ML20113D490

From kanterella
Jump to navigation Jump to search
Dead Leg Heat Transfer Study
ML20113D490
Person / Time
Site: Cooper Entergy icon.png
Issue date: 01/11/1996
From: Phillips D, Sellers C, Simbles E
ERIN ENGINEERING & RESEARCH, INC.
To:
Shared Package
ML20113D390 List:
References
C122-95-23.002, C122-95-23.002-R, C122-95-23.002-R00, GL-95-07, GL-95-7, NUDOCS 9607030184
Download: ML20113D490 (22)


Text

4 ERIN ENGINEERING AND RESEARCH,INC.

CALCULATION COVER SHEET TITLE Dead Leg Heat Transfer Study CLIENT NPPD - Cooper Nuclear Station PROJECT Generic Letter 95-C7 Support JOB NUMBER 122-95-32 CALCULATION NO.

C122-95-23.002 REMARKS This calculation is composed of 9 pages plus Attachment A (4 pages), Attachment B (3 pages), and Attachment C (3 pages).

L Rev.

Description Approvals Date P 111ps

//

//!f[

0 originalissue dbies

/b

  1. / /9 0 d

cram o se(ers Prepared by-Checked by-Approved by-Prepared by.

Checked by:

Approved by*

Prepared by.

Checked by:

i Approved br Prepared by.

Checked by-Approved by 9607030184 960627 PDR ADOCK 05000298 P

PDR

eausne.e, sa. =n rx gia

,m 1,:cui

..m e we w,uy,w.,y ii,

1,,..,;

CALCULATION SHEET l

l Table of Contents Section Paae 1.0 Purpose.

.3 l

l 2.0 Methodology.

.3 2.1 Heat Transfer Model.

.3 3.0 Analysis.

.6 3.1 HPCI suppression pool suction line to HPCI-MOV-MOS8,.

6 l

3.2 RCIC suppression pool suction line to RCIC-MOV-MO41.

7 4.0 Conclusion

.9 5.0 References

.9 f

Attachment A Program DEAD-LEG. BAS (4 pages)

I l

Attachment B HPCI Study Tabulated Results (3 Pages)

Attachment C RCIC Study Tabulated Results (3 Pages)

\\

l l

l l

l l

l l

l I

4 i

d 1

ERIN Calculation No.

Page 2 C122-95-23.002, Rev. 0

sam enen..<ineaa..rm ras: tris;ess,ise.

T :eso.kl.vg $2:NPPD Pas.4 of 40 Thursday,Januaryti,iets 3:10:24 PM CALCULATION SHEET 1.0 Purpose The purpose of this calculation is to study the heat transfer rate and temperature profile in dead leg piping. Dead leg piping is piping with no flow which branches off an elevated temperature source. This study will be used to establish criteria for dead leg piping length beyond which temperature increases can be neglected for pressure locking susceptibility evaluations.

Specifically, this calculation will evaluate the temperature profile in the HPCI and RCIC suppression pool suction lines. This information will be used to evaluate the susceptibility of HPCI-MOV-MO58 and RCIC-MOV-MO41 to liquid entrapment (* boiler effect") pressure locking.

2.0 Methodology The analysis will be performed using one-dimensional steady-state heat transfer calculations consdering conduction heat transfer along the pipe and convection heat transfer between the pipe and the surrounding environs. The use of steady-state calculation methods is conservative in that the temperature profile in the dead leg is maximized and the timing considerations associated with transient heat transfer models can be neglected.

2.1 Heat Transfer Model The dead leg piping will be divided into a series of sequential nodes. Heat balance equations considering conduction heat transfer from adjacent nodes and convection heat transfer from the environs will be developed and solved for steady-state conditions. The solution will use finite difference methods which will be solved in an iterative process using a simple computer program.

Consider node 1 :

o r-m e

,3, o p.i s s oMat l

The heat transfer equations for node I are:

(T,-T,)

O (1-1, 4 = k x A,,,,,,, x dx (T,-T,Q Q (1+1, 4 = k x A,,,,,,$,, x dx Q( >, 4 = h x A,,,, x (T,-T )

ERIN Calculation No.

Page 3 C122-95-23.002, Rev. 0 b

>=r e.uee.emp e s e..

..e mwem e.

4

~_

ERIN Ergineering & Rosearch Fu; rF13) 496J609 Ta: Ed Dekleva st NPPD Page 5 of 40 Thursday, January 11,1996 3:19:24 PM CALCULATION SHEET For steady-state heat transfer conditions, the summation of heat transfer equations into node i must equal zero. Therefore:

O(I -1,1) + OI!+1,1) + Q(=, I ) = 0 i

I l

k u A, u (T -T,.) + k u A, u (T,-Tge) + h u A, u (T - T,,) = 0 g

g dx dx Rearranging terms produces :

i l

T, u ( ' * + hA,) = kA,

N + hA,(T.,)

i Now, setting all nodal temperatures relative to T. ( ie. T, = T - T ) and solving for T,.

(T,y + T,y)

T _-

I l

2 + hA * + ( kA*)

l de l

Boundary conditions must be established. The boundary condition at the first node, node 1, is the temperature is constant at 1 = T,, where T, is the elevated process temperature. The boundary condition at the last node, node N, is no conduction heat transfer beyond node N.

The steady-state heat balance equation for node N becomes:

Q(N -1,N)+ Q(=, N ) = 0 i

k x A, x (T"-T"") + h x -

  • x (T -T)=0 A

y dx 2

l Rearranging terms produces:

x (O + 0) = kA,I"" + "' ( T,,)

l Ty dx 2

dx 2

r Again, setting the nodal temperature relative to T. ( ie. T, = T, - T.) and solving for Tu :

i T

^

T" ^

N 1 + yp' + ( gp* )

2 dx The convection heat transfer coefficient, h, is a function of the temperature differential between the dead leg pipe and the environs. Simplified equations for free convection from various surfaces to air at atmospheric pressure are provided in Reference 1. The simplified equation ERIN Calculation No.

Page 4 C122-9523.002, Rev. O

~

~

ERIN Enyney & Research Fas; p13) desagte Ts: Ef Dekleva et NPPD Tage 6 of 40 Thursday, January 11.1996 3M11 PM CALCULATION SHEET for free convection from a horizontal cylinder with laminar air flow provides the lowest heat transfer coefficient and is therefore conservative.

The simplified equation for free convection from a horizontal cylinder with laminar air flow is:

h = 1.32 (y) where h, AT, and D are in Watts "C, and meters. Converting to English units produces:

A = 0.27 (y)

Factoring this simplified equation into the equation for nodal temperatures relative to T gives:

(T,4 + T,n)

T_

2 + 0.27( ).2s4,

(

,)

and for the node N boundary condition:

4 T" "

T

=

1 + o.27(h).2sg*

(u,)

2 O

dx 4

These heat balance equations were' programed'into a Basic computer program to facilitate the finite difference iteration process. The program DEAD-LEG. BAS is described in Attachment A to this calculation.

ERIN Calculation No.

Page5 C122-95-23.002, Rev. O gg e ee es &W Weeee eae deama@pae m e

ERM Engineering & Research Fu: pHH96,1999 Ts: EJ Deme'ta st: NPPD Fage 7 of 40 ThursdTg, January 11.1996 3:20 62 FM s

CALCULATION SHEET 3.0 Analysis The analyses will be performed on the HPCI and RCIC suppression pool suction lines. Muitiple sensitivity studies will be performed using different heat transfer coefficients. The studies will assume an elevated suppression pool temperature of 140*F and an initial ambient temperature of 80*F. These assumed temperatures are conservative in that the maximum post-accident suppression pool temperature is 121 *FSI and maximizing the temperature differential will also maximize the heat transfer rate down the pipe.

3.1 HPCI suppression pool suction line to HPCI-MOV-MO58 The HPCI suppression pool suction line,16" HP-4, is shown on isometric Plan No. 2611-621 and has the following characteristics:

Length:

65' (approximately)

Size:

16.<21 Outside Diameter:

16"m Wall Thickness: 0.375"t2)

Material:

0.5% Carbon Steel (assumed)

Thermal Conductivity, k: 54 W/m*CM = 31.2 Btu /h.ft*F The suction line is filled with water with the following properties:

State:

Saturated liquid (assumed)

Thermal Conductivity, k: 0.654 W/m*CW @ 140*F(assumed) = 0.378 Btu /h.ft*F Three sensitivity studies will be performed. The first sensitivity study will assume the entire dead leg has the thermal conductivity of water @ 140*F. The second study will use a composite thermal conductivity value based on the ratio of cross sectional areas of pipe and water. The third sensitivity study will assume the entire dead leg has the thermal conductivity of steel.

The composite heat transfer coefficient is calculated as follows:

k u A pke + k,,, u A -wer g

c c

y =

A -rms c

31.2 x 1 (162 - 15.25 ) + 0.378 x 1 (15.25 )

2 2

d k =

e 1(16 )

2 4

Kc = 3.200 Btu /h.ft*F The three sensitivity studies were performed using the basic program DEAD-LEG. BAS with thermal conductivities of 31.2,0.378, and 3.200 Btu /h.ft*F. The tabulated output from these runs is provided in Attachment B to this calculation. The results are shown graphically below:

ERIN Calculation No.

Page 6 r

2-C122-95-23.002, Rev. O

~

j

1 ERIN Engkwering & Research Fas:(113)496J699 Ta:Ed Deklere at:NPPD Page 8 of 40 Thursday,Jarguary11.1996 3:21.49 PM i

CALCULATION SHEET l

1 l

HPCl Suction Line Dead Leg Heat Transfer Study 140 -

Water 130 Steel E 120 -

i 2 110 -

Composite 3

3 100 -

8.

9 0 --

y 80 --(

E 70 --

60 --:

:+

0 5

10 15 20 25 30 35 40 45 50 55 60 65 Distance Along Dead Leg (Ft)

As shown in this graph, the temperature effects diminish quite rapidly along the dead leg pipe.

For the "all water" sensitivity study, the temperature gradient is diminished within less than 5' of piping. For the " composite" and "all steel" sensitivity studies, the temperature gradient is diminished within less than 10' and 25' of piping respectively.

3.2 RCIC suppression pool suction line to RCIC-MOV-MO41 The RCIC suppression pool suction line, 6" RC-4, is shown on Isometric Plan No. 2621-1N and has the following characteristics:

Length:

49' (approximately)

Size:

6"W Outside Diameter:

6.625"m Wall Thickness: 0.280"W Material:

0.5% Carbon Steel (assumed)

Thermal Conductivity, k: 54 W/m*CW = 31.2 Btu /h.ft*F The suction lir.e is filled with water with the following properties:

State:

Saturated liquid (assumed)

Thermal Conductivity, k: 0.654 W/m CW @ 140*F(assumed) = 0.378 Btu /h.ft F l

Three sensitivity studies will be performed. The first sensitivity study will assume the entire l

dead leg has the thermal conductivity of water @ 140*F. The second study will use a l

composite thermal conductivity value based on the ratio of cross sectional areas of pipe and water. The third sensitivity study will assume the entire dead leg has the thermal conductivity of steel.

ERIN Calculation No.

Page 7

-x[

C122-95-23.002, Rev. 0

ERNI:ngineering Snesearch Fas:(113)496J699 To: EJ Dekleva at NPPD Page 9 of 40 Thursday, January 11,1996 3:22:46 PM CALCULATION SHEET The composite heat transfer coefficient is calculated as follows:

u

+ <,.,

a j

,, =,

a c c

A tot.1 c

31.2 x 1 (6.625 - 6.065 ) + 0.378 x 1 (6.065 )

2 2

2 k

  • c f(6.625 )

2 4

Ke = 5.368 Btu /h.ft*F The three sensitivity studies were performed using the basic program DEAD-LEG. BAS with thermal conductivities of 31.2,0.378, and 5.368 Btu /h.ft*F. The tabulated output from thess runs is provided in Attachment C to this calculation. The results are shown graphically below:

RCIC Suction Line Dead Leg Heat Transfer Study 140

-Water 130 -

Steel C 120 -

T Composite g 110-3 100 -

E.

90.

E L

80 -

70 --

60 0

5 10 15 20 25 30 35 40 45 Distance Along Dead Leg (Ft)

As shown in this graph, the temperature effects diminish quite rapidly along the dead leg pipe.

]

For the "all water" sensitivity study, the temperature gradient is dirrinished within less than 2' of piping. For the

  • composite" and "all steel" sensitivity studies, the temperature gradient is diminished within less than 8' and 20' of piping respectively.

I i

ERIN Calculation No.

Page 8 C122-95-23.002, Rev. O

/%

.. _...~

  • ~ ' ~

" " " " " ~ ~ ~ ^

^

ER8N Engineering & Research Fax:(713) esJeet Ts: Ed Dek6 eve at: NPPD Page 10 of a Thumlay, January 11.1986 3.23.32 PM e

CALCULATION SHEET 4,0 Conclusion The primary conclusion of this study is that the temperature effects of elevated process temperatures diminish quite rapidly along dead leg pipe branch lines. For the "all steel

  • sensitivity studies which clearly bound the real case, the temperature gradient is diminished within less than 25' of piping in the HPCI suction line and 20' of piping for the RCIC suction line. Therefore, HPCI-MOV-MO58 and RCIC-MOV MO41 are not susceptible to liquid entrapment (boiler effect) pressure locking due to suppression pool heating.

5.0 References 1.

J.P. Holman, Heat Transfer, Fourth Edition 2.

NPPD Dwg. No. 2611-6, Rev. N05,16" HP-4 Suction Piping to H.P.C.I.

3.

Crane, Flow of Fluids, Technical Paper No. 410,1969.

4.

NPPD Dwg. No. 2621-1, Rev. NO3, 6" RC-4 RCIC Pump Suction.

5.

Cooper Nuclear Station USAR Figure XIV-6-19, DBA Containment Temperature Response.

d ERIN Calculation No.

Page 9 C122 95-23.002. Rev. O

u.--,, r..: m =

x..e o,. e.,ro r ii.e. m,..v.s.-wii.

un. m l

CALCULATION SHEET i

i 1

\\

1

)

ATTACHMENT A l

DEAD-LEG. BAS i

DDLGREV1. BAS 1

l l

i i

ERIN Calculation No.

Attachment A a

C122 95-23 002, Rev. O Page0

~

s:m sne n..,m a m.:=ch F. :(71a> 4ss,isse T.: sa o.ki.ya Et NPPD Page 12 of 40 Thursday..Lwary11.1996 324:61 PM l

e CALCULATION SHEET This calculation attachment describes and presents a validation of the basic computer program "DEADLEG. BAS" version 1, filename DDLGREVO. BAS, dated 1/10/96.

PROGRAM DESCRIPTION i

The program performs steady-state finite difference heat tran sfer calcu!ations in accordance with the methodology described in Section 2 of this calculation. The calculations are performed in an iterative j

process until the specified convergence criterion is satisfied.

PROGRAM FLOWCHART Data Entry l

Calculate Constants Calculate Nodal Iterate Temperatures AT > CHK Check Convergence Criterion.

AT s CHK Print Results I

l i

I i

n 4

ERIN Calculation No.

Attachment A C122-95-23.002, Rev. O Page 1

- -. -.., ~... _.

.. -... ~..,,

., ~... - - -

~. -

-.~..a.

ERN4 Engineering & Research Fas: (113) 496Jeet To: EJ Dekleva at: NPPD Page 13 of 40 Thurstay. January 11,19e6 3:25:31 PM I

CALCULATION SHEET PROGRAM LISTING DIM T(151,2), DT(151), TITLE AS STRING REM "*"""**" PROGRAM DEAD-LEG. BAS VERSION 1""*"""""

REM """*""""* File Name DDLGREVO. BAS""""*"**""*"

REM DEFINE VARIABLES REM TW = WALL TEMPERATURE (F)

REM Ti = AMBIENT TEMPERATURE (F)

REM D = PIPE DIAMETER (FT)

REM CHK = TOLERANCE FOR TEMPERATURE CHANGE (F)

REM K = CONDUCTIVITY OF PIPE / WATER (BTU /HR FT F)

REM HC = CONVECTION COEFF CONSTANT (DEFAULT = 0.27)

REM L = PIPE LENGTH (FT) i REM N = NUMBER OF SUBDIVISIONS IN PIPE LENGTH REM"*"**"*"*******""**""*"""""""*""""****"

TITLE = " Verify" TW = 100 Tl = 80 D = 12 /12 CHK=1 K = 3.1831 L = 10 N=2 DX = L / N l

Pl = 4

  • ATN(1)

KK = K

  • Pl
  • D
  • D / (4
  • DX)

AH = PI

  • D
  • DX HC =.27 count = 0 REM **"""***""***"***""*****"****"**"*"*""*"**"

REM INITIALIZE NODAL TEMPERATURES RELATIVE TO AMBIENT REM""""""""""""*"""""""""""""""""

i FOR l = 2 TO N + 1 T(1,1) = 0 NEXTI T(1,1) = TW - Tl REM""*""*"**""**"""""**"**""""""*""

REM SOLVE FINITE iM ?ERENCE HEAT BALANCE EQUATIONS AT EACH NODE REM"""""***""""**"""**""*""""***"*"**"*"

2 FOR l = 2 TO N T(1,2) = (T(I - 1,1) + T(l + 1,1)) / (2 + (HC

  • AH * (T(1,1) / D) a.25) / KK)

NEXTl T(N + 1, 2) = T(N,1) / (1 + (HC

  • AH * (T(N + 1,1) / D) ^.25) / (2
  • KK))

T(1, 2) = TW - Tl count = count + 1 REM"""""*""""""""""""""""""""""""

REM CHECK FOR TEMPERATURE CONVERGENCE. IF DT IS LARGER THAN REM CONVERGENCE CRITERION "CHK" THEN CYCLE BACK TO THE PREVIOUS REM SECTION ANDITERATE AGAIN REM""""""""""""""""""""*"""""""""

FOR 1 = 2 TO N + 1 DT(l) = ABS (T(1,1) - T(1, 2))

IF (DT(l) > CHK) THEN FOR J = 2 TO N + 1 ERIN Calculation No.

Attachment A C122-95-23.002, Rev. O Page 2

,01/26/96 11:38 1714028255211 NPPD AT CNS

= cau*= = = ar

,m,r

,p q %

@ 002 Ts:Ed D.hW8 Page 3 a(2 FateKJurasury12.tME 2M20 PM t

i CALCULATION SHEET T(J,1) = T(J 2)

NEXT J GOTO 2 ENDIF NEXTI REM =' ~ ~ ~ ~~~

REM PRINT RESULTS i

REM --- ---

~~~ '"'**"****~ --- ~

~~

PRINT, " ITERATIONS";";"i count PRINT, "TW: ", ";"; TW PRINT, "TI: "; ";"; TI PRINT, "D; "; ";"; D PRINT, "L: "; ";"; L PRINT. "N: "; ";"; N PRINT "K ";";"; K PRINT, "CHK; "; ";"; CHK PRINT, " Feet"; ";"; TITLE FOR l = 1 TO N + 1 PRINT, ((I - 1) " OX); ";"; (T(1, 2)

  • TI)

NEXTI CLOSE 1

STOP END i

PROGRAM VERIFICATION i

hand calculation. The following equations are used;The case printed o ease the

..e Iw

  • I(2,1) i, T"'

=-

2 + 0.27(E)28A* + (b)

D de 20 + T(2.9 T"#I

=

2 + 8.4823(Tg,53)2s T*

T

2(h)2sg,.(S) 21 1+:

D du T(2ai T" '

1 + 4.24115(Tt2.n}

l ERIN Calculation No.

\\

C122-95-23.002. Rev. O Attachment A e

Page 3 gg@

saw ara.: ren r :cria assasse To:E'1Deklera st NPPD Page 15 of 40 TNnsday. January 11.1985 3:27:02 PM CALCULATION SHEET -

The iteration table is shown below:

- lteration No. (N)

Tw T

T CHK,.

3 2

0 (initial values) 20 0

0 N/A 1

20 10 0

10 2

20 1.1707 10 10 3

20 2.7718 0.1371 9.8629 4

20 1.5556 0.7741 1.2162 5

20 1.8107 0.3125 0.4616 STOP Adjust Reference 100 81.8107 80.3125 N/A The reporting capability was revised to print the following report for this validation report only:

Iteration No. (N)

TW T1 T2 0

20 0

0 1

20 10 0

2 20 1.170693 10 3

20 2.771833

.1370523 4

20 1.555617

.7741454 5

20 1.810693

.3124844 ITERATIONS S

TW:

100 TI:

80 D:

1 L:

10 N:

2 K:

3.1831 CHK:

1 Feet Verify 0

100 5

81.81069 10 80.31248 These results match perfectly. Therefore, the program is validated.

ERIN Calculation No.

Attachment A C122-95-23.002, Rev. O Page 4

3 ERN Engkwering & f.esearch Fas:G13)496J600 T3:Ef Dek;yta et: HPPO Fase 16 of 40 Thursday.Jarwary11.1996 3:27 At PM 4

CALCULATION SHEET ATTACHMENT B HPCI STUDY TABULATED RESULTS i

i i

ERIN Calculation No.

Attachment B a-C122-95-23.002, Rev. O

I East Engineertne & Research Fas: p13Hes,3ess.

Ts: Ed Deklers 2 NPPD Page to of 40 Thursday, January 11,1ess 3:3;3 pg l

l HPCI Suppression Pool Suction Une Dead Leg HeatTransfer Study l

l l

HPCI Suppression Pool Suction Line Dead Leg Study Outputfrom DEAD 4fG. BAS ITERAT10NS 38 M6 113 TW:

140.0 140.0 140.0 TL 80.0 80.0 80.0 D:

1.33 1.33 1.33 L

65 65 65 N:

130 130 130 K-0.378 31.20 3.200 CHK-0.01 0.01 0.01 Feet Water Steel Composite 0

140.00 140.00 140.00 0.5 102.45 133.13 121.46 1

89.27 127.14 109.11 1.5 84.15 121.88 100.74 2

82.00 117.28 94.98 2.5 81.01 113.23 90.96 3

80.55 109.66 88.10 3.5 80.30 106.51 86.06 4

80.18 103.73 84.57 4.5 80.10 101.27 83.49 5

80.07 99.09 82.67

~

5.5 80.04 97.14 82.07 1

6 80.03 95.42 81.61 6.5 '

80.01 93.87 81.27 7

80.02 92.50 80.99 7.5 80.01 91.27 80.79 8

80.01 90.17 80.62 8.51 80.00 89.18 80.50 9I 80.00 88.30 80.39 9.5 80.00 87.50 80.32 10 80.00 86.79 80.25 10.5 80.00 86.13 80.21 11-80.00 85.56 8016 11.5 80.00 85.02 80.13 12 80.00 84.55 80.10 12.5 80.00 84.12 80.08 13 80.00 83.73 80.06 13.5 80.00 83.37 80.05 14]

80.001 83.06 80.04 14.5l 80.00[

82.76 80.03 15!

80.00!

82.50 80.02 15.5l 80.00 [

82.26 80.02 l

16 80.00 82.05 80.01 1

16.5 80.00 81.84 80.01 17 80.00 81.67 80.01 17.5 80 00 81.50 80.01 Attachment B l

HPCILEGM.S. Sheet 1 Page1 C122-95-23.002, Rev. O

Nn r.ctriaesmee n:em. e e e ie.ca no.r.v.wis.iew 3*u em HPCI Suppression Pool Suction Line Dead Leg Heat Transfer Study 18 80.00 81.36 80.00 1

18.5 80.00 81.22 80.00 19 80.00 81.1 0 80.00 19.5 80.00 80.99 80.00 20 80.00 80.89 80.00 20.5 80.00 80.79 80.00 21 80.00 80.72 80.00 l

21.5 80.00 80.64 80.00 22 80.00 80.57 80.00 22.5 80.00 80.51 80.00 23 80.00 80.46 80.00 23.5 80.00 80.40 80.00 24 80.00 80.36 80.00 24.5 80.00 80.32 80.00 25 80.00 80.29 80.00 25.5 80.00 BC 25 80.00 26 80.00 80.22 80.00 26.5 80.00 80.20 80.00 27 80.00 80.17 80.00 27.5 80.00 80.15 80.00 28 80.00 80.13 80.00 28.5 80.00 80.12 80.00 29 80.00 80.10 80.00 1

29.5 80.00 80.09 80.00 30 80.00 80.08 80.00 30.5 80.00 80.07 80.00 31 80.00 80.06' 80.00 31.5 80.00 80.05 80.00 l

32 80.00 80.04 80.00 32.5 80.00 80.04 80.00 33 80.00 80.03 80.00 33.5 80.00 80.03 80.00 i

34 80.00 80.02 80.00 l

34.5 80.00 80.02 80.00 l

35 80.00 80.02 80.00 I

35.5 80.00 80.02 80.00 36 80.00 80.01 80.00 36.5 80.00 80.01 80.00 37 80.00 80.01 80.00 37.5 80.00 80.01 80.00 38 80.00 80.01 80.00 38.5 80.00 80.01 80.00 39 80.00 80.00 80.00 39 5 80.00 80.00 80.00 40 80.00 80.00 80.00 40.5 80.00 80.00 80.00 41 80.00 80.00 80.00 41.5 80.00 80.00 80.00 Attachment B HPCILEGXLS, Sheet 1 Page 2 C122-95-23.002. Rev. 0

l snmsn.in,inec.n.

ren r :gi 3 4 T.: se o.6i.v.. were r

it.ce3 Twur.v.s.no.,yit,s 3:2e.2a ru HPCI Suppression Pool Suction Une Dead Leg HeatTransfer Study 42 80.00 80.00 80.00 42.5 80.00 80.00 80.00 43 80.00 80.00 80.00 43.5 80.00 80.00 80.00 44 80.00 80.00 80.00 44.5 80.00 80.00 80.00 45 80.00 80.00 80.00 45.5 80.00 80.00 80.00 46 80.00 80.00 80TO' 46.5 80.00 80.00 80.00 47 80.00 80.00 80.00 47.5 80.00 80.00 80.00 48 80.00 80.00 80.00 48.5 80.00 80.00 80.00 49 80.00 80.00 80.00 49.5 80.00 80.00 80.00 50 80.00 80.00 80.00 50.5 80.00 80.00 80.00 51 80.00 80.00 80.00 51.5 80.00 80.00 80.00 52 80.00 80.00 80.00 52.5 80.00 80.00 80.00 53 80.00 80.00 80.00 53.5 80.00 80.00 80.00 54 80.00 80.00 80.00 54.5 80.00 80.00 80.00 55 80.00.

80.00 80.00 55.5 80.00 80.00 80.00 56 80.00 80.00 80.00 56.5 80.00 80.00 80.00 57 80.00 80.00 80.0Ti 57.5 80.00 80.00 80.00 58 80.00 80.00 80.00 58.5 80.00 80.00 80.00 59 80.00 80.00 80.00

_ 59.5 80.00 80.00 80.00

_60 80.00 80.00 80.00 60.5 80.00 80.00 80.00 61 80.00 80.00 80.00 61.5 80.00 80.00 80.00 62 80.00 80.00 80.00 62.5 00.00 80.00 80.00 63 80.00 80.00 80.00 63.5 80.00 80.00 80.00 4

64 80.00 80.00 80.00 64.5 80.00 80.00 80,00 l

65 80.00 80 00.

80.00 L

Attachment B HPCILEGXLS, Sheet 1 Page 3 C122-95-23.002, Rev. O

E8DN EWeeg therth Fer:F1M 496,1600 To: E f Dekleva C; NPPD Fage 20 ef 40 ThurWay. January 11,190s 3.31:40 ru CALCULATION SHEET ATTACHMENT C RCIC STUDY TABULATED RESULTS ERIN Calculation No.

Attachment C C122-95-23.002, Rev. O

~=@

j4

~

EftlN Enynearing & R' search Fas:(713) AssJIies To: Ed DeMere at: NPPO Page21 of40 Thursfsy, January 11.1996 3.32:15 PM RCIC Suppression Pool Suction Line Dead Leg Heat Transfer Study RCIC Suppression Pool Suction Line Dead Leg Study Output frorn DEAD-LEG. BAS ITERATIONS 27 230 81 TW:

140.0 140.0 140.0 TI:

80.0 80.0 80.0 D:

0.552 0.552 0.552 i

L:

49.0 49.0 49.0

{

N:

98 98 98 K-0.378 31.20 5.368 CHK:

0.01 0.01 0.01 Feet Water Steel Composite i

0 140.00 140.00 140.00 I

0.5 93.08 128.69 116.82 i

1 83.50 119.72 103.22 1.5 81.10 112.56 95.01 2

80.39 106.82 89.91 2.5 80.16 102.19 86.68 3

80.07 98.44 84.58 i

3.5 80.04 95.38 83.20 4

80.01 92.88 82.26 4.5 80.01 90.82 81.63 5

80.00 89.12 81.18 5.5 80.01 87.71 80.87 6

80.00 86.54 80.64 6.5 80.01 85.56 80.48 7.,

80.00 84.74 80.36 i

7.5' 80.01 84.04 80.28 8

80.00; 83.47 80.20 8.5 80.00 82.97 80.16 9

80.00 82.55 80.12 t

9.5 80.00 82.19 80.10 10 80.00 81.89 80.07 10.5 80.00 81.62 80.06 1

11 80.00 81.40 80.04 I

11.5 80.00 81.20 80.03 12 80.0M 81.04 80.02 12.5 80.00 80.89 80.02 13 80.00 80.77 80.01 13.5 80.00 80.66 80.01 14 80.00T 80.57 80.01 14.5 ___ _80.00

_ 80.49 80.01 15 80.00 80.42 80.00 15.5

~~80I00 s0.36 80.00

~~5I I

80.00 80.31 80.00 Attachment C RCICLEG.XLS. Sheet 1 Page 1 C122-95-23.002. Rev. O

samen

.wsa.

r.< m m, T.: sm..oero c normoy.amwii.im unaeu RCIC Suppression Pool Suction Une Dead Leg Heat Transfer Study 16.5 80.00 80.26 80.00 17 80.00 80.23 80.00 17.5 80.00 80.19 80.00 18 80.00 80.16 80.00 18.5 80.00 80.13 80.00 19 80.00 80.12 80.00 19.5 80.00 80.10 80.00 20 80.00 80.08 80.00 20.5 80.00 80.07 80.00 21 80.00 80.06 80.00 21 5......... 80 00......... 80 05........ 80.0 0 22.5 80.00 80.03 80.00 23 80.00 80.03 80.00 23.5 80.00 80.02 80.00 24 80.00 80.02 80.00 24.5 80.00 80.01 80.00 25 80.00 80.01 80.00 25.5 80.00 80.01 80.00 26 80.00 80.01 80.00 26.5 80.00 80.01 80.00 27 80.00 80.00 80.00 27.5 80.00 80.00 80.00 28 80.00 80.00 80.00 28.5 80.00 80.00 80.00 291 80.00 80.00 80.00 29.5 80.00 80.00 80.00 30 80.00 80.00 80.00 30.5 80.00 80.00 80.00 31 80.00 80.00 80.00 31.5 80.00 80.00 80.00 32j 80.00 80.001 80.00 32.51 80.00 80.00; 80.00 331

_80.00 80.001 80.00 33.5 80.00 80.00I 80.00 34 80.00 80.00 [

80.00 34.5 80.00 80.00 80.00 35I~

80.00 80.00 80.00 35.5 80.00 80.00 80.00 36 80.00 80.00 80.00

~ I5

'80.00 80.00 80.00 36 37[

80.00 8Eif0f~

80.00 37.5 80.00 80.00i 80.00 38 80.00 80.00! _ _ _ 80.00 Attachment C RCICLEG.XLS, Sheett Page 2 C122 95 23.002, Rev. O

I -

saw s m r.: m T.:e m w. a,,ro r.n ora %.w.%,i.nu m.aeu i

P RCIC Suppression Poottuctiontine-Deadteg Heat Transie Study l

39 80.00 80.00 80.00

)

39.5 80.00 80.00 80.00 40 80.00 80.00 80.00 40.5 80.00 80.00 80.00 l

41 80.00 80.00 80.00 t

41.5 80.00 80.00 80.00 I

42 80.00 80.00 80.00 42.5 80.00 80.00 80.00 43 80.00 80.00 80.00 l

l l

43.5 80.00 80.00 80.00 44 80.00 80.00 80.00 l

44.5 80.00 80.00 80.00 l

45 80.00 80.00 80.00 45.5 80.00 80.00 80.00 46 80.00 80.00 80.00 46.5 80.00 80.00 80.00 47 80.00 80.00 80.00 47.5 80.00 80.00 80.00 48 80.00 80.00 80.00 48.5 80.00 80.00 80.00 49 80.00 80.00 80.00 l

I i

J I

l l

Attachment C RCICLEG.XLS, Sheet 1 Page 3 C122-95-23.002. Rev. 0 l

__