ML20115H285

From kanterella
Jump to navigation Jump to search
Rev 2 to MNGP COLR for Cycle 18
ML20115H285
Person / Time
Site: Monticello Xcel Energy icon.png
Issue date: 07/11/1996
From: Bonneau C, Pribyl D, Wegener D
NORTHERN STATES POWER CO.
To:
Shared Package
ML20115H283 List:
References
NUDOCS 9607230027
Download: ML20115H285 (10)


Text

I. .

I l

l l MONTICELLO NUCLEAR GENERATING PLANT l

l Core Operating Limits Report for Cycle 18 Revision 2 Prepared By: U D.J. Pribyl d '

Date Nuclear Engineer, uel Resources 1

Reviewed By: r G '

._gG , _ _ - _

'7- g 1 -V6 i D.G. We%er f Date l Superintendent, Nuclear Engineering - Monticello l

Reviewed By: / ,- 9/rr/9 #

C. 'onneau I Date Pr ess Manager, Fuel Resources 1

Reviewed By: nW1 24W1v 7M/!74 1( O.dnder' son Date Director, Licensing and Management issues 9607230027 960716 PDR ADOCK 05000263 P PDR Monticello Cycle 18 Core Operating Limits Report, Rev. 2 Page 1 of 10 l

1

.. l His report provides the values of the limits for Cycle 18 as required by Technical Specifica: ion Section 6.7.A.7. These values have been established using NRC approved methodology and are established such that all applicable limits of i the plant safety analysis are met.

His COLR incorporates the SLCPR change described in Reference 1. Le SLCPR has changed from 1.07 for GE10 and GElI fuel to 1.08 for all fuel in cycle 18 with the exception of the four GE12 LUA bundles. He SLCPR for the GE12 LUA bundles is not impacted by the Reference 1 analysis. The GE12 results presented in this report are based on a SLCPR of 1.09.

This report complies with the verbal agreement between GE and the NRC with regard to modification of the MCrh operating limits (Reference 1) to reflect the 0.01 change in SLCPR for Monticello Cycle 18. Also, the power and flow dependent MCPR curves (Figure 3 and Figure 4) account for the 0.01 change in SLCPR.

His report includes an additional MCPR penalty for operations with a single recirculation loop (Reference 2). l His revision incorporates a change to the power dependent CPR limits. He power dependent CPR limits (Figure 3) were adjusted to adequately bound the results of the transient analyses initiated below 45% of rated power and at low steam dome pressures. ne previously published power dependent MAPLilGR limits (Figure 1) bound the results of the transient analyses initiated at low initial steam dome pressures and do not require adjustment.

Reference 1: Letter from C. Papandrea (GE Nuclear) to K. S. Schnoebelen (NSP), " Safety Limit MCPR Calculation for Monticello Cycle 18", May 8,1996.

Reference 2: Letter from David Pribyl(NSP) to D'an Wegener (NSP)," Monticello Cycle 18 - CPR Penalty in Single Loop Operations", May 17,1996.

Rod Block Monitor Operability Requirements De MCPR limit associated with the Rod Block Monitor operability is:

MCPR < l.65 Whenever the monitored core MCPR is less than 1.65, a lirriting control rod pattern exists and the RBM system is required to be operable.

Reference Technical Specification Section 3.2.C.2.a Rod Block Monitor Upscale Trip Setpoints Low Trip Setpoint (LTSP) s 120/125 of full scale Intennediate Trip Setpoint (ITSP) s 115/125 of full scale liigh Trip Setpoint (HTSP) s 110/125 of full scale Reference Technical Specification Sections: Table 3.2.3 Item 4.a, Table 3.2.3 Note 8.

Minimum Critical Pow er Ratio The Minimum Critical Power Ratio (MCPR) limit shall be determined for two Recirculation Loop Operation as follows:

Monticello Cycle 18 Core Operating Limits Report Rev. 2 Page 2 of 10 l

If thermal power > 45%, then the MCPR for GEIO, gel l, and Siemens Fuel is the greater of:

1.43

  • Kp (Kp from Figure 3) or MCPRr from Figure 4.

If thermal power > 45%, then the MCPR for GE12 Fuel is the greater of:

1.47

  • K,(K, from Figure 3) or MCPRr from Figure 4.

If thermal power s 45%, then the MCPR limit is obtained from Figure 3.

Ifin operation of a single recirculation loop, then the MCPR limit as defined previously by two recirculation loop operation is increased by the following adders:

0.01 AMCPR to account for core flow measuring and TIP reading uncertainties.

0.07 AMCPR to preclude fuel failures for a i out of 2 Pump Seizwe Event (Reference 2).

Reference Technical Specification Section: 3.11.C.

Power-Flow Oneratine Man The Power-Flow Operating Map based on analysis to support Cycle 18 is shown in Figure 5.

Annroved Analytical Meek ~k NEDE-24011-P-A Revi1 " General Electric Standard Application for Reactor Fuel" NSPNAD-8608-A Rev 4 " Reload Safety Evaluation Methods for Application to the Monticello Nuclear Generating Plant" NSPNAD-8609-A Rev 3 " Qualification of Reactor Physics Methods for Application to Monticello" ANF-91-048 (P)(A) Rev 0 " Advanced Nuclear Fuels Corporation Methodology for Boiling Water Reactors-EXEM BWR Evaluation Model," Siemens Power Corporation Maximum Averane I Incer Heat Generation Rate as a function of ernosure When hand calculations are required, the Maximum Average Linear lleat Generation Rate (MAPL 11GR) for each fuel bundle design as a function of average planar exposure shall not exceed the limiting lattice (excluding natural Uranium) provided in Table 1 (based on straight line interpolation between data points) multiplied by the smaller of the two MAPFAC factors determined from Figures I and 2.

The MAPLilGR limits in Table 1 are conservative values bounding all fuel lattice types (excluding natural Uranium) in a given fuel bundle design and are intended only for use in hand calculations as described in Technical Specification 3.ll.A. No channel bow effects are included in the bounding MAPLilGR values below because there are no reused channels. MAPLilGR limits for each individual fuel lattice design in a bundle design as a function of axial location and average planar exposure, with appropriate channel bow adjustments (no channel bow effects for Cycle 18), are determined based on the approved methodology referenced in Monticello Technical Specification 6.7.A.7.b and loaded in the process computer for use in core monitoring calculations.

The SPC 9x9-IX Qualification Fuel Assemblies (QFAs) will be monitored to the GE10-DXB333-10GZ MAPLiiGR and LIIGR limits to protect the steady state LilGR limit of the QFAs. When hand calculations are required, the GE10-DXB333-10GZ MAPLilGR and LiiGR limits can be used to calculate the appropriate limits for the QFAs.

l Reference Technical Specification Section 3.II.A.

Monticello Cycle 18 Core Operating Limits Report, Rev. 2 Page 3 of 10 l

0 Table 1 MAPLHGR for each fuel type (kW/ft)

Exposure GElo- GElo- GE10- GElo- G E10-'  !

HXR324- HXB324- HXB324 DXB333- DXB324-MWDSTU 10GZ llGZ 10GZ1 10GZ llGZ 200 10.92 10.36 11.19 11.64 10.71 1000 11.05 10.47 11.42 11.70 10.82 5000 12.01 11.55 12.20 12.30 11.78 10000 13.17 12.95 12.65 12.88 13.17 15000 12.95 12.97 12.47 12.65 12.88 20000 12.21 12.22 11.81 11.97 12.25 ,

25000 11.52 11.52 11.21 11.31 11.60 30000 10.90 10.90 10.67 10.67 10.95 35000 10.29 10.28 10.14 10.02 10.30 ,

40000 9.63 9.61 9.55 9.21 9.61 45000 8.98 8.94 8.97 8.40 8.92 50000 6.50 6.45 6.49 5.93 6.43 Exposure Gell. Gell- G E12-DUB 348- DUB 347- . DSB330- ,

MWDSTU 10GZ 10GZ 12GZ  !

200 10.32 9.96 8.54 ,

1000 10.47 10.02 8.57 5000 11.21 11.04 9.31 10000 12.21 12.32 10.25 15000 12.06 11.93 10.13  ;

20000 11.40 11.32 9.78 i 25000 10.71 10.73 0.45 30000 10.03 10.15 0.08 35000 9.37 9.56 s.,

40000 8.71 8.91 e it:

45000 8.05 8.27 7.46 50000 7.38 7.59 6.70 55000 6.70 6.62 5.99 57680 6.28 58050 6.06 60060 5.3 i Note: Table 1 is for two recirculation loop operation. For single loop operation, multiply these values by 0.85.

Monties llo Cycle 18 Core Operating 1.imits Report, Rev. 2 Page 4 of 10 l

I I

Linear Heat Generaten Rate i

Table 2 LHGR for Each Fuel Type (kW/ft)

GElo- GE10- GElo- GElo- GElo- Gell- Gell- GE12- ,

HXB324- HXB324- HXB324- - DXB333- DXB324- DUB 347- DUB 348- DSB330-10GZ lIGZ 10GZ1 10GZ lIGZ 10GZ ' 10GZ 12GZ P

14.4 14.4 14.4 14.4 14.4 14.4 14.4 11.8 Reference Technica! Specification Section: 3.11.B. j i

L 4

1 1

I Monticello Cycle 18 Core Operating Limits Report, Rev. 2 Page 5 of 10 l

s.

le Monticello Cycle 18 y Power Dependent MAPLHGR Limits E

9 1.0 , , , > > >

R I I I I I l l O I i i  ! I 3 I i I E. I I I i

i E  % 1

' l l t i I I EE E

A

0. 8 L - - - - h - - - - - - pl - - - - - - - { -l--- -- -- -- --- l ~ - -

- i - - - ~ - - - -I - ~ ~ ~ - ~ ~ 1 m A -

I  ;

e

' t, I l I k* b i i i 6 l t i i l I l l

$ d l l J CORE FLOW 5 50% l i  !

L $ 0.6 ' - - - - - FOR P < 25% NO TIIERMAL LIMITS REQUIRED o p - - - - - - I --- ---p-----  ; NO LIMITS SPECIFIED

[=

m

! l i

l i 2 FOR 45% > P > 25%:

g  ! t I i 1.I.3 j l I l MAPFACp = 0.635 + 0.0075 (P- 45) h 0.4 I- - - - - - - - -CORE

- - -FLOW E- ->-50%


t-------- FOR CORE FLOW 5 50%

A I g j l I

, j i

MAPFACp = 0.530 + 0.0075 (P - 45)

J j l l l l l FOR CORE FLOW > 50%

!  :  ! l l

2 0.2 ---l----b-------b------b----___________

1 FOR P > 45%

l , j l MAPFACp = 1.0 + 0.006909 (P- 100)

i i i i l .

i l l P = POWER (% RATED)

? O'o I l  ! I '

i 20 30 40 50 60 70 80 90 100 P-.,

3 POWER (% RATED)

E ie Monticello Cycle 18

? Flow Dependent MAPLHGR Limits E

9 1.00 .

a i i  : i  ! i i l l /

f g

Q j l l l l l l l ) 100% Power MAX FLOW = 107%

o 0.95 t _- - r - - - - - - - - - r - - r_- - r - - _r / . ---1 S

t-I.r.,

i t

i i MAPMULTr' i t i t

t i i t 45% Power MAX FLOW =l12%

[: Q 0.90 ,- - -l - L - __ _ L _ _ _ L j _ _ _; L _ j_ _ p; _ _ _ L _ _ _ f __ _ _4_ _ _ p _ _ _ jlMAPFAC, g 7 ,

{

r = MI 7 i < i i i ,

,a g 0.85 H -- - j- - - - ---p---p---p- q---p---f---f---a MAPMULT,' = 1.00 FOR FLOW > 80%

y h l  ! l l

' = 0.94 FOR FLOW < 80%

1 ~ U 0.80 - - - l -r - - h - - - L - - - -l - - - e, - - - b - - - el - - - t - - - + - - - -

m 1

, l l l l l l l l MFRPD, = MINIMUM (1.0, nF + b) f 5 0.75 L - - - h - - - h - ~ 9-- - - h - - - b - - - f -- t -- - t - -- f - -- -

O  ;

! i i i  ; i i F = CORE FLOW (% RATED) n = 0.006758

{

d i  ! i i  : 1 I I I b = 0.4574 p 0.70 L - = - - - F - - L - - L - - L - - - p --- p - - - y - - - y - - - -

g l I i i t i 1 I i t 3 0.65 L-- L-- b-- L- d- d-- b-- I-- I-- I---a i m , i  ! ,

i i i i 2 0.60 ----lr l l l ,

e- - - - h - - - el - - - e - - - el - - - rl - - - +l - - J I I i i i I i l I I  !  ! 1 I I I 0.55 -- - - - h - - - h - - - h - - L - - - F - - - f - - - f - - - t - - - - -

  • MAPMULT,= 0.94 BETWEEN 80% AND 1 1  ! 1 I I I i 90% CORE FLOW IF RATED MCPR LIMIT

$ 0.50 j l l l l l l (MCPR(100)) < l.28 g 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 3

CORE FLOW (% RATED)

.__-___...________._______.m _ _ . _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _-__ _ _ . _ _ _ _ _ _ . _ _ _ _ _ - w - - - _ _. - - -- -?--,- ,-

.- w - - - -

. m.

lw Monticello Cycle 18 j Power Dependent CPR Limits

+

5 36 o i i e i R I  ! I I f L----- ' L------

& 3.3 , l-H FOR P < 25%: NO T11ERMAL LIMITS MONITORING

-~

) g. 3.0 rl - - -l-j - - - s -

CORE FLOW > 50% 1


--+-- ----+--

l REQUIRED -NO LIMITS SPECIFIED

-q 1

M  ! I i i  !  !

C FOR 45% > P > 25%:

s e a.

2.7 ---L-- i r- - - - - - - r.- ----

t r------

i

-1 I

g a j j ,

-l-- MCPRp = 2.06 + 0.021 (45 - P) 2.4 f -- p - - p - - - -- - - L - - - l- - L - - - - - - - p - -4 FOR CORE FLOW 5 50% r- -

a j l i MCPRp = 2.64 + 0.031 (45 - P) l 2.1 - - - L _ _ _ s _ - _ - _ - _ _* u _.

~$ l l t CORE FLOW < 50% 1 .---____#_], _l_ _ _ - +t I FOR CORE FLOW > 50%  ;

~ 1.8 r'-- - - - j - - - - h - - - - - L - - - --L-------y-- P = POWER (% RATED)

I i I i -l g 1.5  !

i , e i

a e

! I 1 i FOR 100% > P > 45% t 1.4 ----l---'------L---

l l

p I

1

--L-------p----J i

K P= 1.0 + 0.00397 (100 - P) a i i i ,

l I i 1 1 P = POWER (% RATED)

! I i I m

l I t i i  ! , 4 M l I i

I i i  !  !

i i t I i 1 1.2 ----l----h-------r------ -


r-------+-------4-- ----q------ J l I .  ! I i i  !

[ '

' 1 I  ! I i  ! I I 1 1  ! I i l

i i i i i i l l  ! I i i l 1 I i  ! l- 1 i  !

I '

p 1.0 L t  !  !  ! i 3 20 30 40 45 50 60 70 80 90 100 h POWER (% RATED)

_ . _ - _ . . _ _ _ _ _ _ _ _ _____________u_m.____._u_-__.__-_____________-__m.- _ - . _ . - . _ ______.__-______._______________m___ _ _ _ _ _ _ _ _ _ _ _ _ _ . - _ _ _ _ _ - _ _ _ _ _ _ - _ _ _ . . _ _ _ _ . _ _ _ -

E

$O Monticello Cycle 18 n

1 Flow Dependent CPR Limits  :

[5 1.7 , , , , ,

l' l l l FOR Wc(% RATED CORE FLOW) > 40%

7  : i i

j. ,  !

i MCPRp = MAX (1.25, ApWc /100 + Bg )

1.6 s - - - - - ul - - - - - - - - l - - - - - J - - - - - - - 1

[x l i

l i

i l l FOR Wc(% RATED CORE FLOW) < 40%

j i l j i MCPRp = (A pWc /100 + B,)

, 1. 5 L - - - - - ' - - - - - - y, - - - - - - q - - - - - - q, - - - - - - -

  • i
  • [1 + 0.0032 (40 - Wc)]

i l  !

M i i f A i 1 i MAX FLOW AF BF 21 g

M i t i i O 1.4 r - - - - - - p - - - - - - t - , ----H------- 107.0 % -0.454 1.636 1 2 I i

I i

i i

1 i 100% Power MAX FLOW = 107%

45% Power MAX FLOW = 112% r f 9 l } l 1.3 - - - - - - - L - - - - - - I - - - - d - - - - - - -l - - - - - + - - - - - L - - - - - l - - - - - - - - - - -

! I i  ; I  ! I I I I i l I i l i l i i  ! I i i  ! I i l l I i I I I I I I I i 1.2------u-----2----a-----' I  ! I 1 I

--- u-----

I t

I i  !

I I i l i 4 i  :  !

l I i l I I i t

!  ! l l 1  ! I i 2  !  !  !  !  !  !  !  !

1.1 I

[E 20 30 40 50 60 70 80 90 100 110 CORE FLOW (% RATED)

___m_m_ _ - _ - _ _ _ _ . _ - . _ _ _ _ _ _ . . _ _ - . - _ _ _ _ _ _ - - _ - _ _ _ _ _ . _ _ _ _m- _ - m--. - - i,_, e -~% a --e---- - - . - - - . - -

Figure 5 -

= Monticello Nuclear Generating Plant .

[

C~

Power-Flow Operating Map for Cycle 18 h

f.[ Operation NOT allowed in the

= '

shaded areas.

y -

o 1750 - -

]g

=

Roled Power gg go T -

i e ' -

l 1500- ,

h .

? .

? q ,-

{

y v

1250 -

,g g

= essa ,-

i SCRAM REGION: l lllE= ,}g'8% Rod Linel 3: . SCRAM required ==in ,- 2 o tooo_ in ihe  !!!l9' 'a D- . double-hatched ~ iEEE g . area OR j!];;;  ! Legend E a ur I e !!![!hf / EXCLUSION REGION: E Natures circulotIan O 750 - circulation. :jjjjyl? ; O 20x Na'a spad _

N immediate exit f!!!! required in Ihe jijjistf""!f dotted area.

  1. 3.1% kmP_S.!P*d .

O 100% Pump _ Speed 500

'"~fjl j A APRu se_ rom tine ,

X etRXR,LBloS o it(Ing f--7p% Rod Line -

0 V 199.%.R P5.LI.n_*

8

~

f -l- 8 0 % Rod Lin e

/ O 121% Rod Line O ulnfmum Powe E -

/ @ Tech Spec 2.1.8 Limit

~

_ / @ I.n. .c.r.e. .a.s. .e.d. .C. .o. r. .e. .f.l.

O.. . . .....,m..v... .... .......... ..., ........, ....s, ........

O 10 20 30 40 50 60 Total Core Flow (MLb/Hr) f,,';d

.