ML20112A250

From kanterella
Jump to navigation Jump to search
Rev 0 to Monticello Nuclear Generating Plant COLR for Cycle 18
ML20112A250
Person / Time
Site: Monticello Xcel Energy icon.png
Issue date: 05/14/1996
From: Nelson H, Paustian H, Shilts D
NORTHERN STATES POWER CO.
To:
Shared Package
ML20112A249 List:
References
NUDOCS 9605200440
Download: ML20112A250 (10)


Text

{{#Wiki_filter:j* je MONTICELLO NUCLEAR GENERATING PLANT Core Operating Limits Report for Cycle 18 Revision 0 Prepared By: ~ b C3 % '7 / I[/3/76 D.W. Shilts Date Sr. Nuclear Engineer Assoc., Fuel Resources Reviewed By:

d. bd s

5/ lfff(i H.H. Paustian Date Sr. Nuclear Engineer, Monticello Reviewed By: O-N/3!95 II.O. Nelson Date Process Manager, Fuel Resources /1 km. MMb E!/3!96 Reviewed By: R(O. A6derson Date / Director, Licensing and Management Issues 9605200440 960514 PDR ADOCK 05000263 P PDR Monticello Cycle 18 Core operating Lirnits Report, Rev. O Page 1 of 10

His report provides the values of the limits for Cycle 18 as required by Technical Specificatica Section 6.7.A.7. These values have been established using NRC approved methodology and are established such that all applicable limits of the plant safety analysis are met. This COLR incorporates the SLCPR change described in Reference 1. The SLCPR has changed from 1.07 for GE10 and Gell fuel to 1.08 for all fuel in cycle 18 with the exception of the four GE12 LUA bundles. The SLCPR for the GE12 LUA bundles is not impacted by the Reference 1 analysis. He GE12 results presented in this report are based on a SLCPR of 1.09. His report complies with the verbal agreement between GE and the NRC with regard to modification of the MCPR operating limits (Reference 1) to reflect the 0.01 change in SLCPR for Monticello Cycle 18. Also, the power and flow dependent MCPR curves (Figure 3 and Figure 4) account for the 0.01 change in SLCPR. Reference 1: letter from C. Papandrea (GE Nuclear) to K. S. Schnoebelen (NSP), " Safety Limit MCPR Calculanon for Monticello Cycle 18, May 8,1996. Rod Block Monitor Operability Residi------h he MCPR limit associated with the Rod Block Monitor operability is: MCPR < 1.65 Whenever the monitored core MCPR is less than 1.65, a limiting control rod pattern exists and the RBM system is required to be operable. Reference Technical Specification Section 3.2.C.2.a Rod Block Monitor Unscale Trio Setaalats Low Trip Setpoint (LTSP) $ 120/125 of full scale Intermediate Trip Setpoint (ITSP) 5 115/125 of full scale High Trip Setpoint(HTSP) 5 110/125 of full scale Reference Technical Specification Sections: Yable 3.2.3 Item 4.a, Table 3.2.3 Note 8. Mlal=am Critical Power Ratio ne Minimum Critical Power Ratio (MCPR) limit shall be determined as follows: If thermal power > 45%, then the MCPR for GE10, gel 1, and Siemens Fuel is the greater of: 1.43

  • Ke (Kr from Figure 3) or MCPRp from Figure 4.

If thermal power > 45%, then the MCPR for GE12 Fuel is the greater of: 1.47

  • K, (Kr from Figure 3) or MCPRr from Figure 4.

If thermal power s 45%, then the MCPR limit is obtained from Figure 3. Reference Technical Specification Section: 3.11.C. Power Flow Oner=+1a= Mao The Power-Flow Operating Map based on analysis to support Cycle 18 is shown in Figure 5. Monticello Cycle 18 Core Operating Limits Report, Rev. 0 Page 2 of 10

I i

o Anoreved Analytical Methods NEDE 240ll-P-A Rev 11

" General Electric Standard Application for Reactor Fuel" NSPNAD-8608-A Rev 4 " Reload Safety Evaluation Methods for Application to the Monticello Nuclear Generating Plant' NSPNAD-8609-A Rev3 " Qualification of Reactor Physics Methods for Application to Monticello" l ANF-91-048 (P)(A) Rev 0 " Advanced Nuclear Fuels Corporation Methodology for Boiling Water Reactors-EXEM BWR Evaluation Model," Siemens Power Corporation y =_- Aw-w I "---- Prf C-- -- "= n. as a 7 :-"- of ernamure ] When hand calculations are required, the Maximum Average Linear Heat Generation Rate (MAPLHGR) for each fuel j bundle design as a function of average planer exposure shall not exceed the limiting lattice (excluding natural Uranium) provided in Table 1 (based on straight line interpolation between data points) multiplied by the smaller of the two MAPFAC factors determined from Figures 1 and 2. The MAPLHGR limits in Table 1 are conservative values bounding all fuel lattice types (excluding natural Uranium) in a given fuel bundle design and are intended only for use in hand calculations as described in Technical Specification { 3.11.A. No channel bow effects are included in the bounding MAPLHGR values below because there are no reused channels. MAPLHGR limits for each individual fuel lattice design in a bundle design as a function of axial location and average planar exposure, with appropriate channel bow adjustments (no channel bow effects for Cycle 18), are determined based on the approved methodology referenced in Monticello Technical Specification 6.7.A.7.b and loaded in the process computer for use in core monitoring calculations. The SPC 9x9-1X Qualification Fuel Assemblies (QFAs) will be monitored to the GE10-DXB333-10GZ MAPLHGR and LHGR limits to protect the steady state LHGR limit of the QFAs. When hand calculations are required, the GE10-DXB333-10GZ MAPLHGR and LHGR limits can be used to calculate the appropriate limits for the QFAs. I Reference Technical Specification Section 3.ll.A. I Monticello Cycle 18 Core Operating Limits Report Rev. 0 Page 3 of 10

i 6 0 Table 1 MAPLHGR for each fuel type (kW/ft) Exposum - GEle. - GElo. - GElo. - GElo- ~GElo-HXB324 HXB324 HXB324-DXP333.- . DXB324 M% N 10GZ_ 11GZ 10GZ1' 10GZ-11GZ 200 10.92 10.36 11.19 11.64 10.71 3 1000 11.05 10.47 11.42 11.70 10.82 5000 12.01 11.55 12.20 12 30 11.78 10000 13.17 12.95 12.65 12.88 13.17 15000 12.95 12.97 12.47 12.65 12.88 20000 12.21 12.22 11.81 11.97 12.25 25000 11.52 11.52 11.21 11.31 11.60 j 30000 10.90 10.90 10.67 10.67 10.95 35000 10.29 10.28 10.14 10.02 10.30 l 40000 9.63 9.61 9.55 9.21 9.61 45000 8.98 8.94 8.97 8.40 8.92 50000 6.50 6.45 6.49 5.93 6.43 1 I Exposure Gell. Gell. GE12-l DUB 348 DUB 347-DSB330- - MN 1 10GZ '10GZ 12GZ 200 10.32 9.% 8.54 1000 10.47 10.02 8.57 5000 11.21 11.04 9.31 10000 12.21 12.32 10.25 15000 12.% 11.93 10.13 i 20000 11.40 11.32 9.78 25000 10.71 10.73 9.45 30000 -10.03 10.15 9.08 35000 9.37 9.56 8.66 40000 8.71 8.91 8.19 45000 8.05 8.27 7.46 50000 7.38 7.59 6.70 55000 6.70 6.62 5.99 57680 6.28 l 58050 6.06 60060 5.31 Note: Table 1 is for two recirculation loop operation. For single loop operation, multiply these values by 0.85. i 4 1 l l Monticello Cycle 18 Core Operating Limits Report, Rev. O Page 4 of 10

linear Heat Generation Rate Table 2 l 1 LHGR for Each FuelType(kW/ft) GElo-GElo-GE10-GElo-GE10 - Gell. - Gell - GE12-HXB324 HXB324-HXB324- . DXB333-DXB324- ~ DUB 347-DUB 348-DSB330-10GZ ' 11GZ. 10GZ1 10GZ 11GZ 10GZ 10GZ 12GZ 14.4 14.4 14.4 14.4 14.4 14.4 14.4 11.8 Reference Technical Specification Section: 3.11.B. l l l l l l l l l l 3 Monticello Cycle 18 Core Operating Limits Report, Rev. O Page 5 of 10 t

Figure 1 I } Monticello Cycle 18 e y Power Dependent MAPLHGR Limits [ 1.0 1 I I I I i 1 f, i I I I I I i I I I I I i g-1 I I i l i i l I i l i l = ^d i I i I I l I Cl-g 0.8 --------l--------F-------[


t------

, ------y-------j-------- W A I I I i i i I j l I I i i 1 2 l l l l l l l 0.6


f-------------_

FOR P 5e M R W RED t l I I I I l l FOR 45% > P > 25% l l l l g MAPFACp = 0.635 + 0.0075 (P-45) O 0.4


L------L------L--------

FOR CORE FLOW 550% l CORE FLOW > 50% l l A M l t g l MAPFACp = 0.530 + 0.0075 (P-45) O I I I I I t l l FORCORE FLOW > $0% i E l 1 I I i 0.2 - - - - f- - - - b - -- - - - - b - - - - - - - h - - - - - - h -- - - - - -. FOR P > 45% l l l l l MAPFACp = 1.0 + 0.006909 (P-100) l 1 I i I i I l 1 1 I I P = POWER (% RATED) i I i 1 m I 5 0.0 E 20 30 40 50 60 70 80 90 100 POWER (% RATED)

1 Figure 2 I 8 i~ Monticello Cycle 18 O y Flow Dependent MAPLHGR Limits E E 1.00 i I I I I I I i 1 / --- rl _- _l - _ rl - _ rl _- rl -- rl - _ 2--- _I r-r--- l l ] 100% Power MAX FLOW = 107% ^g g. U 0.95 r 4 4 I I I I MAPMULT, I I I I 45% Power MAX FLOW =ll2% r. A I I I I I I I I I I H. 0.90 ----lL-- L-- L-- L-- L--- l l l MAPFAC, = MINIMUM (MFRPD,, MAPMULT,) l-- l--- [ l l l l l v i l i i I i i I t 0.85 -- - - L --,L --- L --- f - - - p - - -- f --- f --- f - - - f -- - - ggpgut7 = 1.00 FOR FLOW > 80% p f H - - - - l- - - - t- - - - r- - - -l l l l l l = 0.94 FOR FLOW < 80% l l o 0 0.80 t ---r---r---t---t---t---- l l l l l l l l l MFRPD, = MINIMUM (1.0, nF + b) { 3 0.75 ----h---h-r---b---b---h---h---f---f____ F = CORE FLOW (% RATED) [ O i i i i i i i i n = 0.006758 0.70 ---- -- '-- b-- b -- b --- -- i-- b--- "^* M i i i i I I i i O I I I I I I I I I i I I I I I I I I ya 0.65 ----l----L-- -f --- f --- f --- p ---p--- p---f ---- 1 I I I I I I I I 2 0.60 ---- l---- l---- b - -- b - - - h - -- h - -- h -- - --- - - - - 1 i i I i l i I i 1 1 1 1 1 I I i 1 0.55 ---- h--- h --- h --- h-- 'r--- b ---h--- f --- h----

  • MAPMULT, = 0.94 BETWEEN 80% AND l

I I I i i i i 90% CORE FLOWIF RA'ED MCPR LIMIT f ( 0.50 { 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 CORE FLOW (% RATED)

Figure 3 ~ [ Monticello Cycle 18 e y Power Dependent CPR Limits Mo 2.8 i i i l i I I 2.6 l l l FOR P < 25%: NO T1IERMAL LIMITS MONITORING ag l CORE FLOW > 50% l i REQUIRED-NO LIMITS SPECIFIED t 2.4 l -l l l l h FOR 45% > P> 25%: g i i i m E f 2.2 l l l -l MCPRp = 1.79 + 0.020 (45 - P) f 5 I l-I '"'""""5'* 2.0 I i-1 l l 1 MCPRp = 2.20 + 0.020 (45 - P) l l

o 1.8

- l-l -l U 5 FOR CORE FLOW > 50% e 1.6 l 1 1 I l P = POWER (% RATED) g 1-l 1 1 a l l 1 i 1 I I I FOR 100%> P >45% l l l l 1 1.4 ---7---F-------F----- - - - j- - - - - - - - t - - - - - - Kp = 1.0 + 0.00397(100 - P) 1 1 I I 1 I i 1 1 P = POWER (% RATED) l l [ l I i i i i m M l t i I I I 1 1 1.2 - - - - f- - - - b - - - - - - b - - - - - ' - - - - - - - - - - - - - - - - - - - - - d - - - - - - - - - - - - - I I I I I I 1 I I i 1 1 I I l l 1 i l i i I I I I I I l l 1 1 I I i 1 1 I l l l l I 1 1.0 s, 20 30 40 45 50 60 70 80 90 100 2; POWER (% RATED)

5 Figure 4 al Monticello Cycle 18 a Flow Dependent CPR Limits ~ n 1.7 i { l l l l FOR W (% RATED CORE FLOW)> 40% c h j MCPR = MAX (l.25, A W /100 + B,) 7 y c [e l l l l FOR W (% RATED CORE FLOW) < 40% 1.6


b------+------4------4-------

e I I } l l l l MCPR = (A W /100 + B ) y p c r p 1.5

  • [1 + 0.oo32 (40 - W )]

c i i i m p l l l l MAX FLOW A B I r r d 1.4 r------4----- - - - - -j - - - - - - 107.0 % -0.454 1.636 1 i f I I I I I i 100% Power MAX FLOW = 107% l l l l l 45% Power MAX FLOW = 112% 1.3 - - - - - - - b - - - - - - - - - - - - - - - --l - - - - - - -l- - ---b--- --E------4------- 1 I I I I I l I i l I I I i l I i l I i l l l l 1 1 l l 1 1 I i I i i l i l i 1.2 - - - - - -- p - - - - - - f - - - - - - - - - - -j - - - - -- -j- - - - - - - f - - - - - - j- - - - - - - j - --- - - 1 I I I I I I I I I I I 1 1 I I y l l l l l l l l 11 A 20 30 40 50 60 70 80 90 100 110 s CORE FLOW (% RATED)

Figure 5 g Monticello Nuclear Generating Plant ~ j Power-Flow Operating Map for Cycle 18 5 / Operation NOT allowed in the E shaded orecs. 1750 - Roted g-Power gg ag-i. T 1500- ? g { 1250-SCRAM REGION: 1 .gp ,gg'8% Rod Linel 3 3: SCRAM required

===..,-' 2 o 1000-inihe '!!!!?' ui 0-double-hotched - i!!];H - J: ;i R Legend g {r og [{.......:=jjj XCLUSION REGION: E Naturoi circulation O natural j O 20% Pump Speed _ O 750 - circulation. Immediole exit hggjh. ! required in ihe G 30% PumpAeed, E jgggir - f dotted areo. O too% Pump _Sp.e4 "~[j L A APRu se_ rom Lin. 500 X $PR_W Roj Blockyng I p% Rod Line - V 109%.!Lo#.Vna.____ L -{- 80% Rod Line // 7 Q 121% Rod Line _ _ "o C ulnlmum Power / @ Tech Spec 2.1.8 Limit ,o } / 8 !acrea.nd.c re.09x a j# O' o 10 20 30 40 50 60 Total Core Flow (MLb/Hr) [a'ed -}}