ML20116L300

From kanterella
Jump to navigation Jump to search
Forwards Modified Responses to Piping Design Audit Open Items A-6 & A-26 & Calculational Summary for SRV-quencher & Pedestal Weld Stress Analysis Corresponding to Open Item A-4
ML20116L300
Person / Time
Site: 05200001
Issue date: 10/14/1992
From: Fox J
GENERAL ELECTRIC CO.
To: Hou S
NRC
References
NUDOCS 9211180238
Download: ML20116L300 (31)


Text

e

[

October 14, 1992 Shou-Nien llau 7F21 U.S Nuclear Regulatory Commission 1155 Rockville Pike Rockville, MD 20852

Dear Shou:

Enclosed are modified responses to the Piping Design Audit open items A-6 and A-26.

Also included are the calculational summary for the SRV quencher and pedestal w.:ld stress analysis corresponding to open item A-4, in addition, a.respense is provided for SER item 5.18.

The remainder -of the outstanding responses, with the exception of the open item A-18, should be available for transmittal to you next week.

We are awaiting the piping environmental fatigue.

methodology for which Dave indicated-the staff will take the lead.

If you have.any questions, please call me (408-925-4824) or Maryann lierzog (408-925-1921).

Sincerely, Jack 'N. Fox Advanced Reactor Programs cc:

Chet Posiusny:(NRC)

Giuliano DeGhssi (BNL) t 4 ev.

.s -

p"!BBMann^a^2 f

I pk'/.

t A-4 GE-NE ABWR PROGRAM MECHANICAL SYSTEM DESIGN FILE KH-A DISTRIBUTION:

J BK, JW, EOS DATE : OCTOBER 5, 1992 TO

M HERZOG

/ JACK N FOX FROM : Henry Hwang SUBJECT SRV-QUENCHER AND PEDESTAL WELD STRESS ANALYSIS (Response to NRC/BNL audit comment) 1

1.0 INTRODUCTION

The quencher hub and the pedestal welded region have been analyzed using ANSYS program. The configuration of the analycis model is shown in Figures 1 and 2.

The analysis has two purposes. The first purpose is to calculate the effect of the SRV blowdown transient.

The second purpose is to calculate the effect of the geometrical discontinuity at the quencher hub and the pedestal weld.

i Since the SRV blowdown transient is the major temperature transient and has the major contribution to the fatigue usage factor. The quencher hub has the most severe effect due to the transient. The reason is that the hub is thicker than wetwell piping. Wetwell piping has more severe transient than drywell piping because stainless pipe has smaller thermal conductivity.

It is important to note that lug attachment should not be used for all the SRV pipings, otherwise, Code Case N-122 should be used for the detailed fatigue analysis which includes the thermal transient snalysis of the pipe with the lug.

2.0 HEAT TRANSFER ANALYSIS The heat transfer transient during relief valve blowdown create temperature transient with step change from 20 deg. C (68 F) to 166 deg. C (330 deg F) inside the quencher. At the outside of the quencher the water temperature is assumed to be the same as the air temperature of 20 deg.

C. The transients are plotted in the figure below.

Figure 3a : Temperature transients.

The application of the heat transfer transients to the surface-is shown in the figure below:

Figure 3b : Heat transfer surfaces

-l h

--._._._.m_

m____

's The heat transfer coefficients inside the quencher is calculated as follow; assure V=100 ft Re = 100 (ft/sec) x2 (ft) /(1,06E-5 sq ft/sec)

= 1.88E7 Pr = 6.82 h1 = 0.023 (k/D) (Re)**0.8*(Pr)**0.33

= 0.023(0.347/2) (1.88E7)**0.8 (6.82)**0.33

= 0.023(0.173) (659669) (1.895)

= 4 97 5 use 5000 btu / (hr-f t^ 2-F) h2 for outside surface:

Ascume Vn2.5 ft/sec 1.1 (C) Pr**0.31 (VD/vis)**n f

( hr.1 Do/kf)

=

Re = 2.5 (ft/sec) x2 (ft) /(1.06E-5 sq ft/sec)

= 4.7E5 Pr = 6.82 C

= 0.0239 for Re = 40000 to 400,000 n

= 0.805 h2 = (k/D) (1.1) (0.0239) 6.82**0.31

  • 470000**0.805 (0.173) (1.1) (0.0239) (1.81) (378350)

=

= 3123 btu /hr/ft^2 F Inside natural convection heated surface face downward hb/k = 0.27(Gr PR)**0.25 h3 = (0.347/2) * (0.27)*(3460,000*250*2**3

  • 6.82)**0.25 (0.174) (0.27)*(466)

=

= 21.89 btu /hr-ft^2-deg F The heat transfer outside the quencher:

Assume the water flow outside the pool is 2.5 ft/sec h2 = 1.1 (k/D) C Pr**0.31(VD/mu)**n n

= 0.805 C

= 0.0239 Pr = 6.82 Substitute the values gives hc = 3123 Btu /hr-ft^2-F The natural convection inside the pedestal is as follows:

h3 = 0.27 (k/L) (Gr Pr)**0.25

= 21.89 btu /hr-ft**2-F 2_

L The boundary condition of the quencher is considered to be the most severe condition in the SRV discharge system. The reason is hat the water outside the quencher has cooling ef fect and the steam inside has heating effect.

The results of the analysis is shown in the following figures:

Figure 4 : Temperature distribution. degree C (at time 1.00 min. after SRV blowdown)

Figure 5 : Temperature distribution through section A-A (nodes66-115, 1.00 min after SRV blowdown)

Figure 6 : Temperature distribution, degree C (at time 2.00 min after SRV blowdown)

~-

Figure 7 : Temperature distribution through section A-A (nodes66-115, 2.00 mil. after SRV blowdown)

Figure 8 : Temperature distribution through section B-B (nodes 149-144, 2.00 min after SRV blowdown)

Figure 9 : Temperature distribution, degree C (at time 3.00 min. after SRV blowdown)

Figure 10 : Temperature distribution through section A-A (nodes66-115, 3.00 min after SRV blowdown)

Figure 11 : Temperature distribution through section B-B (nodes 149-144, 3.00 min after SRV blowdown)

I 3

3.0 STRESS ANALYSIS AND FATIGUE ANALYSIS ANSYS program STIFF 42 axi-symmetric element is used for the stress analysis for all the temperature distributeion at 1.0, 2.0 and 3.0 minutes after SRV blowdown. The calculation of mechanical load input to the analysis are as follows:

Mechanical load calculations quencher hub Ro = 304.8 mm t=

55.1 mm Ri = 249.7 mm ID=<

4 OD =

Ai = 14 79 mm sq a) Pressure Loads (P) ( Ai)

(0.38)(195878)

=

= 74,434 kg Fo

= 23,693 kg/ rad Force is distributed among Nodes,186,187,188,189,190,191 Fp,187,180,189,190 = 23,693/5

= 4,739 lb Fp, 186,191

= 2,:470 lb b) 10 ton-meter unit moment locu R avg = 277.25 mm (3.1416/4) (304.8^4-249.7^4)

I

=

= 3.725E9 Z

= 3.725E9/304.8

= 12.22E06 Sb = M/Z

= 1000000/12.22E6

= 0.08182 kg/mm^2 A metal = 3.1416(304.8^2 - 249.7^2)

95985 mm^2 Force per radian

0.08182 x (95985/6.2832) 1250 %g/ rad for 1 m-t moment

=

The input value is to 10 m-t as unit load input Fp,187,188,189,190 = 10(m-t) x 1250/5

= 2,500 lb/ node-radian Fp, 186,191

= 1.250 lb

(

I l

'e c) Shear load 10 ton unit load 10 ton as unit load input Fp,187,188,189,190 = 19,000/(6.2832 x 5)

= 318 lb/ node-radian 159 lb lb Fp, 186,191

=

The pressure load, unit moment and unit force loads have also been calculated for load combinations. The stress intensity calculation are performed in accordance with ASME Section NB-3214 procedures.

NB-3216.2 fatig'.' analysis procedures are used for Fatigue

analysis, d) Apply Load The forces and moments due to thermal expansion is used for the fatigue analysis. It is conservative to combine torsion to the bending moment and the axial force to shear force for the finite element model. The shear force and moment due to thornal expansion are as follows:

Force = 10 tons Moment = 6 meter-tons The foeces and moments for the primary load combinations are as follows. These forces and moments are obtained from calculated results of one line. Enveloping process for all the line has not been performed.

Force (tons)

Moment (m-t)

Design 10.0 1.0 Upset 30.0 25.0 Level C 30.0 25.0 Level D 30.0 40.0 l

l l

l L

4.0 RESULTS Thermal transient due to blowdown, pressure, external forces and moments for each service level have been included in the analyses.

The results are tabulatud below:

Calc'd Node Value Allcwable (kg/mm^2)

(kg/mm^2)

Primary membrane Maximum 150 1.7 10.3 Weld 61 1.0 10.3 Primary membrane Maximum 150 4.6 15.5 plus bending Weld 66 3.4 15.5 Fatigue usage for quencher with low-low set SRV valve has 3064x1.5=4596 valve actuations for 60 years. These quencners without low-low set SnV valve has 264x1.5=396 valve actuations for 60 years.

Node Usage Allowable peps Calc'd Usage Fatigue usage Maximum 144 4596 0.5380 1.C (with low-low set)

Weld 61 4596 0.0180 1.0 Fatigue usage Maximum 144 396 0.0470 1.0 (with low-low set)

Wald 61 396 0.0016 1.0 got u

The attached Table 5-1 and 5-2 show the detailed resulto at various nodes for reference. The usage factorc tabulated in Tables 5-2 are for these quenchers with 1800 valve actuation.

In general the fatigue usage factor due to the blowdown transient at the inside uurface of the hub are higher than the weld which is at the outside surface. The stress intensification factor used ir the analysis for the weld is 2.4, waich is conservative because the finite element analysis results has included stress concentration due to geometry change. A factor of 1.1 was used for all other locations for conservatism.

)

5.0 CONCLUSION

rhe fatigue usage factor inside surface is higner than the outside 4

surface of the quencher.

If the thermal expansion moment at the quencher is less than 6 m-t and the number of v,alve actuations is less a than 4596 the fatigue usage factor will be less than 0.60.

1 The fatigue usage factor for other locations of the safety relief j

valve discharge piping depends on the expansion moment and'are not covered by this analysis.

TABLE 5-1 PRIMARY SIRESS I N TE NS I T )

Pr f edr y flembr ar.e P. s mos y f1emb*beeW Parts Posnt Maternal Combsnatson Lsmsts Intensstr Lsorts Ew.luatson intensit, ismens Evaluetion hl50 Design DESGN I I 30 3 N150-2 t *,

5 Ni5o.

A8wR-SRV i

Caeratson 11 OCCAS I 7 to 3-wiSO-4 e,

it S NtSO.

NISO Operatson IIi iiIAS 1 7 15 5 NISO-4 6

/> J N150-Operatson IV IVAS 1 7 21 6 NI5u 5 9

ej a N350s N155 Dessen DESGN 1 7 10 3 N?55-1 4 15 %

Ns55 ABWR OUEN I

Operatson II OCCAS 1 7 10 3 kl55-3 1 15 5 NISS-N155 Operation Ill.

IllAS 1 7 15.5 NI5S-3 23 J N655-Operatson lv IVAS 1 7 21.6 NISS-

.a 4

32 4 MI55-N'44 DesIon DESGA I 6 10.3 N l.3 4 -

2 t 15 5 NI44-A8wR-OUEN I

Operatson II O C C. A S 1 6 10 3 NI44 4 J t5 5 NI44-NI44 Operasson 111 IllAS I 6 45 5 N I -8 4 -

4 J JJ J Nt44 Oper.s t i on IV IVAS 1 6 21.b N t 4 3-5 3 SJ 4 N 8.s a.

Nt49 Design DESGN 1 6 10 J 4149-t >

15 5 N149 ABwp-OVEN I

Operatson II OCCAS 1 6 t o ;s N343-3 a 15 5 N a a s. -

N149 Oper a t s on !!I IllAS 1 6 15 5 4149-3 1 2 ~. 2 N t.a ce -

Operation tv IvAS 1,6 21 6 N643-4 ;

32 a Nia3

,j ht38 Design GESGN 1 5 to 3 Ni38-I w 15 5 N4jo-ABwR-OUEN 1

Opermis

.11 OCCA5 1.5 10 3 Nf38-3 e it 5 Nt;e-til 38 Oper a t s oas til IllAS 1.5 15.5 N338 3 8 2>

2 Nt38 Operatson IV IVAS I 5 21 6 Nf38-50 32 4 Nile-N211 Deston DEbCN 1.5 10.3 N2)1-1 2 IS S N211-A8wR-OVEN I

Oper at ion il CCCAS 1 5 10.3 N2ti-29 45 5 N211-N211 Operatson lll IllAS 1 5 15 5 N211-2 9 2>

N241-Operetsen IV IVAS 1 5 24 6 N213-4 4

~*J 4

N2n8-Nf32

.Sesson DESGN 1.3 10.3 4132-I 8 i$ 5 Nf32-ABWR-OUEN 1

Operasson 11 OCCAS 1.3 10 3 NI32-3 5 IL 5

  1. J432-N132 Operasson Ill IllAS 1.3 15,5 N132-35 23 2 NI32-Operetion IV IVAS 1.3 21 6 N132-4 5 32 4 Nf32-

.~

t a:

e t

1-3<

s s

.)

- * @444 0030* Drie itic ----

J> % 9 ?

  • 1999 n

,9, C O O O. r,N N N < N N. N N gg4e.CO;;

g caesNN p.

e* 2222 2222i -.

5 2222 2222 2 2 1* 2 2222 2222

?

h 4

p-

//N7 c4N-t a N =*

g.f

a.,,

,9

-i e N 4

,,,,3 cag L

4

  • %.OcnN. pp

.., <,'n it%m c c..'., n OrnN1

- i. ; N +

c

.. a

- - y.5

+,

-Nn,

+

Ie.-

- - : g;+

g, e =;

g, %, 6

~cc,

  • nc-s p -g or
mgyg, 6

e i

a g

-,Nm,

NsN, 3---

~Nr,,

cO-
ooo, 4

i i

C l

s C

i o.

i *,

g.

p 3,

- - 4444 00DO C C er A & & is' on 4 4 Q J

  • O O O O. - - 9. 9 s 49 e

$i 4+

e,e,O O > N N. N. N i N N N.w.

CC i

g, 3 NN,

- i ---2222 2222 2222e -2 2 3r: 2 s 2222o 4a n>

2222< 2222e g*

s s

a b*

e.

i c *.

4 s

4 i

nood mmoc.mmow

,mi,.a amec.nnoa,nocei n.

g4

}e a. Coo ~*000-004 C o de -

i-i

. - - - * - - - N

.O..c. o - i C O.O. - + C.O. o.pq.

~~-N,n

-Ns N,

eNe

-e N,-

s E*

e e

i m.

s

< L <

s.

s t

L*

e.nenne 0000,0000 0000.0000*@@@t

~

  • e @@@eo i

C.

so o o e o o o o.,
e. i i

C4 i

e i

i e

+

e Zwm < 2 nn s < 2De 2m+

Emm e 2s+

s 2Wm r

e s

er < Q ( ( A e Q((Ae 04(Mi d((@

i i

Q4(0iQ((@

a Jg(d9 a

-@v-44 Wu-

- wu=>eww=()

w w -. a. A u = (>

Ou-4*Mu=4iWu

()e 4 0== ( +

i i

  • i wv

. wa->

wv

), wu i

a.00--*CO-=*QC--.00==*CO-=iQC--s Q0==+

i e

-J.

i i

i e

i e

n

+

n s

t e

i I

i f

i 4

e t

i s

t 4

a

.i a

e

=,

C*

->i

~~.>.t

-->+

~ ~. >. * -->e.

= =..> i

-.>-S o<

A g

..- s -.

2 e

i e

s e

w

  • CCCi CCCi CCC*

CCCi CCC*

C C -C

)-

CCC4 i

4*

0005 000e 000 000

-+0s 000i 000a 00 2

C. e a

e

--a

--=i

--a

--a i

e

===t

-a =i C**

  • C***s C *.*
  • i C-***

C****

C*-**

C*.***

=.

i-i ae me443 04e4s 08846 3494# 3949t @444* r& 4 4 e e W

+-Ee

-L LL i

-6 LL *

-L LL * -k6 L * -

6 L L # =bL L * *LLL i oiaee$i eeeeieeeeie&6e Ae60e ce66e en m 9 e i e i w

ui -O4445 W4aaa Da4a6 @a4Q+ e G. a a * ** 4 4 4 t t444*

2 a

_i COOOeQ000eQ000.C000*C000t C000iCOCOe e-e e

s s

e s

+

a.

i e

e i

e i

e i

-1 1

4 e

t g

4 e ee e

e t-e i

3 i

=s e

e '

e e

s i

(

6 6 L l e

O e

t 4

6 E

e Ws i

a e

e e

= +

4

.a i

e i

i 3

6 4 S4 0

0 t

t t

4 a Ee a

e i

e e

e 6

e a

e e

e e.

e-4 6

8 @

e O

  • O ee
  • T i

a e *

  • Ce i N
  • N~

~

s.O

+ *=

e C.N e -

s-a O 2 ~.

s 2 -.

s 2-2=

2-r 2=.

s 2-e e

=s n

e i i,

i i

e i 4 i

e i

e W

+

e e

e 2

s 2

e Z

2 2

s' 2

e 2

s

.J

+

i e i

=

w w

w w

w w

a w

+

3 D

(

i i

3 3

3 p

i 3

e O._

  • *i
  • O e

O.

O.

.O

.e. O.

O,

  • e L

k@

kO E

2[

d t.'s d 888 I

dO 4

2Y A

1 4'

'3O 6

3N 3N.

.E -

3O e

3-3 r, G

4D.=

  • A-O-

a CD -

e C2 -

t (2

(2 (2

42 (2-

+

(2 s

(2 e

i e

e i

e

9r t

s.5.

i i

$4 5

3 i

n

-(cfr

@as&

~~~~

+we.

t+tcs : 3: :

,O i N es N N s 37h7 DL4L L$,;

DDc&,4444 3300-g

.2222< 2222 2222 2 2.2 2 2222 2222 2222

eoi S.,

ist

? -

+

e g

=..

4 -

(eN-4 7 -t 4ie4' O ( *. 7 6 O(N4 1 o e4 et t2 4

l; *%

i, s, * *:

ri., ccc ?s

&m
  • c r.s *m-of, mesi

-','s

.. a

- - %.5

--N*

,,w s =.. - - N n,

t

.9 i

(

7 *r 7 ract:

-75s

-51 &

M9-E er -t otte i

s 4

-,3 c' r, c a e or ' p.. c4,

A c

.my

--..a

+

s or

-4.,

v.
  • t i

b

~

s C

f g

m C

i i

i 0

i t

i w

s g

i i

i i -.

f...o o. T 7 7 6

@ @ ie e

@ @.4 2, f,c0o+oc

-. i s

1 1

N%%N D&94 D@4a C&CC*@@s@

3300i g

3

--.--A i

opoo.

4 a

2222 2222 2222 2222 2222e 2222i 2222i e

i e

i e

t e

i e

e g

w i

n<*O&iomo@

a es (, io ano@.

n ri o @...oeo@

mnoei g

=.

a, C..o c N. C o o.* Q. Q 4

. 2 C. 0 -- N. - -

N, 0. 0 4. - eN, C. o. c.

CCC-i L

a

  • e ga

- - - c4. -

cy N.

.t.

L

=.

a 4i -

C300iC000,COOC+0000-@Mm@i @meme @@@@*

c.

i e

C*---a

  • ~~~~ * ----* - ~ '. * '

C000,0000+C000i g.

i 4

, -i i

e i

.C.

e e

i i

i 1

e i

4 i

i 1

21,0 e 200 20e

- 20@

200 4 200 i 2AM i

=

e-044Ai 04(A+04(A+O((4i Q4(A5 Q((A*

,@u Mi Q(<

  • i0w-( i WW-( i Au-( i wu=( i Au=( i Mu

(

(,

- w 6. - 3 : wu->6 ww->+wu=>+wu=>e wu=>e Wu->e P

CO-=iCO--iQ0==*CC==*Q0==iC0==iCO-~i i

i i

i e

,4.

i i

i i

i i

i e

e i

i e

+

5 e

i i

t i

e 4

e f

a 4

4 C*

=,= >

..>.a

=. =. >. +. =. =. > v,

. = =. >.....e z

=>i

=

A

. o.

i -...-

i 2

-e i

e 6

e i

CCCi CCCt CCC*

CCCi CCCe CCCi CCCi w

,

  • i 4i oooe oooi ooo ooo2 oooa oooe ooos

~ i i

2 C*

--=*

--a

---i

---i

---i

-==

  • i

=

. -i C-=*e C****

C***'

C==**

C***i C==**

C * * *i-4a 0444* O.1 4 4 i S44eime44i $444i 0444e 0449a e

i 6*

-L LL i -LLL e

-L L L 6 6 L i

-L LL e

-L LLi 6 6 L i m i e +

oiettti e444e eeeeieb64i *$46i et6ee e4eee

?

w i

  • w*

tiaaaitaaaa eaaa*6aaa*44aaieaaae t44ai C000iQ000iC000* COCO *COOOeC000<Q000a a.

4

=

n i

i e

i i

W e

i e

e i

e i

e = s e

i i

Oe i

i e

e i

m a i e

-e i

e i

(

> L i e

s i

e e

a e

E

=

, to i

i e

e i

i *i e

e i

e e

i 4

. 4i e

i e

i e

Ce e

e e

a i

i i

e s

e i

i e

s e

e i O 4 -

4 i

e o i@

5 i m t @

i 4 c

4 C e o i

  • N.

4 6

C.

i e

i o e

4 e

s -< 2 s 2.-

i 2=

2 2=

e Z=

e M=

s O<

e i

e i

i o

4i e

i i

e i

i w

e i

e e

i e

e

.4

+

2 2

e 2

1 2

e 2

i 2

e e

s.,

+

i w

i w

w w

e w

i w

a 3

3 i

3 3

3 a

3 3

(

i i

i O

Q

m..

O i

O e

o.

O.

O.

=

. i i

4 6 I h

5 i

')

f h

I kh 0

M i ei 2N e

3@

e 3@

i '

3c i 34 i

3O e

c3 e

m e

Co

-e i

i 4i m

a3 - i 1

( 2 s

(2 42 1

e i

(2 i

er 2

( 2.

i e

i i

l

' l

. ~,

o

. 4

(

s n

9 C.

o s -

44

. J i

V-

  1. V, 4 @ -

A. OOOC<

D 3C3$

wi 2222

+

6

( I *2

  • k C

.E

, ; m s e

a mt W

- =

e.

G C :, N =>

e C

C 0

g, 3

&&44

  • ~-

\\*@

CCC3 D

Occ**

y u

w-2222*

6 s

y>+.

Mrot, s. Ee i

ooo.

5 a i a

---N4

  • ei e

Di i t

b o a 4

4e

@@@4i

-i

< ei e

CiCCCCe

.e. +

i i

i

..C.

i i

MMO e

4e 04(At w i W y== ( t i w w -~ >

t

=

$.oc-e 9

ed t

i 1

)

9 3

1

_f i

n 4

e 6

4 D

D s

t 4

t 4

e se t

4 ( (

w**

> t Q$

    • m**

M 6

h 2

I 5

7 ** b

. CCCi w *

  • . i e af 6 0QQ6 2

i e C

-== i C et sey 3 one 1

4

  • t
  • D+

$4446 4

i e

0-

=6 L L W

a Ci e$$es W

e i Ut t444e a

s

- e GCCCs i

i i

k i

e 4

i i -. e v

. 4e i

a

, =,

e

(

i Li C

9e i

  • =

).

  • ** 4 0

e s SS 4

  • C5 e

i e

e e

8 9

4 @

D

.. *, o e

c i o.*

-v 2

n 0.

e, c

e

. 4i w

a a

2 t

c i

, ~.

w e

D

(

r e

s ea O

e q

e me e s

a E@

I I h 8

4

+ 46 JQ i

4' CD o 6-e i

i i

2 (2

4 e

i e

I f

W i.t f --

l (?{.

a e

e y

C-O' a

e 4

s

-a e

es 4 5

+- 9:

3i

+ - s o

p

=

e.

m ca 4

14 4

4 or a

v

-'a N

6 o

3, -

-2 2

2 2

9 w.

2 2

2 2

4 i

g i

S--

E L

0 L

0 o

0 7

G 0

0 C

L 0

o o

O L

0 2

O L

o G

.a g

i 1

i s

i O

rJ P

&i O

C C

a C

-r o

S-3 N

L o

C 1

fi O

3 O

C C

O C

C a,

a ce a

v, k

g.

t W

g G,

e i

e

i 0

0

'r e

p e

m

. ^

. ~

ca e

4 1

o O

't n.

o w. g

-2 N

c4 3

w*

2 2

2 2

2 2

2 O

> +

e i

e e

i

(

i 9-Ee m

M O

o a

Os e

e e

  • m i

, ?.

e c.ae c

3

, c o

i o e

o o

, o a Oe a

m i a m

m m

e n

e n

  • n w

, v e

c i 6

= i a

,i 2

i @. - e i

i i

e a

(

i

(

N e,e g

i e

M a

i o e

o N

N 2

i

n.,

C i

e e

e i

ei A

i m

i e

A e

< o e

n i e i

, L.

a.*i n

i n

+

n N

i n

e N

  • n e

N e

i

-E*

C,e

- i a

i i

e i

t L

f I

i t

i e

t 2

i 1

ee 4

(

4 i

(

(

(

i w

ws

=

i.

i E#

.e.

4 m

M

+

4

.e.

4 i e e

i =

i ie 1

4 t

i 6.

s 6

4 q

e 8

4 s

e.

i e

i w

i

(

+

(

(

+

4 e

(

(

(

e

(

g t

i e.

6

.==

6 s

i 4

e

+ -

i C6 m.

e i oe

(.

s t

a s

4 i

i i

(

(

i

(

(

i

(

e

(

(

i 3

i -=

i i

(

.. e

-e e-e C

C i

C a

C

+

C o i e 4i C

e' C

e C

e 2

e e Ci O

i 0-e 0

+

0 0

s e

4

+

0 0

0 a

u 4

i ae i

e a

w w i 6+

4 4

4 i

e 4

i e

e 4

i e

e e i oi L

i L

=

L

=

L e

L L

i L

e L

Oe e

e 6

e 4

4 t

i e

e i

A i

4 i

a e

a 4

e a

e a

i a

5 4

i i

J

-e e

i O

i.. O C

e O

O O

e C

i O

.e

.i

,e e

J k

i t

]

g g

g 3

4 s

i ee i

i a

i

3. - i

. =

6 e

i i

i 2

i e se i

e i

i e

i ei i

e i

e

- e E

e e w.

s e

o

,e

- i e ae 4

e e

s e

i i

Ee a

i e

i e

i X

t a i i

e i

(

l i

I i

G B

t 6

4 i

, w o

eo e v ie i e e -.

. N

+ i0 i

N s

e Ca o r o e

a o a v i

i o e.n.

s N i

s

-s s

e-s -

1 -

s -

e N a

2-e 2-

  • 2--

e 2==

+ 2-4 o i oe 2-5 2-

  • 2-e at 4

e i

W t

e e

i e

i e

i i

.4 e

4 i

2 2

e 2

e 2

i 2

l c

a i

e 2

2

(

+

w e

w w

+

w i

w e

w s

w t

3 3

3 e

- i 3

9. 0

=.

. ee a

i 3

3 i

O, 0,

e

.e e

O o.

i o e

O i

+

=

i e

i e

L e

ae e

2e i

2-e 2N i

a@

e i

e ee

%3 4

2o t *f e

1e 34 e

34 6

.74 3 'T e

3m

+- 3.=

3m

  • 3C i

CD - i CD.

a

&N

=

CD -

e d2 N e

e e

.D

= i CD -

i e

(2

( 2 i

(2 e

(2 e

(2 e

-(2 i

e 42 i

(2 i

p 1 -

f -

a

~e.

n

- s e

C2 i

-o.

W i 4

p 9i o

-. 3 o ~.

O

. c e

+,

=r N

N i -

o e

3

-2 s

o N

m g

w.

A 7

2 2

a 2

2 2

4 e

. w y

3 4

7-O O

0 0

0 o

C C

0 0

3 o

o C

3 o

9 y

w 1

.s m

n t.

p m

n n

Wr 4

o e

c 0

o o

o S

O C

N O

O o

a 1

t 7

3 7

C O

0 3

o

..i C

+

o t

a i

.D 4

4 1

c.

3 A. -

t o

4 A

v

.N.

o 1r b4 1 i

N i

=

w.

2 e

2 C.

N r

m.

t w

w t

2 2

2 a

2 i

3 2

2 0

s

+ 1 i

e

,

i e

i

(

8 L.

  • i 4

4 a

i t.

. 1e f i

D 3

m 3

e S

i m-V t

j e Ja o

a o

i 3

0 o

e

-O t

O O

w +

i o

i e i

n n

m e

n i n e

n-y o

m-i e

i i

0 4

w,

i 2

W+

e i

(

i e s + e n

s e

7 n

4 e

s e

n.

E m.

Ci e

i 4, i Wi G

N

  • o T

+

0 e

c a

w i e i

.a e

n i

N e

n N

, n e

N i -

E Ci e

a e

e i

e e

L

+

e i

e r

2 ki d 4

(

t

(

4 4

4

(

i

(

e

(

i

(

p

(

w.

i -

i 2

E*

9

+ e 4

e-i 9

.e.

4 4,.

i i

e i

i

.4 t

e A

i e

t i

e e

i

+

4 i

i e

w a

4 e

(

e

(

4

=

a

(

(

i 4r.,

+

e

.e

=.=.

i =

.=.

6 e

A i

a e

e i

i o 4

e a

(

i <,

i.

i c i

e i

(

i 4

e

(.

e

(

2

=

=

i e

i =

i w e i.

e i

e 6

i o

4+

C c

6 C

i

-c c

e c

C i

C 2

a c.

O i

0 s

0 1

o o

+

o e

o e

.o.

i O

i e -*

s i

-=

e

=

a O,-

u.

e i

e a

e w

i E

4 e

4 e

e i

4 i

4

-e e

e e

e a

e w i i

Oi L

a L

L L

L e

L i

L e

L i

W

+

i i u.

6 a

e i

e e

i e

i e

e

-e i

W 4

s a

e a

i e

a 4

i a

t -- a e

a i

i 3

O i O s

O 5

0 O

6 O

i O

+

C i

a a

i i

i e

e e

4 e

i

-a i

e e es e-i e

-a 6

e s

'i i

a

. L i e

. ~

e e

e i

i i

i l

C 4,

.i e

r.

i -.

i e

i i 4e e

i i

e i

2

. Ei e

i e

.e t

1 i

e n

e.

i e

4 1

e o

e i

4 t

4 i

-e o

,e ac i e

+ y ec i @

e

-4

=

i CiN N

4-

, o i -

i m 4

,e N.

=

.==

.%=

n.2 =

c 2==

1 e -

i i

e O>

2-2-

s 2 2=

s E=

+

s Q. +

e

-i i

a e

w e

i i.

i e

i e

a.

e i

i e i 2

2-s 2

i 7

s 2

s 2

s 2

s 2

(

w i

w a

w i

w

. w i

w e

w a

w I

e.

e +=

3 i

3 e

3 3

3 3

3.

3 i

a O,

o, i

i i o

o. -

o.

, o O.

e.

o 1

i 6.

i e

e 8

I I

kh e

b.

e b

6 Q

.m Q@

g QT t

d[

)

Q@.

l e Q..

3N e

3N

-a 3

2@

2o a

3-i 3N i

3m *

. c.= '.

c-e c-e go

. co - a c-i g3 -.

e c

(.

(2 i

(2 i

42 42 (2-6 (2

+

(2 i

5 t

. (2 1

I l'

i o.

1 '

TABLE 5-2 PR i t1 A R Y PLUS SECONDARv 51HESS INIENSIIV RANGE FAticut Pr e mar r

  • Seconome, Stress y,aagu A,,, 3, 3, 3
Parts, Posnt t1s t er i a l Combsnatson 4smsts Intenssty Lamets Ewatuatson us.#e f a.

tsants Evaluation N 61 ABWR-QUEN cper at i on IA, jlA I&llA 14 2 30 9 N 6t-o 903 3 00.

> g, 3 -

it 61 N 66 ABwR-OUEN I

oper n o on IA.

IIA tallA 14.7 30 9 N 66' O 003 I 000 N 66-N 66 N 55 ABwR-OUEN.

I Operasson I A, itA IsilA 10 6 30 9 N 55 U uo3 i von N

4 tb N 60 ABwR.OUEN I

Operetson IA.

IIA tallA 7.8 30 9 Pi 60-6 uOi i 00=1 N 60-

.)

N 60 40 NOOl ABwr-OVEN 4-Operatson IA, ilA istIA O 7 30.9 NOOi-O 003 1 000 Noo8-NGOS

-NOO6 ABwR-OVEN I

operatson IA.

IIA talIA O.7 30.9 NOO6-0 003 1 000 No06 4006

....-............... ~~................... -.................-.............--..

e'

s e

o 7 MOON 0-NNeJNNN#4 eJ N O, 4 4, y y C o - ~ o n m e m s, - -, es c4 N e-m m,a A.0 OOC-CTOCOOOOOOOOOOCOs 3,NN-~~~OOOOOOOOCCOOOOOO COOOOOOOCOOOCOOOOOOOcs C, 7 ; N - ? e * & O

  • 4 7 O -
  • a y ; g (. 4nT*tx;%~DD14~914 e&O w

w a, ------- ~ ~ ~ N ea - - -

we a

n'enam: y% s m ;. N p \\m > 4; ;sr,

-Za r e< &

Go

    • N 4,&e4&

- --- -074Nt7700NGO m M ?, &*

m *, 9 e4 e A.

1 C

9070zDCNm-~9CD;&-DDO~e wi 700Nm-Ami4-*? 'J3&GNOQ au


n N-o,--

wi O

  • i 'r S m O @ N ea - M o @ ca o 9 A N a @ e h r

- s 2. e N a @ tc 4 M o N 4 c i v N A T 7 3 O N o O mnmmmmnntaqNf4 r4 N e

@ s r

~~~~

Cs 9OSomeCN#~~9@c@@-Dec-4 we 40CNm=(M44--ONm@@NC@

N-Nee as--m e= ~ eene e

W 6 I

I Os

- s @ MOO @ cec @d4M-N=e@NN@-c

- e occcitvvvv47TM.'NNN-~~O Ls O*

e s

Ea Ove@ce-@Noem=@@~Od@cav eTMSN

-~~~.c@@M@oi=O re - O N @ =

i w6

--NN Js e

~~~- -

we 4

C.

y,NN@@coMMOOOOOOOO@@@@@@

t

.....---===-----~~O00000

, e 14

-Oa 4

.e E

d*EeCovec=N@Occ-ec-@comva@

2.ws

o. 4..T. T M = M O N N a @ N @ @ @ @ @ c a N-N

- i ae M t wt E-4 Os e

pi ct t

t Op @eeA4TONNNMM POGNd@MM w.ye C.@eNN==*===========CCCOOO Js @ s

( i wa Qs i

e t

6

  • EI OTONOd@@O-@N*@d@O@*NP T E.wacvnMN=OCVa@@@@No@

N@~

- - Js~n-meneweNe eN Xe W9

( 4 C..

t c +-

i NA@@ccMMOOOOOOOO@@@@@@

@a 2r Qinemo'monmemo-w OO&QQQ' onO w pr as ws

@

  • Ot

(

M t f

NP O@T@eM N@OND*M@*@NO@T*@

wacc4TmemONN-@NS4@@@O=

i a s n e w m - N e eg e m e

==

e-we a

t 5

1 i ll

m

- 1

-s.;.V 1

1 e

t i

i i

i t

C w -

M I wa 330C000CC3: C0*00COCC-c.L COOC 2000000010;

ceO i

4 Ce C Cov1ze % 4 C 0 0 - 7 4 c,& - a c o ~ u c r i 9 m = m c N N = t c.- %

  • 4 Ja & @

wn

~NnNn --.

e ss

-e

=~

w*

1 i

Ei OOCOGosocoLOcCOscocCc i

>s occoCCQOco@CoOCCGO3CCO-1.

Ci 4

e

+

E Con @m*N@ coo-oved-docaci we c o v v i9 a SONN-@c=NS4Go@

i as


~N-Ne-e w*

v a

i

- + 4Neocvvvv---@@MNo@@Nev Me

- i os vvMMMMMMMMMMNNNNN--a con a s e

ae e

os e

t 9

i i

Ee ove@No4-@o&e-@C@c-@@-4 4

CN@~

  • we ov9$ MON 4@c@va cN

.NN-e.

aa e-e==

~

we 4

B i

i Ce

.. NN@@ceMMococcocome@m@@

M.

e c.a.

---..------coccoos i

i bl

~

5-a oe e

e e

i 4

o Eicev@c-N@cecac@-@Coeva@

Jen vvM*McNN-@Nm440@ca 2

wice i

~~~N-Newe en e.

w i we 4

4 o*

s i

w.me w

e. @ N. C C G v v v v. =. a a @ @ M N o @ @ N e w a i n D*-s vvMMMMMMMMMMNNNNN-== Con 6

a s s e

4.- Le

>+On i

t i

F 3

i C+cve@Nco=@com=@o@4=#cev-e

.C5 wievMSMcN@@c@v~oN

. ON@-

~NN-e-

~

-s as -meem e

e

~ X e Wt f

(

s P

gs e

a e

4 g

D.i NN4WOOMMocoooooO@mSm@0$

a *

- s n

.....---ococco.

w.

J L bl mvci

=

(

  • 1 w a s

t i covem-N@cco-o@-@@oST-@

i s e - - v v M - M c N N - 4 N.m @ @ c @ O =

we co

..N-N-...

==

i i

  • we e

4 s

h, A

i 7_ _

'I E

_o 3-

-m-3a-J 4a X

"**)

v ::.

)*

m e% u sf. M P

C i

2 4

g i d 4

O aa 3

C O

E' C

1 e

~

a

'A w

  • te m-g igi;

==

h-.

x a

5 c

.-w. g v qj g.4 j

wt

,]

d

. u c.

/

I i

./

j 3!

l m

e C-

^!

A O

L C-J w#

a e.

..a G$

4,

  • v.g e

-i (f) 8 cw

.T y *3 5-C

-t mod ~

  • "' w w 0 N 5 S e=

c u

%) 5$ $

s 0: *3'S J'

Q t. e. =.= w 4"A, s

c1 a w AEbA g.::

3

. e==.

l

= e2 3 e

4

s.

.n g

'e en

^

  • NS V

O gs, t

Y

-2 I s i

.s 9

E x 3 3 8'

=a C

b 2

7 e

b c

a-g

(*

a, 3

.i e

1 I

m e

N e*

==

- -~

2,.

~

.(

-~~,..s

~..

j s

m N-.

'O

[

f u

~~

'g

(

      • .% w.,* g g

1 s-w

~

a

~.f o,

,x s

s

.I

\\

D

.b 9

b g,.,

m, s'q

== f O

h, M

N '..

  • ad

=5 v.g g/

/

N w e

db 8

Cg 2.

'M A

U o e Q*' g g s.e j.

+

e 4

M wae 4

3=

w38*

9

v.. a=

-s 6

sN 1C r. 4, =

's-n e te,'

- s*

s

[ 48 I4

.'%N ao.

mCC-

's

$. N.

l 3*2 i

-w 4==

a3 l

0 AENUdserEnerGY

Engheerhg Calculation Sheer w

A NUMBER DATE s

~

$UBJECT BY SHEET 08-i I

15o.95 ~

55. i +

C 304.S

- _ ;p o,$

a

' C4

'4

\\,

\\

_ _ _ --- L.,4.2, w

~ -, -

.-T=(-

_ 4-ric,. 3 a.

i

,NO A

o

' [th.

.d (x3

  • t d

T ss.

14 ele. 17 ts.

gc

-b 1%6 -

E '504.$

M yigdi %

D AT TMAsf 4 Sof-fMC 5k&&

Y

  • '/ ',, :eicv. - 3 iso

. v o o,o

\\$

M I

.)

ANSYS 4.4A I

AUG 11 1992 8:27:46 POSTI STRESS SIIP-1 IILR-1 TIME =0.5 ILMP SMN =20.064 SMX =156.357 ZV

=1 DISI-495.852

.'?

Xf

=152.4 YF

=450.775 7,

20.064 g

35.208 g

5H.351 g

65.495 4

g 7

80.639 g

95.782

_A g

110.926 II I

126.07 141.213 156.357 bu K-6/7 QUENOtER 10 PEDFSIAt WEID Figure 4 : Temperature distribution. degree C (at time 1.00 min. after SRV blowdown)

  • 0 g

g o

t e,

Y

~

l l-a l

~~

ANSYS 4.4A 1

AUG 11 1992 8:53:54 POSTI

[' ~

S'iP-2

,,,. =

13 L IL 1 TIME =0.5

/

PAlli PLOI

  • m'

.I NODI =66 NOD 2=115

/

EtMP f

ZV

-1 I

DIST-0.bt-66

... m.

XF-

=H.5 YI

-H.S se.

l ZF

=0.5 t

f st l

a I

r.

s l

.I

\\

l I.4 i

l

.7 i

1 as sa.

--}~

em I

.I

' r. m

.r rr r

. r,.

a., n

. u.

.i s,.

K-6/7 QUENCHER TO PEDESIAI WFI D Temperature distribution through section A-A Figure 5 :

(nodes66-115, 1.00 min after SRV blowdown) t---____

g-g

t 4

i 1

ANSYS 4.4A AUG 11 1992 l

8:31:H2 r

POSTI STRESS j

SitP=1 IILR 3 l

TIME =1.5 ILMP l

St.IN = 20. 083 i

3 SMX =162.902 I

ZV

=1 DISE=495.852 i

I XT

=152.4

[

, YF

=450.775 l

l 20.083 35.952 g

51.821 67.689 1

j 83.558 i

99.427

(

g 115.296

[

g-131.165

~'

147.034 l.

162.902 I

t l

2__X f

i K-6/7 QUENCHER TO PEDESTAL WEID l

t i

i i

l Figure 6 : Temperature distribution. degree C j

(at time 2.00 min. after SRV blowdown) f i

O s

1 ANSYS

.4A AUG 11 1992 8:47:(M3 POSTI n.

/""

SIEP-1

..a w

/

IIER-3

/

TIME =1.5

/

PAlli PLOI

/

NOD 1=66 1

NOD 2=115 IEMP ll

/V

-1

,a.n

/

DIST=0.6606

/

XF

-H.S

. 6 mi Yi

-0.S l

ZV

=0.5

..n N

/

c' rr.

l n.7

.. m m,a

'l

.n.

l

..l I

r.,

.,. m

. n.

n.,,,

.r....

K-6/7 QUENOtER TO PEDESTAt WII D Figure 7 : Temperature distribution through section A-A (nodes66-115, 2.00 min after SRV blcwdown)

1 ANSYS 4.4A AUG 11 1992 8:50:01 4 '--

==

POST 1

..a. r f"

  • SIEP-1

/ '

IIERe3 TIME =1.5 i

/

PAlli PLOI NOO1=149

,, m

/

NOD 2=144 TEMP ZV

-1

./-

DISTu0.6666

' XF

=0.5 p

YF 0.5 ZF

=0.5 4

er. m.

y l

u,

/

H. 279

.e. F.

i.

i~

m... -

- '^^

en.

I

}

i

...= >

u.

n m.

es..

s-.s.

.u u m.

= si.

K--6/7 QikNCHER 10 PEDEST AL - WELD l

l 5

i l

Temperature dintribution through'section B-B Figure.8.':

.(nodes:149-144,. 2.00 min after SRV bloenSown)

I'll 3.

+,

.m

-s-

-i,

y v.

r,m-

,.,,,,--.4,.,,,

x-..,

j a

l i

j 1

ANSYS 4.4A I

AUG 11 1992 i

8:55:11 J.

POS11 STRESS 1

I SitP-1 i

IIER-6 TIME =3 i

ILMP P

SMN =19.731 l

SMX =163.79 i

\\

{

Z':

=1 L

DISi=495.852 l

XF

~152.4 i

/

YF

-450.775 19.731 8

l

~-

M 35.738 l-g r

i 51.744 M

l 67.751 i

83.757 I

1 t

f 99.764 f

115.77 131.777 C

{

147.763 163.79 l

}

i i

i t

7__._X -

[

K-6/7 QUENCHE R TO PEDESI A1 WELD t

i t

I Figure 9 : Temperature distribution. degree C

[

(at time 3.00 asin. after SRV blowdown)

,i l

i O

5 t

4 1

ANSYS 4.4A I

AUG 11.1992 i

8:36:34 n.

POST 1 t

l-

.d :

STEP-1

+

/

IIER=6

/

TIME =3

/

PAlli PLOT I

i '-

/

NODI =66 N

t NO(12=115

-j yEyp 2V

=I f

ean.ase j

DIST=0.6666 e

XF

_e.s 3

/

YI m3.S t

..s m ZF

=0.5 i

l f

m2.353 a

4 Y.

j' r

F 1' 5 a

~/

f 1

{ -:

5 I

(

63 e6F

)

I i

i A 379

,f -."

r.u.

-- '~

l I

i.,

l

.,. m i

m

.n.

nm i

j.-

.K-6/7'QUENOtER TO PEDESIAL iWEtD j

i.-

1;

Pigure'10
Temperature, distribution through section A-A

[

i

~(nodes 166-115, 3.CD min after SRV blowdoun) t t

I f

y--

3-a- -

.,i,_..______.________._____m-

1 l

ANSYS 4.4A AUG 11 1992 8:43:03 n.

POSTI SIEP=1 11LR=6 TIME =3 PAlli PLOi z

NOD 1=149 NOD 2=144

< x s.r 7 gyp i n...

IV

=l DIST=0.6666 XF

=H.5

..i. 6 Yi uU.5 Zf

=0.5

.3. 7,.

s' 6"

r ru 4

ss.res se....

31, ab3

/

23. mA 4

g l

s et..e ar. o*

n ece

    • i
  • L ***
s u zi. u.

a...n

  • . 6 K-6/7 QUENCHER 10 PEDESI AL WELD Figure 11 : Temperature distribution through section S-B-(nodes 149-144, 3.00 min after ShV blowdown)

_7

~-

I /16 $/l0Mhg 5fAhc oe@denh of pgphp{g ;y -yp ABWR */ys',sa80 forateclotdee.(-so.n. & Li,eiraea sagm'a,

t siti Standard Plant These vo/ues s Lj QA-G

~w._._/

'be number of degrees of freedom are taken engineer. An additional examination of these more than twice tbc number of modes with supports and restraining devices is made to frequencies less than 33 Hz.

assure that their location and characteristics are consistent with the dynamic and static (2) Mass is lumped at any point where a analyses of the system.

significant concentrated weight is located (e.g., tbc motor in tbc analysis of pump 3.7.1.3.4 Analysis of fmme l>pe fipe Suppons motor stand, the impeller to the analysts of putop shaft, etc).

The desip loads on frame type pipe supports include (a) loads transmitted to the suppon by the piping (3) If the equipment has free.end overhang span response to thermal expansion. dead weight, and the with ilssibility significant compared to the inenta and anchor motion effects, and (b) suppon center spnn, a mass is lumped at tbc overhang intemd loadr caused by the weight, thermal and inenia span.

effects of loads of the structure itsel), and (c) friction loads caused by the pipe sliding on the suppon. To (4) When a mass is lumped between two supports, calculate the frictionalforce acting on the suppon, it is located at a point where the maxitoum dynamic loads that are cyclic in nature need not be dispIacemeat is cxpeeted to oecut. This considered. C: :c4icien++f-friction.uoed M'! h %-

tends to lower tbe natural itequencies of the "coefj"" ~I will be substantiated by actualtest data equipc3 cot because (be equipment frequencies covering the range of matenals, geometry and loading are in the bigber spectral range of the condition. To determine the response of the suppon response spectra. Similarly, in tbc case of structure to applied dynamic loads, the equivalent static live loads (mobile) and a variable support I. ad method oN analysis described in Paragraph stiffness, the location of the load and the 3.23.8.1.5 may be used. The loads transmit:ed to the magnitude of support stiffness are chosen to support by the piping will be applied as natic loads yield the Icwest frequency content for the acting on the suppon.

system. This ensures conservative dynamic loads since the equipment ircquencies ste As in the case of other suppons, the forces the piping such that the floor spectra peak is in the places on the frame-type suppon are obtainedfrom an lower frequency range. If not, the model is analysis of the piping. In the analysis of the piping the adjusted to give mote conservative results.

snffness of the frame-type suppons shall be included in the piping analysis model, unless thr support can be shown to be rigid. 17se frame type suppons may be

$ $cqe) b 3.1333 lelttacation of Supports and modeled ajs'd restmints p twiding th:y are designed so Restralnts.

the maximumsdeflection in the direction of the applied Tbc/ field'. location of seismic supports and I 88 '# #### 'h"" 1/M A "ad rodng the taalgap or P

duametncal clearance between the pipe arid /mme restraintIFfor Seismic Category I piping and suPron is between 1/16%td 3/lawhen the pipe is m piping s'isiems componcots is selected to satisfy enher the hu orcoM condMon. & M M5cd the following two conditions:

3.7JA Rasis orSelectfor ofFrequencies (1) the location selected must furnish the required response to control strain within Where practical, in order to avoid adverse allowable limits; and resonance effec:s, equipment and components are designed / selected such that their fundamental (2) adequate building strength and stiftness for frequencies are outside the range of 1/2 to attachment of the component supports must be twice the dominant frequency of the associated 4

available.

suppori structures. Moreover,in any case, the equipment is analyzed and/or tested to The finallocation of seismic supports and re-demnnstrate that it is adequately designed for straints for Seismic Category 1 piping, piping the applicable loads considering both its system corrpocents, and equipment, including the fundamental frequency and the forcing frequency placement of snubbers, is checkri against the of the applicable support structure.

drawings and instructions issur.d by the W

Arnenem n,,

A-26 Bavied Seis mic..Lc& ory I Pipig ud 3.'7.3.12-i 3

Tunne.ls and ExteWOY1._Pigmj 4)\\

unde <gvoand Cah ovy X piping sys}tms are efabig dems ave considered

'mt hiied

'm. bnnels.T e i n.._%e cwWy si.3 :

undemyound svshms odhnnels mill be. adegade1- *.

54W e

.e t

1

.accoadel k' in JAe.cmal sis._Imcsse_oA.Jouder 3

susW5 sv46'cied)hH.is assumed.

%rk she-sysfems Plexible. vcla) hie.b.h _suvvoedMJ o) vacdyts son ai AA d33e* Hall _%e. dispiacemewh ama y

deAvmaps %)- h _so'sLudLue_it Ahe..syshs weve.

4,se4... Whew cypiicale,. pvoceclu.<esAick) hke

'do accoun-i _Aht aJ.me xe41ecka:m g%em Awe. traoe coneedih yovd hykeeeeah,_y<e ewp yed.

4 von

.a

~

~

QC %e led [se]esponsc.Isp>ecf5 lor %mdev3vmA g\\pm3 ave.

svizont&Lae<%Laesign spectvr A h youct sw4 ace gwee _ ins avesa.2-I amt 3.7-e.

._ The.st.. cAesijusgechw JG hucted_iuctovdance Ah Regaktory Gude 140_..The__ pipiw3 mgsis _is ptfwmed asidj ene oE.M ad61s_descvh.in.

Subsect}ow.

.. 3. 2. 3. L. -

.25)(Ahew AgpUcable[%e M cI5 A E Iolc A) ~

.se semeneas.sa.avewy ek..we cdso consideaec2 in Men eenhsis ssM paye 5.7-L3

3 ~7. 3. ) L Gcm l'c0

~ Mec ovy.T pipin h)\\

ahoge 3Yade iede\\

3 $ control _6uib a d odsid e the-Beacior_ build A 'd..wi%k sdr

%e Turhine boi)cth3 euclose iurer.

is The desiga respov>se.

spectra. -Fw this.emclosed piphy cwe h hovizonh) uk whca

_ design _sfectra cd

& gvowd surface cf cem. inJigures 31:] ed 3.7-L.

fet{hkgek _lASk3.9. s. ) E OM h

fi kc' G%c\\)f35S M

f IS h

senach docvibed in sesecsa A

.g.-

w_

r%e-T-as aer-y-+.w4 9

6

+

w--e

    • m9y-me *w

= Spek N -eeer

.m we4-eswe--

e-aa en m

3

.s e e

-.6-.-

-e.em.

e ahr e48--

wer F

9'.

m

.,s.w,q-

.-wh

.-+,

M

-=v4 e-

+

t.-+

w m

e y

9

--=

_. ~.. _.

4-

-w

=

, g -w ew

--gww

=

c w gs yg.-

==

--e..

e-

.-p mg p3e s.r u. I ssan

r y.

N)

Sea sas New

+Md Pava.

~

in section 3,9.3 )

P5 in

}0A 5..

e I'P_-

_.dke/

EXgwjon M f

f fs ctmb

$hCM'mN

&ChoY' ACNth1thh (AW bgo)'$$

Yht i

.. % C It< d e.cl _' m 0 2.. - f f n - )ok Comb \\Mcdiorts, 8)\\

i i Cde m odef. cWC. EM... uAkeM._IAd.__}Ae

.Mmum o[JC) h hh] V b e5

. are.M.CI4cl(2 iB_II1E dBhabe.COAhAfiOh.

romed J

p

.... Pig)49 _.]s t e5. Wi Nr= = =.nV o[J.0CAI/h.d04%fer6 f1Af e$

or lf51

. Mun

...of Egun } __YD._ )60. E _.4.r

_.not._J"q uired... O l c.

anaI zed Ac.ff em/..e>pamicm kaay...

y

  • p.

e

- *

  • we 9 de, a m a em h.4 egeum e s h

e p4 e We a d@&WW@

tSM6me%i s eem a.h r&

Web S y.

mee@

gs-m

+h964

=MR.

.p q e egg.

a w,

e e

am.=

sm gu e p p weismem t de ge W h

  • NMNOh

+w e$

n.s@ eiMeM4**O 4 W O NO ON9 G-N M 4.e @ ein M h-o.=

9

+*90 W 6M9 eer m e-

+ve een e

a. gen p

gea w>e a v

      • m'em'*

m Da v W e*

  • W-'

"*O 4

66bh

=$

w6*

me e

s e -

  • W 4

889'4 m

@e 9

'O

,a

. so w e e. es

  • -m e a
  • * ' *e
  • 4peumip e,eeumw wg e++ a e - O m-d g

88 h W 4WWW -4

- 94m

.M

,ew ap mi ease =

  • 9 pe+1 g=

.O4

  • Da' 06 h 9*h'"

4h 9$4W

'wa

        • $b e

= w e see+e

,, e.

MiO H u e, em tsw eg Me

  • E'#

unudp+

-e gn e e-6 M

=*

4h'O 969 l

.-