ML20126B357
| ML20126B357 | |
| Person / Time | |
|---|---|
| Site: | Salem |
| Issue date: | 03/03/1980 |
| From: | Librizzi F Public Service Enterprise Group |
| To: | Schwencer A Office of Nuclear Reactor Regulation |
| References | |
| NUDOCS 8003110512 | |
| Download: ML20126B357 (174) | |
Text
{{#Wiki_filter:s_- O d o-([])IF'!5ilis(Ei Put%c Serwce E ecinc and Gas Corrcany 80 Pam PWee Neham, N J 07101 Phene 201430 7000 l March 3, 1980 i Mr. Albert Schwencer, Chief Operating Reactor Branch #1 Division of Operating Reactors U.S. Nuclear Regulatory Commission Washington, D.C. 20555 Gentlemen: DEGRADED GRID VOLTAGE PROTECTION (70-90%) SUPPLEMENTAL INFORMATION SALEM GENERATING STATION UNITS NO. 1 AND 2 DOCKET NO. 50-272 The enclosures attached to this letter are submitted in response to your questions about the degraded grid voltage protection at Salem. Since the October, 1979 meeting with the NRC staff, ques-tions about the proposed design for a second level of undervoltage protection have been received and are addressed in Enclosure 1. contains related information requested by Mr. W. Ross during the October, 1979 meeting. If you have any questions, please do not hesitate to contact us. Very truly yours, i,> Frank P. Librizzi General Manager - Electric Production Attachments / \\ Cf 4'IW1 0F ;.Gief 6 _ m-.
- swn,
l D e l l ENCLOSURE 1
~ --l-.- ? 1. The onsite distribution system for each unit at Salem is arranged so that two vital buses are connected to one station power transformer and the third is connected to the other station power transformer (FSAR figure 8.3.1). The in-feed breakers f or each vital bus f rom the eco station power transformers are electrically interlocked to prevent paralleling both sources through a vital bus. The breakers also provide the means for transfer-ring between sources in the event of an interruption of power from one source. Undervoltage protection f or each vital bus will be pro-vided by two protective relay groups. One group is de-signed to protect the vital buses if bus supply voltage f alls below 70% of its rated value. This group is al-ready installed and operable. The other group will be designed to proter', the vital buses if bus supply volt-age falls below 91% of its rated vclue. Each undervoltage protection. group is/will be comprised of two sets of relays: A set for undervoltage transfer, and A set f or generating " Blackout" signals. The 91% group will be comprised of adjustable time delay relays. The protective relays will be connected to the electrical system in the same manner and location as the present undervoltage protection. The new design essen-tially duplicates the present protective scheme in all regards (Attachment A) with the following exception. The 91% relays will be equipped with an administrative 1y controlled lockout which will allow the control room op-erator to disarm the system ducing the start of any re-actor coolant pump. This feature is required to fore-stall any unnecessary undervoltage signals due to the voltage transient caused by a reactor coolant pump start. The lack of this manual lockout feature would require that an extended time delay (30 seconds) be used to actuate the 91% relays. The system will be armed by the control room operator upon completion of any RCP start, and will remain armed under all conditions other than a RCP start. The disarming and rearming of the system will become an integral part of the RCP starting HK19/2
procedures used at Salem and an alarm will be provided for the disarmed condition. In addition to manual re-arming, a timer will be provided to automatically rearm the system in the event the control room operator neg-1ects to do so after a RCP has been started. The time delay of the 91% undervoltage t_ransfer relays will be 10.5 seconds when the output of the station power transformers is below 91% of its rated value (Figure 1). The time delay of the 91% bus " blackout" relays will be 13 seconds when the voltage on the affected bus (or buses) is below 91% of rated value (Figure 1). In the event the supply voltage to a 4 KV vital bus or buses f alls below 91% of its rated voltage, the af f ected bus or buses will be automatically transferred to the alternate source by the action of the vital bus transfer relay (XET-230, Fig. 1) and the 91% transfer relays af-ter a 10.5 second time delay.' The following conditions must be met before a bus trans-fer may be accomplished at either low-voltage condition: a. The bus differential or overload relays have not
- operated, b.
Voltage on the affected bus or buses is below 35% (this permissive prevents transfer with excessive out-of-phase residual bus voltage). c. The in-feed breaker of the normal supply is opened. d. The related diesel-generator circuit breaker is open. e. The alternate source voltage is above 91%. f. The SEC (Safeguards Equipment Control) bus under-voltage (blackout) relays have not operated. For both groups (70% and 91%), the undervoltage and vital bus (XET-230) transfer relays allow the affected bus or buses to be transferred to the remaining station power transformer before the bus blackout relays are tripped. HK19/3 l' l
s . 1 If the supply voltage to the vital buses falls below 70% of rated voltage and a transfer is not accomplished, the 70% blackout relays will provide a signal to start the diesel-generators. If the supply voltage to the vital i buses f alls below 91% of rated voltage and a transfer is not accomplished, the 91% bus blackout relays will pro-l vide a signal to start the diesel-generators. Undervoltage signals generated by either set of blackout relays will be combined (through the use of buffer re-lays) in a 2/3 logic matrix per bus to develop a black-out loading signal for that bus. The buffer relays will be used on each vital bus undervoltage sensor to supply independent signals to each SEC unit to maintain inde-pendence amang the three buses. 3 If the output voltage of a station power transformer supplying one vital bus falls to 70% of its rated value and the transfer mechanism fails, the 70% blackout relay for that bus will generate a signal which results in a 1/3 condition at each SEC controller. The Salem design is such that a loss of one vital bus is tolerable for all normal operating conditions; therefore, no automatic equipment actuation will take place for this condition. This design will also apply to the new 91% protective relays. For a postulated LOCA, this criterion will not apply. A postulated LOCA concurrent with an undervolt-age condition on one vital bus is discussed in the re-sponse to question 5. 2. The proposed design will employ test switches which can be used in con] unction with any external equipment (var-iable power supply, etc.) necessary for proper calibra-tion and testing. Technical specifications similar to those for the exist-ing undervoltage protection will be generated upon the Staff's approval of the proposed design. 3. Since this design is a duplicate of the present under-voltage protection system (except for the administrative controls), it will meet the necessary criteria for pro-tection and control of Class 1E equipment (IEEE 279-1971). HK19/4
j ~ " ~~ ^ - ^ .: =., l e i _4 4. If a LOCA concurrent with a voltage degradation which reduces the output of both station power transformers to between 90% and 70% of rateo voltage is postulated, the SEC system will react only to the LOCA while the 91% transfer relays are timing out. The time for the relays to actuate will be 10.5 seconds. A While the relays are timing out, the SEC system will perform the following functions: a. Start the diesel-generator units. b. Lockout manual control of equipment circuit breakers until the required loads are connected to the vital buses. c. Connect all required accident loads. The diesel-generators are started automatically so as to be available in the event the,y are subsequently re-quired. They are not automatically connected to the vi-tal buses. The ability of the safeguards motors to start and carry their designated loads under degraded voltage conditions is described in Attachment B. The safeguards motors are capable of withstanding degraded voltage conditions for the times under consideration without suffering any thermal damage. When the 91% transfer relays time out (10.5 seconds), the transfer will not take place because the station power transformer potential relays will not generate a pe rmis sive. Therefore, the 91% blackout relays will be allowed to time out (in an additional 2.5 seconds), and a blackout signal will be generated. When the blackout signal is generated, the SEC will automatically shift modes from that for a LOCA (Mode I) to that for a LOCA plus blackout (Mode III). The shift of modes will re-quire less time than the recognition and action required to combat only a blackout due to the " ready' status of the diesel-generators. HKl9/5
e d . The above mentioned sequence of operations will take place within the required time limits to successfully mitigate the consequences of a LOCA. A delay time of 15 seconds between the occurrence of the incident and the application of power to the first sequenced safeguards pumps was assumed in the original LOCA analysis. Although regarded as extremely unlikely, it may be pos-tulated that one station power transformer may suf fer a voltage degradation which reduces its output voltage to between 90% and 70% of its rated value while the output of the remaining station power transformer is reduced to just above 91% of rated voltage. Under these condi-tions, one set of 91% transfer relays will begin timing out while the other set " sees" no abnormal conditions. It may be possible to reduce the output voltage of the " normal" transformer to below 91% of its rated value af-ter the transfer from the affected transformer takes place. Also, the output voltage of the initially af-fected transformer may rise above 91% of its rated value due to its partial unloading. These voltage changes will not amount to more than 3% for each transformer. Consequently, the 91% transfer relays for the alternate transformer will begin timing out and would effect a subsequent transfer at the end of an additional 10.5 seconds. These conditions would result in a continual flip-flop condition causing intermittent power interrup-tions on the vital buses. This action will be prevented by the installation of 91% blackout relays which have a 95% reset setting. The 91% blackout relays began timing out at the same time as the 91% transfer relays on the initially affected trans-former. Since their time delay will be 2.5 seconds longer than that of the transfer relays, and if the transfer does not successfully raise the bus voltage above 95%, the bus relays will initiate separation of the bus from both transf ormers. The reset setting of 95% on the transfer relays will also ensure that the buses do not continually transfer from one source to the other. The interlocks and permissives utilized in the transfer of buses are described in Item 1. HK19/6
5. In the event a LOCA occurs concurrent with a voltage level on one vital bus below 90% and above 70% of rated voltage, the SEC response will be the same as that ex-plained in Item 4 while the 91% transfer relays are tim-ing out. Once the relays have timed out, a transfer to the alternate source will take place. If che transfer mechanism fails, a blackout signal will be generated for the affected bus and the SEC will auto-matica11y shift from a Mode I (LOCA) to a Mode IV (LOCA plus one vital bus undervoltage) condition, whereby only the affected bus is connected to its diesel-generator. The other two buses will remain connected to offsite power. If a LOCA occurs concurrent with a degraded voltage con-dition on two of the three vital buses which reduces the bus voltages to between 90% and 70% of rated voltage, the SEC will react as explained in Item 4 while the 91% transfer relays are timing out. Once the relays time out, the buses will be transferred to their alternate source. If the transfer mechanism fails, a blackout signal will be generated and the SEC will automatically shift from a Mode I (LOCA) to a Mode III (LOCA plus blackout) condi-tion, whereby all three vital buses will be shifted to diesel-generator power. For both postulated conditions, the safeguards motors on the af fected bus or buses will be subjected to degraded voltage conditions for no more than 13 seconds. Their ability to start and maintain operation (or to withstand a postulated voltage degradation which prevents starting) during the period prior to bus transfer, and the accepta-bility of the time delays involved are explained in Item 4. 6. The characteristics of AC contactors and associated control fuses are described in Attachment B. 7 With regard to Staff's suggestions of utilizing only bus blackout relays in the proposed design (no attempted transfer), the following scenario is presented. HKl9/7 l l 1
e The existing diesel starting and sequence loading logic is located in the Safeguards Equipment Control (SEC) sys-tem associated with each bus. The plant design is predi-cated on each SEC performing the master decision making and resultant actions associated with bus loading. To make use of this existing logic with the design sug-gested, would require paralleling the existing bus under-voltage inputs and the proposed secondary bus under-voltage relays. Assuming an initial system configuration of two buses being supplied from one station power transformer (as-sume #11) and the remaining bus powered by #12 SPT, a degraded voltage condition on #11 SPT side, coupled with a single failure within the bus voltage monitoring logic, could result in the following condition: Bus "A" operating with degraded voltage due to failure in monitoring logic. Bus "B" operating with degraded voltage due to lack of required coincident logic in SEC (failure cascaded from failure in Bus "A" circuits). Bus "C" operating at normal voltage supplied from #12 SPT. The above scenario assumed that no condition exists which would generate a Safety Injection (SI) signal. If an SI signal were to exist during this occurrence, the following system configuration would result: Bus "A" could attempt to block load all ESF loads during a degraded voltage situation. This would most likely result in a further bus voltage degradation to below 70% and cause the diesel to start and commence sequential loading via the SEC. Bus "B" would follow the sequence of events described in Item 5 for a postulated LOCA concurrent with a voltage degradation on one vital bus. Bus "C" would " block load" the ESF loads on the normal supply from the #12 SPT. The sequence described for the case of "No SI Signal" is unacceptable. The proposed design which includes an at-tempted transfer, precludes that sequence of events and l ensures that at least two buses are capable of supplying l the needed equipment. l l l l HK19/8
1 e i." ^ ' ~ e t )WNNNf47)* y 3 4 E-Ii d a '-I I i!!. I i ~ g ,s -s t-si,i E r t l% jf ,u,s 3 s Is 'I Ro s 5{AD ?%I 3! E"E ^ -~ y N, se Ei m 00 IA 8 (7 h g;h m t e it { _m o 4G gs j, ^ ' it N t, st l i!;;l i _s;:-(Bij ^- _3 I 22 3 =y d ._ N I4 s y; 2, w s* s - Ug Is b k d,~ s, s. Is ... k. g i lJi I l,i.t i sy 5 h sa k ? 8 Q sk NN es a sg ' V) N ~' f I _^ 3 >== =, .^.$ )% ( b -[.H N !N;x ^I j, ^- y ,, _s s f ^ hit gx 3. 3 II-- ,j j ~e R g q*9 ^ l ,4 --~ b si li;ji
- i i"^-(Bi!
3 _s 8 j!qi L J -Et -n e a t_ 2j'.:
- a a
- c r d
)
f/90RE l 34LEM AlocacAA ScacRAr/44 Srn riod VX Y Virnt Eos Os V. ?RoTcc rien AwD 7%das/fA 04kdcrtAss ric Cuk /cs 20-g i 19 g fS f 7" // S P _l' e ~m Jo i /*?SD Hsu I WV Virsi Bu m n j7 g en hv nw 9/% jf g &scxour n n O's in t %./ \\ 70 % fa XE7-230 07,
- g j
\\ wasser basrex 7~2 u:rgr I PcMasHC t p y i i {. 12 I f$ k i% /% rt:rica U \\ r \\ 10 ( g \\ \\ 9 Tes?(Buexour) s 94 9 7 \\ O 70% Pkarceria ) y4
- f/4 W r2 y
\\ 1 \\ w f .y \\ Essisust Boa Yosr494 kc49' Out N \\ ,) /nbuc rim Maruxlodb g s 7'eswsret S M aua ( ~~ __ j Bs 4.rsta 4 3 7,5j ,~~~ ^ f(Cetums o./Sec. e m Joo no ao w w so no so ao 20 o Mss.
- /o av Jccowatty brsgi xt r-23o
? .~ _.:=-- f"TUCTRICAL ' ~ ' L"1 ME I M ATTACHMENT B J w Im [ am me-n x. 4 E Ola . I 001)2197b / I s- %, u.u....... 3 Public Service k M O as Electric and Gas ivt; Company p reu - O ctrober 10, 1979 OC'i 121979 c au O pn il Om Crow: N' O woo O FAc Director of Nuclear Reactor Regulation O r*L O U.S. Nuclear Regulatory Commission Washington, DC 20555 Attention: Mr. William Gammill, Acting Assistant Director for Operating Reactors Projects ) Division of Operating Reactors Gentlenen: ADEQUACY OF STATION ELECTRIC DISTRIBUTION SYSTC) VOLTAGES - SALEM GENERATING STATION UNITS NOS. 1 AND 2 We have performed the analysis on the Salem Generating Station Units Nos. I and 2 electric power system in accordance with NRC letter, Adequacy of Station Electric Distribution System Voltages dated August 8, 1979 and its enclosures. The analysis demonstrates that the offsite power system and the onsite distribution system is of sufficient capacity and capa-bility to automatically start as well as operate all safety loads within their voltage ratings for all anticipated transients and accidents, Satisfactory results were obtained as a result of the original design considerations. The, Salem Generating Station was designed such that the resulting voltage profile was within component voltage limitations, being +5% of transformer secondary voltage and -10% of motor nameplate voltage under steady-state conditions. The system was also designed such that t.he inrush current associ-ated with the start of a 6000 horsepower, 4.0 kV motor would not cause the bus voltages to drop below 80%. All motors are de-signed to accelerate their driven equipment with at least 80t motor nameplate voltage applied to its terminals. This was accomplished by optimum selection of transformer impedances, incorporation of no-load taps on all power and unit substation transformers, and a + lot automatic load tap changer on all the 13.8/4.16 station pcGer transformers. All motor starters have a guaranteed drop out voltage of 701. All starters were bought with 300 VA control power transformers, regardless of Mr.MA size, to minimize voltage drop at the contactor coil. Furt.her, con-sideration was given to cable size and length to limit voltage drop in a feeder. . e i or.,.
10-10-79 =2-pir. 6f Cuo. Raoetor Regulction The analysis showed the worse sustained under-voltage condition imposed upon the distribution system occurred with a severely de-graded 500kV offsite system simultaneous with a concurrent IhcA (, This undar-on Unit 2 and Unit trip on Unit 1 (or vice versa). y voltage condition results from the automatic transfer of the Q., group buses from the auxiliary power transformers to the station - - - -v, power transformer and the automatic start of the required vital For this condition the lowest voltages at the 4.16 bus loads. .923 and.91 per unit re-kV, 460V and 230V loads were.917,The above analysis indicates that the ansite dis-spectively. tribution system and its components will operate within component The motors are the limiting component under voltage limitations. steady-state conditions as they are designed to run continuously at.9 per unit nameplata voltage. Transient voltage drops due to the starting of motors were analyzed This analysis at each voltage level with no adverse effects. assumed the prestart voltage to bo that corresponding to the degraded 500 kV system and the load in parallel with the motor bei.ng started equal to the maximum continuous rating of the transformer to which it is m>nnected less the running load of the Further, the impedance of the parallel load smotor being started. was conservatively assumed to decrease as the squaro of the bus voltage to analytically compensate for the additional current l The minimum drawn by induction motors upon decrease in voltage.460V and 230V levels transiant voltages obtained on the 4.16 kV, 86 and.78 per unit, respectively for a duration of were.86, approximataly 5 seconds. These transients are within motor and,. ) moter starter design capabilities, thereby having no adverse N results of this analysis were effect on system operation. used to reexamine under-voltage protective settings and establish that no spurious separations of the safety buses from offsita power would occur. 13.8/4.16 kV station power The 5 kV power cables that connect the transformers to the group and vital buses are the load limiting The sirtaen hour rating of component in the distribution system. the cable is utilised for the load that results from the concur-rent t4CA Unit 2 and Unit trip on Unit 1. There is sufficient margin between the cable rating and the resultant load to allow for implementation of existing station procedures used during the events analyzed and thus, avoid overloading. A4 indicated in the NRC letter of August 8,1979, taats had been previously run to correlate calculations with field conditions. With salem Units 1 and 2 and the 500 kV system in an existing plant distribution mode corresponding to a given loadi.ng of.the system, selected system parameters were monitored over a 24-hour An analysis was then performed using the actual load and j period. 500 kV system voltage to obtain a calculated voltage profile and The calculations and field l compara to actual measurements. measurenants correlated within very reasonable accuracy, thus l Lf . g >.h) b 3 i _,.. ao t., l i '.
t .cir, cf Cuc. Secotor Regulation 10-10-73 substantiati.ng our assunrptions and the method of calculation. Further, a test on a cold
- The results are given in Attachment 1.
6000 horsepower, 4.0 kV reactor coolant pump motor was conducted. No adverse The bus voltage dropped 154 upon st et of this motor. ef fects were observed on other operating equipment. The results s of this test substantiate the origi.nal plant design basis. The electric power system was reviewed to determine if there are any events or conditions which oculo result in the simultaneous or consequential loss of required circuits to the offsite network that would violate GDC-17. No potantial exists for violation of ~ GDC-17. If you should have any questions, please do not besitate to contact us. Very truly yours, t-Frank P. Lib psi General Manager - Electric Production ./ CC Gen'1 Mgr. - Engg. Proj. Licensing Mgr. - Salee Asst. Gen'1. Solicitor Mgr. - Nuc. Opers. Mgr. - Plant Maint. Mgr. - Salem SQAE - Salem EPD-QAE P. A. heeller N. R. Philipp Attac. bent 1 ..m, i l ij
'- :-2 m. e - ;c=
- e ~.
s SAIJM GotrRATING STATION, UNIT 2 5 T VOLTAGE PROFILE FIELD MEASURDiI:NTS VS. CALCULATIONS l 520 )I 00 kV 1.V
=
k.O .3 kV sus 4200 Measured
- 50. 21 J
4156 calculated LA d Sta. Pwr.U so. Il
- ta. Pwr.
\\ l 4 kV Bus 4 kV sus i ; b.d 4160/480V I[ 465-470 Measured 470 Calculated Lumped v Imad Lumped 4 kV 5 MVA Running Icad 19.27 MVA460V aus t.LA160/2 Lumpe 460V 230V Bu ! 14ad Running l i 580 KvA 235-239 Measure 239.1 Calculata'd ANO*M 1 To Response to NRC Letter A$eg.iacy of Station Electric Distribution 1,umpe 23 q System voltage - Dated August 8, 1979 Icad Runni 147 A'A
...a s., ,,.w-- Sait a 1 & ? Pro po', cd D.n i gn o f Pe qro ded Grid Volt:.ge t'rotect ir;n 00.00") r,.*riit ton c f in' It is our undM ',teriding that the p. opted design i.'volve reity:. for 90 trip (eith i.r.propriate ti.a delay:,) e,r,cntiLily peraileling 70r 1cri.of tolt;te tri trip 1 chert.o, The proro:ed design, as ti. c> h t.ir 9 de.criled L'wini; ove recent m0ttli.g. cppo: rs to r cot ext; ting criterie. Hoverer, ve haw sor.>. corcNn Uith its cott exity, tnd particulcrly with l trins fors tectueen the the t i:cc d';1t ys r.tSccilit:' vith t he cotoottic bu: tua t.exti u ry trans for.c.trs cr.d onto the c:scr c:ncy diesel g.ne. raters. sh:uld sp' 1 fict:li,' Th:.rd..re,,vour d. tcilui v<:cription of the scht n: in:10.4 t!.c fell:eine;: 1) for ecch viley: the riu /ber, type. Icer.tiove in the electriczl syr ten, sct plat, a::rcci: led tirc delity, tictur.t ici. lo,;ic(!) t.nd f er,;','.w..{.6 ) prforr. 6. I, deserti.t ion of the tertt bility of the systte t,nd the etsoritted 2) ler.hr.i ct.) Spc
- fiatic o rr quiro'etit 5.
A psitivt. ser tr..trat re;;t,rdir.g conforr. nce with speci'ic crplictN r. v 3) criteria. A dcsr.vi tien of the'o ration of ti.e ifV trip system and the CST 4) t ltit.d:, cLttra.ing a LOCA vith cont urrent vo11t.tp degrec9 tion (betucec. 70'l, eral 009 at the output of both aux 111er) (of f site paver) tri.ns-fomerst sp:cificsfly t.dJress (T) all in'.criocks and pt rmisshef including (* provisicai: far prt tent itig repetitIte avriliary \\ J a
J qa ~ 2 Lus t ratis f er'., be'...ccr, su.<.11(c ry trens f or:.tes end tr sns fers with ey.cm. sive out..tif. phase residuc1 tr.s voltag'.' end (2) the..cceptebility of the tir.i? delays involved with regard to both cccide.i.t i,'Itigation and the capsbility of electrical equipra.ent to operate et degr.1d.d voltage for thost periods without dem ge. '., ) A descri'stion as in iter. ('.) cxcept thi.t volicge degr:dt.tior, is assur.ed to occur ct the output of only cl.e auxilicry pc.:ce tran'.f arr:.r.
- 5) A descel;stion specifically 3ddressir.3 P e 0 seri bility of AC cer'.sc ter s Ens ti c associated contrel fe,cs,: ctr fe;raded.Oltap for ths tirce delay ir.tcry:1s tr.voled.
- 7) ' t.c re,'.en s why c 1 cs s cer'pl u e e t i ;n n i t h onl y or.e s e t o f *.:',' r e l a ys (90 'l. t r i p w i th *.1 C s ec d el t l a, '.n o e c r y.* c./ b. ; e5 to i ni t i t t e
/
- t. f t's U n e'. s c e nr ot (.r she*. lid trip o f c i f t i'.: L:.;c r t r'd 2 - 'i l'.
'n l not be used inst e:.d of the t, ::Ote:, scher c. j '9 S'} ^^) [ -)
- g J
i .n t, a youj dJb J o
e ENCLOSURE 2 i
o i l i r SYNOPSIS I [ Analysis was performed on the Salem Station Electric Dis-tribution System in accordance with NRC letter dated Aug us t 8, 1979 and its enclosures (Appendix 1). The following summarizes the results of such analyses. This response serves as the discussion to the results. l The analysis were performed with margin to avoid repetition I of this calculation to the future changes. The greatest voltage drop imposed upon .iua distribution system would be with a severely degraded 500 kV system that results in the i minimum expected voltage at Salem simultaneous with the j load resulting from a unit trip on No. 1 and a LOCA on Unit i 2. The analysis was very conservative as discussed herein. Assumptions made in the load and voltage profile are given. WSR:bm 701 47-A 9 i l-6 m
4 2 CONTENTS SYNOPSIS APPENDIX I: NRC letter dated 8/22/79 and PSE&G response APPENDIX II: Load Tabulation Page Purpose 1 Results 1 Method and Assumptions 2 Load Profile 3 Component Load Limitation 4 One Line 5 Motor Operational Information 6-11 Calculations 12-16 APPENDIX III: Voltage Profile General 17 Summary of Results 18-19 Discussion 20 Component Voltage Limitations 21 Voltage Profiles 22-26 One Line 27 4160V Profile 28-35 Reactor Coolant Pump Start 36-43 460V Profile 44-48 230V Profile 49-54 Light Load 55-57 RCP Starting Time 58-61 Correlation of Field Test Data and Calculations 62-71 APPENDIX IV: Relay Coordination 72-87 APPENDIX V: Supplement Information and References 88-137 l l l
77.-..---.-n, ....+.nu... ..nn..n-n.i.,.,,.4-...~u-.. .,-a.-~... ..--.n ,._,...-~,...-.-a.-n.--..=n--...---n_ l i f s...,. r
- e 4
k 4 P E i e e e a 1 'l A 1 1 d 4 4 i 1 i 1 i i i i X 'l. i I .,,._,-,,..n-.---..,. .,,.... - -.., - -.... -,. =,, - _.. -,.
Q D n 3 + ()b n q Ra d Pubhn Sonnco D:anc and cau Company 80 P.tik Ptico Nostrk, f J 07101 Phone Pol 430-7000 l -- r gee f y; ~ M Augus-22, 1979 ... u._. , 1. ![ i l.. _'f Vj 'f'9 p,y,J ...... a ' ~~~ , i~ ~~~~~k To the Chief Electrical Engineer Engineering and Construction Department , 7, ",[ ~ ~~~ 2. T ~. g,, n_ .. : ~ ' * - NRC LETTER DATED AUGUST 8, 1979 ADEQUACY OF STATION ELECTRIC DISTRIBUTION SYSTEMS VOLTAGES l The NRC letter dated August 8, 1979, with the above title, requires that all licensees review the electric power systems at each of their nuclear power plants to determine analytically if the of f-site power systems and on-site distribution system is of sufficient capac-ity and capability to automatically start as well as operate all required safety loads. Please make the necessary analysis to comply with the letter, copy attached. This response is due to the NRC within sixty (GO) days of the date of the letter. Please have your analysis completed and a response sent to us for concurrence by October 1, 1979. 7 f 0 s',L'n, Manager - Plant Maintenance f l EMC:kls 1 CC Mgr. - Nuclear Operations Electrical Plant Engineer i om e s umi ~ 1 g.; g[ ~ g h h
l n m g.3,,_.Nuct[ A2 OP{P AU h ; 0 f %q'o, }.l j UNITED STATES [' .- f(' ig c9 W.C 2.O h bCLEAR REGULATORY COMMISSION / WASHINGTON. O C. 20555 C y C7 g f *, i : i : o, g n,je te.[ f( 4 ( '~ AugusJ, 8, 1979 fy ta, b s ,I ",y' \\.j 4 e, i,.,.. ' *
- ...+
m.m t o O 5 0 L All Power Reactor Licensees (Excet Humbnidt t3ay) 1 l I ADEQUACY OF STATION ELECTRIC O!STRIBUTION SYSTEMS VOLTAGES RE: We are currently reviewing the licensee's submittals in response to j the NRC generic letter of June 2,1977 regarding undervoltage protec-tion of the safety related electric equipment fron loss of capability of redundant safety loads, their control circuitry, and associated electrical components required for performing safety functions as a result of sustained degraded voltage from the of fsite electric grid This generic action was based on the Millstone Event which systen. occurred on July 5,1976. The recent event at the Arkansas Nuclear One (ANC) station on 16, 1978 brought into question the confornance of the September station electric distribution systen to GDC-17, in two separate Each of two units at the At:0 station has a dedicated reg a rd s. startup transfomer powered through a single shared autotransforrer Opera-(connon source of of fsite power) fron the station switchyard. relay caused the loss of the tion of an autotransforner overcurrentThe station electrical distribution two dedicated startup transformers. system thus autonatically transferred the full auxiliary loads of both units to the backup startup transformer exceeding it's rated capacity Secondly, during and degrading the voltage level at the safety buses. our review of the electrical system at the ANO station, the licensee's analysis indicated that the "inmediate access of f site power circuit" (dedicated startup transfomer) lacked "suf ficient capacity and Capability" to accommodate the simultaneous starting demands of the emergency loads concurrent with the full house loads, in the event of a loss of coolant accident (LOCA). The condition would result in all safety loads remaining on the dedicated startup transforner with A voltage degradation during the unacceptably degraded voltage. electrical starting condition becomes a safety concern either if the degradation causes the starting condition to be prolonged so as to betone a sustained undervoltage or if the voltage degradation causes frequent spurious shedding of the ESF loads fron the preferred power This event was described in NRC's source, the of f site electric grid. Additional background infernation is !E Inf omation Notice No. 79-04. provided in Enclosure 1. The IE Infomation Notice No. 79-04 stated that NRC would follow with This letter identifies specific actions to be taken by licensees. those actions.
s g.. a 2 Based on the Atl0 event, the flRC has expanded its generic review of the adequacy of.the electric power systems for all operating nuclear power facilities. Specifically, we_m_ust_now cpnf.irn,the. acceptability u of the y.olt age cpnditions on the station. el ectrjc, d.i.sttib. t i,on..sys.t. ens with. regard to b.ott] (1).' potential overload 10g_ducL to..tr,ans.fers_of g_lt.h.eLsaf ety._or _non-1Lf.e.ty.. oa s, and (2) potential S. tarting transsient l d .p_ tom ens _in. a_ddili_oq_to,the concerns. expressed in our Ju.ne_.2....L977 Sofrespondence with regard to degraded yol,tage_ conditions due to raniiti0.ns_originat.in9 ort the.gr.id. Based on the experienee at Afi0, the ttRC is tequic.iag.21_1_. licensees the, electric power. systems. at each of.their.nuclect.. power {j ' lit'o@nts to detemine analytically if, assuming all onsite sources..n.f I to g .AJ_}@.ker are,flot ava.i_1.abl e.the_,0,{f sj te_ power,systen and.the ons i te s .4.1,stribution system is _of sufficient capacity and capabili.ty...to automatically start as well as operate all.requir.ed_safAty.1. cads. Tli t hi n ' UieW _rei 0Trid Tol'tifeTa ti ngsl. in.the_ event o f. ( LL.ac.. ant ic i-1 pa_ted transieilt~(~$0ch~~annit trip) or (2) an accident (such as 'a . LOC A)..regardl es.s._of. o.thet_.act.io.ns_the..el.ettr_ic. power systen i s designed .to automatically initiate and without the need.for manual.. shedding of Protection of safety loads from undervoltage ,a_.qy_f.Letty.it loads. conditions must be designed to provide the required protection without causing voltages in excess of maximum voltage ratings of safety loads and without causing spurious separations of safety buses fron offsite t'RC should be inforned.of winy required sequential loading of
- power, any portion of the offsite power syften or the onsite..distrjthTtTon
'systen which is needed to assure _ that p.ower provided to all safety loads is within required voltage limits fer these safety loads. Guidance on evaluating the performance of electric power systens with regard to voltage drops is provided in Enclosure 2. The adequacy of the onsite distribution of power from the off site circuits shall be verified by test to assure that analysis results i fiease provide: (1) a description of the method for l I -are valid. i E prgi.n9 JbiURT@t,f6E.h,n,(_T2)[t'hb test res'ultT- "If"'pFe'vious,F f L tests verify the results of the analysi,s, then test results should U be submitted and additional tests need not be perforned. In addition, yo.u.are. requested to_ review the electric power systens of__your_ nuci ear.s.tStion tp_determne if there. are any.. event.s or co,nd,itions which.could resul.t _in the sinultaneous or. consequential loss.of_both requir.ed. circuits to the offsite network to deterni,ne ,il. any_potenti.a_1 n.ist s,for....v.iol ation of GDC-jl.in? thi,5.iqgeni a These reviews should be completed, and a copy of the analyses provided to liRC within 60 days of the date of this letter. ] 6 j m m.
I > In the event that any violation or potential violations of GDC-17 or voltage requirements of safety loads are discovered remedial action should be taken inmediately. You should provide the Conmission with Prompt Notification with Written Followup pursuant to the reporting requirer.ents of your Technical Specifications. If the above required reviews have been completed by you as part of I your response to our June 2,1977 request, NRC should be informed within 30 days of the date of this letter. Approved by GAO, B-180225 (R0072), clearance expires 7/31/80. Approval was given under a blanket clearance specifically for identified generic problens. Sincerel y, s .h, CL -t., o c S s. t Willian Gannill, Acting Assistant Director for Operating Reactors Projects Division of Operating Reactors Encl osures: 1. Background infor.ation on AND Event 2. Guidelines for Voltage Drop Cal cul ations cc: Service List i l l
v.' EHCLOSUPE 1 BACKGROUND THFORKATION ON AND EVENT The event that occurred at the Arkansas Huclear One station on September 16, 1978, brought into question the conformance of the station electric distribution system design to GOC-17 with regard to the capacity and the capability of the onsite systems. ~ Each of two units at the ANO station has a dedicated startup transformer cennected to a single shared autotransformer (common source of offsite The incident was initiated by power) from the station switchyard. Unit 1 reactor trip concurrent with trip of the unit's turbine-generator. The Unit 1 auxiliary loads were automatically transferred to Startup The power being supplied to Startup Transformer 3 (Unit Trans former 1. 2 dedicated startup transformer), which was feeding Unit 2, and being supplied to Startup Transformer 1 resulted in operation of an autotransformer overturrent relay and consequent tripping of the incoming circuit breaker-The autotransformer has the capacity to provide of the autotransformer. power for both units, but due to an error, the overcurrent relay was still set for the operation. of Unit 1 only. Loss of input power to the two Startup transformers automatically transferred the auxiliary loads for However, this trans-both units to the backup Startup Transformer, ST 2. former is designed as an alternate supply for one unit and is not designed This overload caused a to carry full auxiliary loads for both units.The event to this point voltage degradation at the safety buses. demonstrated that the design of the offsite power system to the ANO station Units 1 and 2 did not fully meet GDC-17. In the circumstances experienced at AND the failure of one of the two offsite electric power GCC-17 circuits resulted in failure of the other electric power circuit. requires, in part, that (1) electric power from the transmission network to the onsite distribution system shall be supplied by two physically independent circuits (not necessarily on separate rights of way) designed and located 50 as to minimize to the extent practical the likelihood of their simultaneous failure under operating and environmental conditions and (2) provision shall be included to minimize the probability of losing electric power from any of the remaining supplies as a result of, or coincident with, the loss of power generated by the nuclear unit, or The Ta0 did not fully the loss of.pewer from the transmission network. meet these requirements. Initially, the sequence of events on September 16, 1978 did not indicate
- Powever, any problem with the electrical distribution system of Unit 1.
subsequent analysis by the licensee indicated that in the event cf a LOCA at Unit i during which time Startup Transformer No.1 would be required to provide power to both the non-safety auxiliary electrical
t 9 J 2 loads and start the safety loads a voltage degradation would result.. The safety loads might not transfer to the Unit I diesel-generators but could remain on the startup transfomer with unacceptably degraded voltage. Although there is margin in the themal capability of equipment such a situation could result in thermal damage in the safety equipmert and/or i blown fuses in control circuits for these safety loads. Either event could result in disabling these loads during a LOCA. GDC-17 requires, in part, that electric power supplies for nuclear power plants provide suf ficient capacity and capability to assure that certain limits are not exceeded in the event of anticipated operational nccurrences and that the core is cooled and containment integrity and other vital functions are maintained in the event of postulated failures. The ANO design was not capable of providing the electric poner of "sufficiert capacity and capability." t 4 e i i i
4 4 . ENCLOSURE 2 6 ~ !'/ GUIDELINES FOR VOLT AGE DROP CALCUL ATIONS. p Separate analyses should be performed, assuming the power source to safety buses is (c) the unit auxil'iary transformer; (b) 1. the startup transformer; and (c) other available connections to the of fsite networl one by one assuming the need for electric power is initiated by (1) an anticipated transient (e.g., unit trip) or (2) an accident, whichever presents the largest load ~ demand situation. l For multi-unit stations a separate analysis shoald be 2. and simultaneous shutdown of all other units at that s unit trip,) and simultaneous shutdown of all other ur.'ts at that station, whichever presents the largest load derand situation. All actions the electric power system is desiened to automatically initiate should be assumed to occur as designed (e.g., automatic 3. bulk or sequential loading or automatic transfers of bulk loadsIncluded f rom one transformer to another). of starting of large non-safety loads (e.g., condensate pumps). ]4. Manual load shedding should not be assumed. For each event ar.alyzed, the maximum load ne:essitated by the event and the mode of operation of the plant at tne tir 5. automatic actions and manual actions permitted by adninistrative procedures. The voltage at the terminals of each safety load sho,ld 6. based on the assumpticri that the grid voltage is at the "mini expected value". based on the least of the following: The minimum steady-state voltage experienced at the connection a. to the offsite circuit, tne off site "The minimum voltage expected at the connection 1:resvit in red;ced b. circuit due to contingency plans which ray voltage f rom this grid. s ta:il i'.y er.ab s i s. "The minirnum Vedicted grid voltage frcr gri: c. (e.g., load flow studies). actions, including any proposed " Limiting C:ncn f or Technical Specifications, in response to ex: erie cin; voltage at the connection to the of fsite circuit whicr. is leis itan theA c " minimum expected value." regard should be provided.
l-4 4 3, 2 The voltage analysis should include documentation for each condition analyzed, of the voltage at the input and output of each transf emer 7. and at each intermediate bus-between the connection to the of fsite circuit and the terminals of each safety load. The analysis should document the vc ltage setpoint and any inherent or adjustable (with nominal settin ') time delay for relays which 8. fdL ' ' (1) initiate or execute automatic,ransfer of loads fro: one source automatic load shedding; or (2) initiate or executs to another; (3) initiate or execute automatic load sequencing. The calculated voltages at the terminals of each safety load should be compared with the required voltage range for normal operation 9. Any identified inadequacies of calculated and starting of that load. voltage require imediate remedial action and notification of NRC. For each case evaluated the calculated voltages on each safety bus should be compared with the voltage-tinie settings for the under-10. voltage relays on these safety buses. Any identified inadequacies /h.f ', in undervoltage relay settings require imediate remedial action ..c ,, d and notification of NRC. To provide assurance that actions taken to assure adequate voltage 11. levels for safety loads do not result in excessive voltage, assucing the maxinum expected value of voltage at tne connection to the of fsite circuit, a driermination should be made of the maximum voltage expected at the terminals of each safety load and its starting circuit, if this voltage exceeds the maximu, voltage rating of any item of safety equipment immediate remadial . action is required and NRC shall be notifie s Voltage-time settings for undervoltage relays shall be selected so as to avoid spurious separation of safety buses from of fsite 12. poner during plant st.artup, normal operation and shutdown due tr, startup and/or operation of elec:ric loads. helytis documentation should include e statement of the assurptions 13. for each case. anal" zed.
, ~,;. ay. ;an.:,.. daw n.am _ _ _ PUBLIC SERVICE ELECTRIC AND' GAS COMPANY ENGINEERING AND CONSTRUCTION DE PA RTM ENT october 4,- 1979
- g37g, RESPONSE DUE:
P. Librizzi F. TO: General Manager - Electric Production PROM: R. R. Bast General Manager - Engineering
SUBJECT:
RESPONSE TO NRC LETTER ADEQUACY OF STATION ELECTRIC DISTRIBUTION SYSTEM VOLTAGES DATED AUGUST 8, 1979 We have performed the analysis on the Salem Generating Station Units Nos.1 and 2 electric power system in accordance with NRC letter, Adequacy of Station Electric Distribution System Voltages dated August 8, 1979 and its enclosures. The analysis demonstrates that the offsite power system and the onsite distribution system is of sufficient capacity and capability to automatically start as well as operate all safety loads within their voltage ratings for all anticipated transients and accidents. Satisfactory results were obtained as a result of the original The Salem Generating Station was design considerations. designed such that the resulting voltage profile was within component voltage limitations, being +5% of transformer secondary voltage and -10% of motor nameplate voltage under The system was also designed euch steady-state conditions. that the inrush current associated with the start of a 6000 horsepower, 4.0 kV motor would not cause the bus voltages to All motors are designed to accelerate their drop below 80%. driven equipment with at least 80% motor nameplate voltage applied to its terminals. This was accomplished by optimum selection of transformer impedances, incorporation of no-load and a taps on all power and unit substation transformers, 13.8/4.16 station i 10% automatic load tap changer on all theAll motor starters have a guaranteed power transformers. All starters were bought with 300 VA out voltage of 70%. control power transformers, regardless of NEMA size, to minimize voltage _ drop at the contactor coil. Further, consideration was given to cable size and length to limit voltage drop in a feeder. 2-02 2 f 1-
F. P. Librizzi Gen'l. Mgr. - Electric Production Page 2 The analysis chowed the worse sustained under-voltage condition imposed upon the distribution system occurred with a severely degraded 500 kV offsite system simultaneous with* a concurrent LOCA on Unit 2 and Unit trip on Unit 1 (or vice versa). This under-voltage condition results from the automatic transfer of the group buses from the auxiliary power transformers to the station power transformer and the automatic start of the required-vital bus loado. For this condition the lowest voltages at the 4.16 kV, 460V and 230V loads were.917,.92,3 and.91 per unit respectively. The above analysis indicates that the onsite distribution system and its components will operate.within component voltage limitations.- The motors are the limiting component under steady-state conditbns as they are designed to run continuously at.9 per unit nameplate voltage. Transient voltage drops due to the starting of motors were analyzed at each voltage level with no adverse effects. This analysis assumed the prestart voltage to be that corresponding to the degraded 500 kV system and the load in parallel with the motor being started equal to the maximum continuous rating cf the transformer to which it is connected less the running load of the motor being started. Further, the impedance of the parallel load was conservatively assumed to decrease as the square of the bus voltage to analytically compensate for the additional current drawn by induction motors upon decrease in voltage. The minimum transient voltages obtained on the 4.16 kV, 460V and 230V levels were.86, .86 and.78 per unit, 2 ~ respectively, for'a duration of approximately(5; seconds.'~ These transients are-within motor and motor sthrter design capabilities, thereby having no adverse effect on system operation. The results of this analysis were used to re-examine under-voltage protective settings and establish that no spurious separations of the safety buses from offsite power would occur. The 5 kV power cables that connect the 13.8/4.16 kV station power transformers to the group and vital buses are the load limiting component in the distribution system. The sixteen hour rating of the cable is utilized for the load tha t 'results - from the concurrent LOCA. Unit 2 and Unit trip on Unit 1. There is sufficient margin between the cable rating and the resultant load to allow for implementation of existing station procedures used during the events analyzed and thus, avoid overloading. l l'
~ _ _. - _ '* "' i~ hsaiserwe-w _-- ~ , a m.-..a +, 4 4 1 i P. ' Libri3Zi Page 3 F.Gen'l. Mgr. - Electric Production t 1979, tests had As. indicated in the NRC letter of August 8, been previously run to correlate calculations with field With Salem Units 1 and 2 and the 500 kV system conditions. in an existing mode corresponding to a given loading of the plant distribution system, selected system parameters were monitored over a 24-hour period. An analysis was then performed using the actual load and 500 kV system voltage to obtain a calculated voltage profile and compare to actual The calculations and field measurements i measurements. thus substantiating correlated within very reasonable accuracy, The results our assumptions and the method of calculation. are given in Attachment 1. Further, a test on a cold 6000 horse-The power, 4.0 kV reactor coolant pump motor was conducted. No adverse bus voltage dropped 15% upon start of this motor. The effects were observed on other operating equipment. results of this test subdantiaba the original plant design basis. The electric power system was reviewed to determine if there are any events or conditions which could result in the simultaneous or consequentiallons of required circuits to the No potential exists of fsite network that would violate GDC-17. for violation of GDC-17. OB1GINAL SlGNED. ILILBAST h WSR:vlf Attach : CC R. L. Mitti D. J. Jagt 1 i f
j SALEM GENERATING STATION, UNIT 2 VOLTAGE PROFILE FIELD MEASUREMENTS VS. CALCULATIONS l iOO ky 520 Bus kl.) 13 kV Bus 4200 Measured i No' 21 Pwr.b d 4156 Calculated LC d Sta. S ir. 4 kV Bus 4 kV Bus I O k.d 4160/480V 465-470 Measured Lumped 4 xV Load Lumped 4 kV 470 Calculated 5 MVA Running Load j 19.27 MVA 1 .460V Bus C.Ll4160/24 Lumpe 460V 230v nu: Load Running 580 KVA b 235-239 Measured ggg y .1 alculated To Renponce to NRC Lotter Mcguacy of Station Electric Distribution Lumped 23( 1979 Syctem Voltage - Dated August 8, Load Runnit 147 RVA s
I-M-* E-seead-4-ehiousE is6 DJ s-a XW .w, Seed M4M-- --m m m.imap . mir e,
- m. aaL_g a,,a me eye s a m m a m mi,4m.
-m.m.,,g.mgjim,i,z.aussa--Sw_4,3,_mmgw_ 9 ' 'g / i-r !. l 1 i 6
- fD D
D9'
- s. 11}
h -wI i 4
l LOAD TABULATION PURPOSE: The purpose of the load tabulation i s to arrive at a load that reflects the greatest plant loading for use in calcu-lation of the voltage profile. RESULTS: The load profile is attached. The g reatest load results with a simultaneous LOCA on Unit 2 and unit trip on Unit 1. In addition to initiating loading of the vital buses in Unit 2, the event (s) also initiate transfer of the group bus loads to the station power transformers. The load limiting component was identified as the 5 kV power cables. Comparison of this to be load profile shows the cable to be within rating with adequate margin. Further discussion is contained in PSE&G response to NRC 8/22/79 request and may be fou.nd in Appendix I. 301 16A l O
J 2 a LOAD TABULATION METilOD AND ASSUMPTIONS 1. Using actual 4 kV motor data from PSBP 140032, 111059, 112305, 112GS3, 119349, 140042, 124584, 140041, 135633, 135634, 140040 and 112698 and one lines 203001, 203062, 203061, 203002 and 203004 motor quantities, full load horsepower, efficiency and power factor were obtained to calculate motor KVA using the relationship. KVA = (llP) (.746) (pt) (ett) 2. Pump BilP (brake horsepower) was used rather than motor nameplate HP if the former was well defined. Actual running data was used to determine a conservative reactor coolant pump BHP. 3. The attached sheets entitled Motor Operational Informa-tion was used as a reference. 4. Individual load KVA was conservatively assumed to be additive. 5. The attached one line shows the switching arrangement. 6. To arrive at a conservative maximum loading it was as-sumed that No. 1 station power was carrying 4 of 6 vital buses (normal switching it would carry 3) and that the 4 kV loads were aligned to give the maximum. 301 17A 1 e
4 + .a. a-- aa- - s-- a.s-. h h I g l Le mme TI M E cP A L.ocA j i 6"l?, T. 'd u A,o A,Lt 9 y j-Gcoue '.. L.s o { 0 0*0' M' 'It /W f t t ( ( *j fT M j g.Cif C. A tavittt 9-l WM (; -- - <g -- Trstmu fews4 g g*"gPfW4 Tf*A'l1I O P T t E. D D AM fotri(A 2.1300 N A #'" # "i """ v' tue. v era u ~~ My ) g4 MLuuc.uq aqtoAQ g, crecsc ( up..w l Pum PS ) _ - ~.. _. _ -$4 5 '1 LEAD. oumv.Tietal ELocx com cr r b _ro y cro..c Eutet Ad 6 3 2004 kvA l l! the mi. t, cs d ou u rrr i Eu M *, A d c., L Cc.) 1 O E sec ~6 Miu. --- - -30"N. - Ts bi (:. ----,, f* ^^'*# [T. . M A u t t rl 't t.'i P % M l/M b 49.,,._,,__.__,._ Au D icicie,st., rAuLT mr y l O F N o r rk. 4 (( _] ; _,,,,,,, _ _ _,,,,, _,,,, It L mm . uuume s tqqgy hiN& l.II;; Lt AI) Co w e. m4 \\t:tanLt t p0 ( b 21 'S y < q, _. _,y _. m,0 zo 3 4 ,{ R wc w w at tMI tr t e., ui 4 e e c er.,0.. m y,, gg, g i v w we. mm ! w --t vm PuW t C 'TR t.N*.ro tro( p,, L t. A0 $ L l '! A t i W A I WJ7 ._.-._.]._....J.-._... -.fh gnov \\ t cs tc. Qqq \\h*1bt b u",,. (OAD foM4f CTC 9 l -~ - - - - - - tJ WJA.t.y
- g q qq, NORt4 t. Lt^o eu vertu. Bus A -t B - S 4 S fl L tM'll l
j i TQ. e 9 i I* i O '2C- - 3tec. 39% _,..15 H'o
- z. _.
So ua le ac '7IM E, ... I) o o.O. m Q
- 3. ). M ool
. J1.Ulb o
i Components Load Limitations The limiting component in the Salem distribution system are the SkV power cables which are connected between 13.8/4.16 station power transformers and the group and vital buses. Six (6) 1250 MCM cables are connected per phase and are rated as follows: Time Rating Up to 2 Hrs. 40 MVA Up to 16 Hrs. 33.5 MVA Up to 24 Hrs. 30 MVA Continuous 25 MVA 4 i 701 47/51-B i I I F
~. _ Swl rcq is xetANGt tec oT (5.)1 c o-attatY >Q Ciocurr ECf ^'f C CLoirb' Nta raccooM t' 30:5 50/3 NCO FRtE00W C'.) CiC>cui t Ecf Avf 9, OPCN So24 OUS Mf CfiON 2 I i 6.s l 1 l JM 9 AH He. HH Ha anet- ) fl8 }2 O l hl 6 0,2 / 4% M. 10 0 6 $18 $2 g l ~ A g. %.g. ~ 9 \\ S 1 fts l 'h -[ 500 KV g BUS SECTICN i e, N6 NOI 6 5 No 2 l b b I STA. PWR. w.m Sff, pwg 1 13 KV DVS d % d i 100 MvA y;2 ,3' 100 M V.a j ft js bOM l NO 2 GEN NO I CEN Wv N.N" '
- W
~$ I og /vA X 6209 vvA r.s A 6 j i o E"
- d f
3-4 Q_ ko 2 25 M v.'. 2 b MVA NO I A./x PinR 21 SF la SP 4 * / @s,UAS Agg PeR C ' "' 8W-O O SG p!vA 1 b !Mi- ! ! y usi ~ sm s s s s-ce EEE. ESE - C O -i:-h 3 O-2,2 SP ,1,2 $P 4 KV GROUPS 4 KV GROUPS -a " o a-- i %e o_ 'o .~1 ' \\;. s s i 25 KV. 9 PF 25 KV. 9Pr NO NO 1300 MsA a 1300 MVA 2 ,Q 75"H ) 7$88 g 2 ($/e av ,l?l.. g4m , l o e00 A s' ,yg, [y-s.,.,.; = s, c. M c..,,,a r.r,. s SALEM GEN. STATION j',"17 7 ' g g_ g. n.ouc st am n.t em.c a cas ce w., d;w g a 1 m c,,,,c -,,c _ x PA...Mt j gyyQ v y w w s w u -. > - - -
- ~
M
C O b' MOTOR OPERATIONAL INFORMATION - l '. Circulating water pump motor. Six at 2000 Up each.- Pump BHP under normal full load conditions is 1511 Hp. Run all six during startup, full load, shutdown and LOCA with offsite power. 70% starting voltage. 2. Condensate pump motors. Three at 3000 Hp each. During startup use one initially and add others as it is desired to buildup feedwater pressure. Run three 'at-full load. Ten seconds after the unit trip pumps go into recirculation automatically for which BHP is 1900 Hp. Operator takes out of service about 15 minutes after unit trip. 70% starting voltage. 1 3. Heater drain pump motor. Three at 1000 Up each. Use when at load. Connect when at approximately 30% load coming up. Unload automatically two seconds following a unit trip for which BHP is approximately 720 Hp. Operator takes out of service about 3 minutes after unit trip. 70% starting voltage. 4. Turbine auxiliary cooling pump-motors. Tr!ree at 400 Hp each. One runs most of the time. Run three with unit at full load. Can run two but with additions to TAC system-the former is the case. Run at least two approximately 4 hours after a unit trip. 70% starting voltage. 5. Air compressor motor. Three at 1000 Hp. This is a common system between Units 1 and 2. One run continuously per unit with the other motor in automatic standby. 70% starting voltage. BHP is appro'f mately i 800 Hp. i i i l kran; u
4-6. Reactor coolant pump motor. Fo ur a t 6000 lip. Run all four on startup, full load and shutdown. After a LOCA, operator trips all four when reactor pressure drops to 1550 psi. When initially started BHP is approximately 7200. As the water heats up the horse-power drops off to normal running BHP. Normal running BHP used in calculation was 5600 Hp corresponding to the noximum current on No. 13 reactor coolant pump from field test of 11/30-12/1, 1976. 80% starting voltage. 7. Service water pump motor. Six at 1000 Hp. Three are required for full operation but plant usually runs four for startup, full load and unit trip. Mini-mum of three, one per vital bus for LOCA. Impeller has been changed from original design. BHP during normal full load operation and is approximately 950 Hp. 6. ( 9e a4W coob g4 s o p p (,Q.) 51(o4 5 a-toc A.r fdCI5 -*t Erif'P84 'vW Je** c4e r pe tSM.p*'ks --tssyfi,Qd.L i.4.o]. G U %
- uAi4 M.p po.v ps a rc-ceOd Cottoos ' A (,L p g47.4ool ; 3 C Ta' 4oo A 35h j 2. ( SSo 4o 24D9 a.s
.a we or n. a m > 2ee - t, n. i t (d r r s. O, s-e
- o. Ac h 9, T u s ~I, o.,g d %k Sye. q,q. t q,,1.4 A 3 a.
13 4 PUBLIC SERVICE ELECTRIC AND GAS COMPANY ENGINEERING AND CONSTRUCTION DEPARTMENT THE FOLLOWING: MOTOR LOAD AND VITAL SYSTEMS INFORMATION REACTIVITY CONTROLS SYSTEMS (Re: SA-1 Tech Spec 3/4.1-1 628) One charging pump shall be operable during shutdown. Two charging pumps shall be operable during reactor operation. One boric acid tranf ser pump shall be operable during the shutdown period. Two boric acid transfer pumps shall be operable during reactor operation. EMERGENCY CORE COOLING SYSTEMS (Re : SA-1 Tech Spec 3/4.4-1634) ECCS Subsystems - T Average g reater than or equal to 3500F Two separate and independent ECCS Subsystems shall be operable with each Subsystem comprised of: A. One operable centrifugal charging pump B. One operable safety injection pump C. One operable residual heat removal pump
- -)
Du s ECCS Subsystems - T Average less than 3500F, one ECCS bubsystem comprised of the to11owing shall be operable: Same as AB&C above. Containment Cooling System (Re: 3/4.6-15) Three separate and independently powered groups of containment cooling fans shall be operable with two fans systems to each of two g roups and one f an system comprising of the third group. If one group of cooling fans is inoperable, either restore the inoperable f an g roup to operable status within 48 hours or be in hot shutdown within the next 12 hours. ( M S (2--
q 7$b Auxilia ry Feedwa ter Pumps (Re: 3/4.7-5) The Auxiliary Feedwater System in each unit is equipped with two parallel pumping systems for redundancy. The first system is composed of two AC motor driven feedwater pumps each of which is sized to supply cool down wa ter to two of the four steam generators. The second system is composed of one steam turbine driven pump. This pump is sized to supply cool down water to all four steam generators. The unit has to be shutdown with one auxiliary f eedwater pump motor out of service. At least three generator auxiliary feedwater pumps shall be operable with two motor driven feedwater pumps, one steam turbine feedwater pump. Component Cooling Water (Re: 3/4.7-12) Three component cooling pumps are provided to circulate the component cooling water. Two independent component cooling water loops shall be operable as a limiting condition for operation. Se rvice a te r System (Re: 3/4.7-15) Two independent service water loops shall be operable. Four out of six service water pump motor will be suf ficient to run the unit at 100% capacity. We have to lose three motors to require shutdown of the plant. Control Room Emergency Air Conditioning System (Re: 3/4.7-16) The Control Room Emergency Air Conditioning System shall be operable. Auxiliary Building Exhaust Ai r Filtration System (He: 3/4.7-19) Three separate and indepondent auxiliary building exhaust air IlUPA filter trains, one charcoal absorber train and i three exhaust fans shall be operable. With one auxiliary building exhaust air filter train or one exhaust fan inoperable, resto re the inoperable train to operable status within seven days or be in cold shutdown. (OSrL l
)Q 93b Refueling Operations Coolant Circulation A minimum of one residual heat removal pump shall be o pe r abl e. Residual Heat Removal System The residual heat removal system consists of two indepen-dent loops, two residual heat removal pumps rated at 400 HP. Two separate and independent ECCS Subsystems shall be operable within each subsystem comprised of one operable residual heat removal pump. With one ECCS Subsystem inoperable restore the inoperable to operable status within 48 hours or be in hot shutdown within the next 12 hours. Reacto r Coolant System Four reactor coolant loops a re in service during normal operation with one reactor coolant loop and associated pump not in operation reduced thermal power level to 76% of rated thermal power. Fuel Handling Area Ventilation Fuel Handling Area Ventilation System should be operable during either fuel movement within the spent fuel storage pool or crano operation with loads over the spent fuel storage pool. Fuel Handling Area Ventilation System shall be operable whenever the irradiated fuel is in the storage pool. Only one supply air unit provided. Swi tchgear Room Ventilation System Three supply air fans to supply air to switchgear room which are located on the elevation 84 and 64 of the Auxiliary Building. No rmally two of the three supply f ans are operated with the third in standby. Three fans on elevation 84 and the three fans on elevation 64 operate to exhaust switchgear rooms tc the return duct.
a II 4t. Control Air Conditioning System Normal system consists of three fans, two normally opera-ting and one standby. Emergency system operates upon actuation of safeguard system consisting of two fans, (one standby). 4 Safety Injection Pump SIS this design is to insure that the following minimum SIS equipment per unit operates in the event of an S signal: One out of two centrifugal charging / safety injection and one out of two safey injection pumps. WSR:cm 11/14/79 SK2 39/4 2-A 0
4 1 ---ak .A h()g ? }'t.t ( ( OM) M N l Ph g o,w ms gvA $~ s 1. CUf T C ' V \\. '.1 h a t b Fut\\tue, not im d. u te,n ure r am ' 1 NOTcR , QTi_ H P (M d CN f- "U.t C
- 1 c ou D._
. 3.. Scoo. 4 . 2 91 77% W 1. _ 7.W.E .1 '? -._. M L R...._._...
- 3....._ \\ 0 0 0._._.
'M M 973 2 bi 'l 20Q.. ?#hl _.l> ~. c4 c. tu.TR _. h..... (. i f[ i ) _ 1.CI M._ (104 i) A '3 %. .. 4 3 7.t.>. .. 3 B7. 6 .. d i... 3 C P. _.__.._._. _ $ _ __.. (G oo oSAo O 1.. -. _ _' M 9I.. Ut93G1 W/15.. t SM 6 ...tMG ~ ! s. _.. TA c._._._. _.. a_ _ A co.. _. _ m s.... q 6
- c3._ tusg
._;7 ek._._.J e L- .. ls._ C e / ie,,..._ _..too0.._ I 97_.M .Oq. .h1 _ 6 7 4 __....XN __ 7. _.. u u n _:. s ; _ -..
- 6. h 6%s-g..
.ee s. .8 ..e.ee.e e c h es .mm ew.--e. .4 q e-pa e ..... _ A..f, A _... ___ _._._ _.. 3 33 ..._.._..... 7 N. ? M.._ _ M 4 _c;c w u c w pt p t, _ _._.3 5_a _..._ _ .--... _.._..._._.. k_.. 7.S. s.b. ; N (. 7 3 0) .s .. -..-.bbo. $ 0f.' ] '. _.-_, O Yo~}... f 'TiW 1.. _ .. _4~} A 8 2 . _. NJl/2] _4~7(,7
- 6. " - #4% 4 he ' -
a .-..m.se. -.ea_h_.a. -.Mgm .W 4 .g ge...w w g_ ..g w. y .g .p s,_ g g,, (,, ____. ) _ __b !k., ( o, g pm, e-- b (.l Q 3 W ldd b..U M w d d. 'c-[ dl'g ( 00 04 r" I.LE00for EP.45Poid _. ..... C y co.o A Gr., _ _ _._. _ _ k' I' V d k o let k.ctV rive 3 ((d y.4_.d N O 3 (33 P -413 33 J P c. d " . ~l 5 0 d r-C )J an / ?/7 5 /o r F L tl l. o j C t t C.W)I r* 3 C,vgd.u d C0t g b :el. bIh UVd ?. Pct. [f u. !'l Udb. (b4,.o e el e 4 S [ q Mtj n l @ ylh e(.e 73 8'- .pp m g am D ?1 m 9 9 9 r1 r1 Nf .M, a
o O 6 /3 V W 6 t., ?>( S toAb T A fii. t 34 r it> y.l. 12a w W on ~~ Yt t tv.y % \\ by L UVL\\ F. L. 0 0 *1 't 4 A ^ L &'.Q g ten e pj w %:) a.1 q.L ... _ cci L c; tcoo \\- Q C. fV Ic . ( q :,.A 8 ll . t',3'/. (C60) 'A 0. ~2)o o. .._. 3100 . 0 2 _. cw e e tc. _ . 3 .. ba .._.6 7 ,97.. e 2 2. .. s s A. _... g i.. Atn b..._8.0 R 2. ._.Ol")). _.. _.. J '/ $ _ _1l._ -_ Y' O_ _., o _,, _ _,__.M,.. dQQ .1 .. u 0,........ C L. @l %7 -.. -.. o. - _ _o b'K1- ..9....... S i. L - ( ._..$...W1 O?....k .. (4 0 0M h.._ .'Nb _2 N.. M. h_ ,,, _..p, __ __ _, _, yo 7,, O i t:0 s W.. /ai r D
- 2.. _..__( 15 6 ) _. _, D 4
. ?.M! d.. .o. ._ 7 1 L.____ __.._ 71 L -_ Go o ._.C l't d i'. R _._. 1._ _.._. __..(G 5 h. _....:942._ Do l. ( 55 7 ).__ _. 53 3_... 4 %. ___._U4% .. s n onne -..-. _.-. _...Yb.... _ S. - -.....__. _ _ _.-._.. _ _ __......,.-... _...... \\ P P o..._ A c c o_ _. _ _._Lc',) Q ..h. . #-l'7.._ _. 3 '1 x m ec . _ _. - _. _C.__t999...)__ . _ _.. _ _. _ _ _. _. _ _. _ _ _ _.. _. _. _ _ _ _ __ ya.__. nw _ _3 e o 17 2. 9 5' ._. 6 GM..__ _ tu% & . _. _ _ \\ .. l 1 I __. J t d!fo b. $ N P __ _, 1 O .w. e-. m. am- ..e.eg.e... e M e.h g. mB. .me e6e.,. .me...em Me.4w._y w g e. w-e,e e gie 4 -W. ,.W P g r . =. .. meg * .D+.r g _.p. 4. .g...*.g p .g pw p., .~.. O i h
n ~. O Q' ' Lo A 'D F l.o c,d d f G.J E' l. d *. La A D I L. o d g (,'t. t ) i o wr.~ n.ua. em a, e +. p_. c e. n o < n._._. T.?* M'V o..\\ H.~U2-M, S C $ C., I h.* C. 4 M. f. p..l'Th C,,
- 7. \\2 C. ?,.
C- . ~. .. _ VNt'T CJb5 [ t (,., N \\/g,,. g4 (.!d a], _ p ( g _g p g p,_,_ 1.. _ 7-T M1bE__.S'71 t . ludo N 6-D4 + 3 5 3 '.M 3 0 I?.) ... +.. 3'l 5..t N.S. O.D 't".~7 5 0 ,-l W + l Coo 4 . L._ 2 T'25 9 xVA. \\ .... _.. a,u M u n t oq,1 2$ D I-h,7 0f.L24 (6W 660 l,(8 4S'~ _ _ _ _.. _. 2.S 2 5, '1 *~ l P. 4 5 5 L,M !, ~(id ._.. - -..\\.h _.57 WP.H N% A&.A921_'. .f 4 (,a. A<2. % *.t :. -.... cu y0 J C c. ti , 3 c !A C.,
- 7. TA C j '2. p c P _
U.r P 3sss_.. 2 %._.% &T.a.J.('U h,.( 0 3J>.C'D o. G., G (' . -. _ -._...._. f _ _'l 5 S L.e _ J.1".,(? } .t. ILao(Q 4 3cA (-y a.to 3 o(3.') .... __........ A. '2/1 $ +. 7 o o t_. 13 3 3 * .~7 Y o +- 'D 7 t Ioso ? W'O 24 C'b W A l ~ 1 b '"'8 ""'9E'l" e4 .N.
- 4.. >
eGD ht.W.M.,w..g-.ay g,
- WT v
t . I.'*..f ? t,oAb F t-o w] U t ret._, Gus Lot. o r e m e; kJup no / L J r e e t c t. i v '. - h ', . ra @.c.e a ;
- 2. sc 0; urt C.,,. vo.t.~t % r. s -...._..... -.__ _ _.. _
....... _... l.9 L' t.. *2 (% ':.N 't". ' l 5 o t 3 0 0. 3 0'E b K d A.._. 9,> '. . Sf. C mG ...c fCL 0 8 .t v.M $ 'I.5 U 60_ _ + .-SS o. 4 f 3V.7 GM So o :. 2 4 3'e _ es A._. 7v 9v
- c. '-
.. $ c.c. w W - U rd W.$ v 6 5,. 1%v. 1 ..___....-..._... _...W h .*$~. \\ 0 0 0 k. 3 0 Q. SIED WO C ... u S t 1... m P. _...__._ __ _. _. A . _. _ M M D C L A,. "? 5 LA M 9) M!!'.T._ A s G 5
- _.. __.pg r-c. _.. _, _.. _ _ __.
Y t o + ~217,5. o.)..+. 3 C0 't. ? O.a + .3 ?.n + ' __ -- 3b'2,7l SC-C M L, C H;tCu-90, UHT M B _% o (04 A Cl 6, f*u v F R - p ,, 4 b. k. 0 -- b ) i l to t b, .. 6 I h.dN y VM7. 3V Nj. CU f 4 P O $ i.k _. __... _.. p l l, C50
- t0004 Too + 5)]b :
,N'21 ,.q,_. gyih.O e .ui .eM. W4 - '4halk."
- 4.
N.em..-em.6.d ..e g, .g w. g _g
- e.w.
4.* e.w 7r sg. a. _e h me. ghW we
- eng,
.,,g ,.g,, b go -e .8
- e.
.Meee 6-. .W 4 e. .=- m e a m. g. N e m. p.g ,,,,,,4.,,, n ..- +- + -.-.-.~...-.. g i.eag,. p .q.an. m.
> lh 4 Lee A ' h *. UNt7 f A g P + P.P R a (66? e, P M59 + % ? + 33) i 9$ D )(Vk l '. . uwt c, n + SM. g.. ) M % + Mv M I \\ K V /- .e 0 .e . C . Q NT' n' C. > f + Ct.wt bt.
- 7) O G ll + % l '-
3 M [ W') A O e ~~ ~ .___O e9 ~e9-um
- e9
- es=e e==p e
=way.h*-w e e .,wwe, am 6 e w e que-
- s. tee g,m=
,eg,, MN h**'* e e 1P-s amw . mema.4e.- ..,e em m_ se e ae j,e aya h.w, e
- w*emhep4 m
me e e
- '*'uB'*
he- -'*'d --see m we= w,mW eu e d%i p m., em e es, a y e-
- 4me-a em em-u 8
D'N5'*S8 e ..ap en. H*4 e- .g-h 35 MWD ew- ~
- N
- N
-umme ew w. .w m .g .g e me -a+ = e* se p-
- e
f f ' ' ' ' - '-.,, i fs }lt ukkkk) J
o (7 VOLTAGE PROFILE j l General Discussion The voltage profile with a given plant must be examined for both steady, sta te and transient conditions. This voltage profile is largely depended upon two variables, those being the system voltage regulation at the terminals of the plant and the plant load regulation. The steady state profile can be most readily examined by analyzing the end points. The lowest possible steady voltage will result with the lowest attainable system voltage coupled with the greatest plant load. The highest voltage possible will be with the highest attainable system voltage and the least amount of plant load. All other voltage profiles resulting from other plant loads or system conditions would lie between these two points. The re sul ta n t profiles must then fall within the component voltage limitations which will be discussed later. The grea test voltage drop resulting from transient condi-tions usually results from the start of the largest motor a t each vol tage level, coupled with the grea test plant load and the lowest system voltage. Bus transfer should also be examined. WSR:pd 202 39 6 4 0
a l%
SUMMARY
OF RESULTS 1. The g reatest sustained voltage drop results with the 500 kV system degraded to.978 per unit with a simultaneous unit trip on Unit 1 and a LOCA on Unit 2. For this condition the 13.8 kV bus drops to.903 per unit, Units 2, 4.16 kV vital and group buses dropped to.9226 per unit with the voltage at the 4.16 kv, 460 V and 230 V loads dropping to.917,.923, and.91 per unit respectively. This condition lasts for approxi-mately three minutes until the reactor coolant pumps are tripped after which the profile improves. This profile is summarized on page -1 The LTC will also move to improve this condition in 5/8% increments and 30 seconds per increment. (No credit was taken f or the LTC action at this time.) 2. The highest voltage results with the 500 kV system voltage at 1.06 per unit and hypothetical loads on each bus. 3. The greatest transient drop on the 4.16 kV vital system results upon the start of a 6,000 hp reactor coolant pump motor. This transient is worse than correction of the vital loads upon the occurrence of a LOCA. Po s t ul a t-ing a prestart condition corresponding to the 500 kV voltage degraded to.978, Unit 1, 4.16 kV loaded to the maximum continuous full load rating of the 13.8/4.16 kV station power transformer and the reactor coolant pump motor being started against a transformer which is loaded to its maximum full load rating less the KVA cor-responding to the RCP, the voltage'on the 4.16 kV group and vital buses drops to.8692 per unit. The voltages at to 460, 230 volt loads dropped to 8692 and.8543 per unit respectively. The 460 volt and 230 volt loads selected were those with the g reatest circuit impedance and horsepower representing the greatest drop. This condition lasts for approximately 25 seconds. 6
o U l Ik + l l l 4. The transient analyzed on the 460 volt vital bus was j upon the simultaneous start of the chiller, auxiliary l l building supply and vent fans and the switchgear room supply fans which results upon a LOCA signal. This corresponds to 255 Hp. The prestart condition was with the 4.16 kV sustained voltage condition in 1 above and the 460 volt load hypothetically postulated at the maxi-mum continuous rating of the transformer less the KVA of the motors being started. This transformer also has the g reatest per unit impedance of all the 460 volt vital transformers. The resulting 460 bus voltage was .8608 per unit. Individual motor starting times are e approximately 5 seconds. 5. The transient analyzed on the 230 volt vital bus was the start of a 30 hp motor on f eeder 2B3Y. This load was found to be the largest load on the smallest cable, the g reatest distance f rom the source corresponding to the g reatest circuit impedance and result in drop (see page 31). The prestart conditions correspond to the sustained 4.16 kV voltage conditioned in 1 above with l the transformer upons which the load was being started equal to the maximum rating of the transformer. The resultant MCC voltage was.8739 and.7854 at the load. WSR:aec 3L1 03/04C 1
-) 70 ) 1 Discussion of itesults ') The results mest be viewed in view of the component voltage ) limitations which are summarized on the attached sheet. ] The calculations were done with a great deal of conser-vatism. 3 Conservative factors were: } 1. The 500 KV system minimum steady state voltage is ) under an extremely unlikely combination of circumstances. ils 2. Credit was not taken for the action of the ~. > 13 8/4.10KV station power transformer load tap changer after the event. 2 ~4 3. Margin was added to the actual load'KVA. 4 The resultant voltage profile at each voltage c level for the limiting case. b The PSE&G response serves as discussion of the results. N 4-s QT I tt UD-
e 21 l Component Voltag e Limi ta tions 1. Tr ans fo rme rs : A. Plus '10% secondary nameplate vol-tage at no load. B. - Plus 5% secondary nameplate vol-tage at load. 2. Mo to rs : A. + 10% nameplate voltage B. Mo to r b reakdown torques minimum of 175% fell load torque. 3. Co n tac to rs : All contactors are made by GE which have the following characteristics: A. Dropout: 32-58% in 7-12 MS, guaran-tee 70%. j B. Pullin: 56-8 7 % in 13-3 5MS, guaran-tee 85%. 701 50 4 r-e w w y
.~.. ~ \\l< u.-l AJ, i. : i 1,r n..,., W O CORP U'.a r r c t r i6r TO N.W iu w i Lc XD i n t i/ p,1<*, A L t.c A o g u sMT ', A u b UNigT Tm p o() (tg!1 l Aub Su!.T#.itaeQ '40 4 t/ 6*.10 ~be 6 f t-cxt.Jb.3-l'R A teo u sh,NEA W' t* M ( t>/ S M t tJV*T/ S ', f 5CO Kv' rg y \\ j \\.- ) NoI STA. h)R U.! l. i l.) ' .,f ~ i 3 9'.(V E F,, S..../ H.3 i i tac e l cm, p yp. U. AJ STA PnM l.L.U / _c.. Albxv ym.t - 4t LKV Fi<, (. '6 v 0 </ \\ ,,9i7
- g g).)
(ns uvA, %v 'N v-1 ~ ,9 t p f. ,4 j - ? %J Lu MF r.t, 4 teKV LeAT) L u M P E ".' 41 W/_.Lo AD...- Gu ts lH 4 it 41 A + ng BUTS 24 + 2 E -l ?u 2B 4 e ot ta e,'i o 4 Urtto10 ..... ?.O JM. _.. ..lt.LI. (so \\itTA L 030s/ \\A7A L 1 " -- ~ s.. / ~ eus {u $. e ++w. [/l W.... 7.*fo_V A.(. % j u>. . _.- -1 LO V, * )*\\ ' EC ' 'f fI X VA Sf ,y .. ~.. ... J60s/ t ur;t PCO LoAb.. ___. J 30V Luw-l- r'SQ. % 6 3-h%- +-8*".". -N.P
- Ms
- G
e e. Tt),t \\ '. 4 : \\ \\/u t t / '. C' .i. 'Itt E T } t,c ', z c..,Loe.>T 'i ' / / ? o' G ; " (. WO~l \\'i'f $ p%,.... h~'( 4 ' t' M A i t D PLW Pi (^uPJD.ri g g y -.., 5cm/
- O.- 'O I,
../ Mo I ... gm, p y g UJ,lsV) 13.th l.I T ' t $. bla() blo17 ... Ut. PyJ Ps. LL _L)._. GTi\\. C 1 Ps 'LLJJ .. _ / \\. V \\ b N b' s 41f./ c d bu *, /'J- _.- i 4.1/o K V Ft A L b .f r 2 k '24-29MvA e O w +P c w/ -- '---~ ~ L u bt9 ED 4.~ l0 K V LW4PT3 41Mol ~~ ~ ~ L _, __yAo B%r s 16 a it, t.pa gugre y 4iA4 13 4 JE a e/s4 7 u, LL_\\) .LLLd ) eu ) C S'T A r;1 1' 't - '~ [ -= At o lNGWL
- 2cv 8%
+ / l00 0 7' "M } - 3 4 k t g f. %_i. .s me4 454..g ege'. w.p., a J .A uum l
l % At1 cve, r._ yutnu,. na a c '?c) + Lto p 1 L'AD A 'J t> oPTP v'S ' cr0W U S'" ^ 6 E \\ .\\ s a,n u I, S ' yn; pA.g d. rs,. ex J /(l.05.1 .e j Cm 4 07/' 3,g ne, y jj 3,; ) i ... ~. /....'....... (1,0 5 - s \\ ,2 ? ((Sev ) 7.. m, ... s, g g 4 _... _ c Q.. x.. tbuct o n.sv . J e D 4.mv. _ _ I) _ Lt 2J_ _ W Lo A D,' . L, dGoV Bus d,od,).... _.... , [, v7.\\, @ l'n' A l l i y pn 100 A \\* W' _. '$?d t l u l
_ _., _ _, _ _ _ - - - - - - ~ 5 V/ L Y,( M., y o r i L G ( tt a-s Lo A PIM O(- 40.,W U.V% E r i $ SootV Td
- a. k)
), e 92.2.61 t-g _... _. __ _.f..._.._..... .\\.,. m. . Ameten eemW +64S.- ,-.es&rd.we,hr .mema sg .,m .,s . gs wm dans pgge t .pp u.,mine .$e==e W e sp p p..'me 4panem.m s. pow e g , og a O%$ 430 v v uc-u -r we w a eaL. V \\ Dil (:\\. .1 \\fo Y L'd
- ..o u p gp Eu p J esi$
y,3 ( Con.? .l C09 P e m wgee +h an=> mm. gaugh e G em8##m9e6eh h mesa 4=-5 %,w.. g., aea e$so m es. w eg emp@ wge M4 =4 6'a. m meeg s em .m,4-Demum98eenager eseen see y >eeg m + eeWe- _;%es no...mee s-eene
- -e-m---****<*e*
====*r
- - - + - *==**
-e = =-==+.+4=* --==--.=4mmon-. I h_.. OD *SP9M-Gis-gunne s es .e=+e reh eququem * -m +.5 ems ahh W'sthey ena-mie$ hdhe a et'9*
- 'M
, es .h 6 e -e ee ae-a p 4 @.utD'q.4-es-W -9.m*%=
- +4se.eeh e@h*s4*N h4-9'83 *GShes*99=
8shGe=@-g4 age 4 g ee w#s mus pap-my-6 'm + D+***F
- We n=m-=e'*e p
- uf MAG 4 OM'gph h..
mege h +--.mu 4eeq .que u ges e qui,. 4 -4 e 4-e.e e en e Esq$4 4=e.e. air.
- c
'"l"~pi..<. s.iT 1(9 V ovfhr d. Y re s ici oM a., m w s. I t t .cjt3 .SP ' \\' 4 i .... 0) ld - O M l' V 8db I .J), .....,D L'd G. I I ,/ 89 h.,o V V t7 A L '),, '. k ..mpk w a w.s i..r a v..., 2.,,., a -- - r ~ _... _ _ _. i 9."{_.3,( N CC 9 i,. 4 O V' m.c,4 r y . - _ ~. _ _ _.. _. .._.-..-._.iF*** S"! N 't % e P, ^. 5.,V w.n J . g g. _ _.... _.. h ieu Lc,Ao. [ M; h.[ f \\I L.I?hf 0!& 1 ' a.a..J.W._ g b g. V. U W. h Jd a U ' E ' '. ..ee* ..s.
-.~. SWl Tc4 in AutdsW6C-tAEtJT @l r.- i FICNET -Q CtQCu ri SQFAr[Q, CLc5CD* NLw rutto0u 50i$ 5073 NEW FRt[OOM Q C @eui"T ECE AvCP, 0066J so24 BUS Sr CflON 2 I l .( l> M' 4HHa 4H H-F. ht842( - O t'8 42 r~ ' ~% N. l to 8 6 ) $80 $2 I 7 JLg,, S A s y %. l h-j 500 KV l s Dus SECTION i f' ,,.) .!g i,. 0 f.J l rp, 6 NO 2 l f,., b f STA. PWR u EL.a sfA p y, A d-l 13 kV DJS 4.-]~ hO 2 J., J. L 100 MVA ]j l 100 WVA 9% WM NO 2 GEN NOICEN W. N.N" W YA 12oel.vA I:Ibx 62$9 YA c.a 't '8 j ,s D _C" S, MM2 --- i", C- 'd AO 2 25 4 V.". 2 *s M VA NO I AUX Ph9 6-215 P 11 S P 4. / GemVP$ Aggpeg 0 - v5 6, -s 4 O O l g 3 g), T* 'I L j. g 4 e SG [g gg uvA 5 ""^ 907t-ge n pJ-e, $&M- ! !
- iH u-@s E &o-i f i
! ! 5--o-s' Y Y Y,. - YY? 2' --c " a, pf :' e.: A a *j o-4 KV GROUPS I 22 SP 42 SP 4 KV cHOUPS , ] --G **- i 25 NvA 2's uvA 4 D-+ '\\ mm D-1 A t. n,.t. ~ ?.,,. ~ ~ 25 KV, SPF 4' N 25xV.9PF NO 1300 W/A 4300 MVA l 758 ^ 8 7$ H H2 2 ts/arv 9 I T. 0 e e i k,A av s t e n. 800 A 1 ,,7;,
- $r.
= s, s,,,,,,c,,,or.o ~ s SALEM GEN' STATION c,'j.y l P %[ h E0(lt 9 i) ?[ //l,Ml II l - hs - b' ~- miumA - m .-/ t t r ctwic ruoouction oEPAutut wr
2h 4160 V VOLTAGE Pit 0 FILE METHOD At1D ASSUMPTIONS 1. One line (attached) shows switching arrangement. 2. All transformer impedance was assumed to be reactive. 3. All transformer impedances were obtained from the transformer nameplates. The greatest impedance of a group of identical transformers were used. 4. Calculations were worked in per unit on a 1 MVA, 500 kV base. 5. Okonite cable Bulletin was used as a reference to obtain cable impedance data. 6. 4 kV loads were assumed at.91 p.f. This allows some margin. 7. Approximately 2 MVA was added to the loads on 11 and 21 station power transformer for margin. 8. Cable impedances were used. 9. PSE&G memorandum dated 10/31/78, part IV was used to ob-tain lowest system voltage. This memorandum nakes very conservative assumptions of its own. The increase in the load flow into Salem at 500 kV has an insignificant effect on the final result. This memorandum may be found in Appendix.
- 10. The 500 kV system which is a minimum of approximately 5000 MVA represents a negligible impedance (i.e.
1/5000 =.0002 against final circuit impedance of Q.017) loading on No. 1, 11, 21 station power transformer. 301 18A ) l l
l yt j d % tei a c, e. stooy. m -.-4 w ms.en m. anse e, J gg e 4 g '#**M 4 ,6 g g.., e+M9W 9. b o t- \\' c es If4VA,'i00 gv b ce ge. i, i + l le _. No l,2,tw1. h 9. Wu / c.3 50 losd hp C it. $ c V c.,, ne ( bes; bvm u.w.p d.A. ES l 6. ~"1.1 /,,, f sn /m uvA p .io,q - pu. =., oo nq S G.,a, 2. .. N o. 8J / 10,,2 !, n S-'A 9C ,,,1,3 J /4 i s K d em n 9, tpf,d,4" p. G A 5 5.W I _ bmI'Ei<< pow <od 4 ii $'B/a (v I$ VV A Y"stbwt IJ l / _ a .u ' Ts doom 6 ~... i e. i l os f (> t bI l o oid' ad d M Vit beM1'3'M 3- ... J4Av mu> q. L o A us Nel^*me i ) st,20 n A e.m j (ass 2 e4) (~ 2iosmi rwy to..a s 2 i ere. % t q '/n,3(aiajeQ .on7i 7oi2s ,owib w = aaM.a '/n (.m i.a mQ :, om aj.oq =..u x 3 29 c .j fs 0 h0L{ h.. [) - ~._D f. [] f 2P,'p.'shdi 13W:, 1~7 5me M, l G o 'isIpo. Pn e t.v. !c. L &l ~ y-.o74 a lioco' : . o s s a.k u o ' j
So e OY q% b {. l(s \\ ()\\ RM Ve>q b( vt t J rM tJT % T uv ' D b . x c. u-t,,. /, <. >,, / : o c; 2 '/ 2 c-3 $ j t,., d ? ^ l' ' M 2,u(.oc,5,s - e 9 (\\:97 tea l ' Q *> ?> ?' 2ga= (.ouz, i J.o 2 s').vwa c =. cew c<n -r,. ~ ou7 v p,aa / 4 ~~c.3 s s., ' na e,w,; Gs.so, xe e i 2 s.o. c n
- ,,,..., e t /' ys 1., n.o 2 co '
paa .3 o /c. n un ta r.1 e %) f c st ic m '*1 O f* << s V Rss $ ~ - L_,., _ o.9,_.... -h Ib l [E -4 j g ( k .O5. 0 0 0 9 (o h / to 00 r,' 1 h 858 [- k b O wI e J. o e Wl , o cM./ N -2. c (, r o ? -M., + h u29,37
- . 0 0 7 't 4 l
z e.m = euss/_7f ( Z.,f) =, ocw Lt (.uri,) m, e o o c, L,, o _ 6 ~ ~ p>.o r t < 0 .0001 UI ,o o o o% , 0000 M ...) 07, j )(.15 f. o r, 7*I ,00 of ll 'j.0 00 s j ;, ordj 6 [ b g f. 0 0 T 4(o 7 4-p k e J q p,, = oooc, i 9. coc :.<4 8 _A'h ssaw e i
~ .~ 0 I 3 per as,+ ud.atu aos he o% t odi 9 h e k e.s ci ' s 'o e' d a i,6 no \\< m.o.c a- . o o l ' /'t 6 m,,p_ i .D. ) I b' V /u'.' I * ~ ~ ~ f }3g(G v.:(lC ,h ), o o o e'*s f 5 0 *'I1 ht e il S TA i f 4 C. ) No 2i'.*A. N d pom-3 4 valet, ~ ~ ~ k 4 6'V r.k y c ~ ' .D. .W t/ e a l lc a S ). mob ~ ~' ] (,'eA D ) WD G 7~/ / ' 00) 5 02 O'i d 00 9 i 1 O c!. Ci n g b 70 C. ltof ? U v ,Q Cot "'/ .co EO(e i ' 00 0 2 -}. t/2Sd 4 40 thef %, o *2 y + < o i -) : 3L, 012.) /? t.o gr ,,0 0 0 t"I 3 0 036Q. 4- .OM1 t.01714 .OQ30,97 ;l 4-, Ol b 51 6, o 3 t ") /'31.39 ...-.....,_'l. ' U b' 7 ! 3 N c , Ol bib / 3I*11 5.-, O)364 ',0c)$ h e 0 33 ) I g, .__ (, o zs w.m i 3-j (.00,9. oros s')' 0 lM + 0 0Q +
- dot ~) 9 3 5
- Ol O
$E'9 D ,oq33 4 ,o(, e e $te ' oi eiu(.ozQ _, q s03(.334 (.opoy )
- 0 tl O ( 03'))
f- $1 D(({ff@f[l{# ~ ~ C\\ d eg N*L. T/.t; i si secoau t yu t i.cc q
- 1.o p
% n c.y,,c c z.c.ca.,u
,a l e ma fa a som uc. . _.. u _a e.*- e.. ...n-_. .a.a .e- .s. a ..se.f' h..me.4k.a. ene4. g g ga ,n..t di. ..m.@p ,.p a.e g - ee e .. __ _.h &Tc_ N &A d^ WC 6 3 - t.6 ~ ". w M WA l . _.,4J. a4%J. t p /o co r m G - Two. ry.o 6.d.voi W-wou. lA .. -.E.kmb o'.C.. N.. (' t.'_.).( 8 % b *_, D.'5 6 m +. fl'
- V. bo Se -
..L *(C M o.!' $ - h? 0.A ? O.* Wi$.tfQvfSrnb5'$l4<.k%0?.v0].he C.tr{h.}L W C =" h)...- * ~ ^ \\ \\ J ) H U. --.-.. -... W.nweC%d k cm6 A S.Wc # _.. _....... _ _ _._.1t n._2.* J % J~.e. k %) (l1 .._. _./h. cus.^h..dk F le* J M 2I M.. Pw C..: u; o ic - - b N* __... -.. -. - _rt. M% b..-...MSq h 0 & b O SW e :.. 'o .. ^ -) t-4e_ con..hc...Md o t 4 t t. w t. _ _ -. _.._...... _ BM' -Ig 44 4 ) I L b /2W. h4 9.g. A .....] i. r4o i se pw<t no eg.e M'Y. h-f oond - f 000 F[ nu c% ..._g, _._.. _. _ _ ~. ,g . d' @ V ("k AW #6 I *? . O O O 2, . O O O '4 c, ~s y L :g g am r a.y ,. m.m l
1.w-- U..d,-.D ,4 ae-4 E L L 4 h-(kt4 I #JdIfS, _ dh dfU L.U,p C % *) 4 N e g. o e v3 ">M-[ S ^,: ..g o wn+3.oo3 w g.cout 4 'e1 ty n4 s e .~.. + e6 e..e. pm.a..- 6-4.. e.e- .e4 e.k e i
- ..4 6
.+.. ' " k gn. . ~. ..we.+- + -.-..--..--..e- .-e es '. -.*e +. - - [_. ,[ ,,,8*,,4, beb...spam voIb.gc. of-m E.c a.u b ec5 mi M e mi ,4 ct%... _ i qyl _, m e,. 08 m 0,4 t, ...... q 4 oess . moz s 44.- .,._a0 .a,.e, 4. 8 -...,.a _C<meJv.9cd Mg_.uSc._..LT3 v_' _ du.o. Ju. G o.id wlJi. 4!.o c:w4.c.. %. J,.f.. _ ___. a u m.._ _ _ _. _ _. ... _ - b_ x.3.._: _..I LC 3 d_ p i u.. t_u o l:l-ap... _._.. b m eo. ?' / ..-._._.,.m._ (, v3 4 6 e
- c. co r rech of A t i o GL et t s e
- c,ed . 274 LGC mme.s..h._%.h xemd.. so3oummW.h h..n Ps 9. - An.. _ t a _ _ _. ~..___ . t. t V b That...(" * ?. (__.._._, h. b.. b Y. E A.8..'*- . N C Ot 87o9h.S M.e2c.
- 4 t c o v ke. _._
b sk._h _ i m ~. pd vo Ik t ad ev.n-) 30 seed ..._.... _f % M h 4 O n ti b.- g ... _.._ _. h L-TC M t )m wc, 8 3fo b b b % n u n 4 w M y ', __... _ _.. M e 6 iL. ho f.kEe.. cd A e hiut. he -l,,e A.c.- f -..3-v. G-l,j i bJ. . <w e. +
r e ILo (M d Vollo iA t 9] 5
- )s 5.,
pn oW6 GM 92 %5\\ j 8.,12 i g i --l ') 0) ~ l*f % k $ A* fA . *W Y 'N l 4 b I M O D, O lvl tc ^ ,p3Ll s a \\ *]. b7 e. - 4 e-e.e. + .y= 9*e- .e41. .eae sM. As 6 ) 1 ')
- o..... _
DI i . _ _t. ! 804 ' l' l .......-. - --. l - ~ ~ " ~ ~ ~ ~ ~ ~ ' ~~ ~ 4 _.e M. ."e
- 4D A
== a e g ,e ,_e,s. "M4* h r- , -e e sy.m....gey eg g ,.s, 4 .g $d 5 O Mh H*i 9...me e.46+. r. .g + qg e.e ...p m.. .,e.h a + *. e. = ..em. -.m. .ar*... .e m m.
l Q 9 / 5 MgMe. es umpe., med-way-Mp W e. -1h a m -geh+ -e M W
- wam, B-eM enAmu mesma# o w ehy s.-p as htme
^ ,,e+ ap -ee-e . - i-aguulW. e8 e=-
- .swemmeo esem ao co w. _L_. tug _m _( tm') n dy # Aim J Qi ww. ). a. __ _ _
A se m,.A.y.w_.~.w3.... % L u m a.c_m u ___. _ .- _.-k& %..%.Mo 6 p._.3 % l..__. _ _. tu.m % i.m o. u a..,_ bo_ = (.isur.fis.uh.1 i 2. n,_ ,_o gga t2, g _.gggu__ __ - _ J i.oo e a,u, 4 m eenp. gigne ee mm e em amm.ee eneh m seue ee* = -i- .u-- emwo. eemmaemme.- esen-ime g / e _.e_ y. s ,um e. .-m w. . ea e.e. e...--. ......em , *.-,-_. + eutuge- =, e e. -+eue m-e w mum -ee==preum+e es.sww14 8'. e w.amiump n4mme amm p- .e e-we=p e-g m - m -p.+ dae. Nheesemme*h e smeem a-m enwemme enumste.
- mai,e ey.
e-s --+ awi O me. - m gamm-ma.e-m--w--e --e-iaw. mu-e. ---se-.m. .....-m-s mi.-s, .--.==-e .g. . W as.ambeh andnuRWas ww euw h 6 gp$ ge aae en e 46 - 48 pp-ee e6 egg s* emuh ee e -- m.m p W es edhm ehe w wnayemp ues -W.4 884***'t#4"INEl"'*8N"89'ess -m _- OfumeuseMe e erem em- -'m em e .e mmassenes.m e. er ..ase-.we m em=* 46 G4
- e6*
a w-eemeh e mps Wde qmgm.eaudseg 4 SeeMM W' mer,. M*=A*W- -'*W 4 sa.NNemmeamm5 4h48 . e4eane6e em Ne Omdp ee&*- =e. mo< b vee s.em m-u -.-4-4.E8W.E egg me. esen.gg.me ameumm e samph ea W -es $m. quem 3 o-memes-e. penw@ .pgamp y e in,m_gm .,.4 ga e. new rmw. ggn kt.d I l w --- a ....em_e.e._- e O I
~ o o RCP START 1. Ac tual motor data was 'used. 2.- In order to achieve a conservative result the following method was utilized. (Ref. one line.) The greatest drop would be obtained when the 500 kV system is.at its lowest attainable voltage and the other load running at the time of the RCP start is the g reatest. The latter can be attained by assuming this load to be the maximum. rating of the station power transformor less the load of the RCP. The running load on the other 13.8/4.16 station transformer is taken as its maximum rating. Further when starting a large motor which results in a significant bus voltage drop there i s an increase in the current drawn by the running motors due to reduction in the torque developed by the motor and slight speed re-duction. The results in an additional drop. This relationship is slightly greater than one for one. We have very conservatively assumed that the running load impedance decreases as the square of the bus voltage to analytically model this occurrence. 301 19A e 1 e 9 -m
E e TL C ? G-k A ' EE,.. _....,.. _ -.. _ b T,... ......._..._.A.. ~ yyg_.,,,,pg v. q,,, ) a .2 . 9, ' h.- $-I . 2 (2.. L J b.. b .[._ l + ' ! b04 A*--. 6 L D PY' . h C V. Onk(1..- ,- L'? b k'H~~ '. I i NSb QL ~. _ _ @O O.X ?.A V l' ~4 2,. ; ~%. h 6 M '/ A. _.... _. _
- k. w. b en.ta d.Su-d W. b sc
.... _.. h. ! 06 P ,,, g y 49py . _ -.04.a.5$,_7D3h, 2 t. p ~ . I %.ff,SG.1q-O .._-__3 .0 e')L +Q,.04, o & L s....... __ _...-......~. _.-. _... ~. .. +. _ue s.Mr r_, 9 c. m.t /*'D - M umit. r _. w. %. - c. ._.__. O. 2 9. x" ^ e t, 4 - y.. ) hih ,-.-_.__-- -. 3 g_-.-- . _. 2 s.._ x...e _.-_.. C. ht a p I O k'I.. d. 4 be V d V[h% b N 0.' s ~ t _._../.w ,w..+g.w c.. m A. m 4 t. 0 9.3 _ _..... _. ~._.! Si L ' No r' to m kJ m.M/MEv.Skl4p. 6 %._i.uwd god v.u g.m.s._ _ _ _ren% m,& Q O % 4c.w t. % 4. % s. ks.. A c %
e g g p J s ( o 9 i y A '1 ) a o ".9 4 4 }. 0 0 ft :u d ?. 3 / 744'l d.i t t - v,, o,,,; N) eg l p h a,, a e. . 23,r..__7Ytr i p oec '*"A, a 4. o o,m ..e w
- ==,. ape.-eeisuew...
.en 6 em .e.,e. .,eg.. J. o.v. v: )(.wA I u n - np g / u.ca ow;.9 ws (.o y. .o g (.e, y.. A .e. p. e sm.. m A ^ ' p h Lesq+.uuiHj(.oio+.unce) e ,..e .&g m g g g p g yo q u G, j o 77 q
- , n
.2....... _. ..i . \\ vt ,... j m.- 1. ~~
._...n.a ...+ u .a 4-e- O
- 1
- y i
a 4 g i _- M .se i ' a.g 4 r, 4 mm ryy/\\._. - 2 1 O (A 5 Lu 1, g C t ] ..,..s -mb. L-m - ~ -. O S.p.M,Y d O M 4 4-d. 0 0M b ~~. g f.ON + d, 010] > 043 'O'l ~ ') 3. o~ g d ['L' I ,e - e;3 7; ?* er 'l ... = .... = ___(. e N Y.u v M / 2 9 w v.3 (I ! D' ' " .., 0 2.
- 0 M C' 00]
.__..... _.....( ' 99.A_4 9 2.! H [.u?il.4.q.8 D g 5. .4 .-sa. i so-e.- i e,-he e se .g-g. gr-a me u4 -. O'L o t,
- t 94 i,
e W he.$l1. e*e.-w .e e a,..quy. i .. _ _ _......._~....... ..... _ - l -M ' kI' @ 6. lY I. ? + S O 9 cuuoet h.00 Lona hp !. a 2.1(@W ). =. -.l. L.4 c w 4
- h.. inv; wo i. M ~.s. ~ +- @v 'M y
\\ .s .n... .... - ~ --. - - -. -- II .4, b(do t t. S m e c, UT C e s m (LI L p rio r do S 4.i r + IVl * .ms (.925d(l.1) . 9 e l j us % v ba.c. __ c i Tw J AX
t e O l. f rf f A e A, l, O (J"L ( b a,.p.-, - s 4 i. m u, n, _ a, 4 s_ e t wn..e. e,e u.4 4. <.a,% c..e. - _ -. -. -....~.. i W @') - d 0I. ~ ' '3 3 l ~ 'UI 4 I 1, g.E e lM M.! O Oli' FI / 1g. Thh _ 4 ' 'C'D N ' Ud-2.' f'. e,, G2 Hs !'d 'O ..hr'd '.'$'.6. _.._. (. C' ' ? ' ! (.w w.m o g(..* e m.w.. .._........"... e o. l,{ _1 . o,1 fc q .. _. -.... _ _. t.s e ( ~ ~ e Q - d es >.o:% b se. O ksn.sua!y (.wn A oD... .. d. -.. _ l q g L ~ ~ - - /ot - - -- d, o n ae =.o i n .oei 4 y. ev.o. i.d. w w-- -,o u 4 = ~ ~~ I. o 1 w '2. ', o 1.4 b .. ~ gg, e m. a V' .e g. WW4 .g. JV b (.37B')D-Q(. 8nd a,q ~ O } i e) ].... . [,h Ope... u wL L w-1 .w -r-t.
p. -.i AJ-, -4 E 4 -- e. m.u. d .bq_ (.04ts U ( o3 h [.lfd4_dH M _., vz.14 /49. h S.m e os a ',ol(> j .._._. __.. _ 0 om+.*)s ' (e +.e). d o.; .4 . -~..
- + + - ------~ + - -
.b d rf..P-4 e+...e..q.i.r.= i. ..J . h opeg egg., M. M6>. . g l 5 e m- - _-. im on.m D y (.e. o naQ..._ r'+.MMie e 4.4 9 g We- .. a g, ,m. gg 2 e, g.e g s , eg i E . Q (b$ b ' 01q "J ..e t C o r u d 4. LT c_ _ 6.i._I_m..J.4_:...o...S 3 4 ...__.,.,t, d e
- 4 9.#9.
.W. 64. ,.,,,,,p ,se 3 .b. ..sqm.e. .i .a.gs. M um,.e .e a .e o. go,. ,A ,,e. w. 6 6 .g.yg.aeed e4.h4=-hh.- g$ g,e..., .,,g_, gqggw_,g, ..,ggg. ee n we w g.,wA+. e.g w_ s,. l .-m.-e e .e.s.meme,.. ...em .e % g,,.,,, ,,,,g, ..m e-4 .m. j -. ~.,. .es -^ "
f.,, n i d '. q !v a,,~. o 4 n. n n ? /74 e o,,27,/,a3 >.02q,4 4.o04 .I_. zq f f2,.J a ce5'. (.12.n uY.on') Aw: nv', ..m3/m.p ,m.3a'.ep, d . (. w,z. 4.u m ).g( ew.. s u >,) O E Q a pq n, cg.savy wogn A A2 e~f <wp c, s, to 3 + A.Aw e m = a ee = , mum e sea a e'- e e, go. g.m-ea e em e--ete.++ e as. ,,g g g .gsee . dye em m.- e-= em MM&a++ -4sy-ee .e he e m.ees*- e p. , man,e em.y.- tlAeguar e sam e." .e oe
- wwe
- ea e
4 ze** sees ** = " = 6m ew-meme m gm q w. - a e4 ga sep 4 P94**'" '*m**#**8** 4* 4 e
- 9 g
mm.sim,e e ePugnoae 48*meem-- meim ._,y. g .Aw_ -- i me - g mie ses. sW==" 'AiW--*" E' W "'d* 4"*** _,.o. eur W-westn
- - =
6= m h4 es. m4
==r _e l" l +.3 .e... r._.. .e.
an-4-54 2-so.-'- a 4 A--,A f AA J'm-C A, 2 J.m-e A a 6v Es4 4 -1*h-2 -n--3F e k h fj fg h' ' d y we a a. e 4 -. \\E\\=.669 u 6b gma gm a.e p g _. Mg y o m, a e w & -.. u <>..> a r e56DT = ._W L {A (o-d e, G L. eti s e /s a o a v e d s.4 d4n, th o wIb y e .e.. t.u o a eA..i o p g 8 e 44em
- F
- 5--e*e.me4i4
- W s 4 46 4a'*l ap O
b N m.soes _. _ __...J %,a 2 m(.uosce..o os b o w Ay g.osz. no C G34 hag 5 A uBeMer gange. -4g-W^*
- 6,
= 4 h dem,g a ed- ,,m m 3m m-g NM*80 h'- 'E8'
- B
- 8'ee e,et+eM-
--=== * = e- -4.e wes e (+.-.= ..e.., s ,..,....ee. ee. ,.m, 1--4.=-mee
== een_.as. =
- --e
=. - i-=+me. It"*'%*
- 'h'-% ee+e' M =ueeew
-@8dh eMedb .e nmae m gars a e iames,ge amewW5m -e-9i e e e,.s
- 8-*
- W' h
u N
- M8 W4 dBhese---
i e unongM p e.c pgm M g eee, m. g-g .ee 4oumam.e- +e O=adme -@= 6 9 @ m Jem sm4&epp p em --N*-
- h=
4-89* 4-- qa f m wg M.qqme w g. g g .m e. = =.- h a ' WWW -me .e
- sup, e
4eae ag,g gg ,g 44 _g ,p g m,,,, ,e. ' ew N W'# '9M *A# e t em-@ %eess g=mpLeme sg . m .w aw p we =a e -e 9 '9* ei ag em. m. .smee /*%, mh ='+ =ve-*
- a.-
ease. o u. .w ... [ 4, m
~. dh 460 V VOLTAGE PROFILE The 460V voltage profile was approached so as to allow margins'as follows: 1. .B vital bus was selected as typical. Of the 3, 480 V vital buses A&B represent the greatest per unit im-pedance as they are 750 KVA, 5.75% where as C is 1000 KVA, 5.75%. 2. The load assumed connected to the 480V bus was equal to the maximum continuous rating of its transformer. i.e. B is rated 750/1000 KVA AA/FA. 1000 KVA was used and assumed at.8 p.f. 3. The cable voltage drop was approached as follows. List all the a bus loads with their f ull load amps, cable length and size, and determine the individual drops. From this select the greatest drop and apply in all cases. Thus for any feeder where the voltage drop is examined further, we can obtain less drop by refering to this calculation (i.e. the RMS was looked at further applying the 8V d rop. Had we had trouble we could have used the actual drop of 1.41.) 4. The worst transient was with the simultaneous connection of the safety related loads that are block loaded. The transient was analyzed similarly to the 4160 V, that is, using the running load prior to the start of this block connected load as the maximum continuous rating of the transformer to which it is connected. The 4160 V pre-start voltage was that corresponding to the degraded 500'kV system condition. 5. The motor locked rotor currents were assumed equal to 5 time full load amps and a .2 p.f. 'l 301 20A l l l l _,* i _
MGOV FE c b D(L Vo t To C C D pop - g 9 e 3Er-lcAo WW 6 ' 0 '+"' 'jh N'*d m"2 M O p y,,t g_ LvAn r ots c,.s d :.v e /toco' e ebor? - u '3531 ,of-
- 7/71 2B7(
e gg -7 rM '2 oc, n . I a u/ n 3 su 7 C' JI Cao O TC) ,ojl 7,yg ?,, M A "J, p,,, er g i j ~' f 1 '-.> 4 6 3i3 , i p) 3,[
- 2. au n rv/ t.. n ot.,,, _
' ~~/ O . l90 *( (.s
- 30 e 'J 97
(. 7 /l ., ? 6 ft 4 P T. '/ A 'f 280;< . b c,c. rr) 30 7 . 0 s.of )/c II 007_.. ' ' (_ .._e. 51 ~5 _ . ity _ _ 7 7 / .9 c. i t y 'h eG sJ n) (e f. 3 7 e W (.-. o4v_.ih... 1 B n %, ?.? A r. t y / bJ 'f L ._ ?M 04 L .,7 t.7 3 enn .wis... .._. I t u _ ni ai >. av7. '0%__A'2 -.- 'C 04 k-7v7 ,o)) , 5,53 7,,814 >' . 59. A.,A pr\\ pp _ l l*l 't a s M 0 t (Lt c A '\\ > . 59 b 2l0 .\\l aGS" J 't *) 't, Biby D iv. b. ' l -1 14v d 2/o 11 ol[ , / <1 / ,m,_..m,p.- m ,e ..e_.
- +.e.aa=*-m*w
*.'.--*-****+-**-+-=e==.4
- -= = = -*
=*-+e.
-*
.e .-..em w.a, .,m.-g..w-. e4m e,re .a.m eee 4m.e.g. g_.w..._.4, 1,~LSgo(45.jn ] rea.A d-d ro(.__.. U.tc 8. v o ( Fs. ..a s,. _. _. _. L.e cto r chop, 4 m og o g. Eg.* um e de
- -.eu.-
-e h a p =*.a-ew+ l. 4 ..m l ..pshw e em-4 .e i.e .e.at
MOV V o llop @rcI e f.G h o". ? f/g , -. CY v \\ \\.~. - _ ) g h lbcjarif?Q.3 { ~~ ~~ ~ J. --~. 2 c.. _ Z (. 8 a U :. _ _. y SS ? { ' o'**!.T/-) rn f : U % G... -.. S.?. 13'Q'Vlb
- -. 110 '1.
Nl-lek ~ . DS i 'F ) .. -_..._ ~. (opee tr _ ly p o s Ab ad t ey.% va lhgt.. 24 '.' _ t- }h.
- 1. o e y.!h1)fb58);
3bl w % w,< :...,90i (4so .99 = I n ett 6.8 . t,$ 4e h _%.4\\v c 4 M 6f(is you k.m oq.?:, C lA A. d r w n it 7.'Egcd $ Id/4,,p o pfg r 9 i .oi7 b %,3 \\ .g .mm .y a adm. >duum=g .-9h.
- .e*
.==G#ee W.. - - w m he4sh-se-ae a. ..eme, .g.., ,e. gga ,e.g<s g4 4 ag .e ge.g, 6.. . e heh4h se e. 4 w, .~ p.
a+ M s 4.'-4*-4. .J. .a 4-.- 6 s.Je d ~ P +- +- 4-ha m.-.F--.*"+4^+O,+4.,w2-. C* W i. . e r 4eov' hLek 47 l k ,oos [% [g ,,esmus 1. n 4's. -w
- =.
t i .2-L
- E t s.
2cy I i f p.e. . ao.6 in 9 M6+ g ',., %# M k -G g. '. OU NM' .,q ep g 'W. M (douiA bc'
- 5. m u t !n.et ut.,. Ad o ( 'o 5 :.v% b wo, e r,*
r u n nby p c:N iv.< ','y 'b(.W ) . _S*J1dyor..m N.k D W j 3 c.7 A , y_,Gs ) ' " hN w . Su(p b.. So w ) _r,,3 A . -. _., t,, s,. ;; 3, S 5 5 w u. si ~ 60+/..$)M,edae.sj,b NY 9bA 7 7 (. S TA ) a j , g, (.y,;J @,'2s W A 't i ou (. %0 ..eL,A-t uo HP, .t b A ( a.eu .- t i K VA i ,pm. eeD g dd'. W8 no.. d ,,gg, d ._.. e0m0 M L2....:s,>wq p ts3c.n3.r0 .,,3-3 z. n . o 0,m)C*)s u.m uvo) a b (.2.i.w.) <, m.J e.a J .. _ y b Q.m)(h)s(._Aneva,j dhs.(a.i.m,): J ,3 Yt -i 2 J .n$ -
- m. e-
~...,*.~.- -g Y man s s y 'is Apg M W W.s. h e w h c.W 4. 4 4 mm.p*.e we em .ge. go.e* es o. 4e. e to.. - w 4 any e. .me e, i et ek M Ig, ,W g a.9e 4 N y e_gg q 9'- 44Dh-9 AM Mmi Ad. a .L A f. + L @J d W 6 4..
[(If Su e..1.) % A v loo 0 0,0,. t G - C C Y - fjl. > $ - t i l 7f G 74 ~ i i a' a8 e.meem m .me e e-- -muse o e .e r eme.- s m. 0 gun n.m)/gw w%- y, /es.g y im.g,.q. (.n,2 n ur ya C n M
- G
=we e een.' >em u ch-n em.h-J. .e..__.m__ u.-i.e.g %e =we. +uma .ero e.ew a=ri. e. se )V):{E) , H :{F)( J8 6 )em - me.e. e-en. %.
- e, i
..me g eum..m r 4 ee-. =>.e wwe e-+ee.m.=.-4 g w -m e g< e ee aum.eee sema4 $.hhg.O m. 4y w ee gun e nm-e k ,ey, e ,,g.m ag.. ,,,e,y-N (v\\ =.8we 49 sea a..- .e- -m -h e4 p e- % e =.-es&e mem g e -mend a. esp awewe-.e- >= m n % v %.e. W = Auc> ( 275 -.w...
- sth
~ t._ - ~ ^ up i em ee .ee em em s eu a4 9+em e = w m* me e4-es .. y wg 1 e.m a 40' y tM
40 230 V VOLTAGE PROFILE The 230V voltage profile was approached so as to allow -margins as follows: 1. B vital bus was selected as typical. 2.- The following data'was compiled as follows for each MCC feed: The actual cable size and length, the connected load (assumed all MCC f eeders closed and no diversity), the cable impedance /1000' from which the actual cable impedance was determined. The actual impedance was multiplied by the connected load amps to determine the voltage drops between the unit substation and MCC. The g reatest voltage drop between the MCC and the load was determined for each MCC 'in the same manner. These two d rops were then arithmetica11y added to arrive at.the worse case voltage drop. 3. The load connected to the 230 V bus was assumed to be equal to the maximum continuous rating of its transformer o r 300 KVA. A. 8 p.f. was also assumed. 4. The worse transient was with the start of a 30 HP motor. l The transient was analyzed similarly to the 4160 V, that is using the running load prior to the start of this block connected. load as the maximum continuous rating of the transformer to which it i s connected. The 4160 V pre-start voltage was that corresponding to the degraded 500 kV system condition. Motor locked rotor was assumed equal to 6X F.L. at.2 p.f. 301 21A t 1 i l e o u-etee e ye ,-e i
t 5O l Ncc 4e Lwo wn a c_ Wc, i i 3 .....2-M.'l .. ? i. \\ ': D' V'P . 5?O, (Q) A ?, cs 2. ~ S.c! l42 ( ) D5 ~l]: b23V ~~ ~ ~ y ...._.%. _..- - u.. a-o, m. _g... g D I - = .._..s... -~ ~ ~ f zea] ?.S. b..... Q. t IF%1A__._3%J H - --- M bY"' ~~ ~ ~ I +e.__.. ..._., -... - -... ~. ..--++,.+=a-~.-- -.- + )._-,_ . l. _.... a \\ .- _\\./\\ A,.f u d-.. . 2.2 $.*.T.Q M_,A., 3C 3. 7.'3{d.Ya-.... _ b) (.7 f./~/ .3 I } d d* b ,,,,,.m-a e,e w ee--==e
== eom -*.au m. e- ~ * * *
===mo* - ~. JI._ M.'.3..b U' @ f. I 1 @ 0 7 "' D'1 l'* 1b LD) .1 M/f E O.b._.._ 3O_d._ # ? t e m au..sns.v @ 6:6)1. W L... __..._.__e__ gis op+ e. .gM-M--egs .6 + +
- M
- 6*
u* e oeen w+- em e - p+ + q= p _ -. _ _ _ _. _ _ _ _._2swn..t.u., h as!._.. A B M c 4 M._ gs ..gyJ e .e gg e ' mmw = Meapeta,wgeN p eaen.-eNam p-4me****s 'mW.6 W-9.=ma.".iDM.**ume** m'** .6 mse dur4 s--- e..u.- =4 .se.-em ..e ..e,o N Sw re w W.imDh.- ,eng. pmep eup -e.e - gw ee 4 m.th e me.N-_* pD.Nr e m.e4 * = 85 i'. e- --Sph7*ue'm'sh -ee e
- a..e ' e gp o g a
ese amiaem eie,. s ye.-e s mW
- -e.=r we.ge.-e ea-.Opas
> gin ee e myk ga e, ,i. y e -m noggs. ,,g. w w gp+w q.g6e Js.d4 . spen se+gr.4.G++en s we egg mm. + en-WG _Sh.*'.a a R j. ) %r g ~TJ 3 'e*-m. pug OW am.M e.es
- di
&b.Sqpe ghSW.8868.$9E'8**.
- e
r'M*-=*-**#e d' 9'
- '8*
- * *80
- N80 O**"*8'W'*"M****"8D"O**
- 'd"*
.e Saa. e4 $9 44- _ 4 m e.g.ms As D aig -gg>-6 4,gegs. e,,w.yees., e w+.m;go-4 D*@w.e..w .=epes-b.ene _w.d e s eaug-s. e. 4 awg gen s.es-e. .o go w e o ep, e-e % a+e ..ee .p. -o. $e i ...,. - ~.
i o I h w - w r m sm w m sce. U d d $ s [, UfM
- ',u P, *l o COM{6.,9t*1c,
, 3 HCG Cm ccio d OO d' hOAmi VJt4 (h sce rw. a 4 g., A mo ' M Ud 3nso 2d' ~ g a st~ eM W Ed7 M l _m. 1BM/ _ _. DSO ~ 2D'
- 2. %
eoS3] . _8 0t fe S$b I'O.3.! 2 B4.4. ..-'2.,T?, N. M4 '... .-..210 >-....... ..t.oS 2 ') - - ' o 2. I... 6 d -.. it\\f\\ e ,._. _...... '? 6 T/ . _ __.. _. F.T.. o o - 32[.._ __14 7 .tl._ e Y 03_S_ . - > 2 - 4 'M. i M R.. _..._. SCC - 11 h5 ' _.._ . ? 7. 1I O____ .2 4(.s. . I O 3.. i u .e e.._e. OO 132 _ !3i. $, 3 ). l.._.._, 93 (., . __.9 '4) __ k.* 9 ). / ..ee.... bI O r._i 91.3 e .. 3 'I) t I70 $ 'S b ....C. N. e... me p.amm ee-1.e u. m$s ei w =mev6eseSp4==4+mEngme<e
- m.
w-weeegas ase e+mr,. g.g* wuw em em .ee,4meneenew mg-e seme e,-Weer e g e me-mq=- .weriam g %egmeggyus e g em. eem.mp w.e. m**m 4,wm-egh.aye emme e@ ea.*h-em--tu Anearee
- Wi W to meteselbe 4 tsp *h ques 44'..
e >a demm.,. ,..s e+-e..e e .g e ag.-e_wsu+h ohe-e'=nte-< .=egs-- am., an-eme +a emen. em "w* s'* eu m e.*me=.* u M . meg a em=== se h en+eg4 s. essese ye1W, gin,i Mg eeen gh .w.m, ,w g,m ,we oemalm m-e,e w-m.m we m. ee sa a ep M WWm w+ u .-e= mee aem,e@ u eh = enmuuse. = t ..N.es Meapr.e e-p age Wmmapoen me - e,mege ggn 4 4We- += +Nedni.she* w geei g44memenp eg% w.. tleum4 e gg asm%e ,, we em mes., e--mepWe em u.= a
==i-mulu e N + weep eden,aee4 usengsp wemme d 9 hamm.g 4 .. sees - de. 996. g sw 4mmee awemmeesgus. g h wi.4 a me-ag. um m h me si.-'ummumpee M ee.nse,$g..e. . e 4w m. dem - w m ergy mi.e-+ %- a.1mme wmgg eu.phy +g@ 4W s,4,sa-o dete e.m-4 euse-eae+4*e>+ _N.4ee M4.Se'888 $m-Wm.-
- eummmeaudse-gup muygse mlDamspe.m g.s e.a heag ess - a s.e+ 4mayeme go em etemmen h e. w
.N um g-es,eep4 eein se asw e4weie 4ew 9.- u+eug3.m eee e .se eop 1Efh 4us% 4WD 'emM6*1D-M em-eb== --e<@-maaw thester4*ew4, me h6 - _wap umeeg e raw ehes e y e e$6 e" -r.h*bt umet**-aq.mmnuM e. euk--* 4 sammem -m-sa4W o. e enaed.m e a 64D e %eem --g.g et, 4 s .e.. l.
- 4*
rW th.d'**WiMh'htpW P
- $ gg es Wemmuy stegese e
be.,a ge,mmp,e-4 m.ep ie.m e e .. m ..we m. y9.m.-wwe p e<msen.e uge-e. = amum= e<+.e. e gs e= as sw-en-em*i4 4,mm-ms! sp. ..mqm eWeen.aW 54 m ubhe mim te e -ges,-s tyesegt -iaurub8 m** 'w yuma ww- -gy.mmm ,4w,m. gg a ep
- eau, y
e.e e,e .eemw,e..en.% %m a gg -,ee,- e e >u ma. u M ehe b u*rtethodieg gegspass4 a..,,aan ex-ame d auugy .g,p, ze+ ee 4e dy, m 4.,+ pe qw mq, g si m_, ,g.,e emy + m ae hm.99 .mie+ -,esee ++ g mphe. 98m h- .**O --.m e,-van...e... ..m.se. O f u f h _, [i b ', i H ; e1,b{ !r- 'e m_ x m a __e._. .~._ n.._ ._e., s. e. 8 [ u.
o e .. U
- Y;>
~... A s . I/ w e.de d. j '3 3* T I..' C h(..; d _ t lo b 1g _. - (.9 J.. J (a.. - 33"3 8l. (,,
- 2. b ts 4
- -. 42..O k.tro.p._..1_b. G # 3
- I b.. T.,._3.._8 1 2 23
= s s . g., t 1 N 6. ':.
- 9. L t.
WC. reaeeb.[h I,i r 'l i l h._. c'? 5'..( ' >.. = . D l b _ g M v4 IsrMC., L . ~.....-. -.. '... . %. *2.. sw eh..,.. 0 4 / 3- <...+h'100'_ = cA ... __~. . %,e (... .V.. ei a m e, c.,b.O...W.tuc % gy d d (- d. k..o M __l.o 8 i y. q l ) '/ a t ; __ $.,. ? s. [ l ..L.,.. . O '/h, Yg*rQ /.) ......, _.. _,, m, _ _ ~. ~_. -.... _.__. + l i P s . t h 4 4 W-e.. ..a_ &.p -.e w e e. e m. -g_e g M.a.s -g.e..ei.e .he-,., A.* e
- M M e, g.a.
WM - t
- 4 Mi g,
..y .4-g- ,.a a. + em M** n.M- - ) l r 'W eg. me e .g 4
- s. p g.4 e
,gg.,e g mws 4 , e ea.m. m e .e a.. ..e i.w.---- g.- ,.yw .-w 7 y-y--v- .<q.-- r +*. - e nwMi-Y c-'-m-.---w.-
% ;; [ ; pr.i c w k - i;& a a q ^., 53 %~ n n. % i Cs-Sc 2., 2 2 -) L( I_t g_ __. I m.y i 3., N
- f. v%
pg
- 4 h' Li-
. -
- D,.
Z e ......_....._-.~.-...__._._..m. a l J. e
- & f }[q
, (.m3 . 11: R %. ^%. <- .W r p (ooO .g 4 .I6..9-fj,tBG.... _ _.. _.. __.._._..s __._ b c,t. ' M 04 IC"L. ( go00 \\*'#' .. _. '.M D1_.y 0~t 3__.. . D '.%. ,v V ...m 21, - 2.w-e. t e.A . _. II.v (. o.6) = 8 7/ues..= 2 m 1 ' a.2 2_ a s W 4 e . q, v.sg ' m.n (.w.qa). so.t../ p i_.:._i.ooz4g.3o 4 2: u 2, 2ci 4 lt. 2 4 k'"- l% g 'S (.s P, (.)9 9 O'l 1 t T* 0 0 'L +] 4 ' #( 0 f*Wf *. b*'l9]fG(*<&l 5 2'\\004 l a.-4r M.eas.a.. e ..e ep. e
- p +. e sene e e a.
s 8 g ...~.4
l%;[~ \\ y' 9 e4 p p - 2. au v v + o (e., +. c...., ) 2.0 a / 1,63 4 N :.a t L l. rf-;.u.b. 8 t,14 g. ' ', '., 1 c u as see 4l> e4. 4 IF I (. 9 74 ) 3~;G IE{ "I% b ~,37 ..{Il!'-LEI (~-jc7_ 5 / f f**< h $ $Y 4 \\f / lVk :~ il C'L*/, m 7~40V "- 'i ~ rw e 4 es ie ey. m- --+<>.e il e c 6.,, y, $b..g.. s {. f.oa 2 3 d. D o A 1%.sj.u]3 2 9 n.m - .s. w, '~, o L... a q,(e.m )(.n Q c g p '] J 2 DOY %C U3'?'l N& J ' ' y,.) = u Q '1 k W .. b I jj
gf = LIGHT LOAD The voltage profile was also examined to ascertain that the distribution system voltage profile was within upper voltage limitations. This was done by making the follow-ing conservative assumptions. 1. All cable impedance was neglected. 2. The 500 kV system practicable upper voltage limitation ' was determined to be 1.06 p.u. at the Salem terminals. 3. The loads on the 4.16 kV, 460 V and 230 V levels were assumed at 3 MVA, 91 p.f.; 300 KVA 0 8 p.f. and i r ,c 100 KVA @ .8 p.f. respectively. .. ' #*'., }; ve','l., ', 4. The upper tolerance of the 13.8/4.16 kV B.W. adjustment was assumed. 301 22A " En 9 w e e I l l
4 k-. 3 Let 60 (lgWe( oa.C c.ch 4., '2, Accot* M v k (exd,(A d 4etw sb 4 Q. ga ouu p va. .. _ l s 7 f . -.,.,,r M>l l'@) T, Qt ]11, ns n ~.. N Si,da s 5 3. 7 ) ,.) No ll p, w l.. .___...-1 .a'. (.~~ ~. 4 [., m r r" t,
- l 4 ';' ('
) l _ ~.. .. _ " _, _. l.... _.__... : _._ _C.. '" *, ' ~ ~ . ~. c .s .-----.e_-. ... _ _rb i m h r._ h._4 m i o._ . ye..IKy QR4 c.f m.._ _lr2,__.=...p.m.t 6 k Ar.s m us e 3 m V A loc., d. '30 id s IM _. _.. 2 g. r. 2u .. p. _. S. I 4d i -V l-- - ~~ e .ue..-- ee .e--e -O-- .e ....... -.. C} ' LT * %. -. v h 'O ..t. l 4.d._n % _. = e ] ~~/ 37,, _ , }.Q(._-l f. O M. 3 .1.~.-).9 I b - --. 2'l f [ l . i u s +g om s y..,..a o_m. 3 =. m._ 5_+q. 07 i c ~. -. m e. /___._......_ ,a ..h b. \\E \\b" I idl.(9.%C(,S2.qi\\: . n,9 my a .-E i 9 2. s5.- - - - - ...... n.- l.o r (.m h. : \\ cu i, A. i 4 c-p t. To U GN% M LR ,b% t a y'. 9 -,a.mi g +* L'f C ',o + b N '" . f.l III V
- d'3__U n
!* Ob !, tog, A .v0 f4'
a 1 .e. a J e &.--m J4 i e 4 1:uf / . *t b t o ._.. i-O bh'db I d I I #' ,g/ ) b i ed g . l1 v. .Lt(-UJL. .. _....._.. _. _...,. 7 _.... _. _. ~.. d,.d 'l(4 0 V. y Of 7, 9
- D10
..,, 4, b 6'.i).% 10 C N V h k oil sk ~ .. _. _ _. L. -.. ..___. _ [os, (* h ( ' h :' S G.. _... _. .. _. _...... ~ _ ~ i 16 b3 k 3 . y _-...--.a. 44.?. <. 7!, r3 .g M.S4+ b g.m hp.p.g.' r a .@.6 ea.mge 1i. w-a m e,. .ee +e ig..e,. Keg..e em ya,. , em p. gm,g -- _e.OS m.
- 46e Pam. 2.a 4 i.vsd uDG: 2.e 2.os
= > s.s n L v lY % 1.075 a g n ..._l. ..... _. _g '. _ _Q, g -, [,g . 3.s 3 5 =3 e e see.e e.ee. whe..-. d as <'. Jyo: f,. w, _y ' - *Y' ' f.egm Ioo WAlwd e' ~a. _... _... _. ',..I ' J'$ -
- e 9
J +-... L. c._ Fr 4..(,. ' j w. 6 y 0.'tocc .. z.u.. _. i o.. _. _.. _.... _ _. _. _ e ~ ~ g-(e)}](i.1,ys (i. ~ ,] ] ~~ ~ ~ e q l l b.. } (~f., ) D lf h }l /M I-f', } \\ J u-w .---4 w . +,,
a h RCP STARTI!1G TIME t PURPOSE: The purpose of this calculation is to determine the reactor coolant pump starting times with the pump load under cold and hot conditions. Actual RCP cold start times are available for comparison of results. MET 110D & ASSUMPTIONS: 1. Actual motor and pump speed torque curves were used (attached). 2. The starting interval was divided into ten increments and the mean of each increment used in the analysis. The results of each increment were then summed. 3. Based upon previous analysis the motor terminal voltage was assumed at 85% at 4160 V for 95% of the total starting time. RESULTS: A RCP cold accelerating time was 25.46 seconds and hot was 18.33 seconds. Test results indicated an RCP starting times of 22-26 seconds e - s. ~. - 301 24A l e e emm
I 9CP STop.m t06 ~TTs t i b) l'd ) ([) k(2 Q) If} _ _.--.. -.. &. -. O b a 10-.. .p C.+
- p. Q 4-
...Y. .... derm M_4..._ .b!w Mr. & /Wc T._ . r@c T...Le d @ A Lo a d L' - ' W _. .__ _ _...tY 4 0.. _. . _.t 7 2 3 L.. 'o8 232o init ly tu ' to ... _ _... CC._. . _. :_h..__...... fl914_. (S cto I.95&J._.tR 2 ~5 0 6 .... R... - 1144Z____. i$ 2-Ho l)~817_.._2.e L-* 6 _ _. _. __.. S S C a.. _ _14 31'o tsoS3 2+ 0 _. _ _ _ _ _ _ _.. - O 1_. I $ 51 #l ' 2 fo_. GT10 12h3%._21) .. Fe_%o_ ___.... 8I \\ c4 t o M 2 ___ M .-_Lov20._. Luko 7__.._le oof w 6f l.t Milf_ 4_i_ l 4 3 t o_____ tGLI O Cf - .- f. 4 4-._ -. .M 120 __ <7 6W Ra^m-E . _ _ _ _. _su-40 8f i.9o _.3 sM2_ '9 2ss.so LLn7 22 40' V Cf 2,3 o 4(o3J, __,133 7g'octn _ __LT M t t' i Tu to O T~O
- 1. tV 3 34C~3 hI(
3IJ2.9 ._3 UQ._ ?. se .e_- e. CI.- O Mite T :.1DI(2qs o 03 :. m M J at 2-Lu v% n,.o o o &-4 v 3' ___O k._ft.dn k [._. h S W ?._ -. e85P i..],...h..L.S h._ _ i d-I.700 r- (> M-bc S ?P* W & o} w n..Z ___..... e .,i f $)h q - -. - -.... _,. ~... .._. _ ~.... 4'h N WM '. 8484 44.S*h-O.*..-4 e .g .4.,.- eme mg ae p-g.e d 9.-
- W+=
4# .W 6 O wn enee. ae. .*- e e.mu.e -e e-esa e.w e p we. 4 ..e,.._.., .==ne.. e.. e....w.
9 t 9 St s f/ s i s en- .._.. ba dh tw A tio+ 1 0 (2 1S 9o 'tMl . _ _. I 4,. 4 i 04_.._ _....I 99. __. . Ik Y!)... l.- 9 L......__ _..... -_ l ,s. 1 i ..... _. _...... i o G._...._ .l.51 o _ _ _ _L(4 07.... _ _l.Jt f.. ~ _ _. _.._ _.. :) o. _. _. 2050 l 6 ! i3 _ _. IM 1 N -l 17 0 .[4 C7e .l.'h I i 3g lMO \\ 7 t.c6 '2 aj '.l,-_._. 4. f I ps'o 14 uo 27-3. 47-(ofb l N 4 L _ _..) 9o __ .1.4 ___ . \\ %W. ___. 2M ?!c ' 33. -._ _.... _ J2 Wo i ? 933 _._ _.' L E L5 3 3. __._ e-. 6 =_ 586 _ 44 e W. 5* W e ggs -W.4..stp*$. 1D.' D+_=.W D+9 4h*-abe enh ee. u.a. ,n.e 4mm me.4e.sm.a -a___*M _= w gw pg,, e. .e_-- .w.,e,.e,w,_ ..e. ._.w 3, he N h 9 44. _*e.1-Gem eb.M.p e e.ds. = 40b .'*W m. WD-6-
- W.-+m
- .6ai.
_yg. em m e._ pha4ab pe ,_3D M M6 46._ 41. e .__g.myg,,m, r y N4 >%M _M '& 4.% uN. _ _ ut_\\ \\ a ,.,_a.. 4 e.-. .4 e op. So - = .s- _e_.=eem. e,eo ,_.w
'.. t~' "] .J t1 n..i. r-. - -..v... r---- I .- r-bp q.
- < U
..l..... t~ . _..2..- ..].. . (J.: .p. .j.. 4 J.. o.. i c y 35> .f ' ',,........_.+.c.'. _. nh ... ~.. i,. l H :,: s.. ..".t.... o' y (1 .... ~ ] . ~.. u (r'.,} L),_1 Q n_f,. /4(. t 'W' .g.. c n,. tn . I. s ;v U s; .W. .C..t.w.'......*..i.y., 1.> : j ...a d. 2.......... { N.,. I Q. y .l. t .o I o 3 1 s .],..p-~
- O J T-
~ ...... q~~ f l- ~ ~' lg A- : r I CA! I{.. I.: I (L. 0. O.
- y O
a, u_, g d" 8 ".* 1 ...T.l y.. O f.*. '._..:.. :.4.'.'.' ,1 w rn .....,l.. N,- i
- [r&
Y... g _r j 1 w N. l
- W
... m .LO. JN..r0.....IQ....... 1.. 4-w b., n. t l M. : l l .c. j ..q...-:' 'O <n o., f.. J @..cz .I l t j N J....... .....a. 3. l O l O O l m -. r.o ) 3 _m I cr..
- :.I
.: ;I-N
- l... :.
..,. ;. _y . _. _. j _.. 1_ j. . l ,s g g* "La ,' O. 3 o; o. O w U -l l 1:*. O O. m. w Z I.: O Z N W -O / j 1. C O' Wj ....... :L.A... :.. H ,a. [E' 1. /;. 1: u. o o .yIi l ' in t - O. g.j ! e 10 al _;.:..l... I u.. b. I j
- l.. :
j O O ... ;. n J....... :
- n.:....: :n ;..
! tz: _J8 f t
- y
l W W g '. W. _Q,,1 w 6- ] l , O C O C -* : I am o o.a.; b 6 1'. ?. i
- c..
- 3. M L
g CD G. } }
- 11. ;. :.:... ; *:.;...
.Z OO.l i 4 '/;; H F-" g l i....I 1'
- 1.. 1 :.
.l :, .l Z Z p,9 . u..w :t - , {' ' ~: I-w w m g ta. 1 I...i im l l... ..:...l. 1. :.. - -u -u m = u
- .......u....__.;.
(H e =j w w e..... _ _. s i.
- s. --
N, - y w A A cci Pl.. . 8 eo...1 I c3: l.. t i. ... l. ;;.;(). ;... L.. {.. :.j ...1 .Qj.- .l....;.. m t i I se t g .. g .g+- 1 {..:...{........-...:....l. .-} I. l i I l l q; U"n l I l.. .l ......j. l s ] l 1CE i ? j o .C .J-l O C. i f tu I l' I .s2." .,..,. t EU N .:t-1 ) Ie .l. ...I.. ..{, :\\i t L ..l.Q. 1 .o.,o .I L) ..y hl p. Y.. l au l 8. 1_ r o.' t, l N'Xl... (..n~5!o l _.! _k.a. L._ - I %.7.. _.L ). J L o 4,, __.. : _ _ - a i . o.., o. o = 2 p t .l \\...... \\ .L s. I N.; %
- ._ t l
i l i
- i g
g g ...j... [ i g l e. y J w. ,o o l O O O O .o' O. O O o c c, es. . w.... M.e.. ...q. .,O... O O n.... i l l-l g... l j 1 4.... -t ....._..T. __.__......_.r._ i m..: i i i ., f .(HdU. 021) 033d5 SDDiU!)H3,NAS H33H31 i..:.. j... ' 8 q h p y
a CORRELATION OF FIELD TEST DATA AND CALCULATIONS PURPOSE: The purpose of those calculations was to use actual 500 kV system voltage and plant load data in the calculation of a plant load profile. The same procedure applied in the previous calculations was utilized. The results of this calculation were then composed with actual measurements. METilOD & ASSUMPTIONS: The field data was monitored over a 24 hour period by Maplewood Laboratory personnel and is attached. Readings at 1600 hours were arbitrarily selected to use in the calculations. RESULTS: As shown on the attached sheet, the results of measured and calculated compare favorably. 301 23A 6 6
^ ,/ g / SALEM GENERATING STATIOli, Ul!IT 2 VOLTAGE PROFILE PIELD MEASUREMENTS VS. CALCULATIONS lV 300 kV 520 Bus kl) 13 kV ^ Bus 4200 Measured No. 11 No. 21 i Sta. Pwr. kN Sta. Pwr.U g 4156 Calculated 4 kV 4 kV Bus Sun s O bd 4160/480V 1 465-470 Measured Lumped 4 :V Load Lumped 4 kV 470 Calculated 5 MVA Running Load 19.27 MVA 460V Bus kl4160/ i t Lumpe 460V J30V E Load Running f i 580-KVA 235-239 Measure'd ATTACllMENT 1 239.1 Calculate'd To.Ronponse to NRC Letter A1w. aacy of Station Electric Distribution 1. System Voltage - Dated August 8, 1979 Lumpc 2: Load Runn: 147 KVA +
o 1 D At & L e M E. ' O P 9O RI atiNLi T) V Q,,g (3 te $~ G i LP Tf a NLW f RLC00M Sol $ $02) N(W FHt(OC*J $024 4 Hus 4rct'ON 2 l I h% l l ( N' I w ass hiai? ' (18 $ 2 D 4 .s y .. s .n to 6 6 $18 $ 2 (g b{l h i .g 4 9 \\ S fn J %' ] s 'h -l $00 kV l SUS SECTION I "O NOI n6 $ m No 2 STA, Pw R. C b ma sfA pwg y 1 13 KV BUS 4 h0 2 100 M /A Q 100 kv.4 b4M 'J NO 2 CEN ho I CCN VANN 1209 /VA .X gg yg 'N Q 3H i NO 2 2S M VA 2 b MVA ha 1 i AUX Ph14 21 SP is SP 4 * / Gm UPs gy p g;g g 't a" O Q G- --s p- 'E O 9---gy.j_ v 3 4 T Gs e $6 3 uva N f7 j fp-1.lk iO+1- !, ! d H-u-e s y O t g I h l T e di d t - c a a s 4 KV GRovP3 22 12 SP 4 KV GROUPS -a* o- -a m-Att \\ WR 5 'S W2. "a*tL' f Guin f os ( 2$ WV,9 Pr essv l 34 C 2Sav.9Pr 0 ho 1300 MvA 1300 MVA 2 'y g w g u t Cohlf avCfiow pS *H 2 ti/4 sv esuv k 4 av 600 A N\\ \\ l 1 ,,7;,
- m T
- e. V % f( W OPf H4flON'e gg
, " ".'t77 l SALEM GEN.. STATION .v,.. ... u Puut sC St HVtCL [L LG T N#G p LAh COWD'AN f p;g j l E L [Cf HIC Pf'000Cf 80N Ot PAN f Wt NT l as
' ] h/@ '- ~ ~ ~ ~ ~ T6 l i j -i i i g i i j i 4 i $tu.6 lui i\\)vCL.GA& ;$b W b% b l $0NUbh. l i RGivf? Lern, l 1 ? e 'NG d C,e.rJ - Cckhul !,b Msbei oS I, 1 l ) i t I .Date he: JY/ 21 Sle Ibr X k ' l 8 'E Mo IW MW \\ t Lc:My i 1 klk. '.gic %d A i bis ibil:<,, Ags has ib hui l { '1 % # 1000 3 h. '. 2LQ)
- 16 4
.ii.e.Ven ZCCC .l33, 1 iilm'
- 2cco pzA 16,3 1
j lIOD ',3 74se i 234 0 !
- 16,'4 ;
t.t.esa. !ZCGO ' I.Z Y l b2OO, ,3 Me. 7BZO, M30 128 coa ' Zlco l. 06A
- I t.e.d
!202 0 .146'
- HCO,
!3Paix 25t0 L. il6, I
- if00 3 %.;
'26 0 ! ! 16,i ' iltau: !zo(O. 12 3 !3 Nse -
- 26'>O i
!16.f !1 twed l2(CO.
- i3.0
- h. i1600 :
i i17CO. '3 %,. .26fo ; (16.A i .I ihd !ZO30
- 13.0
!!?CO
- 3)~cise ;
- 26 'To '
i 16. 'i' ; ll Saa: lZO70
- l t3,0 u
.I63 ' h We.m f !ZO30 /* 13.0 W i ! 6CO Sibi 1600i Aco : nw 1c00. lis z. i tILew! 2cb3 + . i30 a i l2.000.l. _ !! tacj
- Z060 +
130 ex _l 2.600 ! _. ji 6,z. f it Lc~eq l2CCO l 12. t l I i 2.1C0 '. 4h' l I6,3 !22CO : .3 %e '. .l....... l Z.3CO ; l3 ibu. . '.2./f2.0 !..__... ! l 6. 3 L lI t.uw; I2020. _ 17_:7 ..i Hio 12ACO :..,. 3 Nw i.. it.6C O !._ _ '.:. 6,3 ' !1 Lc.w!.
- 2070 +
- 110 n....
ll-7.Ml0 iCO ! -.J3ibse i !Z6to! 10 3 h tau' W IC> .M ECO...... !3iWse. ..$ 2CCO i.... !163..... !!Lce !'2tYC ....: 8 z.7 -. c._ !12.6 I libW @dCOi_ ' l'/.0 l-li m '. _ l2CC0
- 12.6.....;
) j.. - 0 300
- i.. li0400!.
' liW. . 2.3 90 !...... if.o llAd f.CCO!..._!i2,C ... _ ! 0 stO.._.... I U:x. !E400.'..._. 100l.. ILeser ' '2CCO ;.... I lZ.6 [._ I I i L_ JO6001 .'2 G l6,1 L.__. ilov 2CCO. __. _ it.I, _ -. j..._.j0 7CO L.. I sM... '24C0 ' _._.. .a. O ....[._ l254/O 16.0 . it au 20D!. , 12.6... _ _ !.. _ 4 ..joGCO l _ I,342ai Us0 . I6 i. O..... Zoro *.
- 12,6.e _L 3
Z570 16,2. - ILdai 2000i ._ [ 12. 6.... ! % e. __ !O9CO . '.. _ I 000 !.;zEtel.. zw0 r.__.! i4#.__.. ' a le' !zozO L._..; 12d '._.. 1 zf60 ' .. 16.I.. .. _... _ LI.cw... 7.020 L_.'.filji a 1iCO;I.. 24ae. i I ..t. 1 i i
- j. _
q. .. t q . j._. l ' J,[, '. 1 .. 1, I . l. ...p. .. l g ... g.._ Sharp.chonfes frm 2000 Ampres k, Mindnwn ce, indicalec4 $lvu! $1my clxinges Fr.w 12.i6 Merywd +c %w n qs' 6dc'ofd (tboce; . ( 4 i .l. [...,. ..,.. a...... Lw,. ...I..
- i.....,..__ i.
,t I '[ ......[1,Jfg3 __.akl[ m[1].. m._ ... J' jf . 4._._._.f_. _ _...'.__.. I. , 44 I f I w
I 9A cA g 1 .3/u-ID1 h,lvct cnR G8i\\1 syn liC S Iwnh N22..Q)cd-Co M, k m W,',q % tv7Y e<n t
- m. -, a b
3 4.l'V Dole Le 5Dlif .S d i sci l ; i 28 2C 2G ZIl, Iz Mitsof : 572.- '.13,3, r>f ' ' H,)9 't, z.5 'l, M 4.20 m i60d ,620 13, 3
- 13, i
't. 20 '/, Z.7 , 4,20 4 'D 170 0 S15' 13, 4 ' I 3. 3 'l 19 4,21{ IE00. 523
- 134 t
- 13,4,
4,20 4,27 ,: 4. 2D , //JD t l t.20'
- ,, 2D F)OO 62.3 l 13,6
' I3. f, 4.2D 4./A .M. 20. ' 't,21 2CCO. . 5 2. S' . I 3, 6, 15A 4,22.. 9.2d' d 22 4,L4 2.10 0 .it.4 ,13. i . t 3. 4 H,7.J 90.j 'l,LI AZL uco. .' iti . n,6 ' ' 13, 5 't.22 l 't 2V 0,2 a,25 23C0 .$z!
- I 3, 'i.
13,i, 4.20 4,26 4.20 Va0 ivf,Q aqco. , gz 3' i3,3
- 3g '
, </,2I 4,ty 'l,20 'I,21
- 12-NJ d 100.
.621 iL3 1.74 4.z0 4.26 'I, Zo '/.42 i DLOO. . f24 l 15 4 ' 13, b' H,21 'L 29 'L 22 !!.LC .03Gct ,52Z.
- I34 I3,'.T H,20 R,26 4, LI 4.L' DICO.
. 67 2,. .i f 3 41 13,i,'
- 4,20 d,Z 7 4,21 4m lasco
. szs ' i n.1 ' Is. : ; i 4,zo nu 8,2, w {0600 .622.
- G M
,I 13, '/ - ! 4/20 4,2I , 4, ZI 4.20
- O 70 0
' f20 L. .a l'3 3 l 13,4 i ! 4c20 ' 4,7.5 i l0r00. !570! lin i
- 134 j
'hl's i 4, 74 ... 'I,20 '1,20 , 4,zl 4,20 . 0%C. ' T2 5..
- a. l 3 A.'
13r b ' , dold 9,% ' 4,21, 4D i iiCCO. 424 !. _. ! 4 !.. 13 4 ! 4.El ' q,27 . 9 20 - Hm i (2t i.._.13,..l.13.4 l.. . i 13. G ' ' 4, El ! 4,E6 t ittCO i ..,i .i___p .,i..., 4JO, . !f.C ,i. I i.. _.. .g. . f..- ._.,f l l . _... j.. l. 7 -.L._..., 8 f. . L_.... - _t, .( l .J l [ .i...__ i..____.. } L.._..;. __i l ,1 I , _ -. _ I l l .r .i.. l ...i.. l l j.._. t I' i 4 ) 6 q g.___ l 3 3 i g } 3 = l i l t t j t' i .. e i e t a m .I i, l j L. i ..,l l i i
- i j
1 i. l f .~ L= i y .,. a . -4g cj . -.3y.u; a u,(7 i .t 1. m.. ..d ,I. .i... ,..s ..e
7 _~ _. _., _,. _,.. f i C.C,ScLocld b l l l % N hjuc h 5; w lSrn ' i iW$ 4 ^ l 'r i i . i t-G - 75' -i i
- iW 2. gen.. VAul C 62iwp Ls Meopv. etaedsl l
i i r i i 77.sp hh.np 1 i20 P2 C, ' ,"2 6 ! 26 ' 2H i cov kV ; ADV Ml0V l41' . Gl ' ., & l Gh, \\ 30V,
- 7lSkb c.%F.g GoEs:
i .I 4 l i I '3foi'9 'llcar I N OV
- E37V l
- E3W M'@N l A49W P.
i i l 4 g 57vi %37 v '. '470v' '9 7(v ". l. 3Rak
- iPau,
NS0 v ', .2 l l' .e t l. i. t. i . 3bw '. !llow! .WO v : !2.3 7 v ' l236 l
- 470v;
,41b'v. i. s t 1 i i i I i r ILpxer.. . 40 V ' 7_3% : !236 v. W67 v;
- 47fv.
n
- 17Ai.P_.
f i j t i j l. t 4
- 7.}nde.
. i te.e'.
- LOL'.
- Z37v j 2TV!
{Wfvl 47f c i ...O ', i de't. i.O' I'7.3% / ' f l { L. i i ( Z37v. i467v, M77 v, i i .i a i...__. i3FntW... ...q.. o.. ........ 0 ' .4z37 v i, t w v'. 467v,i W, 7/V. l l '3 [Cein. _. - .l {...... 4... 4 l 2.3rV 4/>'7 v, M77v. -. ~...
- lLM
', O.. i JZ37 v i i i i i i j 7 t. .k. j i .t.- 1. c _. 469v. '4-W. i i i 0.. 23Tv ' i7_37 v i i gs,a ! ,Ebd f I I f .t l. I i l L I i l I l t i i 3....q...._..,.. .i l .g [.. ..... j ..g _ l 4 I... ... t ...i i ......i , -. ~. ..a, 7 t . _ _L. L. _.-.. t I . _.. I I i .4.._.. --=- 8 m:_ k l l ... l... _... f.... ..... _........l._.!.... .p..... .__ L .,I h l... .[ .._f. ..... _.. I_.I i.... _. & ..l l. (,, ' ~. ...i.., t .........) P 9. 7 'I i I v
.8 il s e h- -(}!>rtu(Ow &E.\\od O'V f ' g,,, o c's V.S. - 5 7 ')
- 2i s" JM6
-Ti- -- Q ) 5).n m e e dua \\ ' oud d a no v M t j 50cVV .___.___I._-._._..__. + OI.. ILoo keL l ...I 2.e. o o. Q % 2... _. _ _. _ _ _._.- KvA: 19 2_.3_7.... _e _. 3.S (4... s... _. 5.7 + J. 6 2.v/ 7 D Ylh8, ([d 1, N O $ $h (9 N M h-.*b. h.4 p CS$_(SSh520
- 044 0'by a.0 271
,ogtr7,_ f ._3.5. 44 3_'t_6i'.) _5 , g,, ~ (__. m_.._..j. u u @.1...(. ec4d.32v, .ti4.d.ios 5 _ _ v Q g.uoT6G. _ ().cotISS t a. 4., g,.1 _ m. =.=<++=.*a.>.e_m s.. -e-
- .'eaa w
e em. .w.__ __--m._aw ...-.ee. . _. *e. e m. ou.w- =. + - - . t 'I 4.Io5 i._.__ 4 ,. op e ~ Ma.MM.4 __.+_e..W e t'*_ ees .M m M_,_ .g 6 _eM_*
- vh_.
4- ......h. _ e_d.u C'. r.$... .. j. o u,>ano r. o+ A +.J.pt n _=. _. ca_.. sy _. o_.2 s o 6.= . o_ s:s e g.. b 5 ;\\ s q4 J. 3 0 5 -: _. lT1 j,(ot/6 : 2, o..t.s !"N2.co ) " . _ _...._...... _. y 0 u 3 0 4- _m }.; 71 l --(.cu35) b7o . b d i D. ^I<_.. _. 2 44 2 }.tY36
- "iCS
/ z. i M W .u M (,o w,n S g (ottobd. iou.) o q g g.b3Sl e.g n /2A t 1.... o42 (.. % 131 4 j.%M.).._.. c AD A.l* ..... o 3 % 4g.o2.4 b
s U. Wr_3 da.. -. _ s,o o w w o <_ 4..A _8 +D.._N t-o a UT c...%-.. W.. _.. - s-d MO ll8 Soo y ...~............ _ .? 6 f...; ) f. _. 6 4 2..f - - y u?.654-('0 24 i d'
- C 0 l'7 J ">)
4 W Y 1. - ~ g3 4L gj t 3 u., IbP 06'7 T. _, g,g. .11w o. 3 '3 4 f f. 4053S. . ~. 4 o7 b ".._'.+". ;_ _ _ _ FM8 .. _... C l..... & _ 'h. _....... _ _...- _ _. 4.... g% 0 .... g g s...... _._ _..._. _ . w W o, o m w e u #.< U S'. s )-._%.__, !,,, S och v vo glo, c g ,v, J. r. s t.* vTc._4. g-s,4 r3. g.... ~.._._. J .-. _ m / i$ 2.o god , 0 4 '$ L l3. M, t'/
- b. 3.. -~5o o -
512.T t ' Mss tj (.u2n > +.ocq 9S } / m%) au d' 7 INg .-.~-..-_.. .. _.. 44 ( b u j [345 s e; i sc va g,
- 7..
-.W S '., r E g,g f / 1'T..l 6._ r. _4.. %. o wak us e.1.. A. l_3. _.0_.._6. _._A. 2 00...va !. _4 ~.,.. _. mg.,se o . mew-me i e _
- w e.e e m.me he
.hM.w..e 4 es h*..* p w' 66 ,g. 8 ~. ...e +.on,...-.. ..r.,. - +. me--..w..-.. s_.,-_ I e. eD e-- aw..=++e. .,mp. ..wwi. eW wp .,..m+. p. f .-.46e. .m -%..w.ee. w-wg.t .Me w.a.gp e. 85D. W.g - .m e-- a.p.m e.h e.e.hau,m eg. gp e. e 8. 9*.=e4 e .t in.e..g..$ w a m.44e g meewMe. h.a
- -WD--'
e $6.' N ge._g i .Db* * - + MM b 4 .d N &. W.G4.WW.&M..y.e. .-h.gy. 4-pgg.h4 4 . 6 6. 18 m > hee 1 g ,g ..M. .~.. .M
~ t 1a . D,6. /I ts od. U Ne. T,.,.Sa g ._..._...i...__._.__.. .. _ _.. w W.t f ,,,, _,, gg 4_, _, y n,4,, _,, p 3 _.N. r. w.b.. _ q . _._.. q. _ - $.Fu.c.f eg iq ~ 9 .. _. -. _. - _17 C k'b" lib _ _ _ _ II b - ? 21%c en Ey f~. n t. to ..-__n..... _ __._. _. _.. J r. %. _. _. _. j. b Gl%ht. U 4'I __ $. [ SnQc. % L e.s...a.. %_.3__ 3a. j b b._ToL'/..b @_ M. l.. _ _ ~7 0 _ 22 609414 E Ef t( tahcc 333 M3, .. _ _12 h C C-337 ~ lb O GSS.S boa d ?._.N.3.h_?d.Ob?--5 AY h W A_ 1 2.L< ' %6'00 =-.-- i n_ _q. b.- .os,s ' W 0"?= mo too a L. s i.m , n-7 i m M.G7'A> Mo y w -. _. _. _....ss; ya a.(. n3 s.. . 4 90._y% n ow s. s 0 , s, ... ~. *.... _ + 1/ \\ll u u k.. _ Rd. COL d - tc O 8 .fo r d espydi n 4s,)chw M, S __ aA.sooc osy; - M p.- (m P 4 m % f> v 4 J N w v. b." ..hY @_ _I D 4 b
wa. 1\\ ?. ?, _ EtoV umT.s v g Lo A bi n. W *@ ...b t m hS.1.n s' Q.._. 2E-I ' b'd k. ..l D_N d. b. 30 A .- _ _.._..._. _ E 8 i . S _W - . _ _ 29 o 2o .ML 1 ._ _... _ ___.k.O_ __. _ _. 3q bW ....W.'b_.._._. I O. O 7 6 A.t,._.. I4S 0 I2 f ___-.. 2 B.. f_N o.b s.... _.. _._...Z b 2. _ _. _.. II . _. _._ Z A to. W h 32' K ..._l 04 [._ o u P. _._ 1 O~
- wpe.__
e -egn. .g h m. .a e e. _.e e-w.b_h (.t 5 c J '50 % O\\. _ _.... _..._. )._. INT. ' 2 5. f_.3.9..i. /.4.c Lo"1 2 ' L.. ': _ O1. _. 2 3o0 I ^ t.! __ L.c q c msx G.u+. t L% 4 o_. yy % < v,,,4.i.e2 r (. M ss ) :.- Vq u (,.em. o _ _ _ _... M o.cL d " J we h 4 W LN %c s.. l _... M 4 t6 O I.. 4 U oS7L h T.l { ____.__ _. s
- "" O 4 I V O t
4 6 'E, I l bl E \\ s / d b J z l l
e ,1 0 D l1 ,+- ) RELAY COORDINATION ) The attached overload protective devices show that there I) were no spurious trips due to overload. il The existing under voltage protection is shown and also O shows no spurious t r i ps.(Secet /cse [ of u & <vo lho p ofec will follow o rde 2fdw) O Relays setting sheets and characteristic relay curves were used to plot due attachments. C 3 i) 3 3 e J G G g e 4' /
y5 TIME-CURRENT CHARACTERISTICS O o o o o ocoo o o o o oocoog o oo8oo o o o o oo oco o o o o o000 o o o o ococ o o o 0 ~ 20 '20 i 10 10 2- -He -Nr9 9 8 t a 7 y -- - h - i fi j 7 6 l _ - ^- g G kk..-N_.,bk,kv t,- 5
- n
-.L ^ S ,i . ---yj --+ 4 4 d-3 3 T #'h 2 2 q ThiP O \\_ n TD 6 i l ~ I, C" h_.f': i .9
- . i,
.9 i .e as c 7 I 4 i il 7 u ,G g g g T, .6 g' {,,5 7 .S
- .4
.4 ~' I i '3 "3 I i .J. l l \\ F 2 .2 .I ,1 .09 i i i .,09 .00 ,08 i .07 .06 .06 ,07 .05 ~.05 .04 [04 .03 .03 I .02 ,02 a ,01 .01 o o o o o ococo o o o o cocco o o o o cooco N M toWNWmo o o o Gooooo o o o o o0000 N M v C@NOWo o o o o ococo N M w c wnwmo CURRENT IN AMPERESxico s@bo v. 1 g e, 1 f e
.74 TIME-CURRENT CHAR ACTERISTICS 0 o o o o o000 O 0 o o o o ocooO o o O O o o o00 o o00o08 o o o occoo O O O00000 o o o
- *****o~
- N " ' * !P2 9.*- N 's c ww332 ~ 20 20~ llL' I 10 ei.Y S " ~' #' d A ' I' 3L__.. iti i -- j-i -4t+-b r- 'f~~~~CMO ~ ~ 'iS g 3 - ?- ' - i- - ! L 3-I 7 -.f_~+' 6 f~ l I ~ a_3 _ .- 4 i 5 3 5 4 j j q.g_q_< 4_ 4 WL-7- I ;i i 3 3 I \\ e \\ T 'df /' 2 2 1 l l \\ ) i ,1 m i ~ o 9 W ii 7-H'9 i a z '0 I6 1 ii ni~ g 'I,7 Oo 7 i m_LJ. p6 w .6 I '. 4 - I ,5 m .5 I i. t ~ '7 i u! ' I' ! ;.4 2 4 1 6 I! 'l.II i. i W '3 I rti D j .3 2 i-l' t,Ii i"..I... i ; .2 N ,c \\ ,. **' %._, y l i >l f9 .09 i_ 3 .00 I 7 .07 I 6 .0 G I lt-05 .05 i i E i .04 r1~,04 ) 03 .03 j 7 1 .02 --,02 1 .01 .01 1 o o o o o oCoco o o o 00000o o o o o o0000 1 N M VOWNomo o o o o cocco o o o o o0000 N M T WWNcmo O o o o o0000 N M T oWNGmo CURRENT IN AMPERESxo e e
g[ s _.. p -.__... _ _ - -. _.. c_._ r... n/\\ ._...0. d_.. -.. D. > 1.. 2 0 5 'I( ), B L M,,f 7 ._m.a.e ..ia-. 6.- .. =. _m=... ..... -. + - = -....-.. ..a _ - D A... _..__ T. (% o v_ _ _. __. =s G40 a -. - - -.- -...-.;:t. .tooCD .--..-..h... dy W 4 "h+ h 5e "W 4p 64.-egg.ww _m g_.egan g. 4 p .h ,.-.e W. cT _ ge.o./.)-. . N. ) b.:, ~.7..,_,a>.L~
- ,. 7... A.,.<.. c.,',....._._
d ~._'- 4g L_-__... _ A o o e. _ _. _.__. M_' _.._ _ _"( p_ _ R o._o_D ~ ~ 3.- 3 I.._ _ __Lt oo.O. D..
- 1.... - --
V.o o oD. $0 ss......... _ 3 e m. i 1.
- 9., 4_ -.
,._ w. ,m. .-e. We.Ne.-- -.e 3 > e$a ewe.- ..e '.i6 +..h-Nd.t*..N.".e.* h6.W'
- .Wb
..N mm. h- .M. e ..%pg..ww, ,g.4 'me e .Akp 6.m s 4 hew S -. p.iw.ewa g.M. q.hes e pe. he.--g..* .W hve.
- h'h M 8*
'-M a e p.y p gew. ,g sme.esm. am gei.sy,.hw.e.--.ee .a N 6ee.6
- m e.&.
4.>. Wee.4 og . eM empy' ee -Ay my. ggm.gpgg ae.e g -a .pp.gg,gg_ g.gg,g,, e g,g b.46'M'% '#88E'.8 O'
- 6O'*'#*'O
- 8N
- 6O'*'#*'O
- 'M**'4**"**
- 6N 4
b ._......_m..
7 1 1 a a e aaasal O I I I EIllI r J i i I I I I I 1 M p j h.- t I I i i s. [X f D CEL F AM[ (9C0 Tlf',) j e. to.n.s tw rn t s g [ f j ( tai $1 unit ilki U4IT inos I N SI. U417 a 0540 0 5 4.0 0 5,0. 6,0 7,0 6,1. 0,1 2,1 5,2 0,2 5, 3 0,in. 0 Con fiavov5tY l / AuJu $f A 6L t n, 1 5,2 0,2 6,3 0 u.0,5.0,6.0,7.0,8.0,,10,12 1.5 12.0 2 16 3 s 2 16 10 60 2 0,2 5,3.0,io.0,b.0,6 0,7.0,8.C,10 0 12,16 j 20-iso x f i i l i i .t 1 1 i i i i !~ > I 'i i i i i i .e i i i !I tI i j j ij i i r i ~ 4-l 3 i ,l+ r a 3 i n i i I 4_,.,,.4, O a G 1 a i. 'I. -sjf. .i i 1 1 . i i' i i mu. 3 i 1, i si t i i e, i i.ir !. !i sMoM' t o i 6, i ii 'I 6 i t! it'i l i i !', 3 s H +i d 1 8 Y\\M T s.s ( vi\\ b ~ b-i i I! i i t i T
- i i !.
i t-3 i\\ \\ h T w410 'b.. l I g i \\ QWWg% 4.I4 ol m 1 i\\,\\A'Ips A ic i I I j 1.-- w r etar 9 s c 1 a...i 9..u x n-c 7 !Ii i e i i*. t i !\\ 6 s. X! N! t%J 'F il I i, i i\\ i i l 't) INi N 4 3-6 g ' 1_ !'I i i I -l, Wx T J e4 5 - -+ 'dy x - - - - -. 4 g ] i% s t 'NL 6 7% 1 ! g j i i i J ""~~~ l.ql T,\\ l N { l 3 i I l l' j j \\j l j ~ i~ 3 i i i ~~ l \\ 2 o 4 s x I N I \\ D
- E
- s i ii N-l 7 i .1.- a ~.4, i i i i. ii. ,i i i i i" i i i a i i i i e ._ i *
- .- g __
4_ 4_ 3 m - +._.___. a a e aaEa; i I I L> I l g y" "'t...... MULTIPL E S OF REL AY TAP SETTING FIG. 9 (088880270 3) 60H3-TIME CURRENT CHARACTERISTICS FOR THE TYPES LAC 53 AND !AC54 RELAYS 19 l
o i TIME-CURRENT CHl6R ACTERISTICS o o oooo$ o o o o o o oco@ o o o ocooog o o o o o o coo o o o o ococ o o o o ococ o o o o a m eoesem_ u m e o e s em._ m m e o e r-a m _. I I m. f L3.SIWA._si l GIN I' '"l 'I C" O q L4 L_ ._ L o t
- -i, l n---+ -t-
'H+: ii i ,m o 'TT-]_,r.!i_~ i~ 0 = i r--.- i i =- +,-;
- t. - i7 r-i 5
i;
- 6
. _!,..!,_l ! _L, p eo-4 i i QS i i i ~
- sk l
J -L 4 4 ,s i ,1 j' 3 l\\ i l i l '4 C *T E % i M 2 ..s i j l i i I 1 l i l .9 H,;; i i t i_, i i ii i i 1 i i i i i ;a i ii i'7 i r i ps I i l i iI i i J, ,,--5 l' l! i II ll.4 i i ol i i! 3 I PII I Iljifi l j l I liii l I 2 o i I;
- 1 r
i i ! ~. i ,it [ } i i i l i !I ik i l Ii i ' ! ,07 06 j l 1 t u,,0 5 u,, i i ( i i !i.04 I i i i I i i!.03 l l ,0 2 ~ ~ I .01 o o o o o ococo o o o o cocco o o o ococco N m V 0WsWmo o o o o00000 o o o o ococo a m e omsomo o o o oococo o m e cwsomo CURRENT IN AMPERESx 100 Q 4,% k m m
/ ' TYPE CO OVERCURRENT HELAYS _- 7D l.L 41 10 f Q l i I i 7-t.,
- 7. _.,. 1 3
i } ....{... ...s , l q. TYPE CO.9 .2_..C._., , s._. w . y. 1.... 0\\ UR CIIRRUNT RRI.AY .y a... 1 ..)4 .. _.~ 50-60 !!HRTZ 0 _- .g,._ - a g .L..., _._ 7 7,... i 9.p, l,
- 3
_-- p y ..p ... p ..y.. __._3___ p_._- 4 ...... ~. .4. y-_ .aL ..,.. ~ q. .w..._ _ ..u_.____....j. 5 4.__. e ._.4 ;.. a. r _ ...j. ~. _r 3,4 ;, 7-. . ;. _._ a l {- _.,... . _..t _. _y m i ]' -j 'E _.L. 4 _'L p. J _.. _.. 2.r } l 7.-} p u .l, j .._p w.,r. g... g. i._. 2 x 2-l ; ; ; j i ,+ . _ q... g. 7;.7, i ......g. _u._ ,y ; .L.... ...v._ ~.. 4-j,, m i a .4~_..___.. ._.y , g._ x 1 g _ 4_a p._;. _. ~. . y. g.. q .-y TIHE DIAL SETTING I g _7. _.-", f
- 3
... _.y, __, q.,... . ).-q .v } q J-r i, .*s y. __p._ ~ q....- 10. - . g .L 7-__ 9._.r. y; -.- -,l y 4._ l ..v.. t. i w. .,.L ._q 7 _ _9 r .... {... ; ....p ..j....,p i_ .{ .... - -__l .9.. 7 ..i _I j ,4 .j u.q g. 4 g... x... _ _g ._g..... q. t. _.. _q _ L.7_ ..,.e ._.r i i _.._. o,, ,cr.._. ..,.. _N. 4._ g ; ; m o,
- r
..'.y_..-t- ^. 2 __. m..-.p -i A _i ...-n. i .[.. ~, w.. _.g s...., ..__N.."------ 3 H..., _.. .. q.. ! q L.. 1.._ _. _ _,.. g .... q.._. 3 m. .. (. l... .\\ ....u ~.r '... _. I 2 .N.... .. i.. 2.... j r .q, L..... _.. s. L.. .a..,. i..., . a. .. ~. w _.p.. A. 4.
- q.... s..... _.
q. .; Q. 4... 4._. ;_ .~ +. _4. r 0.._~.'._,_ _w. . t ....... i,....., p.,... -..,{. ...y._... .a... .. T... ....4 w .........t _...; L..i... .t. 1 I 2 3 4 5 0 7 8 0 10 12 14 16 18 20 HULTIPLES OF TAP VALUE CURRENT s. 418249 ng 12. Typ,cd Tomo Curves of the type CO.9 Refey. 4 13 -A.
r i 7 *., .. C.o D. .~.__ _. T.. ;. (, n..,.1 y. i l. _ _ _. _.Gb/4,,.,. _... C T.: _."L 4 o. / l.. n._. _3..cli O.4__b. o. (^. .. _._. _. A i.N W..w.-l:1.5_ (.IM o l"L) ( 2<l 9 .h./A:N .3.55.3 A - Ta g %{v e h wa y i S S.3 _._ b ( ._ 3.,. Db 4d . _d_. _ _..____. .A 1 o L'/ .a I A.. _. I 4 T! I 2.0 13 Id b.') y R3 f1 (O_ (, e 9 ,g O .....u_ ..e. - + ..eg e.ra.e e. .a. m ai co.... .e. . +- ...-.-_-.=a ..m .NN.-* .6'.. .e.p..g. .eO. .e .we._h. e p..-4e.- ywggeg.yeq.y ..hMM+=ry.e..a_ ge q M y O g g.pa.g.i.e e.gpweg gp,,6 .e 4.P.W. 6.e'.. l l 1
P E 3 ?o. c? (- p a e = M I) 6 O 2 U U,n G o a \\y, 8 e u .f E tt o f '(%k Y 1 G i t u 6 1 \\ so 1 o ~ %a j ys N i 9
- t 5
8 ' .n (Q fs,s t n ~- 3 z s s u t 0 g\\ h 5 U o .C t v. i s i k e E .\\ C c 5 3 1 N = s g 's .3 l 3 5 4 i 30 i s i 55 '5 U U 0 s ~~ X ( aat = r 'u O e3 g 5t oy z ia .t a" s a ' n. a 2 4 i = a n E zzz I O g g @K g(U T aa.. o o o u-y!!!! Q ji g j y% 9 9 u y 5e-z : g 'h. gN b> Q s r = i -a o o b( L.( - gz h 9 a <ge J <3 a z o s 6 o = o i 1_ _ _\\- .J b .u g g g t o w !^(A o z .$ a eE >. 8 ,1 $ }\\ ^ T 1 2o 3 wa$ s v U!E 3 1 J; h 5s \\ y ) s o U" S' ,io a 'C tt) e u N sN-q e a Q N,1 h \\ N t. O g% ~ 2 .a jz s i .s i n. .b(3_(1 a Q y W. 5x K 5 \\(h o N S.o J\\ W G \\; ( ti E'ht e u a 3 A\\.J a z i X ot. E c s g 3 a J \\o srs ,s d z R m x z t. O y !)s \\ O k C ( k U H l b b 5 C ( 4 Z t m h,- 0g, a Z 7 1 y 5' NfN 5 0 '8 N 2 E' e a r se j lE13u e f 2 a 2 s eh'g(
- G
%y e y e a
- e. r e
g g ( 2z K 2 0 E e O O g g, e .e w O$ I: y g u 4 q.
- q s
c; p, 3 s e, r, le,. a... -. s
h[/ UDLIC SERVICE ELECTRIC AND GAS COMPANY _ h _. i 7h/ .a. .i__..--_ / P .k l pa span so my . _. _ nsern to COMPUTATION SHEET.. .... _. -.. - o AT - ausscer FH.F ... CHECKED DY E st4M Af r ..m _ _...._ D A T '" _..._... _.... _.. _. ~. _.. _...... -. _. - -.. -.. W. T. AL E. u.$ U MDE R WLM_ _6 E .. _ g - 1 j t ,__.s..... s\\ 1
- /
-I. t. ~n-MO. WO pu z._.........._. ..4 j _- i 5(.. . & M Q ..WV.. . _ V V -..
- .44*
i e *' .h.. I.... t-% 4.9.0'm (.I 7"% @- W a 1 w _ .3A .. sv. L,, 2 7 o _ _... _..._ __ c.. t.. l-_. x 9toF.a. 'd.a rm4 7W74 ) c h v y.. / .a ._.(...@ % w,)/ 2 '? . C3 q, m 1., ..._ N. M......., l@ .. _. k. g _ .... SLL ., a v y_........_ l M .._.. %, f D g.g 7 g _. _._.... S3 gy _L._. _.... -. _._...... 5 2 v B u.. ....e. .... ~.... . _ _. _.... ' b/c trox 9-i . g. g p c,. M,.._.. _..... _... _.. .m m. ..... ~, t -......... p. ...p.. I l .. ~ _.. -. 7 . -. _I s 1 .g .... _ ~
- g..
( \\ %(Whi W C\\}.__.. _. , n /. . V0I l-ef*._..-._.--......._._.,.. _. _. i._.. t i i. .~ ...,b. .;__...,3. ~...... .s m . a.. .q o _ \\.. D.. N.. v . 3' S \\/ _. 1 s. ..f &. _.. _ _ t I .p___
- i.... _i..._
y .-.{.. _.. 7. _.. 4. y......_ ....._.....ii .y... l .. 3., M~l
- -. - ~ ~. - - - - - - *
._.__L.. N7N... _. ...I i / 'f,D _. _... 8 -*...e ed., 4.g. ._....o.-l g. g g g g g .... \\ \\ Q .\\ 0 0 M.O ..'T Q (oO SC . ~. A h.WE.. g tumN vot,.vCf L. L..... .,.... J ,....r i .r ....@./J . _ _'....,'. L.4.1 ...M7 Wl 5 6... _, O- . F 1... ,_.. _.. M R C(HT. EM. V o LTec f. 416 0 v.. I i { ; l DS-4064 400M 80/79
- i i
J. ..4.O-.... -. 4.... I..., .~....... PUDLIC SERVICE ELECTRIC AND GAS COMPANY ...-.. CEFEH TO .~.. . -.. -.....-. PREPARED OY - suancy . COMPUTATION SHEET DAT" ...-. - FC' .....-.CHECKCD DY ... E STIM AT8- .~-....-...-....-.--..-.DAT" ..?. T. n A .. h /nv <. M /t..... ... D ..Jft/'yr %. T D. _.. 6A ... _ fo V. _,5 ~. .._ _-../ .O e ?A ^ i ... U w W1 . 4.b b .... 50 .b- . 32 b 5% <0 ._..J ..q o... I,D -.. U.4 ~---... o. .oo oo. .. _ = _. ( _.... e ~..}gesvolh e {. O @u. sf f 60 'NEO, llG,.6[ b (00 o.. e ..eu su .m. e.i. 44 ..Io m ..u... .6..- 4g..- w. ..p 9-9.O V G.u.e g.g g e. iIO . ' s J. t0O 0 *^\\ l .... h....... 'l57 .. - -.... 90 m") e,w v( v. a t 20 oM. .__ 7o. i$M.. ~.. ..... 40 50>V 50 4 4 0. _ 337 .+..'siem. g 4 4ms.D 6. .g.. .e.. g.,. p,. + e..4.f.6'"i-1-. gm p a.p g. ._... _... ~.. - ' + _. -._ _.... (o 6. L 10 o
- f
---... -... b.0b O (0j. u'b SI pg 4 wg ... i .eg. ...ep $-.u.4.. ee h .g.D.p pe .. We 4 .h.. ..m.- .'.>m.. m. um.6. 6 .-.M eu...u.. '.pM- ......Ma..e.. 4,. .g..q. ..%eM .e g.y g epi. p.ee W. g om 9 is. .e..
- mig,
..yg.. .a... w '....am--. -.g.
- i..... p em.
.Wme... 1 ... ~.. 4.. e,, -.- 6 96 9 W.94 ..>-m e...q. ep 6 e..e4. a. .'..ui.e m... a..he w em.-.e-.p 6. .M6 M. h .m-humM uu ...'.9m-@.@.'. .+.--4 .6 e O.4 6 em@ D 'W h i ."M.+. .w m. u h ..e 6.u.. M Sh. ... -.N O M ..&.eg 6..M m e. .e.. ... m Wm.. e ....i.pw..h.
yo
.e .e gm. e.ei .m.ee. .p...wg. ...i p$i ge e. -..i....e.. e.. .$h. .u .=.4. .+ s oes p s ow.e .s.. em I -g. e.w.s. .m.. a. ...sp. .e s. .me p ..w -.e. h.- m
- *.. ". = +.
..m e .e ..a.=. ..7-. ... s ... e ... - en.m e e =. eeg.. ..e-p. .e.-.4 m e es 6 e .......,n,m,
c -? .W - INSTRUCTIONS GEII-1700B V Supersedes GE11-1708A , d9 s 0 t ,kV N, \\. !_y ;3_h ... Ic m. .m. C UNDERVOLTAGE RELAYS _.fp)l'?i %q.:, _ _ _ - _ -. n__ I i ( (. , 't p: h, \\ - _,:= y Types ,.,. j m ...a.;. : [ e [' g".- $..v m v.es.. e.q !) , - b p. ' 7.".;.. i -- -'.".. _;w ~ }IiIEf~ IAV54E ( I t. I i IAV54F IAV55F f,E'f,.f; ij[; .,L E IAV54II IAV55AI a {>j*L ' 'St ' i {l IAV55C IAV55J %:1..a ~ i: .I D .4 ---- h 3 l [ 7.LN'ENALK.'+ ELECTRIC !j
- l{1
'. " - " (Sf' %t.',b-1 2.." r :.".::..r". i l
- Y d M*;?' _"; &. c ga t
6 --.y g ._._,._- s o - - ~ ~ - N ., j]-),. ; Fj;, ~ --- Jg q 'D {
- 7) v 3r g S$fr$5 I-4 POWER SYSTETJS MANAGEPMENT DEPARTr.1ENT C-w GEN ER AL N! ELECTRIC v
PillL A D ELPill A, PA.
e l i 59 UNDERVOLTAGE RELAYS O TYPE 1AV 1 INTRODUCTIOM L' -, ee . '. l.' i E:.. 1 ':,..e These relays a r e of the Induction-disk con-struction. The dish inactuated by a potential oper- .--- n \\ '">IM-E-i"- $ ating coil on a laminated U magnet. The disk shaft I carries the movimt contact w hic h completes the '( . E R... J :.J. ?:1rD! LM~ MiC trip or alarm circuit when it touches the stationary n.. o' .I us ~ contact or contacts. The disk shaft is restrained ? b Tir - .p 7l"" Wr "-*.. by a spiralsprmg to givethe proper contact closing ye -- u=+r. N.+ n.j f. 9".f r}t
- g.,
voltage and its motion is retarded by permanent g - : F-R O magnets acting on the disk to give the correct time h--te M i-4 ] 'y ~ Wi-
- delay, m;g ;
- g ;.a y a.a. g
.-w g There is a seal-in unit mounted to the left of - =u 1 ' '),, L.,_. g. g a M.+*n u+ u. a. u..d +1;$ =
- I-the shaft as shown in Fig.1. This unit has its coil k
= ' ii f ~. \\ " 1.s.. .. 4 2'p.. : 44 y@ *3 i: ' "r in series and its contacts in parallel with the main contacts such that whenthe main contacts close, the ,7 a;' scal-in unit picks up and seals in. When the scal-in ?' d unit picks up, it raises a target into view which 7 \\ ' P+VM "MP 4 latches up and remains expost.d until released by to,4 .;5 f. M d rr V. pressing a button beneath the lower-left corner of Eqf 4_E L L ty} Mi y g@= the cover. Qe gg. .g
- =~4.
2 The r e1ays a r e all rr.ounted In singlc unit R _4 11 N T -h---e} l .a:A h.__ % c_M-, Y double end cases. The case has studs for external f;.;_ Y ^_ a -- C-- - e, 1 connections at both ends. The electrica' co meC-FE l tions between the r e1ay and t hc case ae., made @QN"F ' N~.~ 1 4 3 /% bets.cen which rests a removable connecting plug Q ' "','~ ~- -~Q 2 through stationary molded inner and outer blocks aj F1 ..,.,o A o .o .m m _. # 4 V which complctes t he circuits. The molded outer ijfM-. - trrmr., w hov. c. sr---L = blocks carry the studs for the external connections p-F.. y y yg- -g-a 2-7 while the inner blocks carry the terminals for the
- f.. -
' W-.it;b = internal connections. The operating coil is con- ~~~ * '"2r ~ ^ *" " = = ~ = nected in parallel withboth the upper and the lower inner molded blocks while the trip circuit is con-Figure 2. (302 A648-0) Time-Voltage Curves for nected in series with t h es e blocks. In this way, Relay Types 1AV54E and IAV55C insertion of either the upper or lower connecting plug will energizethe operating coil b u.t_t h e t r ip circuit will not be completed until the second con-necting plug is inserted. For relays which have The Type 1AV54F relay is similar to the Type contacts closed when the relay is de energized but IAV54E relay er. cept that.it has a longer cperating open under normal operating conditicns, the double time. The timccharacteristics are shown in Fig.3 conaceting plug feature allows the rela contacts The T Pc IAV541I retaY s also similar to the Y i to open before the trip circuit is comp cted, thtts minimizing the possibility of 1n c o r r e ct trippine Type IAV54F relay except that it has much longer when returning the relay to service after tests ang operating time than either the Type IAV54E or the inspection. Type IAV5tF relays. '1he time characteristics are shown in 1 ig. 4. 0-A P P!.I C ATIO N The Type IAV50C relay is aimilar to the Type .IAV54E relay except that it has two circult closing g These relays are protective devices designed contacts to close trip or alarm circuitswhenever the voltage f applied to their operating coils reachen some pre-The Type L1V55F relay is similar to the Type determined value. The functions are described in IAV54F relay except that it has two citcuit closing t; greater detail in the following paragraphs, contacts. 3 The Type IAV55]I relay is similar to the Type OPERATING CIIARACTERIGTICS IAV5411 relay except that it has two circuit-closing G contacts
- g The Type IAV54E relay has a alngle circuit-g closing contact which closes when the voltage is g
reduced to some predetermined value. Thus, the The Type IAV55J relay la similar to the Type contacts are closed at zero volts. This relay is a 0 timo undervoltage relay with inverso time charac-IAV5511 relay except that it in provided with two separate scal-in units; one for cach set of nor-tcristics which are shown in Fig. 2. mally closed contacts. These insorwo.one do noonuvare to sever oil eiere.In or oor ohene in emmment nor se preenle' for every pan.ble 3 sonoungem p to t.e anel en conneshon weth enatokohon, eneruhen or uncontennare. bhould further onderumshon he dovred er should gwrusular pr blems areee whnh are nut govered nutje<sently for the purthoser's purpneen, the neorter should o
- s..lero.s to,he c.n.eos v.,,e c.mnrer.
l
.-- ~. f Type IAV Undervoltr.ge Relays GEII-1768 VOLTAGE SETTINGS' TIME SETTINGS' The voltage at which the contacts operate may The time of operation of the relay is deter-9 he changed by changing the position of the tap plug mined primarily by the setting of t he time dial. In the tap block at the top of the relay. The range Further adjuntmont is obtained by moving the per-of this adjustment in from 55 to 146 volts on the manent magnet along its supporting chelf; moving 1 J 115 volt rattnes,110 to 200 volts on the 230 volt the magnet in toward the back of the r clay de-I ratings, and 220 to 500 volts on the 400 volt ratings. creases the time while moving it out increases the j , Screw thr. Jap. plug.llrmly Into.the tap marked. Lor
- time, i
f !!m_ dei r ed vojtage.(above, w hic h.the.r clay ls.not.to onerale). Figs.2,3, and 4 show the time-voltage charac-teristics of the various relays with the time-dial j settings for obtaining each characteristic. To make Ibe.. tap.ac_ttipgs indlcate y oit a g tyalugs_ at time settings, set the time dial to the number re yhigh thc contacts _willelsge. A spring adjusting quired (to give t h e d es ir e d characteristics) b ring is provided for a sensitive adjurtment of the turning it until the number lines up with the note . ;T relay operation. If t h e f a c t ory adjustment has in the adjacent frarne. The time indicated by the N !I been disturbed; the desired operatingvalue may be curves is the ti'me required to close the relay con-obtained by inserting a tool in the notches around tacts when the voltage is suddenly decreased from 8 ( the edge of the ring (see Fig. 9) and turning the operating value or above to the value on the curve. ring to the desired position. This adjustment also The timevoltage curvos are plotted in per cent ( permits any desired setting between the :aps. The thus making them applicable for all tap settings. relay has been adjusted at the factory to close its contacts, from any time-dial position, at a voltage within 5 per cent of t h e tap plug s et t ing. For I example: If the tap plug setting is 55 volts, the. INDPECTION contacts will close wh en the voltacc is reduced from a higher value down to 55 volts. The relay At the' time of installation, the relay should be contacts willopen at 110 per cent of the tap setting, inspected for tarnished contacts, loose screws, or For the 55 volt tap settin;:, the contacts will open other imperfections. If any t r ouble is found, it i when the voltage is increased approximately 61 should be corrected in the manner described under volts. MAINTENANCE. AV A-C SUPPLY OF CORRECT FREO. FoiE4T109ETER o -< w a i>***---. I O o .{.2 S &w n L I27 MF-2 TIMER 0 $ 1 11 "If 27 Tf" DEVICE FUNCTION NUMBER $ 6 5 27 - A-C UNDERVOLrACE RELAY, TYPE (AV SI - SE AL-I N lJN I T O Figure 9. (G154302-0) Connections for Testing Jtelay Types IAV54 and.IAV55 9
Typs IAV Undervoltage Relays Gell-1708 OPERATION Defore the relay is put in service, it should be one or more settings, given a partial check to determine that factory ad-justments have not been disturbed. On relays which Recommended test connections for the above have time dials,the dials will be set at zero before tests are shown in Fig. 8. the r c1a y leavec t h e factory, it is necessary to change this setting so that the relay contacts may be opened. The relay may be tested while mounted on the panel, either from its ow n or another source of The drop-out voltage should be checked on one power, by inserting separate testing plugs in place or moretaps making certain that the contacts close. of the connecting plugs. Or, the c r adI e can be drawn out and replaced by another which has been .The time voltage curves should be checked for laboratory tested. ) MAINTENANCE These relays are adjusted at the factory and it surface, resembling in effect.a'superfine file. The is advisable not to disturb the adjustments, if for polishing action is so delicatethat no scratches are left,yet corroded material will be removed rapidly any reason, they have been disturbed, the following and thoroughly. The flexibility of the tool insures points should be observed in restoring them: the cleaning of the actual points of contact. Some-DIGM AND DEADINGS times an ordinary file cannot r ea c h t he actual points of contact because of some obstruction from The lower jewel may be tested for cracks by some other part of the relay, exploring its surface with the point of a fine needle. The jewel shouId be turned up until the disk is Fine silver contacts should not be cleaned with contered in the air gap, af ter which it should be knives, files, or abrasive paper or cloth. Knives or locked in positionby the set screw provided for the files m ay leave scratches which increase arcing purpose. and deterioration of the contacts. Abrasive paper i or cloth may leave minute particles of insulating CONTACT CLEANIMG abrasive material in the contacts and thus prevent closing. For cleaning fine s fly e r contacts, a flexible burnishing tool should be used. This consists of a The burnishing tool described aboy e can be flexible strip of metal wit h an etched roughened obtained from the factory. RENEWAL PARTS It is recommended that sufficient quantities of W h e n ordering r e n ewa1 parts, address the renewal parts be c a r r ie d in stock to enable the nearest Sales Office of the General Electric Com-prompt replacement of any that are worn, broken, pany, specifying the q ua n t it y required and des-or damaged. cribing the parts by catalogue numbers as shown in Renewal Parts Bulletin No. GEF-3897, 11 m
a < c c y
- s. c 6 1.
4 r, e r, # f: %T,' ). _ k n o e, 'c r c / ? E N ~ 'o _._i m ~ i s c 3 6, e s o. <c o y = 6t' O NH A g p e ,mN St o o o < a o a eq z r > o F b E:3 4 3 sGZ z Qw s \\ Z .t ", o. I-O z
- U U
e ,or,g h.
- i e,
m s 3 n i z si% m e 'O u o W
- u..
y ,t s E s, = a e os 9 4 i 2 8 E P N u (s.J 4 + 4 s s u o -4 -a - o = s \\- a._, o r r r w i i i d o >c i ', w ^ \\ g3 1 E E E W ~ b o e e l m O s s s e F b u 1 U y 4 , _. _U 0 i g z z r g -4 4 g ~ [I J t o 4 s a s' q Ni ? 'a I yg g Z Z Z J O= V) ' +2 h ,g eoo s m U[ M 0. D 4 / 1 'O (4 y < < < K (%g, d \\ w <C sy > > > W t., .y g 9 5 2 2 2 zN 4 Wo P c' 4 <z a t, v i. u o g U Sg N 1 b v, g O N j g g < h D ogu '3 g n 3 D O '4 t' 4 Z "i<*% S S ^ 3-0 : ^ ~ o m i g N d' d $ ~4 7 O 2 O ? w ^ a F a q u d 1q 1 N r 0 F z 3 O
- g..
c< 4 -fjj g
- q. i
,s. I) q g < p z e ' N 9 r O E C A q ,?,,,9 9 $ ' ') I i '?- k ' J 9 >< z E 3 us O
- 5 2
w e w ( o z t UI-J 8 o - 2 4 m z w N ^ OEZ m g y [ D 2 b N u z z w u e O a o o N > g< s Z N A y ) N" \\ a Cp O 4 w g W 4 N v a p 2 K 3 y '.J "I' -r E ), o g q
- g
'h ) o < j O ,d 2 y D Uh b N 6 Y - D a., i e i i 'S i i i n 1 OO 9 0 s> 2 %* 'e 4 '^ aw k g 0 I._ tG \\- / 'I. N N N -} 9 z-Q .t y t o rq 3 s *^ v o -n.4 0 3} z x w 3 es z o u n g ,, s g g 7 3 s ( 0 N$ 5, O., ?), ' 5 & k r*C N $ A ? b? b. z y G 9 r fr f 4) 25 g a r; u k -1 .g f o >h '4 I b i 5
=
o,, m' a (P li-4 3 s s 4 A 1 N F s N )e i u z N C Ar_ H d en 3 '.' 0 T g., U k' y 'e 'g ts i-9 M OOm g E i is i C-ca z j 'q a 4 c cY h3 T O h 0 b \\; 'h % I.:, h M fy? 5 H 3 I' '-4 4 'd Q 4 R 0 2S $ g 5 g R _M s a m z b t I l l O 5 g O 3 v 2 y g o w % o m a '.=h 'O O h 0% 4 5 5 D 'T ^ m z W, Q q p g y ---} 6 - p et Q <s U p 4 w : %- H B o ~ 2 R u g s o u .a I ., c: w Q s 4 s ' y e r
- s s
= n. s,, e w ,g < g 2 o O H _ _ O yg 2 0 t g W .o n 3 Q d 'R M g w a. L d O o ) N ,A 0 a; 0 w a 6 'l t-1 4 0 I d O T m O P 3 r
. ~. ~.. -... -.. - - ~ -.... _. _.... -.... ..n...__ -_..._ -. - _ - ~ _...... _. _ - _ - - ~ 5 l l i i I W ., y ~ w ? N.w' s i l l l l 3 J .4 m l a i i 1i i J e.-, --...--w..r-r --, -.- -,e
FORC 5814 Ct E Y,1/ 74 CALL W DATE TIME (, SUBJECT (f)A2TM JOB NO. OR DER NO. t. Sie 6 Puer bdw No I, ny 2. N 2 i,. % i, hs1 _ East Go (* O 15 tf 3 \\f. Ige _h$a foo/G.B Soo/6 o il s /s.w
- 3.8 /4,i Tee p* e ar c <
-.Lo O 91g \\9_.sgfa SA L Sg
- L WL
- 4
- 4 N o. J. Ap s w (si1L.5.)
( s i.2. s 3 / i Law') (it 4 3 5 ( P u E -l"# ) .conq6 , c ol15b .00T64 .o c 1] l. Osa sast,.6 E st - 6 )fbtL 24L 2 H-40o 2H' M o 2A dbo 24 tso Eo.hgese 750 t oo o "f 5 0 750 3oo _]alf e)t _$c$,o Al?0.$10$ %C lAt A'%oll A O A M*0l A %O A'u o lLA 0 Lp,Au,- 6 8 /. 5,W, 6 si te s.,s t, sh Ia p _(QM .o71 5 _..ylv a
- 2. F L 2 G do o 2r.tto
'2.c duo 2c 220 f2a4+$ 6,,3r "I50 t 00 0 "15 0 ..__V.o.L%e.lb 4'kolicE. A f v9,[4to 4f 9el14 0 ._.14 2 r vat 5.3.1Q3 6 dGb Gaifn S 4tio 5L M l l l
rue asas a rv. ine CALL Y l7.[4 b 6 DATE TIME ( SUBJECT 'D A"7'/\\. JOB NO. 1 ORDER NO. ~ ~ t.T c G weeds L.t B uJ To R GJ,.- 2, t 5,o, S .JfMfL M LT C. 4 a p. r=g a 3oL ._. '} V A Al \\verfGL 12A ^ 2 2. Soc D \\\\346 56L ._ l } A l R, itL.%luR t?A 2. 3o o to726 K,7 t '2. l 4 2R l t, L 40 l b (2 l'Lo 2 3o o 3 2a l S.8 R w q at s wod no -z s a n. 3-s s.7r, .(W r.o upee m bde nae 4) e N LIC y. r3,_435.vo.I s lL: 413 4 l2: 4ir6 Mo I N_1 f c f.,7 to' 7 f f, m (,o,o o o MLIc c 5 t 2 so o k N o 7. M L 1"c s "2, Lo.5t9; w G4coe k CTu A L, NFKs&FuruTs rg.m pr7fs,4.(uo2,cc.)
- c. E.
.i N ## e_, _Laf,.. . 5 2 ic v i.a A w.w Uo_.3l %. f.a e 2 Go o \\ G. *L ~ lb % hur Moo to.ff ) ~ (*V0 \\3 A A w 4,. e a... a pg Argot moo ti L.e 0 h k O R M J k 0[rf(,, N W Cr TfMi Sw rew rug g( 1 J C, OMi/ ;- all clo *# d byt Q. t 0, I 81 .[N D Of N [T w-z, ,,,,. ~
- e. w w a
~ a p lt e., e... d _cr./, c J i Oh I 2 - 4 ~lT
I N ( l 1 ( f I No tes of Meeting E 1 Akendees: J. Hebson 4 B. Daldy W. Raughley J. Popvich - System Plt.nning (, (, __ Per our request System Planning ran studies to find the maxi-mum 500 kV voltage at Salem. L ( The maximum practicable voltage on the 500 kV at Salem is 1.06 p.u. For this condition Salem 1 & 2 are on line with (' a 4 50 MVAR/ Unit output. This condition will occur when (. system is going from a light load condition to a high load condition. This is done by boosting the VAR output of the C base load units and putting the other units on line. Such (* a condition usually exists on late Sunday night-early ~ Monday morning when the system is being built up. Other-( wise, the highest voltage is 1.04 p.u. ( WSR:aec (' 301 25 c. 5 C il (. ( i
I V. - SALEM GENERATING STATION MINIMUM ' EXPECTED STEADY-STATE VOLTAGE CONDITIONS Salem unit (2, scheduled for service in May, 1979, will be connected to the 500-kV transmission system as shown in Exhibit 4, includ ing transmission line impedance data. Of concern in this section is the minimum steady-state voltage condition at Salem for the most. critical yet extremely unlikely combination scheduled and sudden outage situation. Exhibit 5 is a power flow transcrip-tion of an all in peak load condition simulating a PSE&G capacity emergency power import level. Exhibit 6 is a condition which simulates the maintenance outage of Salem unit #1 along with the New Freedom-De ans 500-kV line. In Exhibit 7, in addition to the previously described maintenance outages a sudden loss of the Salem-Keeney 500-kV line complicated with a stuck breaker at Salem, causes Salem unit #2 to trip leaving the auxiliary load of,44 MW at Salem to be fed radially from the New Freedom.230-kV bus. The resulting voltage shows a total re-ductiod~6y'5.8% from the initial 103. 6% on the 500-kV at Salem. \\ l l e l l l L L ~ ~
Ja -e-J 4. ar w v g.. ..... ~, 1 i 1 C.4L _d b.e b_ab k% del _ E _ h _t +.*d _ _ Q df Wd I w_.s s.LL _[ h res M.M._._.iuI,d InJ L_Ollui S_A_L OC A._i Inn b.ti d d _ h f o M a s teuee 01 wa.u ' 4.h__o b o i n.L._ v cA_ _. l w M $.h e 5 9$ 0 s_S.C 5 Umalw.b u tJa r O m L 'rtb t l i j i i e-m 1 ~ l
n. D S.$stt SQ1sr3 *5', MfL, C S i o c, o El.C__)g3._m n <,._l_,.sj3 g _ _ _. __._p,l _._ 125' + 3 s 9 9 A nny % [6 to t+P &n 9Is). . D%< M EsA* LB'0(%D J.5 ?.5_t-y_ A.. _ =- .9i(..95) G SW - lf A~ d-4 31Sb " 'b M 9/ % 4 2e /gqf 11.gB_'l ?_'l. '~ b 'l 6 3 iwuj. u 9 h t.. d a 6 Mvh s 9DEp.(. I4, - ( B SJ _g_4%). 3 M b_/ A dS b i49_f 8 % \\ i 4 \\ '/ Iled.u.pg __(. G_%_SM.. t4 4} g.av + LG e e_ ,_ ___. t iM ) t 04 d, _.,to4]<.ge r, nsn.4& ; C.m..ug) , u m:.cn 7 4c r A s. z u v sm w .h e e m as flu 5 Eeau d % h 9 c Mj_ t:' 0 .uts+.oss e J..ooo u 4j mso64roo,e7 a w v l&S$ ! % '0 3 7 31 1154 ; e O t @ 2. w 68L . c itf / 38 *S .on sp o4+1 -.j =
g. .g. 9+ d 3. J" = v-ca';;;15(g,a=e.Ian3(.sts)e e L.3 m) 2 n nu e . ns, ws mag. . engen e Ta.g.a o e... + u c w ,, s e ..e y g. ') %!!?)( N @bCA E5 N S h ~ V t O_* . 9a m O.om @ t.o o u. ese 6
A. I . During normal operation, the Safety Injection Pumps, Residual Heat Removal Pumps and Containment Spray Pumps are not operating except for tests. Up to five fan coolers are operating, depending upon the needs of the moment. At least one component cooling pump is operating. During normal operation, an "S" signal may be generated in error. As soon as it is discovered that the "S" signal is false, the operator must defeat the signal and secure operation of the pumps to limit or prevent lif ting of the pressurizer relief valves and eventual release of reactor coolant to the containment. The operator is locked out fo r . performing any action for up to 2 minutes following receipt of the "S" signal until the start sequence is completed. 3.2 Abnormal Conditions General The design of the Salem Safeguard System includes the requirements that the station must be safely shut down during the occurrence of a loss of coolant accident (LOCA) and a coincident loss of offsite power (blackout). All electrical equipment needed. during a LOCA is powered by the vital AC system which can be energized by standby diesel generator. The Safeguards Equipment Control (SEC) provides the necessary logic capable of initiating proper actions for any accident conditions (with possible continu-i ation of events) assumed by the design of the station. The SEC system is comprised of three independent control systems for each unit which determines the need for accident and/or blackout safety equipment, and start and load this equipment on the vital electrical system. Each SEC is independent and isolated from the others, and is associated with Rev. 3 its own diesel generator. Each SEC can control safety loads according to four modes of operation described below: 3.2.1 Injection Phase 3.2.1.1 Mode 1 LOCA (with Off-Site Power Available) Should a LOCA occur, the Solid State Protection System (SSPS) will send safety injection ("S") signal to the SEC system. The SEC initiates the following actions automatically: i
( 'ke -58a-Lockfoutmanualcontrolofsafety-relatedloads. a) b) Start diesel generators (the diesels are not connected to tje bus since of f-site power is available). ) c) Automatically load all the following safety related loads to the vital bus. - 240-480V Breaker (230V control Center Loads) Ib4 - Start SI Charging Pumps 2(Geo) no - Start Safety Injection Pumps 500 2(%oo) - Start Residual Heat Removal Pumps - Start Containment Spray Pumps (If the "P" signal-high pressure in containment occur) p,: - Start service waterpumps (alternate SW pump if the other fails to start) - Start at least four Containment Fan Coolers (low Rev. speed operation)( 2c%. M W $4o Lt j - Start Auxiliary Feedwater Pumps d goy - Start Chillers /-StartEmergencyControlAirCompressors - Start Aux. Bldg. Supply and Exhaust Fans (-StartSwgr.RoomSupplyFans The' following valves will be operted to prepare for Emergency Core Cooling: l - The motor-operated valves at the inlet to '(SJ 4 and 5) and discharge from (SJ 12 and 13) the Boron Injection Tank will be opened. - The motor-operated valves in the normal charging paths (CV 139 and 140; CV 68 and 69; CV 40 and
- 41) will be closed; those in the seal water return line from the reactor coolant pump seals will be left open.
Seal water return will be isolated on a "P" signal indicating high contain-ment pressure. Ett P78 130 26 1
.s. 47 \\ l -58b- - The valves on the line from the RWST to the Centrifugal Charging / Safety Injection Pump suction (SJ 1 and 2) will be ooened. - The valves in the concentrated boric acid circulating lines from the CVCS (SJ 108, SJ 78 and 70) will be closed. - Any closed accumulator valves (SJ 54) will be opened. 3.2.1.2 Mode II - Blackout If power should be lost to the 4 kV vital busses, each SEC receives inputs from undervoltage relays on each vital bus. The undervoltage signals are combined in a two-out-of-three logic matrix in each SEC. If an accident has not occurred, the SEC performs the following logic sequence summarized below: a) Trip all 460 V and 4160 V vital bus breakers. b) Start diesel generators. c) Lockout manual control of all bus loads Rev. 3 until the automatic loading sequence is complete d) Close tne diesel generator ACB e) Sequence the loading of safeguard equipment required for blackout conditions as shown below: 240-480V Breaker (230V control Center Loads) ) Start SI Charging Pumps Start Component Cooling Water Pumps Start Auxiliary Feedwater Pumps Start Service Water Pumps (Alternate SW pump if previous fails to operate) Start Emergency Control Air Compressor Start Chillers 6 Start Aux. Bldg. Supply and Exhaust Fans i Start Swgr. Rooms Supply Fans 1 P78 130 27
~, e s i 1 ..6 I .N.S......... ., P, F.n..... .e......., ....w
- .3.6
...,...,.hm.., .,C,.a......,,, ..,...) 4.... . ~....... ... P,.,,. P.. s
- his iss:::cti:n Ou-lines the seque.. e in WP.
n sys e s are placed i.. ser" ice ':: 1.1 ..a s. 5re.. a.s g.s.. ... a.s.,.s.. u.o a.a.2.-y o.s.c g e..., s c.s.a .u m.... aw.- ..s.. u, a .r n a .s... n. 1..... .s..-".....-..s. e.a s s a.. va..e..eu..s a.e.....a. .a...._. e,.,.se e.,a. g...., - r s..~ .r a Of this ; : edure, :ne ..: In -ne even. plan: c:ndit:0ns : equi:e a delay during sete par: J u..:11 :he s..all res: n -he :ne:X :ff s se: 3ent:: Shif-5;;e="is:r/ Shaft 5;;ervas::
- edu
- e as
- :nt nued :: termina ad.
- f the ans-::::icn is erminated ;::Or :: :: ;1 eta:n. the Sens0: Shaft !c;ervas :/Shif:
1.3 shall note :na reas:n, :: e and da-a :" the ermina : n en each : heck Off Sc;erfis : 11 : hen 'ile -nese check o** sr. ness in the norr.a* shee which has een started. Xe w = anne:. ne.. .e s.s.,ne. sa... .. e a....., <a.e a re.. .s. s ..s........., ..... a as.e..sr. n.. s.o.s .a . r
- ne % ff s..se:s.
be :: p*.e ed, initis; ::ndi-i:ns ay be satisfied in any c dar. 1.5 1::cedurs;-steps must ......r ........a a .. a. d. '-.> v.d.*.
- e.- -. -..-..' s ". a...i s.....' e. s *.r
.'.. s e.-. e. a.. d d .
- e ; '. a... *. s '..
- 2...
6.. shutd wn ::d tan.%s pesata:n and 7.03 ter:n c:ncentra:ica as specifie: :n 715 231.bt c' the Reac::: Ingineer ng,v.anual. 2.0, System : ;ers:::e is being cat..:si..ed a;;;:xtrate'y at -he nc-10ad 7,.,. (5 4 -
- T ? ey s.
use 0" the Stes: ;us; System an the MA 5 STIAM ;?.I33 0"S7 mcde :: by ;se c' :ne Atecspheric's Stean ?.elle' ( P.5 *.: ) Valves.
- 1 by :;eratiny - e A:x.1:ar/
- eve's are being main:2;..ed at
- 2.3 3:na: ene:2-:: wa-a:
7eedwate: Sys:en. ,#" 2.4 7 :: (4) Reac::: :clant Pceps are in 0;erati:n :: ;;: vide circulatten :n :uin :he ::re and mini-1:e temperature different als accng the iceps. less-ene Scur:e Range channel is operati:nal and -he SR F.*GH TL*.*X AT 3E"~1Ch*N
- .5 At j
s _.. ,..ea_,. a.sa.-... < s. p e.s.... a a.a .o 1 3.. P,..,.A .,s. S 3.1 Tamparatures and Pressures. e { D'. I. l j < 6 n" I D E D j yg . b, V
- L JL a
\\w. s p.e u. ! 1 Sa* em.*na- ; u i
...._o. qd .5 .-a. j/ p/ 3.1.1 The res dua*. hea: receva' *::; mus n:: te ;;sced :n serv;:e unt;; :ne rea:::: =colan: :e ;erature as :e;:w !!:'r a..d ne ;; essure is 1 375 ps;;. - nen :ho RC3 ;; essure is n:: 3.1.2 One Reac:2 0: clan: Pu ;s mus: ne :e :;erate: encugn :: =aantas.. a d;fferen::a; ;; essure ; aats: :han 200 ;s;d 2:: ss ne RCP's No. ; 3ea; :- w..e.. the V ;uee ::..:::1 Ta.4 ; essure is less nan
- $ ps;;.
2.1. When ne RC3 :s s:;;d and under cen:::; cf Le: :.- Pressure
- n:::'. Ys.ve
- 7;3, an in=:aase an R 3 press.,re shcu;d =e ex;e::e?. vnenever an PHR Pue:
- a s
- c;;ed. LtXewise, a decrease in ;; essure w;;; resu;: ft: s ta r ang an RER F ur;.
3.1.4 When starti..; an PSR Pump w. n :ne ROS :=;;d and a: least one R0P in :;erati:n, spe=;a; attent;:n mus: :s ;;ven :ne ;;e:au ::ns :n 0: ::-6.3., ":n;::a::n; Re-sidual Hea Re= eval", :s prevent decreasing ne RC3 pressure te':v the :.imum required f : R0P =peration lROS Solid). 3.1.5 The rea=:or core should always te supp;1ed with a flow ef wa:e: for cooling, and re'aat;e te perature anda:ati:ns; :neref:re, wnen the Rea: :: 0:=1&n: Sys:e= s m-te perature as set:w 21:*T, at Teas :ne Res dus; Heat Remova; 72 ; :: one Rese:c *::;an: Pu ; sh:u'd :e :; era:::n. Under atnorma; cend :icas, wnen :: clan: =annot se supplied :o -ne rea: :: :::n, a ba sup seans of ta=;erature desee ::n is availa=;e an the in-core thermoccupies. 3.1.6 When star-in; a Reae:c C=olan: Pump, spe: a; st:ents:n must se ;;ven the pre:ausa:ns in 0: ::=1.3.1, "Reac-o Oscian-Pump C; eras en*,
- o ;;even; ever-
- essuri
- sta
- n =f :ne RER Jystem :: :ne RO3.
2.1.7 The Res=::: ::c;an: Pump :'o. 3 e a; bypas s valve, ' '.*114, mus: =e :; sed when -ne RC3 ; essure nas een decreased :: 100 psag. 3.1.3 The Rese::: C: clan Pump seal water temperature must not ex=eed 143'T. N e 3.1.9 C: ponent :: cling to the Reactor Coc;sn: Pumps mus: se su;;;;ed s..y :: e a / Res=:c C: clan: Pur; is :;erating and should not ce secured := an adle pum; unti; the 1.03 has been cocied te; w 130'T and tne pump has been ad;e f:: a: less: 1/2 hour. be used, if the torperature different 8; be twe e: 3.1.10 The Pressuri:e: s;;sys mus ne: the Pressuri:e and the spray fluid is ;; eats: stan 320*T. 1 1 3.1.;; The R s :e:perature should be mai=:ained a leas: !J'T 1:wer :.an -ne P:ss-s. surizer Juring = cold =wn. D1 - D ~Q~} A o s
. a...
.e_....- a; tq 2 o
,.. - - ~ - 0 I0
- -3.5
. east a *3 : nute
- n *pers-i:ns * :s No. 4 :ne R05 :: ld:vn rate :n a-3.1 ;2 P'::
11:a-s :f interval main:aaning :ne coold:wn :ste 1100 *T.'heur and wi-nan ..e sa:'sfy Tecnn cal Spe: ft:A: :: the pressure - : perature :urve :: Survei' lance 4.4,9.1.a. 1
- eldown :s-e :n at less: a *-
- n Operassens icg Sc. 3, the P essurize:
2.1.;3 Pis: -: sa-asfy nanu a in-erval mai..:aining ne :: 'd:wn :ste 1 0:0*T.'h :: 4.4.7.2. Tecnna a; 3 e: aft:ati:n Su:vei1*ance n:- :ameve ..e R:d :::"o Ven-Tans f r:n serv;:e vn;;e ..e ::..-::'. ::d d::ve 3.1.*4 0: eenants:s are energized. the Mo::;e sepper: Tans Shasid Ventilasten Tans c 3.;.*.5 o n:- ree:ve -he React fr:s service un :1 ine RCS to=perature is < 145'T. less tha.. 250*T. the nt=ner Of 3.1.16 Ouring :::1d:vn =f :ne R03 f::= 34-'T :: run..ing ROP's as as follows: RO? ' s M-5 R" 0! RCS TIMP. a 4 t 54.e, 40..,
- \\
3 3.., 0.., =.0 9. 4 e. .e.s .sce, , n.,. 3
- 3..
e, .e . s v. .s 1 s... s..e e .a. p S. 0.,C..... *
- J
.esa-. u23 a.s a. s e. e..., .w..N...v .. s e .o_u R.. 5.s,y..e I 1 l l NOTES t maintain pressuri:e 1. No. 11 c Ec. 13 PC? should be Operated :: sV 2v.. in uneven Operation of RCP's, other than specified abcVe, can resci 2. RCS temperatures ameng the loops and ::aate cenditicas in -he S/-'s safe:y inte:-i:ns created by S/C.different:a! 1eading :: inadverten pressures. 3.1.17 r.aantain a: least one Resets: Cocian: Pump in serv :e during :ne devasang and berating perations. D* D D T es . J_. W _a Rev. 3 eses 1 l, 6 .-n
1 fO
- -3.1 a:::ss sne 5:sa 3enerate: tuze s.. sets.
3.1.13 Oc S00 ex:end sna 1600 psi
- ? 11 ::
the ra o cf feedwa:e: sdditi n -o a Steam 3.1.19 When in the Eos 5:andhy =enda:::n, 4 ne 3/G 1evel as (104 Genera::: is 11 ::ed := 1 2,3 X 10 ;;, h: wneneve: ns::rt range. 'as indi:sted by
- cp *.. :: Leo; *.2) destesses 3.1.23 When the 305 emperaturs the 7:essura:e to 3*2*T and the 205 pressure is reduced to less than 3*5 psig,
,s he armed. !? CPS) =.u s :_ Overpressure 7::-a:-sen Syste Relief av :d*-he use :f the A : spnera: 3.1.*1 :: ing the ::cidewn of :ne ROS, ' valves when the :: dense is available. .L. Use of :ne A:::spneri: Relief Valves var ants :1:se operator monit::ang of 11-14 state genera c pressure s in ::de: :: (caserved en the S/0 P:::e :icn Channels) avoid S/G differential pressures :esu*:ing in inadverten: safe y inte:-ices. 3.: hemistry
- c'an-sns11 be greater ::.an 3000 ype whenever a 3.2.1 The flow :::s cf reac-::
3ys en ac;;n ::n=ent ::i:n is maing made. change in Rea ::: C o1L.- when changing R02 b=r:n ::n=en rati:n, 7:essurizer sprays should be 2-111:ed 3.2.2 and lecy bcron==ncent sti:n. to =inima:e the different:11 te-vsen 7: essa:1:e The use of s;;ay f1:w saould ::nsince unts' this dif f erenes is less than 33 ppc. Ing the RER Systam in service, its bcr:n c:n=entra ica mus-to su:n d 3.2.3 Before pla:
- n=ent:sti:n, t..e minimus Shu d:wn Margin requars-tha: if -he R:S was at tha:
-- - r 4 ments would te me. Thehyd:: gen::n=enrati:ninthere$::: c: clan-should be reduced := less : an 3.2.4 5 c:/kg prac: :: being c;erad f:: refueling :: :e;a;:. s.. 3.3 Kea:-ivity C nt::1 A :: imum cf one S::::e Range Channel shall be in c;eration any :: e -ne rea ::: 3.3.1 ) is shutd:wn. 3.3.2 The 3:3 mus: be berated, pri:: to star ef :ocid wn, :o insure the min;su 3:M is maintained. Refe: to Tig. 20ta) Of the Rea:-:: Ingineering Manus' f:: the
- d shutd
- wn ::de of =perati:n.
RC3 beren ::n=entrati:n required != NCTI I l Approximate y 46,000 gall:ns D 19. 5 % ) Of primary and g <3 c3 g cg water (30,000 gallons abeve Lew Level Alars) cd b 1,000 galicas =f==n:entra ad bori: acid (in excess 4 - ) 23cf the $106 gallons :equired by :ne To:nna:a13;e - fica icns) mus he availam's fo: = cold:wn makeup. e.. w
= ......a .. ~, (uV
- .3.4
- .3.3 The A.dao 0:un: Ea:e Channel sa:uld te ;n :;ers ::n any : ne :Me rear::: ;4 snusdown.
4.3 OME x cr? sw.!!TS 4.1 Plan ::cid:wn 5.; Pe0CI :*EI If tr.e Fes ::: :: cia.: Syster. is :: :e :pered is: repaa -@ug, ar.:: case ..e purift:a ::n rate :o 1:s -n ; um ra:e,"newever, de.:: ex:eed *:3 q;..
- 5. : If required. :egin
.e devassing of the EOS A;f :: :- 2. 2.11. **.*:1.:. e :n:::: Tar.e: Sevassifi:sti:n*. 4 ?!CT! Oegassi..7 and :::;d=wn may be ace: ;iaaned j gr concurrently.
- 3.:
2:: ate :..e 703 := s ::n=ent sti:n deter.:ned fr:: 7:qure 2 fa, :f :ne Pea:::: 4 Er.q:r.eeran; Manua.. 10: ate :AW :: ::-2.3.i, "Ec :n C:n=entrata:r. 0:n ::.'. Perf::= s s. u:f:.. l'ar;;n Cal =ula::en :AN :ne Rea:::- Ingar.nering Ma..us'. ;;;::
- enterar.; M de ! for :na a::ve : nd::: ens.
'5.4 co-energ :e a;; 7:essurizer nesters after the 7:essura:e b::en concentra: en has been ver:fted to te w;:nar. 50 ;; of :ne encen :a ica :n :ne reae::: ::c lar.: 1: ps.
- 4. A.
.1.
- f =c: age is going -c be ci sher: dura:Len and :ne hummie maints;ned an :na Pressu:::er, tr.e f:i':vang steps pertair.ing to 7:essura:e :: ;d:wn are to :e marked Nf'A (not appl:Cac'e', Cn Chec.< Off 3;.se: 4.14 Steps !.4, 5.11, 5. 7, 5.03 and 5.30.
a ,. ~ '5.3 Nctify Te:..ni:a; Super.is:r-Cnemistry of t=pending p;an: ::cidewn and :na r.eed to sample the R S per the Chemist:f capartner.: r e:;uir ements. A uvM CL a (de<J e n 0 - c.ews-A brn ~1-G 4 h @"4 d lLL. (S C oM A 4 ro ( '$.6 Pla:e the ?.ake r.*p.v.cde seie::ct it. AUTO and adjus: 'the blend. 3." Verify that a n===al leve; in the '/clame COnsic; Tank as being maansair.ed durary tr.e cocid:wn, except ring de;sssar.g :; era.icns. D h Sa;e= Cni: 1 nev. 4. ~ l'
a. -3.6 ~^ '" -^' r.:r' 2 s ea 1 -p ress e. -::.ler, 0: 7 4. th ma a si s. du... res 2: : :: er .3 rate ::
- am. ~.....
1.1 n -;y e.- ease .c . e..;. /...... ....w e of ne ;; ?4 MS;; ' ~... ar.d ; ?
- r
. u'; A dumping s:sa., f :ne ecndenser is unavailaole f : . '. : o pe ratia '. q s' "70 or MA::V,
- s as:nor:,:ed
' dow. :1.e f. '? 'h: a-a
- 'alve an A:ncsp.-3 '
ise: ints rals mn .a. :nc r.e := I as: J manu: =co.:wn :s e n at - teteerst,. ve. the pres 1.d w.ni, the 1;..*:s a .m..... 3510 Atmosp.. ara: Cecidewn of the A05 via the 11-14 ,N Soni:: ini Re;ief Valves requires clese spars::: $/ 3 1.P i. advertent of :ne S/ pressure so :na: Two 4+0 [ ce ur. safety in:ee:1 ens wil; n:: 33( levels in the normal epers:in; :snye. 5.3.1 Maintain Staan Geners::: is te:.een 54**T and 4CJ'T. RCP's in service when tr.e RC5 tempers: :e
- !.i
- <aintain fcur (4) of sne F-1 Permiss;ve (143*T: as :ndi-5 ;; when :..e 703 te.pera:ure react.es sne se:po:n:
- sted y the *
'd 7 i:/4 Lcw-; w !av,* ;ign: On na RP4 5:2:us 2a..el: m av.i ..s. ,....s pp....,. a. .... 7 e po 3, p.. e.., ... a a w, . u. n..g . A
- a.. a., p. o..
1.:w-Lew
- o:.neid en: w:. *w S tea-'. ?:e ssure ::
5. i.... r. to elecs :ne Magn 3:ean T1:w in$e::acn s : a1. M.safet'/ 7 -: n
- vpass NTLX TR..ar
"?. 3 SY? A3 3 7 ' pusns
- !.la.2
- ea ress tr.e STT.Ali DUMP
..oidewn : .....anue. . ck := a ;1., v a ., Steam. the *.cw w a 9 4 1 O A'.l* : 0;1 c8 / W Y ds >'h eYs ateve !<:'T. s These b;:c u sili au::ma:::a;;y rese g[/ sr.culd :emperature sten de:: ease belew 543'T :ne acta:ns described at:ye mus. De repeated. g d
- eve.
to 3:adua;,;y :ncresse Pressuri:e M *. #.. As = cold =wn pr:gresses. av.;us- :nargin; !;cw 96 I g cc app :nsa:e y 704. g .to, ~ Nc.13 Charging 72:.p 1:w speed ' -:p to s Read;us: mairmain mini. mum. seal injection f'ce as pressure is decreased. MANUA;. snd slewly cpan :ne spray Transf er the =ents:11ers f or the spray valves :: 1 Observe p;scr.u-valves to begin the cooldown and depressari::::en of the Pressuri:er. i () 5.12 leas: a 30 mi.ute 5 :..e ::ald:wn rate en at 71c: en Opera-icns og :Jo. ti:n 3.1.10. interval maintainang sta c=oldewn ra:e.<.100'T/ hour. .O .r .i L{ L=> 3ev. 5 b lNl ' vAAJ 0 t 6
e e
- -3.6
[t ihe L w 15 psi;,.anually $10::: W.ar. e.e ? S ;; essure has been redu:ed bel w '.9 Level safety.n:e::::n signal $y 7:essu s 7: essure :cin:ide.:. with *.,cw Pressu:::e
- 5.*
..3 3.~. ...y 7,.,.33 r. .e.3. p o..r e.....s,. .c. .w 7 .o. .x 3.e. g. ., e.,.. e, s,...,. :. e. eo.v.. = C A.. . m.. 7:sssure : tr.0: dent vie. L w Che
- w 7:essuri:e
".evel safe y :.;ection s;;nal will auto-19 '. ! ?ressari:e: saculd pressure inernase a ove ma-i: ally resa: ps ; and must be reb *ccr.ed vnen ;; essure :n=e aca'n + ~'a n.. a an. ua ~~a s~'~ decreases bel w 19'5 ps;;. a w.ar a r v.a ?=p So.1 Sea'. decreases e,m A nn ? c p Seal 3ypass Vs;ve
- :: Lan:
- 3.'.4 When :na sesi *ea%:ff f := any ; era.ing Rea::is 1 1300 psig, Open 7.ea:. :
00 clan: 1 ppm :r :ne RCS pressure
- ist.
7.ecced valve status in valve :ev:at; n ".1"'/114. -o maintat.n letdown as necessary, Orif;:e iscla:icn valves, 5.15 Open add;ti:na'. Leed:w. fi:w ste. h
- $00 psi; (0... I' 4 5'?
- he a.:
5.li When -he Sr. ear Ger.e:t-or's pressure has de:: eased :: 'svels and I:: ::n:: na:n; 0:ndensate Purips may be used := mainta:n S.sas Genera:Taed ?=ps may:e se (e.* AuxiliA / .no -::1d wr. 10, Cu.l e */alv e s *..,
- lese A::=ula ::
QWMM l '.030 psi;, .1 When the ROS ;ressure de : eases be ow the valve met::s. sw1 g.a4tt,y a.d O&O :..e ele : i:a1 supplies :: 13 and 14EJ54, Rec::d valve status .'inive Deviati:n 1.ast. reduce e.e ru..ndn; RCP's :o d d bel:w 400'?, =5.'3 Wher. the RCS tempers ::e has been re u:e13 207 sh uld rema:n in Operation :: pt: vide pressura:e: ~~^- *-*-" -- tares ( 31. No. 11 R07 :: wi:: - T ':::: ::: .C7 <-._f; ..... r
- N-i.;. u w.
spray f1:v. . -i ....x
- 1. ;- - ;.
q 350*? a..d p:sssure os (3*3, 7" ace duced bel:w ?amova",. '5.:9 When the ROS :e.pera =a has been re:: 3.3.0, "*ni:ia:ing Residual Hea S.Z. ItL.eW the ?.MR Syste. in service IAW C: g 'i Q $ $ / * 'D @ e d ht y hnan W.e RCS tempera:ure is be'.:w 250'?. 5.*0 r a :.< th e 4 k'.' be:h Safety Inje::1:.. ? =ps: . C40 e.e ele:::1:a1 supplies : Cicse 11 ar.d 1:SJ134 breakers cut and turn off nhe O Cons::1 ?:ver. ' 5. 2 0. '. 1:n ;;s: f:: ?se::d -he pesati:n change in the Valve :evia: and LSJ135. C' * -4. 3.1, "S S nor.a1 C; era::.cn". O OO r e a,s ua t3 m ?.e v. 5 I \\
n .u s e /' [05 I-2.5 ra:/. -ne "kV
- no Can-: fugal Onarging Purps Oi! :..e ele:-ra:a1 supply ::
':.I C ::ntrol ? ver. 2:saxer ou-1..d turn off the : FCTI remain ef one Centrifugal Char;;..g Pump mus: A sin;ma: until RCS tem-of an ICOS subsys-a perable as a part 200*T as required by the Tecnnical perature is bel w Spec;f :2: ens. dri-)en Auxiliary Teodwater Pu=;s t C&T :ne s'e:::ical supplies to be:n me:::
- 5.~ 0, 2 and :: n off the :C Cent:ci 7:ver.
rack sne 4kV treakers out NC#5 desirable to use -he Auxiliary
- f 1: as ne:essary ::
levels, cleari..g Teed Pu=7is) :s.aintain Steam Genera::: and tagging may be def erred until the is no.:nger required. pump (s:
- ne s:st s 7;1y valve to No. "
- 5.::,4 C;;se and 017 1. Ant 1;;;34 5,Re ::d talve status in the valve Oeviati:n
- ast.
Acx;;isry Teodws er Pump,
- . c.' 2 ) in :ne fell:wir.g ::::1..asi:nst
,.2 .f Reduce the run..ing RC?'s :: a) 11 PC7 and *4 ?.07 OR b) 1 RO? and 1: RO? j -. Stea.. : Open status light f ,ess..
- -a i RO?
0;en s-- ;ing Of ?M anel energi:es,
- !.20. 5 ' Tes:
'e PCP A*d
- ::-2 4 "?:s ri:e ve ry e s ure :::. :n -i
'7 er i 1-- :.ee? Cf R1 ad 5.2 ". (as indi=sted by Loop 11 c; Lecp *2 *iide ?*=ge When the RCS temperature reaches 21:*7 (as indicated by we*-Tnc <. w., ?
- !.:1 reduce RC3 pressure to less than 275 psig 31
- T, at: the_g*],5.y 0,)With RCS pressure isss than 373 psig and 203 temperature at
~ 7 I and :* pushbutt:ns to :ne
- M" pest:1on depressing Channe*
.as been ad sted, place rature -eaches 23 *? and ass: chemist y .. i S:n : Gene s in Met Layu. ! AW CI II" 7.3.3,
- i'? ing an Ver cing sne 3:sa:
~ ** :: Wh in the J03 to: eier ors". ) .=Tz F(('^pjf{ }{ ]f h [ y,] { une cut ye i : te of ner-dura:1:.., pla:ing,te 'O F} Jj Steam n rasers an *We
- .43.,.*
is .o-requ;:ed. ) 't..e nusner :f running RO?'s :an se sd :ed With the R 3 to:pers:::e <230*T, spray 5.20.1 No. 13 ?. P sacu*d ressin in serv; e :n pr:viin 7:sssuri:e (1). C; n s :pping of eaen RCP te:ify sne respective RO? 3:saker ;en to see ~ f*:v.
- atus Li:ht :n R74 3tatus 7anel energi:es.
r. l
{ Q(9 ..s 5.;, .;h e. s: as due
- s 3:
.; - retu' - bres' v2 22: 3-r -:'N ne --.n8 3ea;;n; Sys, n fr:: ry;:e. desire.. 5.24 f ne 3.'O's w.'.; r.c : te put an " Wet *ayup",
- er e de 1*-14x510 A
- nes;ner;;
Relief valves : f acilita:e 5.'c heat removal. 5.25 When :ne RCS :er; era:ure is below 00*?:
- 5.25.1 C&C :he ele::r;rsi suppi;es - both Cents;:en-Spray Pumps: r se a :n e F.Cl breaners ru-3..d turn ff tr.e 20 C n-::1 PC'aer.
- 5.05.2 C C :ne ele: ri:21 su;;17 :: rera:ni..; Centrifugal Char;;ng ?ce;: ra:4 r.e 4'<v breaxer cut and : urn Off -he :C Cen ::* P:wer.
f :..e ::..e: Centrifu;al Chary n; Pum; has no: been made insperatie. C10 ::s ele :r :21 su;;;y, urn ::s :C 0:n:::1 2:wer :44. ra:4 ne 4 < '.' areaxt: :a: an: 1.26 Of ne s..u:dewn as := te Of *cn; durati:n, degas :te Cenerater IAW C- ~7-2.3.2, ' Gen-era::: Oas Syste - Normal C;erati:n".
- 5. - :f sne Pressur;:er :s :: :s filled sei;d, es:sti;sa a ::nt;nu: s
- eed sarcu:n :ne san;1e systa= *AW 70-3.1.004, *7:sssur*:er 5 es: 3;a:e Sar7 ;ng', :: ven-Off 3:n-1
~ ..J.<.
- ndensatie gases.
Ca'<e :ne.ea: ::.::, ant system se.,;a. ~*... r ar.d vent;n; :ne RC5"
- !.23 Wnen :ne P:sssuri:e :s s:11d, si:wiv c;en ;;5; a..d/ :: 175", 7:essura:er 5;rly va".ves := cc:a:n a unif rm c=oidevn of :ne Pressurizer.
- !.07 Nhen :he Ceid Shu:d wn, Mode 3, RC3 temperature has been acnieved,==n:;nce :; era-1:n in Med2 5 with:
5.:9.* One RCP in service
- 5. 9.2 Pressurt:er :u:ble ex;s:s
., ? S..... 5. 9. r. 5.29.4 ?.MR 3ys: :.n service f:: :ar.peratu e : n:::1. .s+. Chas is ne n=rea., preferred :;ersta:n :f :ne R:s it ::ld s.%t:down,.yede 5. P:ssiaal; y of a RC5 overpressurt:staen is minamized. Che RCS accume-las :s may :ssaan pressuri:sd ateve their :<PC 11 : =f 7c er (Ref er :o 01 :f.4. 2. 41. .? ia n..e d deviatacts fr:m the a ve mus: =e au r.or;:ed bv. the Chie! Engineer :: 5:a:1:n C;ersran; in;;neer, refue;; ; sent nue :ne :::1devn f the pressuri:er as re:uired y sai..:enan:e :: +5.3$ C: cusage: 1 l m ~.,,.
- n um v
_ [w(it b Re,. $ 3.les. :.= 1 vuiaQ j 'Su l t
o ( 'i l
- .3.s 775.
Open 7:essu:::e; Auxiliary Spray 5: p valve 1: 3 5.30.1 Re:cxd va've status in :he valve eviation lis. J i ?ee::d valve s-stus in the valve Cisse ha: Ting
- ine S::p valve 107-.
i 5.30.2 Oeviatten List. entain the desired eccidewn tr.e Re :;;:ca::ng Chary:ng Pump speed :: 3.30.0 Ad;us: 2 of One 7:sssuri:er. ra:e 0:n-nue sc cir:u'a:e zar: ugh ::.e auxiliary spray line ::11 :he Pressu 5.30.4 temperature has been reduced to ine desired tempers-ure. 130 psi; close the RO? Seal 3ypass Yalve to redue:n; the RCS ;; essure tel:w 3,0 ". 7:10: J
- o redu:ing RCS ;; essure less :han 25 psig:
J i 3,2 7:::: ..e ?,... .? s s..,,.. <.e.......r. .s la;;;:x. 30 0. .r 5302 Drain -he PET ta':w the spar-e: -ne des :ed -empe a ura usini 0:ntinue :: cide n ! -he ;;essura:e: 3.22.3 i auxiliary spray f *.:w. t N..,-.-_ i?R1 :: !?R Nit:cgen makeu; to the PRT V ::. open will occur to nain a n the RC3 as a pas;;1ve
- essure ;*.4;s;7).
OL.. n... ".evel an:: eases are Ahnertal or sudden ;;essc ::e: indi=ative f vacuu f:: a:1cn.
- 1d
- f :ne RC3 is :o be drained he'.:w -he levai ra..ga of he 7:sssuri e:
- -;. 0. 5,
- 0:sining ::.e R03 *.
3.3.4
- C:
Calibrated Channel, refs: 4.s.c be d-ai.ed
- sh' ",'...'. a'. s', *. - a.' n.'..,..'. e s". - ",
~.>~....e .a u a . s.. a 2. 3
- 6., Sr.a pcap Operassen :
'- $v* 1RE1 and !?.X: and eisstrical power :: one (1). d 3:2ds. M.ain ain RC3 :seperature >30'? unless tensten is re" teved fr:m reactor hea 5.33 s[. r>d
- 7: epa:ed av.
I.
- 7. :-urhni <1
-- 44.e= 'anera::..; s a.:n nanAge: a:e 1/* 4 *- s 5 RC Mee:1..; No. 50 ? O f oudh Ld1 J e w
- ,v.
5 ---.r
. : y f()
- =3.5 CEICI CTT SHII* 4.1 Jh..,. n....
F. ......n.. 5..%.....?, .n.. .s n.. ... s. .r. e. i '2.1 Mc: 3:a..dty P.ede
- Opers::=n 21 2.J' 5/G *evel at
- .4 T ur RC7's ~n Servi:n
.5 Ecur:e Ra..ge :hannei 0;ers=le 5.". Cegas ?CS 3.: RCS Scts:ed ":: X,, 4. 7 9 e.. 3.4 7:essurs:e; nea e:s Of' C =menced RCS San;11ng 5.6 Cv:S - MAXeup C:nt::1 in AC*O 5.9 Tec: RC2's In Service t*4**T t: 400*T) 3.10.1 5:sa:Line Pressure 5: 31oc.k (P-1~1 !.10.0 3:s t: Ousp *nteri: X 3'!7A33 7av; 5.11 7:essura:e level Increased :: ***1 5.1 7:essura:e 3 p r ay 7alv e s Y.AN*.*AL C PI:t 5.13 2:essura:e 7:sssure 3: 31:ck !?-11; RC7 Seal By7 ass 'talve Open 5.14
- 5.
- 7 Ac:umulas:: *usie Valves Ciesed 3.13 Three (3) R 7's :n Service (<4 C*T!
3.19
- ia o RER
- 5. 0.1 C1* Sa's y *n'ecst:n ? umps
!. 0.2 C&T Cent:afugal Charging Furp
- iven Auxiliary Teodva s: ?usps 01 Me:::
!.:3.4 11 6 13M543 C'.: sed and C&T
- 5. 3.3 Two (2) RCP's In Servi:e (<350*T:
3.20.6 Tes: 7:PS 5.4. 7.. 7 5...!. 4 5.2* 5/C's in ~4e
- .ayup 5.22.1 cne -(11 RCP :n serva:s
(< !C*T) 1.01.1 Ci* *:ntainment Sp sy Pu ps these steps may be marked N.'A " the bubble is to be ma n-ained in the 7:essuri:st,
- NCTI:
duratien, -his step may =e marked ::,'A ::::: App 11:stie.
- CTI:
- ne :utage is f sh:::
- e ~ q t J s..> J\\ .JU\\ . J, ee ..~
q' ~' ~. , s
- ~
1 (09 " 3.! l 1 w...... . r r.
- e..a.,,....a
..,,.A i i i _e... .....4. !** :AT' ?I
- ATI
.. e. v. .e.. ?_ .e a....,,an...e...,.a .a.,....,.p..-- .-r t.. 5..4 'le.- Pressuri:er, Taxe 3C5 5: lid 5.2-3.:3
- ..ence 7:essar.:s ::c;d:w.
!.:9 7::. Bu:=le, Mede !, *ne 707 *persta:- 5.3-Crop *ete ?:sssura::: ::cid:.- . A.s. a,.,..c M. 1 ,... 5 i i i 1 l 1 l i l l I 1 1 4 m ' ' ' D 3 h D D C J Mf de a d './A.
- ! :..e bubble :s := he main:21..ed in the ?:sss;;i:er, these steps =ay ce =ar/.e
':0TI: 42:07I s !! .e :.: sge is of sr.=r: dura.ica, nas step.ay te : arr.e: :*/A,::ct A pl.:2:le* Oase Re'.*ieved by Sent: s.ui-supertas; f 3.saf : 3.;;erf 4c: go.., 3 2 3 d13. lr.;: 1
go I-4.0 l EMERGENCY INSTRUCTION I-4.0 SAFETY IN.7ECTION INITIATION 1.0 PURPOSE This instruction is provided to present the immediate automatic and manual actions 1.1 required to be performed on the receipt of any safety Injection actuation, regardless of the cause. 1.2 This instruction contains the information required to direct the operator to the appropriate Emergency Instruction to cope with the existing plant conditions. 2.0 INITIAL COMDITIONS 2.1 safety Injection has initiated. 3.0 IMMEDIATE ACTIONS 3.1 Verify the following automatic actions have occurred. 3.1.1 Reactor trip by verifying all control rods are fully insarted by checking the individual rod position indications and rod bottom lights. (( 1. If acy control rods do not indicate full insertion, initiate a manual reactor trip. 3.1.2 Accident loading of the safeguards Equipment has taken place and the following equipment is running by observing the indicating lights on the status panel on RP-4 and by observing the control besels for each of the following: 1. Centrifugal Charging Pumps 2. Safety Injection Pumps 3. Residual Seat Removal Pumps 4. Auxiliary Feedwater Pumps (Motor Driven) 5. service water Pumps 6. Containment Fan Coil Units in slow speed 7. Diesel Generators 3.1.3 Reactor coolant temperature is decreasing to or being maintained at 547'T by either steam dump or atmosheric steam relief. 3.1.4 Within two minutes reduce Auxiliary Feedwater Flow to the Steam Generators to limit the rate of rise to <1.2 in/ min by monitoring the wide range level recorders (<0.26/ min on the wide range until the level is > 10% on the narrow Then range indication for all Steam Generators not affected by the failure. re-establish saxisrum Auxiliary Feedwater Flow. WOTE This limitation applies to Unit 1 only. Rev.0 -1 Salem Unit 1/ Unit 2
.... _. ;.l.. C._'.
- ~~
III. I-4.0 3.1.5 Turbine trip by verifying the following (. 1. Unit Trip light on the EH Console 2. Turbine speed decreasing If the turbine does not indicate a tripped condition, initiate a manual trip from the control console. 3.1.6 Main reed Pumps tripped by observing the indications on the control betel. If either pump has not tripped, trip it manually. 3.1.7 Feedwater isolation by observing the indicating lights on the Feedwater section of RP4. 3.2 Verify safety Injection Pump flow to the Cold Legs from the operating Safety Injection Pump (s) by observing the discharge flow meters on the control console. when RCS pressure decreases to <1550 psig as read on the wide Range Indicators on the Entrol console, stop all Reactor Coolant Pumps. 3.3 Verify containment Phase A isolation has tah:n place by observing the indicating lights on the status panel RP-4. 3.4 Announce over the Station PA System twice UNIT 1(2) REACTOR TRIP, SAFETY INJECTION. 4.0 SUBSEQUENT ACTIONS 4.1 Verify safety Injection is in progress by checking each of the following. If any \\ equipment or valve is not in the desired condition or position attempt to establish the desired condition at the individual bezel on the control console. CAUTION E g attempt to reset the Safety Injection or SEC in order to place equipment in the desired condition. System design is such that sufficient redundancy is prnvided to overcome single failures. 4.1.1 Verify, utilizing console and/or 1(2)RP4 status panel indications, that the loads listed on Table I have been loaded onto the vital busses. 4.1.2 Verify that the Containment ran Coolers meet the following conditions upon starting: a. Fan Coolers have decreased speed i b. Fan Coolers service water flow has increased frca 700 gpn to 2500 gpm ~ c. Roughing filter dampers 12 ave closed d. EEPA inlet dampers have opened e. EEPA outlet dampers have opened 4.1.3 Check that the following valves have opened by observing the status panel. If any valve fails to open, attempt to manually open from the control console 1(2)SJ4 Soron Injection Tank Inlet Valve (, 1(2)SJ5 Boron Injection Tank Inlet Valve \\ 1(2)sJ12 Boron Injection Tank outlet Valve 1(2)sJ13 Boron Injection Tank outlet valve sales Unit 1/ Unit 2 Rev. 0 l
e f{ I-4.0 1(2)SJ1 Charging Pump Suction From RWST ) 1 (2 ) SJ2 Charging Pump Suction from RWST 4.1.4 Check that the following valves have closed. If any valve fails to close, attempt to close the valve from the control console. 1(2)SJ78 Recirc to Boric Acid Tank 1(2)SJ79 Recirc to Boric Acid Tank 1(2)SJ108 Recirc to Boron Injection Tank 1(2)CV68 Charging system Stop Valve 1 (2) CV69 Charging system Stop valve 1(2)CV139 Charging Pump Disch to SwHX 1(2)Cv140 Charging Pump Disch to SWEX 1(2)Cv40* Vclume Control Tank Discharge Valve 1(2)CV41* Volume Control Tank Discharge Valve 1(2)Cv3 orifice Isolation valve (Letdown) 1(2)CV4 Orifice Isolation valve (Letdown) 1 (2) CV5 Orifice Isolation valve (Letdown) 1 (2) CV7 CVCS I4tdown Line 1 (2) CV116 Reactor Coolant Pump Seal Water Discharge 1(2) CV284 Reactor Coolant Pump Seal Water Discharge 11(21)SW20 Turbine Generator Area supply valve 11(21)SW20 Turbine Generator Area Supply Valve 1(21sw26 Turbine Generator Area Isolation valve WOTE
- These valves will not close until either 1(2)SJ1 or 1(2)SJ2 is fully open.
Verify that Phase 'A' Containment Isolation has taken place by checking that the 4.2 valves listed in Table II are closed. Should a valve f ail to close, attempt to close it from the control console. verify that Feedwater Isolation has taken place due to the safety Injection. 4.3 Check that the following valves have closed by observing the status 4.3.1 panel >and/or the console besel. If any valve has failed to close, attempt to close it free the control console. 11(211BF13 Feedwater Inlet stop Valve 11(21)BF19 Feedwater Control Valve 11(21)RF40 Feedwater Bypass Valve 12 (22)BF13 Feedwater Inlet Stop Valve 12 (22)3F19 Feedwater control valve 12(22)BF40 Feedwater Bypass Valve (k f: Rev. 0 sales Unit 1/ Unit 2 1
j ---.L--.' fk I-4.0 13(23)BF13 reedwater Inlet Stop Valve (( 13(23)BT19 Feedwater Control Valve 13(23)Br40 Feedwater Bypass Valve ) 14 (24 ) BF13 Feedwater Inlet Stop Valve ) 14(24)3r19 reedwater control Valve j 14(24)BT40 Feedwater Bypass Valve 4.4 Verify that the 4160 V Group Busses have transferred from the No. 1(2) Auxiliary Power Transformer to No. 11(12) and No.12 (22) Station Power Transformers, l 4.4.1 check that the following 4160 V breakers have o pned and acknowledge them on the appropriate control console bezel: 1(2)BGCD 1(2fBFGD 1 G)AECD 1(2)AHGD 4.4.2 Check that the following 4160 V breakers have closed and acknowledge l them on the appropriate console bezel 12(22)CSD 12 (22) TSD 11(21)Eso 11(21)HSD 4.5 Verify the following fans have stopped by observing the indications as noted. If any fans are still running, attesapt to stop them manually. No. 11 & 12 (21 & 22) Zodine Removal, Control Console No. 11, 12, 13, 14 (21, 22, 23,24) Nozzle support, control Console No. 11 & 12 (21 & 22) Reactor shield, Control Console No. 11, 12, 13, 14 (21, 22, 23, 24) Control Rod Drive, control Console No.11 & 12 (21 & 22) RER Pump Room Coolers, RP2 ) No. 11 & 12 (21 & 22) Charging Pump Room Coolers, RP2 ) No. 11 & 12 (21 & 22) Containment Spray Pump Room Coolers, RP2 4.6 Verify Control Area Air conditioning has shifted to the ACCIDENT - INSIDE AIR mode of operatinn and the following actions have occurred by observing the status patel on RP2. If any actions do not occur, manually initiate them IAW OI II-17.3.2, " Control Room ventilation operation *, section 5.3. NorE control Room Ventilation Isolation of Unit No. 1(2) will also isolate Unit No. 2(1) Control Room, however, its green NORMAL mode indicator j will remain illuminated, i salem Unit 1/ Unit 2 Rev. O
I s o l \\\\ I-4.0 4.6.1 No. 11, 12, 13 (21, 22, 23) Chillers are running. (( 4.6.2 No. 11 & 12 (21 & 22) Chilled Water Pumps are running i 4.6.3 No. 11, 12, 13 (21, 22, 23) Control Area Supply Fans are running i 4.6.4 No. 11 & 12 (21 & 22) Emergency Control Area supply Fans are running. ] 4.6.5 Battery Exhaust Fan has stopped. ) 4.6.6 Control valves 1(2)CH30 and 1(2)CH151 close to isolate the Adminstrative Building. 4.6.7. Control Area Dampers positioned as follows: CAA1 - Closed CAA4 - Closed CAA17 - Open CAA20 - Closed CAA33 - Closed CAA2 - Closed CAA5 - Open CAA18 - Closed CAA31 - Closed CAA3 - Closed CAA14 - Closed CAA16 G osed CAA32 - Closed 5.0 IDENTIFICATION OF FOI. LOW-UP ACTIONS 5.1 If RCS P'ressure decreased rapidly with no other indications of primary or secondary ieakage, verify the following are closed or isolated at their individual control bezels. ) L 5.1.1 Pressuriser Spray Valves (PS-1&3) 1. If PS1 or PS3 is open and will not close, trip the Reactor Coolant Pump in the associated loop. 1(2)PS1 - Trip 11(21) RCP 1(2)PS3 - Trip 13(23) ECP 5.1.2 Pressuriser Power Operated Relief Valves (PR1 & 2) 5.1.3 Pressuriser overpressure Protection Valves (PR 47 & 48 on Unit 2 only) 5.2 If RCS Pressure has stabilised after the initial decrease which initiated Safety Injection and contairusent Isolation, the problem may be in an area or system which has been subsequently isolated. Investiate the following: 5.2.1 Auxiliary Building for r 1. Increases in Radiation 2. Unexplained accumulations of water 5.2.2 Pressuriser Auxiliary spray valve (CV75). Ensure it is closed. Salem Unit 1/ Unit 2 g,y, o
~' \\\\( l I-4.0 5.3 Utilize the following matrix in order to determine which subsequent Emergency I Instruction to follow. i l d' SAFETY INJECTION 1 INITIATED i l l I I I ICS PRESS < 18654 PCS Pm35 > 18654 ICS PM35 > 20004 CR IEEREASDG E77 < 20004 Atc PRESS INL > $0% 1 uC DN S/G LVL s 33% < 15504 g 3 a CDI TO ) CD TO EI I-4.2 BCP's
- RECD ERY P3On TSMAND SAFT!Y IhL72CTI23*
l TRIP AZL IP 3CS PRESS EEIXASES BY 2004 ICP'S m PRESS. IZYEL EKPs 20 < 20% I I I CDfr. ID6 DGEASE MrD! 3CS 1EMP IECREASES SDt GDI EIDealel 2 AIR CDfr. TIN., PRESS, MAPHI.Y ICIE IDI RDI EJICIGL 306 DGESDC WIDI IDCDITY, ENP ID1:L PRESS IN CME CR )GE to D EREASE IN CQfr. f DGEASDC 3D1 GEN PARNCIDS l l 8 CD 20 EI I-4.4 G) TO EI I-4.6 GD TO U I-4.7 IMS 3 CIX1Mfr XIIIENT FIDM LDE' KP!URE STEAM GENERATOR TUBE RUPTITRE l J.V. Bailey Prepared by Manager - S'aledGenersking Station moviewed by J.M. Zucko ~7!d 50RC Meeting No. 56-79 Date I / Sales Unit 1/ Unit 2 Rev. 0 l I \\
~ ~..,... - _... e 3 \\ N) e I-4.0
- BLACKOUT WITH EAFETY INJECTION
- LOADING SEQUENCE k
- 11(21) DIESEL CENERATOR 412(22) DIESEL CENTRATOR 613(23) DIESEL CENERATOR l
1(2)C 1(2)B 1(2)A i 240/480V Breaker 240/480V Breaker 240/480V Breaker 11(21) BI Pump 11(21) Charging Pump 12(22) Charging Pump 12(22) SI Pump 11(21) RER Pump 12(22) RER Pump 11(25) SW Pump 14 (24) KW Pump 15(21) rW Pump or* or* or* 12(26) BW Pump 13(23) EW Pump 16(22) EW Pump 11(21) Containment Fan 12(22) Contai5 ment Fan 13(23) Containment Fan (Low Speed) (Low Speed) (Low Speed) 11(21) Auxiliary Feed Pump 14(24) Containment Fan 15(25) Containment Fan (Low Speed) (Low Speed) 11(21) Auxiliary Building 12(22) Auxiliary Feed Pump Emergency Air Compressor Exhaust Fan 11(21) Chiller 12(22) Auxiliary Building 11(21) Auxiliary Building l Supply Vent Fan Supply Vent Fan l 11(21) SWGR Room Supply Fan 12 (22) Auxiliary Building 13(23) Auxiliary Building Exhaust Fan Exhaust Fan 12(22) chiller 13(23) Chiller 12(22) SWGR Room Supply Fan 13(23) SWGR Room Supply Fan Y NOTE j \\ This sequence is initiated on any safety Injection actuation with or without a blackout, only in a blackout condition will the Diesel Generator breakes close after first stripping the bus and the loads will then be sequenced onto the bus. This sequence is also initiated with a safety Injection coincident with undervoltage on one 4kV vital bus.
- NOTE however, if the only the lead Service Water Pump will start, lea'd pump f ails to start the backup pump breaker will close.
(- k TABLE I Pa98 1 of 1 Salem Unit 1/ Unit 2
.s. ....~s-_ m.. I-4.0 TABLE II PHASE *A" ISOLATION e 1. Waste Disposal Systaa 1(2)WL12 RCDT PUMP DISCHARGE 1(2)WL13 RCDT PUMP DISCHARGE 1(2)WL16 CONTAINMENT SUMP PUMP DISCHARGE 1(2)WL17 CONTAINMENT SUMP PUMP DISCBARGE 1(2) WL96 GAS ANALYZER FROM RCDT 1(2)WL97 ES ANALYZER FROM RCDT 1(2)WL98 RCDT VENT f 1 (2 ) WL99 RCDT VENT 1(2)WL100 N SUPPLY TO RCDT 2 2. Sampling Systes, 1(2)S$27 ACCUMULATOR SAMPLE 1(2)SS33 EOT LEG SAMPLE 1(2)SS49 SAMPLE FROM PER MATER SPACE 1(2)SS64 SAMPLE FROM PER STEAM SPACE 1 (2) SS103 ACCUMULATOR SAMPLE 1(2)SS104 BOT LEG SAMPLE 1(2)SS107 SAMPLE FROM PER MATER SPACE f 1(2)SS110 SAMPLE FROM PZR STEAM SPACE 11(21) S$94 SAMPLE FROM No.11(21) STM GEN BI4WDOWN 12(22)S894 SAMPLE FROM 30. 12(22) STM GEN BLONDOWN 13(23)S$94 SAMPLE FROM No. 13(23) STM GEN BLOWDOWN f 14(24)S894 SAMPLE FROM NO. 14(24) STM GEN BLOWDOWN 3. Component Cooling 1(2)CC113 EECESS LETDOWN REAT EXCEANGER COOLING MATER OUTLET 1(2)CC215 EXCESS LETDOWN IEAT EXCHANGER C00"ING WATER INLET 4. Steam Generator Drains and Slowdown 11(21)G34 STEAM GEN CUTLET No.11(21) 12 (22)G34 STEAM GEN OUTLET Wo.12 (22) 13(23)G34 STEAM GEN OUTLET No.13(23) 14 (24)G34 STEAM GEN OUTLET No. 14(24) ? 5. Pressuriser Relief Tank 1(2)WR80 PRIMARY WATER SUPPLY TO PRT 1(2) PR17 GAS ANALYEER FROM PRT 1(2)PR18 GAS ANALYZER FROM PRT 1(2)NT25 3 SUPPLY TO PRT 2 TABLE II Rev. 0 Sales Unit 1/ Unit 2 Page 1 of 2
a '1
- * * = -
e-(! I-4.0 /* 6. Accumulators ( %. SUPPLY 1(2)NT32 ACCUMULATOR N2 7. Containment ventilation 1(2)VC1 PURGE SUPPLY 1(2)VC2 PURGE SUPPLY 1(2)VC3 PURGE EXHAUST 1(2)VC4 PURGE EXHAUST 1(2)VC5 CONT PRESS VAC RELIEF IS01ATION VALVE 1(2)VC6 CONT PRESS VAC RELIEF ISCLATION VALVE 1(2)VC7 CONTAINMENT RADIATION SAMPLE OUTLET l 1(2)VCS CONTAINMENT RADIATION SAMPLE OUTLET 1(2)VC11 CONTAINMENT RADIATION SAMPLE INLET i 1(2)VC12 CONTAINMENT RADIATION SAMPLE IhMT 1 8. Domineralised Water 1 (2 ) DR29 DM WATER TO FLUSEING CONNECTIONS 9. Fire Protection /'" 1(2)FP147 FIRE PROTECTICH WATER SUPPLY R \\ 10. Safety Injection 1(2) SJ123 ACCUM TEST STOP VALVE 1 1(2)SJ60 ACCUM DISCH TEST STOP 1(2)SJ53 SJ EDR TEST STOP VALVE 11. Control Air 11(21)CA330 A EDR IS01ATION VALVE 12 (22)CA330 S EDR IS01ATION VALVE 12. Containment ventilation - the following sample valves receive no automatic isolation signal, however, tiny should be verified closed. 1(2)VC9 Containment Radiation sample outlet Backup 1(2)VC10 containment Radiation sample Outlet Backup 1(2)VC13 containment Radiation sample Inlet Backup 1(2)VC14 containment Radiation sample Inlet Backup 1 TAB u II Sales thit 1/ Unit 2 Page 2 of 2 g,y, o
8 ({ 3-4.3 F.MERGENCY INSTRUCTION I-4.3 REACTOR TRIP l j 1.0 PURP08E l 1.1 A reactor trip is initiated automatically by the Reactor Protection System if unsafe i operating conditions are approached. It may also be initiated manually from the l control console. This instruction provides the actions required to ensure the reactor is in a safe shutdown condition. l 1.2 In addition to,de-energizing the shutdown and control rod drive mechanisms, a reactor l trip signal will Anitiate a turbine trip and, in conjunction with a low T,yg (554'F) initiste a feedwater isolation signal. This instruction delineates the actions required to ensure both of these have occurred. 2.0 INITIAI, CONDITIONS j 2.1 Any of the following conditions will lead to a reactor trip and to an automatic plant shutdown. The condition causing the trip will be back lighted in red on the first out overhead annunciator panel (Section F). J REACTOR TRIP SETPOINT COINCIDENCE INTE Pl.0CK 1. Manual None 1/2 None { f* 2. Pwr. Range, Righ Low Setpoint - 254 of 2/4 P-10, Woutron Flux rated thermal pwr. ] Eigh setpoint - 109% of 2/4 None rated thermal pwr. 3. Pwr. Range, Eigh + 54 of rated thermal 2/4 None ~ Flux Rate Trip pwr. in 2 sec. j 4. Intermediate Range, Current equivalent to 1/2 P-10 Bigh Neutron Flux 25% of full pwr. 5. Source Range, Righ 105 counts per sec. 1/2 P-6 Interlocked Neutron Flux with P-10 6. Overtemperature AT Variable setpoint 2/4 None 7. Overpower AT Variable Setpoint 2/4 None ' 8. Iow Reactor 1865 psig 2/4 P-7 Coolant Pressure 9. Eigh Reactor 2385 psig 2/4 None Coolant Pressure 10. Eigh Pressuriser 924 Iovel 2/3 P-7
- 11. Iow Reactor tot of Normal Flow 2/3/ Loop P-7 & P-8 Coolant Flow 12.
menctor Coolant Pump 754 of Normal Voltage with a 1/2 Taken P-7 .d" Under Voltage 0.2 sec. time delay Twice 13. Reactor Coolant Pump 56.5 norts with a 0.1 second 1/2 Taken P-7 Under Frequency time delay Twice 14. Reactor Coolant Pump lot Pwr. 2 Skr. Open 1/ Pump P-7 6 P-8 Breaker Open 36% Pwr. 1 Skr. Open 6 15. Low Feedwater Flow 1.4 X 10 Sta. Flow greater than 1/2 Flow None (4, ' feedwater flow a 25% s/G 1evel Mismatch, in s coincidence with 1/2 low wtr level, per loop. hs
- salem Unit 1/ Unit 2 -
e.... s I-4.3 REACTOR TRIP SETPOINT COINCIDENCE INTERLOCK 16. Low-Low steam St Level per S/G 2/3 per S/G None Generator Ntr. Lv1. f" 17. Turbine-Generator 45 psig Auto Stop 011 Pressure 2/3 P-7 Trip or all four Stop Valves closed 4/4 18. safety Injection
- 1. Manual 1/2 Ncne (Actuation)
- 2. Pressuriser at 1765 psig 2/3 None
- 3. Containment at 4.7 psig 2/3 High Con-None tainment pressure
- 4. Any one S/G 100 psig lower 1/2 Steam Pressure None than any other two S/G's on any S/G Lower than 1/2 Steam Pres-sures on 2/3 of the other loops.
- 5. Variables Steam line flow 1/2 Eigh Steamflow on None 1.4 x 106 0/hr. 0-20% load, 2/4 Steam Gen. in increasing to 4.0 x 106 4/hr coincidence with 2/4 at 1004 pwr. in coincidence Low T?.VC or 2/4 low with Low TAVG 543'F or Low steam line pressure.
Stm. Press. 500 psig. 19. General Alarm Logic Train "A" & Train '3" in test simultaneously. NOTE The General Alarm trip is not alarmed on the first out annunciator. ((~ Q~ 20. Trip sypass Skrs. Racking in, or attempting to rack in, both Reactor Trip Bypass Skrs at the same time. NOTE The Bypass areaker trit is not alarmed on the first out annuncia 3.0 IMMEDIATE ACTIONS 3.1 Automatie 3.1.1 Reactor, Trip 3.1.2 Turbine Trip 3.1.3 Generator Trip 3.2 Manual 3.2.1 verify that a reactor trip has taken places Check that all full length rods are fully inserted by checking individual 1) rod position indicators and rod bottom lights, If any full length control rod does not indicate fully inserted, manually (r - 2) + l initiate a reactor trip.
- V' 4
Sales Unit 1/ Unit 2 t e s fb 1 I-4.3
- 3) If all full length control rods are not then fully inserted, RAPID k
BORATE by 150 ppm (approximately 8 minutes) for each rod not inserted IAW OI II-3.3.8, ' Rapid Boration". 3.2.2 Verify turbine trip by checking the following:
- 1) UNIT TRIP light on E/H consolo illuminated.
- 2) Turbine stop Valves, Governor valves, Interceptor valves and Reheat Stop Valves closed.
- 3) Turbine speed decreasing.
3.2.3 Within 2 minutes reduce Aux. Feedwater Flow to each Steam Generator to approximately 2.3 x 10' lb/hr. NOTE This limination applies to Unit No. 1 only. 3.2.4 verify that T,yg is decreasing toward or is being maintained at 547'T by either steam dump or atmospheric steam relief. decreases to 554'F. 3.2.5 Verify that Feedwater Isolation has taken place when T,yg 3.2.6 Announce over the plant PA system twice: UNIT NO. 1(2) REACTOR TRIP. 4.0 SUBSEQUENT ACTIONS 4.1 check that nuclear power is decreasing by observing the nuclear instrumentation. check that the source Range high voltage is reinstated below 5 x 10~11 4.1.1 amps on both Intermediate Range Channels. This should normally occur l! 1 in approximately 15-18 minutes on a trip from the power range. I
- 1) If the source Range high voltage does not energine automatically, manually depress the RESET SOURCE RANCE
'A" and RESET SOURCE RANGE "B" pushbuttons on the control console. l 4.1.2 Switch the Nuclear Power Recorder (NR-45) to read one Intermediate Range I channel and one source Range channel. 4.1.3 Notify the Performance Department that a reactor trip has occurred and that the compensating voltage on the Intermediate Range detectors should be adjusted. This adjustment is desirable but is not required. Verify that the Pressuriser pressure and level are within limits, and under control. 4.2 C Salem Unit 1/ Unit 2 3 Rev. 4
^- a I-4.3 i i verify that the 4160V Group Busses have transferred from the No. 1(2) Auxiliary '{ 4.3 Power Transformer to No. 11(12) & No.12 (22) Station Power Transformers. 4.3.1 Check that the following 4160V breakers have opened and acknowledge them i on the appropriate control console bezels 1(2) BGCD 1(2) BFGD 2 1(2) AEGD 1(2) ARGD Check that the following 4160V breakers have closed and acknowledge them on 4.3.2 ) the appropriate control console bezel: 4 12(22) GSD 12(22)}SD 11(21) ESD 11(21) EsD 0 4.4 Verify that Tavg is decreasing toward or is being maintained at 547 F due to steam dump operation. 4.4.1 Check the following steam dump indications
- 1) steam dump valve indication
- 2) steam dump demand meter.
4.4.2 Transfer steam dump control from the AVERAGE TEMPERATURE CONTROL mode to the MAIN STEAM PRESSURE CONTROL mode. Ensure that the MAIN STEAM PRESSURE SP (setpoint) is set to maintain the reactor coolant temperature at a no load Tavg temperature of 547 F. (Approxiametly 1005 psig steam pressure). 0 NOTE If condenser steam dump is not availiable, atmospheric steam relief must be used for the removal of residual heat. Verify that Feedwater Isolation has taken place due to the reactor trip in coincidence 4.5 0 with low Tavg (554 F). 4.5.1 Check that the following valves have closed by observing their appropriate besel indication: 11(21)BF19 Feedwater Control Valve 12 (22)&F19 Feedwater Control Valve / 13 (23)BF19 Feedwater Control Valve 14 (24)BF19 Feedwater Control Valve 11(21)BF40 Feedwater typass Valve 12(22)aF40 Feedwater Bypass Valve 13(23)BF40 Feedwater Bypass Valve 14(24)SF40 Feedwater 3ypass Valve Rev. 4 Sales Unit 1/ Unit 2 ! l
r -c. -...,........_. I-4.3 as follows: Return the levels in the steam Generators to normal (s 334) 4.6 Limit the rate of rise to less than 1.2 in/ min whenever level is below 4.6.1 10% on the Warrow Range. ~ following computer points and maintain thi rate of rise to Monitor the 4,. 6. 2 < 0.8%/ Kin on the narrow range and < 0.24/ min. on the tr*/.e range. Wide Range Narrow Range ~
- 54G, LO403A L0400A or LO401A or LO402A 11(21)
LO423A LO420A or LO421A or LO422A 12(22) LO443A LO440A or LO441A or LO442A 13(23) LO463A LO460A or LO461A or LO462A 14(24) NOTE If the computer is not available, monitor the narrow range indication on the control Console and the Wide range recorders on RP-4. Control riow to the Steam Generators as required by controlling the following 4.6.3 valves. 11-14(12-24)Ar11 if No. 13(23) Auxiliary Feedwater Pump is in 1. operation. 2. 11-14 (21-24) AT21 if No.11 & 12 (21 6 22) Auxiliary Feedwater Pumps are in operation. Establish and maintain the Bot Standby condition IAW OI I-3.5,
- Minimum Load to 4.7 Bot standby
- and OI I-3.8, ' Maintaining Bot standby".
135 13l, I123, 1 If Ax trip was from >15% Rx Power, have the Chem. Dept. Perform an 1 4.8 Isotopic analysis between 2 and 6 hours following the Rx trip. Obtain a sample of the Reactor Coolant system and determine boron concentration. "Soron concentration Control". 4.9 Adjust boron concentration as required IAW OI II-3.3.6, 4.10 As per Administrative Procedure No. 53 Notify the Station Operating Engineer or Chief Engineer of the reactor trip A 4.10.1 9+ ands Initiate an Operational Incident Report IAW AP-6 and forward it to the station 4.10.2 Operating Engineer. If, et this time, it becomes necessary, take the plant to the Cold Shutdown Condition ( 4.11 IAW OI I-3.6, *Eot 5tandby to Cold shutdown". a f Rev. 4 sales Unit 1/ Unit f 1
8 i-.......A.. u..--.... 1-4.3 4.12 As authorized by AP-5, withdraw the shutdown banks as follows: '( Reset the flux rate trip by momentarily taking the RATE MODE switches, on each 4.12.1-NIS POWER RANGE A drawer, to the RESET position. gg, k. Depress the CLOSE pushbutton, on the control consolo, for RF. ACTOR TRIP BKR A, 4.12.2 verifying the breaker doese close. 4.12.3 Depress the CLOSE pushbutton, on the control console, for REACTOR TRIP BKR 3, verifying the breaker does close. 4.12.4 Depress the STARTUP pushbutton, on the control console, and verify each Shut-down and Control Rod Step Counter resets to zero. in that order, to their 4.12.5 CorsnEnce withdrawing Shutdown sank A, B, C and D, fully withdrawn position. 4.13 when the cause of the trip has been determined and corrected, obtain the permission of the Station Operating F.ngineer or the Chief Engineer, IAW AP-5, to take the reactor critical. 4.14 With Steam Generator levels within their normal operating bands and just prior to i commencing the recovery startup, perform the following: 4.14.1 Place the Steam Generator Feedwater Controls in MANUAL and run the valve demand to sero. 4.14.2 Roset the Feedwater Isolation signal by depressing the Train 'A' and Train "B" FEEDWATER ISOLATION RESET pushbuttons on the control console. 4.14.3 Maintain Steam Generator levels within their normal operating bands by manually controlling Feedwater typass Valves 11, 12, 13 and 14 (21, 22 23 and 24) BF40. 4.14.4 Return the Auxiliary Feedwater System to its normal at power lineup IAW OI III-10.3.1, ' Auxiliary Feedwater System Operation". 4.15 Return to Power Operation IAW OI I-3.3, ' Bot Standby to Minimum Load", and 01 1-3.4, " Power Operation *. I Prepared by J.V. Bailey Manager / ale /Generabing Station S Reviewed by J.P. Kovacsofsky , //4 hr oate .ORCMeeting s s _.r. ~ i g,y, 4 Salem Unit 1/ Unit 2 .g.
/" {2h ., ~~~~ ~~ 5.' D. ( -) C' Y i I.*: */h?. * ~"M, A " Frederick W.Schneider % Putshc Service Elwoc aTJ Gas cop.i ( ' 8'.e %' ' P 4 n v.o ,c. m ~ ~ ' cwounion ,,,j p j August 29, 1979 ggq gQ_ (/ $4^ Mr. Boyce H. Grier, Director 3 U.S. Nuclear Regulatory Commission Office of Inspe,ction and Enforcement [M / Region 1 631 Park Avende King of Prussia, Pennsylvania 19406 ()Lgg,fy fjel9 f } J 2a>>
Dear Mr. Grier:
NRC IE BULLETIN NO. 79-06C NO. 1 UNIT SALEM GENERATING STATION (- Pursuant to the subject bulletin, we hereby, submit the following response: Short-Term Actions Item 1 A. Station Emergency Procedures have been revised such that Reactor Coolant Pumps are immediately tripped upon Reactor Trip with initiation of Safety Injection caused by low reactor coolant system pressure. B. A station operating memo has been issued re-quiring the presence of two licensed operators in the control room during operation in Modes 1, 2 and 3. Item 2 A series of Loss of Coolant Accident (LOCA) analyses for a range of break sizes and a range of time lapses between initiation of break and pump trip applicable to the 2, 3 and 4 loop plants has been performed by the Westinghouse owners' Group. A report summarizing the results of the (. analysis of delayed Reactor Coolant Pump trip during small loss of coolant accidents for West-inghouse NSSS will be submitted to Mr. D. F. Ross
- m....-..,..--..
n e i l ( Boyce H. Grier, Director 8-29-79 f i i 1979. In the by Mr. Cordell Reed on August 31, d~ report, maximum PCT's for each break size con-sidered and pump shutoff times have been provided. ~~ The report concludes that if the reactor coolant pumps are tripped prior to the reactor coolant system pressure reaching 1250 psia, the resulting peak clad temperatures are less than or equal to those reported in the FSAR. In addition, it is shown that there is a finite range of break sizes and RCP trip times in all cases 10 minutes or later, which will result.in PCT's in excess of 2200*F.as calculated with conservative Appendix K model.s. The operator in any event would have at least 10 minutes to trip the RCP's following a small break LOCA, especially in light of the con-servatisms in the calculations. This is appropri-i ate for manual rather than automatic action, based on the guidelines for termination of RCP operation presented in WCAP-9600. Item 3 The Westinghouse Owners' Group has developed { guidelines which were submitted to the NRC in Section 6 and Appendix A of WCAP 9600. The analy-ses provided as the response to Item 2 are con- ) sistent with the guidelines in WCAP 9600. No i changes to these guidelines are needed for both LOCA and non-LOCA transients. Item 4 The Owners' Group effort to revise emergency procedures covers many issues, including operation of the Reactor Coolant Pumps. The action taken in response to item 1 is sufficient as an interim measure in regards to these pumps. The expected schedule for revising the LOCA, steamline break and steam generator tube rupture emergency pro-cedures is the following: Mid-October: Guidelines which have been reviewed by the NRC will be provided to each utility. Appropriate utility personnel associated with writing procedures will meet with the Owners' Group Subcommittee on Procedures and Westinghouse to pro-r- (' vide the background for revising 1 their emergency procedures.
? . a. _, ~
- I t7 8-29-79 Boyce E. Grier, Director
{ 1 to 2 months Plant specific procedures will be from: Mid-revised. October. 1 to'4 months Revised procedures will be imple-from: Mid-mented and operators trained. October Analyses related to inadequate core cooling and de-Item 5 finition of conditions under which a restart of the RCP's should be attempted will be performed. Resolution of the requirements for the analyses and an' acceptable schedule for providing the analyses and guidelines and procedures resulting from the analyses will be arrived at between the Westinghouse owners' Group and the NRC staff. I,ong Term Actions As discussed in our response to short-term item 2, we do not believe that automatic tripping of the RCP's is a required function based on the analyses that have been performed and the guidelines that We have been developed for manual RCP tripping. propose that this item be discussed with the NRC staff following their review of the owners' Group submittal. If you have any further questions on this matter we will be pleased to discuss them with you. Sincerely g/h @V \\4 g? .hs
- CC:
Director, office of Inspection 5 and Enforcement USNRC Washington, DC 20555 l Director, Office of Nuclear Reactor Regulation USNRC h Washington, DC 20555
- o
- 12. %
i I I t 2-G#G6 8 99 0123 GINERATOR PROTICTION TRIPS \\ r rm \\ S \\ w
- E, I IG s
- s a I y;
)W e = . = e s r ug g g ,5 f*- o . 4
- e n
~e e e c e 5 f us8 w Wc w ad 4 t tr $t Jgal *3 *ggrj ,.l 1,$o*do g
- m ga m
E 155*! ! 3 !'t'" - 5 I ):w!, a a g ,0= W3, A 1 g - - e s'C , I,a, Ri o 2 g*= e ace sjI e -f 'u o s ! I i !! 5 5 5 !=" e e e e I e e e e et dowIt w o w w8w A- 'l i' i' i' i' 1' U D-- J ~$ p I n .l c* =0 h-E y e .e ad - h ,0 a !a I [ $ E,T
- y Ea t r se 4 jg e
P p } 8,1 3 }
- y
'n. e i vi
- r
-I I
- g Eg.
34 m o o li* it ii o i 't n ii o O w o.stos g., o n. 6 I 88** Owe'no a l c___+ 6 turne e w a v i e E Tmie gr6uim R80 (,3 GS G.6 g c.6ots gC60*C 1 1 1 i i g .t u, m, 4 va6vtS V Ai,v & S a 2 W1 0 p 0-e c'@ 44 N s.'s
- l.,e,,
b... I m..t l % y, i.t.u,,.. (..... 71.Er-s... A.v.. / l TU R ts N. MTo SfoP d [ fumust smo. 086 Petts raigues tienAL fMTERLOC 8 j j su 65 6& ) A&T [ 7. 1-1 - g I W. d.1, c i ...u. l l i, W Q o ,d*,Ri, ='gy.,=,"~ ' (, twett 1) ( g.s e,ie s ,j To stM.Tair g g g3g,,, e w A.V NoII ' CIEV. NOTE O Apog gi e.gg e eurov fuiasAvfo stop ont 2 J a"EEt"Se 'ar8*- A. iwoicAT E0 gn e t s owiewawf a=0 asett to Tut Iwrestat? TRI' FLUSC ~ j g.ggg tasp Facu 68/*?S ( 6 5/4 a s LAY ot hi4 N Afl0N6 POR &&P) o d' # WT d &
- A not D abatu 'fva6'a t taie t e t e,=e attoa veie ',
4 6 Am0 mote 9 a Mot 0" '#i 'n*naa mse men'.", \\ t i nepovto moo ones t.ano seeiew g sgs, swee. e %N, sed. y '"'6 8'*w e'**sest a s e a sswe te ~*tt 4 (es a e se si nii..s.ec.es s e 0% V 'E sis = 6 6 i' eve : REVfS10N k k
8 1 l 4 l 'f l l "Tw R 5 :w C Pow t st (TV R &s t tw a s k t t. C a s a w S t hL pre &h IltC ) v \\ 2 X X
- '" ' ' N L
I 1 l b N b' lb' I w I I I ) ~' .%) > a 1 */.
- m 1 */.
-4 l 1 F0t c'0N. 5NUCfl0 A g l sun.s saw tars a es er o = l
- e&
Acc% Awtova'iC. (s tt 9 4) stop wind 4Aw AL To DC re a T O ans snows sisua e,t ea ei g (S*'**TO mio' ms mammam apuens W o.s,A cc. c. E!!E #d" g 3,,,3 j
== -4
- . 0 9 at t oo w o A wi m.,~t s.c.
veA LoAo R t ett a a.6 L oao* sLt ow n ca.w ? .e o r ovtar'sw tea *.tE ovtasow t 4 e osuomu-AT (1/4) 467 ('1/4 \\ (Salt' 5) (S stt' 5)
- J o' C ab :
- i. T tst Su; %s swoscA t T t C..etiwei orTat %for w kwas Potifiow es tac?io w is o <>
A ccowe6isatoBV2 Smtc.att "M j Pt s Sto n whw t., ow s sro m. _4 l E a t >e,'TR Ai ed Iav pA sv 7.= REDW hO&wG7 % $ 64.On t A9 tQ thi. 4,tAAtos to @ am.etwe=ts U 0e467 vinst chAv 3.Tuis swtti is totuticAL sroe waeste E8%jy'6 i Lt tattet roe twt Tag awustet wwc.e Att PetCEDs.D tv t ott l
- '* 88
Fot Undif 4 04 % RESPa t,fivt LY 9 (*atet lisDich t to Pot uwit i onht) 2 Id Tat *Amo' Logic amoTut A660cearto q pe. t.s sts ' Pettsvat twffcuta(6S/fs Amo i 6VAg?) wust at 78STt D Ps aiooicy weist ow tsut AT powtt wrfsouf 8%aut tais fitt vetyrt Atao it 6t 6 emfs !, ARE maouitto fo rtoveet two44 4 l fttfnee amo To vt miry Pet 6svet, lg _4 %,, Switcu conf Atf ofAtwo. ,] c....... --.y 4 I QCDutt Loao esetetaitt To Otm ht EA M IDAA MMIN$ mil 0E AYtoo*/e/w.es etwott NQl & 2 UNITS cu s p arg w. a ce REACTOR PaoTCCTMN SYSTEW TUR81NE TRIP.RUNSACKS S OTHER SIONALS / L*JGit 01 A G DA W tH te mN7Actt hoot 9tDv%DA*4 T # PUBLIC $ERVICE ELECTRIC AND GA$ C0ldPANY e t,, .gJ3 ... a m.. v. tuC C.,C t ...,t t e,,,. C,m.C,,, C itC 9 ff utyAnt, g A e ese eteeve se havest eeee.ee ene l w we - . ee-.e -e __ - c.a
- m. m _.g,, m.
A
- ';;"s"e ~:;r.;.'M~~J'_..uun.m: yy w g + w 4 r.u.
~ ~ ~ -e- - = .e m.a se me ne se8e seasese opeteggef,$,MMQ seis ee e se es swee se AeeJ.swere g g la g g.nVQQ D J U *t U,C-g. g g g. Ag &L d d d k
= n - - - ~ - - - - - ~ ~ ' ' k s JUNE 1978 PART 12. PAGE $ ( Part 12 TESTS AND PERFORMANCE AC FRACTIONAL-AND INTEGRAL-HORSEPOWER MOTORS MG 1-12.30 Test Methods B. Locrso-noron TongUs or FRACT!oNA1.- Honsarowsa Morons Tests to determine performance characteristics shall be made in accordance with the following: The locked rotor torque of single-phase,th ratedgeneral. pu ose frachonal. horsepower motors, wi vo tage and frequency applied, shall be not less 1. For single phase motors-IEEE Std 114, than the following-Test Procedure for Single-phase induction Motors. 2. For polyphase induction motors-IEEE y,,,,, Std 112, Test Procedure for Polyphase Induction Motors and Generators. sy;l,y,, ,y, jl,, NEMA Standard 7 71965. Up 34 17 2450 8415 9 24 32 29 39 H 15 33 43 18 39 51 M 21 46 59 25 55 70 MG 112.30.a Perforrnance Characteristics M 26 57 73 31 69 88 H 37 85 100 44 102 120 When performance characteristics are provided. M 50 119 60 143 they should be expressed as follows: 1 61 73 C 1. Current in amperes or percent of rated current. 2. Torque in pound feet, pound inches, ounce-C. Locrso noton ToRQUs oF INTEGRAL-feet, ounce-inches or percent of full. load HoRsEPoW11R MOTORS 3. Output in horsepower or percent of rated The locked-rotor torque of single phase general. horsepower. purpose integral horsepower motors, with rated Voltage and frequency applied, shall be not less 4. S ed in revolub.ons per minute or percent than the following: o synchronous speed. 5. Efficiency in percent. 6. Power factor in percent. utnimum,t g ryor Tocqu.. 7. Voltage in volts or percent of rated voltage. 8. Input power in watts or kilowatts. Hp het 1360 g gsg==gayd. ner should be la seconisse. wa tso N 8.0 1 9.0 9.5 Authorited Engineering Information 5 12 1975. 1H 4.5 12.5 13.0 2 5.5 16.0 16.0 3 7.5 22.0 23.0 5 11.0 33.0 MG 1-12.31 Torque Characteristics of Single phase General purpose Induction Motors D. PU.L UP ToRQUs or INTBoRAI, HoRSEFOWER Morons A. BREAKDOWN Tongus , The breakdown torque of general purpose The pull up torque of single. phase general pur-stngle-phase fractional and integral horsepower pose alternating-current integral horsepower mo-inducuon motors shall be the hi ber figure in each tors, with rated voltage and frequency applied, ( torque range as given in the tab e in MG 110.33. shall be not less than the rated lond torque. l subject to tolerances in manufacturing and all NEMA Standard il.111948. revised 6 241949. 5-17 other condibons given in MG 1 10.33. 1953; 11 11 1965: 11 16-1967. I l l
o e e .~ ') I 1 l JUNE 1978 ( PART 12. PAGE 6 TESTS AND PERFORMANCE-AC i MG 1-12.32 Locked rotor Current of Single-c,,,,,,,,,, o,,,,,, phase Fractional horsepower Hp Current. Arnpere.' Le t t.r. Motors M 20 B, D A.*The locked rotor current of 60 hertz, M 25 B, D single, phase motors shall not exceed the values 1 30 B, D given in the following table: 1H 40 B, D 2 50 B, D . 4,6. AND 8 POLE. 6e HERTZ MOTORS. sINGI,E PHASE 3 64 B,C,D 1,ocke4 rotor Current. Amper 5 92 B,C,D tis voir. 22e voir. 7H 127 B,C,D 10 162 B.C,D Hp d U8 7 15 232 B,C,D "O 200 B'C D H and smaller 50 20 25 12 B', C, D 25 365 M 50 26 25 15 30 435 BCD H 50 31 25 18 40 SSO B,C,D H 50 45 25 25 50 725 B,C,D 61 35 60 870 B,C,D 1 80 45 75 1085 B,C,D 100 1450 B,C,D B. The locked rotor currents of single phase 125 1815 B,C,D general purpose fractional horsepower motors 150 2170 B,C.D shall not exceed the values for Design N motors. 200 2900 B, C NEMA Standard 10 29 1943 revised 11 14 1957; 250 3650 B 5 21 1962: 11 12 1964; 11 21 1968. 300 4400 B MG 1 12.33 Locked rotor Current of Single. 350 5100 B phase Integral horsepower 400 5800 B Motors, Designs L and M 450 6500 B 500 7250 B The locked rotor current of single phase, 60-3, %,,,,,,,,,,,,,,,,,,,,,,,,,,g,,,,,,,,,,,,,,,,,,, hertz, Design L and M motors of all types, when 230 voic..a.ii n. i.v.,.iy propors,...i i. is. voie..... i measured with rated voltage and frequency im-Sunested Standard for Future Design 7 71965, re-pressed and with the rotor locked, shall not ex-vised g.20 1966; 11 17 1966, NEMA Standard 1121-ceed the following values: 1968. Lock.4.reeor Curr. c. Asop.r.. MG 1 12.35 Locked rotor Current of 3-pi,x phase 50 hertz Integral-D ian L wetore uoier. horsepower Squirrel cage tip tis voic. 22e voii. 22e veri. Induction Motors Rated at 380 Volts P2 45 25 N 61 35 The locked rotor current of single speed, 3 P ase, constant speed induction motors rated at h 1 80 45 1H 50 40 3S0 volts, when measured with rated voltage and 2 65 50 frequency impressed and with rotor locked, shall 3 90 70 not exceed the values shown in Table 121. 5 135 100 NEMA Standard 11 21 1968, revised 7 16 1969. 7H 200 150 10 260 200 MG 1-12.36 Torque Characteristics of Poly-15 390 300 phase Fractional horsepower 20 520 400 Motors NEMA Standard 8 71947; revised 1 23 1951; 11 21 The breakdown torque of a general purpose 1968 polyphase squirrel cage fractional borsecewer mo. . tor, with rated voltage and frequency applied, MG 1-12.34 Locked rotor Current of 3-shall be not less than 140 percent of the break-6[o phase 60 hertz Integral-down torque of a single phase general purpose horsepower SquirTel cage In-fractional horsepower motor of the same horse-d, etion Motors Rated at 230 power and speed rating given in MG 112.31. . LEof.I b'or.y, power oI ' .'et o.. t r.<! r,,b,rl. ors th,Yo isggrgls,.;,g7,qg l rph i. The locked rotor current of s.mgle speed, 3-yl,s,p,,p h,= oyg,, H ,t,d g=0.i.re n.....u. r..... n.,.ci ri ne.. r.o.i rer r.u...ne. phase, constant speed induct,on motors rated at n., ) i 230 volts, when measured with rated voltage and
- hd"=="'8'****""***d' frequency impressed and with rotor locked, shall NEM A Standard 6 4i1N8. revised 6 24 lN9: 11 13 not exceed the folbwing values:
1969.
n l M 1 JUNE 1978 TESTS AND PERFORMANCE-AC PART 12, P AGE 7 TABLE 12-1 (SEE MG 112.35) urr a Deelta urrent Design HP Amperese Letters Hp Am peree' Letters 1 or less 20 B, D 30 289 B,C,D 1H 27 B, D 40 '387 B,C,D 2 34 B, D 50 482 B,C,D 3 43 B,C,D 60 578 B,C,D 5 61 B,C,D 75 722 B,C,D 7H 84 B,C,D 100 965 B,C,D 10 107 B,C,D 125 1207 B,C,D 15 154 B,C,D 150 1441 B,C,D 20 194 B,C,D 200 1927 B, C 25 243 B,C,D esbe i.emea.cos., corre.t or tore 4esis.e4 r, votus..ther in.. sso v.iu. mart be inver.ea proporti. i to the vettases. r MG 1-12.37 Locked rotor Torque of Single speed Polyphase Squirre! cage Integral horse-power Motors with Continuous Ratings A. The locked-rotor torque of Design A and B,60- and 50-hertz. single speed, polyphase squirrel cage i motors, with rated voltage and frequency applied, shall be in accordance with the following values which are expressed in percent of fullload torque and represent the upper limit of the range of application for these motors. For applications involving higher torque requirements, see the locked rotor torque values for Design C and D motors. Synchr.o.ua Speed. Rpm 64 herts 3444 1844 1394 944 734 440 Sl4 Hp 54 berts 3644 1500 feet 754 H 140 140 115 110 8f 175 lb5 135 115 110 1 27 5 170 135 135 115 110 1H 175 250 165 130 130 115 110 2 170 235 160 130 125 115 110 1 3 160 215 155 130 125 115 110 5 150 185 150 130 125 115 110 7H 140 175 150 125 120 115 110 10 135 165 150 125 120 115 110 15 130 160 140 125 120 115 110 20 130 150 135 125 120 115 110 25 130 150 135 125 120 115 110 30 130 150 135 125 120 115 110 40-125 140 135 125 120 115 110 50 120 140 135 125 120 115 110 60 120 140 135 125 120 115 110 75 105 140 135 125 120 115 110 100 105 125 125 125 120 115 110 125 100 110 125 120 115 115 110 150 100 110 120 120 115 115 200 100 100 120 120 115 250 70 80 100 100 300 70 80 100 350 70 80 100 400 70 80 i 450 70 80 500 70 80 (Continued)
f ~ I
- m i
a I7) Jt'NE 1978 P ART 12. PAGE 8 TESTS AND PERFORMANCE-AC B. The locked rotor torque of Design C,60- and 50 hertz, single speed, polyphase squirrel-cage motors, with rated voltage and frequency applied, shall be in accordance with the following values which are expressed in percent of full load torque and represent the upper limit of the range of application for these motory Synchronous Speed. Apm 64 berts 1849 1294 900 Hp Se her's 1544 1940 754 3 250 225 5 250 250 225 ) 7.5 250 225 200 1 10 250 225 200 i 15 225 200 200 20-200, inclusive 200 200 200 4 C. The !ocked rotor torque of Design D,60 and 50-hertz,4,6-and 8 pole, single speed, polyphase squirrel cage motors rated 150 horsepower and smaller, with rated voltage and frequency applied, shall be 1 275 percent, expressed in percent of fullload torque, which represents the upper limit of application for these motors. NEMA Standard 8 7 1947, revised 6-24 1949; 11 17 1955; 11 17 1966; 7-16 1969. j MG l 12.38 Breakdown Torque of Single speed Polyphase Squirrel cage Integral horsepower Motors with Continuous Ratings A. The breakdown totque of Design A* and B,60 and 50-hertz, single speed, polyphase squirrel-cage i motors, with rated voltage and frequency applied, shall be in accordance with the following values which 1 are expressed in percent of fullload torque and represent the upper limit of the range of application for these motors: Synchronous Speed. Rpm e 64 bests 3696 1860 1200 900 720 660 514 HP 54 herts 3000 1500 1990 750 225 200 200 200 HM 275 220 200 200 200 1 300 205 215 200 200 200 1H 250 250 250 210 200 200 200 2 240 270 240 210 200 200 200 3 230 250 230 205 200 200 200 5 215 225 215 205 200 200 200 7H 200 215 205 200 200 200 200 10-125, inclusive 200 000 200 200 200 200 200 150 200 200 200 000 200 200 000 Q 200 200 200 200 200 250 ---175 175 175 175 300-350 175 175 175 400-500. inclusive 175 175
- Design A values are la encess of values shows above, B.
The breakdown torque of Design C,60 and 50-hertz, single speed, polyphase squirrel cage motors, with rated voltage and frequency applied, shall be in accordance with the following values which are expressed in percent of full load torque and represent the upper limit of the range of application for these motors: Synchronous Speed. Rpm 60 herts 1940 1200 964 Hp 54 hert: 1500 1000 754 3 225 200 5 200 200 200 ) 7H-200, inclusive 190 190 190 8 NEMA Standard 1 06 1948, revised 6-24 1949; 11 17 1955; 11 17 1966; 7 16 1969. + 2.-
y a-h J1'NE 1978 j PART 20, PAGE 1 Part 20 LARGE APPARATUS-INDUCTION MOTORS RATINGS MG 1-20.05 Basis of Rating B. CONSTANT Tongus Induction motors covered by this Part 20 shall The horsepower rating for the highest rated be rated on a continuous-duty basis unless other-speed shall be selected from MG 120.10. The wise specified. The output rating shall be ex-horsepower rating for each lower speed shall be pressed in horsepower available at the shaft at a determined by multiplying the horsepower rating specified speed, frequency and voltage. at the highest speed by the ratio of the lower syn. 1 NEMA Standard 5 20 1974. chronous speed to the highest synchronous speed. C. VARIABI.s Tongus MG 120.10 Horsepower and Speed Ratings I,lorsepower ratings and synchronous speed The horsepower rating for the highest rated ratings shall be as follows: speed shall be selected from MG 1-20.10. The horsepower rating for each lower speed shall be determined by multiplying the horsepower rating at the highest speed by the square of the ratio of 100 600 2500 9000 19000 45000 the lower synchronous speed to the highest syn-125 700 3000 10000 20000 50000 chronous speed. 150 800 3500 11000 22500 55000 NEMA Standard 7 11 1974. 200 900 4000 12000 25000 60000 250 1000 4500 13000 27500 65000 MG 1-20.11 Voltages 300 1250 5000 14000 30000 70000 350 1500 5500 15000 32500 75000 Voltages shall be 200, 230, 460, 575, 2300, 4000, t 400 1750 6000 16000 35000 80000 4600,6600 and 13200 volts. These voltage ratings 450 2000 7000 17000 37500 90000 apply to 60-hertz circuits only. 500 2250 8000 18000 40000 100000 xors-
- a..,ruti : i. 6.c4.
.r. or. nor .er r.ii... for.Al ei these volta,es. j NEMA Standard 11151956, revised 7-131967; 716-1969. er=ar... sp"*'"a.ct MG 1-20.12 Frequencies 3600 720 400 277 1800 600 360 257 The frequencies shall be 50' and 60 hertz. 1200 51' 327 240 900 450 300 225 NEMA Standard 5 17 1955
- At 60 beru. the speed..re H.I the 60-herts. peed' MG 1-20.13 Service Factor
,83sg6.. pruuas i. 6.no .r..e. mer.ep er r.ti.e. . When operated at rated voltage and frequency, NEMA Standard 11 15-195t, revised 7 13-1967. mduction motors covered by this Part 20 and hav-ing a rated temperature rise in accordance with MG 120.10.a Horsepower Ratings of MG 1-20.40 shall have a service factor of 1.0. Multispeed Motors NEM A Standard 7 13 1967, The horsepower ratings of multispeed motors In those applications requiring an overload shall be selected as follows: capacity, the use of a higher horsepower rating as given in MG 120.10 is recommended to avoid ex. A. CONSTANT Hoastrowsa ceeding the temperature rises for the class of insu-lation used and to provide adequate torque capac-The horsepower rating for each rated speed ity. shall be selected from MG 120.10. Authorized Engineering information 5-24 1960. i 1
m h JUNE 1978 P ART 20, PACE 2 LARGE APPAR ATUS-INDt'CTION MOTORS TESTS AND PERFORMANCE MG120.40 Temperature Rise The observable temperature rise under rated load conditions of each of the various parts of the induc-tion motor, above the temperature of the cooling air, shall not exceed the values given in the following table. The temperature of the cooling air
- is the temperature of the external air as it enters the ventilating openings of the machines and the temperature rises given in the table are based on a maximum temperature or 40*C for this external air. Temperatures shall be determined in accordance with the latest revision of IEEE Std 112, Test Procedurefor Polyphase Induction Motors and Generators.
Tempersture Iues, Deareas C Tempere sure Clase of Imeulation System itsen hiaebiae Part Deterensmation A a F H 1 Insulated windings a. All horsepower ratings Resistance 60 80 105 125 b. 1500 horsepower andless Embedded detectort 70 90 115 140 c. Over 1500 horsepower (1) 7000 volts and less Embedded detectort 65 85 110 135 (2) Over 7000 volts Embedded detectort 60 80 105 125 2 Cores, squirrel-cage windings and mechanical parts, such as collector rings and brushes, may attain such temperatures as will not injure the machine in any respect.
- For totallreacloemd water air-cooled mactimes. the temperature of the cooling air is the temperature of the air leavies the coolers. see Note I t Embedded detectors are located wit'alo the slot of the machine and eso be either resistance elements or thermoeouples. For motore equiisped with sabedded detectors. that methad shall be used to demonstrate conformity enth the standard.
NoTT l-Toisily4nclosed water.auvoosed machmes are normally designed for the manimum eachne water temperature encoumered at the locanon where ensh machme is to be mstahed. *nk a sootmg ester temperature not exceedmg thaa for which the machme is dentsned: a. On machines designed for cootme mater temperasures up to 30*C-the temperature of the air lesvms the coolers shall not eseced 40*C. I b. On machmes demaned for hsgher ecoling ester temperatures-the tempesature of the air leanng the cooters may escoed 40'C provided the temperature rises of the machme parts are then lanused to values nens than those gnen to the taWe by the number of esgrees that the tempersiure of the a6r leenag the soo6ers eaceeds 40T. NOTE Il-For moiors which operate under prevashne baromeine pressure and which are designed not to exceed the steeified temperature nie at altitudes from 1100 feet 0000 meters) to 130t10 feet H000 metern. the temperature mes. as chested by tests at los altuudes. shall be less than those Insted sa the foregoing taale Dy i percent of the ] specined temperasure not for each 330 feet 000 meters) of alinude m excess of 3J00 feet 0000 meters). Sussested Standard for Future Design 5 2&l960, fevised 11 151962. NEMA Standard 11 11 1965, revised 8-20 1966; 7 16 l % 9; 11 8 1973. NOTE Ill-Temperature nses a the foregoms tabte are based soon a referense ambount tanpersture of 40*C. Hoovver 6 u recognised that inductre motors may be required so opersia an an amesent temperature higher than 40*C. For succesful operatton of the motors la amtnent temperatures hadher than 40*C. It a recommended that the teniperature nses of the motors twen in the foregoing tatie be reduced. as mdicated below, for the ranges of amburnt tempersture spen. (Escapuon-for totally 4nclosed weier.asr<cceed machmes. see NOTE 11 Values by erhich Temperetpre Rhes Ambient Temperature, la the Foregoing Table bhould be Reduced, Degrees C Degrees C Above 40 up to and including 50 10 Above 50 up to and including 60 20 Authorized Engineering Inforrnation 5-241960; fevised 11 8 1973. MG 120A1 Torques The torques *, with rated voltage and frequency applied, shall be not less than the following: Percent of Rated Torques
- Full. load Torque Locked rotor 60 Pull up 60 Breakdown 175 In addition, the developed torque at any speed up to that at which breakdown torque occurs, with rated voltage and frequency applied, shall be at least 1.3 times the torque obtained from a curve that varies as the square of ?he speed and is equal to 100 percent of rated full-load torque at rated speed.
l e see F rt i for dea.iu NEMA Standard 11 15-1962, revised 11 12 1970; 5 12 1975. l
l y-bh l 'o' s m r., m.
- 7. >,
J P '.~~~r i 'n.; , '.. l . c.. y y a 0. ~.q.L,... 2. ~.. m, w.;q. m....n::. q w,. v.... ; ~- '.... - .~ ..' vt :.2. - - 7.:n,.:. ~ ~ ' G,.3.***. f n } g...,.tu.p..w$. 'j:.,ci lh, m.., s g. . u,.g,, m,y.y -z.,,. ;,, ;,,., g',..' ;*Tl % \\..
- ..m
.,..,77-
- s..
. ~.. ..y .f ~. q o; f,.'v* pjy.1f.: w.~.N., d },7'_.f ; e ) (,Q. s. y. - n,s.. m.. ~.- w n. ..- y,
- m.,.. -
.a.~ y q.~i. %;;&,f:., ' Q %.,.,Qy;, ;W2, _,.,.O,o. ~a,..... .s. ..w.-.. ...,'p... y. n -, zw...,-- .n y .. ~ -.m.,. , i../ r,. 2,. . r 't.. t. ;, . t :. m. w..-.. e.. s e . f. -g.:. Q r ['...*',.: s..~ . ^ g.. > ' g W ..v; m.x.. ~,.c.- a i.. w. a., m,, I r {*.m, < c. ** >. ?, d. -..,. : u. ~ .4 ,,c ~._J.,. .b
- Q* ' ' ' r $
.[ [,. [, Q.h[ [;
- ,,P'... %.. b *j. e*.T%y';.,i.,'L.1*,',..,, w N. -*.
./+ ' 1 e .,,a,,. v... .u/ . as,,., c., a 3. 2._, ...m.,w. m EfD..e h 7,.. u :..e, ...e. -,m .J i ,,w., vm u _1 1.' .--.,.m.... e. _r m n.. , ; %.,a. .....,.. e s-4 1., -s.. t,, e ;., 3 8 7 4 2 2 0 GENEAAL ELECTRIC CDe-69A 10908 4 W jf.03 lr .3 -J 4&... '.,,,4 . e # moeuawm moxnonoms-nan was T' J.,. l 322 J ~,, 4 MA8E* N M W AAF Oi# J' ay .) ~l O' Type K Standard Motor Dato' Hc1 (el " " Dripproof end Tetelly Emleeed Feewooled gae {'j C-OPERATNG CHARACTERISTICS .h. 0 ': :%T 8. f i NEMA Dodgn B,40 Herts,460 Yeht, Normel leerdrig Torque, Cernmes,40C Asnbiess .$ ' 4 e ,,e - a y, s see need e aos seen ,., e, e ( he Wahe e.mA f",.
- s m
- a e e,
,a esa. g$ e s~~ ~
- '*~'*
- ~'
m
- =~=~=
i 4 72, C,,,3, 6-w ... 1' '- (. I e,-. -. ?' 8'**' is.e te m gp p
- 8 og g.
g. pg g g. ,e 5 lb S4 9 5 e saw inw w w =* w w i.w w w w w a e 68J_ __F3J _==e mA ed egJ 3eJ and 1 s se mac .,) .L ' '. f a g beies t hee tJe tJe 14J F &As 478 SP8 F3J Fla FIA e&J 60J 4 i "w,' _ 4 b Ute 1 Pts if t# i4A se 1.ar t 971 See Pu PlJ WA Fu F1J GP A Pg 4 edJ ggJ Ftj m3 gj b-e t ese e le GA is laA e eat ! Ife 364 Pts FlJ eu F3A F4J eh8 MA WJ ma and NJ es
- ?
8 7"' haA3 Sais J 33 ou e SE SP9 90s PaA Plj Fi J PaA Fu PlJ esA pu e6J eu FtJ eaJ 'y' O N sF re sF ae is nas e a hn S48 ee tan na FsA 79. ne Psd 91 3 es e tsa un ma rt.,e en d ( j ines lies &A 44 saa e 	 Sao 74J F8J Fi A 76J F9J Pld FaJ MA gas ptJ ead Gad
- *I,[
e. n ue = ~ ,o ,.. ~ ,o m
- e.,
.e, es, m, m 4 t F r$ i ry l ll 95 8 l Fil 87 Gi a Fu e.ss 3.9 F. e.l o se a FaJ Pla t sJ eu us Fu au es a nu nu u u na i i .e = e Fu nJ ru nJ ru Fu = au ru m, m, [ ) 7' e 94.8e ines 4J 4A 33 4 e us les No Pts MA Pu Pt3 Pl.3 e&A es t eeJ pas su A MJ eos l 1 4 67u arts de aA als e a rF pas s ee mJ Fe d 74J mA Fe d PaJ FlJ e4A Su PSJ ese SAJ 8 ) i t es e les &A Sa &J e e i &A tu 3 38 Pu F4A Fe e Fe e Pts FA Pts pu yA 79 3 76,3 pA 3 3 ,p Se es te te 79 PJ mA J FJ 000 til es e MS PFJ Pu na PLS st J Pu taJ ens FF A aJ 5 st ad IFas Pt P.4 mA e t84 i $8 999 el e en e 0* a mA sa Ua si Ps a MA et J Fad eaA
- I' s.TM 4
t hee Ilse est &i eha $3A las $t8 PT A Ft.e PS A Ps 4 e#J 6d J Pe.J
- ."'d'-
3det asse eA su eu e elJ Las See ed s te J Wa F9 4 Ps A PS A ' esa eS J FF A eks ete F4A 'A *J 3 eFJ eu 7tJ WA es,3 3 3 p =, (.i -d4 stae I F aJ I4J lu 63 8 e 37J 179 til es A ti e es e WJ etJ esJ es a pas era taJ Pt J WJ A .g fP nas nas ou su au a su ese ses ou mi eu ou su au osa pea 663 eid 743 eed j [a V'"- t' V }* 19 ir va su nu m mu mis eti tu cA = i u, n.e. its se au eu eu ma ers LA mA su ru eu WJ su s s 4 na sa su as ud uA me me eu me ru m au ru a v ~n .a n iu iu ca ud in in me eu na eu ru eu na su eu ou Fu eu a .*4 ,q. 4, 15 s,ue s.eA. and. a. .st A e.se esos tiu see esa eu ea s me ens "*'.Y eaa.e.aA we ma eu eaA sad o i,o eu m 4, s n o = eu eu uJ f n.u .eu eu, e4 m su au eu au.u e u J eu au m ,o e i -s %. * ? on nFs su au A e m i. age mA me mA A e u 43 .m. s&as as te esA MJ 6dia e 79 4 180 988 Fa Wa es e e64 ela ela seJ alJ PSA Ma et.4 esA e 4 N fJ w n.,T : tr16 iFts esJ tid issa O te f t ee pes L GP J 4F J WJ WJ esJ eu es e ma paA su as pmA les ~n un on mt ou seu o es su = as ed mA me ru ma et A ru me eid ru rA - i., ) _mM..,v , 25 h.,ees a.,pe 3ke SSA .t m J G LA Its See Wa EA .ALA NA. .8 J US WJ =J FfJ eta see S '\\" M.I ee nJ
- o i.u n.e na e,ee
.u u. e e = mA m, eu..,A na eu ou = = A = .a na mA .A J e ,e u ou .a eu eu os eu o se - Ul%' ' I > %.~. Y.' asse ues naa 64, etts e au ise Dee ya ya ens eaJ eu 6eJ me as s Fm ou taA su F3 a L N sFu i Pee RF A taA feFJ G se t ite Pee sea esA caJ se s er J WJ seJ es.3 pa esa pa BA PJ 4 ..M' s iFo nFe su asi serJ o is4J ise see su au eu mA wa es e4 red pte su eu tas se se . ea.,j 40 an&W
- 46. A, tote af SeaA S
90 J 0 00 See eae MA eta etJ .e&J MJ me ya ma 913 ma E FJ es ~ o un m ,eu . ou i = eu au eu ou u eu ou ou = A .3 u m - m n= un as cJ mie e m im = m m m eu =A as a me as as aA as =A ve w .,..? N 177e IFn ou end asJ A S I47 A les See ssJ eeJ Os a flJ tiJ 9.J e&A PDA Pte esa eos paa es es [../. i M.' ~ = nu seas nA na usa g au i see =A ou mA su wa es eu m wJ eam eu w ind i.m .m.e ig ,6 40 iFee ira. Fu rio euA 7 o = na m m eu na su au ry au =J eu w sees .ea, e.. .u i, ,e. ., J ~
- e..
e .e. =A m .e eu eJ.. ~ I$ 1778 irse ti A seJ $444 4 2H a le 780 9t J 9BJ fl A fu 98 3 Ms MJ eeJ FL4 eLJ mJ Pu is e u1.~ w: c' 4 a. t. ne,, , egg ,,33 ,,9 3 pyg g g ies see see e,J ,, a esa c3 ,, a se s et J eaJ eaJ ePJ en s tu 18 es \\ lN IF ee iras n4A lira P34A PeaA its see MJ t1A 91A 9tJ 93 4 Gia eu eLJ PaJ eaJ mA PW m3 m r
- 4 n
III aaes 1.rw sss sesA s ees ear s e less ese ses 98J ets esa caA ps MJ be te m, _ *"' e res iu s i4u ear s e esse sie ses eeJ m en s au mJ rF4 .se so gp., O (,* U J d# .sw spee a emune.ed - -, ases, pens (100 ese puso let. I F% g 4 4-b.i *; y' LRecumesma.nde.d.e> -,saandard me,ecseer seeing (eummmer. 4' .4 - J .s ( J e 3, seena, ees. =e= e.d m..ee d.e a i 3,. W y .e 'e,-.a eso.se,,ede, se o em.,0 8 me= no,i, een - 6 M p+ g, -. w w e. -c i,
- N.
,e y 4 e '3
- 4 3,
.. in -). y s, J. 'g ,a 6 [ 'f[ ijf ; ;I fg '
- 4 9a
{ v m. [. k% 7 o a m. 2 m - . r, t ff I i . i. 607 _d j, J._. ~ ~ m .u. .+. ..A.~ ~ pam"> ehemoed e estemd samme Aude 79. PfP9 aus== 1 e -C " #8d"8 " 8'="8' ****# "'*". '. Eve 6 M' Ses#Sa#'McE3 Yi=4 sot
- x T
98888 N I%8%I888 i nt i aua
- i..,.
e . o w.*
- s
l 2, -~ -- -.... . x. 1 m. u w. m_. 2..., u . n . w..v ;. . _.w... c j.,r v.o.,.~ m. ~. ..r..e..,. w
- . =
- _.7 ;,
g... e.,.~. w..<:a.. m. v. m., m.=.:i: w = w < <v .a,~..~. m... <.... m.;..+0.rp.,7 m.a,,.. 3. ,,ec, ,.,.. u,t y. - s .u .. u,,. e,. 4..
- h. c u
.w... a, O,1. -....,,.re.,,.-wq: s .m..e v .m y ._...,a.,... s a.s,,.:...;..,...,,:*.z. x...,.. p,. -. m..,.,;.,.-. c.r., :,.- a i . 7.'< *, :. w:,,, r e r. - ,,,.n,..., m . " n. -*.. a,;.. n., g.w;,.. "r e t.~._.,...,.,..ua s*., w .e .c ~ ' J, $.m.... x y,,..... j I' ' '= ' .r.p* ,4..- .,..-..n... =.9 i ..a. 3. .+ .w4.. .[.-,a...'.'=..... *
- l.,.."""*'....%.
..w. , 1 7. "'"*,e - - ~,' *2* - . n ~.,.- I, n M. ) ' CENERAL ELECTRIC CO, 69A 10906 JLf>W d,,J lh a.
- m W _. w,....3874220
. q *',4'. ' "d
- j...,
i w: i Q. i,Lj y M, e 1.2 5.. Q :, m i h y[,p " e 'y j M( pl CHARAC, TER.IS. TIC.S f.# C l -,1 n a / -.,_ j MRP9RMANCE o ATA--Type K (NEMA design s) 8. phase, et Nu rw 2 .y. .P-%.;;..,m; 3w. 9_ __v: ,,-?.- .'1 1 { i Q. y.- ,., : c. . m y g... r., '. },, -{ n .a- - ' "1 Q'u-N%... [ .N.. .-.A-1,.__ e u ta m u g n a-i, u,.n t u m .u,. *ln so =,,.. ",,..- u 5. .o = 4,f 8 i." 1,- n.u ia u u n ..f i .n !( m u.. I i. m$ n.n. n,. .u u. w u u u E v. m .m iu g n,. = u o in og u.mn. m.,.,,. u eu m ,n,,, t2. en 4,, nn i iu m. u u, n ul n w u. u u iu u. 22 E. s n,, n .m. u ip i n. m,. me u l;. , i, n. o .i. u.. I,. u es g,, u u m e fe. u, t,,, u u u = .u ou n,,., L. y'.:..J.. _ < 1% F,u. t,'.". bJ 3 R* 1E f'u: 1: es
- n. =u ya.
n i. =. = (M .m - 4 un .=. = n. n. m au m i. ';; ';g 3: p"; =: g n;;
- g
= n = = u a = u. i. F,b.,n=! i. &. r.. f t If tf lif !.=. "u' l'". f rs fm m a. . =. =. nu = ~ ,,a w =. n.u. o u u m a. gs .i. "p ;i ~ ~ on nu ~ W ~ _: ~ m., o u m ia m g* s u. n.,, '., n ,s. = = ~ ~ u n. ~s* = = u. ..,,..a ,m. ise.,m n.u.
- n.,
u u no u. m m ..,..n ,m n n.. 4 m. m = m m. n n. en. n.. nu I a 1,. 1 m = s n,,. i..=.. u, ,.o.. #. !.u..tas =m=.aw.i.a..."~ ".=. = m , m.. .' u.. " =.. = M .m mim i m m nn no m. =c m 4 rw .m..,,u,,.,.... = = = >= nu => + >~ t = 4,- .= 9... nu.... .u in 1n iso m. 7 .u.
- a..
,L, . a. ,m,. n. = s u m ,m ,m n n. .a u. m = n,. i,. m. o Se E.t .m.. n n.! .u i
== = =. =u ' =u ,.+ i= a. 4 p soo,o,. m,,,,
- u.. ;3 L
.n. , a,, o .u m 4.1.. ,m,,,,. ,,.,. m,. u u t is + n. .m.a,n. =.. m..
- 'u a
o". = = see,n,.,,,6,.,,.,.m. ,,u, .u.. } ..o n n d,. E. . ~. .:Q... "m. L,m;=! ni El ,l'1 i f.; n =.
- n. La.
1 I y, -3 .= e
== 3 as m. ,au e, ! m .c ,o.,. = = ase Pn, m*
== +- =* c s.,=.ob NS +.t = m i m. v., s.a, (' m .m .v a .ma n n.,n,. u sua l.u. .m. e M. 3 Seu M f#8' g ,:.s, t hp. a .s A * ,A. m I
- '[.-
g ba > y-m.'. 6 J
- 3..
9J O O i .= ase r= 3.,"u, 32 ,8,. i l. u,. us n u,. o ,1 u 3 n sg ia. u, .n. . u csh.*\\ o u ~ " f. ci-1 Type Kc, L M se Me (Detspreet) [- . y" ", j*" b *{3 p .f- .= * (;y?*9.y/r'"" 1 ri'l ( ar-pk ' 'M 's W 9=n - " u g,
- m,s + '.s -
.,.E %.. n.,g, 3, j,,e. V *.yr.,,a,,a, ;w "y g, T f- ~ m 7 5 , '..#I * ' ."di//bi.' )h .f --, ~---..?.k2-fg R *w y*,
- . M. ' l. q u~
9 '- , - u 'a#,.*>i,Jh .r e, 4 g
- m..
g g r . u,, ,o. n ,4, 3,- s, .m t., t. .o.A l .. n n . m., a. .t.3. A. n u. , r, 3.a ..m..A. = . i.n. a,, 9 i.
- 3..
a &,m u, M p.d, A g
- m. ~,
i.. .i., ..u .~ i m
- ,,y,A.,.g
-t-.=~ .m., m .. u..m m. e .,m u i,.,,.._o m , i.. q%a ;r .i., ,_a ,o ~~ u m., : ,, a,, u m g% IS! !!!! E ! !!!!! 5 " sin !!!!is I s s E E .R i,o w ~ w - 9 m,e. - = e,m. m c h, iy g.. u. . -. ~, G m.w., a.a.a... g* s 1 O 44.. w. ..e h WP. 4.Ab g.y .= p,.-
- w, e
>fN e=== - r. n .Q-h A}., D D u-i M.E 4 o A a --~---J L i RTM C - r... i me e. m ~ mW *. k M ~ & 2 Y h. EGeh'b8ML ;Mk -}}