ML20100A780

From kanterella
Jump to navigation Jump to search
Forwards Response to Eg Adensam 841105 Request for Addl Info Re DPC-NF-2010, Nuclear Physics Methodology for Reload Design
ML20100A780
Person / Time
Site: Mcguire, Catawba, McGuire, 05000000
Issue date: 11/30/1984
From: Tucker H
DUKE POWER CO.
To: Adensam E, Harold Denton
Office of Nuclear Reactor Regulation
References
NUDOCS 8412040083
Download: ML20100A780 (61)


Text

-

. 2.,

^

w

~

DuxE Powen GOMPANY P.O. BOX 33189

/

HALH. TUCKER

=E==~e~d November 30, 1984

. M "** '

. Mr. Harold R. Denton. Director Office ~of Nuclear Reactor Regulation U. S. Nuclerr Regulatory Commission Washington, D. C.'20555 Attention:

Ms. E. G. Adensam, Chief Licensing Branch No. 4

Subject:

McGuire Nuclear Station - Docket No. 50-369/370 Catawba Nuclear Station - Docket No. 50-413/414 Response Request for Additional Information Regarding Topical Report DPC-NF-2010. " Nuclear Physics Metodology for Reload Design" s

In response to your request (Reference Letter, E. G. Adensam to H. B. Tucke'r,'"

dovember 5, 1984) for additional information regarding the subject topical report, attached are Duke Power Company's answers to the six questions in the request.

If any additional information or discussion is desired, please feel free s

to call Scott Gewehr, Duke Power Licensing at (704) 373-7581.

Very,truly yours.

/,,gl U

Hal B. Tucker SAG /mjf Attachment cc Dr.~ John Carew Building 475 B

~

Brookhaven National Laboratory Upton, N. Y. 11973 Mr. Jesse L. Riley, President Carolina Environmental Study Group 854 Henley Place Charlotte, North Carolina 28208 James P. O'Reilly, Regional Administrator f

,4 U. S. Nuclear Regulatory Commission, h

Region 11 l

(

101 Marietta Street, N.W., Suite 2900 I

Atlanta, Georgia 30323 g2g4jfoh l

P u

yl.

- -=

.,r d

- Mr. Harold R. Denton, Director

~

'!p~ /. [ ]Page Two November 30, 1984 Tj 8 b

.n ?

r.

,// cc

Mr.' Robert Guild, Esq.

'J

P. O., Box 12097

/

^j$ \\. '

-- d

' Palmetto Alliance j

.T 2135 Devine Street n/

'<I

- : e,....

-!Colum'bia,LSouth Carolina 29205 Mr. W. T. Orders enior Resident Inspector McGuire Nuclear Station 1

^E

' /

Senior Resident Inspector

!~

Route 2, Box 179N Wrk, South Carolina 29745 Mr. F. J. Twogood Power Systems Division Westinghouse Electric Corp.

P. O. Box 355

'Pittsburgh, Pennsylvania 15230 7

e

/

  • ef 4

/,~

t

,#'#,*-4,

<[

r

  • =',,

9;

.r.

I*

j, w

ptf' *

',; ;se..

c J

~

-Q.1:

Please provida additional information regarding the-NUC-MARGINS code'.

and its use in the Dropped Rod ~ Analysis.. Provide short descriptions of the input, output, calculational models used, benchmark calculations performed and the conservatismsJassumed in the analysis.

A.1 TUnder the terms of the current fuel contract with Westinghouse, Du'se

Power will provide physics data for the rod drop transient to Westinghouse who will then perform the safety evaluation and/or reanalysis. This relationship will exist until Duke submits its thermal-hydraulic and safety analysis methodology reports to the NRC.

The physics methods described in Section 4.2.2.5, 6.2.2.4, and 9.1.3.3 will be further elaborated herein.

t A.

Initial conditions for analysis:

1.

Control Bank D is inserted to the Rod Insertion Limit.

2.

Core Power is 102% Full Power (2% calorimetric error included).

3.

A full power xenon distribution is used which would produce a DNB limiting axial power profile.

B.

Assumptions for system response upon rod drop:

1.

No trip occurs.

2.

Control be,~- D is withdrawn to compensate for the dropped rod.

3.

A short duration reactor power overshoot will occur with the turbine-reactor control system eventually leveling out the reactor power to the initial power level.

a Search cases are perfortied as described in Section 4.2.2.5 and 6.2.2.4.

EPRI-NODE assembly average powers are converted to FAH using the method described below. ThismethodisemployedforallFJevaluations. All physics codes en. ployed are static, therefore, "before" and "after" rod drop' power distributions are calculated.

ThematheticalformulationofFkemploystheSection6.2.1.2d'efinitions g

as follows:

AH'j "

Fyj'xRL x(3" x RL + (1-FR )x. F "x RL

+ FR F

j 3

,y F$j*xRL)R]+g

+

i=N+1 and-then:

C C

AH "

  • (#AH,j)

F 1.

~-

E t

3 i

a-3 c

Where:

4 i

3-M = Number of axial nodes.

RLf=Non-roddedradial.localfactor.forassemblyJ.

R RL

= Rodded radial local factor for assembly _ j.

FR3 = Linear fraction of assembly j which does not contain a control rod.

7

- Radial local factors are edited by PDQ-EDIT using fine mesh PDQ97 mesh average powers. The PDQG7 cases are 'two-dimensional simulations with control bank (s) explicitly represented.

n de The nodal powers, F are steady state three-dimensional calculations

.hichexplicitly_modek;,controlbankinsertion,boronandxenonconditions; w

and other. reactor state point variables necessary for a best estimate power distribution calculation.

C FAH is then evaluated by the NUC-MARGINS code or by hand calculations using the _ nodal powers - from NODE-P and the RL from PDQ07. The NUC-MARGINS code has been independently verified to yield the correct FfH*

l' Faj is the ultimate output as defined by equation 6-2 for DNB analysis.

The system transient response and the transient DNB calculations would be performed by Westinghouse if the physics parameters. exceeded the bounds of the previous analyses.

A

? -

ih i

n a

- Q' 2 Identify the nominal and various off-nominal cross-section sets that are generated in order to evaluate the diffcrent reactivity coefficients and defects.

'A.2 The various fuel cross-section sets that are generated in

- order to evaluate different reactivity coefficients and defects are identified in Table 2.1.

Nominal cross-sections are generated as a function of.burnup at an' average moderator temperature of 594*F and an average fuel temperature of 1250*F.

The.off-nominal cross-sections are generated at various burnups.

with varying' moderator and fuel temperatures.

The cross-section representation in PDQ$7 differs between the quarter-core discrete pin and colorset models. Tne representation employed in the quarter-core model is dia-cussed first and then the colorset discussion follows. All sets,'except the baffle, use combined macroscopic and micro-acopic cross-sections.

Fuel cross-sections in quarter-core PDQ$7 are calculated.

according to the following relation:

X (

- K 'f}

E(TM,Ty'Bu) = E (Bu) + AE x (T -TM "f).+

Z F

M o

ATM AG where E(T,Tp,Bu) = the total macroscopic cross-sec. tion as M

a function of moderator temperature, fuel temperature,;and burnup.-

E (Bu)

= the nominal macroscopic cross section o

as a function of burnup.

AE

= the moderator temperature pseudo '

ATM.

microscopic cross-section which relates

(,,

the change in macroscopic cross-section to change in moderator temperature..

(-

AI

= the fuel temperature pseudo-microscopic A,4-cross-section which relates the change in j

F l

. macroscopic cross-section to,a, change in~

L fuel. temperature.-

[:

~

n The macroscopic cross-sections given here may be of any type, e.g.

r l

transport, absorption, removal, or fission. The pseudo-microscopic.

cross-sections =(or pseudo-micros) account for the change in the IL macroscopic cross-section as a result of a change from reference' conditions. These pseudo-micros are input to PDQ$7 as a function:

[

of burnup. The moderator temperature pseudo-micros are de-l>

termined from the cross-section sets at moderator temperatures-

' of 630*F and 530*F (fuel temperature held constant at 1250*F).

i.

k'

6 The fuel temperature pseudo-micros are determined from the cross-section sets at fuel temperatures of 1250*F and 594*F (moderator temperature held constant at 594'F).

Most nonfuel' cross-sections employed in quarter core calculations are evaluated as shown in Table 2.4, and are consistent with the core avarage moderator temperature of interest.

The reflector constants are evaluated at Tinlet _(usually 557'F) and, at Hot Zero Power, are identical to the water gap constants.

Baffle constants are evaluated using the method shown in Chapter 4 of EPRI NP-3642-SR (Few-Group Baffle and/or Reflector Constants for Diffusion Calculation Application, EPRI Special Report, August 1984).

Colorset PDQ67 calculations are performed which provide sufficient data to characterize operation from Hot Full Power (HF?) to Cold Zero Power (CZP) conditions. A breakpoint is designated at Hot Zero Power (HZP). Two sets of data (B-Constants) are then used in EPRI-NODE-P calculations:

1.

Normal Operation - HFP to HZP 2.

Low Temperature - HZP to CZP B-Constants for the Normal Operation and Low Temperature models are generated following the sequence described' in Section 3 of DPC-NF-2010.

Tables 2.1 and 2.4 describe conditions for fuel and non-fuel cross-section sets. The Normal Operation cross-sections input to colorset PDQ67 calculations are shown by the matrices in Table 2.2.

Table 2.3 shows matrices of cross secticn sets for Low Temperature colorset calculations. Nonfuel cross-section sets (Table 2.4) are used which are consistent with the fuel moderator temperature.

4

Table 2.1 McGuire/ Catawba Fuel Cross-Section Sets Cross-Section I

Troy Burnup Timesteps (god

(

  • F)

Power (GWD/MTU)

Application Set Type F)

F1 594 594 Zero 0.0 HFP + HZP P2 (Nominal) 594 1250 Full 0.0 P3 630 1250 Full 0.0 P4 530 1250 Full 0.0 P8 (Nominal) 594 1250 Full 0.0, 0.1, 0.5, 1.0, 2.0, 4.0, 6.0,...,

58.0, 60.0 P8B6 594 594 Full P8B7 530 1250 Full P8B8 630 1250 Full P5 200 200 Zero 0.0 HZP + CZP P9 200 200 Zero 0.0, 0.1, 0.5, 1.0, 2.0, 4.0, 6.0,...,

58.0, 60.0 P6 557 557 Zero 0.0 P7 68 68 Zero 0.0 l

s I

i i

i I

5 e

Table 2.2.

Cross-Section Sets for Normal Operation PDQ97 Colorsets I

BOL Cross-Section Set Type

-Effect P2(Nominal)

P1 P3 P4 Soluble Boron X

K-inf vs. Tmod X

X X

Migration Area vs. Tmod X

X X

Doppler X

X 1 -

Depletion Reactivity Cross-Section Set Type Effect P8(Nominal)-

P8B6 P8B7 P8B8 Exposure X

Soluble Boron X

,4 Control Rods

~X Xenon X

Doppler X

X Moderator X

X 6

Table 2.3 Cross-Section Sets for Low Temperature PDQ97 Colorsets BOL Cross-Section Set Type

'Effect P5 P6 P7 Soluble Boron X

i '

K-inf. vs. Tmod X

X X

Migration Area vs. Tmod X

X X

DEPLETION Reactivity Cross-Section Set Type Effecti P9 Exposure X

Soluble Boron X

Control Rods X

7

.a

Table 2.4 -

McGuire/ Catawba

'Non-fuel Cross-Section Sets Material Moderator Temperatures (*F)

Water Cap /Raflector 630, 594, 557, 530, 200, 68

-Guide Tube Inst. Tu e 630, 594, 557, 530, 200, 68

/

b Control Rod 594, 557, 200, 68 Burnable Poison Rod 594, 557, 200, 68 Baffle ~

EPRI NP-3642-SR f

8

= - - -.. - -

~

t V

Q.3 ; Provide a short description of the PDQ-EDIT code and describe the verification program that was undertaken, to test data generated with PDQ-EDIT for use in SNA-00RE.

A.3 ~PDQ-EDIT is a utility code written by Duke Power Company that is capable of reading Internal File Management - (IFM) files written by PDQ07. This code is primarily used to develop theoretical factors for SNA-CORE, and to edit and process data

- contained on pointwise flux, power and concentration IFM files.

PDQ-EDIT, like all Nuclear Design software used in safety re-lated analysis, is quality assured as required by Duke Power

~

Company's Administrative Policy Manual for Nuclear Stations.

SNA-CORE theoretical factors are generated from PDQ-EDIT'in what is commonly known as. theoretical factor sets. Each theoretical factor set is valid over a user defined burnup range. Theoretical factor sets consist of assembly average powers, assembly peak pin powers, and detector mesh average two-group fluxes.

Verification of theoretical factor sets is accomplished by the utility code SNAVER.

SNAVER compares the symmetric assembly average and peak pin powers on either o 1/4-core or 1/8-core basis, and then calculates a percent difference'for each power 4

at a given location with respect to the average at that location.

Percent differences greater than 0.1% are flagged by the program.

The cognizant engineer must then verify whether these errors are justified. SNAVER also checks for consistancy between detector fluxes at symmetric locations,'and for correct data format.

The formal benchmarking of theoretical. factors developed from PDQ-EDIT was accomplished by comparing measured powers from Westinghouse's INCORE code,' to those calculated from SNA-CORE for Sequoyah Unit 1 Cycle 1.

All measured powers were inferred from plant supplied flux traces. Results from these comparisons are shown in Figures 1 thru 7.

Good agreement between-the two codes was observed. A summary of the average absolute relative error, L

and the standard deviation associated with these errors are l

presented in Table 1.

i In conclusion, comparisons between measured data from Westinghouse's.

INCORE code and Duke's SNA-CORE code demonstrate the accuracy of the PDQ07, PDQ-EDIT, SNA-CORE code package. Also, in addition to the software quality assurance program employed at Duke,.SNAVER provides an independent means of verifying the-correctness of theoretical factor sets before they are used in a production environment.

1 t

9.

r.. -

p Table 1 Statistical Summary of INCORE versus SNA-CORE Measured. Powers for Sequoyah 1 Cycle 1 -

Burnup Average Absolute.

CASE EFPD Relative Error (%)

Standard Derration %

1 71.82 1.34 1.84 1!

101.62

-1.06 1.43 3

133.30 1.14 1.48.

4 166.04 1.28 1.64 5

231.70 1.21 1.48 6

292.04 1.20 1.51 7

378.92 1.05 1.34 Average Absolute _

(D) E 'l[(SNA-CORE - INCORE)/INCORE]

  • '100 Relative Error N,

EIE E'Di/N i= 1 I

10

FIGURE 1 SE8UOYAH 1 CYCLE 1 SNA-CORE YS..INCORE NEASURED POWERS 71.82 EFPD 100(2)FP CONTROL BANK D AT 200 STEPS WITHDRAWN H

G F

E D

C B

A seeeeeeeeeeeeeeeeeeeeeeeeeeeesosesseessesseessesseesseessessessessee4:4eeeeeeeees e

1.12 e 1.05 e 1.17 e 1.11

  • 1.15 e 1.05 e 1.01 e

.71 4

8

  • 1.17 e 1.00 e 1.17 e 1.14 e 1.18
  • 1.07 e 1.01 e

.71 e

e e

e e

e e

e 4

eseeeeeeeeeeesseeeeeeeeeeeeeeeeeeeeeeeessesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeee4e4e4e e

1.16 e 1.11

  • 1.19 e 1.16
  • 1.13 e 1.01 e

.77 e 9

  • 1.17
  • 1.13 e 1.19 e 1.17 e 1.13 e 1.03 e

.77

  • e o

e e

e e

e 4

esseessessesseessessessessesesseseeeeeeeeeeeeeeeeeeeeeeeeeeeeee44 4e4 s 1.18 e 1.12 e 1.18 e 1.09 e

.98 e

.44 e 10

  • 1.17
  • 1.14
  • 1.18
  • 1.11

.97 *

.45 e e

e e

e e

e e

seeeeeeeeeeeeeeesseessee...... se.... essesseesseesseesse4e4 e

1.18 e 1.13

  • 1.00 e

.92 e

.54

  • 11
  • 1.19
  • 1.16 e 1.08 *

.92 *

.55 4

s e

e e

e e

esseeeeeeeeeeeeeeeeeeeeeeeeeeeessessesseee44eee4 4e l

1.09 *

.99

.86

  • 12
  • 1.12 *

.99 e

.83 e e

e e

e essessesseesse

....es.ee4eae4 e e

1.02 e

.51 SNA-CORE 13 e

.99 e

.49

  • INCORE e

e a

eseessessesses4:4 4e4 i

l j

11

FIGURE 2 SEQUOYAH 1 CYCLE I SNA-CORE VS. INCORE MEASURED POWERS 101.62 EFPD 100(1)FP CONTROL BANK D AT 218 STEPS WITHDRAWN H-G F

E D

C B

A sessessessessessessessessessesseesses*****sessessessessessesse**ese********** eses 1.14

  • 1.06
  • 1.16 e 1.13
  • 1.17
  • 1.06
  • 1.00 *

.71

  • 8
  • 1.16
  • 1.09 e 1.17
  • 1.15
  • 1.17
  • 1.08
  • 1.00 *

.71 e

e e

e e

e e

o e

e seesseessesessessessessessessessesseesseesseessessessessessessessesseesses**e****

e 1.16

  • 1.12
  • 1.18
  • 1.16
  • 1.12 e 1.01 *

.76

  • 9 e t.17
  • 1.14 e 1.18
  • 1.18 e t.13
  • 1.03 *

.76

  • e e

e s

sessessesseessseessessessessessessessessesessessessessessesses**e***ess 1.18

  • 1.13
  • 1.17
  • 1.09 *

.97 *

.65

  • 10 e 1.17 e 1.15
  • 1.17
  • 1.11 *

.96 e

.65

  • e e

e e

e e

essessessessessessessessessesessesessessessessessees***e***se 1.17

  • 1.13 e 1.08 *

.91

.55

  • 11 e 1.18 e 1.16
  • 1.08 *

.92 *

.55

  • ess$esseessesessessesseesseessessessessees***esesse 1.11
  • 1.00 *

.85

  • i 12
  • 1.11 e 1.00 *

.83

  • l e

e e

e l

sees es s e s ess e ss e s es s es *****e s**

e 1.02 *

.51

  • SNA-CORE 13 *

.99 *

.50

  • INCORE essese*stese*es******

l E.

FIGURE 3 SEQUOYAH 1 CYCLE 1 SNA-CORE VS. INCORE MEASURED POWERS 133.30 EFPD 100(I)FP CONTROL BANK D AT 216 STEPS WITHDRAWN H

6 F

E D

C 3

A seessesessessessassessessessesseessesseessessesseesseessesesessessee*se44 4 4e4:4 1.14

  • 1.08
  • 1.17
  • 1.14
  • 1.14
  • 1.07 *

.99 e

.70

  • 8
  • 1.16
  • 1.11 e 1.17 e 1.17
  • 1.17
  • 1.09 e

.99 *

.71 e

e e

e e

e e

e e

e esessesseessesseessessesseessessessessessessessessessesseessessesseesses*ese4:44e f.17

  • 1.'14 1.19
  • 1.f7
  • f.12
  • f.'01

.76

  • 9
  • 1.17 e 1.14
  • 1.18
  • 1.19 e 1.12 e 1.03 e

.76

  • e e

e e

e seessessesses**sessessessesseessesseseeessessessessessessesses 4:4 4e4e 1.18

  • 1.14
  • 1.17
  • 1.09 e

.96 e

.65

  • 10
  • 1.17 e 1.16
  • 1.16 e 1.11 *

.95 *

.45

  • e e

e e

e e

e sessessessessesseesesssssessessessessessesseesseesse* esse 44es 1.16 e 1.13

  • 1.06 *

.91

.55 e 11

  • 1.17
  • 1.16 e 1.06 *

.92 *

.55

  • e 4

esesseessse****sesseessesseesseses**essees4 4 *e4:4 1.09 e 1.00 *

.84

  • 12
  • 1.10
  • 1.00 *

.82

  • e e

e sesessessesessesseessess 4:4ese e

1.01 *

.51

  • SNA-CORE 13 *

.98 *

.50 e INCORE e

e e

seessesseesse*essesse l

l l

t I

(

13 l

FIGURE 4 SEQUOYAH 1 CYCLE 1 SNA-CORE VS. INCORE MEASURED POWERS 166.04 EFPD 100(%)FP CONTR0L BANK D AT 210 STEPS WITHDRAWN H

G F

E D

C B

A sesseeessessessessesessesseessesseeesseessesseeeeeeeeeeeeeeeeeeesse*ese**********

1.13

  • 1.09 e 1.17
  • 1.15
  • 1.14
  • 1.08 *

.99 e

.71 e

8 e 1.16

  • 1.11
  • 1.17
  • 1.10
  • 1.15 e 1.10 *

.99 e

.71 e

e e

e e

e e

e e

e seesseesessessessessessesessessessessessessessesseeeeeeeeeeeeeeeeeeeeeee***e* eses 1.16

  • 1.15 e 1.19
  • t.17
  • 1.11
  • 1.01 *

.76

  • 9 e 1.t7 e 1.18 e 1.18
  • 1.19 e 1.11 e 1.03 e

.76 e e

e e

seessassessessesessessessessessesseessessesseesessessessessese** eses **e 1.18

  • 1.15
  • 1.16
  • 1.09 e

.96 *

.66

  • 10
  • 1.17 e 1.18 e 1.15 e 1.11 *

.95 *

.65

  • e e

e o

e e

seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesessesseessessessessese*esess 1.16

  • 1.13
  • 1.06 *

.91

.55 e 11 e 1.17 e 1.17 e 1.06 *

.92 *

.55

  • e s

4 seessessessessesseessessesseesseessessesse********e 1.08

  • 1.00 *

.84

  • 12 e 1.09
  • 1.00 *

.82

  • e sessessessessessese***o* esses *e 1.00 *

.51

  • SNA-CORE 13 *

.97 *

.50

  • INCORE e

esseesseessessee**sse l

i 1

l l

l l

l l

14

FIGURE 5 SEGUOYAH 1 CYCLE 1 SNA-CORE VS. INCORE MEASURED POWERS 231.70 EFPD 100(I)FP CONTROL BANK D AT 216 STEPS WITHDRAWN H

G F

E D

C B

A sessessessessessessesseessesessessessessessessessessessessiseessessese**esese*ese e

1.10

  • 1.08 e 1.14 e 1.14 e 1.13 e 1.09 *

.99 *

.72 e 8 e 1.12 e 1.10 e 1.14

  • 1.19
  • 1.13
  • 1.12 *

.99 *

.73

  • e e

e e

e e

e e

e seeeeeeeeeeeeeeeeessesse*****esseessesseessessessesseesseesseesseessessesse****se 1.13 e 1.14

  • 1.16
  • 1.17
  • 1.09
  • 1.02 *

.76

  • 9 e 1.14
  • 1.18
  • 1.15 e 1.19
  • 1.09
  • 1.04 *

.77

  • e e

e e

e e

essessessessessessessessessenessessessesesesseessessessessessesemese***

1.14 e 1.16 e 1.14 e 1.10 *

.96 *

.47

  • 10 e 1.15
  • 1.18
  • 1.13
  • 1.12 e

.95 *

.48

  • e e

e e

e e

e seesseessessessessessessessesseessessessessessessesses4e*****

1.14

  • 1.14
  • 1.05 *

.92 *

.56

  • 11 1.14 a 1.17
  • 1.05 *

.93 *

.54

  • e e

esessessessesseessessessessesesesseesseesesse***ess 1.07

  • 1.02 e

.84 e 12

  • 1.08
  • 1.02 *

.82 *

        • essese***essessesese*******

1.00 *

.53

  • SNA-CORE 13 e

.98 *

.52

  • INCORE e

essessesseessese*****

i l

i i

15

FIGURE 6 SEQUOYAH 1 CYCLE 1 SNA-CORE VS. INCORE MEASURED POWERS 292.04 EFPD 100(!)FP CONTROL BANN D AT 214 STEPS WITHDRAWN N

6 F

E D

C B

A seesessesseeeeeeeeeeesseeeeeeeeeeeeeeeeeesseessessessesseessesseesse*e4eee*e4eees 1.07

  • 1.07
  • 1.12 e 1.15 e 1.11 e 1.10 e

.99 *

. 74

  • 8
  • 1.09
  • 1.09
  • 1.12 e 1.18 e 1.12
  • 1.13 e

.99 *

.75 e e

e e

e e

e e

e e

sesseessessesseesseesseessessessessessassesseessesseessessesseseessessesse****ese l.11

  • 1.15 e 1.14
  • 1.16
  • 1.08 e 1.03 e

.78

  • 9 e 1.11 e 1.18 e 1.13
  • 1.18 e 1.08
  • 1.05 e

.78

  • e e

e e

e s

essesseeeeeeeeeeeeeeeeeeeeeeeesseessesseeeeeeeeeeeeeeeeeeeeeeee4 ***ess 1.14

  • 1.14
  • 1.12
  • l.11 e

.97 *

.69

  • 10
  • 1.13
  • 1.18
  • 1.11
  • 1.13 e

.96 *

.69

  • e e

e e

s seesessessesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessessessese*e4

  • 1.12
  • 1.13
  • 1.05 e

.93 *

.58 e 11 e 1.12 e 1.16

  • 1.05 *

.94 *

.57

  • e e

e e

e sessesessesseesseessessessesseessessessess4:4:4 ***

1.06

  • 1.04 *

.85 e 12

  • 1.07 e 1.04 e

.83

  • essessessessesseessese 4444 e**

1.00 e

.55

  • SNA-CORE 13 *

.98 *

.54

  • INCORE e

essesseesses***44eme4 l

2 16

. - - - -. -. - -, - -.. - - _. _... ~. -. _ _ - -.. -.- _... _ _.

FIGURE 7 SEGUOYAH 1 CYCLE 1 SNA-CORE VS. INCORE MEASURED POWERS 378.92 EFPD 100(I)FP CONTROL BANK D AT 222 STEPS WITHDRAWN H

G F

E D

C B

A sessessessesseesseessessessesessessesseesseessessessesseessesseeesse4es4*essesses 1.02

  • 1.04
  • 1.08
  • 1.14
  • 1.09
  • 1.10
  • 1.00 *

.77

  • 8
  • 1.06
  • 1.06
  • 1.08
  • 1.15
  • 1.09
  • 1.13
  • 1.01 e

.79 e e

e e

e e

e e

e seeeeeeeeeeeeessessesseessesessessessesseesseesseesseessessessessessesse4 4e4:44.

l.07

  • 1.13
  • 1.10
  • 1.14
  • 1.07
  • 1.05 *

.80

  • 9
  • 1.08
  • 1.15
  • 1.10 e 1.15 e 1.07 e 1.07 *

.81 e

e e

e e

e seesseseessesseessessessessessesseeeeeeeeeeeeeeeeeeeeeeeeeeeese4:4ese4e 1.10

  • 1.14
  • 1.09 e 1.11 *

.98 e

.73 e 10

  • 1.09 e 1.15
  • 1.09
  • 1.13 *

.97 e

.74.*

e e

e e

e esseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee4*****ee 1.09 e 1.13 e 1.05 e

.96 e

.60

  • 11 e 1.10
  • 1.15
  • 1.05 e

.97 *

.60 e e

e e

e e

essessesseessessecessessesses**sessessesse4essas4:4 1.06

  • 1.06 *

.87 e 12

  • 1.07 e 1.06 e

.85

  • e e

e e

sesseesseessessessessee4:4 esses 1.02 *

.58

  • SNA-CGRE l

13

  • 1.00 e

.57

  • INCORE l

e e

e esessessesses4essas4e 1

I I

i l

17

~.

r Q.4.

Comment on the reasons for the 3.1% non-conservative bias in the calculated peak axial powers (Section 11.5.4).

Describe the model refinements, if any, that have been undertaken to reduce this bias.

A.4.

The reason there is a -0.031 bias on the calculated peak axial powers (Section ll.5.4) is that the models used by Duke at the time of this report underpredicted the peak axial power. This

-0.031 bias is the mean difference -(D) and is defined by equation 11-2.

This value is a difference and not a percentage difference.

The mean percent difference for all cases considered was -2.195%

(Table 11-10). Again, it should be pointed out, that this number applies to all peak C, M pairs 2; 1.0.

Although Dukes' models underpredict the peah axial power on an average of -2.195%, the Observed Nuclear Reliability Factor (ONRF) directly reflects this non-conservative prediction. This can be seen by examining equation 11-11.

Because D is_eubtracted fro _m H,'

this equation is conservative for all cases of D.

(That is, D being positive, negative, or 0)

Consider the ONRF calculation of the peak axial power on Table 11-6.

In this example if D were 0 the ONRF would be 1.035.

With a D of_

-0.031-the ONRF is 1.058.

This is a 2.2% increase in ONRF. The D of -0.031 represents a 2.195% underprediction of measured peak axial power.

(Table 11-10). Therefore, it can be seen from this example, that there is a 1% increase in ONRF for each 1% that the model under-predicts the measured peak axial power.

In summary, even though the models used by Du'ke underpredict the peak axial power, the ONRF reflects this underprediction. As shown in the above example, there is a 1 to 1 correspondence in the per-centage of the underprediction to the percentage increase in the ONRF.

The model refinements undertaken to reduce this underprediction are discussed in the answer to question 6 parts one and two.

The re-finements are; 1) normalization of EPRI-NODE-P to include unrodded M2 adjustments, and 2) an increase in the number of axial nodes.

Attached are the results of some maps compared to predictions using 12 levels and 18 levels of EPRI-NODE-P. Attached are the Difference Means and Standard Deviations for Assembly Peak Axial Powers (C, M 2; 1.0), and Assembly Radial Powers. Also attached are Percent Dif ference Means (C, M > 1.0) for Assembly Peak Axial Powers and Assembly Radial Powers.

~

18 i

Table 4-1 s

Difference Means and Standard Deviations for Assembly Radial Powers (C, M 2; 1.0)

- Unit / Cycle EPRI-NODE-P N

II S(D)

ABS (D)

S(ABS (D))

Model M1/C2 12 Level 144

-0.002 0.017 0.014 0.010 M1/C2.

18 Level 144

-0.002 0.0 15 0.012 0.010 Difference Means and Standard Deviations for Assembly Peak Axial Powers (C, M > 1.0)

Unit / Cycle EPRI-NODE-P N

D' S(D)

ABS (D)

S(ABS (D))

Model M1/c2 12' Level 232

-0.004' O.031 0.025 0.018 M1/C2 18 Level 246 0.030 0.035 0.036 0.029 Percent Difference Means for Assembly Radial Powers (C, M 2; 1.0)

Unit / Cycle EPRI-NODE-P Mean % Difference Mean Absolute % Difference Model M1/C2 12 Level

-0.170 1.35 M1/C2 18 Level

-0.142 1.17 Percent Difference Means for Assembly Peak Axial Powers (C, M 2; 1.0)

Unit / Cycle EPRI-NODE-P Mean % Difference Mean Absolute % Difference Model-M1/C2 12 Level

-0.407 2.039 M1/C2 18 Level 2.382 2.890 3

f f

19 u

FICURE 4.1 MC6UIRE-1 CYCLE-2 ASSEMBLY PEAK AXIAL POWERS - CALC (12 LEVEL) VS. MEAS 18 EFPD 100ZFP CONTROL BANK D AT 207 STEPS WITHDRAWN H

8 F

E D

C B

A seesessesseessaeoetseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesse*ese**sese**e*

.95

  • 1.08
  • 1.24 *

.97 *

.93 e

.80

  • 1.09
  • 1.28
  • 8 *

.93 e 1.04

  • 1.27 *

.98

  • 1.00 e

.85

  • 1.19
  • 1.27
  • e o

e e

e e

o e

eseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesese* esse

  • esses
  • 1.10
  • 1.27
  • 1.25 e 1.03 *

.98 e

.93

  • 1.50
  • 1.30
  • 9 e 1.09
  • 1.27
  • 1.25
  • 1.03
  • t.02 *

.95

  • 1.53
  • 1.28
  • e e

e e

seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesessesseessessesseeesse**ess 1.24 e 1.25

  • 1.25
  • 1.28
  • 1.00 *

.96 e 1.13

  • 1.19
  • 10
  • 1.28
  • 1.27
  • 1.27
  • 1.32
  • 1.03
  • 1.00
  • 1.19
  • 1.16
  • e o

e s

esessesseessesseessessessessessesseeeeeeeeeeeee....eeeeeeeeeeeeesseesse*ese***e*e

.98 e 1.04

  • 1.28
  • 1.25
  • 1.27 e 1.14 e 1.52 *

.72

  • 11
  • 1.00
  • 1.04 e 1.32
  • 1.28
  • 1.29 e 1.15 e 1.48 *

.91 *-

e e

e e

e e

e seessessessesseeeeeeeeeeeeeeeeeessesseessessessesseesseeeeeeeeeeeeeeeeeeeee** eses

.94 *

.99

  • 1.01
  • 1.27
  • 1.43 e 1.43 e 1.29
  • 12 e 1.02 e 1.04 e 1.02
  • 1.30
  • 1.40 e 1.41
  • 1.26
  • e e

e e

e sessesseessesseesseesseessessessesessessessessesesessesseessesssessesse e

.81

.93 *

.97

  • 1.14
  • 1.43 *

.99 e

.79

  • 13 *

.88 e

.98

  • 1.05
  • 1.17
  • 1.44 e

.98 *

.77

  • e e

e e

esseeest seesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesessessesseesse*ese*e 1.10 e 1.51 e 1.14 e 1.52

  • 1.30 *

.80

  • 14
  • 1.12 e 1.46
  • 1.14
  • 1.44
  • 1.26 e

.79

  • e e

e e

seesseessesseesseseessessessesseeeeeeeeeeeeeeeeeeeeeesse*****

1.28 e 1.31 e 1.19 *

.93

  • CALC 15
  • 1.27 e 1.26
  • 1.15 *

.90 : MEAS 4

e e

seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesse***e 20

FIGURE 4.2 MCGUIRE-l CYCLE-2 ASSEMBLY PEAK AXIAL POWERS - CALC (12 LEVEL) VS. MEAS 30 EFPD 100ZFP CONTROL BANK D AT 194 STEPS WITHDRAUN H

6 F

E D

C B

A seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseeesesseessesse I

e

.90 e 1.04

  • 1.21 *

.95 *

.92 e

.82

  • 1.12 e 1.30 e 8 e

.92 e t.06

  • 1.26 *

.98 e 1.02 e

.89 e t.20 e 1.30

  • e e

o e

e e

eseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseeeeeeeeeeeeeeeeeeeeeee44e4ese*

e 1.05 e 1.24

  • 1.22
  • 1.00 e

.98 *

.95

  • 1.53 e 1.33 e 9 e 1.08 e 1.26
  • 1.25
  • 1.03 e 1.04 e 1.00
  • 1.53
  • 1.29 e e

e e

e seessesseesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeese4e4eee4 e

1.22

  • 1.23
  • 1.24
  • 1.30 e 1.01 e

.98

  • 1.16 e 1.21.
  • 10 e 1.27
  • 1.26 e 1.24
  • 1.J2
  • 1.04
  • 1.04
  • 1.21
  • 1.19
  • e e

e o

e e

sessesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee44e4:4e,*

.95

  • 1.01
  • 1.30
  • 1.24
  • 1.28 e 1.15 e 1.54 *

.94 e 1

11

  • 1.00
  • 1.04
  • 1.33
  • 1.29 e 1.31
  • 1.17
  • 1.52 *

.94 *-

e e

e o

e e

e seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessesessessesseeeeeeeeeeeeeeeeeeesseesseesse4ese44 e

.92 *

.98

  • 1.02
  • 1.28
  • 1.43 e 1.43 e 1.31
  • 12 e 1.03
  • 1.05
  • 1.04 e 1.31 e 1.42
  • 1.44
  • 1.29 e e

e e

e e

e eseesseessessessessessessessessesseessessessessesese**essessesse**se44

.83 *

.96 e

.98

  • 1.14
  • 1.44
  • 1.00 *

.80

  • 13 *

.90 e 1.01

  • 1.08
  • 1.19
  • 1.44
  • 1.01 *

.79

  • e e

e e

e e

e eseesseessessessessesessesseesseeesseossesseeeeessesessesseseesse4:4eas e

1.12

  • 1.54
  • 1.14
  • 1.55
  • 1.31 e

.81 e

14 e 1.15

  • 1.50 e 1.14 e 1.45 e 1.28 e

.81 e

e sessesseessesseessesessessessessesessesseessessesseess4 4 eses 1.31 e 1.33 e 1.21 *

.94

  • CALC 15
  • 1.30
  • 1.30
  • 1.16 e

.90 e MEAS e

e e

e e

seessessesessesseesseessessessessesesse4e l

l 21

^

i l

FIGURE 4.3 l

l 1

MCGUIRE-1 CYCLE-2 ASSEMBLY PEAK AXIAL POWERS - CALC (12 LEVEL) VS. MEAS 48 EFPD 100ZFP CONTROL BANK D AT 228 STEPS WITHDRAUN H

8 F

E D

C B

A seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessessessesseesse44es...

e

.94

  • 1.08
  • 1.22 *

.98 e

.95 *

.81 e

1.07

  • 1.24
  • 8 e

.92 e

~1.04 1.23 *

.97

  • 1.00 e

.86

  • 1.14
  • 1.25
  • e e

e e

e seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessesseeee4:4:4se 4.

1.10

  • 1.25
  • 1.23
  • 1.04 e 1.00 e

.92

  • 1.44
  • 1.27 e 9
  • 1.07
  • 1.24
  • 1.22
  • 1.01
  • 1.01 *

.97

  • 1.48 e 1.24
  • e e

e e

seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessesseessessessessessessesseeseessesseees**e4 eses 1.23

  • 1.24 e 1.24
  • 1.26
  • 1.01 *

.94 e 1.11

  • 1.15 e 10
  • 1.25 e 1.23 e 1.22
  • 1.27
  • 1.00 e 1.01 e 1.17
  • 1.14
  • e e

e seesseessesseessessessesseessesseessessessessesesesseessessesseeesseesse4:4ese4e*

.99

  • 1.04
  • 1.26 e 1.22 e 1.22
  • 1.10
  • 1.47 *

.90

  • 11 e

.99 e 1.03 e 1.26

  • 1.22 e 1.25
  • 1.12
  • 1.45 e

.90

  • e e

e e

o e

e e

e sesseessessesseessessesseesssssessessessesseessesses******essessessesseessesses4e

.96

  • 1.01 e 1.01
  • 1.22 e 1.35
  • 1.36
  • 1.24
  • 12
  • 1.00
  • 1.02
  • 1.00 e 1.25
  • 1.34
  • 1.37
  • 1.23
  • e e

e eesseessessessesseessessesseessesessesseessesesseessessessesses*******4

.82 e

.92 *

.94

  • 1.10 e 1.36 *

.95 *

.77

  • 13 *

.87 e

.97 e 1.04

  • 1.14 e 1.39 *

.96 *

.76

  • i e

e eessessessessesseessessesseessssssessessesseesseessese 4 esse *****e4:4 4 1.08

  • 1.47
  • 1.11
  • 1.47 e 1.24 *

.78

  • 14
  • 1.11
  • 1.45
  • 1.12
  • 1.39
  • 1.23 *

.78

  • e e

e e

sesessesseesssesessessesses**sesseesse**esseeesseessese44es44 1.24 e 1.27 e 1.16 *

.90

  • CALC 15 e 1.24 e 1.25 e 1.12 *

.87

  • MEAS e

e e

e seesessessesessesseeessessessessessessies

(

22

FIGURE 4.4 MC6UIRE-1 CYCLE-2 ASSEMBLY PEAK AXIAL POWERS - CALC (12 LEVEL) VS. HEAS 61 EFPD 100ZFP CONTROL BANK D AT 220 STEPS WITHDRAWN H

6 F

E D

C B

A seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessee4e*ese4 4 4e*

.92 e 1.05 e 1.19 *

.97 *

.94 *

.81 1.08

  • 1.25
  • 8 *

.91 1.03 e 1.23 *

.96

  • 1.00 e

.86

  • 1.15
  • 1.24 e o

e e

e e

e e

seeeeeeeeeeeeeeeeeeeeeeeeeeeeeessessessessessessessessessessesseesseess4e4ee4*ese 1.07

  • 1.22 e 1.20
  • 1.02 *

.99 *

.93 e 1.47

  • 1.27 e 9 e 1.06
  • 1.23
  • 1.21 e 1.00 e 1.00 *

.96

  • 1.47
  • 1.24
  • e e

o e

e e

e e

esseeeeeeeeeeeeeeeeeeeeeeeeeeeeesessesseessessessesseessesseessessessesse4:4:4 4e e

1.20

  • 1.21
  • 1.21
  • 1.24 e 1.00 *

.95 e 1.12 e 1.14

  • 10
  • 1.24 e 1.22
  • 1.21 e 1.26
  • 1.00
  • 1.01
  • 1.17
  • 1.14 e e

e e

e e

esseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseessesses44 4e+

e

.97 e 1.02

  • 1.24 e 1.20
  • 1.22 e 1.11
  • 1.47 e

.91 11 *

.99 e 1.03

  • 1.24 e 1.22
  • 1.24
  • 1.12 e 1.45 *

.90

  • e e

e e

e e

e sesseessessessessessessessessessessessessesessessessessessesseessessesse4ese4:4e*

.95

  • 1.00
  • 1.00
  • 1.22
  • 1.35
  • 1.36 e 1.24
  • 12
  • 1.01 e 1.02
  • 1.00 e 1.24
  • 1.33 e 1.35
  • 1.22
  • e e

e eseessessesessessesseesesseessesseesseessessesesseesseessessessesse44:e

.82 e

.93 e

.95 e 1.11

  • 1.36 e

.95 e

.77

  • 13 e

.88 *

.98

  • 1.04
  • 1.14
  • 1.38 *

.96 *

.75

  • e eseessessesseessessessessessesseesseseeeesessessesessesseessesse4ese*e4 1.09
  • 1.48 e 1.12 e 1.48
  • 1.24 e

.78 e l

l 14

  • 1.10
  • 1.44
  • 1.12
  • 1.38
  • 1.22 *

.77

  • e e

e

  • esseessessessessessessessessessessesses***essessesse*****e4e 1.25
  • 1.27 e 1.16 *

.91

  • CALC 15
  • 1.24
  • 1.23
  • 1.11 *

.87

  • MEAS e

e e

esseeeeeesesseeeeeeeeeeeeeeeeeeeeese4es**

l l

l l

l 23

FIGURE 4.5 MC6UIRE-1 CYCLE-2 ASSEMBLY PEAK AXIAL POWERS - CALC (12 LEVEL) VS. MEAS 101 EFPD 100!FP CONTROL BANK D AT 223 STEPS WITHDRAWN N

6 F

E D

C 3

A eseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesseeeeeeeeeeeesse4eee4*se4:44ee

.91 e

1.03 e 1.16 e

.94 e

.95 e

.83 e 1.08

  • 1.22 e 8 e

.90 e 1.03 e 1.23 *

.97

  • 1.01 *

.88

  • 1.14
  • 1.21
  • e e

o e

esseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessessessesseesse4 4 esse e

1.04 e 1.19

  • 1.17 e 1.00 *

.99 e

.94 e 1.44 e 1.25

  • 9
  • 1.04 e 1.21
  • 1.19 e 1.00 e 1.01 e

.97

  • 1.45 e 1.21
  • e e

e e

e e

o eseesseessesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee4:4eee4 e

1.17

  • 1.17 e 1.17 e 1.23 *

.99 e

.96

  • 1.11 e 1.14
  • 10 e 1.22 e 1.20
  • 1.19
  • 1.25
  • 1.00 e 1.01
  • 1.15
  • 1.13
  • e e

e e

e e

e e

seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseessesseessessessesse*4essesse4e e

.94 e 1.01

  • 1.23 e 1.19
  • 1.20
  • 1.09 e 1.45 *

.90

  • 11 *

.99

  • 1.02
  • 1.25 e 1.21 e 1.23 e 1.10
  • 1.41 *

.90 *-

e e

e eseesseessessessessessessessessessassessesseessesessessessessesseessessesse44se**

e

.95

  • 1.00 *

.99 e 1.20

  • 1.31 e 1.32 e 1.21
  • 12 e 1.01 e 1.02
  • 1.00
  • 1.23
  • 1.30 e 1.32 e 1.20
  • e e

e e

e o

e e

seessesseseessessessesseesse*****essessessessessessessesseessese.ese4eee

.84 *

.94 *

.94

  • 1.09
  • 1.32 e

.94 *

.77

  • 13 *

.89 e

.98

  • 1.03
  • 1.12
  • 1.34 e

.95 *

.74

  • e e

e e

e e

e e

seesessessesseessessesseesseessessessesseessessessessessessesee4:4 4:4e 1.09

  • 1.46
  • 1.11 e 1.45
  • 1.21 *

.77 e 14

  • 1.10
  • 1.43
  • 1.11
  • 1.37 e 1.20 *

.77 e j

e e

e e

e e

e J

esesseesseeeeeeeeeeeeeeeeeeeeeessessessesessessesseese4:4:4 4 1.22

  • 1.25
  • 1.14 e

.90

  • CALC 15
  • 1.21
  • 1.20
  • 1.10 e

.87

  • MEAS e

e e

e e

seeeeeeeeeeeeeeeeeeeeeeeeeeeee** esses 4e4e 24

c FIGURE 4.6 NC6UIRE-1 CYCLE-2 ASSEMBLY PEAK AXIAL POWERS - CALC (12 LEVEL) VS. MEAS 130 EFPB 100ZFP CONTROL BANK D AT 216 STEPS WITHDRAWN H

6 F

E D

C B

A seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesessee

.90

  • 1.02 e 1.18 e

.95 *

.95 *

.85

  • 1.09 e 1.21.

8 e

.93

  • 1.04
  • 1.23 *

.98

  • 1.01 *

.89

  • 1.14
  • 1.20
  • e e

e e

e e

e e

..ee...........................eesees...........e_ee.......ees.......e e4........

e 1.04

  • 1.20 e 1.18 e 1.00 *

.99 e

.96

  • 1.46
  • 1.24
  • 9
  • 1.07
  • 1.23
  • 1.20
  • 1.01
  • 1.02 *

.98

  • 1.45
  • 1.20
  • e e

e e

e o

e e

e seeeeeeeeeeeeeeeeeeeeeesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee4e*

1.18

  • 1.18
  • 1.18
  • 1.24
  • 1.00 e

.97

  • 1.12 e 1.14
  • 10 e 1.23 e 1.22
  • 1.20
  • 1.26
  • 1.01 e 1.02
  • 1.14
  • 1.11
  • e e

e e

e o

e seeeeeeeeeeeeesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesese

.95 e 1.00

  • 1.24
  • 1.19
  • 1.20 e 1.10 e 1.44 *

.90

  • 11 *

.99

  • 1.03
  • 1.26 e 1.22 e 1.24
  • 1.11
  • 1.41 *

.90

  • e e

e e

e s

esseessesseeesseessessesseessessessessessessessesseeeeeeeeeeeeeessesseseeve4eee4e

.95 e 1.00

  • 1.00
  • 1.20
  • 1.30
  • 1.31
  • 1.20
  • 12
  • 1.03
  • 1.04 e 1.02 e 1.24
  • 1.31
  • 1.32 e 1.19
  • e e

e o

e e

e sessessesseseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees**eessessees44 esses

.85 *

.96 e

.97 e 1.10

  • 1.31 *

.95 *

.77

  • 13 *

.90

  • 1.00
  • 1.05
  • 1.13 e 1.34 *

.95 *

.74

  • s e

e e

e e

e sessessessessessessesseessesessessessessesseessessessessessesse*essesse 1.09

  • 1.46
  • 1.12 e 1.44 e 1.20 *

.78 e 14

  • 1.10
  • 1.43
  • 1.11 e 1.37 e 1.19 *

.77 e e

e e

s eseeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseessessessessessesseseee4e*

1.21

  • 1.24
  • 1.14 e

.90 e CALC 15

  • 1.19
  • 1.20
  • 1.10 *

.87

  • NEAS e

e e

e e

seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee44e r

25

FIGURE 4.7 NC6UIRE-t CYCLE-2 ASSEMBLY PEAK AXIAL POWERS - CALC (18 LEVEL) VS. MEAS 18 EFPB 100ZFP CONTROL BANK D AT 207 STEPS WITHDRAUN N

G F

E B

C B

A seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee**esese*o*e e

.96

  • 1.11 e 1.27
  • 1.00 *

.94 *

.82 e 1.13 e 1.32

  • 8 e

.93

  • 1.04 e 1.27 e

.98

  • 1.00 *

.85

  • 1.19
  • 1.27
  • e o

e e

e e

e seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee*ese**ee e

1.13

  • 1.30 e 1.28 e 1.04 e 1.01 *

.95

  • 1.55
  • 1.35 e 9
  • 1.09
  • 1.27
  • 1.25
  • 1.03
  • 1.02 *

.95

  • 1.53
  • 1.28
  • e e

e seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesese*o*

1.27

  • 1.28
  • 1.29 e 1.32
  • 1.03 *

.99

  • 1.17 e 1.23
  • 10 e 1.28
  • 1.27
  • 1.27 e 1.32 e 1.03 e 1.00
  • 1.19 e 1.16
  • e e

e e

e e

esseesseessesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessesessesseessessese**ee*

1.00

  • 1.04
  • 1,32 e 1.29
  • 1.31
  • 1.17 e 1.57 *

.95

  • l 11
  • 1.00
  • 1.04
  • 1.32 =

1.28

  • 1.29
  • 1.15
  • 1.48 *

.91

  • e e

e e

e e

seesessesseeevessessesseesseeeeeeeeeeeeeeeeeeesseeeeeeeeeeeeeeeessessessessessese e

.97

  • 1.02
  • 1.03
  • 1.31
  • 1.47
  • 1.47
  • 1.33
  • 12
  • 1.02
  • 1.04
  • 1.02 4 1.30
  • 1.40
  • 1.41
  • 1.26 e e

e e

e e

e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessesse**ese***

.83 *

.96 *

.99

  • 1.17
  • 1.47
  • 1.01 *

.82

  • 13 *

.88 *

.98

  • 1.05
  • 1.17
  • 1.44 *

.92 *

.77

  • e e

e e

e eseeeeeeeeeeeeeeeeeeeeeeeeeeeeeesessesessessesseessesesessessese** eses

  • e 1.13
  • 1.54
  • 1.17
  • 1.57
  • 1.34 *

.82

  • 14
  • f.12
  • 1.46
  • 1.14
  • 1.44
  • 1.26 *

.79

  • e e

e e

e seessessesessessessessessessessessessessessessesseesses**ee**

e 1.33

  • 1.35
  • 1.23 *

.96

  • CALC 15 e 1.27
  • 1.26 e 1.15 e

.90

  • NEAS e

o e

eseessessessessesseessesessessessessesses i

FIGURE 4.8 MC6UIRE-1 CYCLE-2 ASSEMBLY PEAK AXIAL POWERS - CALC (18 LEVEL) VS. MEAS 30 EFPD 100ZFP CONTROL BANK D AT 194 STEPS WITHDRAWN N

6 F

E D

C 3

A seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee4esetetsses e

.92 e 1.06 e 1.24 e

.97 e

.94 *

.84

  • 1.15 e 1.34
  • 8 *

.92

  • 1.04
  • 1.24 e

.98

  • 1.02 *

.89 e 1.20

  • 1.30
  • e e

e e

o e

esseeeeeeeeeeeeeeessessessessesseeeeeeeeeeeeeees o seeeeeeeeeeeeeesweesse44esseses e

1.08 e 1.27

  • 1.26
  • 1.03
  • 1.01 *

.98 e 1.58

  • 1.37 e 9 e 1.08 e 1.26
  • 1.25
  • 1.03
  • 1.04
  • 1.00
  • 1.53
  • 1.29
  • e o

e e

e e

o e

e seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessessese4ees 1.25 e 1.26

  • 1.27 e 1.34 e 1.04 e 1.01 e 1.19
  • 1.25
  • 10 e 1.27
  • 1.26
  • 1.26
  • 1.32
  • 1.04 e 1.04 e 1.21
  • 1.19 e e

e e

e e

e e

seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseeeeeeeeeeeeeeeeeeeesseessessessesses

.98

  • 1.04
  • 1.34
  • 1.30
  • 1.32 e 1.19
  • 1.59 *

.97

  • 11
  • 1.00
  • 1.04
  • 1.33
  • 1.29
  • 1.31 1.17
  • 1.52 *

.94 *

+

e e

e e

o e

e e

esessessessessesseessesseessessessessessessessessessessessessessesseessese*ese4*e

.95

  • 1.01
  • 1.04
  • 1.32
  • 1.47
  • 1.48
  • 1.35
  • 12
  • 1.03
  • 1.05
  • 1.04 e 1.31 e 1.42 e 1.44
  • 1.29
  • e e

o e

seeeeeeeeeeeeeeeeeeeeeeeeeeeesseessessesseessesseessesseeasesse**ee44e4

.85 *

.98

  • 1.01 e 1.19
  • 1.48 e 1.03 e

.83

  • i 13 e

.90

  • 1.01
  • 1.08 e 1.19
  • 1.44 e 1.01 *

.79 e 1

e e

e e

e esseessessesseessessessessessesseeeeeeeeeeeeeeeeeesseeeeeeeeee.e.e.e.e.

j e

1.14

  • 1.59
  • 1.20 e 1.!?
  • 1.35 *

.84

  • 14 e 1.15
  • 1.50 o 1.16 e 1.45
  • 1.28 *

.81 e

e o

eseesseeeeeeeeeeeeeeeeeeeeeeeeeessessesseesseesseessese4ese*e 1.35 e 1.38 e 1.25 *

.97

  • CALC 15
  • 1.30 e 1.30
  • 1.14 *

.90

  • MEAS l

e e

e e

l eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesse.e.e.

l 1

1

-l l

l 27

- ~

~ l FIGURE 4.9 MC8UIRE-1 CYCLE-2 ASSEMBLY PEAR AXIAL POWERS - CALC (18 LEVEL) VS. MEAS

^'

'48 EFPB 100ZFP CONTROL BANK D AT 228 STEFS WITHDRAWN

/,

H 6

F E

D C

B A

seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesessis**ese*

e

.96 e 1.10 e 1.25 e 1.00 *

.98 e

.84 e 1.11 e 1.28

  • 9 e

.92

  • 1.04
  • 1.23 e

.97 e 1.00 *

.84 e 1.14 e 1.25 e e

e o

e e

o e

e e

seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeesse*essesse*

e 1.12 e 1.28 e 1.24 e 1.06 e 1.03 *

.95

  • 1.51 e 1.31
  • 9
  • 1.07 e 1.24 e 1.22 e 1.01 e 1.01 e

.97

  • 1.48 e 1.24
  • e e

e e

o e

e e

seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesseessesseesseesseseessese*essesse 1.26

  • 1.27 e 1.27
  • 1.Zi
  • 1.04 *

.97

  • 1.14
  • 1.19
  • 10 e 1.25
  • 1.23 e 1.22 e 1.27
  • 1.00 e 1.01 e 1.17 e 1.14
  • e e

e e

e e

o e

eseeeeeeeeeeeeeeeeeeeeeeeeeeeeeessesessesseessessessesesseeeeeeeeeeeeeeeese**eese 1.01 e 1.07 e 1.30 e 1.24 e 1.26 e 1.14 e 1.52 *

.93

  • l 11 e

.99 e 1.03 e 1.26

  • 1.22 e 1.25 e 1.12 e 1.45 e

.90 e e

e e

e e

e e

e e-seessesesessessesessessesseeasseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessesses* eses e

.98

  • 1.03 e 1.04 e 1.26 e 1.39
  • 1.40 e 1.28 e 12 e 1.00
  • 1.02 e 1.00 e 1.25 e 1.34 e 1.37 e 1.23
  • e e

e e

o e

e e

i esseessessessessesseessesessess e ssessessesse ssessesse ssesseessese*eseos e

.84 *

.95 *

.97 e 1.14

  • 1.40 *

.98 *

.79

  • l

'13 e

. 17 e

.97

  • 1.04 e 1.14 e 1.39 e

.96 e

.76

  • e e

e e

e e

e e

essesseessessesessesessessessessesseesseesseessessessessessessese******

1.28 *

.80 *

,1.52 e

1.11

  • 1.52
  • 1.15 e 14 e 1.11 e 1.45
  • t.12 e 1.39 e 1.23 *

.78

  • e e

e e

e secessesseessessesseessessessessessessessessesseessese*****e*

e 1.29 e 1.31 e 1.20 e

.93 e CALC 15 e 1.26

  • 1.25
  • 1.12 e

.87

  • MEAS e

e o

e e

seeeeeeeeeeeeeeeeeeeeeeeee4eesessesse*ess 1

l t

28

l 1

FIGURE 4.10 j

MC6UIRE-1 CYCLE-2 ASSEMBLY PEAK AXIAL POWERS - CALC (18 LEVEL) VS. MEAS 61 EFPD 100ZFP CONTROL BANK D AT 220 STEPS WITHDRAWN H

6 F

E D

C B

A seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesessessessessessesseseess 4e e

.95

  • 1.08 e 1.23 *

.99 *

.97 *

.84

  • 1.12 e 1.29 e 8 *

.91 1.03

  • 1.23 *

.96

  • 1.00 *

.86

  • 1.15
  • 1.24
  • e e

e e

seessessessessesseosseseeessesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee*

1.10

  • 1.25
  • 1.24
  • 1.05
  • 1.02 *

.96 e 1.52

  • 1.31
  • 9-*

1.06

  • 1.23
  • 1.21
  • 1.00 e 1.00 e

.96

  • 1.47 e 1.24 e e

e e

sessessessesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseessessessesseseassessesse***e4:4 1.23

  • 1.24
  • 1.25 1.28
  • 1.03 *

.98

  • 1.15
  • 1.20
  • 10
  • 1.24
  • 1.22
  • 1.21
  • 1.26
  • 1.00
  • 1.01
  • 1.17
  • 1.14
  • e e

e e

e sessessessessesseessessessessesseseessesseessessessessessesseeeesseesse4:4 4 esses e

1.00

  • 1.05
  • 1.28
  • 1.24
  • 1.26 e 1.14
  • 1.52 e

.93

  • 11 *

.99

  • 1.03
  • 1.26
  • 1.22
  • 1.24
  • 1.12
  • 1.45 *

.90

  • e e

o e

s esessessesseessessessessessesseeessessesseeeeeeeeeeeeeeeeeeeeeees**sessee***ese**

.98

  • 1.02
  • 1.03
  • 1.26
  • 1.39
  • 1.40
  • 1.28
  • 12 e 1.01
  • 1.02
  • 1.00 e 1.24
  • 1.33
  • 1.35
  • 1.22
  • e e

essesseessessessessessessessessesseessessessessesses4 eesessese4:4 444.

.85 *

.96 *

.98

  • 1.14
  • 1.40 *

.98 *

.80

  • 13 *

.88 *

.98

  • 1.04
  • 1.14
  • 1.38 *

.96 *

.75

  • l e

e e

e seessessessesseessessessesseessesse**sse**sessesesesseessessesses4:4ese 1.12

  • 1.53
  • 1.16
  • 1.52
  • 1.28 *

.80 e 14

  • 1.10
  • 1.44
  • 1.12
  • 1.38
  • 1.22 *

.77

  • l e

e e

l essesse.sessessesseessessessessessesseessessessessesse4erese.

l 1.29

  • 1.31
  • 1.20 *

.94

  • CALC 15
  • 1.24
  • 1.23 e 1.11 *

.87

  • MEAS e

e o

e e

seesseessessessessessessesesessessese****

l l

l l

i 29

FIGURE'4.11 MC6UIRE-1 CYCLE-2 ASSEMBLY PEAX AXIAL POWERS - CALC (18 LEVEL) VS. HEAS 101 EFPD 100%FP CONTROL BANK D AT 223 STEPS WITHDRAWN H

6 F

E D

C B

A esseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesessesessessessessesseessese**sessessee e

.93

  • 1.05
  • 1.20 e

.98 *

.97 *

.85

  • 1.12 e 1.26
  • 8 e

.90

  • 1.03
  • 1.23 e

.97

  • 1.01 *

.88 e 1.14

  • 1.21
  • e o

e e

e e

seeeee ee ee ee eeess eeeeeee e ee ee eee eeeeee eeee e e eess esse essesee e eeee eesseess e*ese*ese

'e 1.07

  • 1.23
  • 1.21
  • 1.03 e 1.02 - e

.97 e 1.51

  • 1.29 e 9
  • 1.04 e 1.21 e 1.19 e 1.00 e 1.01 e

.97 e 1.45 e 1.21

  • e e

e e

e e

e e

seeeeeeeeeeeesseeeeeeeeeeeeeeeeessessessessessessessessesseseeeeeeeeeeeeesse* esse e

1.21 e 1.21

  • 1.21
  • 1.27 e 1.02 *

.99 e 1.15

  • 1.18 e 10
  • 1.22
  • 1.20
  • 1.19 e 1.25
  • 1.00
  • 1.01 e 1.15 e 1.13 e e

e e

o e

e e

=

eseesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseeeeeeeeeeeeeeeeeeeesessessese* eses e

.98

  • 1.03 e 1.27 e 1.23 e 1.24 e 1.13
  • 1.49 *

.93

  • 11 *

.99

  • 1.02 e 1.25
  • 1.21 e 1.23
  • 1.10
  • 1.41 *

.90

  • e e

e e

e e

e essessesessessessessessessesseessessessessessesseessesseesseessessese**o**** esses

.98

  • 1.02
  • 1.02
  • 1.24 e 1.35
  • 1.36
  • 1.25 e 12 e 1.01 e 1.02
  • 1.00 e 1.23
  • 1.30 e 1.32 e 1.20
  • l e

e.

e e

e o

e e

seesessessessesessesesseesseessessessessesseessees****essesses*** esses

  • I e

.86 *

.98 *

.99

  • 1.13 e 1.36 e

.97 e

.79 e I

13 e

.89 *

.98

  • 1.03
  • 1.12 e 1.34 e

.95 *

.74

  • i l

e e

e e

e e

e I

seesseessesesseessesses***esessessessessesseessessessessessesses***ses*

l 1.12 e 1.51

  • 1.15 e 1.49
  • 1.25 e

.80

  • l 14
  • 1.10
  • 1.43
  • 1.11
  • 1.37
  • 1.20 e

.77

  • e e

e o

e e

essessesseesseessessessesesseessessesseessesse**essesse***ess 1.26

  • 1.29
  • 1.18 *

.93

  • CALC 15
  • 1.21
  • 1.20
  • 1.10 e

.87

  • MEAS e

e e

seessessesseessesseessessessessessesse***

e i

I t

[

30

FIGURE 4.12 MCGUIRE-1 CYCLE-2 ASSEMBLY PEAK AXIAL POWERS - CALC (18 LEVEL) VS. MEAS 130 EFPD 100ZFP CONTROL BANK D AT 216 STEP 3 UITHDRAUN H

G F

E D

C B

A seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeese4eese44eee4:4e*

.93 e 1.05 e 1.21 *

.98 *

.97 *

.88

  • 1.13
  • 1.25
  • 8 e

.93

  • 1.04
  • 1.23 *

.98

  • 1.01 *

.89

  • 1.14
  • 1.20 e e

e e

e o

e e

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseesseessessessesseesseessessesseesseee4:4eee44.

1.07 e 1.24 e 1.22

  • 1.03
  • 1.02 *

.99

  • 1.50
  • 1.27
  • 9
  • 1.07
  • 1.23 e 1.20
  • 1.01
  • 1.02 *

.99

  • 1.45
  • 1.20
  • e e

e e

e e

seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeses4 4eeeeees 1.22 e 1.22

  • 1.22 e 1.27
  • 1.03 e 1.00
  • 1.15
  • 1.17 e 10
  • 1.23
  • 1.22 e 1.20 e 1.26
  • 1.01 e 1.02
  • 1.14 e 1.11
  • e e

e e

e e

e e

4 eeeesesseessessesseseessesesseeeeeeeeeeeeeeeesesessesseesseeeeeeeesseess4es e44ee e

.98 e 1.03

  • 1.27
  • 1.23
  • 1.24 e 1.13
  • 1.48 *

.93

  • 11 *

.99

  • 1.03 e 1.26 e 1.22
  • 1.24 e 1.11
  • 1.41 *

.90 e e

e e

e e

o e

seeeeeeeeeeeeeeeeeeeeeeeeeeesseeessessessessesseessessessessesseessesse*4essesses

.98 e 1.03 e 1.03

  • 1.24
  • 1.34
  • 1.35 e 1.24
  • 12 e 1.03
  • 1.04
  • 1.02
  • 1.24
  • 1.31 e 1.32
  • 1.19 =

e e

e o

e e

e esessese****essessesseesseeeeeessesseessesesse**seesseessesses**ese4:4e

.88 *

.99

  • 1.00
  • 1.13
  • 1.35 e

.98 *

.80 e 13 *

.90

  • 1.00 e 1.05
  • 1.13 s 1.34 *

.95 *

.76 e e

e e

e e

e seeeeeeeeeessesseeeeeeeeeeeeeeeesessese**eseessessesseessessesses44 eses 1.13

  • 1.50
  • 1.15
  • 1.48 e 1.24 *

.80

  • 14
  • 1.10
  • 1.43 e 1.11
  • 1.37.*

1.19 *

.77

  • e e

sesseessessesseteesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee4es4*e e 1.25

  • 1.27 e 1.17 e

.93

  • CALC 15
  • 1.19
  • 1.20
  • 1.10 *

.87

  • MEAS e

e e

e e

essessessessessesseessesseessessessesse4e 1

l l

l l

31

-z

.(-K V

- Q.5. Duke Power Company's' contention that:no uncertainty in calculated pin powers needs to be accounted for. has not been adequately established.. R0ne of a set of_ standard problems, recently de -

veloped at Brookhaven National Laboratory for a licensee to

-assess its ability to calculate typical PWR fuel assemblies, is attached. The licensee's solution using PDQ07 will be an important means of determining the uncertainty in the calculated pin peaking ' factors.

~A 5 ' Both NFS-1001A'and ' Section 8 of DPC-NF-2010 presented justification the the PDQ97 model using two group HND cross sections overpredicts the' maximum rod powers' when compared to both measured criticals and -

more advanced transport theory calculations. These comparisons covered different assembly designs, different enrichments, different burnable absorbers, different fuel and moderator temperatures, and different soluble boron concentrations.

Duke Power as prime contractor to DOE has recently performed additional cold criticals at B&W.

Results from two of the criticals, compared to

'EPRI-CELL /PDQ97 calculations are attached (Report DOE /ET/34212-41,

' April,1984).

Core 1 represents a _no burnable absorber B&W fuel-assembly and Core 5 a gadolinium poisoned B&W fuel assembly.

Figure A-3 (Figure 5.1, Answer 5) and A-4 (Figure 5.2) show comparisons of measu' ed to calculated powers for these cores. The maximum rod powers were overpredicted by EPRI-CELL /PDQ97 by 1.2% and 1.4% respectively.

An analysis of the eitht highest measured pins for each critical assembly.

shows thct the average ' pin power difference was...+ 0.0061 (Core 1) and

+ 0.0104 (Core -5) with PDQ97 overpredicting relative to measured.

PaFa A-4 of DOE /ET/34212-41 attributes the overprediction of pin powers near the water. holes toIuse of MND thermal cross sections.

D2ke Power has performed the requested calculations on the BNL benchmark nssembly problem using EPRI-CELL /PDQ97. The results of'those calculations.

,are attached.

Figures 5.3 through'5.16 present PDQ97 calculated rod powers for.the non-rodded and 16 BP cases. Table 5.1 presents rod power summary data for these analyses. Table 5.2 presents summary reactivity.

information as requested in section II of the benchmark problem. In accordance with the Duke-NRC telephone agreement, data for items I.2

. through I.5 of the problem will not be presented.'

\\;

I From 'the information presented in NFS-1001A, DPC-NF-2010, DOE /ET/34212-41, and the benchmark assembly calculations, sufficient analyses have been performed ~ to show that no additional pin peak uncertainty is necessary.

I 1

32

. s-... -

v.

Table 5.1 Benchmark Problem EPRI-CELL /PDQ67 Analysis

~ Maximum ; Rod Power. Sunanary Exposure Non-BP 16-BP (MWD /MT)

Assembly Assembly O.

1.060 1.107 500 1.059 1.104 5000 1.054 1.073 10000 1.046 1.041

-20000 1.028 1.021 30000

1.014 1.016 40000 1.008 1.010 33

Tabis 5.2 Benchmark Problem

' Reactivity Defect-Calculations No BP's O MWD /MTU

~

30000 MWD /MTU Case Description

'K-Infinity.

% Ap K-Infinity

% Ap 0

Base.

1.183699 0.896243 l~

Doppler 41.194852

-0.789 0.907013

-1.325 2-MTC 1.186067

-0.169 0.897301

-0.132 3

68*F 1.211947

-1.969 0.898143

-0.236 4

300*F 1.204695

-1.472 0.904724

-1.046 5

SOLB 1.241994

-3.965 0.937659

-4.928 6

Xe 1.223867

-2.773 0.921068

-3.007 7

Rods 0.789700 42.149 0.605476 53.583 16 BP's 0 MWD /lfrU 30000 MWD /tfrU Case Description K-Infinity

% Ap K-Infinity

- % Ap 0

Base 1.020581 0.901031 1

Doppler 1.030387

-0.932 0.912429

-1.386 2

MTC 1.025619

-0.481 0.903525

-0.306 3

68'F 1.069628

-4.493 0.912266

-1.367 4

300*F 1.053687

-3.079 0.916026

-1.817 5

SOLB 1.060567

-3.694 0.938213

-4.398 6

Xe 1.049333

-2.685 0.926059

-3.000 l

l l

34

.m

.];

Table'5.2 (Continued)

-Additional = Xenon Defect Data No BP's 0 MWD /MTU 30,000 MWD /MTU

. Xenon Defect (% Ap)

-2.773'

.-3.007 4

- Xenon Concentration (Atoms /cm )1

'2.1337 x 1015 3

1.8623 X 1015' Xenon Defect (% Ap/ atoms /cm )2

-1.300'x.10-15

-1.615 x 10-15 3

16 BP's O MWD /MTU 30,000 MWD /MrU Xenon Defect-(%

-2.685

-3.000 3

15 Xenon' Concentration (atoms /cm )1 2.1334 x 1015 2.0056 x 10 Xenon Defect (% / atoms /cm )2

-1.25'9 x 10-15 1.496 x 10-15 3

1.

Value averaged over entire assembly volume.

Fuel to Assembly volume ratio =.90459.

=2. _. Defect per unit. volume evaluated over entire assembly.

4

+

4 35

_ - _...... - ~... _,,,.,.

d

' Table 5.3.

' e

'PDQ67; EPRI-CELL 1

'l.

Name of Codes 1

2; RAM 112{1 EPRI;'EPR Code Sources.

~

Version 2.

Reference for Calculational Nethod.- DPC-NP-2010

~3. -Assembly Solution Method - Two Group Diffusion Theory.

~

1 4.

Pin-Cell Solution' Method - Transport Theory 5.-

Spatial Mesh Assy/ Pin-Cell.

Assembly - One mesh interval per pin 1

Pin-Cell - Four Mesh intervals in fuel' pin One mesh interval in clad

/

Five mesh intervals in moderator Two mesh intervals in extra region

6. ' Neutron Cross Section Library - -ENDF/B41 7.

Number of Fast / Thermal Groups i

No. Fast Groups No. Thermal Groups Assembly 1

1 Pin Cell 62

~5 8.

Depletion Steps -

Assembly (hrs) - 0, 150, 500, 1000, 2000, 3000, 4000, 5000,-6000, 8000, jn000,12000,14000,16000,18000, 20000, 22000, 44000, 26000, 28000,' 30000, 32000, 34000, 36000, J8000, 40000 Pin / Cell (MWD /MTU)1 0,'0.001, 100, 500, 1000, 2000, 4000, 6000, 8000,~10000, 12000, 14000, 16000, 18000, 20000, 22000, 24000, 26000,128000, 30000, 32000, 34000, 36000,-38000,-40000 1_ All cross-section sets for benchmark problem except CRA and BP were calculated ^with EPRI-CELL.

d t

36

T J

Table 5.3 (Continued) 1.'

Name of. Codes CASM02E2

+

Code Sources

'STUDSVIK' Version 5:

- 2.

Refere.nce for Calculational Method DPC-NF-2010

- 3..~ Assembly Solution Method

.Two Group Diffusion Theory 2

l 4.

Pin-Cell Solution Method -' Transport Theory

5. : Spatial Mesh Assy/ Pin-Cell 1

Assembly - One mesh interval per. pin 2

Pin-Cell -

One mesh interval per pin ENDF/B32

6. -Neutron Cross Section Library
7. -Number of Fast / Thermal Groups No. Fast Groups No. Thermal Groups 4

Assembly 4

3-Pin-Cell 9

16

. 8.

Depletion Steps Assembly - See Table 5.3 page 1, Pin-Cell _(MWD /MTU)2 -

0, 150, 500, 1000, 2000, 3000, 5000, 7500, 10000, 12500, 15000, 20000,

'25000,' 30000,.35000, 40000-i 2 - Refers to Burnable Poison and Control Rod Data 37

Figure A-3.

Comparisons of Measured and Predicted Normalized Relative Power Densities for Core 1 l.018

-1 011

.987 981

.997 966 945 INCORE I.038

.997 979' 975 978

.958 936 DETECTOR

.020

.014

.008

.006

.019

.008

.009 1 019 1.067 1.012 1 009 1 058 999

,945 1.035 1.069 1.015 1.012 1.054 988 941

.016

.002 003

.003

.004

.011

.004 l.Gai 1-.090 1.032 953 WATER I.087 1.089 WATER I.045,

947

.006

-.001 013

-.006 1 054 1.104*

l.086

.989

.945 I

1.070 1.I17' l.100

.994 939

.016 013

.014

.005

.006 1 059 965 934 WATER l.062 957

.928

.003

- 406

.006 988 938 923

.986

.937 919

.002

.001

.004p Measured RPD 925 914 Calculated RPD 921

.911 ARPD

.004

.003 903 RMS(ARPD) = 0 008 903 Max (ABS (6RPD)) = 0.020

,000

  • Maximum power fuel rod predicted or measu red.

l

\\

FIGURE 5.1 38

Fiqure A-4.

Comparisons of Measured and Predicted Normalized Relative Power Densities for Core 5 1 005

.913 V.170

.932 1.036 1.063 1.072 INCORE-1.026

.886

.196

.903 1.045 1.077 1.090 DETECTOR 021

.027

.026

.029

.i009

.014 018

.999 1.017 931 1.007 1.125 1.094 1.089 1.021 1 012 901 997 1.135 1.112 1.096

.022

.005

.030

.010

.010

.018

.007 988 1.087 1.158' l.100 WATER 962 1.073 WATER I.174*

l.102

.026

.014

.016

.002 F'.181 1.050 1.13 1

1. 08 8 1.086

.203 1.035 1.158 1.105 1.090

.022

.015

.027

.017

.004

1. 0 48 1.035 1.070 WATER I.018 1.018 1.070

.030

.017

.000 P'.187

.963 1 054

.211

.939 1.058

.024

.024

.004 Heasured RPD l.018 1.060 l

Calculated RPD 1.009 1.069 97 ARPD

.009

.009

' UO -

2 Gd 0 23 1.070 1.083

.013 RMS(ARPD)=0.018 Max (ABS (ARPD)) = 0.030

  • Haximum power fuel rod predicted or measured.

l l

l FIGURE 5.2 i

39

PDQ67 CALCULATED ROD POWERS PDQ-7 i

PPMB 400 NUMBER BA 0

0.

K-INFINITY 1.18377 BURNUP 0

  • MAX. R0D POWER 1.060 1.035 1.013

.1.038 1.013 1.015 O.

1.029 1.032 0.

1.037 1.014 1.018 1.044 1.051 1.035 1.011 1.015 1.043 1.060 0.

PDQ97 0.

1.019 1.023 0.

1.042 1.014 0.975 1.01'2 0.991 0.993 1.006 0.989 0.961 0.942 0.932 0.975 0.971 0.970 0.972 0.964 0.951 0.942 0.939 0.949 FIGURE 5.3 40

PDQ67 CALCULATED ROD POWERS i

i PDQ-7 PPMB 400 NUMBER BA 0

0.

K-INFINITY 1,17560 BURNUP 500

  • MAX. ROD POWER 1.059 1.035 1.013 1.037 1.013 1.014 0.

1.028 1.032 0.

4 1.037 1.013 1.017 1.043 1.051 1.034 1.011 1.015 1.043 1.059 0.

PDQ97 0.

1.018 1.022 0.

1.041 1.014

.975 1.012

.992

.993 1.006

.989

.962

.943

.933

.975

.971

.971

.972

.964

.952

.942

.940

.950 FIGURE 5.4 41

h PDQ67 CALCULATED ROD POWERS PDQ-7 PPMB 400 NUMBER BA 0

0.

K-INFINITY 1.12604 BURNUP 5000

  • MAX. ROD POWER 1.054 1.032 1.012 1.034 1.012 1.014 i

O.

1.026 1.029 0.

1.034 1.013 1.016 1.040 1.047 1

1 1.031 1.010 1.014 1.039 1.054 0.

PDQ97 O.

1.017 1.021 0.

1.038 1.013

.977 l

1.011

.992

.993 1.006

.990

.965

.947 938 l

l

.978

.974

.973

.974

.967

.955 947 944

.954 l

FIGURE 5.5 i

42 1.

PDQ67 CALCULATED ROD POWERS PDQ-7 PPMB ann NUMBER BA n

O.

K-INFINITY 1.06962 BURNUP 10,000

  • MAX. ROD POWER 1.046 1.028 1.012 1.030 1.012 1.013 0.

1.023 1.026 0.

1.029 1.012 1.015 1.034 1.040 r

1.027 1.010 1.013 1.034 1.046 0.

PDQ07 O.

1.015 1.018 0.

1.032 1.010

.980 1.009

.994

.995 1.005

.991

.969

.954

.945 l

l

.981

.978

.977

.978

.971

.961

.953

.950

.9553 FIGURE 5.6 l

l l

43

PDQ67 CALCULATED ROD POWERS PDQ-7 PPMB 400 NUMBER BA 0

0.

K-INFINITY 0.97482 BURNUP 20.000

  • MAX. ROD POWER 1.028 i

1.019 1.010 1.019 1.010 1.011 O.

1.016 1.018 0,

1.019 1.010 1.012 1.023 1.026 1

1.017 1.008 1.010 1.022 1.028 0.

PDQW7 1

0.

1.010 1.012 0.

1.019 1.006

.986 1.005

.997

.997 1.002

.994

.980

.969

.962

.988

.986

.986

.986

.981

.973

.967

.965

.969 i

FIGURE 5.7 44

(

PDQ67 CALCULATED ROD POWERS PDQ-7 PPMB 400 NUMBER BA 0

0.

K-INFINITY 0.89624 BURNUP 30.000

  • MAX. ROD POWER 1.014 1.010 1.007 1.011 1.007 1.007 O.

1.009 1.010 0.

1.011 1.007 1.008 1.013 1.014 1.010 1.006 1.007 1.012 1.014 0.

PDQG7 0.

1,005 1.006 0.

1.009 1.002

.992 i

l 1.002

.999

.999 1.001

.997

.989

.982

.978 l

.994

.993

.993 992

.989

.985

.981

.979

.981 I

i FIGURE 5.8 45

PDQ67 CALCULATED ROD POWERS PDQ-7 PPMB 400 NUMBER BA 0

0.

K-INFINITY 0.83305 BURNUP 40.000

  • MAX. ROD POWER 1.008 1.005 1.003 4

1.005 1.003 1.004 0.

1.005 1.005 0.

1.005 1.004 1.004 1.007 1.008 1.005 1.003 1.004 1.006 1.008 0.

PDQey O.

1.003 1.003 0.

1.005 1.001

.996 i

1.001

.999

.999 1.000

.998

.994

.991

.988 i

.997

.996

.996

.996

.995

.992

.990

.988

.989 FIGURE 5.9 r

46

l PDQ67 CALCULATED R0D POWERS PDQ-7 PPMB 400 NUMBER BA 16 0.

K-INFINITY 1.02062 O

BURNUP

  • MAX. ROD POWER 1.107 1.054 1.027 0.954 0.986 1.029 O.

0.964 1.046 0.

0.957 0.986 1.021 1.022 0.959 1.064 1.030 0.975 0.925 0.883 0.

PDQ97 0.

1.060 0.957 0.

0.882 0.906 0.954 1.107 1.062 0.989 0.942 0.950 0.980 1.008 1.038 1.083 1.066 1.035 1.013 1.013 1.027 1.046 1.067 1.092 FIGURE 5.10 47

/

PDQ67 CALCULATED R0D POWERS i

PDQ-7 PPMB 400 NUMBER BA 16 0.

K-INFINITY 1.01969 BURNUP 500

  • MAX. ROD POWER 1.104 1.053 1.027 0.957 0.987 1.028 O.

0.966 1.046 0.

i 0.959 0.987 1.021 1.023 0.962 1.063 1.030 0.976 0.929 0.888 0.

PDQ07 0.

1.059 0.959 0.

0.887 0.910 0.955 1.10 4 1.059 0.989 0.944 0.952 0.980 1.006 1.034 1.080 1.063 1.033 1.012 1.012 1.025 1.042 1.062 1.087 FIGURE 5.11 48

PDQ67 CALCULATED ROD POWERS PDQ-7 PPMB 400 NUMBER BA 16 i

0.

K-INFINITY 1.02749 B M UP s nno

  • MAX. ROD POWER 1.073 1.046 1.023 0.983 0.997 1.024 0.

0.987 1.040 0.

0.984 0.996 1.019 1.027 0.987 1.052 1.024 0.989 0.963 0.938 0.

PDQG7 0.

1.045 0.979 0.

0.933 0.941 0.961 1.073 1.038 0.991 0.964 0.964 0.975 0.988 1.005 1.047 1.035 1.014 1.000 0.998 1.003 1.012 1.025 1.044 FIGURE 5.12 49

t.

PDQ67 CALCULATED ROD POWERS PDQ-7 PPMB 400 NUMBER BA 16 0.

K-INFINITY 1.02278 BURNUP 10.000

  • MAX. ROD POWER 1.041 1.036 1.018 1.007 1.005 1.018 0.

1.006 1.031 o.

1.007 1.004 1.016 1.027 1.008 1.038 1.016 1.000 0.995 0.986 0.

PDQ97 0.

1.029 0.998 0.

0.978 0.972 0.970 1.041 1.017 0.994 0.984 0.977 0.973 0.974 0.979 1.017 1.009 0.998 0.990 0.986 0.984 0.986 0.992 1.006 4

FIGURE 5.13 50

PDQ67 CALCULATED ROD POWERS PDQ-7 PPMB 400 NUMBER BA 16 0.

K-INFINITY 0.97150 BURNUP 20,000

  • MAX. ROD POWER 1.021 1.020 1.010 1.018 1.009 1.010 0.

1.015 0.017 0.

1.018 1.008 1.010 1.020 1.020 1.019 1.008 1.007 1.017 1.021 0.

PDQ97 0

1.012 1.010 0.

1.012 1.000 0.984 1.010 1.000 0.997 1.000 0.991 0.978 0.971 0.968 0.994 0.991 0.988 0.987 0.982 0.976 0.973 0.973 0.979 FIGURE 5.14 51

r

/

PDQ67 CALCULATED ROD POWERS PDQ-7 PPMB 400 NUMBER BA 16 0.

K-INPINITY 0,90103 BURNUP 30.000

  • MAX. ROD POWER 1.016_

1.011 1.006 1.013 1.007 1.006 0.

1.011 1.010 0.

1.012 1.007 1.007 1.012 1.014 1.0 10 1.005 1.006 1.013 1.016 0.

PDQG7 0.

1.005 1.007 0.

1.010 1.002 0.991 1.003 1.000 1.000 1.001 1.000 0.987 0.981 0.978 0.995 0.993 0.992 0.991 0.988 0.984 0.981 0.980 0.983 FIGURE 5.15 52

PDQ67 CALCULATED ROD POWERS PDQ-7 PPMB 400 NUMBER BA 16 0.

K-INFINITY 0.84163 BURNUP 40.000

  • HAX. ROD POWER 1.010 1.005 1.003 1.007 1.004 1.004 4

0.

1.006 1.005 0.

9 1.007 1.004 1.004 1.007 1.008 1.005 1.003 1.004 1.008 1.010 0.

PDQ97 0.

1.003 1.004 0,

1.007 1.002 0.995 1.001 0.999 0.999 1.001 0.998 0.993 0.989 0.987 s

l 0.996 0.996 0.995 0.995 0.993 0.990 0.988 0.988 0.989

(

FIGURE 5.16 53

7 Q.62 Please provide the updates' to' DPC-NF-2010, if any, that will make,it consistent with the methodologies.being used by Duke' Power.-

A.6 ;The following sections address-updates to the. methods described.

' in DPC-NF-2010.. x 1.-

'EPRI-NODE-P Normalizaticn:

In addition to adjusting radial albedoes, small M2 adjustments are made for various -fuel' types (usually only fresh fuel) to attain better agreement with PDQ97 radial power calculations.

Fugures 6.1 and 6.2 show the improvement for assembly radial powers with respect to measurement. Figures 6.3 and 6.4 cadress c

assembly peak power improvements. The data in figures 6.1 through 6.4 represent McGuire Unit 1 Cycle 2.

2.

' Axia1 Nodal Modeling:

Section 11 of DPC-NF-2010 presents a benchmark analysis which employed twelve axial nodes per assembly.

Core-specific axial

modeling would conform to the physics requirements of the core.

Answer 4 addressed the calculated-to-measured improvement shown.

by employing eighteen axial nodes per assembly.

Should future fuel assemblies become non-uniform, i.e., axial blankets or part length burnable absorbers, the Duke Power version of EPRI-NODE-P

.can adequately model the core.

Since the upgrades described in parts 1 and 2 have significantly improved galculated-to-measured agreement, the ONRF values for Fq and F H in DPC-NF-2010 are considered conservative. Therefore, 6

' even though the upgraded methods have demonstrated improved agree-ment, Duke Power will still employ previously derived ONRFs.

f I

3.

EPRI-NODE-P Enhancements:

EPRI-NODE-P has received several major enhancements which are discussed below.- This enhanced version was used throughout the analyses shown in DPC-NF-2010. These enhancements are:

n.

Partial reactivity formulations due to xenon, moderator temperature, and doppler temperature have been revised

, 5 to include third order burnup dependent multipliers.

b.

Fuel assemblies can be axially modeled as containing up to three dffferent fuel types.

c.

Rodded M2 is linearly adjusted according to the fraction of node length occupied by a control rod.

t 54

d.

The full power volumetric average-fuel temperature has been revised to a burnup dependent fourth order polynomial.

f.

The nodal source convergence routine has been modified to use the Gauss-Seidel iterative method with the in-clusion of an optional acceleration parameter, g.

Minor enhancements have also been made which allow more user-friendly input and output features.

Likewise, Duke Power's fitting code EPRI-SUPERLINK has been s

modified to provide compatibility with EPRI-NODE-P. All codes are rigorously tested and certified before production usage in conformance with Duke Power's Q/A procedures.

e bf 5

eh A

i i

b

\\

D

},.

  • p s

g g..

i,1 i a- {.

55

i:

(

t NC6UIRE-1 CYCLE-2 ASSEMBLY RADIAL POWERS - CALC (NO HSOUARE ADJ) VS. HEAS 48 EFPD 100%FP CONTROL BANK D AT 228 STEPS WITHDRAUN H

8 F

E D

C B

A seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseeeeeeeeeeeeeeeeeee*4e**4 4 4ess

.84 *

.97 e 1.15 *

.88 *

.88 *

.73 *

.91

+

1.03

  • 8 *

.83 *

.94

  • 1.11 *

.87 *

.90 *

.77 *

.98

  • 1.06
  • e e

e esesses***eessessessesse****sessessessessessessesessesses**sessese*****s**esesses

.79

  • 1.18
  • 1.16 e

.93 *

.90 *

.83 e 1.25

  • 1.04 e 9' e

.97

  • 1.12
  • 1.10 *

.91

.91

.85

  • 1.26
  • 1.05
  • 1 e

e e

s essessessessessesseeeeeeeeeeeeeeeeeeeeesseesseeeeeeeeeeeesseeeeeeeesseesseie4 4e*

e 1.16

  • 1.16
  • 1.16
  • 1.20 *

.92 e

.86 *

.93 e

.96

  • 10
  • 1.13
  • 1.11
  • 1.11
  • 1.16 *

.91

.89 *

.99 *

.97

  • s e

e e

e e

e e

nessessessessessessessesseessesseesseesseesseessessessessesse**sesseesse4eie4e4*e i

.88 *

.94

  • 1.20 e 1.16
  • 1.15 *

.97

  • 1.23 *

.76

  • 11 4

.89 e

.93 e 1.16 e 1.11

  • 1.12 e

.98

  • 1.23 *

.77

  • e e

e e

e esessessesseeeeeeeeeeeeeeeeeeeeeeeeesesseesseesseessessessessesseessese4e4ese4ess

.89 *

.91

.92

  • 1.15
  • 1.23 e 1.16
  • 1.05
  • 12 e

.91

.92 *

.91 e

1.13

  • 1.19
  • 1.19
  • 1.06
  • e e

e e

e

[

eestesseeeesessessesseess........

.......s.

.....e4.

4e4:4

.74 *

.84 *

.84 *

.97

  • f.16 e

.79 *

.65 e 13 e

.79 *

.87 *

.91 e

.99

  • 1.f.0

.83 *

.66 *

(

e e

e e

e e

4 i

esesesseessesse**ssessessesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee4:44e44e t

e.

.91 e

1.25 *

.93

  • 1.24
  • t.05 *

.65 *

(

14 *

.f9

  • 1.26 *

.97

  • 1.20
  • 1.05 *

.67 e e

e e

  • sessessesessesessesseessesseeeeeeeeeeeeeeeeeeeeeeeeeeves****

e 1.03

  • 1.05 *

.96 e

.76 e CALC 16 e 1.06

  • 1.05 e

.95 *

.75 e NEAS e

e e

e4eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeese*

FIGURE 6.1 1

56

. - ~.

I i

MCGUIRE-1 CYCLE-2 ASSEM8LY RADIAL POWERS - CALCULATED VS. HEASURED 48 EFPD 100ZFP CONTROL 8ANK D AT 228 STEPS WITHDRAWN H

6 F

E D

C 8

A seeeeeeeeeeeeeeeeeiesseeeeeeeeeeeeeeeeeeeeeeees eeeeeeeeeeeeeeeessesee*** *ere.se*

.83 *

.96 e 1.10 *

.88 *

.86 e

.75 e

.95

  • 1.03
  • 8 e

.83 e

.94 e 1.11 *

.87 e

.90 *

.77 *

.98 e 1.06 e o

e o

e o

e o

e e

ce ss eee eee e e e e e e ee e eeee e ee e e e e e e e e e ee e e e e e e e e e e e e e e e e e e e e e e e ee e e e e e e e ee e e e e* e.=e4 e

.98

  • 1.13 e 1.12 e

.93 *

.91 *

.85

  • 1.24
  • 1.04
  • 9 *

.97

  • 1.12 e 1.10 *

.91

.91 *

.85

  • 1.26 e 1.05
  • e e

e e

o e

e e

esseceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesseesses**ese-esse e

1.11

  • 1.12
  • 1.13
  • 1.14 *

.93 *

.88 *

.97 e

.96

  • 10 e 1.13 e 1.11 e 1.11 e 1.16 e

.91 e

.89 *

.99 e

.97

  • e o

e e

e 4

esseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee***eseessessesse***essesesse44e4:4ee e

.88 e

.94

  • 1.14 e 1.13
  • 1.13 e 1.00
  • 1.23 *

.75 e 11 e

.89 *

.93

  • 1.16
  • 1.11 1.12 *

.98

  • 1.23
  • e77
  • e e

e e

+

e ses***eesessesseesse**sessesse**essesseessessessesseesseessessesses**eesie***-tas

.86 e

.91 e

.93

  • 1.13
  • 1.22 e 1.19
  • 1.04 e 12 e

.91

.92 *

.91 e

1.13

  • 1.19
  • 1.19
  • 1.06
  • e e

e e

e e

e e

sessesses******sesessesseses*****eesseesessemeesseessesses****** 44 e44

.76 *

.86 *

.88

  • 1.00
  • 1.19 *

.85 *

.46

  • 13 *

.79 *

.87 *

.91

.99

  • 1.20 *

.83 4

.66

  • e e

e e

e e

es s e ss e s s e e s s e es **e s e s s e s s e s se s s e s s e s s e e s s e * * *

  • s e s s e s s e s s e e s e s* ** s.ee se s

.96

  • 1.24 *

.98

  • 1.23 e 1.05 *

.66

  • 14 *

.98 e 1.26 *

.97 e 1.20

  • 1.05 *

.67

  • e e

e e

e esse ***sesseessese**esesessesseeesseesseessesse***ees-se4 4:4e e

1.03

  • 1.05 e

.96 *

.75 e CALCULATED 15 e 1.06

  • 1.05 e

.95 *

.75

  • MEASURED e

e s

seesessesseeestessesseesseessessesseseosa FIGURE 6.2 57

MCGUIRE-1 CYCLE-2 ASSEMBLY PEAK AXIAL POWERS - CALC (N0 NSOUARE ADJ) VS. MEAS 48 EFPD 100ZFP CONTROL BANK D AT 228 STEPS WITHDRAWN H

G F

E D

C B

A sesseeteesseessssssessesseesseessessesessessessesseessessesese* esse *4 esses-4 esses *

.97

  • 1.11
  • 1.29
  • 1.00
  • 1.00 *

.81 1.06

  • 1.30
  • 8,*

.92

  • 1.04
  • 1.23 *

. 97

  • 1.00 *

.86

  • 1.16
  • 1.25
  • e e

essessesseessessesseesseses*****sesseesses***sesseessesses**essesesseses*****ssis 1.13

  • 1.32 s 1.30 e 1.06
  • 1.02 e

.93

  • 1.54
  • 1.32
  • 9
  • 1.07
  • 1.24
  • 1.22
  • 1,01
  • 1.01 *

.97

  • 1.48
  • 1.24
  • e e

e sesseesssessessessessessessssssssssesseesssesessessessessessesseessesssss**ses*4:

1.30

  • 1.31 e 1.31 e 1.33
  • 1.03 *

.95

  • 1.G9
  • 1.20 e 10
  • l.25 s 1.23
  • 1.22
  • 1.27
  • 1.00
  • 1.01
  • 1.17
  • 1.14
  • e e

e e

e e

e seesseessesessessessessesessssseessessessessessessessesseesses*******sse***sse$e*

1.01

  • 1.07
  • 1.33
  • l.28 1.28
  • 1.10
  • 1.53 *

.94

  • 11 *

.99

  • 1.03
  • 1.26
  • 1.22
  • 1.25
  • 1.12 s 1.45 *

.90

  • e e

e e

e ssesssssssssesesesseessessesssessessessesses** sees *****ssesses**ssesses**********

1.01

  • 1.02
  • 1.03
  • 1.28
  • 1.41
  • 1.37
  • 1.30
  • 12
  • 1.00
  • 1.02
  • 1.00
  • 1.25
  • 1.34
  • 1.37
  • 1.23
  • 4

$$$$$$s44$$ss$$$sess**$$$$st$$s4 s********sesses**?$$$s***$ses4:4844Be*

.82 *

.93 *

.95 e 1.10

  • 1.37 *

.92 *

.78

  • j 13 *

.87 *

.97

  • 1.04
  • 1.14 e 1.39 *

.96 *

.76

  • e e

e o

e s

se**:4*ses****se**$34:stess$$s**ese$sses4$$$$s*ses*****$e$$$s44s4$44844 1.06

  • 1.55
  • 1.10
  • 1.54
  • 1.30 *

.79

  • 14
  • 1.11
  • 1.45
  • 1.12
  • 1.39
  • 1.23 *

.78

  • e e

esseessesesseessesessee'esssssssssssssssssssesesseses 4**st:43 1.30

  • 1.32
  • 1.21 e

.95

  • CALCULATED 15
  • 1.26
  • 1.25 e 1.12 *

.87 : HEASURED e

s e

e e

$ $ s s $ s s

  • s 4 : s * * * * * * $ $ $ s * * * *
  • e e s $ $ $ 4 * * * * :S e l

FIGURE 6.3 58

_ _ _ _., _ _.. - ~ -

i MC6UIRE-1 CYCLE-2 ASSEMBLY PEAK AXIAL POWERS - CALC (18 LEVEL) VS. MEAS 48 EFPD 100ZFP CONTROL BANK D AT 228 STEPS WITHDRAWN H

6 F

E D

C B

A J

eseeeeeeeeeeeeeeeeeeeeeeesessessesseeeeeeeeeeeeeeeeeeeeeeeeeeeeesesse**e4ee44 eses

.94 e 1.10 e 1.25 e 1.00 *

.98 e

.84 e 1.11

  • 1.28 e 8 e

.92 e 1.04

  • 1.23 *

.97 e 1.00 e

.86 e 1.16 e 1.25 e e

o e

e e

e esseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessesseesse4:4e*e4 e

1.12 e 1.28

  • 1.26
  • 1.04 e 1.03 e

.95

  • 1.51
  • 1.31
  • 9 e 1.07
  • 1.24
  • 1.22
  • 1.01 e 1.01 e

.97 e 1.48 e 1.24

  • e e

e e

e e

e e

e esseeeeeeeeeeeeeeeeeeeeeeeeeeeeessesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessesseesse4e 1.26

  • 1.27
  • 1.27
  • 1.30
  • 1.04 *

.97

  • 1.14
  • 1.19
  • 10
  • 1.25 e 1.23
  • 1.22
  • 1.27
  • 1.00
  • 1.01
  • 1.17 e 1.14
  • e e

e e

e e

e e

eseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseessesessessessesseessesse4e44eese e

1.01 e 1.07

  • 1.30 e 1.26 e 1.26
  • 1.14 e 1.52 e

.93 e 11 e

.99 e 1.03 e 1.26 e 1.22 e 1.25

  • 1.12 e f.45 *

.90 e e

e e

e e

e e

seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseesseesseesseessessessessesseessesseesse4:4eee4 e

.98

  • 1.03 e 1.04 e 1.26
  • 1.39
  • 1.40 e 1.28
  • 12 e 1.00
  • 1.02 a 1.00
  • 1.25
  • 1.34 e 1.37
  • 1.23
  • e e

e e

o e

e seesessessessessesseesessesses***esessessessessesseessessessese*e4:4 4e

.84 *

.95 *

.97

  • 1.14
  • 1.40 *

.98 *

.79

  • 13 *

.87 *

.97

  • 1.04 e 1.14
  • 1.39 *

.96 e

.76

  • e e

e e

e e

seesessessesseessessessesseecessesesseeeeeeeeeeeeeeeeeeeeeeeeee4e44es**

1.11

  • 1.52 e 1.15 e 1.52
  • 1.28 *

.80 e 14

  • 1.11 e 1.45 e 1.12 e 1.39
  • 1.23 e

.78 e e

e e

e e

e e

seesessessessessessessessessessessessessees*** esses **e44 esse 4 1.29

  • 1.31
  • 1.20 *

.93

  • CALC 15
  • 1.24
  • 1.25 e 1.12 e

.87 e MEAS e

e e

e e

4 seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessese4:4e FIGURE 6.4 59

_ ___.. _... _ _ _ _ _ _ _ _ _ _. _ _ _ _ _. _. - - _. _ _ - -, _ ~ _ _.