (in.) = 12" 11 = Outer lead radius (in.) = 40.88 in. R = Weight of Lead (1bs.) = 16,290 lbs. W = r = Inner lead radius (in.) = 39.00 in. t" - Thickness of external steel shell (in.) =.875 in o, = Steel dynamic flow stress, 50,000 pai o = Lead dynamic flow stress, 5,000 poi pb Therefore the' settlement depth, AH, equale 0.068 inches. This modest settlement " void"-in the lead shield,.068 inchen. cannot transmit radiation because of the ' stepped design of the package ends.= The innermost solid steel end plates completely back (shield)' lead i 3ettlement regions at both ends of the package.: Thus,- Irnd settlement-due to a flat'end drop does;not compromise, nor alter, the integrity of-radiation-shielding in any fashion. 4 e t 0024k 2-25
1 STD-R-02-016 j l 2.6.6.2 Side Drop The effect of a side dron on the cask shielding l capabilities is evaluatti using the methods' outlined in Section 2.7.2 of Shappert's Cask Designer's Guide, l ORNL-NSIC-68. The governing equation (2.13)'ist 'B '. i El_ = Fg (0
- R ( pb/o,) + 2 (R/L)("e/t,) + F2 (0) t,RLo, t,
Wheres W = cask weight (1bs.) --$8,400 lbs.. ~ 11 = 12 in. F3 (0) = 0-1/2 sin 20 F2 (0) = sin O(2-cos 0) - 0 o, = 50,000 psi ph = 5,000 psi -o O = 6.35' t, = outer shell thickness = 0.875 in. t, = end plate thickness =-4.00 in. The flattening of the cask is' equal tot l d = R(1-cos 0) Thereforet d = 0.256 inches Shielding is reduced by side impact as follows: % Shield Reduction = ( E )(100) T' .360 8. Wheret Tg=NormalShieldThickness=0.875 inches-
- Thereforet
% Shield Reduction = 0.33 This insignificant reduction of shielding demonstrates-that side impact does not compromise the integrity of-the package's shielding in any measurable fashion.. l 0024k 2-26
STD-R-02-016 F The potential for damage to the cask seal reculting ~ from a side drop onto a tiedown lug is also evaluated. Because the lug is located at the upper end of the cask, the impact force will be shared by both upper and lower ends. If we conservatively assume, that the lug carries the entire load, then an estimation of the deceleration load can be calculated. p-GB r ~ (O O[ , s As: 1 ming that the lug plate of 514/517 steel deforms the softer 516 steel cylinder wall, a crush depth can be found using a dynamic flow stress of (o,) 50,000 pois U - Vo, Where U = Total energy = 58,400 (12) = 700,800 in-lbs. V = Crush volume A C 6 lug lug = = (21)(2)6 = 426 Substituting and transposing: .334 in. 6 = 700,800 = 42(50,000) Note that this is less than half of the.88 vall thickness. 0024k 2-27
STD-R-02-Olfg_ l-r impact velocity ist y = dgh = (2(386.4)12 96.3 in/sec. = Deceleration in g's is then, V' 96.38 , 33,9_g,, 2g6 2(386.4)(.334) Note that this is within the range of the values found for the corner drop in Section 2.6.6.3 below.- The tiedown lug extends to-the top of.the cylinder wall so the wall is backed by the cylinder top ring as: well as the lead shielding below it, thus resisting gross radial deflection of the outside cylinder wall.- i The circularity of the cylinder in this. area is: insured by the stepped lid. Thus, the sealing surfaces in this area are expected to remain l: relatively. undeformed assuring the' preservation of the-seal. 2.6.6.3 Corner Drop The impact energy associated with a corner drop will be absorbed by inelastic deformation-of the' corner. Using the " dynamic flow pressure" concept, total deformation of the corner is estimated and used to compute package deceleration. This deceleration is then used to check the integrity of the lid closure. Both steel and lead components of_the cask, ate distorted upon cornet impacts. The assessment-of deformation and resultant decelerations is.-based upon a careful consideration of detail corner geometry for a range of assumed deformations. It is assumed that the steel end plates ofcthe cask undergo plastic flexural deformacion and do not crush. This flexural deformation of the ends enforces a crushing of the contiguous lead side walla and the thin cylindrical-external steel shell. The predictions of peak rigid body. impact decelerations are based upon the crush geometry.of the_ lead side valls and the associated external steel shell. Resultant deformation ~ prediction estimates are based upon two energy balance techniquest o The plastic flow pressure concept 0024k 2-28 p-w +--g-w e e -r-v r
STD-R-02-016 MAR 2 013B0 o An integration of force - deflection relations based upon crush stress approaches. For the plastic flow stress approach, properties of steel and lead are based upon recommended deformation basis values used by Shappert in the cask Designer's Guide, ORNL HSIC-68, Section 2.7.1 pb = 5,000 psi o o, 50,000 psi a For the crush stress approach, steel crush properties are assumed to be equal to approximately 1.5 times the yield stress, approximately the midpoint between yield and ultimate stress. This conservative approach is intended to account for both strain rate effects and strain hardening. Thf a provides a crush stress equivalent for steel of 55,000 psi. For lead, the crush stress equivalent 1s taken as twice yield, or 1380 x 2 = 2760 pai, reference Table 2.6, Shappert, Cask Designer's Guide, ORNL-NSIC-68. Analytics used for this estimate are outlined in Appendix 2.10.2. The results are summarized in Table 2.6.6.3-1 detailed computer analysis results for the cask configuration follow the table. The deceleration resulting from impact onto the bottom corner of the cask is conservatively used in evaluating the drop onto the top corner of the cask. The actual deceleration for the top corner drop would be significantly less due to the-bending of the lid top plate during impact. TABLE 2.6 6.3-1 CORNER IMPACT DEFORMATION & DECELERATION ESTIMATES (1) Drop Crush Zone Geometry Load Height Weight Radius Volume Area Depth Factor Cask (in) (1bs) (in) (in ) (in') (in) (g's) 8 14-215 12 58,4M 41.785 15.4 34.5 1.12 32.6 g-(1) Intepolated for greatest crush depth prediction corresponding to a strain energy / kinetic energy ratio of unity. 0024k 2-29
5. o <3 90 s -i W.. 'e il l CORMER IMPACT OF A CYLINDRICAL SItIELDES CASK 11.37.52. 83/9Z/95. PetE l CASRCRM(CDRMER) i; 2.75 E4 5HIELSING j. i FACKAGE WEIGHT 58498.88-(LBS) I 4 ~* 12.000 (IM) ja - DR0r HEIGHT PACKAGE RADIUS 41.785 (IM3 1-STEEL BYMAMIC FLOW STRESS : 58999.88 (PSI) 3' ' 51 EEL CRUSN STRESS g
- 55088.88 (PSI)
W - LE AD DVNAMIC FLOW STRESS : 5888.08 (PSI) c)
- 2768.48 (PSI)
- LEAD CRUSM STRESS i STEEL.5 HELL THICKMESS .375 (IM) = 4.25s.(IM) ^ STEEL. bet 10M THICKME55 ORIENTATION AMGLE '43.28 (DEG) j . i I, U2 h. M t O u IC b 4 6 .p--p -w e w n. .ree g 4wowat 4+ .w ,e.+ -u%* -v7' +g w5-e-
- w-
--s* n=
- a
-ra-wde,-v--'~r-
CASKCCH(CC2MER) CO2MER IMPACT OF A CYLINDRICAL SHIELDED CASE 11.37.52. 83/82/83. PAGE 2 o 2.75 EQ 5HIELDING ~ o Z
- CRUSH VOLUME **
- FLOW STRESS 86515*
- CRUSH AREA ***
- IMPACT ** ** CRUSH STRESS 8 ASIS r COU5H KlHETIC SIEAIN ENERGY STRAIN ENE8GY CErfH ENERGY TOTAL STEEL LEAD ENERGY RATIO TOTAL STEEL tEAD FORCE ACCEL.
ENL8GY 84118 (IN) (IM-L8) (IN3), (1H3) (IH3) (IN-LB) (SE/KE) (IH2) (IH2) (IN2) (L85) (L) (IM-L 8 7 (5E/KE3 .85 703720. .8 .8 0.0 338. .88 .3 .3 8.8 18132. .3 453. .88 .18 786648. .0 .0 0.0 1865. .50 9 .9 8.8 51273. .9 2188. 88 .35 709568. .1 .1 0.8 5138. .81 1.7 1.7 8.8 94179. 1.6 5825. .81 .28 712488. .2 .2 8.8 10545. .01 2.6 2.6 8.0 144946. 2.5 11882. .82 .25 715488. .4 4 0.0 18417. .03 3.7 3.7 8.8 202515. 3.5 28489 .83 .38 718328. .6 .6 0.0 29047. .84 4.8 4.8 0.8 266143. 4.6 32285. .54 .35 721240. .9 .9 0.0 42696. .86 6.1 6.1 8.0 335290. 5.7 47241. .87 .40 724160. 1.2 1.2 8.0 59685. .88 7.4 7.4 0.8 489538. 7.8 65862. 89 .45 727080. 1.6 1.6 0.0 79999. .31 8.9 8.9 8.8 488549. 8.4 88314. .I2- .50 730000. 2.1 2.1 0.0 194026. .14 10.4 18.4 8.8 572045. 9.8 114829. .I6 .55 732920. 2.6 2.6 8.8 132067. .18 12.8 12.8 8.8 651789. 11.3 145625. .28 .68 735840 3.3 3.3 0.0 164129. .22 13.7 13.7 0.8 751577 12.9 188989. .25 .45 738760. 4.0 4.8 0.8 208451. .27 15.4 15.4 0.0 847232. 14.5 220879. .38 .78 741680. 4.8 4.8 0.8 241206. .33 17.2 17.2 8.0 146596. 16.2 265725. .36 .75 744608. 5.7 5.7 0.0 286559. .38 19.1 19.1 8.8 1849538 18.8 315628. 42 i .88 747520. 6.7 6.7 0.8 336678. .45 21.8 21.8 0.0 1155987 19.8 370764. .58 .85 750440. 7.8 7.8 0.0 391612. .52 23.0 21.0 8.0 1265615. 21.7 431382. .57 .98 753360. 9.0 9.0 9.8 451775. .68 25.1 25.1 0.8 1378549 23.6 491486. .66 .95 756288. 18.3 10.3 8.8 517962. .68 27.2 27.2 8.8 1494614 25.6 569235. .75 1.88 759280. 11.8 11.8 0.0 587695. .77 29.3 29.3 8.0 1613721. 27.6 646943. .45 ^2 762120. 13.3 13.3 8.8 663899. .87 31.6 31.6 8.8 1735791. 29.7 738683. .96 d, 1.85 1.13 765048. 14.9 14.9 0.8 745538. .97 33.8 33.8 0.8 1868747. 31.9 828515. 1.87 1.15 767960. 16.7 16.7 0.8 833010. 1.88 36.2 ?E.2 0.8 1988528.* 34.8 916826. 3.19 1 1.28 770880. 18.5 18.5 9.0 926354. 1.20 38.5 38.5 8.8 2119843. 36.3 1819515. 1.32 1.25 7738ce. 20.5 20.5 8.0 1825691. 1.33 41.0 41.8 0.8 2252255. 38.6 1128798. 1.46 1.30 776728. 22.6 22.6 0.0 1131144. 1.46 43.4 43.4 8.0 2387s98. 48.9 1244887. 1.68 l 3.35 779640 24.9 24.9 8.0 1242830. 1.59 45.9 45.9 0.8 2526518. 43.3 3367672. 1.75 1.48 782560. 21.2 27.2 8.8 1368866. 1.74 48.5 48.5 8.8 2667462. 45.7 1497522. 1.91 i 1.45 785480. 29.7 29.7 8.0 1485364. 1.89 51.1 5.1.1 8.0 2818882. 48.1 1634488. 2.88 1.50 788480. 32.3 32.3 8.8 1616437. 2.85 53.8 53.8 8.0 2956731. 58.6 1778671. 2.26 1.55 791320. 35.1 35.1 0.8 1754194. 2.22 56.5 56.5 0.0 3184965. 53.2 1938213. '2.44 1.68 794240. 38.0 38.0 0.0 1898742. 2.39 51.2 59.2 8.8 3255542. 35.7 2889226. 2.63 1.65 797160. 41.0 41.8 3.0 2850187. 2.57 62.0 62.0 0.0 3488423. 58.4 2255825. 2.83 1.78 800080. 44.2 44.2 0.0 2208633. 2.76 64.8 64.8 0.0 3563567 61.8 2438125. 3.84 1.75 803000. 47.5 47.5 0.8 2374182. 2.96 67.7 67.7 0.8 3720148. 63.7 2612237. 3.25 1.80 805920. 58.9 58.9 0.8 2546934 3.16 70.6 78.6 8.3 3888505. 66.4 2882273. 3.48 1.85 808840. 54.5 54.5 0.8 2726988. 3.37 73.5 73.5 0.8 4842238. 69.2 3888342. 3.71 1.90 881768. 58.3 58.3 8.8 2914441. 3.59 76.5 76.5 0.8 4286888. 72.8 3286549 3.15 1.95 814680. 62.2 62.2 8.8 3109398. 3.82 79.5 79.5 8.8 4372827. 74.9 3421882. 4.28 2.88 817688. 66.2 66.2 8.8 3311938. 4.85 82.5 82.5 8.8 4548839. 77.7 3643884. 4.46 m
- 4c
- W to o
b
STD-R-02-016 Loads due to impact on top corner Ig2 P Binders react the forces due to payload, weight of-the lid and the moment due to the impact point offset. Conservatively p,I ignoring the effect of the deflection of the lid and deformation of the impacted fg corner, the impact point is located as f shown. Binders are located as shown, a j distance of 1.9" inward from the corner of the octagon. AF - 1.9" r = 0 p, ? F 2cos 22.5* t F i is equal to the outer radius of the 7 n cHsk body. d is the impact moment arm. g d = 0.5 1 -1 g 7 9 With these dimensions, the distance from the pivot point to the ratchet binders can / lo / be calculated: / t =1 - r sin 22.5 l g 9 3 1 ~
- 8" 82 D
B Jt c s 22.5 1 =LD+#B 33 4 Binder loads are assumed to increase [ linearly with distance from the pivot point. ( 5 Thereforet -d-i 3, -s t h B2 F ~ B2 B3, B1 B3
- 8e "
Mg A B3 B3 s The pivot point is assumed to be at the I N 83 outer edge of the lid / cask interface. The axial and lateral forces imposed by the cask body on the lid are assumed to pass through thin point, therefore causing no moment. Summing moments due to'the other forces: F(, ( L ) + F ( A ) + F, (d ) = D p D f + 2F (t ) + 2F (1 ) + F (t) 2F 3 (1 3) 0024k 2-32
STD-R-02-016 MAR 2 0 E0 The forces are the axial o-lateral component of the impact force. F,=W11d (^g (" ""} t p (A ) (cosa) P =W p Wg (A ) (cosa) F, a g t g (sina) F, WA = Substituting the above and the expressions for binder l forces El IA )" ""( A )* p(A )cosa(I A )cosa(d ) = lid g D g D t g f 21 Fb3 + B2 Fb3 + B3 AB3 2 B1 F +v IA ) sina(t) b3 t g B3 Collecting terms: 8 ((Wild + P D" 8" + t(dg cosa - teina)) A 2F 8 8 8 b3 (LB3 + IB2 + AB1) = AB3 Solving for FB3, the maximum binder force, FB3 " A Ag B3(( lid + p} I g(d cosa-taina)) c sa + g D 2(1B3 + IB2 + IB1) The interface forces between the lid and body are calculated as follows: F,gg,y = A cosa (W (F F33) ~ ~ t p lid bl b2 Flateral " A "I"" ( t lid) ~ g l l 0024k 2-33
e STD-R-02-016 HAR 2 0 E3 TABLE 2.6.6.3-2 LID INTERFACE FORCES Gross Tayload Ltd Dody Ltd Ispact Irpact Maximum Interface !cterface Weight Weight Weight Dia. Die. Angle Accel. Bloder Axial Force Lateral I Cask (1bs.) (1bs.) (1bs.) (in.) (in.) (deg.) (g's) Torca (1bs.) Force (1bs.) (1bs.) 14-215 $8,400 20,000 6,000 83.50 84.93 43.90 32.6 92,800 1,121,000 1,171,000 l i + 0024k 2-34
STD-R-03-016 Thus, in this instance, the maximum binder force is 92.800 lbs. The allowable load of the binder is rated at 100,000 lbs. (see Appendix 2.10.3). Thus, the Margin of Safety ist M.S. = 100,000/92,800 - 1 = +0.08 The capabilities stated for the binders are established static allowables. They are manufactured from standard carbon steels and fail in the same-manner as a bolt. Numerous studies have been conducted on the behavior of bolts under dynamic or impact loading. ORNL-TM-1312 Volume 12 Structural Analysis of Shipping Casks states that carbon steel bolts " possess better physics properties under conditions of shock than indicated by-static tests. Increases in the value of stress by a factor of 1.3 and a greater amount of strain before necking occurs were reported". This is substantiated by reference-5, 8, 9, 10, and 11 of the same document. Therefore, it can be concluded that the binders static allowable capabilities will not be lower under shock or dynamic loading. Thus, it can be concluded that the binders will react-the impact load and retain the lid. In the case of a top corner impact directly above a binder lug, some bending of the ocatgonal lid corner may occur. This will decrease the distance between the cask binder attachment lugs and would normally induce a damaging compressive load in.the binder. This, in turn, could result in damage to the cask outer-shell due-to the. moment induced'in the binder lug._ The binder design precludes this since'it will allow a significant amount of axial deflection before it vill take a -compressive load (see Appendix 2.10.3). The lugs at each end of the binder will possess the following yield capability. i I k. 0024k 2-35 t-
STD-R-03-016 t Body Lugs .p /
- b. i.r' I
Nd [g-l / t
- 9. -
/ j us*0 I Y / / 2t (A v4) o - 4' / Shear out: Using the standard 40* shear out relation. P, = F, 2t (e ~ f c s 40') d p Where F,y - 22,800 psi t = 2.0 in, .5 in. e = d d = 1.125 in. (22,800) (2) (2.0) (1.5 - 1.125 cos 40*) P = 8 2 = 97,500 lbs. shear out Weld Area: The veld stresses are composed of pure shear and tension / compression due to the moment. -Pure shear on the welds F, = ,P, 0024k 2-36 i L-
STD-R-03-016 \\ Wheret -F, = Weld shear stress A = Weld Area = L,
- t, y
L = 2(9" + 2" ) = 22" y t" = (.5) + (.5) (.707) = 0.854" (Groove + fillet weld) A = (22) (.854) = 18.78 in.8 y
- Then, F
P = 8 18.78 The stress due to the bending moment is r-M 3 z Wheres P(2.3) M = z =,T. c Ig+AdgH V I + = 1 (2) (.854)5 = 0.1 in" I = g 12 8 (.854)(2) = 1.71 in A = H d .5 in. = H k 1 (.854)(9)s = 51.9 in I = y 12 k .1 + (1.71) (4.5): + 2(51.9) = 138.5 in I C = 4.5 in s Z=
- = 30.78 in 4.5
? Then. ~* F = P(2.3) P = 3 30.78 13.38 P 0024k '2-37 3 --me -.-y, ,~,vy ,.~.m
STD-R-02-016 combined stress cannot exceed the weld allowable shear
- stress, F, a 21.000 (E70 Weld Rods)
= /(F") 8 + ( F ) C = ["P '8 + P '8 ~ F 21,000 = 3 18.78 13.38, Solving for P: P = 228,840 lbs. Plate Areat Utilizing the same approach as above, the plate yield shear capacity ist L Pure shear on plate F" = P_ A P Where F, Plate Shear Stress a (9)(2) = 18 in.8 A =
- Then, F
= 8 - -18 Homent force on plates H = 2F ^ d P(2.3) Bp Where Plate bending stress F = B e 18 in.2 A = P 2/3(4.5) = 3.0 in.- d = F
- Then, 2F (18)(3.0) = P(2.3) 3 F
P = D' 46.96 0024k-2-38 ..-,e me-s -,,,v_: -4., a
i STD-R-03-016' combined stress cannot exceed the plate allowable shear'. stress, F, = 21,800 psi [\\ l8 /[ps + r p gs=21,800 psi F, =/(F,)8 + (F )s 3 (46.96) P = 366,405 lbs. Outer Shell: The body lugs introduce a bending inoment into the outer shell similar to the tiedown lugs in Section 2.4.4. Assuming bending about the body lug center, the moment induced in the outer shell-ist H - P(4.0 - 1.7) = P(2.3) 3 Again, assuming bending about the tiedown lug center, the moment induced in the outer shell by a 89,000 lb.- outward radial load and a 267,000 lb, downward load i (from the finite element analysis) ist. 3 M = 267,000(2.3) - 89,000(4.84) = 236,740 in-lbs. l T The maximum outer shell combined stress from Section:- i 2.4.4, Tiedowns. is 20,749 psi. The outer shell yield capacity at the body lugs ist b = P(2.3) 38,000 = y 236,740. 20,749 or P = 188,508 lbs. Lid Lugn: 3.$. f 3.25' = = JF# # 7.t. p.o m. (A st@ 'g --i - 6 w v 2 8.5, 'Y i - l. I V 1.r%. l L 0024k. 2-39 y y ar-w-w i m b c' aa.. e = y--- y .-.-rt v -e --,--w --e.w6 's- -s-w., e v --tw+, e.
STD-R-02-016 The lug yield strength capab' icy across net area (A-A) ist P
- I A
t ty Where F - 38,000 psi ty A = (3.25 - 1.125)(2.0) = 4.25 8 l't - (38,000 psi)(4.25 in ) P = 161,500 lbs. (Net Area) t Lug shear out capability is identical to that of the lower lug evaluated above (i.e., P, = 97.500 lbs.). Lug to lid attachments Yk.'/ M / \\ T / J. N t7 - *- s.5 'n Weld Shearing: I = F,A s w Where F = 21,000 psi (E70 Weld Rods) A = (2)(2)(0,5)+(2)(3.5)(.854) 7.98 in.8 = P, = (21,000 psi)(7.98 in.8) P, = 167,580 lbs./ lug 0024k 2-40
STD-R-02-016 The weakest link in the binder lugs.is the shenrout failure. 7 At this location, the minimum Margin of Safety ist i 97,500 H.S. = -1 + 0.05 92,800 The ratchet binders load the lid top plate with a series of edge moments. The two inch plate of the casks will be evaluated for these' loads. Both. local and gross effects on this lid top plate are evaluated. For a maximum ratchet binder load of 92,800 lbs., the associated moment introduced into the top plate of the lid le estimated ast M = (92,800)(.375 + 3.5 - 1.50) = 220,400 in-lh. The local moment capability of in octagonal lid cover is estimated as follows: M* 21. t C Where o - 38,000 usi c = 1.0 inch I = bhs = (18.35)(2)8 = 12.23 in.4 lUi-12 b = (2)(3.8) tan 67.5* =: 18.35 Local moment capability.s then i f(38,000)(12.23) = 464,800 in-1b. M = 1 Thus. local moment yield Margin of Safety of the lid ist H.S. = 464,800 ! = + 1.11 220,400 Gross moment capability is assessed using both the exterior and interior lid platen. For a uniform edge moment the expression relating' stress to momentiin a circular plate is given by Roark as: 0024k' 2-41 .-, _f i
STD-R-02-016 iPI; M " 21' 6M a= 6 For the 2" exterior platet H = 38,000(2): - 25,330 in-lb/in. 6 For the 2" interior platet M = 38,000 (2.0)8 = 25,330 in-lb/in. 6 L The total edge moment capability ist 50,660 in-lb/in. For the circular-lid of 83.50" diameter, the corresponding concentrated moment acting on 1/8th of the edge ist M = (50,660) (83.50) (H) = 1,661,160 in-1b. E g Thus, the gross moment yield Margin of-Safety of the lid is H.S. = 1,661,160-1 = +6.54 ~ 220,400 The maximum bending stress in the lid can be approximated by applying a pressure load against the lower lid plate which is made up both the lid weight and the weight of the payload. Total force is then F = (W11d + p} (^g} # 8" p = (6600 + 20,000) (32.6) cos (43.9')- t = 624,833 Distributing this force over the face of the lower plate the pressure, p, becomes F = F /A P n A = H(38.63)8 - 4688 in p = 624,833/4688 = 133.3 pai 0024k 2-42
STD-R-03-016 i l ~ The pressure on the secondary lid is applied to the primary lid as a ring load, We with diameter equal to the bolt circle. Using a 32" bolt circle and a 29" diameter secondary lid plate, the ring load is W = 133.3 (29)8 876 lb/in n(32)- or 14,026 lb/ radian A finite element model of the. lid was used to calculate the stresses resulting from this loading and. to evaluate the ability of the lid to act as a composite plate. (See Appendix-2.10.6). The~ maximum plate stress intensity. calculated for the above loading was 33,830 psi and occurred at the lower.: surface of the lid at the edge of the access hole.- The resulting Margin of Safety is i 38,000- -1= +0.12 M.S.- = 33,830 If a " loose" payload is assumed, an equivalent pressure load against the inside of the. secondary lid can be calculated using the payload density, payload depth and impact acceleration. Payload weight reacted by the lid ist ( 0,000 n.) W = 80.25" (29")8 3 . = 2827 lb. 5 p 4 217 ft.s 1728.in /ft 8 8 Secondary lid weight: W = 1150 lbs. g Total force reacted by the. secondary lid' lugs is thent.' ~ Iw + W ) *g
- 8#
FT p L Whereagistheimpactaccelerationandois.the impact' angle _(s 45'). (2827 + 1150)(33.9)(.707) = 95.320 lbs. - F = T Maximum bending stress in-the lidican be-found-assuming a line load on'the 1" plate at the_ outer diameter of the 2" plate directly below (diameter -- '30.75-in.). - Assume the outer edge of the l plate-is -simplyJsupported (diameter = 35.8").- The maximum moment in the plate is given in Roark (5th Edition),: Table 24, Case 9a, ast 0024k 2-43
...=. STD-R-02-016 i ,l M, = wa 19, [ r,ys Where 19 2 in *- + d' "- # = ~ 4
- ( a).,
a 2 . r, giving H = 95,320 (35.8) (.1235) c tr (30.75) j = 4,362 in-lb/in. l plate bending stress is given by: 6M f=4 y t 2 6(4362)/1 = 26,175 psi = Thus, even with this conservative assumption, the Margin of Safety is positives M.S. = 38,000 -1 = + 0.45 i 26,175 The stress in the stud consists of two parts, that due to preload and the impact loading. The preload force-can be estimated using Equation 6-16 from Shigley. Hechanical Engineering Design, 3rd Edition T = 0.20 F d Where T is the bolt torque'(100 ft-lbs.)~-F, is the bolt preload and d is the bolt diameter ( 75 in.) F = 100 ft-lb (12in/ft) =.8,000 lb.. bp .20(.75 in.) Impact force reacted by the bcIt ist 11,915 lbs.: F = 95,320 = g 8 These forces are added because:the gasket " spring" is much softer than the stud " spring",.thus preventing . unloading of.the gasket when an-additional tension is applied totthe bolt. Total force in the bolt is thent F =F F bx bp bi = 19,915 lbs. 0024k= 2-44
STD-R-03-016. i = Stud capacity is (for a 3/4-10 UNC ASTM A320 Grade -L-7) t P=F**' t I The Margin of Safety for the studs.is then H.S. - 32.450 1.= +.63 19,915 When impacts occurz on the lid end, a normal compressive load of 1.121,000 lbs (Table 2.6.6.3-2) is then transferred from the-lid to the lid closure ring. The loaded length 10-conservatively estimated by considering-only the length of the section which would be deformed during the impact. This load is then' transferred to the cask via direct compression of the._ i lead shielding and the steel valls. 1 & = 2RO Wheres R ** 41.75 in. 0 = cos' (1) R See Appendix 2.10.2 r=R-A i sina 6 = 1.15 a = 43.28' r = 41.75 - 1.15 = 40.07 in. t sin 43.25' O = cos" ( ) 0.2844 rad. = 441.75 t- (2)(41.75)(.2844) = 23.75 in. ] The minimum yield bearing capacity of the.19 x 1.50": bearing ring (AISI 1018 or A-36) ist F = (23.75)(1.50) (36,000) = -1,282,500- 1bs. - 3 The associated Margin of Safety ist i H.S. = _1,282,500 -1 +;0.03 ^ = 1,121,000 l0024k-2-45
w.--,-- STD-R-02-016 t The lateral load transferred between the lid and the - cask 'is' estimated as 1,171,000 lbs. The load is initially transferred from the' ext.crior lid plate to the interior lid plate via a 1/2" circumferential l bevel weld. The interior lid plate transfers this l load to the cask body by direct compression. This = compressive load is transferred across a deeply _ stepped recess of the interior ild.pinte within the-cask inner cavity. The load yield capability of the circumferential lid weld is T,= F,A, F,
- TD ' t a
y (21,000)(w)(77.25) (.5) = 2,548,224 lbs.- = The associated Margin of. Safety is: +1.18 2,548.224_ -1 M.$. = = 1,171,000 Therefore, it can be concluded that the package can survive a normal corner drop on.the top corner.- l The damage to the area immediately adjacent to the impact crush zone for the bottom corner drop is minimal. The base-plate-to-outer shell veld is partially crushed but this does not affect the cask-integrity. The drain plug is located well outside the c'ush area and therefore, will'not be damaged. r The integrity of the cask base can be-demonstrated for the bottom cornar drop using the base interface forces given in Ta' ole 2.6.6.3-3. The interface forces result from body force loads imposed upon the cask, payload and lid as indicated in the following free body diagrams: F e 9 4 0024k 2-46 - ~. 2 -,.
STD-R-02-016 b d Where '1 i 1 e tan-- (d/1) t= = 43.25' f W = t tal weight T y a = load factor 11 /' [ T. 9 T " v a, total F TimpEctforce 0 F c?s a. = '1 gitudinal /f
- TS g
impact force F TC .F = F sin =, F TS laIeral-y impact force The cask body (sideo and bottom) internal forces aret Wheret d 'W, = weight of j cask g F l.,= r43 25, ec " c "g "08" 81"" Pcs " e "g l ' B' YS b b "#* 's C y unknown lid p 's C a interface y g -S forces and s j
- moments, g
p w0-respect ~ i e ively. 7D 'Similarly, the payload forces are: F
Va cos
p at x P F
Wa sin
-ps pg Wheret Wp.= payload weight l-1 l l I: 0024k. 47 l-2._
STD-R-02-016 MAR 2 01990 TABLE 2.6.6.3-3 CASK BASE LOADS DUE TO F.0TTOM IMPACT 1HSIDE OUTSIDE bblDB LOAD INTEF#CE FORCES ~ CASK WEIGtT DIAMETER DIAKETW HEIG!T FACMR ARIAL SHIAR HOMDrf ) H0 DEL (1bs) (in.) (in.) (in.) (g's) (1b ) (1b ) (in-lb) 4 g +6 x10 6 gio 6 ggo 14-215 58,400 77.25 83.$ 88.75 32.6 1.237 1.191 52.75 l 0024k 2-48
STD-R-03-016 r Now, based upon the payload and cask body forces, the lid interface forces F3, V3 3 and M can be estimated Axialt F3+ F,, + F 0 = pc W, + W ) cos a F = -a 3 g p Shears V -F F, 0 = g cs p V = a (W.+ W ) sin = g Moment: My+F, E+r,E=0 c p p M + "I"'" B ~ ~"g cc pp Assuming that the stress due to the moment varies linearly with distance from the cask center, the stress due to the moment can be calculated using simple beam theory. Assuming that the base plate-to -outer s*2 ell veld carries the entire loads I f B = SDL Where 1,237,000 lb. F = 3 83.5 - 2(0.875) = 81.75 in, D = .5 +.707(.75) = 1.03 in, t = 1.237 4,676 pai f = = 1: 5 (81.75)(1.03) "B f b I Wheret 50,750,000 in-lbs. M = B 81.75/2 = 40.88 C = w(r)st = w(40.'88) 8(.88) = 188,802 in." I = , 50,750,000 (40.88) 10,989 pst f = 188,802 Summing the forces 10,989 + 4676 =.15,655 psi f = T 0024k-2-49
STD-R-02-016 f The Margin of Safety is: H.S. = 21.000_ -1= +.34 15,655 Assume that the shear component V is carried entirely by the.5 inch fillet veld joinial the two base plates. f v = ,_Y JL A, Where V, = 1,191,000 lbs. l A = tr(81.75 - 2(1.5)) (.707)(.5) = 87.46 in.8 y fv = 1,191,000 13,618 poi i = 87.46 Margin of Safety ist M.S. =_21,000 - 1 = +.54 13,618 The maximum bending stress in the base can be evaluated by applying a pressure' loading which reflects the payload weight and the weight of the base plates. Conservatively use the loadings from the lid analysis and consider the base to be simply supported plate with a. diameter of 83.5". ' Applying the 138.6 psi load over the entire plate the moment becomes (using-Table - 24' Case 10 f rom Roark): 625 K = Mc M hc " 8 83.5 a .20625-(138.6) =.49830 in-lb/in -l =- 2, Eending stress is then 6(49830) = 18690 psi f 6Mc _ = = b ta 16' ,000 +1.03 1 M.S. = = 18,690 The ability of the plates to act as a composite can-be .t inferred from the results of the finite element' 4 0024k' 2-50
STD-R-02-016 MAR 2 01990 analysis used for the lid evaluation where a much higher bending stress resulted in a relatively small weld stress. (See Appendix 2.10.6). 'Thus, the cask base is seen to be capable of withstanding the corner drop impact and maintaining-the cask integrity. 2.6.7 Corner Drop-This requirement is not applicable since the 14-215 cask is i fabricated of steel. 2.6.8 Penetration From previous container tests, as well as engineering judgment, it can be concluded that the 13 pound rod would have a negligible effect on the heavy gauge steel shell of the cask. 2.7 HYPOTHETICAL ACCIDENT CONDITIONS Not applicable for Type "A" packages. 2.8 SPECIAL FORM Since no special form is claimed, this section is not applicable. 2.9 TUEL RODS Not applicable. 0024k 2-51
STD-R-02-016: f : sm ~ 2.10 APPENDIX 2.10'.1 Intentionally Blank h 0024k_ 2-52
g n_ W STD-R-03-016- ,4 + 4 APPENDIX 2.10.2 VOLUME AND AREA ESTIMATES CORNER IMPACT ON A CYLINDER t l i . 0024k 2-53
. ~..... t.. STD-R-02-016- ~ l !1.0 Volume-Estimates-1.1 Total Volume The geometry and' nomenclature of-this'model-ist 4./ E b E (x-r ) tan
- 5 e = R sin ne h4= CRUSH DEPTH:.
/p S= Sin es. l x / (RL x t )'^ + The volume of the shaded hfferential slice shown is: dV=(R-x)hdx 2 2 = (R -x )h. (x-r) sin a 8 2 dx The total volume is: _ R x )h (x-r) dx 2 tana / (2 2 V = t Evaluation gives: 2 tan = { (R -r )3/2 + r (R -r )b rR [J - sin (I)]} 2 2 2 2 2 2 V = 3 2 2 2 R. Or:
- 2. tan = { t,8 + t't
,r_B ,, - sin (1) ) 2 8 ~ V = 3 -2 2 2 R Where: (R -r )\\ r = R 2 2 6: t-sina 0024k 2-54
STD-R-02-016 1.2 -Component Volumes ~ -The steel'. volume is composed of side and_ bottom portions: V, =Vside + bot V
RO (R-r)t, tan
eide 2 Y " 'b [0R - rR sine) bot-Where: -I (1) 0 - cos R t, = external steel side thickness (in) t = steel end thickness (in) b The lead area represents the residual V =V -V; (V -V] >0 g =0 (V "V ) 'O t s 2.0 Area Estimates 2.1 Total Area -The differential contact area is: ~ dA = ( ) dr cos = The total area is: 2 [ .(R'-x )b 2 dx A = cos = r 2.2. Component Areas The-steel area (of the side walls) is: A = 2t R0 * (1 - ( Em 1 -1)] s n 0 .c The lead area is the' residual 1 A = A -A ; (A -A,) > 0 c g =0
- (A -A,) < 0
- i 0024k-2-55
STD-R-02-016 ~,
- 3. 0.
Strai_n Energy Estimates 3.1_ ' Flow Stress Approach S.E. = V, ' o,p + V 'o g tp Where: o,p = steel flow stress o = lead flow stress gp 3,2 Crush Stress Approach S.E. = J, I' {(Fg + F _g) (6g 6,7)] 2i Where: = s s c +- ^1 Ec F g g g o,, = steel crush streos a = lead crush stress te 6 = assumed crush depth at the 1* step-3 0024k-2-56
- ____=_=
STD-R-02-016: 4 e t k t 1 I -e .. i I i 5 'i 1 ? i l r APPENDIX 2.10.3 i CASK BINDER SPECIFICATION l 2 l 5 1 6 t I e l 'I I l s t i s. g 1 - 0024k 57 ._________.._u-.._______._.u-._--..__;_2..________
STD-R-02-016 1.0-Binder l - ' Reference Drawin6 STD-02-077 for design details. 1.1 Bolt Strength ~ Bolt yield capacity is (for a 1-1/4-12UNF, ASTM A320, Grade L-7) P =F A = (105,000) (1.073) = 112,665 lbs.- y ty 1.2 Lug Strength (Ref. Hughes Structures Methods Manual _Section 4.4,-Lugs, on following pages) Lug Yield Capacity is: P, = 2KDty Tty Where Efficiency Factor (Use W/D Ratio in Figure K = 4.4.1-1) 3.00 2.65 W =- = II 1.13 1.51 K = 1.13 D = .94 t = y Yield Factor (Use K Factor-in Figure 4.4.1-2) = 1.05 = F,y = 38,000-(ASTM A-516. Grade 70)L P- = 2(1.51) (1.13) (.94) (1.05) (38,000)- = 127,993 lbs. y
- 1. 3 -
Pin Strength: (Ref. Drawing STD-07-077. Note 13) Upper Pin: Double shear yield capacity - 117,000 lbs. Lover. Pin: 1" Dia, Grade 8 bolt-P = 2F A .y sy -0024k 2-58
'STD-R-02-016 Where:. F = (.6) (130,000) ='78',000 psi sy-A = 1 (1): =.785 in.2 4 L P- = 2(78,000) (.785) = 122.460 lbs. y Rated binder capacity is 100,000 lbs. Bolt yield capacity is the minimum at 112,665 lbs. The resulting Margin of Safety is: M.S.'= Py - 1 = 112,665 - 1 = + 0.13 T* 100,000 i I-i- f l: l l l [: L 0024k 2-59 l_:
STD-R-02-016 '- STRUCTURES MET 110DS MANUAL ' ilughes Aircraf t Company Space Systems Division El.Segundo, California February 1966 SSD 60048R ~ 0024k: 2-60
STD-R-02-016
- 4. 4 LUGS The following analytical procedure should be used for the design of lugs and shear pins. This analysis is based on static loading and does not consider the effects of multiple applications of near-limit loads; The design charts encompass the folloy/ing types of failure for a lug-pin combination (see Figure 4. 4-1):
1) Tension across net section 2) Shear tearout or bearing $) Hoop tension et tip of lug 4) Pin shear 5) Pin bending These enarts represent envelopes of structural failure and are not identifible to a specific failure mode. Lugs should be conservatively designed, as their weight is usually ornall in relation to their importance, and inaccuracies in manufacturing are difficult to control. Applicable fitting and casting factors shall always be used in the _ analysis. Margins of safety for presentation in the stress analysis report shall be based upon the pin size and lug hole diameter shown on the engineering drawing. MN18CN SHf An MMsNG e k 6 RM1 TON j ma to.a Figure 4. 4-1. Failure Modes-4.4-1 0024k 2-61
~STD-R-02-016
- 4. 4.1 Symmetrically Loaded Lugs Axial Load 1)- Allowable ultimate axial load a)
Enter Figure 4. 4.1-1 with R/D and W/D to obtain the minimum K. Use the approgriate W/D curves indicated by-the material classification in Table 4.4.1 1.
- b)
Compute allowable load by P, =, KDtF,. c) Compute the margin of safety in the normal manner. 2) Allowable yield axial lokd a) Enter Figure 4. 4.1-E with the min'. mum K determined in 1 above to obtain y. b) Compute the allowable load by Fy = y (Fy/F u) Pu t (Lug yielding is based on a per'nanent set of 0.02 times the pin diameter). c) Compute che margin of safety in the normal manner. Lateral Load 1) Allowable ultimate lateral load a) Compute the allowable ultimate axial load per above mentioned proc edure, b) Enter Figure 4. 4.1-3 with 6. angle of load application, to obtain (Pg /P). Use the appropriate curve indicated by the material clas sification in Table 4. 4.1-1. c) Compute allowable load by P6 = (P g /P)Pu-d) Compute the margin of safety in the normal manner. 2) Allowable yield lateral load a) Compute the allowable yield axial load as previously mentioned in the axial load procedure, b) Enter Figure 4. 4.1-3 with 6, angle of load application, to obtain (Ps /P). Use curve 2 only. c) Compute allowable load by Pg = (P O /P)P - y d) Compute the margin of safety in the normal manner. 4.4.1-1 0024k 2-62
.STD-R-02-016'
- 2e
_l V TAB LE 4.1.1 -1. MATERIAL CLASSIFICATIONi Applicable W/D Curves for Critical Grain 2 Dir ec tion - Fig. 4. 4.1-1,3 laterally Mat e rial ' S h rt Loaded Lugg Longi-Trans-.Trans-Fig. 4; 4.1 3 tudinal verse verse i Carbon and aUoy steels - AISI g r a d e s ' 1 1~ _1~ 1_ 18-8 stainles s steels 4 4 4
- 4-2014-T6 plate 1
1 5 4 2014-T6 die forging-1 1 5 - 4 2014-T6 hand forged billet Area 5 36 square inches 1 1 5 4-Area > 36 square inches 1 3 5 4 2024-T4 extrusion 2 2' 2 4-2024-T4 bar 2 2 5 4-2024-T3 plate 2 2 5 - 3 202.:-T4 plate 5{l 2 2 5 } 7075-T6 extrusion 1 1 1 4-7075-T6 plate t s 1 inch 1 1 5 4 t > 1 inch 2 2 5 - 4 7075-T6 rolled bar 1 5 5 - 4: 7075-T6 die forging. 1 1 5- ' 4 7075-T6 hand forged billet Area s 16 scuare inches 1 2-- 5 4' 16 square in'ches < area s 36 square inches 1 3 5 4-Area > 36 square inches 2-3 'S -4 195-T6 ca sting _ 3 _3 3 4 220-T4 casting - '3 3 3 3 356-T6 SC easting 3 3 3 4' [ 3 56 - T6 P. M.' c a s ting 3 3 3 4 Ti-6Al-4V forgmg 1 1 3 - 4 Mag. ZK60A die forging. I l' 3 . 4
- Use the curves designated herein for F!gures 4. 4.1-1 and 4. 4.1 3 1 Use curve 2 for all yield computations 2 Curve A'is to be used for all aluminurn alloy. hand forged billet when -
the long transverse grain direction is the same as that critical for R/D shown in Figure 4. 4.1-1 3 Curve _ B is to be used for all aluminum alloy plate -.bar and hand forged billet when the short transverse grain direction is the same as that c ritical for R/D ~shown in Figure 4. 4.1-1, and for die forgings when the lug contains the pa rting plane in a normal direction. 4.4.1-2 0024k 2-63 .. ~. ~
n. - ~_- _. _ ~ _. _.. ~. . _ _ ~. _ _.... STD-R-02-016 44 + _ ~ -
- -t
? , serie to ne$t i noe peoete - comt,_".' -.._'.--*"T-"----- c 4- . _ _ _ _ + --+m_, m,;r, _ g w_..__., ..,. 1 --+ -i 8 - -=.- -o = = _.. _ _ _.. a. >-f.+ .f._ ~ -~ -_-t._. _ _. _ _, - i ~g .m .---.-.,-4_.._.*_ a ., _ _ _ _ = ,_-.+.g -s v.._.,.. --- c - y _ -+ - 'g:Y":L_. t--. _ ._jf _. - , i.-; _... -,f gm4 4 +a 4--- _._p,.._ ,-_.,-..,.--q__..., -w _3 -4 ... _ _. _-y- +- ..:= r__ j @==5 _...-?=. p__,'_ 1,__._ n_j.__. ---l .u a. . - - ------a- * =~ :){ _ =. ;,/._.._ _?..- - - - .-- =~ i 4 .c 4-- - p..---.-
==. __:.t - -: =- ~- 4J.. 4, - __t _ _. f .-r---f m4 p --- - 2:- 1..-__-. ~.._:~..- , _- R. .. n m__..-f f, ,_m, f._. =:.:_ gn:n
==,_. .E5 ~ - .,c.,. I 1 ] **-f. ?l?_.=, -y*),_., .. _,.' ~ ~ '. t-' 'gg
- /
.'..__.f e-a
- =_. u.:..*%---f 6
-- ~ V -s ._ -~ _... _ ~--'~, '-,* " * * ' * + - l 4 ._j ~. i ? -' --- - % ::-:d -g. ~./,. -. +-f ~ - * - - - - -"...__i - m _.1, --- +-f f-u.___ .g--- g j,; _ _ _,..y w ..-- - --T r, - e 2 _:- ; ._ Z as .~~ f~ -,f. ,,. _,, - ? - f_. 1 -.._. _.,,,,, _,, t =.-.:=--..,.___ a n._._. m ---f -.. -4,.___ ,j _f_- o - - - - - :;.=.J==:-t-/ -f - /";=gg .g _ _ Jt__._gr../r#-
- rgj
..cc =of usa a>a r:s -..e -.+. 4 P, y. ..__.LwS5
- CE raou 5 *.08 i
,,,, g, m, y g, j
- _..... _. _p-rf ag__+-A,
- L-.
_, g, g,,,, o,,,,,,,
- . ___ H _
..y f ;. _ " if' ' '..
- _.,[.-a- -"_ _,
__-t - -- _-t en.st. u nivano= anys !. y ._ m . _, ~.. _ a m,,, ,,,g 3 cmu. ._ _ w __f. . -. ;p % H-' K. : _._...,t.
- ._f.
31-i J. :. i ca : ...,g{-..- f--t-H i--- f"._ff....'.=r' ' *i _.,e p -+
- . g.~.;- tr----
$~--..4 - - ^ - - - - ,._--L.. ./ --~ ~ -~ a.. ~f f. ; ~- -- _ a _. 5_._.-- p ,.._:_.$ _. h__.) r., ~~ J.. 3F.c., .n.~. ., _ - -.f s ..__( .......s ...ff-"" t"-'- ** 3. r-c - W n-++o~~-----4 _ _h... -- -,'m".u__.,
- ea0t f to
_... - j - T -- -- ' f_.: - ; :=... e -u:, s - _J
A
,.: _:- m 4N -- ~f ; .- s~ y-42 .m g _f. s.. . s,f -. ' [ ii e / =
- p
,.- - - - -. --L_' = y~ g ,t . 3 . _ _ _ _ _ f.__3 . =.;---, q w -. a, ji 00 , _,....e_. - 7 _._ ~ r - _. s 7 _g_ ~ - - - Y Cm:T:Cai 484s= OIRECtton --_- ;y~ j ._p_, -b-1- ..T ' - - 3 h geitigA stain Dietettow {e- -- ._a. m.? ga.'. i.n... _.,,,,, t.-- _ ~..,.- -m ~ - - ;:.m .1.. _ ? m r,, ece v=g ;e Aca., se a.a. oint:nce _ a.-. --*-4------ C4 0 02 02 6.2 0 Ois 3.0 te t2 S.3 E8r6Claci f aC1CA, a Fig ur e 4. 4.1 - 1. Axially Loaded Lug Design Chart 1 4.4.1-3 0024k 2-64
STD-R-02-016 ~~ e e i
- .s.L aj. _i i j - r ). d t-j=M_t y ;;j @d,J..T-]--.ZT_J5 !
e l}' _. :_ MS."--~ %. @ :q.7.] --] p M =
- i P= -: 4'=3-Mqu.:.M L
I a ME"'5 mmc.Mfi F,,~ T-1Mb - m EI 1-_g.p :f-~ ~#ijD'fI"'"b p'q Z- ~~M 51l q.d - '-i Q -il"~.i :"4 , ;.E'.+. r -<J".~- T *p~+ W~~ 25 : '-7T.-- ei. ~~~ ~ ~' - - - ~ ' ~ I i d -T..'e W as '"'~i2"i .- 4d .-.....-r=s;~~ 2~~tA M h_*S EC' =. - --,.=-.,- :..::.2... g a u -.ag --:-..-.=-=-m a a = - - g9 s-- .m- - ;I. - - _,,. - I.'i : ;, ;i. 1; 7 Fm.d_ly.-jjy C~-rc.:j.-.:. :i-v_= ~ '- - ". ": : :-~ M ~'i-h T-b ~ 'I WI.._.t. 1".T-l-Itt":~d-Tf".~~*1-C., .- m -- - m ,u. l'-** - J : _: - r-r -.4 A M * -"4 -.J. ;. M .J. w--- 1%=.. -: 1.. n . r. e. v-- V.. .4. - --=a. .2 r + :'" -n 0 02 08 0.6 08 LC 4.2 64 @ 6 t8 2.0 2J 2.4 2.6 traicit%:v n:?on, = Figure 4. -l.1 -2. Yield Correctior. Factor for Axially Loaded Lugs -- - e sgo m..ma m,>y g.p p.u -ppg. cwws *on uev* t3 p@+.gpra . g ggg, agers to tat.1 to' **o*f a cu,ts _us._;All12=rffyssG m. est :.* t 177* A.. ot.: c:,ws#4*:ms h ( e
- e c
- a
.r -
- a.t130 *;* a**.* M a..ww a..c= Lust
.YYSA M. _m _-..;c. h%*~ _,7_ 2..97 ?..-@'.n.-.#.c *. cu.ts :c A:* asv *:. 4s w '. a r:p e _ .Acm; s=cu* ce:s saa. sier:*on 4 gakt or.uG E _- : e- .g_t ; w.: e --w . =f.=i. w g,,.-. - g._g_ g - =, n * *4* =s t.t ea:r.s as s-ens t.. -e - g , w: _-,_- - v_.sa.
- r.,.,Nt s ass.* ?:..m-a.-
r. ,g:.u.m.a.-,gK_w;; _"w-.m. - ' '.g= r!m f - . Et-Sz* g..pl -,, - -.-..- q xc.m y%, =-'.y---n.- v3 W .w. _2 m :. =- ,x---... Ce -m T.sei?WenMc W$p4 x-m-r u .m -- Ar~J- %- #n:-+- n. 4- -g -. Re. v;2~4-f+-?..M5: y .n r f M i_M m -;E"=r'- N M ?
- h. ; _=. -.
" 4 I++P = p-M . RW.-5Wb.*r4-^'-~- M+g%%"~i -T:.44-K 'i^ 6 J=.iGTN.W w ' * {.w=M.M*-ti.:uth
- P TTM Mi>@MPa= <iT'.+g png;baif+.5 + Nip 4 ss M 5J n-m--
.. -- u a- ~--- a. g.- .y.g.g 3 --z_irg". _. 1 --,, = _ 7 ~ m a rd " M-ei.i+=: *.- N _ 6.E.hMMM8!NFdr{ t r-N MENM=91b*JLM W E%iM M -- M ~ --,=) Mi=5KN.g.. wm O
- sm
- "Ma0 ree =.-.n=-:t@vta=- 8I ._ N';TP.r_* * -__ a-d. i;;T-.fi Ei e,.ca. So.8 . -....... -,m:r..,.m.m.. - n m mw g-%--83"*W s m sm::n r-c m s3= M -2'*EEErg p a=73wp-------"' i.it O to 3G 30 40 60 to to so 90 a=4LE 0F Load a**ucateg.4 DCSRCES .= Figure 4. 4.1 - 3. Allowable Laterial. Lug Loads 1. t i 0024k 2-65
f STD-R-02-016' APPENDIX 2.10.4 (Intentionally Blank) 0024k 2-66
g n 4 M e h A 4 .- W STD-R-02-016 s 3 + 2 APPENDIX 2.10.5 ANSYS CAPABILITIES ? v -0024k 2-67
STD-R-02-016 ANSYS USER'S MANUAL ABSTRACT The ANSYS computer program is a large-scale general purpose computer program for the, solution of several classes of engineering analysis problems.. Analysis capabilities include static and dynamici elastic, plastic, creep and swelling; buckling; small and large deflections; steady state and tran'slent heat transfer and fluid flow, The matrix displacement method of analysis based upon finite element idealiza-tion is employed throughout the program. The library of finite elements available numbers nore than forty for static and dynamic analyses, and twenty for heat trans-fer analyses. This variety of elements gives the ANSYS program the capability of analyzing two-and three-dimensional frame structurer., piping systems, two-dimen-siona l plane and axisyrretric solids, three-dirensional solids, flat plates, axi-synwetric and three-dimensional shells and nonlinear problems including Interfaces and cables. Loading on the structure may be forces, displacements, pressures, temperatures or response spectra. Loadings rey be arbitrary time functions for linear and non-linear dynamic analyses. Loadings for heat transfer analyses include Internal heat generation, convection and radiation boundaries, and specified temperatures or heat flows. The ANSYS program uses the wave front (or "f rontal") direct solution method for the system of simultaneous linear equations developed by the matrix displacement me t hod, and gives results of high accuracy in a minimum of computer time. The pro-gran has the capability of solving large structures. There is no limit on the number of ele ents used in a problem. There is no " band width" limitation in the problem definition; however, there is a " wave front" restriction. The " wave f ront" rest rie-tion depenas on the amount of core storage available for a given problem. Up to 576* degrees of freedom on the wave front can be handled in a large core. The wave front limitation tends to be restrictive only for analysis of arbitrary three-dimensional structures. ANSYS has the capability of generating substructures (or superelements). These substructures rey be stored in a library file for use in other analyses. Substruc-turing portions of a model can result in considerable computer time savings for non-lineer analyses. Cenmetry pinttinn is available for all elements in the ANSYS library, including Isometric, perspective, section views, and hidden line plots of three-dimensional structures. Plotting routines are also available for the plotting of stresses and displacements from two-and three-dimensional solid or shell analyses, mode shapes f rom dynamic analyses, distorted geometries from static analyses, transient forces and displacements vs. time curves f rom transient dynamic analyses, and Stress-strain plots from plastic and creep analyses. Postprocessing routines are available for algebralc modification, differentiation, and integration of calculated results. Root-sum-square operations may be performed on seismic modal results. Response spectra may be generated from dynamic analysis results. Results f rom various loading modes may be combined for harmonically loaded axisymmetric 4tructures. An opt ional 1152 wave front is available on some very large computers. ABSTRACT aJ 0024k 2-68
STD-R-02-016 The input data _ for the ANSYS program has been designed to make it as masy as. possible to define _the problem to 'the computer. Options for nultiple coordinate systems in cartesian, cylindrical, or spherical coordinates are available, as well as mul_tlple region generation capabilltles to minimize the Input data for repeating regions. Sophisticated-geometry generation capabilities are included for two-dimensional plane and exisymmetric structures and for Intersecting three-dimensional shell and solid structures. The ANSYS program capabilities are continually being enhanced by the addition of new or improved elements, new analysis capabilities and new Input,- output and graphic techn' aves. The ANSYS USER'S MANUAL is modified periodically to reflect the latest additions. 9 ABSTRACT a.2 0024k 2-69
~. STD-R-02-016 4.63 1-4 ~. 63 QUADRILATERAL SHELL This element has both bending and ree6rane capabilities. Both in plane and normal loads are permitted. The element has six degrees of freedom at each node: translations in the nodal x, y, and z directions and rotations about the nodal x,- y, and z axes. Another fou'r-node shell element -($TIF43), restricted to a rectangular or parallelogram shape, has rotated material axes and in plane pressure capabilities available. The quadrilateral shell has options for variable thicknesses, elastic foundation supports, suppressing extra shapes, and for concentrating pressure loadings. Stress stiffening and large rotation capabilities are included, 4.63.1 Input Data The geometry, nodal point locations, loading,and the coordinate system for this element are shown In Figure 4.63.1. The element is defined by four nodal points, four thicknesses, an elastic foundation stif fness, and the orthotropic material properties. The material X-olrection corresponds to the element x-direction. The shear modulus term is optional and if it is not included it is computed from the other input material properties. The thickness is assumed to vary smoothly over the area of the element, with the thickness input at the four nodal points, if the element has a constant thickness, only TK(I) need be input, if the thickaess is not constant, all four thicknesses must be input. The elastic foundation stiffness (EFS) is defined as the pressure required to produce a unit normal deflection of the foundation. The elastic-foundation capabil-ity is bypassed if EFS is less than, or equal to, zero. The element loading can be either surface temperatures or pressure, or a combi-nation of both. The positive direction of pressure is along the positive element z-axis. The pressure loading may be uniformly distributed over-the face of the element (KEYSUB(2)=0), or a curved shell ioading (KEYSUB(2)=1) consisting of an equivalent e l emen t load applied at the nodal points may be used. The latter loeding produces more accurate stress results in curved shells because certain fictitious element bending stresses are eliminated. The KEYSUB(1) option is used to suppress the extra displacement shapes as de-scribed in Section 4.0.6. The KEYSUB(IA) option allows deleting the nominal in plane rotational s tiffness as described in Section 4.0 7. A s umma ry of the. she ll el ement parameters is given in Table 4.63.1. A general description of element input, in-cluding the special features, is given in Section 4.0.2. 4.63.2 Output Data a) Printout - The printout associated with the shell element is summarized in Table 4.63.2. Several-items are illustrated in Figure 4.63.2. A general description of element printout is given in Section 4.0 3 Line 2 includes the shear forces NX and NY In the element x and y faces, respectively (positive in the positive element z direction). The moments about the x face (MX), the moments about the y face (MY), and the twi stingimoment (MXY) are also-printed in line 2. The forces and moments are-calculated per unit length in the element coordinate system. The optional edge printout is valid only along free edges of the element. STIF63 0024k 2-70
STD-R-02-016 4.63 2 The next three lines include the' stresses for top, middle, and bottom element surfaces, respectively. The combined stresses $X and $Y and the twisting' stress Txy are the combination of the -membrane stresses and the stresses. corresponding to the caculated. bending moments, respectively. The positive bending stresses occur on the-top face of the element for the positive bending moments shown in Figure 4.63.3 Nodal stresses may be obtained f rom the POST 25 printout, see section 6.25. b) Post Data - The post data associated with the shell element Is shn..n lieIn. it.e data are writ ten on file TAP!12, if requested, as described in Section 4..).4,
- 1. SX(MID)*TK 9-11. $X,5Y,TXY[ TOP) 33-35. XC.YC,2C
- 2. SY(MID)*TK i2~
P'ii F-[MID BOT) 36 37. AREA,TTOP
- 3. TXY(MID)*TK 2*15 1720. SMX,SMN,TMX[ TOP),,
3,3)-).4 2 TBOT ' ~ ~ ', PRESS L*5. NX,hY 21-22. SIGE,A[ TOP] y,6-8; M),Ff.gXY, 23-32, 18-22 6 (MID BOT] 4.63 3 Theory The nendrane stiffness is the same as for the membrane shell element -(STIF41), including the extra shapes. The bending stiffness is formed from the bending stif f-ness of four triangular shell elements (STIF53). Two triangles have one diagonal of the element as a common side and two triangles have the other diagonal of the element as a common side. The stlffness is obtained from the sum of the four stif fnesses divided by two. 4.63.4 Assumptions and Restrictions Zero area elements are not allowed. This occurs most of ten whenever the ele-ments are not numoered properly. Zero thickness elenents or elements tapering down to a zero thickness at any corner are not allowed. The applied transverse thermal oradient is assured to be line'ar through the thickness and uniform over the shell surface. An assemblage of flat shell elements can produce a good approximation to a curved shell surface provided that each flat element does not extend over more than a 15' arc. If an elastic foundation stiffness in input, one-fourth of the total-is applied at each node. Shear deflection is not included in 'this thin-shell element. A triangular element may be forced by defining duplicate K and L node numbers - as' described in Section 4.0.9 The extra shapes are automatically deleted for tri-angular elements so that the membrane stiffness reduces to a constant strain formu-lation. The four nodal points defining the element should -IIe in an exact flat plane; however, a small out-of-plane tolerance is permitted so that the element may have a slightly warped shape. A slightly warped element will produce a warning message' in the printout. If the warpage is too severe, a fatai message resuits and a trianguiar element should be used, see Section 4.0.9. The triangular shape is recomrended.for large deflection analyses since a four-node element may warp during deflection. The out-of plane (normal) stress for this elenent Is assumed to be zero. STIF63 0024k 2-71
STD-R-02-016 4.63 3 + I ~ t TAsLE.A.63.1 OUADR! LATERAL SwCLL-ELEMENT N6ME ST1F63. 4 1,J.K,L .No. Or nones . N00E 6 Us.UY,UZ ROTAeROTYep0T2 DEGREES OF FREEDOM PER REAL CON %TANTS 5 Tet!),TK(J).TKtKlefrILI.EFS (TKtJieTKtKleTKILI.OEFAULT TO'TKilli; 4ATERIAL PROPERTIES 6 Ex.EY.Alpx.ALPYeNUxy, DENS rxY (OPT 10NAll .tDIRECTION l*J IS Ki poESSURES 1 NnRMAL PRESSURE ACTING ON FACE 1 ~ (USE NEGAT!vE PRES $URE FOR nPPOSITE LOAD,1 ngl TEwpEWATuoES 2 TTOP.Te0TTOM SDECIAL rEATuoES STRESS STIFFENING, LARGE WOTAT10N MEYSUHtil 0 - INC UDE EATRA DISPLACrwENT SHAPES = 1 - SUPPRESS EXTRA-DISPLACEMENT SMAPES REYSUBflA) 0 - 71E**<!Ew!CZ-!N-PLANE GOTATIONAL SitFFNESS I - No !N-DL ANE ROT ATIONAL ST!FFNESS MEYSUBt2 0 - FLAY SHELL PRESSURE. LOADING 1 - CURVED SMELL PRESSudE LotDING KEYSU8(281 0 - NO FDGE PRINT 0UT N - EDGr: PRINTOUT AT EDGE N IN= 1,2 3 OR 63 Stir 63 0024k - 2-72
STD-R-02-016-4.63 41 l g n; f, - 0_ ~~ Dgn ~ 4 g; TTOP r-y y .s. " l' ' ' TK(K) / 'I, - i g g -} 3 K.L TBOT g l I PRESSURE J y (Tri.: Option) .Y Note - x and y are in the plane of the el.sment, f x is parallel to IJ. X Figure 4.63.1 Quadrilateral Shell NY- -^ Element Coordinate System 'MX FX-A sy ,, s. y SX(TOP)- ^ r SX-SX(MID)- L._ [\\ MN / -MY 7 MKY O 3.- -x i _ uadrilateral Shell Output Q Figure 4.63.2 STIF63 0024k 2-73 g a 4
w ~ - 4.63 51 STD-R-02-016:- '"X. i i +r .i TAtLE 4.63 2 1 00ADatLATERAL SHELL ELEMENT PRINT 0UT-EISLANAT!DNS-NUwsE8 0F LABEL CONSTANTS F0dwAT EKPLANATION 3 LINE 1 EL 1 I5 ELEMENT Nuw6ER. NODES 6 415 N00E5 - !,J.M L' 4AT 1 13 MATERIAL Num8ER AHEA 1 G10 3 AREA TT09,T80T .2 2FTel SURFACE TEu#ERATURES'- T09 80TTow -s i PkE55 -1 G11 6 50erACE PRES 5uRE LINE 2 MA MY,MKY 3 3G13,5 MOMENTS IN ELEMENT-X AND Y D!#ECT!DNS ~ NAeNY 2 2013.5 5t' EAR F08CES ACeTC+2C 3 3010.6. GLO6AL A,Y,2 LOCATION-OF CENT 40!O. LINES 3 = 5 LC Top,-u! DOLE :0# 407 TOM O SA.5Y Txv 3 3G12.5 COM81NED MEweRANE AND SENSING STRESSES (ELEMENT.C00RDINATE51-SwXeSMN TMX 3 3G12.5 PRINCIPAL-$ TRESSES:. $1Gast.SIGd3N Tau =As A 1 F6 1 ANGLE 0F PRINCl#AL~ STRE55E5 GELAfivEETO ELEuCNT XaY ARES SIGE 1 G12 5 EcutvaLENT STRESS- ~ LINES 6-9 EDGE PRINT 0UT. tP9]NTED ONLY 1F; KEY 5umt291
- lePe1, OR 41 Lot 2
216 ' EDGE NODE 51 F04CE/ LENGTH S 4G13.3 (51,5Y,TxY AT Eb6El-e (THICKNESS), MK,My,wsY AT EDGE,-NA NY'AT EDGE. STRESSES-3 4G13.5 - 51,57.TAY AT EDGE.
- -(6/tTHICMNE55 *2ile INA.gY,MAY AT EDGER INE.NY AT EDGCl * (1 5/TutCx4E551-eeeeeeeeeeeeeeeeeeeeee..eeeeee...e****ee I~-
$TIF63 s .0024k' 2-74 4_ ~
.. I 4 STD-R-02-016--
- y,u l
1
- 3rCNDIX-2.10.6 CASK LID ANALYSIS
\\ l-0024k 2-75'
STD-R-02-016- - MAR 2 01990- .~ The 14-215 cask lid was analyzed for;a pressure load plus a ring-load whichi I ~ ,eimulated the axial impact force imposed on the lid due to:its.own weight.and the weight of the payload. The lid was modelled and' analyzed using ANSYS!(See Appendix'2.10,5). The lid was-considered tosbe' two-circular plates -connected by_ two continuous welds as shown in figures 2.10.6-1&2.1The remaining interf ace between the plates was represented with gap elements which allowed _ compressive load transfer but no tensile loads. A coefficient of-friction of.5 was-used to model-the contact friction between plates.- A 10 psi pressure'was applied to the entire-lower surface nf the lower plate.. A corresponding ring, load was applied _to thec upper surface of~the upper plate at a radius-of 16":to represent the; secondary lid loading. The upper plate was. simply, supported-at its-outer edge..- The stresses resulting from the analysis are given on the following pages.L The maximum stress is found in Element 1'vith a stress intensity _of 2450.5 psi. As-expected, the' stresses decrease with increasing radius. Note also-that stresses Elements 8 6 9 and 150 & 151 are relatively. low indicating'the welds allow-the 2" plates to act together as a 4" composite plate, s a a 0024k_ _2-76 .w g
1h$ g
- 3
",E.,.w e ? i Qx. [E g l# f 2 r. f n\\ I. N i f G e F i ? e r / W s t e 9 fl 1, .1 b 1 l $k r 9 C, ~ / a. j f Ts 6 l y l-c i I f e 3 1 6 T h'1 0 1 l t / I 1 a-f, 0 a S' 1,' 7 c d d. _ c ? s.. 2 L._ /_ p /a 1 f f e I / ?. k /a/G L b Z O_ o,9f o / l i / 1 j -0 g. og f 4 / f. e 1 ,9f / / s
- t.
m C r. d D s / / _ o. i s. g,. j 9 u f. l /. e 4- 's - h c I t L i i i r. u: y _. b / . )r /" j. Y r i l t I W 7 0 K-0 0 1 s9 G-1 0 y / f' j / J .6 l e 1 ) M 4 .g pg h*p /s rf 9 ,L / 6 ) h E f ~ f= W h ~ t L J i i L. ~ g 8 s tl ~ z w
pa . 4 p 2 _t u,,w,a sa ...e. a O STD-R-02-016 "Wg g h E ~ \\ h s g ~ "i= net Ti t:1; V ~ g gi W 4 q; M tiVii h w w $x t 5:t!*tt .r. ,= y .y e i: 1 = -y o I N. =. Ii I .b*k t r t-N.
- l 5
3 5, k s 3 k 4 Y N b s 1 3 i 4 -{ i -W } ] 4~ g i 2 _ T k k l-! w t: i g-t%~I u "g s Egt3T tS te I= a! M,7-1 4 nu eo i 0 t yo. f -l = k f h f 49 4, q m ,N x k. m s D 4, y . }L D 2, ~
t STD-R-02-016 i i ~ ~ $ft% hk& C ~ /67 't A / .4%s-447,} t o $
- O Y. f p p $
l .c=.& J.o W
- GS$0~
91e&4 n) pnse] h(fr'L A / lCW'&b'/ 6[ldd4 60GC i GA) - o i (/ 5) - 0 er ) - 0 (o5)- o EM/ (6Ah) [$nf/2l dry:a>>-(i)- t "i i @ )
- ~
3,, .Sd*N 6x)C7ALJM o) e wo
- x M
g (9hurexn -l,' Yo<31aM,99,,-1 (f) $WW' / x 5. xio-o., k/a 6 0024k 2-79 ...,..,m,., ,,,....,.,._...-,-,m ...E ~_r,, 44
1 O O N z-Y ANSYS - ENGINEERING SMALYSIS SYSTEM REVISION 3 UPDATE 47t ECS meS JUNE 1.1979 SWAM 50N A*.ALYSIS SYSTEMS. INC. MDUSION. PENMSYLVANI6 15342 PHGNE 1982) 746-3384 16.7354 2# 3/83 cps 38.537 ANALYSIS - VI-Lt6 PACKAGE. MOMINAL IS PSIC PRESSURE ses ELEMEMT StaESSES asess TIME
- 8.
LOAD STEPS 3 11ERAllC#: 18 CUM. ITER.s 28 SR 1 MODE 5-1 6 7 2 Mair & Votz 7.588 2-9 SSLIS 42 Cs 15.es -1.759 TEMPS 78.8 A= 35.4 S.I.= 2458.5 SICEs 2448.2 SY.tXY.SZs -98.043 -108.52 3.4824 -2549.4 WRE.SMN.tMt= -89.124 -188.64 9.3588 2 n00E5s 2 7 3 3 Maim 3 V0ta 7.500 2-D SBLIS 42 C8 15.se -1.258 TEMPS 73.4 As 39.2 5.I.s 1771.2 SICE: 1723.5 ST.1XV.52s -32.333 -131.27 1.4841 -1883.5 SMX.SMW.Inx: -32.293 -131.29 49.588 2-EE$0(19 42 3 MODE 5s 3 8 9 4 MATS 1 VOta 7.5k0 Cs 35.se .7589 TEMPS 7s.g A= -74.5 S.I.s 2131.2 SICEz 1933.5 ~ SY. fry.528 50.246 -152.33 -61.847 -1864.4 SMr.SMR.tMxs 67.222 -149.29 118.25 4 NODES 4 9 18 5 MATS 1 90ts 7.599 2-D SOLIS 42 ! Ca 15.95 .25s8 1EMPs 79.9 As -49.1 S.I.s 366.29 $3CEs 317.23 SY.1xv.SZ8 -118.19 -86.314 -93.938 -375.18 SMX.5MW.1M2s -8.8834 -395.49 93.339 5 MODESs 6 11 12 7 Maim 1 Tot 3.938 2-3 SetIS 42 63 Cs 15.75 -3.759 TEMPS 78.8 As 11.9 S.I.s 2443.9 SICEs 2385.5 $3 ST.1xv.SZs -251.74 25.164 61.247 -2403.8 SMX.SMW.1Mxs 38.136 -264.68 158.39 6 N00Ess 7 32 33 8 mat
- 1 T8ts 3.933 2-3 SDLIS 42 o
Cs 15.75 -1 250 TEMPS 70.8 As 31.8 5.I.= 1716.8 11CEs 1631.9 SY.TxY.SZs -333.37 -2s.2g4 32.393 -8685.2 SMX.SMM.tMXs 30.891 -133.40 91.947 7 MODES
- 8 13 14 9
Mais ! Vots 3.938 2-3 59tta 42 Cs 15.75 .7489 1EMPs 29.5 As 73.7 S.I.* 1889.3 SICEs 1987.2 SY.1xY.SZs 157.92 -54.686 67.848 -933.56 SMX.5MW.5MXs 177.74 -74.426 126.85 8 meDESs 1 34 15 30 MAfs 1 Dets 3.938 2-8 59419 42 Ca 15.75 .2544 TEMPS 78.9 As -55.9 S.I.= 533.53 SICEs 581.37 SY.1xv.12s 4.1284 -184.42 -236.58 -349.e9 SMX.SMM.iMXs 164.44 -344.74 254.59 9 he9ESs let 196 387 182 MAT
- 1
- *t : 3.935 2-0 SDLIS 42 Cs 15.75
.2589 TEMPS 70.4 A: -32.) S.I s 742.94 SICEs 737.36 SY.1xv.52s -214.04 183.66 -327.87 326.95 SMX.SMM.IMxs 315.63 -416.81 345.82 le MODESs 182
- 2 ses les Mais i V9ts 3.938 2-9 SSLIS 42 Cs 35.75
.7500 TEMPS 78.9 As 19.8 S.I.s 3157.9 SICEs 3s:3.3 Sw.;%e.SZn -82.188 242.16 64.244 3843.4 SME.5MK.tMXs 254.42 -94.449 374.43 It NODE $a 193 IES 189 194 MATS 1 Wets 3.938 2-9 *SLIS 42 C8 35.75 1.259 IEMPs 73 g Am 34.2 S.g.s 3773.3 SICEz 1676.4 us SY.txY SZs 56.449 232.85 94.29e 1761.4 .SMX.SMN.IMxa 193.24 -3,943S 333.39 73g j f$ $3 12 WODES= 184 189 Ils 105 Mais ~ t vets 3.938 2-3 Setts 42 Cs 15.75 1.759 IEMPs 79.8 As 69.9 S.I.= 2421.7 SICE: 2382.7 e SV.1xY.SZa 66.955 24.940 34.813 2427.7 SMX.SMM.fMX: 85.925 5.9708 39.978 PC C3 w C23 33 NOCES* 11 '16 17 12 MAis 1 V8ta 12.56 2-3 SOLIS 42 33 Cs 16.7% -l.750 TEMPS 7s.3 Am 3.2 S.I.* 2323.4 SICE 2128.9 .y SY.1xY.SZs.-488.$$ -3.9776 27.597 -2325.8 SMK.SMM.IMXu -2.4117 -498.34 243.98 es 24 heDESs 12 37 IS 13 MAfs 1 901s 12.56 2-9 59 TID 42
C3 l ou z~ pr
- XC.YCs 16.25
-1.250 TEMPS 70.8 Ar 12.5 5.1.3 1597.1 STCE: 1513.5 SX,5Y.TXY.SZ2 -141.69 25.228 38.878 -1564.3 SMX SM4.tnX 33.811 -158.27 12.841 Ets 15 peptS= 13 18 14 14 MATS 1 W0tt 12.56 2-3 setts 42 XC.YC2 16.75 .7500 TEMP 2 78.8 Ar -85.4 S.I.* 992.64 SICE: 934.28 SX.tY.fXY.SZ 132.01 33.236 -18.347 -889.81 SMX.SMM.inx: 182.33 32.438 45.212 Et* 16 PODE5s 14 19 28 15 Maf: 1 90t= 12.56 2-3 See.1D 42 XC.YCs 16.75 .2588 TEMPS 78.8 A: -79.8 S.I. 827.88 SICE2 313.48 SX.5Y.1XY.SZ* 849.77 181.44 -139.82 47.361 SMX.5Mw.tnx= gr5.85 76.348 399.34 Els 17 EODESr 28 111 ggEp= .888888 USt10Es.888133 FN: -34.518 FS: -17.255 51472 -2 0t95T8 -2 2-8 CAP 12 Et= la WODESs 186 til 112 187 MAT = 1 70tz 12.56 2-0 Set 1D 42 XC.YC2 1&_75 .2588 TEMP 2 78.8 A: -18.3 S.1.s 954.26 S1ct: 948.62 SX.5Y.TXY.SZ2 -943.52 -74.488 -18.2.98 -18.875 SMX.SMM.TMX: -46.778 -973.14 463.18 f Ets 19 #00ESs 107 112 113 ISS M4Ts 1 Yet: 12.56 2-D SttID 42 XC.YCs 16.75 .7588 TEMPS 78.8 A: -10.2 S.1.2 1874.6 SIGEs 1981.8 l SX.5Y.TXY.SZs -234.77 -73.423 -29.815 334.49 SMX.5MM.inX: -48.284 -248.11 85.914 Eta 28 pe0ES* 188 113 114 189 Mais 1 vot: 12.56 2-D 58t18 42 XC.YC2 16.75 1.258 TEMP: 78.8 A: 47.7 S.I.s 1858.8 SICEs 1573.7 SX.SY.TXY.SZ8 86.124 -33.238 58.918 1593.4 SMX.SMM.tMX: 188.31 -57.414 83.864 Eta 21 NODES 189 114 115 IIS MAfz 1 V0tz 12.56 .2-0 59 TID 42 i XC.YCs 14.75 1.750 TEMPS 78.8 At 82.3 S.I.s 2348.7 SICEz 2154.7 ) }# SX.SY.YXV.12e 355.62 -8.1411 49.934 2333.9 SMX.SMM.IMXe 342.34 -14.866 188.48 33 Eta 22 NSDESs 16 21 22 17 Mais 1 V0ta 13.69 2-3 SOLIS 42 XC.YCs 18.25 -1.750 TEMPS 78.8 Ar -1.9 S.I.s 2175.9 SICE: 1939.2 SX.SY TXY.522 -838.79 -9.8389 -28.442 -2185.1 ShX.5MN.5MX: -9.1&22 -639.48 315.15 l Eta 23 MODE $s 17 22 23 18 MAfa 1 T0ta 13.49 2-3 59119 42 XC.YCs 18.25 -1.258 7EMPs 78.8 A -11.2 S.I.= 1956.7 SICEs 1355.2 SX.SY.TXY.SZ* -218.95 4.7934 -44.374 -1443.2 SMX.SMM.1MXs 13.564 -219.72 - 116.44 ELR 24 WODE5x la 23 24 19 Mate 1 VStu 13.49 2-D SSLIS 42 XC.YCs 18.25 .7500 TEMPr 78.8 As -76.8 5.1.s 958.98 SICEs 859.38 SX.5Y.TXY SZe 257.94 26.318 -57.377 -687.59 SMX.SMM.tMX* 271.37 12.883 121.24 Et a 25 NODESs 19 24 29 IS MAT
- 1 tots 13.49 2-9 SetID 42 -
IC.YC2 18.25 .2588 TEMPS 78.8 As 88.1 S.I.* 618.32 SI CE z" 401.63 SX.SY.fXY.32s 592.52 -24.439 28.526 9.7793 SMX.SMM.tMXs 593.28 -25.121 389.16 eT i Et a 26 keDES: 25 136 USEPs.888888 U5t1 des.888199 FNs -232.73 FS2 -103.87 STatz 1 81RST= 1 2-9 CAF 12 Et* 27 WODESE Ill lla 117 112 Mats 1
- Ct s 13.49 2-D 18t19 42 XC.YC2 18.25
.2588 TEMPS 78.8 A 2.5 5.1.2 &&2.73 SIGEt &&1.38 SX.SY.fXY.SZs -853.23 4.9998 28.784 5.3743 SMX.SMN.iMXz 5.2524 -454.48 331.37 Eta 28 NDCES: 112 117 118 113 MAT = 1 90t= 13.49 2-8 59t19 42 05 XC.YCs 18.25 .75*8 IEMPs 78.8 A= -9.8 5.1.s 1842.6 SICEs 927.54
- j SX.SY.1XY.SZ
-337.28 -43.371 -47.659 497.85 SMX.SMM.1MXs -31.834 -344.73 154.45 T
- xt Eta 29 #eDES8 113 118 119 114 MATS 1 vots 13.49 2-D 18133 42 e
C2 XC.YCs 18.25 1.258 1EMPT 78.8 Ar -75.7 S.I.s 8487.2 Sitt* 1489.2 SX.5Y.TXY.5Ze 124.31 -26.558 -41.228 1458.2 SMX.SMM.1MX2 134.84 -37.885 85.963 )# o Etz 38 WCDE52 114 119 128 115 NAT 1 V0t2 13.&T 2 3 Sgtig 42
== cx l e
Oo ea z-Pt* XC. Yrs 13.25 1.750 TEMPS 70.8 AS -87.9 S.I. 2199.2 SICE 1978.3 SK.ST.Tuf.SZa 563.38 .13699 -29.744 2195.6 SMX.SMM.iMX: 564.87 .62608 282.35 Eta 31 MODES 2 21 26 27 22 MAT
- I vot z 14.81 2-D SDtt3 42 kC.YCs 19.75
-3.758 TEMPS 78.9 42 -1.4 S.I.* 2312.8 SICE2 1797.3 SX.SY.1XT.SZ -657.19 -8.7812 -16.294 -2848.3 SMX.SMM.tMX: -3.2989 -857.68 324.65 Eta 32 NODES: 22 27 28 23 MAT
- 1 V0t*
14.33 2-b Setta 42 XC.YCs 19.75 -1.250 TEMP: 78.9 A: -8.1 S.I.* 1336.9 SICE 1228.2 SX.Sf,1Xy.522 -268.85 -12.681 -36.184 -1344.4 SMX.SMM.tM*: -7 5352 -266.83 129.23 $ Ets 33 MODES: 23 28 29 24 MAT 2 I VOLS 14.81 2-9 SQLIS ~42 gXC.YCs 19.75 .750s TEMP 75.0 A: -81.6 S.I.s 764.31 SICE 799.62 SX.Sf.TXV.SZa 183.78 -28.e22 -19.796 -661.66 SMX.SMM.IMXs 196.69 -35.931 64.813 Eta 34 NODE!.s 24 29 39 25 MAT *
- vot* 14.81 2-9 JOLIB 42 J
XC.YCs 19.75 .2588 1EMP: 78.8 A: -8 '. 8 S.I.s 516.53 SICE: 493.23 SX.ST.TRY.528 588.66 -4.9931 -27.221 44.187 SMX.SMM.1MXs 518.18 -4.4317 238.27 Ets 35 NODES 38 121 USEPs.esette USLIDEs.e88270 FNs -163.75 FS* -81.374 STAT * -2 SLDST s -2 2-8 SAP 12 . Ets 36 NeDEss its 121 122 317 MAis I Wota 14.81 2-9 59119 42
- XC.YCs 11.75
.2598 TEMP 2 78.9 4: -2.8 S.I.s 574.5E SICE: 559.33 SX.SY.TXY.52 -588.15 -5.2895 -27.941 -34.73a SMr.5MM.!MX -6.9275 -381.53 287.29 Fts 37 WODESz 117 122
- 123 118 MAis t "ti s 14.81 2-D SSLIS 42 do XC.YCs 19.75
.7580 IEMPs 78.8 A2 -5.* 5.1.s 842.78 SICEs 764.44 SX.Sf.1XY.SZn -171.96 18.447 -18.819 668.99 SMX.SNN.tMX: 20.329 -173.38 97.963 co ^# Eta 38 MODESa lla 123 124 119 Mais 1 vots 14.81 2-D Setta 42 XC.YCs 19.75 3.218 TEMPS 73.g A= -79.7 S.I.s 1352.9 SICEs 1265.8 SX.sf.Txy.SZ: 192.84 6.1672 -35.12e 1352.7 SMX.SMN.!MXs 199.23 .22167 99.724 Et a 39 MeDESe 119 524 125 129 MAT
- I V0ta 14.88 2-3 $9t19 42 XC.YCs 19.75 1.750 TEMPS 78.8 as -88.4 S.I.s 2049.2 SICEs 1826.9 SX.SY.1XY.SZa 585.66
-1.4478 -16.392 2847.3 SMX.5MN.1MX= 549.12 -1.9023 295.51 ' Etz 40 NODES 26 31 32 27 Mage 1 Vot* 15.94 2-3 59139 42 BC.YCs 21.25 -1.759 TEMP: 78.9 Az -1.3 S.I.* 1989.5 SICE 1853.0 SX.SY.1Xr.52s -666.83 -8.9886 -15.505 ,1914.2 SMX.SMM.lMX2 -8.6k33 -447.19 329.29 ~ Ets 43 MODES: 27 32 33 28 MAf* 1 Welt 15.94 2-3 19119 42 XC.YCs 21.25 -1.25e TEMex 73.3 A= -S.9 S.I.s 1259.1 SiCE 1134.2 SX.SY.fXV.SZs -339.92 -9.1948 -32.548 -1264.9 SMY.SMN.lMXi -5.8238 -323Jth 154.74 Ets 42 NODES 25 33 34 29 Matt i vots 15.94 2-D 58tts 42 NC.YCs 21.25 .7588 11MPs 78.8 48 -57.9 S.I.s 673.93 SICES 631.75 ., SX Sf.1XV.SZs 42.895 .43137 -42.873 -645.e7 SMX.5MN.fMXs 68.859 -26.44k 47.651 EC s 43 NGCEss 29 34 35 30 MAT
- 3 W0tt 15.94 2-9 30119 42 XC.YCs 21.25
.25ft TEMPS 78.8 As -87.9 S.I.= 409.47 SICE 376.54 Ej -SP.SY.TXY.SZa 394.64 -4.7e23 -15.882 48.340 SMX.SMM.tMX* 395.25 -5.2655 209.23 ty a Ett 44 MODESs 35 126 USEPs.9000Ss U$ TIDES.880321 FN: -228.43 F5s -114.22 ST ATs -2 SLDST* -2 2-D EAP 12 j8 Et z 45 MODES 121 126 127 122 Matz 1 votz 15.94 2-9 SDtID 42 k3
- C.YCs 21.25
.2588 TEMP: 70.C A -l.9 S.I.* 454.65 SICE* 435.32 s X SX.sv.IXV.SZ2 -459.64 -5.9944 -15.187 -47.15e SMX.SMN.TMxt -5.4918 -465.14 227.33 $3 Etz 46 NODES: 122 127 128 123 MATE 1 V0tz 15.94 2-D SSLIS 42
1 I STD-R-03-016 ) r E-! 5 5 1 f f f f f W. E f i N N N N ~ N N N N N N N N N _6 M. i p y p M. .e ~. n M p p g M N-s. x. ~ ~ ~ ~ ~ h ~ ~. - ~., ~.. ~ ~ ~..._ ~~ ~ ~ ~, _~ ~ su su su su un an un un un an '9m zu sn un un R. I. I. I. I R R.. I. I. I I. I. I I. R e e e e X X X X R R Xd I I I I i i I X .. - _ ~. _...... ~. ... s. .~.:. ~,.~.. _.~. .~ ~. ._...x....--......._.~~. _ ~_. ._.~_ ~ . _~ . ~ _.. _. s.,.
- s. _..
,. x. *.,s._ _._.~ . N. s _ N. .... : _.. z......_._.:.. ...~~. s ~, a. , r .~. ~. - z, n ~, a~ .., a _ .._......... m...._. : ...-.~.._t _........ -.~ .-..~ ~.,t. ~ s -,.-... t- _ ~ _. -,..~. .~..- - ~.,.., -M .. ~..... - -. M.. ~. N. .~.... .~ .~ ~..... -... ~.... .. ~ _ ...-x_.. ~.~. ... ~. _. ..e. ~ _. .x- ~_. . ~ - ~ .. x. ~ ~ w w. .N $N .N @N $N. .N.
- N
.e. %@N .N .N .*N' .m . *e .N.b N. *. N. *. ~. * * ~* $N - N. *e . n. ~.*e ~ ~.*e e .a NP 3_k e e ~ M b** ~. > N> N> ~> ~> ' N> N> ~> M M ~ _W m> ...NM.~- M M ~M M ~M -~.~e N. ..~-'.~M ~ ~M ..M M NM ~M e. >*..h e $. >e-. e. *.
- e.
e. *. U.h .h U* U* M* U* U W9 U* U* Un U n. Un U $. We .be .be*M.
- M
>+ p. de >e p .be e >e e e
- W
- M eM
.*M .eM ,M
- M eM. 4 Bf
- M
- M
- M
. eM M* U. MU$ dun dun dun dM* U* d dUm DMO dun dM* dM* &U* dun d.M M t - M WM WM WM WM WM M W WM WM-WM WM-WM WM WM i il 0024k 2-83
.t f o' O t n.. n. W l Eta 62 M90ES=' 45 '136 DSEPs.esesse ustIDE:.888398 FN: -176.35 FS2 -84.989 STAT
- 1 SLfsta 1 2 3 GAP 12 I
~ ' 138 336 337 132 Mais 1 vet z 18.19 2-9 19t!9 42 ~ Ett ' 63 NDDES* 4 XC.YCs 24.25 .2590 TEMPS 70.9 A -5.9 S.I.s 238.44 SIGE: 218.45 SX.SY.1XY.SZ -234.38 -a.s344 -23.685 -32.794' SMX.SMM.lMX: -6.3741 -236.84 113.23 J ' 132 137 '134 '133 feA f z 3 vot : 18.19 2-9 59tte 42 h Ets' 64 NODES
- XC.YCs 24.25
.7 Set 1[Mrs 79.8 A= -56.6 S.I.* S84.64 SICE: 539.48 SX ST.TXY,S2s 35.398 -4.5794 -45.78T S45.91 SMX.SMM.IMX2 67.$24 -38.697 S3.131 Eta ~ 65'N00ES 333 ISS 339' 134 MAf= 1 wet Is.19 2-9 $9tte 42 f-XC.TC* 24.25 1.25e TEMP 2 78.9 A: -88.6 S.I.s 1132.9 SIGE: 1812.0 SX.SY.TXY.SZs 382.33 -2.3642 -45.794 1824.8 SMX.SMM.TMX: 309.56 -S.8MS 159.23 i Elm 46 leetESz 134 139 149 53S MAT
- 1 VOL=. 18.19 2-3 99 tit 42 r
l 1.758 TFMPr 73.3' A= -37.3 S,3.s 3733.1 StGE2 IS88.3 XC.YC2 24.25 . 569.11 .77742 -28.447. 37e1.5 SMX.5MN.1MX= 569.92 -1.5466 285.75 SX.SYeiXV.5Zs fts' 67 egetES* 41 46 47 42 MAix I V9t* 19.31 2-9 59 TID 43 As -1.6 S.I.* 1688.0 SICE2 1414.6 I XC.YCs 25.75 -1.750 TEMPS 78.9' -17.848 -1627.1 SMX.SMM.tMX2 -9.1589 -624.14 307.58 .S.X.ST.1 XY. SZ 2 -623.67 -9.6234-Ett 68 set 9ESs 42 47 44 43 MAf= 1 99t*' 19.31 2-5 Set 19 42 . N ' XC.YCa 23.75 -3.234 ...3EMrs. 73.g' Az -S.9 S.I.* 1876.1 SICEm 945.87 SX.SY.iXV 522 -379.55 -6.7374 -38.888 -1878.4 Spet.SMN.1MX8 -2.7239 -34 3.S6 190.42 i ^ 69 fee 9ESs 1,43 48 49 44 Mais ' 3 V9tz '39.31 2-3 SSLIS 48 Et a XC.YCr 2Sa75 - .7500 ftMP 78.9 A2 -14.9 S.1.2 537.64 StGE: 479.73 SX.SY.1XY 52s -336.93 -3.8586 -39.222 -532.37 Sfet.SMM. t MX1 6.31e6 -347.32 76.718 Et= 7e'Se9ES* S4' 45 Be4i
- I USL=' 19.31 2-9 19t19 48 XC.YCs 25.75
.'.2588 TEMP 8 78.8 A: -88.9 S.I.* 316.E2 SILEz I96.84 i SX.SY.tXY.Str 3e3.7S ~1.4272 -18.176 17.269 SMX. Sept. IMX 2 381.67 -4.3443 SS.999 j i Eta 75 geO9ESS SG 141 DSEPs.999994 dst!SEs.000485 F'd* 8. FS8 8. STAT *.3 SLDST* 1 2-9 SAP lt I ) Et* 72 se99ES= ;336 141 142 337 Main 1. Vet a 39.11 2-9 59 TID 48 XC.YC2 23.75 .2500 TEMPE 79.8 A -11.9 S.I.* 187.32 SICES 133.62 SX.SY.1XY SZr -109.46 - -1.4842- -23.647 -S.144 f# SMX.SMM.tMX* 3.8842 -314.43 St.754 4 Eta 73 steeES* 337 '142 143 134 pea f z 1 veta 171.31 2-9 SetIS 48 XC.YCs 25.75 .7509 TEMPS 78.9 A: -67.9 S.I.=
- 153.94 SICEs 496.48-SX.SY.iXY.SZ2' "99.988
-1.5855 -49.439 539.95 Stut.SMN. IMX: 119.96 -23.945 78.953 Ets 74 Ie90ESz 138 ' 143 2 9 39t19 48 XC.YC 25.75 - 3.250 ' 144 139 Mete 3. vote 39.33 - SygE= 953.72 IEMPa 73 s A= 31.1 S.g.: 337g.3 SX.SY.1XY.SZr l. 344.95 - -1. Site -50.944 I tte4.6 - Stur.Sfst. lMX s 384.52 -9.3923 363.11 f
- Et e 73 IISDES: 139 144 145 140 Mats-t 99t = 39.33 2-9 SSLIS 48 Y
XC.YCs 25.75 1.754 TEMP: '70.8 As -87.4 S.I.* 1608.6 SICE2 1415.4 e SX.SY.1XY.SZ 518.21 - .54811 -22.163 3609.5 385t.SfWE. IMX = 519.16 -3.5132 244.34 38 e i 2-9 TSLIS 48 - O Ets 76 IEe9ESs 46 51. 52 47 . MAT: I V942 28.44 XC.YCs 27.25 , -1.730 ' , TEMPS 70.0 Ar -2.2 S.I.2 1531.4-SIGEz 1341.3 SX.ST.1"Y.SZsf -5FS.89 -9.5724 -21.344 -8S48.2 SMX.SMBI. IMK2 -5.7658 -573.99 283.57 o '*Ets 77 'Ise9ESz'.67 $2 53 ' 44 - MAfa I
- 912 28.44 2-9 19t19 4R
-l.250 TEMP: 79.9 A: -6.9 S.I.s 1829.2 StGE: 998.37 XC.YC 27.25. -382.68 - -4.5629 ~46.134 -1838.2 Spet.Spus.TMX2 .98S98 -?se.25 193.63 SX.SY.iXY.SZa j ~.
O O N . c. M" it s 78 NcDES: 48 53 54 49 MAT
- 1 70t8 28.44 2-0 SCtID 42 (C.YCs 27.25
.7588 TEMPS 78.8 A: -13.2 S.I.s 529.24 SICE: 461.46 SX.SY.TXY.SZ2 -191.67 -2.5822 -44.881 -528.84 SMX.SMN.tMX: 8.4829 -282.64 185.53
- t s 79 N0DEse 49 54 35 5t MATE 1 V012 28.44 2 3 Sgtgg 42
<C.YCs 27.25 .2588 TEMPS 78.8 A: -45.3 S.I.= 48.d42 SI CE 37.992 SX.SY.YXY.SZ2 .69144 .255&H -28.938 -18.898 SMX.SMM.iPJ: 28.484 -28.457 28.931 it s 88 NODES 55 146 USEPs.888815 USLIDEz.888406 FN: 8. FS2 8. STAT
- 3 OLDStr 3 2-D CAP 12 7t
- St NDDES2 141 146 147 142 MATz 1 V01: 28.44 2-5 SCLID 42
<C.YCs 27.25 .2588 TEhrs 78.8 A: -33.4 5.I.: 43.495 SICE 43.168 SX.SY. T X Y.52 2 13.333 .79753 -28.825 28.158 SMX.SMM.tMX: 28.282 -14.683 21.748
- t s 82 M9DEss 142 147 148 143 MAT
- 3 vott 28.44 2-D SettD 42 tc TC 27.25
.7588 TEMPS 78.8 Ar -74.7 S.I.2 532.91 SICE2 468.27 SX.SY.TXY.SZz 161.48 .28538 -47.662 528.35 SMX. SMf t. f M* : 174.44 -12.758 93.681 Its 85 NODESs 143 148 149 144 MAT
- 1 Vot: 28.44 2-D 58t1D 42 (C. YC s 2F.25 1.258 TEMPS 73.6 A: -83.6 S.I.=
1819.1 SICET 183.73 SX.SY.1XY.SZ2 310.43 .22888 -46.917 1812.8 SMX. SPR. t MX: 317.56 -F.1469 162.35 it s 84 NODE 5s 144 149 158 345 MAT
- 3 vots 28.44 2-0 Settp 42 ea (C.YC2 27.25 1.759 TEMPS 78.8 As -8F.3 S.I.e 1585.2 SICE: 1316.1 i
SX.SY.T RY.SZ s 459.52 .53864 -21.986 1584.3 SMX.SMM tMX: 468.56 -1.5713 231.87 co It s 85 NODESz 51 56 57 52 M4Te 1 Tetz 23.56 2-D 50119 42 (C.YCs 28.75 -1.758 TEMP: 78.8 A: -2.8 S.t.* 1443.5 SICEr 1278.5 SX.SY.1XY. 52 8 -382.66 -9.5294 -24.319 -1951.9 SMX.SMN.iMX -s
- 38
-583.85 247.76 it s SS NottSa 52 57 38 53 MAT = 1 Vets 21.54 2-D Setts 42 (C.YC2 28.75 -1.258 TEMPS 78.8 A -B.3 5.I.s 985.26 SICEs 868.15 SX.5Y.TXY.SZ: -375.19 -F.8448 -54.548 -984.39 SMI. SPA.tMX .36481 -383.18 191.98 Et a 87 NODESP 53 38 59 54 MAfr 3 vote 23.56
- -p Sgtgp 42 (C.YCs 28.75
.7588 TEMPS 73,9 Am -33.3 5.g.s 325.59 SICFr 455.21 SX.SY.1XY.SZr -248.98 -2.9&F1 -53.726 -517.33 SMX.SMM.TMX: 8.25F6 -268.32 134.39
- It s 38 NODES =
54 59 68 SS MAT
- 1 Vot: 21.56 2-9 59119 42 (C.TC s 28.75
.2588 TEMPS 78.8 Am -13.2 S.I.* 131.28 SICEm 114.16 SX.SY.TXY.S2s -121.45 .44628E-81 -24.985 -49.719 SMX.SMM.tMX: 4.84&S -126.36 65.682 Eta 89 NOCESs 68 151 USEPs.888831 USLICEs..888393 FN: 8. FS 8. STAtz 3 9tD5fs 3 S-S SAP 12 it e 98 ShIDESs 146 351 152 147 MAT
- I VUI = 23.56 2-9 5917D 42 (C.YCr 28.75
.2588 TEMPS 78.8 A: -88.7 S.I.m 131.42 SICEs 133.81 SX.ST.1xv SZ2 124.43 .22333 -28.956 62.869 Srt.SMN.TMX: 127.86 -3.5545 65.789 gn
- t s 91 NODESz 147 152 153 148 MAT
- 1 Tott 23.56 2-9 38t33 42 k!
tc.YCs 28.75 .7588 TEMPS 78.8 A: -79.8 S.I.* 522.67 SICE: 453.45 t SX.SY.1XY.SZ2 236.98 .22979 -44.817 513.85 SMt.SMN.tMX: 225.49 -8.8136 117.15 j2 it s 92 NODES: 148 153 154 149 MAT
- 1 Watz 28.56 2-D 50139 42
{3 C.YCs 28.75 f.258 TEMP: 78.8 A: -81.8 S.I.* 171.88 SICE: 456.54 8 SX.SY.TXY.SZr 389.76 .33832 -45.321 964.64 SMX.SMN.tMX2 336.26 -4.3592 161.31 $3 C it s 93 N0 DES 2 149 354 155 ISS MATE I T0ta 23.56 2-3 Sgt33 42 (C.YC2 28.75 1.758 TEMP: 78.8 A: -87.2 S.I.s 3416.9 SICE* 1764.2 SX.SY.1XY.52s 431.67 .66328 -19.846 1415.2 SMX.SMM.iMX: 482.65 -1.6398 282.35
.. O g PJ JW W EL: 94 NeeEsa 56 41 62 57 M41= 1 vetz 22.69 7 srs 42 l XC.YCs 38.25 -1.750 itMrs 7e.e A: -4.0 S.I.s 1353.4 SICEs 1283.5 SX.St.TXY.SZ: -499.23 -9.7449 -28.319 -1368.I SMX.SMM.TMXz -y,7474 -413,22 ggg,yg Et* 95 NCDES 57 62 43 58 MAT
- 1 VCtz 22.69 2-3 SMts 42 XC.YCs 39.25
-l.250 TEMP
- 70.0 A:
-9.6 S.I.* 943.72 SICE* 823.36 SX.SY.1XY.52s -357.5e -5.9458 -68.879 -939.42 SME.SMM.tMX2 4.3828 -347.75 1a6.e3 Eta 96 NSDEss 3a 63 64 59 MArz 1 vet
- 22.69 2-9 SetIS 42 XC.YC=
30.25 '.?See IEMPs 70.8 A -11.1 S.I.s $28.52 SICEm 462.39 SX.SY.1XV.SZa -308.66 -3.2229 -42.212 -519.53 SMX. Smut.tMX2 8.9928 -329.57 164.93 Els 97 teeDES* 59 64 45 Se MAT: 3 vot z 22.49 2-3 totta 42 XC.12s 30.25 258e TEMPS 78.e As -S.O S.I.* 263.82 SICE: 229.35 SX.SY.1XY.122 -257.79 .56724 -27.454 -98.428 SMX.SMM.INXs 2.3383 -248.49 131.51 Ets 98 NSDES 65 154 WSEPs.000052 WSLISEs.see346 FN: e. FS2 e. STAIR 3 M SST s S .g-g gar 32 EL 99 teceESs 151 154 157 152 MAfr 2" veta 22.69 2-8 SOLIS 42 XC.YC2 38.25 .25e8 TEMPS 79.e as -85.4 S.I.s 229.2e SICEz 195.96 SX,5Y.1XV.SZn 226.88 .61674 -15.356 Ice.le SMr.SMee. TMX
- 228.36
.e4289 114.48 Ett les NeeESz,'352 157 358 153 M6T* I vets 22.49 2-9 Sette 42 XC.YCs 30.25 .750s 1EMPz 70.8 A* -80.9 S.3.s 517.5T SICE* 444.75 N SX.SY.1XV.St: 266.S8 .62437 -43.944 S11.t4 SMX.SMN.TMX= 273.39 -6.4581 140.02 t* Eta 301 NDDESs 153 154 359 154 Mais t tett 22.69 2-9 Set!B 42 XC.YC: 38.25 1.250 TEMPz 79.4 A= -e2.4 S.I.* 927.77 SICEs 536.66 SX.SV.1XY.SZz 3e5.34 -1.3788 -41.415 928.89 SMX.Sret.tMXz 388.83 -4.8726 354.35 fts ter seeDESs 154 159 160 155 MAfs 1 vt'L a 22.69 2-3 Setts 42 XC.YC2 38.25 1.758 ..15298 -19.964 1332.7 SMK.SMM.tMX* 347.34 -1.2999 174.34 IEMPs 70.8 A -96.7 S.I.* 3334.0 SICEs 3390.3 SX.SY.1XV.SZz 346.23 Eta 183 NODES 63 SF 62 M312 1 Vets 23.31 2-3 SetIt 42 XC.YC= 31.75- -1.750 TEMPS 78.e A -6.2 S.I.s 3268.8 SICEs 1142.5 SX.SY.1XY.SZs -294.31 -1.4328 -31.327 -1266.3 SME.SMM.iMX2 -6.87e6 ' 297.67 ~ 145.8e fts 184 seeDES* 62 67 48 63 Maim I vets 23.81 2-9 SetIS 42 XC.YC: 31.7S -1.250 TEMP: 78.0 A2 -13.6 S.I.* 983.27 SICEm 798.22 SX.SY.fXY.52s -334.47 -8.4319 -79.908 -897.38 SMr.Sret. t MX
- 5.9413
-348.47 177.41 Etz leS teetES 43 45 49 64 MATS 3 Vetz 23.48 . 488.48 2-3 SetIS 42 XC.YC: 31.75 .7508 IEMPs 70.8 As -9.9 5.I.s 535.97 SICE i SX.SY.1XV.SZ -378.78 -1.9274 -66.629 -S26.23 SME.5 Met.1MX8 9.7417 -382.37 196.84 Ets les seeDESs 44 49 7e 65 MAT
- I vet s 23.81 2-D SOLs2 42 XC.YCs 31.75
.2500 TEMPS 78.0 As -4.5 S.I.s 412.77 SICt= 369.68 m SX.SY.iXY.SZz -406.92 .85238- -32.035- -155.64 SME.SMet. f MX z 3.3537 ~489.42 204.39 ~4 O Eta 197 IseDES* 70 163 #SEPs.890072 WSLIDE .ses324 FN: e. FSs e STAim 3 St9STs 3 2-D OP It h. 3 Ett les IceDES* 156 161 162 157 ptAir 3 vet 23.58 2-9 setIt 42 o XC.TCs 31.75 .2500 1EMPs 70.0 A: -86.4 1.3.s 323.25 SISEE 200.84 bJ SX.SY.1XY.SZs 329.34 .355e3 -2e.238 337.58 Seet.SMN.1MXs 323.43 -1.6244 343.65 Ets let aseetSs 157 162 163 ISS Matt 3 Vets 23.81 2-D SOLIB 42 5 XC.YC: 31.75 .750s TEMP
- 79.9 A
-83.3 S.I.* 536.01 SICE* 451.32
- 62. SY. t XY.12 8 318.27
-2.2137 -37.384 509.45 SMr. Seet. t MX
- 314.61
-4.5590 168.59 -r..---
oO N v. F-It s Ils seeDES: 134 163 164 159 MAT
- 1 90t* 23.81 (C.YC=
31.75 1.2Se 1EMPs 7s.3 A= -82.3 S.I.= or7.77 SICE: 779.77 2-9 50ttB 42 ^ SK. S Yr iXY. 52 = 384.89 2.1784 ~42.43e 884.e4 Sm.SMet.tMxt 313.se -3.7252 354.84 It s Ill teetESs 159 144 163 169 MA18 1 VSt = 23.81 (C.YCs 33.75 1.7Se TEPPs 19.9 At -84.3 S.I.* 1256.1 SICE2 3338.4 2-3 setts 42 l SX.SY.fXY.52s 289.68 .41264 -17.875 1254.2 SMr.SMst.tMx: 298.77 -1.9084 146.34 It s 132 se09ES* 66 7t 72 67 M4F8 1 W9t= 24.94 (C.YCs 33.2S -1.75e TEsers 13.s a -11.4 S.I.* 1845.8 SICEs - 1098.5 2-3 59 TIS 42 SK.SY.TXY.52r - NF.06 -9.7735 -33.851 -1168.9 SMX,SMN tMK: -3.1188 Yt s 133 asegESr - 47 72 73 68 M41= 3 tet
- 24.94
~ -173.72 35.387 (C. YC s 33.25 -3.254 itMPs 78.9 As -13.4 S.I.s 863.98 SICEs 754.39 2-9 SOLIS 42 j SX.SY.fKY.522 -293.63 -6.12S9 -72.715 -8SS.n SME.SMW.tM1= 11.228 -318.97 I61.30 } . It s 114 IsoptSe 68 73 76 49 MT* 1 W9t s 24.94 s (C,YC s 33.23 - .7589 TEMP: 74.0 As -19.4 S.I.* -546.48 SICE 587.85 2-3 Seggy 4g SM.SY.TXY.Stu -436.24 -S.6117 -81.176 -540.28 SMK.SMet.1Mxs 6.2732 -453.17 228.72 It s IIS 'leDetSs-69 74 75 7e M1= 1 vet s 24.94 (C.YCs 33.25 .2500 TE14Pt 79.3 a= -3.3 S.I.* $73.9a SICEt 5e3.19 2-9 Setts 42 1x.SY.1xv,523 -372.99 -2.8599 -33.167 -224.6e SME.Snee.tMx: .9273e -374.91 286.99 Its II6 800 DES 75 166 WSEPs.999945 USt19Et .009244. Fuz 9. FS2 9. Statz 3 St9%ft 3 2-3 SAP 32 !Ls 137 Is99ES. 161 366 367 362 MATE 1 9942 24.94 N tc.TCs S3.23 .2300 4, S=.SY. ext.52= 4 9.n TEMP.s 7 .n7 4E-.8.9 Am -88.0 S.I.* 438.41 S 354 49 2-3 SSL33 42 -i t..u in.e3 SM.Sm., ICE r -s Mx= ti.22 .3nSI 2 5.3: !1s lia 8809ES m 162 167 ISS 363 Mis 1 Welt 24.94 (C.YCs 33.25 .7508 IEMPs 79.0 A* -82.4 S.I.e 513.26 SICtr 456 e7 2-9 Sette 42 SK,5Y.txY.528 354.23 8.8279 ~47.022 SIS.e2 SME. SMet. fm s 346.45 3.7543 379.34 ft e 119 seetsSs 363 les 169 164 M412 1 W9t = 24.94 (C.YC= 33.25 3.2Se TEMPS 79.3 as -83.3 S. I. * - 8 50.17 - SISEs 747.83 2-3 Sette 42 SE.SY.TRY.52s 287.44 -2.5813 -34.547 843.52' SMK. 5 Met. t MEs 291.51 -6.4491 149.98 fts.329 se#9Es e 164 149 178 165 MATS 3 vet s 24.94 . (C.YC2 - 33.25 1.7Se ~ TEMP = 79.s as -a4.0 S.5.s list.1 Stats 1822.8 2-3 SOLIS 42 +SE.SY.TKY.$2s 243.9% .30088 -16.885 3183.9 SME. 5FP' 1MKs 2M.11 -1.8444 322.99 fts ^321 se#DESs - 71 76 77' 32 Mit 1 Vets 26.94 (C.YCs
- 34. 7y
-1.794 TEMPS 79.9 48 -44.3 S.I.s 1994.1 StGEr 1955.2 2-3.Sette 42 SM.SY.Txf152s. -11.455 -9.5254 -41.342 -1963.3 SMt.3 Met.tMas 3s.nl -31.948 41.354 !~ fts 122 8800(12 72 77 ' 78" 73 Mim ' 1 99t* 26.06 (C.YCs 34.75. -1.250 TEMPS-78.9 48 -16.4 'S.I.s 834.87 SISE* 733.23 2-D SOLIS 42 .SX.SY.TxY.52s -268.19 2.2811 -86.884 -489.e4 Sect.SMst.tME: 27.734 -293.49 148.74 m ' It s 323'lesetSs 73 19 Mit 1 99t * (e.YCs 34.75 .79 78 u Mr.74 26.86 4 n.. .= -7.4 S.r.- C . SX.SY.TXY.S2m -497.S4 17.997- -70.015 -SM.83 ' SPtg.SMet. tMX s 27.259 -596.89 267.87-y 573.3 SICE. 554.n 2-9 SGLle 42 e its 124 secoES: 74 79 as 75 Mats 1 vets 26.06 n (C.YC* 34.75 .2See TEMP 79.e A= -3.2 S.I.* 754.97 SICE: 461.39 2-9 SetID 42 o SX.SY.1XY.SZz -747.93 6.4389 -41.694 - ' -297.12 SME.5Mel.IMKs 4.7363 -750.23 379.44 O its 125 feeDEsz 38' 171'.WSEPs'.999981 USLISEs.000193 FMr 8. FS= 0. STAT: 3 St95f2 3 2-D sap 12 e (. a'. m Y 1 y w
- w
- ~
_ _, _ _ _ _ _ _. _ _. _. _ _. -. - - - " - ^ ' - - "
O O N c. 7:* Ets 126 NSDESr 166 171 172 167 Maiz 1 W0tt 26.86 2-3 setta 42 XC.YCm 34.75 .250s TEMP 73.8 A: -86.9 S.I.* 489.79 SICEz 423.29 SX.SY.1XY.SZ2 492.37 5.2585 -26.524 217.87 SMX.SMM.lMX: 493.61 3.8178 244.98 [ s Els 127 NDDES2 167 17! 173 168 MAT: 1 V018 26.86 2-D SollB 42-XC.YCu 34.75 .7588 IEMPS 78.8 A: -87.4 S.I.* 529.24 SICE 478.92 SX.SY.1XY.52s 376.75 -2$.826 -18.687 S43.36 SMX.SMM.IMX2 377.61 -25.887 201.75 El a its NODES
- 168 173 174 169 M4tz 1 VDt*
26.06 2-D SOLID 42, XC.YCz 14.75 1.255 1EMPs 78.8 A: -82.3 5.f.* 827.42 SICEr 722.83 SX.SY.1XV.SZ8 382.23 -5.1474 -42.528 816.49 SMX.SMM.1MX* 388.83 -38.923 159.47 Et* 129 MODES: 169 174 175 17e Mifs 1 Yota 26.06 2-D 19t19 42 XC.YC. 34.75 9.758 TEMPS 78.8 A: -83.8 S.E.* 1814.2 $1CE: 1833.3 SX.SY.TXY.SZ8 182.29 .74331 -19.964 1811.3 SMX.SMN.IMX: 184.45 -2.8955 93.671 2-} Sette s 42 El s 138 PEDES 2 76 83 82 77 MAf= 1 votz 27.19 XC.YC8 36.25 -1.758 TEMPS 73.3 A= -7,.3 S.1.3 1126.8 SICEz 1942.4 SX.SY.tXY.SZa 166.13 -9.9062 -41.542 -958.58 SMX.SMM.tnX= 175.44 -19.217 17.327 Et s 131 NODESz - 77 82 83 78 MAir 1 V0ta 27.19 2-3 59tlB 42 XC.YCs 36.25 -1.250 TEMPS 78.9 A* -23.9 S.I.s 775.56 SICE 654.85 SX.SY.1XY.SZ -212.48 -41.682 -94.813 -77%.63 SMX.SMM.inX: .78882E-el -254.09 127.01 EL= 132 NODES = 78 SS. 84 79 MAT
- 1 VWtr 27.19 2-9 $9tl5 42 03 XC.YCs 36.25
.7500 1EMPs 70.8 A: -10.5 S.1.s 689.53 SICEz $85.34 o> SX.SY.11Y.SZs -413.59 -52.582 -187.12 -681.61 SMX.SMM.inX= -32.825 -633.35 388.26 Eta 133 N0DESS 79 84 SS 88 MAT 8 1 Tots 27.19 2-D Stils 42 XC.YC 36.25 .2588 1EMPs 78.8 A: -1.1 S.I.s 89F.52 SICE 781.83 . SX.SY.TXY.SZs -914.23 -17.341 -16.759 -381.47 SMM.SMM.1MX* -1F.828 -914.53 448.76 Eta 134 MODES = SS 176 USEPs.881854 USL10Em.998117 FNs 8. FS8 8. STAfs 3 OLOSis 3 2-8 CAP 12 Eis 135 NODEss 171 176 177 172 MAir 1 ygt 27.19 2-9 SSt!E 42 XC.YCs 36.25 .2588 IEMPs 79.8 At 88.1 S.I.* 569.44 SICEz 493.47 SX.SY.YXV.52s $39.1e -29.824 19.338 237.35 SMX.SMN.1MX= $39.76 -29.683' 284.72 Els 136 N0DESs 172 177 178 173 Mais i VOLS 27.19 2-0 59L19 42 XC.YCs 36.25 .750s TEMPz 78.8 A= -81.3 S.1.8 508.87 SICE 478.16 SX.SY 1XY.128 474.22 $3.l?! -45.1FF S51.16 SMX.SMM.inX* 484.31 43.894 228.63 2-D 19t19 42 ER* 137 kc0ES= 173 179 179 174 MAta i v0ta 27.19 GFF.46 ~.250 1EMPt 78.8 Am -88.9 S.I.* 768.37 SICEz i XC YCs 36.25 d SX.SY.TXY SZa 268.99 26.142 -39.919 787.82 SMX.SMM.iMX8 275.29 19.749 127.77 Eta 138 nones: 174 179 18e IFS Mais i vot* 27.19 2-9 SSLIS 42 XC.YCs 36.25 1.758 IEMP8 78.8 A -82.5 S.I.* 1845.3 SICEm 987.44
- SX.SY.fXY SZa 124.99
.32417 -16.628 1943.4 SMX.SMM.1MX2 126.28 -1.8687 44.875 to
- -5 Etz 139 NSDEss 81 86 87 82 MAir 1 Vot* 21.22 2-D 39L19 42 t2 XC.YCa 37.37
-1.759 TEMPz 78.8 A: 77.6 S.I.: 1888.8 SICES 993.33 je SX.SY 1XY.SZ2 178.38 -18.434 43.652 -943.86 SMX.5MM.1MX: 179.72 -28.83s 103.89 o Etz 149 NODES: 82 87 88 33 MAf* I vot z 21.22 2-D SOLID 42
- J' XC.YCs 37.57'
-1.250 TEMP
- 78.8 As 36.2 S.I.s 667.39 SICEs $44.26
- $X.SY.1XY.52s
-79.431 -64.619 23.387 -714.88 SMX.SMM.IMX* -47.446 -96.543 24.529 [3 c. Els 141 HSDES* 83 88 59 84 MAfz 1 vots 21.22 2-0 Sells 42. XC.YCc 37.57 .7589 TEMPS 79.8 A2 -18.2 S.I.s 481.32 SICE2 441.66
1, oc i N s.. Y iL 4 $N.5(.TNY.52s -434.99 -123.e4 -114.81 -366.54 SMx.Snee.1Mts -83.254 -471.88 193.31 } .e 142 se0DESs 34 79 to 85 M4Ts' 1 Tets 21.22 2 9 59 TID 42 4
- .YCs 37.57
.2See T EN s 78.8 As -18.e S.I.s 1332.5 SicEs 2163.s II.SY.12Y.SZs -3278.7 -18.918 -228.39 -S17.45 SMr.Snet.1Mxs 21.459 -1315.1 4se.27 .e 343 see9Ess 176 181 182 177 MAT = 1 V9ts 21.22 2-3 Sette 42 2.YCs 37.57- .2See I Ene's 70.0 As -79.7 S.I.s 714.23 SICEs 626.81 Ex.SY.txv.52s 784.73 226.36 -222.7e Au4.16 SMr.Smes.tMxt 862.67 148.42 337.32 e as 144 esteES 177 182 183 17s Mars I vets 21.22 2-3 Sette 42 .YCs 37.57 .7500 TEMPS 70.e a= -34.9 S.t.: 377.08 S10Es 334.09 {- it,SY.txT.SZs 227.25 110.27 -6.28e5 444.93 SME.Snes.tMxt 22F.59 109.93 34.429 to 345 te99ESs - 373 333 334 379 Mets 1 veta 21.22 2-3 Sette 42' i 2.YCs 37.S7 -3.250 1Ews 70.3 A= 69.9 S.I.s 738.03 SICE 452.17 1X.SY.TRY.SZs 232.65 50.194 77.384 759.75 SME.SMee. t MX s 261.87 21.72e 314.6F ts '344 segeES* 179 134 333 330 Mats 3 99tz 23.22 2 9 Setge 42 3.YCs 37.37-1.758 TEvers 70.0 As 75.9 S.I.s 1832.6 SICEs 948.83 BN.SY.TXY.SZs 205.07 10.529 52.e31 1838.8 SMr.3Mio.'inxs 218.11 -2.5145 110.31 i [ N ts 347 Is99ESs 86-93 92 87 MAT
- 1 Vets 9.595 2-3 Set 19 42 I
.YCs 38.34 -l.758 1EMPs 7e.e As 53.4 S.I.s 973.00 StGEs 931.24 i 1 1x.SY.1xY.52s 34.423 13.635 43.364 -9C2.27 SME.SMee. t ME s - 4a.731 -16 673 42.7e2
- F 92 93 as Mets 1 981s 9.595 2-9 Setts 42 ts Its - ese9ESs
'-3.258 TEMPS 70.e as 29.3 S.I.s 776.58 StGEs 493.00 3.YCs 38.3e 1X.SY.1xY.SZn 9.8984-118.24 SS.324 -617.46 SME.SMee.tnza 159.83 -34.914 96.982 -te 349 ts00Ess ~.' 88 13 94 59 fe4T e 3 Wets 9.593 2-9 SetID 42 (- .YCs 38.3s - .7See ~ 1ttePs 70.0 As -2.5 S.I.* 539.47 SICEs 467.28 2 5X.SY.1xY.52s -4121.9F. 355.65 -12.273 -383.28 Satt.SMus.1MKs 154.19 -122.51 139.35 89 94 ts te - MAT
- 1 V9t*
9.595 2-3 Sette 42 to ISO sec0ES*.'.2See-TEMPS 78.4 ~.- - S. 3 S.I.s -1357.5 StGEs 1175.7 3.vts 34.38 SX.SV.Txv.SZs -532.86 -337.2e -448.14 -374.5F Seet.S?se. tMrs 303.74 -1993.8 678.77 q to 151 e99E58L.181 104 187 182 MATS I
- 9ts 9.595 2-3 SetIt' 42 2.YCs 38.34
.2500-T E'ers 70.e As -34.2 S.I.* 4e9.S7 SICEs 407.83 294.78 1 SX.SY,fxY SZs -294.04 -193.30 -119.01 -48.495 SMK.SMee. tMr s -34.996 -446.54 s }' 3,YCs 38.34 .750s E Eff s 70.8 as 63.3 S.I.s see.7e StGEs 498.9S 42 2-9 Setat to 152 ~ Iset'Ss <182 leF ISS 103 MATS l-99ts 1.593 e SN.SY.1XY SEs 141.46 -71.125 164.5s. 398.33 . Seet.SMus.1Mxa 232.71 -142.37 197.34 g is 133 siesES:.'103 les.'189 184 Mais 1 Vets 9.59S 2-9 SOL 3S 4r-m TEMPS 79.9 as 67.8 S.I.s 488.90 SICEs 701.59 g l C.TCs 33.3a ' t.2Se ' -44.939 127.Se 713.93 . SMK.SMst. tMXs 264.97 -96.973 142.97 C SK.SY.Txv.SZa 216.93 e ta iS4 .e ESs see i., 3,e its M.is I t* 9.S9s 2-0 Sa rt 42 y 1 -
- YCs 34.34.
I 1.7S0 -TEMPS 7s.9 - As 38.2 S.I.s 196F.4 SIGEs 934.2s ' o SR.SY.TNY.SZs' 376.13 3.1813 67.139 1854.9 sett.Seet. ;Mt s 387.79 -18.535 .199.3F w e O 1
- ts'- 155 tee 9ES 188' 198 192 187 M4fs' 1 99ts" 22.01 2-3 SOLIS 42
.25e9 1EMPs 70.e as -23.2 S.I.*- 658.40 Stcts 641.15-e j.. C.YCs 39.19 ' ~723.94 ' .-270.45 -234.66- -204.02-SIBf.Spes. IMX s -867.99 -824.39 329.29 l? SK.SY.1xT.SZs-(* 154 esetESs ' le? l 192 393 ISS Mais 1 99t* 22.01 2-3 SOLID 42 -39.19 .. F534 - TEMPS.79.e 'As -59.2 S.I.s 558.21' StGEs 483.42 C.YC2
OO Nng SX.SY.TXY SZa -52.559 -189.77 -121.55 297.45 SMX.SMM.1MX2 18.439 -265.76 139'.80 It s 157 N00ESs 188 193 194 189 MATS i VOLs 22.81 2-9 SOLIS 42 (C.YCs 39.19 1.250 TEMPS 78.9 Ss -3g.3 S.3.s 744.37 SICEs &&9.15 SX.SV.TXf.52= 204.45 -77.616 -18.132 685.40 SMX.SMM.tMXs 285.61 -78.776 142.19 !L a 158 NSDES 189 194 195 ISS MATS 1 Tets 22.01 2-9 SSLIS 42 (C.YCs 39.19 1.759 TEMPS 78.8 As -89.7 S.I.= 1975.9 SICEs 934.69 SX.SY.fXY.SZa 438.2% -25.533 -2.4139 1958.3 SMX.SMM.1MXs 438.25 -2S.545 231.90 It s 159 ' NODES
- 191 196 197 192 MATS 1 VOLs 22.44 2-9 19 tit 42 (C YCs 48.31
.2588 IEMPs 79.8 As -4.6 S.I.= 3SS.38 SICEs 333.44 SX.SY.TXV.SZs -308.18 49.972 -28.289
- 2. 336 e SMX.SMM.tMXs 52.224
-3s3.35 177.77 fta les NODES 192 197 198 193 MAT
- I V0ts 22.64 2-9 SSLIS 42 (C.YCs 40.31
.7585 TEMPS 78.9 as -30.8 S.I.= 587.7% SICE 515.94 I i SX.SY.TXY.52s -298.87 -23.512 -l&&.50 287.44 SME.SMM.THXs 77.925 -305.39 189.11 j )# It s 143 NOCES 193 198 199 194 MAfs l* vots 22.44 2-9 SOLIS 42 up (C.YCs 40.31 1.258 IEMPs 79.9 As -52.1 S.I.s 753.67 SICEs 459.57 c) SX.SY.TXY SZa 73.244 4.2773 -136.64 451.51 SMX.SMM.IMXs 179.69 -182.36 144.92 !La 162 N0DESs 194 199 290 195 MAT
- I VOta 22.44 2-9 SSt19 42 (C.YCs 48.31 1.750 TEMPS 79.8 As -82.8 S.I.s 978.44 SICEs 865.90 SX.SY.TXV.SZa 355.73
,.58.634 -38.828 1824.1 SMX.SMM.1MXs 354.65 45.788 155.47 It s 363 NODES: I9s 281 292 197 MAT
- 1 Vets 23.27 2-9 39189 42 tc.TCs 41.44
.2500 1EMPs 75.4 As -25.4 S.I.s 15S.29 SICEs 343.78 SX.SY.1XY.SZs -97.544 -11.363 ~4 9.819 -39.481 SMX.SMN.3MXs 32.331 -316.21 64.2S3 !! = 144 NODES 197 292 283 198 MATS t VOLs 23.27 2-9 SOLIS 42-(C.YCs 41.44. -46.264 -45.154 -191.43 380.94 SMX.SMM.tMXs 55.?28 -147.14 181.43 .7500 TEMPS 70.8 As -44.8 S.I.s 4SS.08 SICEs 397.57 SX.SV.TXV.Sta It s 145 Ne0ESs 198 203 284 199 Mars 1 fets' 23.27 2-9 SOLIS 4R (C.YCs 41.44 1.258 . -130.97 -331.8% S43.56 SMX.SMM.iMXs 72.929 -216.22
- 14s.57 1EMPs 79.8 As -57.1 S.I.*
779.78 SICgs 433.79 SX.SY.1XY.SZs -12.338 !L a 164 NODES 199 294 285 289 Maga 1 V0ts 23.27 2-9 SettD 42 (C.YCs 41.44 1.753 - TEMPS 73.3 As -77.3 S.R.= 1878.8 SICE 143.32 5X.SY.TXV.SZs 127.38 -196.58 -77.568 856.1S SMX.SMM.1Mxt 144.78 -213.94 379.34
- A t2
'M t O M I .O-O I s..
L STD-R-02-016 3. THERMAL EVALUATION NAR 2 0 $90 5 thermal analysis for the 14-215 cask has been conducted for l normal transport conditions. The performance of the packaging under normal conditions of transport is described below. 3.1 Discussion The mechanical features of the packaging have boon described in Section 1.2.1. There are no special thermal protection sub-systems or features. A very conservative internal heat load of 400 watts is used in the evaluation of maximum cask temperatures, llowever, a much lower heat load-is used to calculate the difference in temperature between the payload centerline and the cask surface. This load is much more realistic because it is based upon the shielding limits of the cask. The external surface of the packaging is predicted to exhibit maximum temperatures ranging from 176'F to 190* F, depending upon the quantity of internal decay heat assumed. The lower temperature prediction assumes zero internal decay heat load, the higher prediction assumes an internal decay heat load of 400 watts. These maximum temperature predictions assume conditions consistent with the Normal Transport "licat" requirements, specifically: o Direct sunlight (mid summer) o Ambient Air at 130*F o still air Solar flux is calculated from insolation values given in N.R.C. Regulatory Guide 7.3. The solar flux is assumed constant so that conservative steady state conditions are analyzed. Further conservatism is incorporated in the analysis by assuming the cask base is an adiabatic boundary (no heat loss). Finally, the analysis shows that, at the maximum internal decay heat load- (400 watts) inside surface temperatures exceed the external temperatures by less than 0.3*F. The analysis presented bounds the case wherein an insert is temporarily slipped into the cask to augment shielding of the rest of the contents. This insert is described in 0024k 3-1
MAR 2 01990 ~ STD-R-02-016 chapter 1.0. An air gap between the o.D. of the insert and I.D. of the cask has an insulating offect which would tend to reduce the 0.3*F difference in temperature between the internal and external cask surfaces in the case of the maximum 400 watt internal heat load (see section 3.4.2). This effect is of no consequence to the conclusions of this analysis. With no internal heat source, the presence of this insert would not change the predicted temperatures in the analysis. The maximum realistic decay heat load for the 14-215 cask is given below. It is based on a " worst-case" payload of Cesium 137 solidified in concreto. The other payload isotope of interest, Cobalt 60, is shielding limited to much lower curic IcVels and thus is not considered here. The total activity is limited by the shielding capability of the cask assuming a 10mR/hr dose rate at 6 feet from the cask. The Cesium 137 value for the 14-215 cask ~is given in the table on the following page. 0024k 3-2 e
MAR 2 011% STD-R-02-016 ~ Decay Specific Cesk Total Total Heat Activity Volume Activity Heat
- Limit 3
3 cm x10 (Curies) (Watts) (Watts) Cask uci/cm 14-215 152 6.15 934 4.5 9.0
- Based on a conversion of.0048 Watts / Curie for Cosium 137.
The decay heat limit assumed in the following analysis is roughly twice the calculated decay heat above to ensure that loading of the cask is governed by shielding vs. heat load considerations and.to give added conservatism to the centerline temperatures calculated below. The temperature at the center of the cask can be calculated if we can conservatively assume that the heat flow is entirely radial. The problem can then be treated as a long circular cylinder with uniformly distributed heat sources (Page 53, Krieth, Principles of Heat Transfer, 3rd Ed.) The maximum temperature is given as: 2 T, =T+ gro 4K Where: T, = outer surf ace temp. (*F) r, = radius of outer surface (ft) k = Thermal conductivity of cylinder material (BTU /hr.ft.*F) Then: AT = 4k 0024k 3-3
MAR 2 0 090 STD-R-02-016 The differences between cask centerline temperature and the temperature at the payload outor surface are calculated below assuming the above decay heat limit: l Cask Decay Heat AT ('M r Limit o concrete Asphalt Watts BTU /hr (ft) (k=0.8) (k=0.1) 3 ft 14-215 9.0 .142 3.22 .46 3.68 0024k 3-4
STD-R-02-016 The center 11no temperature increase is very small for the solidified concrete payload..The centerline temperature is significantly higher for an asphalt payload, but these temperatures are based on a Cosium 137 activity level which could not be attained in practico because of the lower self shielding of the asphalt. These results show that the maximum temperatures possible under normal conditions of transport do not have any significant offect on the cask or its payload. 3.2 Summary of Thermal Pronerties of Materigin only four materials were erployed in this analysis. The.y wero obtained from conventional handbooks as follows: Thermal Conductivity Stool 25.0 BTU /hr-ft 'F Lead 18.6 BTU /hr ft *F Concrete 0.8 BTU /hr ft 'F Asphalt 0.1 BTU /hr ft *F Surface Emissivity /Absorbitivity Steel 0.8 3.3 Technical SnecificatLon of Comnonents Not applicablo - no special thermal sub-systems. 3.4 Thermal Evaluation for Normal Conditions of Transnort The thermal analysis for Normal Transport "lient" and " Cold" conditions is presented in Section 3.6, Appendix. 3.4.1 Thermal Model As outlined in Section 3.6, the. unknown external cask temperature was determined by solving for the temperature at which the heat input to the cask system equaled heat output. Input heat consisted of a solar flux (calculated from Reg. Guide. 7.8) plus the internal decay heat. Ileat output consisted of the sum of free-convection losses and radiation losses to a prescribed ambient air sink temperature (130*F "!!ot", -40'F " Cold"). Ileat loss was allowed only over the vertical cylindrical sides and the. top. Convective 0024k 3-5 i .~-
MAR 2 0 IW! STD-R-02-016 film coefficients were taken from McAdama crupirical values for froo convection. The analysis to datormino cask conterline temperaturo conservatively assumes that only radial conduction takes place ( i.e., as an infinitely long cylindor). The decay heat sources are assumed to be distributed evenly throughout the cask interior. 3.4.2 Maximum Temneratures Prodicted maximum temperatures are: External. Internal flyrf.ng.gn fi.u r f aeeo No Internal lleat Source 185.6'T 185.6'F l 400 Watts Internal licat Source 190.3'F 190.6'F l 3.4.3 Minimum Temnoratures Predicted minimum temperatures are: External Internal-Surfaces Surfaces No Internal lleat Source -40*F -40*F l 400 Watts Internal float Sourco -30.7'T -30.8'F l 3.4.4 linximum Internal Pressure l Assume the package contains water loaded'at 70*F. At maximum temperature (190.87'F), the pressuro would increase as shown below: The partial pressures of water and air at 70'F are: P, = 0. 3 6 psi
- P, = 14. 7
. 3 6 = 14. 3 4 ps i
Reference:
1967 ASME Steam Tables 0024k 3-6
MA!# 2 [I STD-R-02-016 The partial pressures at 191* Faro: P, = 9. 54 psi P, = 14. 3 4 (191 + 4 60) / ( 70 + 4 60) = 17. 61 psi l The maximum internal pressure differential is j thus: P = 9.54 + 17.61 - 14.7 = 12.45 pui 3.4.5 Maximum Thermal Strosses In Section 2.6.3, the critical olomonts of the cask woro evaluated for a pressure-differential of 0.5 atm (7.35 psi). The internal procouro duo to the maximum temperature thorofore increases stressos prodicted in Section 2.6.3 by the factor: 12.45/7.35 = 1.69. The loads and margins of safety thus becomo: Allowable-Item Stress fond / Stress Marain Secondary Lid Stud 1399 lbs. 32,450 lb. Largo Primary Lid Binders 0165 lbs. 45,000 lb. Large Shell 1920 psi 38,000 psi-Largo e Lid 6777 psi 38,000 psj + 4.61-3.4.6 Evaluation of Packatte Performance for Normal Conditions of Transnort As the result of the above assessment, it is concluded that under the normal conditions of~ transport: 1. There will be no release of radioactive material from the containment vessel; 2. The'offectiveness of the packaging will not be substantially reduced; l-0024k 3-7 - i e
tW'?.0 C# STD-R-02-016 3. There will be no mixture of gases or vapors in the package which
- could, through any credible increase in pressure or an explosion, significantly reduce the effectiveness of the package.
3.5 livoothetical Thermal Accident Evaluation llot applicable for Type "A" packages. 3.6 Anoendix Thermal Analysis - flormal Conditions of Transport liot and cold ambient condition cases are analyzed with the following assumptions Direct sunlight lint Ambient air 0 130*F Internal heat load = 0 & 400 Watts i ) + 0024k 3-8 ..-u., ,ou y-., .-w
STD-R-02-016 MAR 2 0 E90 Cold Shade Ambient air 0 -40'F Internal heat load = 0 & 400 Wattn Steady state solutions of the above conditions with maximum heat $ng loads are obtained which yield conservative temperature predictions. l Simplified cask geometry used in the analysis 1 <////// s A\\ \\\\N '6 s' o 3 $y -@\\ S N s 3. _ o.375 " N RATE osC N: xts i s A A \\ bIMENSIONS @A _ CASK mo1EL L@ L@ L@ L@ 14-215 0.l57 6M6 7.% 0,354 0024k 3-9
STD-R-02-016 HAR 2 0 E90 External Convective & Radiative lleat Transfers lleat is lost to surroundings via convective and radiative heat transfer. tio heat transfer through the cask base is considered. Convection q = hA(T,,g - T,,) AT = T - T,, ext For f ree convection McAdams (W.ll. McAdams, llent Transmission, 3rd Ed., McGraw-liill, NY, 1954.) givest h=0.29(0I) for vert. cylinders L =0.27(6})k for horiz. plates (upheated) L Thus: h, A,6T + h A 6T = (h,A, + h q) AT q = TT T AT AT = [.29 ( - ) A, +.27 (-) A ) AT T L L c B Wheret utside height t = c L = outside diameter g A, a wL L 3 T" "I E A 4 B Radiation q GA, c (T,xt"-T D = K (T,,tb - T,o") l = oo Where: C= 2.14 E-09 l c =.8 E " #'s+ A f A T Evaluating.Kt b b ^to ^ ide ^E K Cask B e s Model (ft) (ft) (ft ) (ft ) (ft ) BTU /IIR/Y. l 8 8 14-215 6.96 7.39 40.11 161.67 201.78 .2769 E-06 l 0024k 3-10
STD-R-02-016 HAR 2 01330 Solar llent Load Solar loads are calculated using insulation values given in U.S.H.R.C. Regulatory Guide 7.8. They cret 2950 BTU /ft8 for the too surface 1475 BTU /ft8 for the vertical projected area of the cylinder These values are total insolation for a 12 hour day. The vertical surf ace irsolation value must be multiplied by the projected vertical crea (height & diameter) and both are converted to heat flux, 8 BTU /ft /hr. solar a 2950 AT+ 1475 Lb eB 12 12 = 245.83 AT + 122.92 L,L3 Steady State Solutlen 1 Setting total energy flow equal to zeros 9 ~S =0 fn out Payload decay heat is taken as 400 Watts or 1365 BTU /hr. Solar load is assumed constant at maximum flux found above. Thust 9
- 9 9
1n solar 1nternal 245.83 AT + 122.92 L,g + 1365 a 9out " 9 radiation + 9 convection K(T,gt" - T,,% ^ ^ = ~ ~ ~ e! -ls* lT ext co ext o ext o \\ l l 'i B c Text values for the packages under three load cases are given in the Table - l-on Sheet 3-9. The load cases are: 1. Direct sunlight, ambient air at 130'F, 400 Watt internal heat load. 2. Direct sunlight, ambient air at 130'F no-internal ~ heat load. 3. No sunlight, ambient air at -40'F. 400 Watt internal heat load. 0024k 3_11
STD-R-02-016 - Mhk 2 0 999 ~~ CASK EXTERNAL TEMPERATURES b b A 9 Cask ~ toad e B s T 1n -K Tg.xt Model Case (n) (n) (nt) (nt) (BTU /Im) (*y) I 17,$45 179,9 14-215 2 7.39 c.96 scl.7 40.1 16,180 .2769xto 6 176.6 l 3 1,365 30,7 f 4 t b L l-0024k' 3-12 l
STD-R-03-016 Conductive lleat Trensfer Evaluation Sep %W ww, lid wall eff R 11d + wall AT = R q gg t R =- i k - 25 BTU /ilR FT *F Hd kA g v 8 A - - (L )8 (ft ) 3 3 4 L (f*) t = D /kA A f(L ( A +'12 Steel k = = ~ C in B 12 .375" =.0313 ft t = /kA A = 5 L L R = y y 3 C t =.875/12 =.0729 ft Lead in(#o/ 1) 3 r, = LB R = A,.375 +.875)]/2 (L - 2(L r = g 3 12 18.6 BTU /HR FT *F k = L f = C Values for R and AT given in the following table, where: df AT is calculated by: A*1 = q Rgg and q = 400(3.41) = 1365 BTU />r 0024k'- 3 13
STD-R-02-016 l HAR 2 01990 I TEMPERATURE DIFTERENCE ACROSS CASK WALL Cask BALL N E !41D EFF AT l Model itR ' F. IIR 'F llR ' F. (*F) BTU BTU BTU 14-215 89.4 435 74 .101 l 0024k 3-14
STD-R-02-016 MAR 2 0 GB0 4.0 CONTAINMENT This_ chapter identifies the package containment for the normal conditions of transport. 4.1 Containment Boundary 4.1.1 containment Vessel The containment vessel claimed for the 14-215 cask is the inner l + shell of the shielded transportation cask er described in paragraph 1.2.3 and the cask certification drawing. 4.1.2 Containment penetration A pressure tap is included in the design as described in Section 1.2.7. It is sealed with a 3/4" NPT pipe plug. A drain line is also included in the design as described in Section 1.2.7. It is sealed with a-1/2" NPT pipe plug. 4.1.3 Seals and Welds Two neoprene seals are used to seal the cask lids. The first is attached to the primary lid and seals the primary lid cask body interface. The second is also attached to the primary lid and seals the secondary primary lid interface. They are described in Section 1.2.3, above. The integrity of the seals is demonstrated using a soap bubble leak test done in accordance with operating procedures. 4.1.4 Closure The closure devices for the primary lid consist of eight 1.25 inch diameter high strength ratchet binders as described in Section 1.2,- above and eight 3/4-10 UNC stude and nuts to close the secondary lid. 4.2 Requirements For Normal Conditions of Transport The following is an assessment.of *be package containment under normal conditions of transport as a result nf the analysis performed in Chapters 2.0 and 3.0, obove. In suwwary, the containment vessel was not affected by these tests. (Refer to Section 2.6, above). 4.2.1 Release of Radioactive Material Normal conditions of transport will have no effect on pressurizing the containment vessel. l-0024k 4-1 L
STD-R-03-016 4 i 4.2.3 Coolant Contamination This section is not applicable since there are no coolants involved. i 4.2.4 Coolant Loss Not applicable. 4.3 Containment Requirements For The Hypothetical Accident Conditions Not applicable for Type "A" packages. i R. i D . 0024k-- 4-2 i,-. ..=.-.-..--.-.-,,z,. ..a
STD-R-02-016 MAR 2 01990 5.0 SHIELDING EVALUATION 5.1 Discussion and Results The 14-215 cask consists of a lead and steel containment vessel I which provides the necessary shielding for the various radioactive materials to be shipped within the package. Tests and analyses performed under Chapters 2.0 and 3.0 above have demonstrated the ability of the containment vessel to maintain its shiciding integrity under normal conditions of transport. Prior to each. shipment, radiation readings will be taken based on individual loadings to ensure compliance with applicable regulations. An optional shielding insert is occasionally shipped as part of the contents of this cask. This insert is described in Chapter 1.0. 'the integrity of this, insert under normal conditions of transport is not compromised in any degree. The nnalyses in Chapters 2.0 and 3.0 bound the case where an insert as described is shipped with a reduced waste payload. 0024k 5-1 I
ST1'R-02-016: MAP 2 o p99 6.0' CRITICALITY EVALUATION- ) I Not _ applicable ior the 14-215 cask. i I' l 0024k. 6-1 I i-
4 STD-R-02-016 ~ MAY t 61990 7. OPERATING PROCEDURES Cask Selection Prior to any use of the cask, an evaluation is performed to ensure that the cask is a suitable packaging within which-to ship the waste. This evaluation becomes a simple routine for. users generating consistent waste products. SEG works closely with users to verify that the contained waste product is suitable in packaged size, form, Curie content and dose levels to be successfully loaded, surveyed, and shipped in the 14-215 Cask. Container envelope dimensions are compared to those of the cask cavity. Containers are typically built to and identified by a model number that correlates with a given series of casks, facilitating this process. The' approved vaste. forms for the cask'(Ref. Section 1.4) bound all routine waste. forms generated and chipped to the various burial sites. Curie content is determined by generator waste sampling and scaling methods which confirm that the waste does not exceed L.S. A. concentration limits. Because waste dose levels are highly dependent upon the mixture of isotopes present in the waste and the waste form (e.g., solidified waste, dowatered
- resins, paper -filter cartridges), they are carefully evaluated during the cask selection process to ensure that the container, once placed in and shielded by the cask, will meet the NRC/ DOT dose rate limits (200mR/hr contact = and 10mR/hr 0 2 meters (sides only)).
Typically, based upon previous shipments of a generator's waste stream, this evaluation is accomplished by experienced judgement. If, however, a waste container appears that: it would approach these shielded dose rate limits, a more rigorous analysis may be done to more closely predict the dose rate once the liner is placed in the cask. Options available to the user at this point include: 1. Load the container into the cask and obtain actual. readings. 7-1
STD-R-02-016 MAY I 619901 2. Hold container for decay. 3. Use the 14-215 cask with an' insert heating cask payload limit. 4. Use a cask that is more heavily shielded than the 14-215 cask with insert yet provides a sufficient size cavity and payload to accommodate the waste container (not available for all container sizes). 5. Ship the container and cask in a closed transport vehicle. Regardless of the approach selected, once the container is. loaded, the dose rate external to the cask is measured and verified to be in accordance with Section 7.6 prior-to shipment. Cask Usagg The section which follows describes the - procedures to be followed in using a 14-215 cask. Any maintenance activity, I such as inspections, lubrication, gasket replacement / repair, etc. described in this section is described in more detail in Section 8.2, General Maintenance Program. 7.1 Lifting 7.1.1 The cask shall always be lifted using the four (4) provided lifting lugs only. The lifting lugs are the vertically oriented lugs on the~ - sides of the cask spaced at 90' around the cask circumference. 7.1.2 The primary lid lifting -lugs shall only - be used to lift the cask lid (primary lid with secondary lid installed) or the primary lid alone. The secondary lid lifting lug shall only be used to lift the secondary lid. 7-2
1 STD-R-02-016-7.2 Removal / Installation of Cask Lids 7.2.1.1 Release each ratchet binder handle from its storage position.. 7.2.1.2 Engage the flip block to the sprocket wheel in the direction necessary to loosen the ratchet binder. 7.2.1.3 Loosen the ratchet binder by pulling -the handle in the appropriate direction. 7.2.1.4 - Remove the retaining -pin from the upper-ratchet binder pin and then remove the upper ratchet binder pin. 7.2.1.5 Remove the three (3) primary lid lifting: lug Covers. 7.2.1.6 Using the three (3)-primary lid lifting lugs, suitable rigging and exercising caution in the handling of the primary lid - due to possible contamination of the underside of the lid, remove the primary lid. 7.2.2 Removal of Secondary Lid 7.2.2.1 Remove the secondary ' lid :holdown stud nuts. 7.2.2.2 Remove.the secondary lid lifting" lug Cover. 7.2.2.3 Exercising
- caution due to the nossible contamination-of-the underside of-the secondary L lid, -
remove the secondary lid. l' 7-3 w 4-
STD-R-03-016 7.2.3 Installation of' Primary Lid) ~ Prior to installation, inspect' gasket for the 7.2.3.1-following a. Gasket fully secured-to the cask. b. Gasket not cut, ripped or gouged, c. Gasket is resilient. d. Gasket is free of debris, dirt and/or grease. 7.2.3.2 Prior to installation, verify that the'date of gasket change reflects compliance with the annual change requirements for the cask. 7.2.3.3 Using the three (3) lifting lugs on the primary lid and suitable rigging, lift and place lid on cask using alignment guides to ensure proper positioning.. Take. care not to damage gasket. 7.2.3.4 Secure the primary lid to the cask ~as follows: a. Install the upper ratchet binder pin through'the upper ratchet binder connector and the lid closure
- lug, b.
Tighten the ratchet binder by engaging the flip block to the sprocket wheel and rotate the ratchet-binder. Torque to 100 (t'10) ft-lbs. c. Disengage the flip block. Rotate and secure the handle to its storage position, d. Install the three (3) primary lid lif ting covers.. 7.2.4 Installation of Secondary Lid 7.2.4.1 Prior to installation, inspect gasket for the following: a. Gasket fully secured to the ptimary lid. b. Gasket not cut. ripped or gouged. c. Gasket is resilient, d. Gasket if free of debris, dirt and/or grease. ~ 0024k
STD-R-02-016 7.2.4.'2 i Prior to installation, verify that the date of gasket chang'e_ reflects compliance with the annual-change requirements for the' cask. 7.2.4.3 Using the one (l) lifting lug on the secondary lid and-suitable rigging, lift _and place lid.into the opening 1 -on-the primary lid. Use-alignment pins to ensure proper positioning. Take care not to damage gasket. 7.2.4.4 Install the secondary lid stud nuts and torque to 100-(+10,-0) ft-lbs. 7.2.4.5 Install the secondary' lid lifting lug cover.. 7.3 Cask Loading 7.3.1 Survey empty cask and the vehicle carrying it to determine the loose and fixed contamination levels. Limitations pertaining to contamination levels shall be defined by regulations imposed on the user by the applicable governing bodies. 7.3.2 Inspect cask lid fasteners to ensure that all are present and undamaged. 7.3.3 Check to ensure that cask lid (primary and secondary) lifting lug covers are with the caak. 7.3.4 Remove primary lid in accordance with Section 7.2.1. 7.3.5 Remove secondary lid in accordance with Section 7.2.2, if required. 7.3.6 Inspect interior of cask for standing water. NOTE: Water must be removed prior to shipment. 7.3.7 Inspect interior of cask for obstructions to loading. 7.3.8 Inspect. interior of cask for defects which might affect the cask integrity or shielding afforded by the cask. 7.3.9 If loading drums on drum'pa11cto, proceed as follows: a. Load drums on each pallet. b. For maximum shielding, position higher dose rate drums in the center of the pallet and toward the front and rear of the trailer. c. Place slings around or along side drums to prevent pinching or damage to the slings by the lids or top pallet.in the cask. d. Place the loaded pallets in the cask, t 7-5 0024k_
STD-R-03-016 ~ MTG 2 0 G3 ~ e. =For the cask lids removed-for the loading process, inspect cask lid gaskets, install lids and secure as described in respective sections.. 7.3.10 If loading preloaded containers, proceed as follows: a. Ensure all lids, plugs, caps, etc. are-installed on container. b. Place container into the cask. Install shims / storing between container and cask as necessary' c. to secure the container in position. d. For the cark lids removed for the loading process, inspect cask lid gaskets, install lids and secure as described in respective sections. 7.3.11 If loading into container inside cask, proceed as follows: a. Place empty container in the cask, b. Install shims / shoring between container and cack as necessary to secure the container in position. c. Inspect primary cask lid gasket, install and secure primary lid as described in respective section. d. Load the waste into the container through the secondary lid opening. e. Install the liner lid, plugs, caps, etc. onto the container. f. Inspect secondary lid gasket, install and secure secondary lid as described in respective section. 7.3.12 Install tamper-proof seals on the cask lids. 7.4 Removal / Installation of Cask from Trailer 7.4.1 Cask Removal from Trailer 7.4.1.1 Loosen ratchet binders / turnbuckles as necessary to remove pins from shackles at the cask end of tiedown. system. 7.4.1.2 Remove pins from shackles. 7.4.1.3 Using four (4) cask lifting lugs and suitable rigging, lift cask off trailer. NOTE: Do not use cask lid lifting lugs to lift the cask.
- 7. 4. 2.
Cask Installation on Trailer 7.4.2.1 Using four (4) cask lid lugs and suitable rigging litt cask and place cask in proper position within the shear ring. 0024k-7-6
] 'STD-R-02-016' NOTE: Do not use cask lid lifting' lugs to' lift'the cask. '~ Inspect tiedown lugs and shackles on cask and' trailer 7.4.2.2 for cracks and wear which would affect _ their strength. 7.4.2.3 Inspect tiedown cables to ensure they are not damaged' (crimped, frayed, etc.) 7.4.2.4 Inspect tiedown ratchets / turnbuckles to ensure they are in proper working condition, 7.4.2.5 Install a shackle through the cask end of each tiedown cable r.nd attach the shackle to the cask tiedown lug. 7.4.2.6 Tighten ratchet binders / turnbuckles as necessary_to secure cask on trailer. 7.5 Containment Penetration Seals If the tamper-proof seal on the cask cavity drain line'or vent line-has been removed, the pipe plug used to seil that line'must be removed and properly reinstalled. Installation of the pipe plugs used to seal the cavity drain line and vent line shall-be done using a pipe joint sealing compound. Pipe plugs shall be torqued to 20 (12) f t-lbs. Immediately after installation of the plug a-new tamper-proof seal shall be installed. 7.6 Preparation for Shipment 7.6.1 Perform radiation curveys of cask and vehicle, including a determination of surface contamination, to ensure compliance with 10CFR71.47 and 10CFR71.87 and complete the necessary shipping papers, certifications, and checklists. 7.6.2 Placard vehicle and label cask as necessary.- 7.7 Receiving a Loaded Cask The receiver, carrier and shipper are to follow the instructions of 10CFR20.205 when a package is delivered. These instructions include surveying the external surface of the cask for radioactive contamination. a 0024k-7~7
STD-R-02--016 MAR 2 01530 8.0 ACCEPTANCE AND MAINTENANCE 8.1 Acceptance Tests Fabrication of the 14-215 cask meets the requirements of Subpart D I of 10CFR71. Fabrication is implemented and documented under a Quality Assurance program in accordance with the applicable. requirements of 10CFR71, Subpart H. 8.1.1 Visual Inspection The packaging shall be inspected visually for any adverse condition in materials or fabrication using applicable codes, standards, and drawings. Materials are specified under the ASTM code. Weld procedure and welder qualifications are in accordance with ASME Section IX. Prior to painting, non-destructive testing of welds is accomplished as described in the cask drawings. 8.1.2 Structural and Pressure Tests After fabrication is complete, the cask assembly is subjected to a pneumatic pressure test cf 8 psig (-0 psig, +1.0 psig). The cask is visually inspected af ter the pressure test. The acceptance criterion is no change has occurred to the cask as a result of the test. 8.1.3 Leak Tests -3 A leak test of s sensitivity of at least 10 STD cc/see shall be performed using a test fixture (with calibrated pressure gauge and pre-set relief valve) mounted into the cask body drain plug cavity or the lid vent line. Air is introduced at a maximum rate of 0.5 psig/ min until the test pressure of 8 psig (-0 psig, + 1.0 psig) is reached. All joints on the test fixture, primary lid and secondary. lid gaskets are bubble tested. The pressure in the isolated cask is also monitored for at least 30 minutes. The acceptance criteria are: No leaks evidenced by the bubble solution. No pressure loss over a 30 minute time frame. The system will be depressurized at a rate not exceeding approximately 2 psig/ min, the test fixture removed and the drain or vent line plug reinstalled. The installation of the plug is to be done in accordancu with Section 7.0. 0024k 8-1
STD-R-02-016-MAR 2 01990 ~ 8.1.4 Component Tests 8.1.4.1 Caskets Prior to painting, seating surfaces-are to have a 125 RMS minimum finish. Leak testing (See Section 8.1.3). of the cask will be final acceptance for gasket design. 8.1.5 Tests for Shielding Integrity c Upon completion of the lead shielding pour, a gamma scan is done of the cask. wall to verify lead thickness and the lack of any voids or impurities in the poured lead. The gamma scan procedure contains acceptance criteria for verification that lead thickness is not less than 1-7/8 inches. All gamma scanning will be conducted on a 2 inch grid system, 8.1.6 T,hermal Acceptance Tests No thermal acceptance testing will be performed on the 14-215 l-cask. 8.2 General Maintenance Program 8.2.1 General Maintenance and repair of the 14-215 cask is controlled by the I Westinghouse Radiological Services Division Quality Assurance program. The casks and trailers annually undergo three (3) routine technical inspections. These inspections are procedura11 red in cask maintenance and repair procedures. 8.2.2 Caskets 8.2.2.1 Gaskets shall be inspected for resiliency and complete adhesion to the appropriate surface during each use of the respective lids. 6.2.2.2 Gaskets in good condition but not adhered to the appropriate surface shall be reattached as follows: a. Gently pull gasket away from its normally secured location until it cannot be removed further without damaging the gasket, b. Remove residual adhesive from the appropriate surface. Clean with solvents which are recommended by the adhesive manufacturer's instructions. l l 0024k. 8-2
STD-R-02-016 .~ c. Reapply gasketfadhesive to the' gasket and appropriate surface and reattach-in accordance- -with the adhesive manufacturer's instructions. 8.2.2.3 Gaskets which cannot be sealed or are obviously, ~ damaged must be replaced in their entirety. _ Damage may_ include cuts, nicks, chips,' indentations,'or_any ' other defect apparent to the naked eye which would affect sealing integrity.' Removal _of~the gasket, preparation of the lid surfaces, adhesive use and gasket installation shall be performed per Section P.2.2.2. 8.2.2.4 All garkets shall be replaced after 12 months of= installation on the. cask regardless of apparent-condition or cask usage. 8.2.2.5 A leak test, according to Section 8.1.3, shall be performed at least.once within the twelve (12) months prior to any use. 8.2.2.6 Any painted surface in contact with thefgasket shall be maintained in good condition.. Any loose, chipped, or scratched painted surface which would affect seal integrity shall be repaired prior to further. cask use.. 8.2.3 Welds 8.2.3.1 All welds have been completely checked _in accordance with ASME Code requirements using visual, magnetic particle and radiographic methods during fabrication. The cask drawing delineates these inspections._ in-use inspections should'not be required unless the' cask has been involved in an accident or has been lifted improperly or in an overloaded condition. In those cases, inspection shall11nclude the following: a. Drop or accident: All accessible cask body and-lug welds and primary lid ratchet binder. lug velds shall be magnetic particle inspected in accordance with ASME Code Section III.-Division I, Subsection NB, Article NB-5000 and Section V, Article 7. These inspections may be performed with the painted. finish in. place, b. Improper or overloaded lift: 'All welds on the cask primary or secondary lid which were.in use at the-time of the improper or overload-lift.shall be magnetic particle inspected per the requirements delineated above. 0024k 8-3
STD-R-02-016: . =., _ 8.2.3.2 Whenever velding to the cask is. required it shall be performed utilizing weld procedures and welders- ~ qualified in accordance with ASME Code.Section IX requirements.: 8.2.4 Studs and Nuts 8,2.4.1 All studs and nuts shall "pe inspected during each ~ removal of the secondary lid and superficially with each cask use. -Replacement shall be made if the following conditions are present: a. Deformed or stripped threads, b Cracked or deformed hexa on nuts. c. Elongated or scored grip length area on studs. d. Severe rusting or corrosion pitting. 8.2.4.2 in general, all studs and nuts shall be inspected for damage at least once a year under normal usage conditions and replaced when the conditions delineated in Step 8.2.4.1 are'present. 8.2.5 Ratchet Binders 8.2.5.1 .The-ratchet binders are designed for.long term use with minimal maintenance. They are inspected-for satisfactory operation and general condition before each use. 8.2.5.2 Filling of the lubricant. reservoir is accomplished' very infrequently on an as needed basis using standard automotive chassis lubricant.. A lubricant reservoir is provided. Dry threads or hard. operation will indicate the need for additional lubricant. 8.2.5.3 Any ratchet binder which received impact or suspected overloading iu an accident must be completely disassembled and inspected or replaced. Causes for rejection during a damage inspection shall-include:- a. Cracks in the jaws or joining bolt. b. Deformation of the jaws.or joining bolt.. c. Excessive rust or' corrosion pitting in the threads of the jaw or' joining bolt. 0024k 8-4
STD-R-02-016 .^w g 8.2.6 _ Painted Surfaces: 8.2.6.1 Painted surfaces'shall be cleaned using standard commercial equipment,_ chemical solution 6,2and; procedures.- 8.2.6.2 Chipped or scratched surfaces which could affect seal-integrity shall be repainted prior to further cask-use. Other chipped'or_ scratched surfaces shall.be repainted at the time of'the next routine technical inspection referenced in Section 8.2.1. 8.2.6.3 Guide stripes and cask-identification markings shall be repainted when they are chipped, peeled off, faded-or illegible. + i 0024k' 8-5
.m ,..w_- -a. ._a a m ~.. -..- a 4_ y , s _-4=a. c s ..m-+, =-==--<x# e OVERSIZE 1 DOCUMENT PAGE PULLED SEE APERTURE CARDS NUMBER OF OVERSIZE P GES FILMED ON APERTURE CARDS [- $30LO~h0:%9f ~ C/30ao3cQ73 i APERTURE CARD /HARD COPY AVAILABLE FROM RECORDS AND REPORTS MANAGEMENT BRANCH I .}}