ML20090D254

From kanterella
Jump to navigation Jump to search
Rev 1 to Evaluation of Acceptability of Reactor Vessel Head Lift Rig,Reactor Vessel Internals Lift Rig,Load Cell & Load Cell Linkage to Requirements of NUREG-0612 for Texas Util Generating Co,Comanche Peak,Units 1 & 2
ML20090D254
Person / Time
Site: Comanche Peak  Luminant icon.png
Issue date: 02/28/1983
From: Sandner H
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML20090D251 List:
References
RTR-NUREG-0612, RTR-NUREG-612 WCAP-10156, WCAP-10156-R01, WCAP-10156-R1, NUDOCS 8407180146
Download: ML20090D254 (200)


Text

-

WESTKilGHOUSE CLASS 3 Altnougn infornation contained in tnis report

-KCAP-10156 is nonproprietary, no distribution .; hall pay, 1 be made outside Aestingn3use or its licensees without the custoner's approval.

EVALUATI0ll 0F THE ACCEPTABILITY OF THE REACTOR VESSEL HEAD LIFT RIG, REACTOR VESSEL INTERNALS LIFT RIG, LOAD CELL, AND LOAD CELL LIllKAGE TO THE REQUIREMENTS OF NUREG 0612 for TEXAS UTILITIES GENERATING C0:1PANY COMANCHE PEAK UNITS NO. 1 AllD NO. 2 f-

. s. FEBRUARY, 1983

(

H. H. SANDilER, P. E.

Approvedi3//) d-[ M

. J. Leduc, P. E. , llpager Component Handling Equipaent WESTIN3 HOUSE ELECTRIC CORPORATION Nuclear Energy Systems P.O. Box 365 Pi ttsburgh, PA 15230 8407180146 840712 PDR ADOCK 05000 A

Rev. 1 b 6099B:1/020783

ABSTRACT An evaluation of the Comanche Peak reactor vessel head and internal lift rigs, load cell and load cell linkage was perforued to determine tne acceptability of these devices to meet the requireuents of NUREG 0612.

The evaluation consists of: (1) a couparison report of the ANSI N14.6 requirements and the requireuents used in the design and manufacture of these devices; (2) a stress report in accordance with the design criteria of ANSI N14.6; and (3) a list of recommendations to enable these devices to demonstrate compliance with the intent of NUREG 0612 and ANSI N14.6.

f iii RADAR.1/nO99R?

L

4 TABLE OF CONTENTS Section Title Page ABSTRACT iii

1. INTRODUCTION 1 -1 1.1 Background 1 -1
2. COMPONENT DESCRIPTION 2-1 2.1 Reactor Vessel Head -Lift Rig 2-1 2.2 Reactor Vessel Internals lift Rig 2-1 2.3 Load Cell and Load Cell Linkage 2-2
3. SCOPE OF EVALUATION 3-1 3.1 _ Study of ANSI N14.6-1978 3-1 3.2 Stress Report 3-1 3.3 Recommendations 3-2
4. DISCUSSION OF EVALUATIONS 4-1 4.1 Study of ANSI N14.6-1978 4-1 4.2 Stress Report 4-1 4.3. Recommendations 4-2
5. CONCLUSIONS 5-1
6. RECOMMENDATIONS 6-1 v

54848:l/092482

LIST OF ILLUSTRATI0llS Figure Ti tle Page 2-1 Reactor Vessel Head Lift Rig 2-3 2-2 Reactor Yessel Internals Lift Rig 2-4 R

~

vii EApaQ.1/n0??A7

ATTACHMENTS A. Comparison of ANSI N14.6-1978 Requirements for Special Lifting Devices and the Requirements for the Reactor Vessel Head Lift Rig, Reactor Vessel Internals Lift Rig, Load Cell and Load Cell Linkage for Texas Utilities Generating Company, Comanche Peak Units No.1 and No. 2.

B. Stress Report - Reactor Vessel Head Lift Rig, Reactor Vessel Internals Lift Rig, Load Cell and Load Cell Linkage for Texas Utilities Generating Company, Comanche Peak Units No. I and 2.

't ix 5484B:l/092882

REFERENCES

1. George, H., Control of heavy Loads at Nuclear Power Plants Resolution of Generic Technical Activity A-36, NUREG-0612, July, 1980.

, 2. ANSI N14.6-1978 Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds or More for Nuclear Material

3. Westinghouse Drawing 1212E27 - 4 Loop Lifting Rig - Head, General 4

Assembly

4. Westinghouse Drawing 121bE68 - 4 Loop Reactor Plant Internals Lifting Rig General Assenbly
5. Manual of Steel Construction, Seventh Eaition, Araerican Instituce of Steel Construction.

E i

xi 5484B:1/100682

SECTION 1 INTRODUCTION The Nuclear Regulatory Commission (NRC) issued NUREG 0612 " Control of Heavy Load at Nuclear Power Plants"EI3f n 1980 to address the control of heavy loads to prevent and mitigate the consequences of postulated accidental load drops. NUREG 0612 imposes various training, cesign, inspection and procedural requirements for assuring safe and reliable operation for the handling of heavy loads. In the containment building, NUREG 0612 Section 5.1.l(4) requires special lifting devices to meet the requirements of ANSI N14.6-1978 "American National Standard for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds or More for Nuclear Materials" . In general, ANSI N14.6 contains detailed requirements for the design, fabrication, testing, maintenance, and quality assurance of special lifting devices. The Coaanche Peak lifting devices which can be categorized as special lifting devices and which e-are contained in the scope of this report are:

1. Reactor vessel head lift rig
2. Reactor' vessel internalc lif t rig
3. Load cell and load cell linkage This report contains the evaluation perforued on these lifting devices to determine the acceptability of these devices to meet the above requirements.

1.1 BACKGROUND

'The reactor vessel head lift rig, the reactor vessel internals lift rig, load cell and load cell linkage were designed and built for the Comanche Peak circa 1975-76. These devices were designed to the requirement that the resulting stress in the load carrying members when subjected to 5484B:1/092282 1 -1

s - .

the total combined lifting weight should not exceea the allowable stresses specified in the AISC[5] code. Also, a 125 percent load test was required on both devices followed by appropriate non-destructive testing. These items were not classified as nuclear safety components and requirements for formal documentation of design requirements and stress reports were not applicable. Thus, stress reports and design specifications were not formally documented. Westinghouse defined the design, fabrication and quality assurance requirements on detailed

- manufacturing drawings and purchase order documents. Westinghouse also

issued field assembly and operating instructions, where applicable.

i i

?

li h

it i

f!

t-h i

I t-0 i

54848:1/100682 1-2

Y-

\  ; s s.

j s

/

SECTION 2 COMPGMNT DESCRIP, TION m

2.1 REACTOR VESSEL HEAD LIFT RIG The reactor vessel heaa lif t rig [3] (Figure 2-1) is a three legged carbon steel structure,' approxinrately 48 feet high and '16 feet in diameter, weighing approximately 16,000 pojnds. It is used to handle the s s '

assembled reactor vessel headc '

The three vertical legs and Cdntrol Rod Drive Mechanism (CRDM) platfom assembly are pemanenti) attached to the reactor'v'essel head lifting lugs. The legs, clev'is, and pins which are a part of the support for the seismic platform meet the requirements of the ASME Boiler and Pressure Vessel Code,Section III, Subsection NF Class I Supports. The tripod assembly is attached to the three vertical legs and is used when installing and removirig the reactor vessel head. During plant operation, the sling assembly is removed and the three vertical legs and platform assembly remain attached to the reactor vessel head.

2.2 REACTOR VESSEL INTERNALS LIFT RIG The internals lif ting rigb43 (Figure 2-2) is a three-legged ci.. ,0n and stainless steel structure, approximately 30 feet high and 14 feet in diameter weighing approximately 21,000 pounds. It is useo to hanale the upper and lower reactor vessel internals packages. It is attached to the main crane hook for all lifting, lowering and traversing operations. A load cell linkage is connected between the main crane hook and the rig to monitor loads during all operations. When not in use, the rig 1s stored on the upper internals storage stand.

' The reactor vessel internals lif t rig attaches to the internals package by means of three rotolock studs which engage three rotolock inserts located in the internals flange. These rotolock studs are manually operated from the internals lift rig platform using a handling tool which 5484B:1/100682 2-I

I

,I

i s an integral part of the rig. The studs are nonnally spring retracted j upward and are depressed to engage the inserts. Rotating the mechanism locks it in both positions.

I j 2.3 LOAD CELL AND LOAD CELL LINKAGE The load cell is used to monitor the load during lif ting and lowering the reactor vessel head or internals to ensure no excessive loadings are l occurring. The unit is a load sensing clevis type, rated at 500,000

[ pounds.

This load cell is a part of the load cell linkage which is an assembly of fI pins, plates, and bolts that connect the polar crane main hook to the l lifting blocks of both the reactor vessel head and the internal lift rigs.

I i

i l

i.

l-b i--

.I I

s -

i

2-2 i 5484B
1/100682 i

i - - _ - - - _

f CLEVIS PIN (LOAD SENSING)

SIDE PLATE

  • LIFTING BLOCK

' f$ N*irig LIFTING LEG S CLEVIS g8

' 'I b@

CLEVIS PIN Abe, PO51 TION 3 ARM i

LUG , K

\N /W j 3

% ,/

f f'r %

%cn, .

LIFTING LEG

~- -

TYPICAL CRDM _\

\-

. - _\

\

CLEVIS

/

j J \

~

}~~,~ ~

- \y CLEVIS PIN s g p' _--

\'g S

1, & . o) o 88EL o oooo e o '

HEAD . ./

\

9#' 2'1 Reactor Vessel Head Lift Rig 54848:l/092282 2-3

i.

) i

!i j

l. '

i ] f

'! LIFTING BLOCK f-

,,L p}

I /? i

, }' t l[ LUG l y

/ --s. ,

- .t li I j '

3

, I }'.

CLEVIS PIN . j f' ' ,/

-m s:

x L_ - ;h1}:.'..

I gs s " ~ ^ gil1 CLEVIS g,/ '

s\ J

! .o -

/ p sN ,

1

-p- . \-

  1. ,pSLING4ll ROD l

(

eg. 4 g NX XVO j

A/

, ' I CLEVIS l

^a=

f

\\

N

\

T

}

g,! ,/  ;

[ BLOCK h 'y LUG j

fl IM ' __ ~,_'C I

H_ C _  ;

CLEVIS PIN

'lf,g f .

^~

+ f( .

h C LEG LUG i

4HI !I ,! I h CHANNEL p! .7 f .

l

). N l t,c.

lh

i. <nn _

.- .- 1 1 _,

I p l ,

,/ ..

' \l i I ,

f l: 1 l S .'L i

b , /) k "

% r

-l i p% n

  1. n;

'i I

?

i ks LOAD NUT %l.l f E

MOUNTING BLOCK g ROD HOUSING GUIDE SLEEVE ENGAGING SCREW Figure 2-2. Reactor Yessel Internals Lift Rig i

t 5484B
1/092232 2-4

.I

SECTION 3 SCOPE OF EVALUATION The evaluation of these lifting devices consists mainly of three parts:

1. A detailed review of the ANSI N14.6 requirements
2. Preparation of a stress report
3. Recommendations to demonstrate compliance with NUREG 0612, Section 5.1.l(4).

Discussion of these items follows.

3.1 REVIEW 0F ANSI N14.6-1978 A detailed'couparison was uade of the information contained in 1 ANSI N14.6 with the information that was used to design, manufacture, inspect and test these special lifting devices. The detailea comparison is provided in three parts:

1. Overall item by item comparison of requirements

-2. Preparation of a critical . item list per ANSI N14.6 Section 3.1.2, ano

3. Preparation of a list of nonconforuing items.

l This detailed analysis is contained in Attachment A to this report.

2' 3.2 PREPARATION OF A STRESS REPORT Section 3.1.3 of ANSI N14.6 and NUREG 0612 Section 5.1.l(4) -equire a stress report to be prepared. Special loads and allowable stress criteria are specified for this analysis. The stress report is Attachment B to this report.

EdAAR 1/nQ2?R? 3-1

t 1

j_

3.3 REC 0ltliENDED ACTIONS An obvious result frora the previous evaluations is a list of iteus that can be performed to demonstrate to the NRC that these special lifting

, devices are in compliance with the guidelines of AtlSI N14.6 and l NUREG 0612 Section 5.1.1(4). These recommendations are identified in Section 6.

1 l

i.

i h

I i

.i 1

h

i

-1

1 i

il i

f.
t -
~di

'i '

if t

t

!l-W -<

q-

.1 N .5484B:1/092282 3-2 I

SECTION 4 DISCUSSION OF EVALUATIONS 4.1 STUDY OF ANSI N14.6-1978 d review of ANSI N14.6 identifies certain analyses to be performed and certain identifications that are required to be made to demonstrate compliance with this document. These are a preparation of a stress report in accordance with Sectien 3.2 and a preparation of a critical items-list in accordance with Section 3.1.2. The stress report is t Attachment B to this report. The critical items list has been prepared per Section 3.1.2 and is contained in Appendix A to Attachment A. This list identifies the critical load path parts and welds, the materials of these items, and the applied non-destructive volumetric and surface inspections that were performed. (Details of these non-destructive processes and acceptance standards are available at Westinghouse should they be needed.)

' A detailed item by item comparison of all the requirements of ANSI N14.6 and those used for the design, manufacture and inspection of these lifting devices is contained as Table 2-1 of Attachment A. The comparison shows that these devices meet the intent of th'e ANSI document for design, fabrication and quality control. However, they do not meet the requirements of ANSI N14.6 for pericdic maintenance, proof and functional . testing. Thus, a tabulation of those ANSI N14.6 requirements that are incompatible with these lifting devices was prepared and is Appendix B to Attachment A. Included in Appendix B to Attachment A are recommanded actions that may be used to demonstrate acceptability to the

NRC.

l>

4.2 STRESS REPORT As part of the invoking of the ANSI N14.6 document, the NRC requested utilities to demonstrate their compliance with the stress criteria with some qualifying conditions. Attachment B is the stress report for these

. deviccs performed in accordance with the criteria of ANSI N14.6. A 54848:1/102282 4-1

1

discussion is included which responds to the NRC qualifying conditions of NUREG 0612. All of the tensile and shear stresses, meet the design criteria of Section 3.2.1.1 of ANSI N14.6, requiring application of j stress design factors of three and five with the accompanying allowable stress limits of yield and ultimate strength, respectively. In addition all of the tensile and shear stresses meet the requirements of f the AISC 5] code.

l 4.3 RECOWENDAT IONS l The recommendations identified in Section 6 require a review of plant

! maintenance and operating instructions to ensure that they contain infonnation relative to the identification, maintenance and periodic l testing required by ANSI N14.6. The extent of the periodic testing is j

also addressea and the recommendations identify procedures which are intended to fully meet the intent of NUREG 0612 and ANSI N14.6 with the

.] least amount of perturbation to the refueling sequence. These

recommendations do not involve any equipment changes.

1 1

'i i

i q

54848:1/100682 4-2 N- *; 1

.e-SECTION 5 CONCLUSIONS The following conclusions are apparent as a result of this evaluation:

1. The ANSI N14.6 requirements for design, fabrication and quality assurance are generally in agreement with those used for these special lift devices.
2. The ANSI N14.6 criteria for stress limits associated with certain stress design factors for tensile and shear stresses are adequately satisfied.
3. These devices are not in strict compliance only with the ANSI N14.6 requirements for acceptance testing, maintenance and verification of continuing compliance. Recommendations are included to identify actions that should enable these devices to be considered in compliance with the intent of ANSI N14.6.
4. The application of the ANSI N14.6 criteria for stress design factor of 3.ano 5 are only for shear and tensile loading conditions. Other loading conditions are to be analyzed to other appropriate criteria.

54848:l/100682 5-1

SECTION 6 RECOMMENDATIONS The following recommendations address the areas of ANSI N14.6 which are incompatible with the present lifting devices and which are considered most important in demonstrating the continued reliability of these devices. They consist of suggestions and proposed responses to identify compliance to the NRC and future considerations.

6.1 Recommend that no changes be made to the reactor vessel internals lift rig should the stresses, discussed in Attachment B, be considered excessive by others because:

a. The design weight used in the stres calculations is based on the weight of the lower internals. The lower internals are only removed when a periodic inservice inspection of the vessel is required (once/10 years).
b. Prior to removal of the lower internals, all fuel is removed.

Thus the concern for handling over fuel is r.on-existent in this particular case.

c. Normal use of the rig is for nioving the upper internals which weigh less than one-half of the lower internals. The design
  1. weight is based on lifting the lower internals. Thus all the stresses could be reduced by approximately 50 percent an'd considered well within the ANSI N14.6 criteria for stress design factors.

6.2 Review plant operating procedures to include consideration of ANSI N14.6 Sections 5.1.3 through 5.1.8. These sections include requirements for: scheduled periodic testing; special identification and marking; maintenance, repair, testing and use. Westinghouse remarks on addressing these sections are listed in Attachment A, Appendix B, Items 5, 6, and 7.

54848:1/102282 6-1

{r l 6.3 A proposed response to the requirement of ANSI N14.6, Section 5.2.1, J- requiring an initial acceptance load test prior to use equal to 150 l

( percent of the maximum load is that the 125 percent of maximum load i test.that was perfomed be accepted in lieu of the 150 percent load test.

1 4

6.4 A proposed response to ANSI N14.6 Section 5.3 which requires, I j annually, either a 150 percent maximum load test or dimensional, visual and non-destructive testing of major load carrying welds and l critical areas follows. (Since the 150 percent load test is very impractical, the approach identified in the following recomendation )

is to 9 trfom a minimum of non-destructive testing.)

.I j a. Reactor Vessel Head Lift Rig:

I j Prior to use and after reassembly of the spreader assembly, lifting lug, and upper lifting legs to the upper portion of the

.. lift rig, visually check all welds. Raise the vessel head l slightly above its support and hold for 10 minutes. During this

[ time, visually inspect the sling block lugs to the lifting block welds, and spreader lug to spreader am weld. If no problems are 4

! apparent, continue to lift, monitoring the lead cell readout at

! all times.

d 1 b. Reactor Vessel Internals Lift Rig I Prior to use, visually inspect the rig components and welds while on the storage stand for signs of cracks or deformation. Check l[

j all bolted joints to ensure that they are tight and secure, l Af ter connection to the upper or lower internals, raise the j assembly slightly off its support and hold for 10 minutes.

d During this time, visually inspect the sling block lugs to the lifting block welds. If no problems are apparent, continue to j lift, monitoring the load cell readout at all times.

1 54848:1/101182 6-2 J

l

lhe above actions do not include a non-cestructive test of these welds because:

a. Access to the welos for surface examination is difficult.

These rigs are in containment and some contamination is present.

b. All tensile and shear stresses in the welds are within the allowabl( stress.
c. The items that are welded remain assembled and cannot be misused for any other lift other chan t' heir intendeo function.
d. To perform non-des.ructive tests would require:

(1) Removal of paint around the area to be examined which is contaminated.

(2) Performance of either magnetic particle inspection or liquid penetrant inspection and (3) Repainting after testing is completed.

(4) Cleanup of contaminated items. .

Performing non-destructive tests on these welds every refueling would increase the critical path refueling time.

Dimensional checking is not included since these structures are large (about 16 ft. cia by 50 ft. high) and the results of dimensional checking would always be questionable. Other checks on critical load path parts such as pins, are also not included since an examination of these items would require disassembly of the special lift devices.

5484B:l/100682 6-3

I j

6.5-Recommeno that a periodic non-destructive surface exaialnation of critical welds and/or parts be performed once every ten years as part i- of an inservice inspection cutage.

i-l l-I' L

I i

.i I

f I

'l .

1 I '-

].

i

~!

s 3

(

!=

j ,
I it

~

li :

F Y

l}'

n

i if.

I

!h '

i!' 54848:1/100682 6-4 p

B

WESTINGHOUSE CLASS 3 Alth0 ugh infor.ntion coat!!aad in this raprt ATTACHMENT A

^

is nonproprietary, no distribution , hall to WCAP-10156 be u)1e oatside _'hstinjhause or its licensnes without the custonar's approval. Rev. 1

_ Comparison of ANSI'il14.6-1978 Requirements for Special Lifting Devices and the Requirements for the Reactor Yessel Head Lift Rig, Reactor Vessel Internals Lift Rig, Load Cell, and the Load Cell Linkage for Texas Utilities Generating Company Comanche Peak Units No. I and 2 I

FEBRUARY,1983 H.'H. Sandner, P.E.

P Appr,o [ g=A M [n

/ R. J. Leduc, P.E. , ManagM Component Handling Equipment Rey, 1

. 6099B:1/020283.

ABSTRACi

~

The requirements used in the original design, fabrication, testing, maintenar.ce and quality assurance were compared to the ANSI N14.6-1978 requirements for the Comanche Peak reactor vessel head and internals lift rig, load cell and load cell linkage. A critical items list per ANSI N14.6 section 3.1.2 has been prepared and a tabulation of

- ANSI N14.6 requirements that are, at present, incompatible with the ,

Comanche Peak lifting devices has been prepared. .

l iii 54868:1/092882

TABLE OF CONTENTS Section Title Page ABSTRACT iii 1 PURPOSE l -1 2 INTRODUCTION 2-1 2.1 Background 2-1 2.2 Component Description 2-2 2.2.1 Reactor Vessel Head Lift Rig 2-2 2.2.2 Reactor Vessel Internals Lift Rig 2-2 2.2.3 Load Cell and Load Cell Linkage 2-3 3 DISCUSSION 3-1 4 CONCLUSIONS 4-1 APPENDIX A - CRITICAL ITEMS LIST PER ANSI N14.6-1978 A-1 APPENDIX B - TABULATION OF ANSI N14.6-1978 REQUIREMENTS B-1 INCOWATIBLE WITH THE COMANCHE PEAK SPECIAL LIFTING DEVICES v

5486B:l/092882

. .. _ - - - . . . _ - . . . . . ~ . . . . - . - .. _ - . . .

7

_c:

LIST OF ILLUSTRATIONS Figure Title' Page A-1 Reactor Vessel Head Lift Rig A-5

'A-2 Reactor Yessel Internals Lift Rig, A-9 LoadCellandLinNge 1

e i

}-

t i

i 1

i

)

f.

3 I

, t i

if D

i i

1 I

1 vii

, 5486B:1/092882 4

4

. _ _ . _ _ , , ..m. - _ . ~ ._ _ . , . _ . . ._ _ . _ , . - . _ . - . _ - . _ _ _ _ . . . _ . . . _ - . . . _ . . - . , . - _ . _ _ _ - . . , _ _ _ _ _ _ _ _ . . . _ ,

LIST OF TABLES Title Page Table 2-1 Comparison of the Requirements of ANSI N14.6 2-4 and Ccmanche Peak Special Lift Devices A-1 Reactor Vessel Head Lift Rig, Critical Items A-3 List of Parts per ANSI N14.6-1978 ,

A-2 Reactor Vessel Head Lift Rig, Critical Items A-4 List of Welds per ANSI N14.6-1978 A-3 Reactor Vessel Internals Lift Rig, Critical A-6 Items List of Parts per ANSI N14.6-1978 A-4 Reactor Vessel Internals Lift Rig Load Cell A-8 and Load Cell Linkage, Critical Items List of Welds per. ANSI N14.6-1978 ix 54868:1/092882

REFERENCES

1. Westinghouse Drawing 1212E27 - 4 Loop Lifting Rig - Head, General Assembly.
2. Westinghouse Drawing 1216E68 - 4 Loop Reactor Plant Internals Lifting Rig General Assembly.

-3. Manual of Steel Construction, Seventh Edition, American Institute of Steel Construction.

i 1

1 i

4 xi I

54868:1/100782

SECTION 1 PURPOSE The purpose of this report is to compare the requirements of the special lifting rigs used to lift the reactor vessel head and reactor vessel upper and lower internals with the requirements contained in ANSI N14.6 for special lifting devices. .

54868:1/092882 1 -1

SECTION 2 INTRODUCTION ANSI N14.6-1978 "American National Standard for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds or More for Nuclear Materials" contains detailed requirements for the design, fabrication, testing, maintenance and quality assurance of special lifting devices.

NUREG 0612 " Control of Heavy Load at Nuclear Power Plants", paragraph 5.1.1(4), specifies that special lifting devices should satisfy the guidelines of ANSI N14.6-1978. Subsequently the Nuclear Regulatory Comission (NRC) has requested operating plants to demonstrate compli-ance with NUREG 0612. To demonstrate compliance with this document, a detailed cruparison of the original design, fabrication, testing, main-tenance and quality assurance requirements with those of ANSI N14.6 is necessary.

Thus, the ANSI N14.6 document has been reviewed in detail and compared to the requirements used to design and manufacture the reactor vessel head lift rig, the reactor vessel internals lift rig, load cell, and the load cell linkage. This comparison is listed in Table 2-1

2.1 BACKGROUND

The reactor vessel h and internals lifting rigs were designed and built for the Co,nanche Peak Nuclear Power Plants, cin:a 1975-76. These devices were designed to the requirement that the resulting stress in the load carrying members, when subjected to the total combined lif ting weight, should not exceed the allowable stresses specified in the AISC code. Also, a 125 percent load test was required on both devices, followed by appropriate non-destructive testing. Westinghouse also required non-destructive tests and inspections on critical load path parts and welds botn as raw material and as finished items. These requirements of design, manufacturing and quality assurance were identified on detailed manufacturing drawing and purchasing documents.

C A Q AA .1/1011 R7 p.]

Westinghouse also issued field assembly and operating instructions, where applicable.

2.2 -COMPONENT DESCRIPTION 2.2.1 Reactor Vessel Head Lift Rig The reactor vessel head lift rig is a three legged carbon steel structure, approximately 48 feet high and 16 feet in diameter, weighing approximately 15,000 pou1ds. It is used to handle the assembled reactor vessel head.

The three vertical legs and control rod drive mechanism (CROM) platform assembly are permanently attached to the reactor vessel head lifting lugs. The legs, clevis, and pins which are a part of the support for the seismic platfonn meet the reouf rements of the ASME Boiler and Pressure Vessel Code,Section III, subsection NF Class I supports. The tripod sling assembly is attached to the thme vertical legs and is used when installing and removing the reactor vessel head. During plant operations, the sling assembly is removed and the three vertical legs and platfonn assembly remain attached to the reactor vessel head.

2.2.2 Reactor Vessel Internals Lift Rig The reactor vessel internals lift rig [2] is a three-legged carbon and stainless steel structure, approximately 30 feet high and 14 feet in diameter weighing approximately 21,000 pounds. It is used to handle the upper and lower reactor vessel internals packages. It is attached to the main crane hook for all lifting, lowering and traversing opera-tions. A load cell linkage is connected between' the main crane hook and the rig to monitor loads durin; :" operations. When not in use, the rig is stored on the upper internals storage stand.

54868:1/101182 2-2

l The reactor vessel internals lift rig attaches to the internals package by means of three rotolock studs which engage three rotolock inserts located in the internals flange. These rotolock studs are manually operated from the internals rig platform using a handling tool which is an integral part of the rig. The studs are normally spring retracted upward and are depressed to engage the inserts. Rotating the nechanism locks it in both positions.

2.2.3 Load Cell and Load Cell Linkage The load cell is used to monitor the load during lifting and lowering the reactor vessel head or internals to ensure no excessive loadings are occurri ng. The unit is a load sensing device type, rated at 500,000 pounds.

This load cell is a part of the load cell linkage which is an assembly of pins, plates, and bolts that connect the polar crane main hook to the lifting blocks of both the reactor vessel head and internals lift rigs.

i 1

5486B:l/101182 2-3

TABLE 2-1 COWARISON OF THE REQUIREENTS OF ANSI N14.6 AND COMANCHE PEAK SPECIAL LIFT DEVICES .

ANSI N14.6 Description of ANSI N14.6 Requirement Actual'Special Lif t Device Requirements Section .

1 Scope and Definitions - These sections These sections are definitive, and not ,

1.1 define the scope of the document and requirements.

to include pertinent definitions of 1.3 specific items 2

3 Design A. No design specification was written con-3.1 Designer's Responsibilities - This section cerning these specific requirements.

3.1.1 contains requirements for preparing However, assembly and detailed manu-to a design specification and its' contents, facturing drawings and purchasing 3.1.4 stress reports; repair procedures; limi- documents contain the following

? tations on use with respect to environ- requirements:

  • mental conditions; marking and nameplate infonnation; and critical items list. (1) Material specification for all the critical load path items to ASTM, ASME specifications or special listed requirements.

(2) All welding, weld procedures and j welds to be in accordance with ASME Boiler and Pressure Vessel Code -

i Section IX.

! (3) Special non-destructive testing for specific critical load path items to be perfonned to written and approved procedures in accordance with ASTM or specified requirements l

l l

5486B:l/092882

TABLE 2-1 (cent)

COMPARISON OF THE REQUIREMENT OF ANSI N14.6 AND COMANCHE PEAK SPECIAL LIFT DEVICES ANSI N14.6 Description of ANSI N14.6 Requirement Actual Special Lift Device Requirements Section (4) All coatings to be performed to strict compliance with specified requirements.

(5) Letters of compliance for materials and specifications were required for verification with original specifi-cations.

B. A stress report was not originally required but has been prepared and is Attachment B. .

C. Repair procedures were not identified.

D. No limitations were identified as to the use of these devices under adverse environments.

E. Markings and nameplate information was not addressed.

F. Critical item lists have been prepared for each device and are identified as Appendix A to this Attachment A.

i f 5486B:l/092882 i

TABLE 2-1 (cont)

COW ARISON OF THE REQUIREhENT OF ANSI N14.6 AND COMANCHE PEAK SPECIAL LIFT DEVICES ANSI N14.6 Description of ANSI N14.6 Requirement Actual Special Lift Device Requirements Section 3.2 Design Criteria 1. These devices were originally 3.2.1 - Stress Design Factors - These sections designed to the requirement that the to contain requireiaents for the use of stress .resulting stress in the load carrying 3.2.6 design factors of 3 and 5 for allowable members, when subjected to the total stresses of yield and ultimate respec- combined lifting weight, should not tively for maximum shear and tensile exceed the allowable stresses specified stresses; high strength material stress in the AISC coce. A stress report design factors; special pins; wire rope (Attachment B) has been generated which and slings to meet ANSI B30.9-1971; and addresses the capability of these rigs drop-weight tests and Charpy impact test to meet the ANSI design stress factors, requi rements

[ 2. High strength materials are useo in some of these devices (mostly for pins, load cell). Although the fracturp toughness was not deter-mined, the material was selected based

)

on it's excellent fracture toughness characteristics. However, the stress design factors of ANSI N14.6 Section 3.2.1 of 3 and 5 were used in the analysis ano the resulting stresses are acceptable.

3. Where necessary, the weight of pins was considered for handling.
4. For the Head Lif ting Rig, the material for the clevis pin (item 6),

t the lifting leg (item 9), and the clevis (item 10) meets the Lharpy V-notch requirements per ASME Boiler and Pressure Vessel Code,Section III subsection NF 2300.

54868:1/100782 l

~. _-

TABLE 2-1 (cont)

C0PfARISON OF THE REQUIREMENT OF ANSI N14.6 AND COMANCHE PEAK SPECIAL LIFT DEVICES ANSI N14.6 Description of ANSI N14.6 Requirement Actual Special Lift Device Requirements Section 3.3 Design Considerations - These sectians Decontamination was not specifically 3.3.1 contain considerations for; matertais of addressed. Locking plates, pins, etc.

to construction, lamellar tearing; decontam- are used throughout these special 3.3.8 ination effects; remote engagement provi- lif ting devices. Remote actuation is sions; equal load distribution; lock only used when engaging the internals devices; position indication of remote lif t rig with the internals and position actuators; retrieval of device if disen- indication is provided from the operating gaged; and nameplates, platfo rm.

3.4 Design Considerations to Flinimize Decontam- Decontamination was not specifically 3.4.1 ination Ef forts in Special Lif ting Device addressed. However, the d' sign and to Use - These sections contain fabrication, manufacture included many of these m 3.4.6 Eding, finishes, joint and machining items, i.e. lock devices, pins, etc.

L requirements to pemit ease in decontamination.

3.5 Coatings - These sections contain provisions The requirements for coating carbon 3.5.1 for ensuring proper methods are used in steel surfaces are contained in a to coating carbon steel surf aces and for Westinghouse process specification 3.5.10 ensuring non-contamination of stainless referenced on the assembly and detail steel items. drawings when applicable. These speci-fications require a proven procedure, proper cleaning, preparation, applica-tion and final inspection of the coat-ing. These requirements meet the intent of 3.5.1 through 3.5.8. No provisions were ir.cluded in these designs for con-sideration of decontamination materials or the use of noncontaminating contact materials for use in stainless steel parts.

5486B:1/100782

TABLE 2-1 (cont)

COMPARISON OF THE REQUIRENENT OF ANSI N14.6 AND COMANCHE PEAK SPECIAL LIFT DEVICES ANSI N14.6 Description of ANSI N14.6 Requirement Actual Special Lift Device Requirements Section 3.6 Lubricants - These sections contain On the heaa lifting rig, threaded con-3.6.1 requirements for special lubricants to nections and 63 finishes are coatea with to minimize contamination and degradation of Fel/ pro N-lOOO as indicated on the 3.6.3 the lubricant and contacted surfaces drawings. On the internals lif t device, or water pools threadea connections are coated with neolube. On the load cell linkage, silicone grease is used where applicable as indicated on the drawings.

4 Fabrication A formal quality assurance program for the 4.1 Fabricators Responsibilities -These ranufacturer was specifically required.

4.1.1 sections contain specific requirements All the manufacturers welding pro-n, to for proper quality assurance, document cedures ano non-destructive testing pro-g, 4.1.12 control, deviation control, procedure cedures were reviewed by Westinghouse prior control, material identification to use. All critical load carrying members and certificate of compliance. require certificates of compliance for material requirements. Westinghouse per-formed certain checks and inspections during various steps of manufacturing. Final West-inghouse review includes visual, dimen-sional, procedural, cleanliness, personnel qualification, etc. and issuance of i quality release to ensure conformance with drawing requirements.

5486B:1/100782

TABLE 2-1 (cent)

C0WARISON OF THE REQUIREMENT OF ANSI N14.6 AND COMANCHE PEAK SPECIAL LIFT DEVICES 4

ANSI N14.6 Description of ANSI iil4.6 Requirement Actual Special Lift Device Requirements- i Section I

4.2 Inspectors Responsibilities -These Westinghouse Quality Assurance personnel 4.2.1 sections contain requirements for performed some in-process and final to a non-supplier inspector. inspections similar to those identified

4.2.5 in these sections, and issued a Quality

! Release. (Also see comments to Section 4.1 above) .

4.3 Fabrication Considerations -These General good manufacturing processes l 4.3.1 sections contain special requirements were followed in ,the manufacture

to for ease in decontamination or control of these devices. However, the l' 4.3.3 of corrosion. information defined in these sections was not specifically addressea.

7 l

  • 5 Acceptance Testing Maintenance, Both the Reactor Vessel Head and Internal

' and Assurance of Continued Lif t kigs were proof tested upon comple-

Compliance Owner's Responsibilities - tion with a load of approximately 1.25 5.1 Sections b.1.1 and 5.1.2. require the tiraes the oesign weight. Upon t.he comple-i 5.1.1 owner to verify that the special tion of the test, all parts, particularly to lifting devices meet the performance welds, were visually inspected for cracks -

) 5.1.8 criteria of the design specification or obvious defonnation. Critical welds

by reviewing records and witness were magnetic partical inspected. In l

of testing. addition,.the Westinghouse Quality Release verifies that the criteria for letters of

! compliance for materials and specifications I required by the Westinghouse drawings and l purchasing documents was satisfied. >

l Section 5.1.3 requires periodic functional Maintenance and inspection procedures l testing should be revised to include a visual check of critical welds and parts during lif ting -

l to comply with this requirement for functional testing.

f 5486B:1/100782

}

1

TABLE 2-1 (cont)

COMPARISON OF REQUIRENENT OF THE ANSI N14.G AND CONANCHE PEAK SPECIAL LIFT DEVICES ANSI N14.6 Description of ANSI N14.6 Requirement Actual Special Lif t Device Requirements Section Section 5.1.4 requires operating procedure Operating instructions for the reactor vessel internals lift rig were furnishe'd to the utility and operating procedures were prepared and are used.

Sections 5.1.5, 5.1. 5.1 and 5.1. 5.2 It is obvious from their designs that these require special identification and rigs are special lifting devices and can only marking to prevent misuse. be used for their intended purpose.

Specific iaentification of the rig can be made by marking, with stencils, the rig name and rated capacity, preferably on the spreader assembly.

na I- Sections 5.1.6, 5.1.7 and 5.1.8 require Operating instructions and maintenance the owner to provide written cocumenta- instructions shoulo be reviewed to assure tion on the maintenance, repair, testing that they contain the requirements to and use of these rigs, address maintenance logs, repair and testing

-history, damage incidents etc.

5486B:l /100782

TABLE 2-1 (cont)

COMPARISON OF THE REQUIREMENT OF ANSI N14.6 AND COMANCHE PEAK SPECIAL LIFT DEVICES ANSI N14.6 Description of ANSI N14.6 Requirement Actual Special Lif t Device Requirements Section Acceptance Testing and Testing to Verify The head and internals lift rigs were load 5.2 and Continuing Compliance - These paragraphs tested as indicated in Section 5. At each 5.3 require the rigs to be initially tested refueling it is suggestec that a check of at 150*. maximum load followed by critical welds and parts be included in the 5.2.1 maintenance procedures for both lif ting non-destructive testing of critical loaa to 5.2.3 bearing parts and welds and also annual devices. Preferably, during the initial lift 150*. load tests or annual non-destructive at each refueling, a visual inspection should and 5.3.1 tests and examinations; qualification of be made. Further note that with the use of replacement parts. the load cell for the head and internals, to 5.3.8 lif ting and lowering is monitored at all times. Replacement parts should be in m

' accordance with the original or equivalent

" requirements.

Maintenance and Repair - This section Maintenance and repair procedures should 5.4 contain, as much as possible, require-5.4.1 requires any maintenance and repair to be performed in accordance with original ments that were used in the original to 5.4.2 requirements and no repairs are penaitted f abrication. The critical items list of for bolts, stuos and nuts. Appendix A contains the original type of non-destructive testing. The procedure should also define bolts, studs and nuts as non-repairable items.

5486B:1/101282

TABLE 2-1 (cont)

COMPARISON OF THE REQUIREMENT OF ANSI N14.6 AND COMANCHE PEAK SPECIAL LIFT DEVICES ANSI N14.6 Description of ANSI N14.6 Requirement Actual Special Lift Device Requirements Section 5.5 Non-destructive Testing Procedures, Liquid penetrant, magnetic particle, 5.5.1 Personnel Qualifications, and Acceptance ultrasonic and radiograph inspections to Criteria - This section requires non- were performed on identified items.

5.5.2 destructive testing to be performed in These were in accordance with ASTM speci-accordance with the requirements of the fications, ASME Code, Westinghouse ASME Boiler and Pressure Vessel Code process specifications or as noted on detailed drawings and provide similar i

results to the requirement of the ASME Code.

6 Special Lifting Devices for Critical It is assumed that compliance with n, 6.1 Loads - These sections contain special NUREG-0612, Section 5.1 has been 1, 6.2 requirements for items handling critical demonstrated and therefore this section ha 6.3 loads. is not applicable to these devices.

5486B:l/100782 1

SECTION 3 DISCUSSION The reactor vessel head and internals lift rigs, load cell and load cell linkage generally meet the intent of the ANSI N14.6 requirements for design and manufacture. However, they are not in strict compliance with the ANSI N14.6 requirements for acceptance testing, maintenance and verification of continuing compliance.

Although no specific design specification was written, the assembly and detailed manufacturing drawings and purchase order documents contain equivalent requirements. A stress report has been prepared for these devices. These devices, for the most part, were manufactured under Westinghouse surveillance with identified hold points, . procedure review and personnel qualification which adequately meet these related ANSI requirements. A 125 percent load test was perfomed on both the head and internals lift rigs followed by the appropriate non-destructive testing.

It is anticipated that 100 percent load test, perfomed on each device, at each refueling, followed by a visual check of critical welds would be sufficient to demonstrate compliance. This may require modification of Comanche Peak operating and maintenance procedures.

Upon completion of the field assembly of the internals lift rig, prior to using, the assembly procedure calls for a visual inspection of all bolted joints on the rig and a visual inspection for cracks or distortions, particularly in the area of the welds. Upon completion of the field assembly of the reactor vessel head lff ting rig, the assembly procedure calls for a 100 percent load test (lifting of the assembled head), with a visual inspection for any signs of distortion.

5486B:1/100782 3-1

SECT 10N 4 CONCLUSIONS The review of the ANSI N14.6 requirements and comparison with the origi-nal Westinghouse requirements has shown that these items are generally in agreement for the design, fabrication and quality assurance of the lifting devices. However, the lifting devices are not in strict compli-ance with the ANSI N14.6 requirements for acceptance testing, mainte-nance and verification of continuing compliance. These specific requirements that are incompatible with the lifting devices are dis-cussed in Appendix B with suggested actions. Westinghouse's objective was to provide a quality product and this product was designed, fabri-cated, assembled and inspected in accordance with internal Westinghouse requirements. In general, Westinghouse requirements meet the intent of ANSI N14.6 but not all the specific detailed requirements.

i l

l l

f GAR 6R*1/047RA? 4-1

APPENDIX A CRITICAL ITEMS LIST PER ANSI N14.6-1978

1. GENERAL Section 3.1.2 of ANSI N14.6-1978 specifies that the design specification shall include a critical items list, which identifies critical compo-ner.ts and defines their critical characteristics for material, fabrica-tion, non-destructive testing and quality assurance.

" Critical items list" is further defined in ANSI N14.6. Section 2 as:

" critical items list. A list that specifies the items of a special lifting device and their essential characteristics

  • for which specified quality requirements shall apply in the design, fabrication, utilization, and maintenance of the device."

Load carrying members and welds of these special lifting devices are considered to be the critical iteras.

Tables A-1, A-2, A-3 and A-4 are the critical items list of parts and welds for the reactor vessel head lift rig, the reactor vessel internals lift rig and the load cell and load cell linkage. These tables include the material identification, and the applicable volumetric and surface inspections that were perfonned in the fabrication of these special lifting devices. In some instances, non-destructive testing was not specified since the material selection and strength result in very low tensile stresses and thus, non-destructive testing was not justified.

The material selection for all critical load path items was made to ASTM, ASME or special material requirements. The material requirements were supplemented by Westinghouse imposed non-destructive testing, and/or special heat treating requirements for almost all of the critical items. Westinghouse required all welding, welders, and weld procedures to be in accordance with ASME Boiler and Pressure Vessel Code Section IX 54868:1/100782 A-1

l for all welds. Westinghouse required a certificate, or letter of compliance that the materials and processes used by the manufacturer were in accordanc.e with the purchase order and drawing requirements.

I Westinghouse also perfonned final inspections on these devices and issued quality releases for the internals and head lifting rigs.

1 I

-f 1

i i

54868:1/100782 A-2

. - - - ~ - ,w , -a,-,,- , - - , -

,,.,,,,,,---.--,,,,--.~-,-r,--n. ,- - - - - - -, --. . - . , - - . - . - - - - - , -. - - , -. - -- --

t TABLE A-1 REACTOR VESSEL HEAD LIFT RIG, LOAD CELL AND LOAD CELL LINKAGE CRITICAL ITEMS LIST OF PARTS PER ANSI N14.6-1978 Non-destructive Testing Item 8

Descri ption Material Material Finished Lifting Block ASTM A350 Ul trasonic Magnetic 1

GR. LF Particle 2,7 Lug ASTM A516 Ul trasonic Magnetic Grade 70 Magnetic Particle Particle (item 2 only) 3,6 Clevis Pin ASTM A434 Ul trasonic Magnetic AISI 4340 Particle Steel Class BD 4,10 Clevi s ASTM A668 Ul trasonic Magnetic Forging and Particle Class L AISI 4340 5,9 Lifting Leg ASTM A434 Ul trasonic Magnetic Class BC Particle AISI 4340 11 Clevis Pin ASTM A564 Ultrasonic Magnetic i (load sensing) Type XM12 Particle 12 Side Plates ASTM 533 Ul trasonic --

Type B '

Class 1 13 Removable Pin ASTM A564 Ultrasonic Liquid Type 630 Penetrant (a)See figure A-1 54868:1/100782 A-3

TABLE A-2 REACTOR VESSEL HEAD LIFT RIG, LOAD CELL, AND LOAD CELL LINKAGE CRITICAL ITEMS LIST OF WELDS PER ANSI N14.6-1978 Non-destt uctive Testing Item Description Root Pass Final 1,2 Lugs to Lifting Block Magnetic Magnetic (Full Penetration) Particle Particle Radiograph 3

7,8 Spreader Ars Magnetic Magnetic Lug to Spreader Arm Pa rticle Particle (fillet) l k

54868:1/100782 A-4

CLEVIS PIN (LOAD SENSING) h 2

/, REMOVABLE PIN h h SIDE PLATE LIFTING BLOCK @

s y *e

@ LIFTING LEG l a-

%,7,

%  !- g CLEVIS @

/ h

  • h CLEVISPIN %g,7 ii +,

PO6tTION 3 ' {,_ _w L. [h C w4

, (f ARM @

h LUG ,

'3'

'*y1' \ i Q//\

s. , b g-sf' -- ,-

~, ._me h LIFTING LEG

/

TYPICAL CRDM f~

W~}\

J 1l+

/ ~1 eL _ _ . I3 h CLEVIS l

/ d. s t -- ,'

kt

. h ' % .

, h CLEVISPIN l[#'

\ .. .

~. ,:~ k, ,.

gi yo, x. _ ~; .>

.No a REACTOR k 's o o S~ /

  • N 'o VESSEL HEAD 's Figure A-1. Reactor Vessel Head Lif t Rig 56358:1/101982 A-5

TABLE A-3 REACTOR VESSEL INTERNALS LIFT RIG CRITICAL ITEMS LIST OF PARTS PER ANSI N14.6-1978 Non-destructive Testing Item (a) Descri ption Material Material Finished 1 Lifting Block ASTM A350 Ultrasonic Magnetic Grade LF 2 Partical 2 Lif ting Block ASTM A516 Ultrasonic Magnetic Lug Grade 70 Magnetic Partical Particle 3,7 Clevis Pin ASTM A564, Ultrasonic Liquid Grade 70 Penetrant Precipitation Hardening SST Age treated 0 1150' F/4 HRS.

Air cooled RC 28-31 4,6 Clevis ASTM A471 Ultrasonic Magnetic Class 3 Particle Steel Forging 5 Sling Rod ASTM A434 Ultrasonic Magnetic Class BC Particle AISI 4340 or

( ASTM A588' 8,11 Spread Lug ASIN A516 U1 trasonic Leg Lug GR 70 STL Particle Plate Magnetic Nonnalized 13 Mounting Block ASTM A350 LFI Ultrasonic ,

forging Steel Magnetic Particle 12 Leg Channels ASTM A36 CS, HR Visual

. (a)See figure A-2 54868:1/100782 A-6

TABLE A-3 (cont) ,

REACTOR VESSEL INTERNALS LIFT RIG l CRITICAL ITEMS LIST OF PARTS l

PEP. ANSI N14.6-1978 l Non-destructive Testing I

) Item "I Description Material Material Finished

.14,15 Load Nuts ASTM A276 Ultrasonic Rod Housing Type 304 SST, Hot Rolled, Condition A [

1 16 Guide Sleeve ASTM A276 Ul trasonic Liquid Type 304 SST, Penetrant i Hot Rolled,

' Annealed '

4 Pickled,

, Condition A 17 Rotolock Stud ASTM A564, Ultrasonic Liquid  !

i Type 630, Penetrant i 17-4 pH  !

Steel 9 1100*F  ;

for 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />  ;

t l

t 1

(a) See figuru A-2 i

$ P l

t e

s j

t >

l 54868:1/100782 A-7 i

- - , _ _ . , . . _ - - . . . , - . .__-_.--.-r- - - - _ - , . - - - -- - -.

l l

TABLE A-4 i REACTOR VESSEL INTERNALS LIFT RIG f CRITICAL ITEMS LIST OF WELOS i PER ANSI N14.6-1978 i

Non-destructive Testing  !

Item Description Root Pass Final f 1 i i

Lugs to Lif ting Block Magnetic Magnetic  !

1,2 (Full Penetration) Particle Particle  !

Radiograph l i

l 8,9 Lug to Spreader Block Magnetic Magnetic (Full Penetration) Particle Particle  !

11,12 Magnetic Magnetic  ;

Leg (fillet Lug)to Channel Leg Particle Particle  ;

i 12,13 Mounting Block to Magnetic Magnetic Channel Leg Particle Particle

=

(fillet)  ;

1 I

1 t

i I

l 1

r 1

54868:1/100782 A-8 ,

. I

p i I, ),

I u ,,~ , LIFTING SLOCK h it

.{. Luc @

[..

p - {

@ cLEVISPIN y ,f , ,

e it.

'. .. igJ o, -

4,s

  • O es a

=t

@ clevis Af'jg, ,

/

kg '

  • M' ]!

SUNG ROD h i

y (J "~ k

\

/// \ N t

@ ARM f// 1 3

\

l

[ CLEVIS h

'  ; 7 '

stock @

FA f uo @

I l

i I N...- []__.. -

c3 4 '

s} ;, >_E CLEVISPIN @

]~ bg} $

l 1 l N lea tuo @

l, ,f CHANNEL h 4 ,

a  ! ji il ll I l

!! l ,I h

hll9~gEd===

1 l I _ '

A i J, i -

q'. .

(Iy ,

r j -,

x A}h [

9,, ,

7,, ,..pu s ,.

j ,

% '-~ ~~r:::

' or tih .-

Q '

s(

u) I Si

@ LoADNUT
  • l

@ MOUNTING BLOCK 1 ,.

@ 800 HOUSING Tl

@ outoE SLEEVE

@ ENGAGING SCHEW Figure A-2. Reactor Vessel Internals Lif t Rig i 1

e i

5486B:I/092882 A-9 4

_ _ . - + -

APPENDIX B TA8ULATION OF ANSI N14.6-1978 REQUIREMENTS INCOMPATIBLE WITH THE COMANCHE PEAK LIFTING DEVICES f

1. GENERAL The comparison of the various ANSI N14.6 requirements and those of these ,

lifting devices has shown that these devices are not in strict compli-  !

ance with all the ANSI N14.6 requirements. Listed below is a tabulation j of those sections of ANSI N14.6 consides Jd most important in demonstra- i

, ting the continued load handling reliability of these special lif ting i

devices. Associated Westinghouse remarks are also listed and could be f 3

used as suggested actions and/or responses to demonstrate compliance to i the NRC.

i l a. Requirement:

Para. 3.1.4 - requires the designer to indicate pemissible j J

repair procedures and acceptance criteria for the repair.

[

lb. Remarks:

f Any repair to these special lifting devices is considered to be in the fom of welding. Should pins, bolts or other fasteners t need repair, they should be raplaced, in lieu of repair, in accordance with the original or equivalent requirements for t material and non-destructive testing. Weld repairs should be .

perfomed in accordance with the requirements identified in f

NF-4000 and NF-5000 (Fabrication and Examination) of the ASME Boiler and Pressure Vessel Code, Section !!!, Division 1 Sub-

~

section NF. -

l 2a. Requirement:

Para. 3.2.1.1 - requires the design, when using materials with yield strengths above 80 percent of their ultimate strengths, to

! be based on the material's fracture toughness and not the listed design factors.

54868:1/100782 B-1 1

i 2b. Remarks:

High strength materials are used in these devices. Al though t the fracture toughness was not detemined, the material was selected based on it's excellent fracture toughness character- (

istics. However, in Iteu of a different stmss design factor, l i

the stress design factors listed in 3.2.1 of 3 and 5 were used

. in the analysis and the msulting stmsses are considered acceptable. .

3a. Requirement:

(

Para. 3.2.6 requires material for load-bearing members to be subjected to drop-weight or Charpy impact tests.

L 3b. Remarks: [

Fracture toughness requirements were not identified for all the l material used in tnese special lifting devices. However, the ,

j material selection was based on its excellent fractum tough-ness characteristics.

L 4a. Requirement: i Para. 5.1 lists owner Responsibilities and 5.1.2 requires the  !

owner to verify that the special lif ting devices meet the i perfomance criteria of the design specification by records and witness of testing. t 4b. Remarks:

There wasn't any design specification for these rigs. ' A,

125 percent load test followed by the appropriate non- >

l destructive testing was perfomed. In addition, the Westing-house Quality Release, may be considered an acceptable alterriate to verify that the criteria for the letters of compliance for materials and specifications mquired by West-

l. inghouse drawings and purchasing document were satisfied. j i

r l

0-2

! 54868:1/101182

b Sa. Requirement:

Para. 5.1.3 requires periodic functional testing and a system to indicate continued reliable perfonnance.

Sb. Remarks:

Maintenance and inspection procedures should include a visual check of critical welds and parts during lifting to comply with this requirement for functional testing.

6a. Requi rement:

Para. 5.1.5, 5.1.5.1 and 5.1.5.2 require special identification and marking to prevent misuse.

6b. Remarks:

It is obvious, from their designs, that these rigs are specific lif ting devices and can only be used for their intended purpose and parts are not interchangeable. Specific identification of the rig car be made by marking with stencils, the rig name and rated capacity, preferably on the spreader assembly.

7a. Requirement:

Para. 5.1.6, 5.1.7 and 5.1.8 require the owner to provide written documentation on the maintenance, repair, testing and use of these rigs.

7b. Remarks:

Operating instructions and maintenance instructions should be reviewed to assure that they contain the requirements to address maintenance logs, repair and testing history, damage incidents and other items mentioned in these paragraphs.

84. Requirement:

Para 5.2.1 requires the rigs to be initially tested at 150 percent maximum load followed by non-destructive testing of critical load bearing parts and welds.

5486B:1/100782 83

l i

8b. Remarks:

Both the reactor vessel head and internals If f ting rigs and l

load cell were proof tested upon completion with a load of approximately 1.25 times the design weight. Upon completion of the test, all parts, particularly welds, were visually  :

inspected for cracks or obvious defomation and critical welds were magnetic partical inspected. In addition the Westinghouse Quality Release verified that the criteria for letters of compliance for materials and specifications mquired by the Westinghouse drawings and punhasing documents were satisfied.  ;

o 9a. l'equirement:

Para 5.2.2 requires replacement parts to be individually quali-( fled and tested.

1 l 9b. Remarks Replacement parts, should they be required, should be made of identical (or equivalent) material and inspections as origi-nally required. Only pins, bolt and nuts am considered replacement parts for the reactor vessel head and internal lift rigs.

104. Requirement: '

Para 5.3 requires testing to verify continuing compliance and annual 150 percent load tests or annual non-destructive tests and examinations to be perfomed.

10b. Remarks These special lif ting devices are used during plant refueling which is approximately once per year. During plant operation these special lifting devices are inaccessable since they are pemanently installed and/or remain in the containment. They cannot be removed from the containment unless they are disas- ,

sembled and no known purposes exist for disassembly. Load testing to 150 pement of the total weight before each use  ;

I  !

54868:1/100782 B.4 ,

l

l would require special fixtures and is impractical to perform.

Crane capacity could also be limiting. It is suggested that a check (visual) of critical welds and parts be conducted at

+ initial lift prior to moving.to full lif t and movenent for these devices. Further note that with the use o'f the load cell for the head and internals lif t rig, all lifting and lowering is monitored at all times.

2.

SUMMARY

The ANSI requirements for periodic checking and functional load testing appear to be most difficult to demonstrate compliance. It is almost impractical to perfonn the 150 percent load test prior to each use. It is suggested that the proposal to the NRC include a 100 percent load test to be performed with a minimum of non-destructive testing, (visual-only) in the critical parts and welds.

1 54868:1/100782 B-5 n ., - ..-, e - - _n-- + . , , - - + . - - - , .,y .--c-, ,,w-..~-~- n , ,- p , .-n. .-,-.-

WEST!!iGil0USE CLASS 3 Alth] ugh infaraition contiin?d in this r.?,) art ATTACHMENT B to is nonproprietary, no distribution shall WCAP-lul W be : aide OJtside ',h:tinfDuW or its Rev. I licen#,0cs without tlie custonar's appnval.

STRESS REPORT REACTOR VESSEL HEAD LIFT RIG, REACTOR VESSEL INTERNALS LIFT RIG Ai10 THE LOA 0 CELL LINKAGE FOR TEXAS UTILITIES GENERATING COMPANY COMANCHE PEAK UNITS NO.1 AND r10. 2 FEBRUARY, l'J83 H. H. Sandner, P.E.

Approv #

. J. Leduc, P.E.

=bd [* Manag Component llandling Equi t 6099B:l/020283 Rev. I

ABSTRACT A stress analysis of the Comanche Peak reactor vessel head anc internal lif t rigs load cell ano load cell linkage was perfonned to detennine the acceptability of these devices to meet the design requirements of ANSI N14.6.

iii 54628:1/100682 k

l ACKNOWLEDrMNT r

\  !~

l Acknowledgment is hereby made to the following individuals who contri- l buted to the structural analysis presented in this report. r l_ l l

I j

J J. S. Urban I

F. Peduzzi i

l i

i l l

t

!. +

t  !

l i

i I

r i.

i i

  • l l

1v i i

54628:1/100682

TABLE OF CONTENTS Section Tit 1e Page A85 TRACT tii 1 -1 I 1 INTRODUCTION 1.1 Background 1 -1 l 2 C0MPONENT DESCRIPTION 2-1 l

^

2.1 Reactor Vessel Head Lift Rig 2-1  !

2.2 Reactor Vessel Internals Lif t Rig 2-1 2.3 Load Cell and Load Cell Linkage 2-2 f

! 3 DESIGN BASIS 3-1 3.1 Design Criteria 3-1 3.2 Design Weights 3-2

! 4 MATERIALS 4-1 4.1 Material Description 4-1 i

(

5

SUMMARY

OF RESULTS 5-1 l 5.1 Discussion of Results 5-1  ;

5.2 Conclusion 5-2 i t

APPENDIX A DETAILED STRESS ANALYSIS - REACTOR VESSEL HEAD LIFT RIG A-1 APPENDIX B DETAILED STRESS ANALYSIS - REACTOR  :

VESSEL INTERNALS LIFT RIG, LOAD CELL AND LINKAGE B-1  !

i

' i i

54628:1/101182

LIST OF ILLUSTRATIONS Figure Title page 5-1 Reactor Vessel Head Lift Rig 5-13 5-2 Reactor Vessel Internals Lif t Rig, load Cell and Linkage 5-23 vil 54620:1/101182

LIST OF TABLES Table Title Page 4-1 Reactor Vessel Head Lif t Rig Material and Heterial Properties 4-2 4-2 Reactor Vessel Internals Lit. Rig, Load Cell and Load Cell Linkage Material and Material Properties 4-3 5-1 Summary of Results - Reactor Vessel Head Lif t Rig 5-4 5-2 Sunnary of Results - Heactor Vessel Internals Lift Rig Load Cell and Load Cell Linkage 5-14

?

i ix 54628:1/101182

l REFEkENCES [

1. George, H., Control of Heavy Loads _ at Nuclear Power Plants Resolu- [

tion of Generic Technical Activity A 36, NUREG-0612. July,1980. l

2. AN51 N14.6-1978, "Special Lif ting Devices for Shipping Containers l Weighing 10,000 Pounds (4600kg) or More for Nuclear baterial,"  !

]

American National Standards Institute, New York,1978.

3. Westinghouse Drawing 1212E27 - Comanche Peak Nuclear Power Plant Head lif ting Rig General Assembly l
4. Westinghouse Drawing 1216E68 - 4 Loop Plant - General Assembly i i Lif ting Rig Internals {
5. Lin, C. W., " Approximate Evaluation of Dynamic Load Factors for Certain Types of Load Factors for Certain Types of Loading," ASME Paper 70 WA/NC-2. [

. 6. Siggs, J. M., Introduction to Structural Dynamics, McGraw Hill, New i i York,1964 i

i
7. Gwinn, Jr., J. T., "Stop Over Designing f or Impact Loads," hechine  !

1 I Det,tgn, 33, pp.105113 (1961). l l

1

8. Manuel of Steel Construction, Seventh Edition, American Institute of ;

Steel Construction.

l l

i i

I  !

l 4

At i

! $4628:1/100682 l

SLCil0N 1 INTRODUCTION The Nuclear Regulatory Consnission (NRC) istued NUREG 0612 " Control of Heavy Load at Nuclear Power Plants"U 3 in 1980 to address the control ,

of heavy loads to prevent ano mitigate the consequences of postulated l accidental load drops. NUREG 0612 imposes various training, design, inspection and procedural requirements for assuring safe and reliable operation for the handling of heavy loads. In the containment bailding, NUREG 0612 requires special lif ting devices to meet the requirements of ANSI N14.61978 "American National Standard for Special Lif ting Devices for Shippin Containers Weighing 10,000 Pounds or bore for Nuclear Materials". 2] In general ANSI N14.6 contains detailed requirements for the design, fabrication, testing, maintenarco and quality assurance of spectal 11f ting devices.

This report contains the stress analysis performed on the Comancho Peak reactor vessel head 11f t rig, reactor vossol internals lif t rig and the

! Ioad cell and load cell linkage to detennino the acceptability of those devices to meet these requirements.

1.1 BACKGROUND

The reactor vessel head lif t rig, the reactor vessel internals lif ting rig and load cell and load cell linkage, were designed and butit for the Comanche Peak kuclear Power Plants, circa 1976 1976. These devices were designed to the requirements that the resulting stress in the load ,

carrying members when subjected to the total combined lif ting weight should not exceed the allowable stresses specified in the A!5C N) code. Also a 125 percent load test was required on both avvices, followed by appropriate non destructive testing. These items were not classified as nuclear safety components and thus requirements for fonnat documentation of design requirements and stress reports were not appitcable. Thus, stress reports and design specifications were not 54620:1/100682 11

formally documented. Westinghouse defined the design, f abrication and quality assurance requirements on detailed manufacturing drawings and purchase order documents. Westinghouse also issuea field assembly and operating instructions, where applicable, o

,_ ,- s d i' am m, w

. . ~.-

s s. ,

e. , N _

~ . . . -

s._ ,

s s

's o s

. ~. ., .

A

. s

\

=

s -

5462B:1/100682 1-2 ,

s ,_

SECTION 2 COMPONENT DESCRIPTION 2.1 REACTOR VESSEL HEAD LIFT RIG The reactor vessel head lift rig is a three legged carbon steel structure, approximately 48 feet high and 16 feet in diameter, weighing approximately 15,000 pounds. It is used to handle the assembled reactor vessel head.

The three vertical legs and control rod drive mechanism (CRDM) platfonn assembly are permanently attached to the reactor vessel head lifting lugs. The leg, clevises, and pins which are a part of the support for the seismic platform, meet the requirements of the ASME Boiler and Pressure Vessel Code,Section III, Subsection NF Class I supports. The tripod sling assembly is attached to the three vertical legs and is used when installing and removing the reactor vessel head. During plant operations, the sling assembly is removed and the three vertical legs and platform assembly remain attached to the reactor vessel head.

2.2 REACTOR VESSEL INTERNALS LIFT RIG The reactor vessel internals lif t rig is a three-legged carbon and stainless steel structure, approximately 30 feet high and 14 feet in diameter weighing approximately 21,000 pounds. It is used to handle the upper and lower reactor vessel internals packages. It is attached to the main crane hook for all lifting, lowering and traversing opera-l tions. A load cell linkage is connected between the main crane hook and the rig to monitor loads during all operations. When not in use, the rig is stored on the upper internals storage stand.

The reactor vessel internals lif t rig attaches to the internals package by means of three rotolock studs which engage three rotolock inserts located in the internals flange. These rotolock studs are manually l

! 54628:1/102282 2-1

operated from the internals lif t rig platform using a handling tool which is an integral part of the rig. The studs are normally spring retracted upward and are depressed to engage the inserts. Rotating the mechanism locks it in both positions.

2.3 LOAD CELL AND LOAD CELL LINKAGE The load cell is used to monitor the load during lifting and lowering the reactor vessel head or internals to ensure no excessive loadings are occurring. The unit shall be a load sensing clevis type rated at 500,000 pounds. This load cell is a part of the load cell linkage which is an assembly of pins, plates, and bolts that connect the polar crane main hook to the lifting blocks of both the reactor vessel head and internals lift rig.

l l

[

t l

l 54628:1/100682 2-2 l

SECTION 3 DESIGN BASIS 3.1 DESIGN CRITERIA NUREG 0612, paragraph 5.1.l(4) states that special lifting devices should satisfy the guidelines of ANSI N14 6. Further, NUREG 0612, 5.1.1(4) states: "In addition, the stress design factor stated in Section 3.2.1.1 of ANSI N14.6 should be based on the combined maximum static and dynamic loads that could be imparted on the handling device based on characteristics of the crane which will be used. This is in lieu of the guideline in Section 3.2.1.1 of ANSI N14.6 which bases the stress design factor on only the weight (static load) of the load and of the intervening components of the special handling device".

It can be inferred from this paragraph that the stress design factors specified in Section 3.2.1.1 of ANSI N14.6 (3 and 5) are not all inclu-sive. Also, it can be inferred that the specified ANSI N14.6 stress design factors should be increased by an amount based on the crane dynamic characteristics.

The dynamic characteristics of the crane would be based on the main hook and associated wire ropes holding the hook. Most main containment cranes use sixteen (16) or more wire ropes to handle the load. Should the crane hook suddenly stop during the lifting or lowering of a load, a F ,

shock load could be transmitted to the connected device. Because of the elasticity of the sixteen or more wire ropes, we consider the dynamic factor for a typical containment crane to be not much larger than 1.0.

l Even if the worst conditions existed, the maximum design factor that is recommended by most design texts [5, 6, U is a factor of two for 5462B:1/100682 3-1

loads that'are suddenly applied. The stress design factors required in Section 3.2.1.1 of ANSI N14.6 are:

3 x (weight) < Yield Strength 5 x (weight) < Ultimate Strength The factor of 3 specified, based on yield strength, is certainly large enough to compensate for suddenly applied loads, where the dynamic impact factor would be as high as 2.0.

To provide flexibility on stress design factor, the analysis of the devices was perfomed with stress design factors of 1, 3 and 5. Thus, any stress design factor may be easily applied to satisfy any concerns.

3.2 DESIM WEIGHTS The following design weights were used in the analysis of the lifting devices:

3.2.1 Reactor Yessel Head Lift Rig The design weight is 336,218 pounds which is the total weight of the assembled head and the lifting device.

3.2.2 Reactor Vessel Internals lift Rig l

The design weight for:

I

a. The Lower Assembly, Items 13 through 19 of calculations; is 760,000 pounds,
b. The design weight for the rest of the rig is 290,000 pounds.

i 54628:1/102282 3-2 l

4 SECTION 4 MATERIALS 4.1 MATERIAL DESCRIPTION The materials and material properties for the reactor vessel head lif t rig, the reactor vessel internals lift rig and load cell lirrage are

listed in Tables 4-1 and 4-2.

4 E

i

)-

e I

i-i t

k' l

5462B:1/100682 4-l e

TABLE 4-1 REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE MATERIAL AND MATERIAL PROPERTIES Yield Ul timate

, Strength Strength Item (a) Description Material S y (ksi)

S ult (ksi) 1, Lifting Block ASTM A350 36 70 2,7 Lug ASTM A516 38 70 Grade 70 3,6 Clevis Pin ASTM A434 110 140 AISI 4340 Steel Class BD

-4,10 Clevis ASTM A668 Forging and 85 110 Class L AISI 4340 5,9 Lifting Leg ASTM A434 Class BC 85 110 AISI 4340 8 Arm ASTN A106 35 60 11 Clevis Pin ASTM A564, Type XM12 105 135 (load sensing) 12 Side Plates ASTM A533, Type B 50 60 Class 1 13 Removable Pin ASTM A564, Type 630 105 135 (a) See figure 5-1.

i 5462B:1/100682 4-2

TABLE 4-2 REACTOR VESSEL INTERNALS LIFT RIG MATERIAL AND MATERIAL PROPERTIES Yield ul timate Strength Strength Item (a) Description Material S y (ksi) b ult (ksi) 1 Lifting Block ASTM A350, Grade LF 2 3b 70 2 Lifting Block Lug ASTM A516, Grade 70 38 70-90 3,7 Clevis Pin ASTM A564, Grade 70 105 135 Precipitation Hardening SST, Age Treated 0 ll50*F/

4 hrs. Air Cooled RC 28-31 4,6 Clevis ASTM A471, Class 3 95 11 0 Steel Forging 5 Sling Rod ASTM A434, Class BC 85/(46) 110/(67)

AISI 4340 or

( ASTM A588) 8,11 Spreader Leg Lug ASTM A516, GR 70 STL 38 70-90 Plate Normalized 9,13 Spreader and ASTM A350, LFI 30 60 Mounting Block Forging Steel 10 ~ Spreader Arm ASTM A500, Grade B 46 58 12 Leg Channels ASTM A36, CS, HR 36 58-80 14,15 Load Nuts ASTM A276, Type 304, SST 30 76 Rod Housing Hot Rolled, Cond. A 16 Guide Sleeve ASTM A276, Type 304, 30 75 SST, Hot Rolled, Annealed and pickled, Condition A 17 Rotolock Stud ASTM A564, Type 630 115 140 17-4 PH Steel 01100*F for 4 hrs.

(a) See figure 5-2.

i l

5462B:1/100682 4-3

SECTION 5

SUMMARY

OF RESULTS Tables 5-1 and 5-2 suunarize the stresses on each of the parts which make up the reactor vessel head, load cell and load cell linkage and the internali lift rig. All of the tensile and shear stresses, meet the design criteria of section 3.2.1.1 of ANSI N14.6, requiring application of stress design factors of three and five with accompanying allowable stress limits of yield and ultimate strength, respectively. In addition, all of the tensile and shear stresses meet the requirement of E03 not exceeding the allowables of the AISC code.

5.1 DISCUSSION OF RESULTS 5.1.1 Application of ANSI N14.6 Criteria Both the reactor vessel head and internals lif t rig were originally designed to the requirement that all resulting stresses in the load carrying members, when subjected to the total combined lif ting [ weight,8]

should not exceed the allowable stresses specified in the AISC The design criteria of section 3.2.1.1 of ANSI N14.6, requiring applica-tion of stress design factors of three and five with the accompanying allowable stresses, are to be used for evaluating load bearing members of a special lifting device when subjected to loading conditions resulting in shear or tensile stresses. Application of these design load factors to other loading conditions is not addressed in ANSI N14.6. However, these two stress design factors have been used to detennine the stresses of the load carrying members when subject to other loading conditions, viz. bending, bearing. This is an extremely conservative approach and in several instances the resulting stresses exceed the accompanying allowable stress limit.

5462B:1/100682 5-1 t

a)- Bearing Stmsses - For the internals lifting rig, several of the parts do not meet this criteria. However, since they are localized stresses, they can, if necessary, be considered under section 3.2.1.2, which states that the stress design factors of 3.2.1.1 are not intended to apply to situations where high local stresses are relieved by slight yielding.. None of the bearing stmsses reach the yield stmss, and in fact, all of the bearing stresses meet the design criteria of the AISC E03 code.

1 b) Bending Stresses - The removable pin in the load cell linkage does not meet the section 3.2.1.1 criteria. However, a very conservative approach was used to calculate the bending stress in pins, as shown on page 33 of the reactor vessel head lifting rig calculations. In addition, this is a local fiber stress. Even if the fiber stresses mached anywhere near the yield stmss, the rest of the pin cross-section could assume the additional load. The shear stress in the pin

! is extremely low and well within the section 3.2.1.1 criteria. Agai n, section 3.2.1.2 applies if necessary. The bending stress meets the AISC[8] code criteria.

c) Combined Stresses - The combined tensile stress from bending and

, tension, in the lower sling rod clevis (item 6), the spreader lug (item 8), and the leg lug (item 11) of the internals lift rig exceed the section 3.2.1.1 criteria. As indicated above, bending is not a unifonn stmss, but is at a maximum at the outennost fiber. Bending contributes to' the major portion of the stress shown in the table, and, as a result, the tensile stress without the bending is extremely low and well within the section 3.2.1.1 criteria. The combined stresses also meet the AISC code c ri teri a.

I

5. 2 CONCLUSION Application of the ANSI N14.6 criteria of (3 and 5) to these special lifting devices results in acceptable stress limits for tensile and 54628:1/101182 5-2

shear stresses. Application of this criteria to all structural members subject to other types of loadings tend to result in oversimplified conservatism and with some stresses exceeding the accompanying allowable limits. However, when using the more appropriate criteria for those cases not addressed by the ANSI N14.6 criteria the stresses are within the appropriate allowable limits. In conclusion, there special lift devices meet the ANSI N14.6 criteria for tensile and shear stresses and meet other appropriate criteria for loading conditions that result in combined and bearing stresses.

J 54628:l/101382 5-3

TABLE 5-1

SUMMARY

OF RESULTS REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE Calculated Stresses (ksi) Material Allowable Item (* Part Name Value (ksi)

Designation W(b) 3W SW S,(c) 3 No. And Material ul t Tension 0 6.515" Dia. Hole 4.1 12.3 20.5 36 70 1 Lifting Block ASTM A350 Bearing 9 6.515" Dia. Hole 6.4 19.2 32.0 Grade LF2 Shear 0 6.515" Dia. Hole 4.1 12.3 20.5 Tension 0 Lug Supports 6.7 20.1 33.5 Cross-Section

'f' 2 Lug Tension 0 4.015" Dia. Hole 4.4 13.2 22.0 38 70 ASTM A516 Bearing 9 4.015" Dia. Hole 7.7 23.1 38.5 Grade 70 Shear 0 4.015" Dia. Hole 4.4 13.2 22.0 Tension 0 Lug Root 2.9 8.7 14.5 Shear 0 Lug Root 2.2 6.6 11.0 (a) See figure 5-1 for location of item number and section (b) W is the total static weight of the component and the lifting device (c) S yis the yield strength of the material (ksi)

(d) S ul t is the ultimate strength of the material (ksi) l 5462B:1/100682 l

l l

TABLE 5-1 (c:nt)

SUMMARY

OF RESULTS REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE Calculateo Stresses (ksi) haterial Allowable Item (a) Part Name Value (ksi)

No. And Material Designation W(b) 3W SW Sy (c) S ul t 3 Clevis Pin Position i 110 140 ASTM A434 Shear 4.9 14.7 24.5 AISI 4340 Bearing 7.7 23.1 38.5 Steel Class BD Bending 24.1 72.3 120.5 9'

m Position 2 Shear 4.9 14.7 24.5 Bearing 8.0 24.0 40.0 Bending 24.7 74.1 123.5 (a) See figure 5-1 for location of item number and section l (b) W is the total static weight of the component and the lif ting aevice (c) S yis the yield strength of the material (ksi)

(d) S ul t is the ultimate strength of the material (ksi) 54628:1/100682

TABLE 5-1 (cCnt)

SUMMARY

OF RESULTS REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE Calculated Stresses (ksi) Material Allowable Item (a) Part Name Value (ksi)

No. And Material Designation W(b) 3W SW Sy (c) 3 ul t Position 3 Shear 4.5 13.5 22.5 Bearing 7.2 21.6 36.0 Bending 22.4 67.2 112.0 4 Clevis Position 1 ASTM A668 Tension 0 4.005" Dia. Hole 5.0 15.0 25.0 Bb 110 Forging & Bearing 9 4.005" Dia. Hole 6.4 19.2 32.0 Class L Tension & Thread Relief 1.9 5.7 9. 5 AISI 4340 Shear 0 4.005" Dia. Hole 5.0 15.0 25.0 Steel Thread Shear 2.3 6. 9 11.5 (a) See figure 5-1 for location of item number and section (b) W is the total static weight of the component and the lifting device (c) S yis the yield strength of the material (ksi)

(d) Sul t is the ultimate strength of the material (ksi) 54628:1/100682

TABLE 5-1 (c:nt)

SUMMARY

OF RESULTS REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE Calculated Stresses (ksi) laterial Allowable Item (a) Part Name Value fksi)

No. And Material Designation W(b) 3W SW Sy (c) 3 ul t Position 2 Tension 0 4.005" Dia. hole 5.1 15.3 25.5 85 110 Bearing 9 4.005" Dia. Hole 6.6 19.8 33.0 Tension 0 Thread Relief 1.9 5.7 9.6

!) Shear 0 4.005" Dia. Hole 5.1 15.3 25.5 Thread Shear 2.3 6.9 11.5 (a) See figure 5-1 for location of item number and section (b) W is the total static weight of the component and the lifting device (c) S yis the yield strength of the material (ksi)

(d) S ul t is the ultimate strength of the material (ksi) 54628:l/100682

' TABLE 5-1 (c:nt)

SUMMARY

OF RESdLTS REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE Calculated Stresses (ksi) Faterial Allowable Item a) Part Name Value (ksi)

IDI Sy (c) 3 No. And Material Designation W 3W SW ult Position 3 Tension 0 4.005" bia. Hole 16.4 55.2 92.0 85 110 Bearing 9 4.005" Dia. Hole 11.6 34.8 58.0 y Tension 0 Thread Relief 1.7 b.1 8.5

" 9.2 27.6 46.0 Shear 0 4.005" Dia. Hole Thread Shear 2.1 6.3 10.5 Tension 0 Threads 7.0 21.0 35.0 85 110 5 Lifting Leg ASTM A434 Thread Shear 2.3 6.9 11.5 Class BC AISI 4340 Steel (a) See figure b-1 for location of item number and section (b) W is the total static weight of the component and the lifting device (c) S yis the yield strength of the material (ksi)

(d) S ult is the ultimate strength of the material (ksi) 54628:1/100682

table 6-1 (cent)

SUMMARY

OF RESULTS REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE Calculated Stresses (ksi) Material Allowable Item (a) Part Name Value fasi)

No. And Material Designation W(b) 3W SW S,(c) S ul t 6 Clevis Pin Shear 4.6 13.8 23.0 110 140 ASTM A434 Bearing 7.1 21 .3 35.5 AISI 4340 Bending 22.4 67.2 112.0 Steel

[ Class BD

' 7 Lug Tension 0 Upper hole 4.6 13.8 23.0 38 70 ASTM A516 Shear 0 Upper Hole 4.6 13.8 23.0 Grade 70 Tension 0 Lower Hole 2.8 8.4 14.0 Shear 0 Lower Hole 4.1 12.3 20.5 Shear 0 Weld 2.2 6.6 11.0 (a) See figure 5-1 for location of item number and section (b) W is the total static weight of the component and the lif ting device (c) S yis the yield strength of the material (ksi)

(d) S ult is the ultimate strength of the material (ksi) 5462B:1/100682

- ~ - . .

TAbtE-5-1 (ct'nt) -

SIMARY OF RESULTS REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE Calculated Stresses (ksi) Haterial Allowable Item #II Part Name Value (ksi)

No. And Material ' Designation W(b) 3W SW S,(c) S ult 8 Arm Corap,ressive Stress 1.8 5.4 9.0 35 60 ASTM A106 Shear 0 Weld 2.2 6.b 11.0 18I "I 3

Grade B Seamless T

4 E 9 Lif ting Leg Thread Shear 2.1 6.3 10.5 85 110 ASTM A434 Tension 0 Thread 6.3 18.9 31.5 Class BC AISI 4340 Turned,' Ground

& Polished (a) See figure 5-1 for location of item nunber ano section (b) W is the total static weight of the component ano the lifting device l (c) S yis the yield strength of the material (ksi)

(d) Sul t is the ultimate strength of the material (ksi)

(e) Stress limit for fillet weld from ASE Boiler and Pressur Vesse) Lode,Section III, bivision 1 -

Subsection NF 1980 Edition, Table NF-32921-1, page 43.

54628:1/101182

TABLE 5-1 (c:nt)

SUMMARY

.OF RESULTS m REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE 8

8 E Haterial Allowable 2 Calculated Stresses (ksi) b Item (* Part Name Value Jksi)

No. And Material Designation W(b) 3W '5W Sj (c) 3 ul t 10 Clevis Tension 0 3.947" Dia. Hole 4.5 13.5 22.5 85 110 ASTM A668 Bearing 9 3.947" Dia. Hole 5.9 17.7 29.5 Forging Shear 0 3.947" Dia. Hole 4.5 13.5 22.5 Grade L Tension 0 Thread Relief 1.7 5.1 8.5 AISI 4340 Thread Shear 2.1 6.3 10.5 Steel 11 Clevis Pin Bearing 0 Midspan Section 7.2 21 . 6 36.0 105 135 (Load Sensing) Bearing 0 End Sections 7.2 21 . 6 36.0 ASTM A564 Shear 4.4 13.2 22.0 Type XM12 Bending 24.8 74.4 124.0 (a) See figure 5-1 for location of itera number ana section (b) W is the total static weight of the component and the lifting device (c) S yis the yield strength of the material (ksi)

{

(d) S ul t is the ultimate strength of the material (ksi)

m TABLE 5-1 (cCnt)

SUMMARY

OF RESULTS REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE S'

$ Lalculated Stresses (ksi) Material Allowable

$ Item

  • Part Name Value (ksi)

O No. And Material Designation W IDI 3W SW S,(c) 3 ul t 12 Side Plates Tension 0 7.50 Dia. Hole 4.7 14.1 23.5 50 80 ASTM A533 Bearing 9 7.50 Gia. Hole 7.2 21 . 6 36.0 l Type B, Class 1 Bearing 0 6.520 Dia. Hole 6.7 20.1 33.5 Shear Tear-out 0 6.52 Dia. Hole 4.1 12.3 20.5 h Shear Tear-out 0 7.50 4

Dia. Hole 4.7 14.1 23.5 13 Removable Pin Shear 5.2 15.6 26.0 105 135 ASTM A564 Bearing 0 Midspan 6.4 19.2 32.0 Type 630 Bearing Ends 6.7 20.1 33.5 Bending 26.4 79.2 132.0 (a) See figure 5-1 for location of item number and section

- (b) W is the total static weight of the component and the lifting device (c) S, is the yield strength of the material (ksi) id) S ul t is the ultimate. strength of the material (ksi)

CLEVIS PIN (LOAD SENSING) h REMOVABLE PIN h h SIDE PLATE LIFTING BLOCK @

LUG @

- 8

@ LIFTING LEG 0sirfgm ,

s l g CLEVIS @

4

  • 10 qo Aos, *:,

@ CLEVIS PIN s ,

POSITION 3 b\

th1T__ s /(f ARM @

/ .

y Qpl '

4_g, -

@ LIFTING LEG TYPICAL CRDM \

- - a  % \

/ -g._ -

h CLEVIS Jd'V -

[

@ CLEVISPIN

/# p(

' a, o ~

o o

^

ESSEL HEAD N .-

Figure 5-1. Reactor Vessel Head lif t Rig l.

I 5-13 j~ 54628:1/101182 l

l - -- . - - --. . - - _ . _ . _ _ .

TABLE 5-2 SUhhARY OF RESULTS REACTOR VESSEL INTERNALS LIFT RIG Calculated Stresses (ksi) Faterial Allowable Item (a) .Part Name '

Val ue (ksi)

No. And Material Designation W(b) 3W SW Sy (c) b ult 1 Lifting B1cck Tensile Stress 0 6.515 3.7 11.1 18.5 36 70  !

ASTH A350 Dia. Hole

~

Grade LF2 Bearing Stress 9 6.515 5.5 16.5 27.5 Dia. Hole y Shear Tear-out 0 6.515 3.7 11.1 18.5

% Dia. Hole Tensile Stress O Central 5.8 17.4 29.0 Cylinder i

(a) See figure 5-2 for location of item number and section

{ (b) W is the total static weight of the component and the lifting device (c) S yis the yield strength of the material (ksi)

(d) S ul t is the ultimate strength of the material (ksi) 5462B:1/101162 1

-TABLE 5-2 (c:nt)

SuhhARY OF RESULTS REACT 0k VESSEL INTERNALS LIFT RIG Calculated Stresser (ksi) haterial Allowable Item (a) Part Name Value (ksi)

And Material Designation W(b) Sy (c) (d)

No. 3W SW 3]

2 Lifting Block Tensile Stress 9 4.015 4.7 14.1 23.5 38 70 Lug ASTH A516 bia. Hole Grade 70 bearing Stress 9 4.015 7. 9 23.7- 39.5 Dia. Hole Tension 9 Lug Root 6.6 19.8 33.0 I

,y Shear Tear-out 9 4.015 4.5 13.5 22.5 Dia. Hole Shear 9 Lug Root 1.9 5.7 9. 5 (a) See figure 5-2 for location of item number and section (b) W is the total static weight of the component ano the lifting device (c) S yis the yield strength of the material (ksi)

(d) S ul t is the ultimate strength of the material (ksi)

'l 5462B:1/101182

f TABLE 5-2-(cont). ..

SUMhARY OF RESULTS REACTOR VESSEL' INTERNALS LIFT RIG Calculated Stresses (ksi) haterial Allowable Item (a) Part Name Value (ksi)

Sy (c) (d)

No. And Material Designation W(b) 3W, SW 3]

9 3 Clevis Pin Shear 5.0 15.0 25.0 105 135 ASTM A564 Bearing on Lifting Block Lug 7.9 23.7 39.5 Type 630 Bending 23.9 71.7 119.5' 17-4 pH H1150 bearing on Llevis Lugs 6.6 19.8 33.0 Tension 0 4.018 Dia. Hole 5.1 15.3 25.5 95 110 ui 4 Clevis h; ASTM A471 Bearing 9 4.018 Dia. Hole 6. 6 19.6 33.0 Class 3 Shear Tear-out 9 4.018 5.1 15.3 25.5 Steel Forging Dia. Hole Thread Shear 5.3 15.9 26.5  !

(a) See figure 5-2 for location of item number and section (b) W is the total static weight of the component and the lifting device

-(c) S yis the yield strength of the material (ksi)

(d) S ult is the ultimate strength of the material (ksi)  ;

54628:l/101182

d TAbtE 5-2 (csnt)

SUMMkV 0F RESULTS REACTOR VESSEL INTERNALS LIFT RIG Calculated Stresses (ksi) Mterial Allowable ItemI " Part Name Value (ksi)

Sy (c) (d)

No. And Material Designation W(b) 3W SW 3]

Sling Rod Thread Shear 5.3 15.9 26.5 85 110 5

I ASTM A434 Tension 9 Thread Relief 12.0 36.0 60.0 or or Class BC Tension 9 Thread 11.4 34.2 57.0 46 67 AISI 4340 (or)

L ASTM A588 u

6 Lower $ ling Bearing 39.1 117.3 195.5 95 110 Rod Clevis Tension 9 4.018 Dia. hole 29.7 89.1 148.5 ASTM A471 Thread Shear 5.4 16.2 27.0 Class 3 -

Steel Forging i

I (a) See figure 5-2 for location of item number and section '

(b) W is the total static weight of the component and the lif ting device i (c) S yis the yield strength of the material (ksi) l (d) S ult is the ultimate strength of the material (ksi) 5462B:1/101182

. - = . - _

table b-2 (cont)

SUMhARY OF kESULTS REACTOR VESSEL INTERNALS LIFT RIG Calculated Stresses (ksi) heterial Allowable ItemI

  • Part Name Value lksi)

IDI ICI S No. And Material Designation' W 3W SW S j ult bearing 39.1 117.3 195.5 105 135 7 Clevis Pin ASTH A564 Shear 5.1 15.3 26.5 Type 630 Bending 19.0 57.0 95.0 17-4 pH H 1150 i b 58.5 38 70 8 Spreader Lug. Lombined Stresses, bending 19.7 59.1 ASTM A516 an6 Tensile CR D STL '

l ,

s

)

Plate .

i Normalizec bearing Stress 29.4 88.2 147.0

.{

' (a) See figura 5-2 for location of item number and section x

(b) V is the total static weight of the component and the lif ting aevice (c) S is the ~ yield strength of the material (ksi)

.l j (d) S ult is the ult!Ute strength of the material (ksi) i 54628:1/101182

table 5-2 (cont)

StHPAkV 0F RESULT 5 REACTOR VESSEL INTERNALS LIFT RIG Calculatea Stresses (ksi) baterial Allowable Iter.(a) Part kame Value f k si)

No. And Material Designation W(b) 3W SW S,(c) S ult Spreader Block Bearing from Aru 4.4 13.2 22.0 30 60 9

I ASTH A350 LFI Forging Steel I

10 Spreacer Aru Nominal Compression Stress 4.4 13.2 22.0 F, = 22.9 *I ASTM A500 GR B 11 Leg Lug Ccccined Stress Bencing & 13.5 40.5 o7. 5 38 70 l

ASTH A516 Tensile 9 4.015 ria. Hole Grade 70 bearing 25.1 75.3 125.5 III Steel, Weld Stresses 11.3 33.9 56.5 21 kormalized 1

(a) See figure 5-2 for location of item ntzber ano section (b) W is the total static weight of the couponent and the lif ting cevice (c) S jis the yield strength of the material (ksi)

(c) Sult is the ultimate strength of the material (ksi)

(e) F, = allowable cor.pression stress to prevent buckling in absence of bending morent (f) Stress limit for fillet welds from ASTE boiler and Pressure iessel Looe,Section III, Division 1 -

Subsection AF 1960 Edition, Table AF-3292.1-1, page 43.

5462b:1/101182

.~

TABLE 5-2 (cont)

SUMMMtY OF RESULTS

, REACTOR VESSEL INTERNALS LIFT RIG 8

  • 3 Calculated Stresses (ksi) heterial Allowable h ItemI *I Part Name Value (ksi) ho. And Material Designation W IDI 3W SW S ICI IdI y S,3 t 12 Leg Channels Tens 11e 7.7 23.1 38.5 36 58 ASTM A36 CS, HR Y

U 13 Mounting Block Bearing to Load Nut 13.7 41 .4 68.5 30 60 III ASTM A350 LF1 Shear in Welds 3.7 11.1 18.5 18 Forging Steel (a) See figure 5-2 for location of item number and section (b) W is the total static weight of the component and the lifting device (c) S yis the yield strength of the material (ksi)

, (d) Sult is the ultimate strength of the material (ksi) y (f) Stress limit for fillet welds from ASE Boiler and Pressure Vessel Code,Section III, Division 1 -

- Subsection NF 1960 Edition. Table NF-3292.1-1 page 43.

table 5-2 (ccnt)

SUhhARY OF RESULTS REACTOR VESSEL INTERNALS LIFT RIG Calculated Stresses (ksi) haterial Allowable Item (a) Part Name Value Lksi)

No. And Material Designation W(b) 3W SW Sy (c) 3 ult

  • ) /'~ l

) \

Bearing to Mounting Block 13.7 41 .4 68.5 30 75 ,; Cg-I 14 Load Nut J y

+)*

ASTM A276, Thread Shear j5.3 15.9 26.5~ ,

e ,

, Type 304 *

  • J

) . .\

I9I 'j,l ,

'r .II,I

m. .

15 Rod Housing Tension 0 Thread Relief 10.9 '. ' .'32.7 - -54.5 Ji "36 Sl

~

t -

c Thread Snea'r on Upper 15.y1 26.5 ' , . , . ,[- 'l.,' ,

7 ASTM A2i6 5.3 .

fi Type 304 -Threads

~

,',.D

~

, j e , .

~

fg' 4.9 14'.7 24.b' c -

L(wer Th6 eads Shear _

- i. .

s ,y j

a , , .

I 16 ,

4 a.9 I 14.7 2'4.5 i l 35 9)-

bl Y ' ' [ ]>, **

Guide Sleeve - } Thread Shear ' '

68.0 ', ',',

Tension,0 Thread hel ief ', -., 1.1.b G A.8

%Tb.A270-.

, 1 Type 304 tST Bearing-164tud, . f14.2 42.6 71.0 ,

3

- j -

(a) See figure 5-2 for location of itan number and section (b) W is the total static weight of the component and the lifting device (c) S yis the yielo strength of the material (ksi)

(d) S ult is the ultimate strength of the material (ksi)

(g) These am actual S, and Sg taken from material certifications.

5462B:1/101182

table 5-2 (ctnt)

SUMhARY OF RESULTS REACTOR VESSEL' INTERNALS LIFT RIG Calculated Stresses (ksi) haterial Allowable Item (a) Part Name Value- fksi)

No. And Material Designation W(b) 3W SW S,(c) S ult s

Tensile Stress 9 Cross- 19.0 57.0 95.0 115 140 17 Rotolock Stud ASTM AS64 Section

Type 630 Combined Shear Stress on 23.4 70.2 117.0 17-4 pH H 1100 Land Root Bearing on Lano Surf aces 24.9 74.9 124.5 u,

, (j Bearing on Steel Head 14.2 42.6 71.0 (a) See figure 5-2 for location of item number and section (b) W is the total static weight of the component and the lifting device (c) S yis the yield strength of the material (ksi)

(d) Sult is the ultimate. strength of the material (ksi) l i

54b2B:l/101182 e

fp ^

i. 3, 3 LIFTING BLOCK @

- ,lI

.{, h, _, i-  %)I 'y LUG @

j If .

S

'x p

's.d.

. -- -- Y)

%9

@ CLEVIS PIN ~ h y,= y- =: n , / x -

e 9lp

@ CLEVIS k , i l

$- 4? 5,2 , ,mk m '

'J rSLING ROD @

)p 'h/A  : s

ll l I

,g, f' \

h ARM li [

i 4

/

l! g BLOCK @

~

y ) -

cLEV IN @

Hi I d v

fFY EG LUU h s

L f g CHANNEL h l if

, s p! ,  ;

iI I

{

g; ij  : '>

/

,p,JLwq's

,i

{

^-

l:.

N$

k; u I

p i 1 - l'- W.3, g

il 1 - a

} f[r k , / ,: r

?Q  % l(f

@ LOAD NUT

@ MOUNTING BLOCK h ROD HOUSING h GUIDE SLEEVE h ENGAGING SCREW Figure 5-2. Reactor Vessel Internals Lift Rig, Load Cell, and Linkage l

54628:1/101.182 5-23

APPENDIX A DETAILED STRESS ANALYS!$ - REACTOR VESSEL HEAD LIFT RIG,

. LOAD CELL AND LOAD CELL LINKAGE This appendix' provides the detailed stress analysis for the Comanche Peak reactor vessel head lift rig and the load cell ano load cell linkage, in accordance with the requirements of ANSI N14.6. Acceptance criteria used in evaluating the calculated stresses are based on the material properties given in Section 4.

i~

4 4

1 f

4 t.

1 1-

! S462B:1/100662 A-1 l

. . . _ . . . . . . - , . . . . . _ . . _ . , , , ._,, , . - . . . - . . . - , , . . . - ~ . , = _ _ _ . _ . -__

SKETCH SHEET et s r e now005E F0au 54202

50. PRO JE CT pagg Comanche Peak 1 y 31 TYGP-188 fiTLE CALCULA7 IONS NO.

R.V. Head Lift Load Cell & Linkage Rig Analysis PDC-AUTHOR & OATE CHECMED BV & D ATL J. Urban hk(% g.gg

' ~

H. Sandner de PURPOSE AND RESULT 5t V

1. The purpose of this analysis is to determine the acceptability of this rig to the requirements of ANSI N14.6.
2. The results show that all stresses are within the allowable stresses.

'#9 M d M .

. ......... 6s o ... 5 5 . gg 4 H. Howard Sandner, Jr. f}

ENGeNtra p h3 23341l T.h DJ ,1 M d&"

Original Issue J. Urban DESCRfPTION By REVISION NO. DATE REeULithG REPOATS. LETTERS OR WE MOR ANO A :

l

i WESTINGHOUSE SYUCLEAR TECHNOLOGY DIVISION PAGE TIT LE M E AD LIFTIN G RIG STF.Ei', TA N ALYDATE ST5 2- or 3 l WROJECT AUT DATE CHK" . Y CHK'D. BY DATE

$'L FILE NO.

W $ f$V GROUP S .O . C A L't.. NO.

Ty 6P-t % B CWE HEAD LIFTIN6 RIO SO5EMGLY DW6 67. I?. E 2 7 i

I G'

N N"1 GLEVI5 PIN 3 N mme~ 1

\

/ 4 cetv:s mmon a ,

\

LITTINb LE

\\

nm-FC.rTTON 3 POSITION 3 h,

\3,/

LUGE 'I/

8 art 1 -

, i i i -

SEIiMIL PLMr

  • R M l

@ trrrInt, Lt c, ctevzs D , nese:R s

u s'. n @c.<tvunm (s M r. u o AUTHOH DATE CHK'D. a v OATE CH K*D. 8 V OATE REV. AEV.

NO DATE WESTINGHOUSE POFM 552130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TIT L E L O As t. U _L ._ I N K f6E LTRC.'. AN AL'lLI2 3 or 3 {

PROJE CT AUTH DATE CHK'O RV DATE CHCD.BY DATE S O.

%h N C A L'C. NO.

A% FILE NO.

fvhv GROUP TMP-1BB CHE

. H EAD 4 'I.NTERN ALS LIFTING RI(, LO AD C,E LL

, C.IN % A(d AME f4 GLv i -

j ;j , i l M AIN C.RAN E. H OO K lI II

'l'

\l

/I' .'In */

CLrsI',l"3N (t04 'TNJ %,; , g l

l g

( '

E. -M L 95219 -

.\ /

OTL E. P'.l\iE '/

/ \ '~, '

V V,A &, -

- - . , y..

k,tio AtL[. FIN di i :My _

(" n ; m _-?_~_v -EF';%

1--1

/

'/f-,--7 ,

0~O I

l I i

, i C,LIN G G L O(.6 Lu PPLIE D

, utTH INWRN ALL l HEAD

! LI F TIN 6 RI6L SLT N (o E LC<. k A N A ty En. . I t4(.t.uC(D I M litAD ANL I N '. t F .11 A L.L LT F T' hI G A t1 /\ e l'_ n #,

i t

WEI6WT = GPEARF, & ItFci N ALE GE HEAC Lt F1 Fsm LEiIGN VW I 6HT5 = 2 2 'o,"<_\ 9, I

AUTHC ' DATE CH K' DATE CHK'O ev CsTE

! REV. REV.

NO / OATE 'J!/f!(( 2 []

.E.7,~o ou,E ,oRo , m D

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISIOiB PAGE TITLE R h M. LITTI Nb F. 6 ST %' A N A , . T '_ 40, 3i AU HOH DATE CH K' DATE CH K'U. S Y DATE PROJECT

- 31 Ad 8b' CYLC NO. FILE NO.

GROUP 5.0.

TNC#-lB8 CHE

\pticHT O% h t. A L GN' .tMBLY ( LIFT RT.G WEI6HT S: Po0No b R.V. H E A D _ _ .- _ _. t r.5, t s o STUDS, NUT L, f u natERS . . . "59,150 G R D M 'S' r utt tt.n.TH _ _ . . 7 4, t oo 1- I . ~ L T t 1 A r. _ ___O F ~. L* n Ic:q 't i.iLi UG7, t .C; t. .iN r, _._ .-....t4,S95 C.,0G'_T . N S S m.3Jo .... 5,~150 LVMMy CAN'.....-_.... 846 LI F T TR16 - - - - - - - -. - \S 115 e 1.1 JL htnTON&. MO E.' T. . . . . . 900 LE t'. rnl ~ . r bJ t GE.F .... I t,400 Mit AD TM5UL ATION -_. @O0 COtaTr14 6:NLitt . .. 1b,000 33r ,7.1S Fouses i

AUTHOH DATE CHK'D 87 DATE CH K 'O, 8 v DATE REV. REV.

NO DATE WESTINGHOUSE PORM 652130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE j TITLE

!11 w.. lit ~Ti t ',; 5 7re ; A.t.1; _ c . 50, 31 AUT OH DATE DATE CHE'D.HY DATE 4

PROJECT TU CALC.NO.

E/02 CYHK'Ob &wu GROUP IILL NO r

5 O.

7N C,P-(B B C H E.

COMhThNTh OSED THRau61400T TH E, C ALC U L AT'L ON b G: ogo uppe sh;,, b % ku h

  • b i ,

p= 25,t42 fmrn DwG n.t2 E 2'7 I W = u KF o f. head ommtlypiangawrnbly Te1 W= 2 co.2)B cconas W-3 Ts M n uo.s  %

. b n\

h.

C J

\ co> x =Wa ~2, ? G,1 l'E x

T- ma -

3 c.o,2 3. n z, =

T= 123M O 2. Ib

'/

en N

4

& O i

a l

i i

oATE can o av OATE CHn'o s v OAff Autnom nev. mE v.

NO DATE WEstlNGHOUSE FORM 552130 l

l . . ..-.-... -.-.- --. - -. - - . . . , . - . ..-.. ...,~~ -. - ,,--.-.,-.. - ..,. - -, - - . . - - - - . , , -

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE 787LE HEAb LIE T11% F16 STQ5C P.NN YiI5 OATE CH K'O. 8v hO3lOATE PROJECT DATE CHK*

iBK AUTHO d k A s/a d g/'Vr>

FILE NO. GROUP 5.0 . CALC NO.

i

~TN t, P-)% GHE LIF TING BLOCK A 5_SE M BLY t'AT'L -

L I F T LNto B LOC.N T.T1 - A57 M A3SO GRAct LF2.

3 LOG IT 1 - A 5T M ASN GR ADE rjo

- W tt Db E. 7 O \ % E LEc.TRODEs E.T. W T. 940" t

4 - 6.t07,*p, tV 'I i

~4%

a

.u t.oi = 4s s z ac,. n. [ a.2st.2:n i t 0"a two9 I bI A I t

I i

i 9 \ -

a n L. i i

i, i w.5652.cos4

'L _ __ _ _ _ _ .' A ..

\j 9.0:t.25 FkM 5e ag J

\

lB.001.05 Act51,N y '

ke,p f i

I 25. W .it 7.002.13 l

u d t l s

k

4. cot .oi t

., k_ si ; v _ __

(t utcK) 3,mt , n ,,

O ic,0tf.C '

  • b Of fnitA spc d 3.t 12 QO 8, :.3 p

( t. v u noter.c IW view) DATE AUTHOR DATE CH K'O. 8 v DATE CH K'D. 8 V REV, ngy, NO. Daft WESTINGHOUSE FORM 652130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE Hr AD LI FT % kb E'TR_.5 L AN ALNM l O, 3}

& O A T F. CHK'O BY DATE AUTHO DATE CH K'O PROJECT

'I~E E AW 4 Aduvr/2/gr FILE No. GnOUP S0. C ALC. NO .

C. H E.

TN b P-I88 LIFTING BLOLK(5)

TE N SE LE. e. B- G TEN 5L LE GL A-A W = 3 %,2.18 \b W = ~636,2i B \b fi P/A t fe= P/At P= w/2_ P =. w A i= (s.25 - MB.tS7) (.%)' AL= TT (B.00[/4

' 4 3 . 9 'lin'

= 5 O . 2 (o 5'in '

fe W/(2 540,87) > W /50.245

[e = 4113 p k(- G C, R 9 y.i LUG b BE ARIN G G. A-A W ' 3 1 6 , 2 \ 9a ib '

P/Ac .

t

[

p=W c [p',. 62s 3.0c Ac=d3 .E 3-

= c,.s s ( 8.sa7 - W.oe))

A N5'""

s.so

= S 2. 5 G in' k = W/52.56 7 .4 I

$, G3 97 c.

, y,

}

(7.co+s.so)/2 T " c#'1s r

TEN SI.ON G G-C

% SHEAR. . Lea--out

& w = 33co 2i 8 n T= 0.3 P/A[802 lb 3

3D 4 = P/2A, [e P = T/2.

P=w Av = 4O.8? in 2 Ag(s.so ' ')(4.00)

' f, w/(za 40.B7) =

13.9t? in s S = __4113 ui .T/(2 A n.97)

> L(- 443r g OATE CH%'D. BY DATE AUTHOH DATE CHK'D. S v REV, A(V, NO DAtt WESTINGHOUSE FORM S$2130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE 4 E AD LICT2 Nu R2.3 STQi! ANALMIS T os 3}

AUTHO DATE C H K' D' Y DATL CHK'D By CATE PROJECT TEK. M CACC NO

& s/n ,

FILE NO 9A</sv GROUP.

5 O.

T%P-l'88 cne B E A R T_.N G T= l'13,802.\b c,m = (a.2 5 in R. = P/Ac P=T E = bb'/)?_

Ac = d J =

4.00 ( u.s)*/)2.

4.01s-(4.0 0)

=

L31.0 in 4

= 16.o6 9

% Mc./I umstw (L,T/16.06

= r7709 p,

= _ gonri yst fi " " " "

E H E AR - ur -o,,t -

P/Ae T= 113, Bol ib P - T sh w = in,eaf.., .sd tv = F /2 Av Ae = bh P=T = 4.00 ( 7.co + s.so)

A, - 4.s.o- Yb.ca) - 50 ie ~

= \m O Li- Tunv./so f, T/(2 11.97) { ,- _ l O 5 2. c :

Iv - 443I mi

(+( = _ %12. 9 yn 5AltRR C" Lee kooT S T h t.L ; t L e, t,; e w m r T= o,3,so2*; m= 2 s. m' T= 12.3 , S 02. ib -fy - P/Av B endig n,ornent a bout P= Tcesa '

poink D: ccw t- Av- b b = 5 0 in' x - as .14 a

  • 4s - Tcom /s o Tv . 2_241 7,-

X? .75 han m .

X- 0.3520in M - Tcw (6-x)

M= G 32,98 9 A-lb DATE CHK*D B Y DATE CHKD.SY DATE REV, AUTHOM REV.

Daft lNO WESTINGHOUSE FORM 552130 I

=. . ._ _ . _ . -. -

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION 1

PAGE ff7LE WAD L2TTINb rib 172D1 ANALV2 5 Q o, 3l DATL CHK DAIL CH A ~ D. B Y DATE MR A %. .#/'Q M -s4/y PROJE C T lAUTH T EX F ILE NO. GROUP S 0. CALC. NO.

TNCoP-: B8 caE CLEVIS PIN M AT'L A ST M A- AM A'LLI 4 2. 4 0 5.TE E L C,t AEL Eb 140,000 PSI MIN ttNmi. STREMbTH

! ELT WT" 458 , yg pg ,,

2,9 5 - L l= U N C. "2. B

e. i.lt 7 l /.' f

. 2.,,s:.m +

gi 6m ..a ,

9 y _<- r .___ _

a + .o6 !.o2 = *s ta2.* r, e 3.121.08 & n,q r, &

177

-9 1,15 ?O ~W tvp i

i O 61.tet. RtF r KE t.PER F L Art.S An r. l.co 1.02. TH1(.k.

I i

i l

DATE CHK'D BY DATE CH K'O. B Y DATE REV. AUTHOR

! REV NO DATE WESTINGHOUSE FORM SS2130 l

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TIT LE HLhD LT5TTNb FIs STRW jwALV)IS '

DATk CH K'D. B Y (o O, h\DATE P ROJE C T DATE B T E.% AUTNHOFA Vat CH/K' FILE NO.

34 GROUP

$ O. CALC.NO.

'TN GP-t gg c M e_

T HI 1. 5 AM E. FI N D. USE D TO CONNE.LT TH E- bkTNb Uk M TO T H t. LI C TI. N L.s L e.G (POSITION 1.) , LIFTIMb Lt.6 "IO SPRtADLR. M MfBDtN (PoSCTION 2. ) AND . &RE ADER 4.itmD.LY to VGTIf.At, LIF7tNs L% [ew;J4M SH EINR r- m, Sol d w , uv,2ig

  • mvroeg @

L P/As Ac,, db 3.ws b.u-x.m)) 9.EB W P1 - (W/h)/2' 5 b,O%*

~

As= Tr d'/4

- Tr (3.995)*/4 A.pdb 7,.99S(3.SBp \s.50\ IM

= 12.s aso in 2 pg. (W/3) = ) i'a. ,0 7 3

  • POEITION5 hi@ P' (w/s) c.r* b 9 (* 9 f ku' Q '2' 3 P po:r T r aw

@ P- a GENDI.N C2

@ fy , 4938 g: ,t 31 g 4, . 4 4'70 m: [3=\exrg421- 2i 3 &4 .,.2. ~

'v d ,'

1 4

i 3-m pm 4 -

' BEN I.N G b,. .

. H-t W fc= P /Au H 9 -i

  • P P

hP/2 PCMTION @

A q= d f 3.995(..s.2;x)) 9.42b'POSITTON P2 T/2 = co t,90) " a - 2.so- M.ou) -

2.4i ix kg v d 9= 3.993(4.00)

  • 15.9804 3 = 4.00 . 4.00 i4 P, .- T- m, s on." d - 3.99s - z.99s e R;- A4 29 p. 4<,
  • 7 '74 7 pc c.235 i-3p.T(4.ss+2(.e4s)9.c@h

=

restrzon @ g 6.a9uws(2.44-2(.us)enac. f3 yz (ys.sosibT + .nc * -) n @

Pr - T/2 = G I,901

  • T~( .194 90)
q. o m.wys.nr is. seq 24;i29 g

. Pn T' )A3,goa*

L - 6.594 C.si C a 9.9 %9 m: l

  • a ma,0,, im wmm DATE CHK'D. BY DATE CH K'D. 8 v OATE REV.

AUTHUM REV NO DATE WESTINGHOUSE POmv $62130 i

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION

"~'

cc 3l NEAD ETFTINb RES AUTHOR 57 Ebb ANALV5IS DATE CHK'D/S DATE CH K'C us l ~

DATE PROJECT 5 O.

TBR h d %t CALC hv fit f NO ddd y GROUP TN CP-(B 8 , CHE postrzoN a= 2.44 - 2. @ (.045) = 2.35 ie

>= s. a e = s.ss -

d= 3. 99 5 2.995 (,

g = h.so &2(.o4s)-3.BB)/2 0 3ss L P- T = \ M ,% O l ib t, .p(i)(t n.q=r y ..m()m&We T(.19949) 6 1 4 r7 n p ,-

tostTION h a= 2. 4 4 - 2 (.04s) = 2.2 sw

.9 = 3. 8 a - 2.s s e d = 3 9M = 3.99 %

g = [4.56 41(.045)-3.81) /2' (11ssi.

P- W /3 = na,o73 n,

{3 3 (.199(o9) 4s . n ,s a o m, :

DATE CH K'O. B y DATE AUTHOR DATC CHK'O SY REV RE V.

NO DATE WESTINGHOUSE F ORM 652130 r

i k,

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE Mk'/ . N , RL 6 26.' .~. . .' A!./s i. v) b DATE CHK*D. BY

\ 1 Or 3lDATE l

i AUTHOR DATE CHK~ 8 PROJE CT Ybh 5 kl fM) 2-FILE NO GROUP

10. CALC.NO.

TV GP-l88 CME 4

C L EVI.S M AT ' L . . . AST M A G(oS FOR6ING 4 C,t.hu L, A E ST. 4 ?A O STE E L MINLMUM Yr ts.D 5.TRENtitH . BS,000 PSI.

EST WT 340 *

9. .03 -

f9.0c!.eA 1

y /. 5.00 4 uuc. -15 a l' P l /jf i,

,i s.=1.n v i s l' [ ', f' 6 I, ,

D f $ l

. L

_ . . - - o .ust.= J_ _

i

. J _,: j ,3;,

~

"i ' ff I /,

' 2 2.*4 _ __

M *oWfd @ '9d* -2.50 t .o?. $ wao b o kl IMC%. M M ,

t /_ t4 i -.

- 4,g3.cos 4 l O lC J -

" .04S 2.06s 1430 .110 rVP i

I "Oi 4.13403-n_on 2,Jo y . ,

2 70: 2.44 '

ITet 4.50Lo3 i RH 1 T O ^- AT tott Om or tr n rI No te c, LH IT Q1 At TOP Of tIpirNo Lt6 7.00 MT.N THD EMO AbtWM F (p.is 11s?.t 27 vrtu s-d OATE CHr 'O. 8 v 347E AUTHOR DATE CHK'D UV ggy ggy_

NO. DATE WESTINGHOUSE FORM 552130

. _ _ . . ~ . _ . . . _ . . ~ .. _ _ __._ _._,

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE A/EAD AUTHQ' LIf 71 % OATE KZ CHK'

  • ~ %T :. N:-k VCHK'D.

8 O A TE D 8 v l b Or 5\DATE PROJECT

%% & 'I bt ] h 8/u/vy CALC.NO. FILE NO. GROUP S O,

_. T N cop-\M ( M E.

T=.G3,%01 W - 3% ,2.1 %

T E N SION e. A - A BEARINCs 8 A-A

-f=P/Ae t

.Q= P/A, Am , 2.30 p - 4.w:.yz .od e P = T/2 - roi,90t S ro.24 2 in t Ac- a.9 4.cos A (2.so - 2 Lae))

= 9. e52. i n'-

( A. ' t

@ Ac. J J . 4.cos s(2.4 4 -2(. css))

9, 412. in' A41 =

2.44 * ( 9-4.ms)/2 .ms

=

P-T/2 - (o l,90 ) lb

= G.0 9 2. rn t

@ A c. , d 1 ims s (,7 A + - 2(.ogd;

- 9A ILn' wn :. b. usu r3 com a w._ P- W =

5(o,03"1lb Sti tnt. OLock to t u t. L t Ftr u . Law..

O P -T/4 = 30,9 E I \b ( = (T/2)/ 9.652 ITEM 2. Is d' ate TD C.ON N n r T H t, 3 --

b 4Ib tel XtN6 51FTENu LLie TO TH1. 5 PR tA ct R, (q t 2.) Se4 \ $

m m ety... {c2

- 4 67"1 tyi

@ R:= T/4 - '50,9 5 1 lb (o. (y/3)/2./9.917 suo To ceristcr rm. m:ws 6=_ 5954- psi a.ummy in rw. arao i.rcrrn.

L E G (vtMhA L) , , ,,

@ P = W / 3 = 2 8,O 18 lb 4

q) Q - (T/4 ) /6.24 2.

= 49sn m, c

@ fe - (T/4)/c.o92

- snR\ w

@f t wh / c..o9 2 /4 A

'{599 s OATE CH K'O. 8Y DATE CH K'O. 8 Y DATE ME V, AUTHOM R E V.

NO DATE WESTINGHOUSE PQRM 552130

mm _ . . _ _ . _

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE

+

NTAD UT11h)L, P16 57PC5: AivA L vI$

DATE CHCD.BY

\4 O, 2l DATE PROJECT AUTHO i OATE CH K p.

TG% .

hhs S/gt Mdgs CALC NO. FILE NO. GROUP S0.

mc,P-i 89 CHE T= \23,%0f,W= 3%,2 ) @

TEN'. ION G B - G Q) -fr v,= (T h_)/@ (6.142d

.$ y . 4 9 5'R a e 4v (T/2)+ (2 c.ch) 5DA1 i

{'3= P/A, b. pi

@ fy - (w/O 4 (2 4,.on')

@(!) P - T = \ Q 3S0'1 n Gv, 9198 p, Ai 9.co (9.2e') -n (c.ow)% __

= co4.teo w G) P W/3 THREAD SHE E A c e 4.ic.oiJ f- y P/Av (Ie fe. T/c,4. iso l_N y = n Dp J /2.

te ieso ca om , o,  %"

@ ft b /2) / G 4. Ir.o c , my a;a,

s. coin it = 1747 pi n - % aas pr A s - 4 Driu - 4. B276 A SH E AF, 4. car -ea 3 = 7. 00 A P L - P/2A. A, m (4 8276)7.co/2.

[v h . r ,19is

) (De P T q) P- T/2.= Col,90\Ib A, - s 2. i 9 i.,'

A = 2.so (9.00-ams) .us' @ P' W/3 e.u 2iw ' Ao c.i3 ' >

O P T/2.* Co \ ,901 A o.w (3.m- <=y2 .ss' ge 6 T /s3.i >

c G.092. id fv

  • 232S pi G P- (w/3)/2 ' 5(o,0% Q) fy - (w/3') /53.6 A = G.0% iJ Sv. E t 0 57 pc

! OATE AufHoh OATE CHCO tev OATE CHCO,SY pgy, pgy NO DAtt WESTINGHovSE PORM SS2130

. .. - - _ _ _ _ - . - . _. 2 - .-

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE

, 787LE NEAD LTF77N6 EZ6 STEE36 ANN'0I5 \5 or Sl AUTH R OATE CHK" v OATE CH K'O. B Y DATE PROJECT S O.

Th CALC.NO.

701 M Nsb FILE NO. GROUP TV C,P- 19 G GHE LI FTING LEG 5 M APL AST M - A 4 34 C,L A% B C A 15 ) 4340 LTtEL.

T U R w t,,bi 0VMO,l POLEhHED, MIh1IMVM NIELD _%tNew @'000 C.LT U.D ~7 7O E h l 7 ,

)(,.00 MIN FoLL7HD

- l (TYP) A s.00 - 4U N -2 A - R.H, b

k & ,s.W;.% 4

\1 s% 1.Ota A A i i i 4

, - w.00- 4UN - 2 A - L. H.

j'

  • l o s >

g DATE CHK'O. 8 v OATE CHK'O. sv DATE pgy, pgy. AUTHOR NO. DATE I WESTINGHOUSE FOMM 652130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION 8 PAGE TITLE I'r hj ' l 7 57]h!,:, f E6 L%TL BAIA LWZ', lb Oe ~f 1 DATE AUTHOf DATE CHK g DATE CH K'D. B Y PROJEC T S0.

T T.SA, e CAL 3 NO.

k 7/at FILE NO.

kF f

GROUP TNCbP-t%9 C HE.

THREAD . SHEAR Tmdroy q, N-N h- P/Av 6- P/Aw P-T - in , so2. is k y

  • U Dpw ^ 3 /2. b pp 59 of A,b.U.5.T.(1%d)

Ttrout sTrte> . An t >,

Ir> p3 (ol of heru.aw A = y( D - 0.91434f h a ar k u n J a d m .2 Anah (two) b enbnet haas D= WA kgor Amske Qs ene y d.mtke h = nomho of AA p- Ah h s num ber el b l. rwh OM 1 D p, a { D3 "n"p) '

k tT

'T ( S'00 - 4

'" 1 Dr -(s.co - 4

\7.7(o %

- 4.8zw, m

! Ay. T (4.s m) 7.00 /2 P= T = n.3, e c1 it

= 53.19 9 t 'I/A " In 9 O F; t.

._ _132R pt f

a DATE CHK'O. 6 v DATE pgy pgy AUTHOR WATE CHK'O BY NO DATE WESTINGHOUSE F ORM S$2130 ,

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION 4

PAGE TifLE lJEAD U M7hlS P7 ', 67RE3.b ANALDATE '/2.b p3 c, 8\UATE AUTHO DATE CHn' 3 e CH A'D. B v PROJECT

$ O.

TE%

CALC.NO.

1 56 FILE NO.

4 64v GROUP TN GP-IB 8 cue CLEVD PIN M AT*L AiT M A 434 AISI 4 34O STEE L , Ct.Ah G D, I40,000 Pu Fu-NIMuM Te tone I TREMTK EtT w r 50*

6 2 02 T

3.n i,,

L l

,,m 4.on .003 4

-- F , _ _ . . .

4 _

4 ji

- 9. B B t .o ?, y n, .ol mu vf P (gewnN rTu A4 WNMER)-tub ILt C27 Nt t w 5-S i

9 I

Daft CHK'O liv DAIE CHK'O. sv DATE pg y. gg y, AUTHUR NO DATF WEstlNOHOUSE F ORM e' 52130

_ _ _ . . - . . - - . - - . _ _ _ . - . . , - _ . . , _ , . , _ . . _ _ . _ _ . . . ,. ~ ,_ ,_ - - ,._. ,__ _ . ,...,._- . -,.__._,--,.. -.., ,._ , ,--, . , . _ _ _ , _ . , . . , , _ , , , , . -

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE PROJECT Ybf) l? 5 I$Nb Yh bW?bb bllA { YD AUTHO DATE C re K

  • v DA E CHW D.BY f OF \

DATE Web' k d '- - 61 FILE NO, w

GnOUP S 0. CALC NO Tyc0F-ins .C,M E T= 12 2.,30 2. , w - zw,2ss SWE AR @ ?(1+p d) b L - P/Av  %. - ,~=,

A, Trd*/4 i

= Tr(3.m)% 4 - Y ( G ' T + . u s + 0 S .. e

= 12.I M in t -

5(.199 G9)

P = (w/3V2. !b- 23 3Ro 3:

f- aoa EEAR E N G

(

P/Ac k ,[2.50 t -1(.eas)]2.9nn2 Pz - lW/3)/2 = SG 034% 3 Ac,, [4.co31.m : \s.9482 Pn = (W/3) = ll2,07 31b fc1

' 5,9 06 p.c ha v Q l l '7 y EENDING a . 2.so 2. ( 04s) - 2.41 i

)= 4.0c w qs [4.5 o a(.c4s)- 4.003/2

.O.295 6 d = 3. 937 m P = (W / 3 ) = ll 2 , 0 7 3 1b OATE CHRO.8v CAT &

AUTHOM DATE CHK D,8 v REV. REV, NO DATE WESTINGHOU38, FORM 557130 i

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISIOiB PAGE TITLE Ah !FUNb RJb hnt:s A NAL YLa (9 or 7, l O DATE DATL C H K ' D. H T DATE PMOJEC T S O.

TBh AUkTk %t C aa LC. NO, CH FILE NO

/K' 8 4 4 4 - GROUP '

! % F-4 9 2) C.H E 4-LonP 5, PRE ADErss A6bE MBLY s M AT' L .

Ol ARM AbTM b iOfo GRADE E iE Atut*_5 O2 LU 6 A STM A 516 G R ADE '70 WE Los E 70 lB E LECTRODES EST. WT 2900" ,

N 8 97pc N 'N[ l  ! (.00issi2 x wt..?:ne)

M s

x /\x-[ . ,/

I TO I 57oots

[ e9.% tm*

12b. - tw

~~-u'

,/

mf l4l( m

asV#

f s,* ? l N q :- fl .fS

\ ,

og s t.

. _, N v

  • . a . S*g*

% v

\

,l J ,

1 3

4- e iioo%4 g ,y ,.

'* " 7 j 3.BBt 03 6W.% R ,,

3.50 f.12R o \ 4 14- s. Sot a hI N 4

, - -t ? _ , --

4,sn o1 1 i,251.12 3 62 C 04 A _

_74A'0 * *7 ,

nw i _4 7

""'"~~~

as 4 ) L l (s.00T*ll N 4N,yI .=o  : 3i.9<, m  ;

l _

DATE CHK'D SV DATE CH K'D. s v DATE AUTHOM l

REV, REv.

NO DATE WESTINGHOUSE F ORM $52130

_ __~,_ _ , . . . _ . . _ _ ._ ___ . _ _ _ . .

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE l./ *" . * / 7 ,~ ~ 7 f\ / %

/. $f j , [,

OATE CHK'O. B Y O Or 3I DATE P ROJE C T AUT OR DATE CHK' . Y T Ts A AA % FILE NO

/VV GROUP S 0. CALC NO TNC#- IB B CHE LUGy y

'N ads 4h$b CAO A ,

y i g 0 0 cBh ev d. 6 horis & A

,-.r.k p

i.  ; 2, -7g VORCES ON g/ 7 0" k

[!_ 1' n/2

~

-+

b 20% 6 '

SPREADER

"*i X x mm o

'e i k

  • axid $3rc.a .

FOP.CE1. ON j = 3.% h@ Y = $[2-Ly G y - E. o k:- $ [(1Co')30*)

W = s2,-s99/(2 s.swoS 3

R = somh k wue . ,n = T de.

  • N t s1Itt (
  • lok M ~

ky O bn h = hw 52.g99 ..

G= 0 --

k- 1 y; , v.)

k. 52,599 tb a.v1 y
  • kan C(

J' d

- wm

  • 3,%O-.m tenW ofclWesc. i, a so

@O.%- li s9,b)sa%

.+ .rar < 6- sppr bA.

A tJ I M O H Daft CHK'D BY OATE CH%'D. 8Y DAff REV R(V NO DATE WESTINGHOUSE PORM 957130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION TITLE HFAl' L!?7T'R DATEr .y r-. .e :. . c *1 l o, 3l oATE CHK- OAfL CHno.av PROJECT

~TSK AUT]hOA 9/st Jflv? W gh/p FeLE No GROUP s o. CAL & No r 'TNCoP-IBB c.H E TEN ST.Lc. STReds e., umr<%e {4 * .112,27l /29 75id 7 4 - S n r7 4 'm

{ =. P/At P - T = 12 3, Bo2

  • Ag= (s.soM- 4.00) 3.B 6

= 27.uo e SHLAR e towen Hott.

.fi - m, en / 27. u, 6- 4e e e cu fy - P/2 Av f.Cru.e v44 $d A, = (s.s 4'?)(2.SB) n.::34

~

P = w/3 - 112, 2.7 i Snw S.nw. e uma seu.

fy = n2,27 : /(24 n.ss) f,- P /A fy- 413 4 pi P- T- In, b O2 *

/\,,-is.ca '0 2.3S

= 13.ss e L = i22,so2 /(z a n.co STstss s vnt.o fu 4sseyu. .

k P

TEtent muy s t.owtA Hout 2 ,, , ,.y'.n,,,,

p y .i A,b.aw (t. - 9/A t a

b MaeM %Mpod.upd W 9 W/1 = 230,9n /3 f- f g w of pear o4 ad ll1,2 9I lb 26 - mpy on SmH A, @c.s4 s)ll.o 2 b .: mO d6 A

[ A ='6(.hus)5.5 i1.A9

,k;3 Ag Ai W'i(a.m.u)u 3

- 6 - 20 , . A 30 < o.:

- c . a f ; sc k h si ~ h e . h P ,it.0 b=74 At. O-d H = m.G7.yh.se 29,75 A? a=.8 OAft LHK'O sv Daft AufnuM OAft GH" D W V REV Rf V.

NO DAff WLSTINGHOUSL PORM SS2130 l

l WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION li r

j fifLE PAGE ,

3l i . . .

_ . . - ' .~ vs K : s . ~ r . .' .' . A . v '. ' . *12, o, s PRoJLG T AVI 40 Daft DAIL CNA'D SV 04tg '

~I'EE 1,0b M1 CHbRDMyb MV  !

t o. c Att, No. rikt No.

omovP l W csp-t68 C.H E [

6-b i i a+b ' 3 i -

i

.. k = 1.02. 9 [

j- I

)= m(a+b) K  !

12 n (l.02.9)  !

- 3 8.79  !

r i

4hed ,hoje .  ;

.50 A 707 = . 25M ik j k uid' M'79 **151T f' a,, \ 3.~1 \ W R=a M fona.v.* 09 I

= 30,3ro% lb I

)

fy = 30,3(o B/12.'71 -

l L 2.2 i s m,  !

! f i <

i 4 3 i

I I

E

?

l I

f i

l 4

nov nav avtsua unto com o av onte enn o e, ants No osfa i Wttfl40HQggg somu 653130

{

1

=  !

CESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION

  • Act b\ongg IlfLS I NrAhAWIM L7771Nb rthDef6

'. W r ' .' h ' / h. 'tD 3T4

. *Lb o. p CH4 > v kHm u. s e J

PMUd4 G f rB% JL . S/n

,w.

so L r/../sv a oo. i

.o c.6%, o C.A4E.

TN GP-th6 BUC,KLING STRES .

ld (kJ/rl/G = A IN EPREINDtiR ARM ,

i F3 A.* ont shw prmiw.J s w,ab m

~

(' 6%ial form in :.p.dar arrn c4 u de p om.nt

= K % B ib (1-MN)F,_

F3 K . 5 ((,t. a m . w ,es. a s ,r # .

(3 + } A g)  !

[

= c h %. length b ier

.for b)-Tiied efvh' '

' whcie Ij=yetdAnw i l

}= .

9,33g  !

lenf6h = i40.09 in ,

b ' j2.ry, gcy = 0 . 6 0 3 0 t s , r' 2.898 ior B.Co u.3 to F.n-

/\ = l?..'N,in-3 I- ios.rz M -

F3 25,000 7 i j

R-fK.Ur- .c(i4o.os)'h 993 "ji- 'd ' S 19/183 psi

[

= 241.3 5 B -

I' Cc=3 I .'AM 'p E 3

g u,uo og J - (.ompuWd mm.'..J ca,7u ,

.h

. i t.ri.M k = R /A K 9/r 4. G .,

.' . ..sqse,/i2,%

h 2 sao w l

1 .

l A reom vu. c unnotw, es.M ,

l.0.1 'l ( emn,sov f

r s

(H4 W M' (JAft G M a D. 9 ' Daft [

gq g y ' A W I H tJ M ()

gg g y 40 OAff

' W4 tflNOHOWlt t umu 693 9 it),

s

,y

  • i f

l l l CESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION

(

'AGt fifLt T 4 on bl

/// 4/) / f f* 1 7 f by N~~ls * . 7 ? ** ~ 6 N.:.' V~' .

l 0A76 cearo av [

unuea c e Aug*3 oAve cna oArt TE% eh #ad. '

s ALT so. si64 no unove e o. '

TN IaP-l9A CME l

LIFT 1 Ni, L.EG 's. mw) g

, MAT'L SSTm A4M LLAW uc Athe quo,amate, wee)(auwto.

EST WT l 4 Sles ,

,, g o --.-- -- --

q .,, g . 4 si.. i

, . . . .. ,\ .

T u l 1

m* ~y~s =o::p w.

\tn

! I r

1 l P -

- 2I,7.T 0 1 ,0(. -

y ,

l HENIMQM V ECLD LTRENeTH ... 8S,000 PSI .  !

MINf fnuh THQ E N 9 Mat fel P 4T.. . *7.00 CNLMtk

~1.00 mtu ingu t No nut.mt te t* ( vte.; % - t; Ast, t aitc :7) l ,:

\

l

[

l i i

[

l i

l

\

[

I DAf 4 cHe O St DAf4 cMa 0,8 9 UAf 4 j ngy ngy 'AW f eeOR I

40 oaf t Wirttit44sWOWSt 80mW ttflM1  !

l l

WESTINGHOUSE NUCLEAR TECHNO, LOGY DIVISION TIT LE ,.

  • AGE HTAD LIF75/V4 l' rr, LTPEM A NAL VLTS DATE CMK'O 15 O' 3\

PROJECT OATE O ev m S* OATE s o.

TE% -

h -a-AUTHCA CALC.No.

L SA , CMlb/fub It.E NO ' 7~

.. Ma CROUP T%F-tBB _ cue 4

THREAD .54E AG. Tgmroy q, N-A I S P/Av .f, = P/M p - (w/3) = 1 n. ,0'73 a Av n De d h. b p.p. ss 4 A,s.v.s.T.(i%e)

TE NSLLC STRin ARE A S* pg. Col of beru% k- I( D - o,9 7434[

baards uniCad uw Ann.,as (two) b exb net h aas D = WA

~

gor Amkr D3 m.p a ,.mwr ' n= nom w J A a, ye h- numirar of has pc bh Dp,w=(C- 3

'"*)

n A+ =i7 ( S.03 - g,%)1 1

9 Dp-(s.co- -

17.7(o %

- 4. s z%

ii'2,073lb Av T (4.sm) = 7.00 /2 P= (w/3)

= 53.19 iO

( = P/Ai- G 307 p E,- P /sa.i

- 2 I O '7 pt v

I L

AUTHOR OATE CH K'O. S V OATE CH K"D. S v OATE REV. REV.

NO DATE WESTINGMouSE FORM 552120 4

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE LL, or 5I Hr AD AUTHOR L rTTTnis F TDATE b 1 CHK7t?E55 BY A M ' v:75 ATE CH K'O. B Y DATE PROJE C T S.O.

TBE kbTM CALC. NO.

r HLE NO.

4/tv GROUP C M E.

T%F-I S B CLEVI._5 MnT'l ASTM A GG8 FORGING GRADE. L i ADI 4 340 STEE' MINT.tvsum vzcto STRENuTH BS,ooo Psr.

[EST OJT 340 "

i, ,- . . . . , ;

p iO x _ ____1 s

[hf3 /3

(-- 9.501.03 5.00- 4V N -2G s - u T " i ;i e o y i

f 982A h! ll n.so h5 (9.%

.s

\

l jl j 9002 R

,. l 1,

' . s t.ow g

s' I

.1_ _ - t \ l1 !N 4

_f__ N iib i 4

z.s? L \ 11 i 2.4%r 1 s e50%g4 A i. \ . .\

% b.

A -

i i .J L __ _ 59 c2n 7 l E N' \ v g _

-5 4 *1'h e ,04r ! .Ols A4512egp 0 14b 9, e- T ptF f

7.00 mm 7HD E ue %t M tMT \,vrw s-s os n.n c u)

+4E AO LUG T4 TO NElo- = 400 OATE CHK'O. SY DATE AUTHOR DATE CHKO.8v REV, REV, NO. DATE-WESTINGHOUSE FORM S52130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE hlFA!- R[b ' WE*.' NvAl.DATE (1 f7 71/ .~DATE  %:5CH K'O. S t T] Ou 3\

OATE PROJECT T B.% AUTHkRist;da W CH p K hp. fjPVev FILE NO. GROUP so. C ALd'NO.

T%P-198 CME T= 123,BOM , W= 334,'lig T EN SIO N e. A - A TEN SION 8 B-B 4- P/A t .[3

=

P/Av P- (*4)/4 P= (w/3)

- aB, oiB" Ae - @.coys.so)-Tr(s.wt//4

  • Co5.2.4 int Ae '(9.00-3.911h2.5e)-(.0457

. co.28 s ,n= fe = ("n/cs.24 i r7 i g

-[3 -

4e - (i)(0 /6.2ss '

4 445B pa .

THrsEAD SRE AR BEARINGCt, A-A

.[v - P/A3 fe P/Ac Ay= ,rb aa j h.

p P-(w/.O/2. Deu = 4.s17c, ia A = d .0 _)- 7.00 A Ay* 53.\9 M Ac= 3.947 (2.so - 2(.o4s))

p, (w/3)

= 9.5 l '2. in 2

{y = (1)/ 53.19

( - (i)(t) / 9. sit 5 R 91 pa S, 2. l O r7 yg 4.

SH E AR - 4.cor -out-

.{, = ( P) /2 AV P = (w/31/2.

A, - (9oo-uu)( um)(o451

= c,. 2 e s e

! - ('sXU / (2 %.2ss) l' Cy. an n DATE DATE CHK'D. 8 V OATE CH K'O. S V REV. AUTHQR REV.

NO. DATE WESTINGHOUSE FORM $52130

I WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION T,TLe PAGE

$hhb { $ll f /u 6 W AWL %IS z g ,, g ,

AU DATE CH K' DATE CH K'O. B Y DATE l P ROJE CT Cf .

T3X U - /4 /87 GROUP S O. /[ALD ?) FILE NO.

TYGr P- 188 1 CHE V BEAIALNG ON HOOK C LE.VI S PI.N jl C LOAD SEN SIN Gr ) fc- P/Ac P=W MAvt: Ac ,.so (c.2) = tm.s is ASTM A S G 4 TYPE. AM l2. (s W/H(e.6 T,,,e 13 5,000 Pst. = W( .02 t s i)

C= 7230psr ac ** MAX EEAMMb QN SIDE. PLATE.

-i T. __ __ _ _ _ _ _ .__ __ ___L fc- P/Ac

,4

.we p , wj7

-_m _.

Ac='?.50(3.1)3,i<3.0p.3a),

I i ,

=

13.25

~ 6. t - (, . W /Av 23.15) e w (.02isor)

&= U 2. 3 0 at

- 9.as -* PIN BENDIN C r

% comernrest, w e ormtu>1om or N' YL TH) PIN

"- L. -% (c.9sf .ws") = l E984

'.:M J

mn ou cm.s - 7.so/z - 3.9 s6

% vz y u.a.,se < s q l T I wit J'i..s ,:,, f wA

- - u.zr g g

--* ~ 3.813

[ \ I1 = Y (G.ts-l.55 ) = 2.5 W PIN SHE M .Q2 Mc/I = uw A 3.9s/ lit,.s C P/ A4 -(w/2.)/Ay - W (. O'? 3'7 3 )

A,.. 4 ( o.sm .as )=29.e,4 2 b 24,7 9o eu R =- w/2/39.99 w(.ct3160)

L. H 41 s psz

" "" ~

$/  ?$e z//Y/93

      • tSTINGHObSE 80RM 552130 V

{ hy~

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE LOAD L CE LL n /^/K A 6 E. STEE55 4"ALYP 5 29 0,3/

DATE CH K'E v OATL CHCD BY DATE PFt OJE C T A@Hbd

  1. b O FILE NO GROUP A YO SO.

T 1Q P-tes CAI ME-TENSION G, T/z. $ HOLE SIDE Pt ATES q E= P/A i P =. W / 2.

L\w,, . (n.se -7. sis)(3.c7.5)- 2.C.st)'

M AT'L: 30 lu7e ASTM I% 5 3 3 TNPE B -ft = W /2./%.l(a c t. Ass 1 , 50 K5I . N N N.h. V/ (.O GB 15) h= H CoM S m.

s ,m n us-.g. +

,..n e tr a n h,,- ;4r , SHEAR -TE ARmr t M $ hott 4'v = PhAs =. (W/1) 12 AJ b _% g, J

2Ag = (17.SO-Isis R3.G7_s) -2(.n)7 t 2 [ ~

.. f, = ft g,

= W (.O1282.5) qm m ose , J - -

"p - -- 4 7 9.sd" ,y--

L2 1 H

,(4.

.u . us o,o b"T*"7" i SMM 7 E Ars.out c, Gl i () H Av

""* G - P/2Ay ALo/t)/2Ad -

A,2 (8.5 - 4'M.co) .. Is2 f;,

.re/1 .sm (. 2, s )

= 20.'19 %0 n 5o s fv:.to/(4*20.9%)

U(. . O li t 99 ')

fy = HIOl PSI BEAL'AIN(7 nr G% Ch HOLE Q, ts tu t. -A m t As v orL iw n BE ARIN(7 AT '71(f) 14 GLE. D N o' m c su. e a n ' tt N @ ow tww wrot. pcatt, k Is T% damt As son. 7* t.

man w o, ,wu cu vn. n~ @ o~ fc- W (.,off6LI, ' ')

l taustou ptart

/,466 m

.g w( o2.isos)

, 2. so mt Cc -

c. DATE A TH DATE CH " OATE CH K'O. BY REV REV NO. OA7E I ,~7h  % fJ

-E.7__..._...m0g

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TIT LE LOAb CEU l.idK/MC Sr$ESS ANALYST)

DATE CHK'O. BY 30orgj DATE PROJECT OATE T'B Y Atf'Mh&%

A CHhK'. L ik/tj l C'A L L tTO . FILE NO. GROUP 5 O.

TV GP- / f? 9 )

CUE B E A RIN L, OM 5:IDE R. ATE. (

g m . t w o c a n a s. o<. m n u REMOVABLE PIN mu.3 On w. urus wrr mu sws em esw usw us nu z> umano :.

%T't.: ASTM .ssco4,WPt. (,so ( P/Ac FRu.rerrArros HupenrNO 55, N.E mm P = W /2 e nscre van. 4 us, nraccou.o. iss, coo m Ae c.sco ( 4.0o ,ia.)

Mrn. Tv ustm. sr%m Rc. 2 8- 32. 2s.21. e

( - w /2. h.s.2.2.

1 #~

1

=-

w(.0\982.co) t utst- -

- _ _ _ _ - . . u.;;.'

d --

c .Smp

&= GG GG m

~

l Eter.1utron w ueat.x I G. = P/Ac P= W 18.2.5 Ac. = d b 1

t > 8.t 87- 1(.00) = a 009 b 8 cxoq ( c.sco) = 51.4M 5H E AR .[c - W/51.4 '21.

-fv = P/Av = W(.019 0758')

P =. W / 2. b G 419 est As. (c,.ss - i.iu2 ) 94

- 32.t89e BEN DIBR,.

fy =. w /2. / 32. t B 9 .P= 9 .t e'7 - 2.(. 0 0d = 8 .o V i

- V/ ( . o t s 5 3 ) a = 4 00 5 2. 2. ~6 p s r fv = c3 = [8.25 - 3.00 + 2(.12.)]/2 = .2 P=LJp a da ^ (A

  • I# T(d.*-clI) b 3*93

' W(.07 9MB)

O 2.G,3 88 eu DATE CH K'O. DATE CH K'D.BY DATE AUTH REV RE V, b M g)

NO. / DATE WESTINGHOUSE F ORM 552130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TIT LE g NTAD LTt7INO DATE RE& WREM ANN nZ5. 3 \ Or %l AUTM R CM K' DATE CM K'O. S Y DATE PROJECT

\b0 ( FILE NO.

w ^w WWW GROUP CacC. NO, s .O .

TNGP-lB9 cme

- GENDI.Nb STREW FORMUL A CECVAT.rON -

A%UMING FORcts IN couatt lug To Ac_r AT T H E. LQG CENTEP,5 ANC THE FORCE. IN T 4 t.

C t.NTt.R. Lu (. TO ACT AT TWO PLACEb $ W W INTO TH E LOG: NJ~

H a --M  % I4 % Law b M b = gap h4urew 1 e

\ $ N\ +

ib h s bearb ,orGaus a

i I d = Iq4h o E om ib s

oI cloobht-log bearm3 T A uxt m 'te m ut se u I k = le th oC bears surhut,of ccnlee 1 l P- fore aag On as-et ~

2  % d . cbirr*4*e c& m t-%*h &t -,  %,h Ei F4* 2d pop 4E u a j Sb - Mc IlL ,

I c, = %

- I_ =

  • 64
i 4 3, b w e. A rt,

! b* Nmas L !1 N +i + k" '

(PT/a 9' 32 p, _ t j b ' O A US + ~i) E' t .

I f

!  ! N.B,,,,7ws umc ma-o%

i

! MOMENT f moman+ ab ocurs whert %.*

. j krt.a.s a e. Snumed CM

' anhi w sur  % Oc.rsu -W.tob l l , l i

- M ms, ' h N $ * 'd

  • 1 QATE CM K*D. 8 v DATE AUTHOR QATE CH K"D. S Y R E V. REV.

NO. DATE WESTINGMOUSE FORM 552130

APPENDIX B DETAILED STRESS ANALYSIS -

REACTOR VESSEL INTERNALS LIFT RIG This appendix provides the detailed stress analysis for the Comanche Peak reactor -vessel internals lift rig in accordance with the requirements of ANSI N14.6. Acceptance criteria used in evaluating the calculated stresses are based on the material properties given in Section 4.

i l

i 54628:1/100682 B-1

SKETCH SHEET CEsfincMoust Pomu 54202 PROJECT PAGE 5.0.

TYGP-188 Comanche Peak I or 40 TaTLE CALCULAT1045 NO.

R. V. Internals PDC -

CHECRED BY & DATE AuYMOR & D aT E J. S. Urban PunPost ano mEsubis:

Mh 9-2181 H. Sandner

1. The purpose of this analysis is to determine the acceptability of this rig to the requirements of ANSI N14.6.
2. The results show that all stresses are within the allowable sttesses.

l y+9. . . . . . . - . < >

y ....... s 1g

[ H "oward Sandner. Jr.

E NGIN E E.

p NQ 23941 E ~

'v 4~.,.

a l Original Issue J. S. Urban l

DESCRIPTION BY REvtS10N NO. DATE l RESULTihG REPORTS, LETTERS 02 utuonaNDas i

l l

WESTINGHOUSE NUCLEAR TECHNOLOGY D: VISION TITLE ,

TNTc2NAlb LTRTINC, RI(o .STRE55 PMN#2s 2. O. 4 o AU 1l 54 OATE CHK' .~ 8 OATE CH K'D. 8 Y DATE PROJECT

.3 Y1 r S/ b' GROUP C . N O. FILE NO.

S.O .

7YGP-l 9 B CHE A

01 LIFTING Eux

~

I~

LUG .

, O

( cLivrb PIr; gens  :

N SLING rod BLGA CLE. V I S 'C 2

. f^

7 .

0 ARM

@c.tsvr>nn trotw h CHANML l

l coAo N uT f MOuNTI 4 GLOld 5

e nooerd +j 1(o Guzot.sutA j- 17 f.NtA/*TMb X%

l

  • LEt ctTM 1xtcwuq.T N oc N;; ., .v. , w cm..tu. A op, i

res nm m.. - m .4 - ~ ~ . o m e , m ... m T. . . 4, OATE CHK'D.8Y DATE CH K'D. 8 Y DATE AU1 HOR t

REV. REV.

NO. DATE WESTINGHOUSE FORM SS2130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE T.MD 5 N MT.:. r--'

- 0- "

._ . c. ' t i. . .!'. 3 OF k .)

DATE DATE DATE CH K'D. 8 Y PROJECT AUTHO CHgge TB'A h CALC.NO.

% F#

FILE NO.

f/u/ss GROUP S O.

TV GP 4B CHE

\/ ARIABLES UhrD

- *4 rm.oueaour nw_sr_

m , a. : m t.v.t A UN t.c UL Ar IONS S,t !Ws RCC.

4Cfts*4o 9: G Gtutt A t_ t or... u 7 l r-P .- .

/ j 44* T2 ru~. t L t it:5

' I

, k - com t. c. . w . :Je r

,W Nt ~-s. .

> OF, L w. . t b .' s . I r 3 w uo Eb= EurTHe cr>- T- .

T = t:n m: w tu :,- t , fv : sur A. .-n.:. r.

h  : .9 (r. ; r .-'!.

  • T. ~*- h' AREA l' 1 *. V .S '.? f..a'M - d Ot h MEi tR ii 4

h"- Wf.IeH T OF- LCWif I NT:' W. T = t% c.tist at :tu t .u Tn 3

LI f* T.i N i M S , A i i *, L ' A L 3 5.t< T:'.D F.'4,J 3 1: c' at c sp. n .-: . -': . : i ...L b = e t ,ew i w- 290,000 is a- mu-: , .

40' i s' 40": 40.G i I L.- t :n. - e . tt am p.,.:_.

. r3 re ern. c- :- 1:.

T cot 4'J.Mll- W /3 M - retur 3 .a

.. T . W ( 0.41'e S I) lb

=

.2 2. (o f G'75* ~

k =. Ts.c -C. ;r,; l ~'

.'. K -

W ( . 2 9 2 50) lb wiuT 8650*

or towuaiou.m 2foO,000 wk tew Q T. Li r ; t i . ., b T L. = I b, 3 D O wey s- t c ' t t.. * . ;, . .- 2,9.30 f *, i . . . ; . . g , t . .,

-

  • Ol' 290,000 DATE AUTHOR OATE CH K"D. BY DATE CH K'O. B Y R E V. REV.

l NO, DATE WESTINGHOUSE FORM 552130 1

1

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION

.a TITLE PAGE IMTERNALS LIE I a.Nb RI.6 STR'c':c ANM NE S 40, 4O PROJECT AUTHOI DATE CH y OATE CHK'O.8v OATE QX h T/gt .

f[f[rp s.o. CALC. NO. hLE NO. GROUP LIF TEN G BLOCK A S.SEM BLY - 33 M AT'L -

1.IFTT Nto BLOC. rr.2. AST M A'ASO GRADE LF2,

~

. LO G . . ET 1 = A 5T M A S l(. GRADE rjo

. _ _ _ . _ . . _ . - W t.t Db . -.___ . - E. 7 O \ % E L.EC TRODEL

. . _ ._ET. W T. . . 94 0 " _ _. _

. . %d f_-- __8.197,'

. . _ . p. .

i

. _ _ _ _ _ _ . . _ _ _ . _ q .edet.at a4s a t 2'cwsa - --

___f (nom necn.)

__......_._3 1 I t i ^

s23 @

. .._ _ r' - '

g.oet,is 9 4ht

- ._. _ _ _ . . f  ; _

- . _ _ . . _ . - _ . . __ _ ._ .__ ___.__ _ ge eg A

~-'A~ ~

'--hi2*~

~ ~ ~ ~

4.0151* $ h

~

- - - --- ~l B^.00.t ;os -

. _ ._. _ _. _ _ . __ . __ . __ 7.00 2. 33 . . _ _ . _. ___. _ _ _ . . . _ . __ .(._. 7t. cot . it C .}i . __

t T k 4.cm.os b

nm m.. x ;s -

+-c,0cc.orr / '

  • b 4 4htte 5.yacad 2- 120' +-- 8.co:.cs p (Low raontr.o I@ VIEW)

REV. AUTHOR DATE CH K* D. S V OATE CH K'O. a v OATE R E V.

NO. DATE WESTINGHOUSE FORM 582130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE

  • INTELN AG LICTT NL F<DATE 14 S T 9.E L s ANALOATE %ISCH at'O. S Y 5 0,40 CHK' DATE PROJECT AUT,H b h 8h FILE NO. GROUP S O. CALC. NO.

P C,?-8B CHE_

LIFTIN G BLOCK #Ttustte. stat.wts e tisr2 oN u-e w- 2%000 is 01 J = P/Ae TENLILE STF,EstEL G LEc. TION x-8 F=w A t= v (7,95)*/4 f,- P/Ae - 4 9. 6 4 . i,f P - w /2. Se w ( o.o20 t5)

A.=(8.o0 Y )B.tBI- d f, = 5M4' n;

~ = 3 8.7 G, f t - W / t 2 <38.57 6) LUG

=

w ( .o12900) M w 29Q,000* W f, . 3 '7H ,1 pu c t

' . + c,.m 6x eGE APING STRT 2.LE k Qt. LECTION A-A  ; 700 w-250,000is i

.-.~t a
g. , pjg P=w ,yx u,o Ai = ct .0 = asis (aiai-u.of L

- 5 2.3 9 in' "v

7 fc = w ( o.01908) h- 55_36_ m: '

  • .tsuOn t= o e m rzan c .c TE AIA-Ourr SHE AP,0, G.515 h HOLE. Y'S N; Ib l w - 290,000 lb C+ = P/At

.fy = P72 A, P = r / 2. -

P=w A1 - (s.27 - ?)(3.99)

Ac 38.30 in 2 = 13.4 0 rn' 6 - W (.012900) f+ = TC .o3730) l er_. 3741 ;a ti _ Et '725 ya OATE CH K'O.8v OATE AUTHOR DATE CHK'O. 8 v REV, REV.

NO. DATE WESTINGHOUSE FORM 552130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE TNTE R N ALS L.IFTINb RIt, LTtu W AN ALNM S b o,9 O I DATE Sy DATE CHK'O. SV OATE -

PROJECT TBX AUT bOM573t C MHK*guhu uMour

,, c E ~o.

s .o . CAcc.~o.

  1. BEARLN C, e 4.o: 5 $ Hote. %g Co.M T'= 1.2 4 @ S lb fc = P/Ac 'I = bb'/12.

P. - T = 4.00 (n.s)'/i2.

Ac. = d j . 4.016(3,%) - 45t.o m*

= t G.o?.o a fu : Mc./I L - T( o.oc,241) < 4.o94T (6.zs)hsp T(,muo)

(( _

r79 09 m; pg. q 9% mo

2) T e n .. o e. to., c.wr TE AR-OUT .H'e A - R 4.0!T jiH1E T- 12G,G75 '

{ = P/A t fy = W2Av) P 'T _sh e.

P=T N = ( t.s3 4ga .)!. 4.03) bh 11.9 r7 in 2 4.ca (;. , y . : 0; I,- T ( O.03579)

SO in' L- 4534 pt ( - T d., m /r o U.i  : =- . E i

I ETF.r.' G. Lv6 b. COT -

b4 hi ' \b pd l L) v m: n , < w"*,c' l T- 12G,(o?5 sat s e t.ue w m T DENOTNb MOMENT APOur PGIMT C. P- lN, 3 O(' M,2e i l us fy . P/Av ou 40.291' P = Tco> x x = . '7 s t o n a A,, - Eh - 50 in

=

c. 0 5 2. in 6: T. e- m /s0 M =. Tce> a ,(0 DO - 0.as2) f ,. I934 pi M ' 4.09 4 T in -16 AUTHOR DATE CH K'D.SV DATE CH K'O. Sv V. REV.

so. oATE OATEl WESTINGHOUSE FORM 552130 i

M9

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE ISER N ALS M UY1 M b M'o S7 Rth A M 4 LN h7.5 OF h DATE CH 'O. Y DATE CHK'D. SV OATE PROJECT AUTHOR Tb k FILE NO.

i!u I" GROUP s.O . CALC. No.

ctevrs PIN - 3 2.

t%T'L ASTM A S (04 DPE (s30 PE(.IpnATION Hee DEMINb STAINLELL STEEL, NoE. TREATtO t IISO* F FOR 4 HovRt,MRtootto.

437,00D ML MIM TENu LE. STitENf4 TV) ( 1B 31 E* T. WT 4 5 Lt? . , an

_ __ _ - - 4.my 4

~

l_J1 .

.sco-a f

[ 9.26 -0 L15 6-xespe ts um Tence:. = .375 fn I

l DATE CHK'D. S Y DATE AUTHOR DATE CHK'D. S V R E V. REV.

NO. DATE l

WESTihGMOUSE FORM 552130 i

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE "tWRN A L5 Lr p rI N'. h STRub A N A LNsrs DATE CHK'O. 8 V O OF M0 OATE PROJECT AUTHOR DATE CH S,0.

T B 'A &A%

CALC. NO.

,/2K/O.dA d/tv FILE NO. GROUP C H E.

TV GP-lBB GLEVIS PIN BENDINC, s,

3 3 D 3 -i SHEAR 1 f, P/A, -, a - L, , ,__

P-T/2 _m H --a Ay- (4.004YTT/4

- \2.59tSin 2 kg k fy = T(O 0 3 991) .A. 4.00 Sy -

503Q pd a = (9 2 s - 4.200h = 2.492.

3 - (4.266 - 4.co)h = 0.ila GEARING d= 4.004 P=T Ic = P/A c 1 n P = T/2. _ (= E(a1+32.

+ 4) w Ac ,(e.2 s - 4.uQ/2 ,m w 9.61% #

  • T ( O,18 87 5)

Sc - T(.os193) (- 2 3 9 I O m:

Se,'n 65SG 7:

P, = T Ac,- (4.coX 4.004)

, i c.ot6 sn'

{c, - T ( o.O(0149) l f

OATE CH K'O. S V OATE i AUTHOR DATE CH K'O. 8 V REV. RE V.

NO. DATE WESTINGHOUSE FORM 552130 i

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION l

PAGE g TIT L E 1 Nit A N A L.5 LT C T T N L, R I. - LTREkh AN A LN G b DATE C H K'O. B Y h OF Nh PROJECT AUTH R DATE C Hg' S Y DATE S.O.

Tbh ,

C A LT.. NO.

% #4'On f/thv F I L'E N O . GROUP Ty Gp4b .

CHE 1 CLEVIS - 31 L M A T 'L A5TM A 4 '71 Etat L 70%ING C.LAh5 3 EST wT 240 LB 4.0 00- 4uMC.

NRO Ollegt H AW)

S,@ W'

[/[ /

a, o a l .

' i' 9 r

/ .<i ,

I I

b j

ym ' 1 j - _ _ 3 _ _ _1 _ .

, i ILoo

/

9.00 i -

l a

L. _.fs -

6 .o.

, 4 is

,- A,r 1

FOLL R, 4.ois4 r 1.2 m w t om .o3/ og

3.2 s O

AUTHOR DATE CH K'O. S Y DATE CH K'O. S Y OATE R E V. REV.

NO. DATE WESTINGHOUSE PORM 552130 w -w -

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION 1

PAGE l TITLE

",, h It ( M k l$ LT IT I N b I%

  • b *
  • 2 C ',1

- %1d h 6N D OF h '

DATE C H K'O. 8 Y DATE A%

PROJECT AUT O DATE CHK" .

~TM CA LC. NO.

FILE NO.

S/i/tv GROUP S.O.

T%p-ggg C HE.

CLE V T_ S l

THRE AD 5HE AR 04 [v = P/Av Ten stou statu e. :.wtow A-x Ac Tr Dea j /2.

.4r 4 000 - 4 U N C, 2B ft=- P/A t DgJ, 3.s s '7 co i.,

P = T /4 L a b.sne)(a- 0/2 24,ll2.ini b (9.00- 4.ois)/2 <(9.2s- 4.'2%)/2

(.cas)2 P= T co.2 0 64nt L, = T (. o 414'7) fi- T ( .040z9)

= 5253 pr 4- 53_03 p m a a-io erwarnu sut . e. ucu on n-A L= P/A<

P = T/2.

Ac = (9.2s - 4.au)h -2(.04 x 4.ois

= 9. u s i e L. - T / .os i a i )

(c - (e a pc SHEAR 7t AR- our

( R - p /2 A, Ps T/2.

Av= co. 2 0 6 0 in' L = T / . 04.o2.e/ )

(v s _ 5tO3 A T H ui DATE CHK' . ATE CH K'D. sv DATE REV R i

NO. / DA E gf '

WESTINGHOUSE FORM 65213D

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE I N

  • t % . N Jh. ' % LT" U N O EIO CHb*' *wt s.\ A N N.N C $ OF C DATE ak %

AUTH DATE , DSTE C H K'D. 8 Y PROJECT TB% .

5/u4u CALC, NO. FILE NO. GROUP S .O .

T YC,9 -t g o, C H E.

5 SLI NG ROD -30 M AT 't - ASTM -4 4?A c tAtt e,c. nT.t.I 4 34O LTatt.. Tenuto, C R30 t A.,

I MLI* Htc. cr.T e at rnum v r t s t, STR>t4'oTH 85,000 PLE; ot MTm e S 8 9. Nor reAtt 9;o,tentaso, conoguo, gi 3 ,, p;,t. 9;c . m u m ,

Vrttt s TR%tH 40,000 PSI.

EST wr- 22 O LB 4.00o-4o9c 2 A 2.r,6 4 m

I i 2 f L- - .D --

1 w -

4.00 h

& 11.0 0 -

3 to 't SE ttION E-E a

DATE CHK'O. 8 v DATE AUTHOM DATE CHK'D. s v MEV. REV.

NO. DATE WESTINGHOUSE PORM 562130 l

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION TITLE PAGE INEKNhLh WVTINO EIJ hT R T ', h S N ehl.N 11 (

OATE OF 0 CATE PROJECT AUTHOR OATE CHK' CH K'O. e y S.O.

TBh h&M $2 CALC.No. FILS NO.

fd/A GROUP Tyc3p- tes C H E.

SLING R O D

. 5 THREAD S H F_ APs Ag=T(4.OO7/4 - 2. As f,= P/Av g,j 2 49 e os.m-P=T Av a Dr d /2 fe-1.sr. o.asos twd e.ic : Dplu = 3.B 3 '? 6 A[5$5)'4*- {O. MOB (1.BI)/2} ?-

.9 - (a- 9) = 4 ia = l.'759 -1.540 -

A, =. 24.ii2. a h o.2i79 e f,- T( .coi 49) An = 12.13 hv - 5253 pc A3> Ay,,,A,,,,,,,

( ktrnau nuro t .,

I t NSION t, THREND r set.:EF

= P/A+

-( P= T A+ -(3.co6)*Tr /4

= 10. 52.1 ih'

[g =. T ( O.0 9 5 0 5 )

ft ' - 12,.041 wc 4 TE.N5 ION e, Tune AD fe ' F /At

~P= T neri e-io At. ' 11. 080 5 R 4 T(o.0902 s) fe - 11,423 r a AUTMOM OATE CHK'O. S V OATE CH K'O. S Y DATE REV. REV, NO. DATE WESTINGHOUSE FOR.A 552130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE DJT2.R AUTHOR NA LS LIFTIN6 EG ST/&55 AN4VII5 l3 O. HO DATE C H K' O. B Y CATE CMnp' gY 03TE PROJECT T3A 3ma s op.t+n % >0';p5AA~ Wu/95 GROUP ilLE NO.

S0.

TYCP - \ M CALC. NO.

' CHL

~The. spu&c jos'r+ c onmh oF

- A muG

+ L._ ch6 pm S tLa spoJLac Wock lug iI E N. 1 l 5 u$

% 6c,S swms aw S ww tu 63 ac c.oAotas. Os A bitoviq-Wu. pay n EMN kd spetoar jeirt. h W.ault.)\ mor%nts focus aa stce cbbbub6ns am %n ow os '

lepb b MMrmin.a. kk ki$>N kbd 5dHl.us th k htud 3 coxu\cdies os -t.k ib .

OATE CHK'D.SV DATE AUTHOR DATE CHK'D. SY pgy, pgy, NO. DATE WESTINGHOUSE FORM 552130

~v WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE rWrERNAC L TMIN6 AC6 SMb.\ A/VMVD \ A Or NO OATE CHK'O. B V OATE PNOJECT AUTHOR DATE TGA am s arms CH ' . My S/u/n C ALC. NO.

FILE NO. GROUP S.O.

C_M E_

TNG P-l%9 b MLHNot OGY INL, SPREADER JOIMT Rtoont T1-219 -r o9-2.4 C h hi m s(niny- hbos%4 h IA ko 3%

E y j e M SDRihDLR j

- /, . P i.ec _

' 1/  ?:n

{~ MP 11 i Agnh gt H-t I

- e r i, .*

1000

~

I nig 15.1%

W)  ;

to:o 15 l"4 9.N s

m m g >. .x i J.

' u< >

don .w-

ei\ -' "

' ha fo g L

3 hf

=. m s er1

.- y, n.wa T* Foru. on aw cAc. = now? \1% Vi Oni t \u . ,_ ma.a., %

t K Gu.ensp ar- 81, BMd meb u.v3as & te c

%, % 9* watu h a g .ara r w% e, ov . )

L- b _o,ic3 -

c.o enn en39 % do-ta m_c.w .

C}t ibaktO% of N bchrn h C.112.ui3 k O M "d she be+ mew lug and p4 s en<Aw&_0 m y A mW 3 aavmed 4:o k sir , Wor h h on ib , w W . _ % w ua.ut Shh dibbhb Mk uduld h SayiM pxd kr % dAdh ,

kx. ob4 et6d ih a utan$vlac 4

Cf'Chs- Ecr.tn'c% Ch uaidM c1, A bhd n c.1% b h kroh cW1 deph t s.ubj eded to u: odd. k a b o a P a -d. rn: rne nt M .

  • As h omch i- w ton 9.6,1" h PddV) ir t r r t r r r r r r t r r r rr ['

L 3 bea,r S wS Cor 5: lap %c 'A

'Jr tu 'Jenen. Anth\ load' OATE CH r 'O. B y DATE CHK'O. a v OATE AUTHOR REV, REV.

NO. DATE WESTINGHOUSE FORM 552130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE

'Ib4 TERN AUTHOR Als _ LUTT% RIG STRbd At'iPLYL 1. 5 O U O DATE CH K' OATE CH K'O. B y OATE PROJECT TON JOWu 5 ORBAN )v CALC. NO- FILE NO.

(/u/8k GROUP S O.

Tycop- (SB CHE SPREADER JOINT TW %rrut .proaa by '

A u. p.a a w_

M m% = PCE+3)

T

%ag Aw p.1 -

Th- thw s. du b -lk vrerr& be. W 4 W . h o 4 4 In uuwA L- M= PA(s'@

q ums.w.. M<./r uc m us:

Tn4h. v e.cb'ut) <= \ar %

%\ ig(%#R)!2.50 4o) e,qiw I- w_ wo La pium,_

M,%=(8'f#Pd2.s42.s)= [04331... t N

TuwaeuaA Ukn 4.h dem ars Nriaa,mJ (speaec) ad verkh0(tg) e, ,a +x. muie s  % s aa,5cmtusg w.ig F.JN ohhd Vu$) hk Yndbcc\

f,,,,,= P/dt & Mc. /I of as to-it, page 2.3r o, s c c ,A t.p. %A rumo c te a, : i ,

Ed f.k:hA .

S Gu %&\ w,%' icqnf

\ = l 18,83?r. -lb N N N.-kw wnSsw c.o m p m er cu. b S . ~ ~ +

s 4,= CoM /at' a,<

Fx a ch uiac g aa,0:, his 3,m C%. "

ca. ag 2.99r u 2.e-z.ac.w.#

" ' "~ ~ '~"

I = hh*/12. L  ! 4,g 1.9M" t,= 2,4 4 - (.ts): 2.W Brd C = h /2, $ par: Ag : 3.99P 9 2. O sw kkrtkN ka E[dt + 6 M /dC OATE CH K'O. g y DATE CH K'O. a v OATE gg gg 7 AUTHOR NO DATE WESTINGHOUSE FORM 552130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLF T MTLR NAUTHOR AL5 LTv 11Nb Fh 5T. RF6 NmLNC5 l(o Or 40 DATE y CHK'O. S V OATE PROJECT TM anes 3 answ CMHroh CA LC. NO FILE NO.

dAdTGROUP S.O .

TYC3 9 - 1% CME S>PREAEER DINT

% com bmd 6.cng sbm am (4.0 fgQ C,LE VE:

P /dt 4M /dt*

h )/(3.9n

  • 2.1:)+ G(IIBpi/rei:2)

{49,095 p; 5.,PRV A t:E.R :

(T,/(2.%2 + 1.8 +s G(lo?y1/.unts fn- 29,3Co2 ese L%*

(E[,0",[.%+24)+Qe,t@.:.c4; i-fa=25,06i8p.

QATE CHK'D BY DATE CHK'O, B y DATE pgy mgy, AUTHOR NO DATE WESTINGHOUSE FORM SS2130

[

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE "I b a l h ' t / .. L T O T' . sDATE I' '. C?M K' ST'n' E l = A 53 bOATE LN L1 C OF 0 CMK'O. S Y DATE PROJECT AUTHO W3 D"O %t 7#

4ILE NO.

Wu!!2 GPOUP UE

,S.O. CALC.NO TYC P-t9%

b CL EVIS - 2.7 .

t'I t'. T' L - ASTM A4'7l STE E L FO R.6IN 6 c.,L A,5 5 3 E 1.T WT 375 LB 4.000 - 4 uNt -2 B - L.H 9.97 i

/ 9.00 j

/ [/,.'

' 4

..L.-

L- .

// 7' y

- ),

<o, '

< ,/-

/,,,/ 2\.oo x<

l/ ,

7 ,j q.-

/ /

/ /,/

d . .

4

. a- -

. Ch J l

7 l

i S*M d um As toe =te.'. ,o3/06 OATE CMK'O. B y OATE AUTHOR DATE CM K' O. S V REV. REV.

NO DATE WESTINGHOUSE FORM 852130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE run.rm4uAUTHOH umINb DATE UL, STree55 A ATEFCC I9 CHK' O. S V '

O. H0DATE PROJE CT CH '

bO& h YLNN V FILE NO t/..

GROUP

$ O. CALC NO.

T'I G P- Igs CRE.

T

  • i po Att._ on bEMDINb LTFsEti 4 A-A s' I ar , v.

4 { = M c./I #

, M = ll 8,,83'l in-lb /2.

([_ s

--Q%, ,A c. =(9.9 M.oe;/: h ea is F

' .1

- t .u i-Ig2.4r n.d/i2,2%J 2.w nv entis m =.. . =.a ._._ L Ma i i B,83'? s-% l F2.W r ngM5" fe uB.B39 ' m A 9% -

(L 24,440 as.1 Tc nu on

  • v - 3 ' ~ ~' ' -

catentD MA 7.. tt acr N G

{ = P/At r.u

. Ttt. .nr r3 < r t u.s 1 - T/c ' I.w,675/2 G3,538* C4 24,440tS&L A' t ,

fu . . . . .

@9,741

, (' ., , L it A $t ISN-5 N)/- T F,; . 1 '.  : HE AE, aJ s c T

o c.c w i (s F/Ay Ay= n tp a e/1 k [9,H-4.03f + j.99-5&]/2.]

-(,09-)(2.) = l1.9r/ R- .L. 2 0.54 - n.oe = 2 . ? ' -

4, 4.000-a m .:

. M.=(dd}6///,9'l Lr.-l - 1. h%

6- p 9.2.pi v - w s.: a att- s- 7 A, - 2 3.sw P= T= 12.gM58 '

L 5 4 i S p3i DATE CHK'O Sv OATE CHK'O. s v OATE REV REV. Au1HOH NO OATE WESTINGHOUSE FORM 552130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE 2N* E RAUTHO NN 5 b! T

  • ENa Qta STREst AN DATE AtwC$ } 9 or 9 0 DATE CH C H n' O. 8 4 DATE

'k %2 PMOJECT Tb% b )#' ' d[/2 GROUP

~~

FILE No.

5 O. .

CALC.NO.

CHE.

TVc.0- me 3

CLEVI.S PIN - ?.B t(( A T L A L7 tt ASf,4 NPt. V30 PRh.c.IPITATION HARr/MDW EThr N LEL'. :.TC t L , %E Tnt AT1DC. n50*F VCR 4 BR.,

AIK toost.D. IM,0 Cab PsT. rvsIn Tten.I d LTRtwoTet fg'LMi EST WT 32 LB u

- _ _ - - - 3.M p sr i

sAI A 4  % '

0***

l '*- . sc{o

- 7. (o i cama <.s toss enn

G.a 9 j J

DATE CH K 'O. 8 v OATE AUTMuM OATE CHK'O SY pgy ggy, NO DATE WESTINGHOVit P O AM ES2130

iVESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE IhdTE RN Ald LIF TI rdt, Rh '>TRut FfdAmh DATE CHK'O SV 20 o u.o OATE PROJECT AUTHO DATE CHK D y O\ T e 9%'

. u No caouP so CAgNo TMP- l 99 (ME PIN h "

werc.r s. a.c.t. er et ec:w. THE SHEAR ETF E.S.S. t E

' s s_ ,

"N v" E M' O"'

.3_L. t .C L n J . .t , A > TT d2/4 = FQ.992)V4 n.. tie a

"' "T "P* Y M7 ' -1 c c. : 4', BOh./n.su,

- 81,2.'70.

3, w .

BY M N.1.~, td . Oti l '.~~

( 'A T. w ' N s-t

. . u -- . ,

p ,

(text) Ih a s #O

  1. ~),'

F GN T F!. D'.-U.E<n f U " .~

T G ~ I'

f, = 290,000/3 h./ r..: <

w.mo - m -

38 62.pi p '=

%= G O,416 is-\b

/

' v .7 ' I. ' L U/< BT.HT rVa STO. __ ' . . -

(e.y 3 4 g _ N 1 :' 1- te m m'a AND _. : :

Foli T4t C.Ltu r_s Y% *~ .]Ih Y \%= % '

-;. .:. ;N C. r .l. / :. f.C;. . . . P, c p.Ot ~T M E.I.l'. . :s' i ,

T_ Ti~d#b 4 : TT 's:i.99 '.f. .'-

M = lO2,334 s-16 - 1;.%e e VOK mt Lw-c.tiucs (oer. Rm e . Mt/I: ll8S3?(i.%)/i:i.

. t9.cnkt M = Go, cll 6 is-ib

. y mj, ' h e m w u r m m n on ,,,. m m 5, o,,(oppc cs M5 }lb,bb9 A-% DATE chm'D BY DATE CHWD.8v DATE AuYHOM RE v. mtv.

NO DATE WESTINGHOUSE FORM SS2 30

  • ',, i .

v

~

. .< w WESTINGH,0USE NOCLEAR TECHNOLOGY DIVISION

  • PAGE TIT LE NE dkbh 3 .[ bDATE' b(I.IO hY h hMN[5 - OF HO DATE AUTHOP- \ _ . , CH K' DATE CH K'D. B Y PROJECT .

'/ an. .3 ' -

E N J C A LC.WO. FibE N6, GROUP S.O.

Tu p-tRS CHE s, l x

Tu. u.::wo ue. . r_ mesma ! /

I N Tr*T T tit. Cp a t_ r, Lug (:,p;o sa AND LE S) WIu. CAPI < uyc. Oi <

THE. tnOME.tC ;l\NC WL LVE VOAD s M.OvlLL C'JH 3'T T Er.y2ta-~ N'o L A 'd ' t J._ ".'; p N'.' . S Q NOTT.

THM Li E.C 'a ?r .J - .' - .

~ .J V.4*.

t4Z ' f , Ir. ) . I.-

,!.- .* 'm Cp tgo.

s

[( r.. . .E N'-i S. .'-';4*-. .' ;,44.

T}{} lAfhW3 l(r)V LT l'. 1. , * 'T , * ,

O I .b .

  • b '. hlbew g,, *- g Cf. C.VL i. ', j ??. L ; L,, L * *1 , '}

E. 39,o9.s u n-- --

/

  • l I 9SG em P-DATE CHK"D. S V DATE CH K'D. 8 v OATE R E V.

AUTHOR R E V.

NO. DATE WESTINGHOUSE FORM 552130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE -

r x- t m N A ts tr en % mre psi ANAtwes DATE CMK'O. 8 v 22 O- 40 OATE

_ PROJECT AUTHO DATE CH r S.O.

TBE C A LCI NO.

'k% FILE NO.

d 7I//n GROUP c m 9 ' 10 S PRE ADER ASSEMBLY

/

EST WT 3190 LB5 e b

\ Ts B ^ 8 ^.3'7 5 r$ '

+ s,vntActR tam

/

'E '

1-

/ ,

t 3052 . f ,.... . X,< M ' so' o' 4,ses,og

$ .-As: M: e n

b_ _ .'.1 33,g3 -

g / ..

g } ........ V

~ j

,esm> e, rMastemm

- i I .mp..,og h 4

w ses O-c.s I

e *- 2.50 t .o2

-, e.2 -

f75 r, it./r h

(h I[

f*'

I o.co!.or.

d R LUG M,co!.ilm +

MAT'l O LUG *Ih5Tm A - 3W GR. 70 STL P&TL . NonM At.IEED N SPREADER ARM : f%T fvs g . so o Gr<.. B .

b GLOC K *. A dTm A -350 t.F1 F O R 0> T W STL.

wt t.Dt ; E. 70 t g t Lt.c.rc.o c c s AUTHOR DATE CHK'O. B Y DATE CHK'O. B Y DATE REV. REV.

NO. DATE WESTINGHOUSE FORM 552130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE T I II'd K liC d h LT C T1 Td'o k T_ b bTRN 9 @ /DATE 3 A'CHTO OF h DATE CH,4 K'D. 8 v DATE PROJECT AUTHO TB% 1 ; &_$ #fD[v4,/u 44&

FILE NO. GROUP S O. CALt/ NO.

7YC, D- 189 CHE.

SPKEADDs LUC, @

S,= (102,334./2)+ mc hn..

ua2eus - 3Jo,88?pi c.ormsro ,e..: a  ::

3qpg3 m d N' .

N

  • ) ~ f r Jfe it,.l C* N S YJ2. n g 9,1 k, + gt M;;. IO2,339 rn-lk, &,88?+2802 k < St, %'1 a 3.9 Coe %. i .

at:.=- ,: .- .

E N' T L t *- A-A CcdcobAd d Epow- A#

'secem she.sco b u,d,ons ft= P/A t 6 = ' 29,362 M Ag = 9.9 4 - 4.OOj . .J O

= l 4. 593 i.

P ^ K,.",

8 2.f80')"/ m 82,8G7/2 'ui93 2,802 p..;

I Idl ( 'S c k.-- k~b \ '

.u

{7.

L 5 I C. !1 Y. " Ol

.q. /$_ , -

CL h 'E//&" l.2 2 b t bh'/il c.i3' .4 C/l2 ,

~- [ . / h 2 i DATE CHK'O. S Y DATE CH K'O. 8 V DATE AUTHOR REV. REV.

NO. DATE ,

WESTINGHOUSE FORM 652130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE

]{4T~ {~ f "4f. '*I~ 'I; - L'^ itY 1. N .' . *)' 1, op h*

DATE CH K'p jf pATE CH K'O. B Y DATE PROJECT

  • T W A. AUTHkRk's

/p- -Ov.  %. #//SYd %Av FtLE NO. GROUP 5.0, CALC NO.

tic, P -l%Q u H E_

SPREADE R Ars M 9 - S = 99,2.(p 6" s

\o k= ro.s e Se. = AQ,2W/\O.W M '_ fI. r, N )BL.

F EO U.

y.,7aL . ,. 3 A L 30 3 9 )

c, = 4,.3 7 b v_:

i

-il " t L, b Z- 4 8 i.'--

t ' ' MJ t i 6 L :. I42.942  ;

c, o o Kt = 1.

gt Efeza 1 r_ u ,, ,: e m - n.

& 8:- c.cyswe sh i:- _

un a _1 n s r- = 1'2 vT 1 K =.preact.n 81, % 9 arrr-8 P u. . . .,~

=.

248,om es K/2. = h r=

S=4?,20:6d r .: -. - h 5 cm-1 ( c -) >. 10 2 i<

I" (V) '.- ~!, . C Wn

- n ..+ 1 .s ,u.. . ii .> i _ .

PS-US K,, = 1 n uman . -% 10.8

' 23y93G pi CO M Pkt.'_ El V2 TL c >

T t'. "f'J.'  ;.. fi' 6

-f_= P/Ac DATE CHK'D. SY DATE AUTHOR DATE CHK'O SY REV. REV, NO. DATE WESTINGHOUSE FORM 552130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE rnre = =s u nm c. a rc, sm ess ,w tms 2 s e. H o AUT R DATE CH y O TE CHK'O. 8 Y DATE PROJECT

} I UI Y GROUP S.O.

, sc,p- mg CALC. NO. FILE NO.

CHE RIG LE. G ASSEMBLY INTE RN ALS

~4 LIFTT f

il 12 < 13 d ,

h,N m O '

r{. ~~[,

L -

h LUG CHANNEth';} h C,HAN N E L i

4aBB 4j. I 2.

, n.,.

'~>

R EF a

?

i

, 46. EE F no.c.7.

tM.50

_ _7 L.

t P MOUNTING BLOCK T.-

U W/3 DATE CHK'O. 8v DATE CH K'O. 8v OATE pg y, ggy AUTHOR NO. DATE WESTINGHOUSE FORM $52130 l

I

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TIT L t T NTERN AL$ LIFTENG PI6 .ST9 EM ANALATE %E5 Md O- 40 PROJECT ALTH ~DATE CH K' .

CHK'O.Sv OATE YN ..

k y flLE NO.

f/Z/P' GROUP S 0.

mc,9- (BB CALC.NO.

GHE

" AA LIFTINb RT.6 LE.G 9/(e A '.h N DETALLS a 4, h I .

] .251.o n = 43* t s*

NP

~"

( [ciR y ..a $-.f

['* Q _-- - - -

g - _j, --

4 h -4 6 28 G 19 9.94

.g t 0.0 (o 35 A *1" A 1 T

___...' _A_ 1 tu 1 ',W - 3 s.sa L78

A'

{I::_.::.'1 l0 nWBl w m im 8 i e- fe.9 4 e l

' I 7.06

"" I

'w o .s I

h~~N ,

9 P N  !

M',9 I

WI3 r

y s.7s a

! 8.72

', 7' l.lo4 m Q

Y' 4.990 s 1.ide -m W 4 Q (.17 T'vP sECTIom A-A - Iwsu.to utt.

Il LEG LUGS M AT'L ASTM A s t G , GR ADE 70 STEEL.3 NOR.M ALI E E D tQ PLATE S AND CH ANNELS M AT'L A STM A3G C,5, H R

\3 MOUN TIN G GLOCK tw't Asm A 3eo , LF 1 FORGINb STEEL (ho tvN mr niq u) u ,, ,,,u . ,

  • AUTHOR DATE CHK'O ev OATE CH K'D. 8 v DATE REV. REV.

NO DATE WESTINGHCUSE PORM 552130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE OF DATE CHK'O.8v DATE Au HC CH '

PROJECT T6% th b %tGATE

' .ht FILE NOT r ~/2dd f CROUP S0.

TyG 9- tB9 CA 14 0 -

CHE LEG LUG Il SENDING e A - A f3 =. M c. /I.

  • M = (GO,416tb/2.)

jd4 c_f 6 m G = u H / -)

^ {

gn (y-j A A I = Uc?/,7 w

= 2. 955 + .99'/12 d '

- I . 'o ' M sn

y h - % ,4 l (p

  • 2.." M t'h i: .: :.:

r

' 10, I 9 8.p.i m-GO,Hib A-4 L = 9(of %Id*

'S ~ 0:U.Cren Lsc -

k.N C 7 E N1. T

.C A'

~

TEN;T tr. 5.T id '_'. T. A - A ,. ,= C,10;B 4 S M 7 j

[t = P/A1 -Q,..' = ~ ~~

/f3,52 6ps!

P: L/.: 4 B,'L33*

S Ac 2.44 (:.03- cap) 2.

.n.

b ;?'J- { { Q.It '6 I*P T 4 2.5,0 Co Bp3; i 7<

A

-. 1k

'6- - - - Wh& h h % w

-6.,

s.x' !W PL -ts-\=.) kar% s h Ac14.53# c.alwtak.16 %paa pnt-c.alwin .

4 - se,m A.n

\

-G.3,nq7.i .

DATE CHK'O. E r DATE AUTHOR DATE CH K'O. B Y l

REV. REV.

NO. DATE.

WESTINGHOUSE FORM $52130

l WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE

,_j,, k b k O . b b E N 'd ._ Id 13/b blMd'D OATE CH y TE CHK'D.SY OF tO DATE PROJECT AUT Of

. lQ L. h $b

  • s t.E No. cRour s.o.

T%P - (%Q CAttJNo. C.HE 299mo/ 5/2 S,..., N,

  • 3"9 D (o o s c) .

. w, REF EF,ENG.: -b e 4,U ds , 'cy r',o e M r #. i ' -

LIrg.otN. ttr'.L C O.

  • r c;, r

. u

e. .. 3 u. -

v.i -c : v:. -i.,,, a fo .O S 9 + 5 2.1 1 D 5 t o. i7 pop 3 t 'D- ta ta r '." at t _. [y',s, - 11,2.90gsi If W yr,4),

whwi.cp.cisA wMd, ['. 3 4 JNd *, * *U

,ww. . v ey.ah,# 4_ 6. 4.- y J.<,..di, ts e , .. n  :.'s

[ .c .dt I , zi,g,, ~'I (zrs 4 ,. ee.i, ,&;, - l 1,1 a.w,. ' 4.t % l l. ] 1y d

4, Aa ,,..u i . . . , ,

. ~17 ( .M (.rit '))

tE% = k (ibtc!)

T*(3h)+193)

= 31.12.

Se 2 pA(.n)

=

n.:: e

.fy, MIS G Ol1% / t. .

5231.p/

I DATE CHK'D SV DATE CHK'O. S Y DATE m g y, gg y, AUTHOR NO. DATE WESTINGHOUSE FORM 852130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE T Nn s N Au. LI F T I N b R T. G STf 'M p t iC , '. E 2 9 or H O AUTH DATE SV OATE CH K'O. S Y DATE PROJECT T6X dMdC /: 0 S

CHp' M M ku/4 opovP C A tt. No. FILE No.

s.o.

TMP-IB8 c. H E.

LEGS 12 9 C FsOE ~ cTIC,N A L AFI A Or LEG C., U h N N E L L '

@ = f2 47 - /.,o - s.4e)/4.Wa)

+(2 ( e.9s -y . eo')

+ 2

( 2.98 - 2.0 3)

= 13.371 Q s oe tsu, n .. t: .* o e i i% ) t: ag ~ti

~t'2 in,'. L t ' ;T r t , .7 N L t . G:.

(

  • P/A 1 As n . 3,4 i,J P - W /2

.f g W ( 0,ozverr) f* t 7,7 2.f, p; i

OATE CH K'O O T. CHK'O. 8 V DATE ggy ggy Auf 0 9 NO / OAT. /Y b k '

fy

....i._..._..'"

U

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION

{

PAGE TITLE Diltk N M b L1 FTT No RCo f ET IR sC ' k DNMAlNhTh ATE CHK'D. SY O, 90 DATE i

PROJECT AUTH DATE CH K-L ~

f $Y S 0. CALC. NO. FILE NO GROUP TYG,P-1BB CHE-MOUNTIN 6 G LOCK. DE.T AI LS 3

>-- R -4  ? +

in R + $ z$

f/..!$o o .. . . .a. s lD' N ie l 7 h  ;

y1

//Mi, a.o1

'l I

i I

W/#

.Ja '

M,r '97 i TtE LOWER. h%tk2t.1 N

T .

SEE.5 ONLN THE.

Y  ; y ,

i

~

!D @  ! L INTERN ACs wcoHT W= 2.'6QOOO*

30 ITc.MS 1?., T H Q J u

4.s

" 7.f r4 1 *" 19 wit.t. USE 7H1b j,]

CESIL,N UJ1.I6HT

  1. ' *=--

NA %,

9,y h

j 7f INSTE AD OF 'TH E.

230, cod' rwsumto it ,,g g' +s-FOR.~T hi PRWT.O'n k - l ,C .

e40uNT.INb ELOCK ITtMb e Ah"ThD.VI.f\TcD y Two uon ggpgg3 4, st. i w i tN P wP t uottom 4.so O l I V

wn w.a ,

.oV.o* /l l -

/

I n .

4 n.- .Coalsoo T Lee tsoN 0 D ,

gwp AUTHOM OATE CHK'O SV OATE CH K'O. S v OATE MEv. RE v.

NO. DATE WESTINGHOUSE FORM 652130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE rwTsawsts trprrwe nts sTwsss mwntwrs 31 O 4o DATE AUTHOR DATE CH OATE CH K'O. BY PROJECT

\6%  % abo. ,% NK'/AA~6kw GROUP ILE NO.

S.O. CQ. NO.

TYGP-lRB C H E-MOUNTI.NG BLOCK 8 S HE AR IM MQuNn %

I3 G LOC.K W E LDS .

, R= P/Av BE ARING OF LOR D Pe \A/ / 3 NOT TO MOUNTI Nb by =26 70 7[TT (1.) +

~

ELot. K, 2 (e.9 8 -2.) + 4 ( 2.9, . s t: - 1.)

x.50 +, to7 (.so)(4)( 2.99) ~

D,-= (S.995 - M.N)) = H.5 8r7 M Q = ( 4.% + 2(.ob))

@i: Dil lT /4 = 24. 4107 ih* fy - Vv'(04/4Nh

%= Qi Tr

/4 :- 17. 2O21 id T-!

Pt3* (D -D t)(7-X 50~1) y ___3) I7 7 -- --

= . 399 W Oc= P/Ac.

Am - n ,- %- %

= G. ~5t o in*

p W/3 Pc= w ( .os28 3)

G. __1 %/z.36 g ,-

A T R OATE CH ' OATE CM K'O. 8 v OATE REV, REV.

NO. / OATE I k) g h My WESTINGHOUSE FORM SS2130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE ThMi R M A Lh L T F T T N ls RT(s STREhk ANAL %Ih [ OF 4O AUTHOR OATE CHK V ATE CH K* D. B Y DATE PROJECT

\

CALC, N'O.

% FILE NO.

$ h Wkt -

GROUP 8.O[

TVC,P--19A CHE LOAD NUT- 08 lk t=.5T WT 17 "

M AT 'L - A ST t4 A 2 7 6, TY PE. 304, BOT ROLLED, C.OND A 4 6000I. ----*

'4 3.001.03 1- N v

.191,o2 A 3 45 +5 TYP gg AmFM 4.000- 4 0Nt. -?.E THC DATE CHK'O. B Y DATE CHK'D.8v DATE REV, REV, AUTHOA NO DATE WESTINGHCL'SE FORM 552130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE INTPT, tvA L S L-EFTENL, RE G STREM ? h'3 L Vsv 33 DATE CHK'O. 8 Y 0 uto DATE AUTHOR DATE P MOJE CT CH[K'[. d %//p EX /A6WA CALC. NO.

% FlLE NO.

GROUP S.O.

TNGP-IB9 cua LOAD NUT

-k= P/Ac 14 ) P= W/3 Ac. = A-A-R i 2 3

= G. a i O W O

Tunta.o s:.n t A R [c. : W(.O52.83)

R = P // %

Av. v. Dp,u 3/2 Sc. = .l 3 .'7 3 6 na Mr 4.0% - A UNc, -2E 7 HD

[h-B 10] D t W i .5 3'? fe F 2.99 +

4 = T1 ( Dp ) 2.9') /2. - 2.97(,s2)

A r lG.2s9,g

. P= W /3 fe w/sAv

  • W (.02038 )

O 5293 ps,-

  • for te c.ut out c4 red bmw'$

g DE ARING OF LOAD NOT TO MOUNTIN G ELot.W A, (s.m -2(.a ))1 fr T 24 9iO'? e l A 2- ( 4.56 + 2 (.O(o)f k

17.2O? \w l ft* ( D, - D., [ 1 )( . 5 0 2 )

.89RGAUTHOR M OATE CHWO.SY DATE CH K'D. 8 v DATE M E V. ME V, NO. DATE WESTINGHOUSE PO8W 652130

i

' WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION I

PAGE TITLE TND EN ble LT U U Nb D6  ! T R E '. h h M hbV 4h OF P ROJECT ,, AUTHQ DATE CH p DATE CH K'O. 8 Y DATE

. Z C S.0, C A LC, NO. DELE NO. GROUP TYGp- t % C.M E 9

RO D H O U SI. N C, - 06 ,,7)

E ST WT 55" M AT't - ASTM A 27 6 TYPE 3 0 4, H cT ROLLED, c.oN D A, 3

---e ,- 1.* iso I'. Q j m u a n y ,q q3.n t.n om . 4 Es'a H..s' e 8 I i

2. sot.m , , ,

i l i

" l I 4.co 4vwc,-s Avo is.so t.of. liI ylt t

}

l l l i ; l i 11.501.c6 l ! i i

l I '

l l I

l

  • l

's t l

  • I ig i

'l I f .751.0f, 9 i -

a

+--WC[j@--e,4.Ob..I.02 -

ir a45,'t s' j

a * -4.7c,1M @  ;

l i l To t.os 3.co s .o3 , i i  ;

g e i e e f f I F $ , l r

~

S.oo- t,0N * *2 A 1 H D

+----- f.$0 t.03 ----->

! b u e

{.

(. /

l

\ n.<,s s.Q1

\ _ /

ep rop vyp,w AUTHOR OAft CHK'D SV DATE CHK'D. 8 v OATE Rgy, M g y, NO. DATE WEstlNQHOU$$ PQRM $$213Q I

L_ I

WESTINGHOUSF NUCLEAR TECHNOLOGY DIVISION PAGE TITLE TNERN M5 MPnNb RTG STREbb ANPRNGS 3b o,90 PROJECT R DATE CH K' Y DATE CM K'D. 8 v DATE

'TM A bUTHd. GA- FILE NO. N/p CTLC, NO. GROUP S.O.TNC , 9- l3@ G H E_

ROD HOUSINb 8 THREAD .5HCNi ON 15> o e et .. ,n c.c s o s fy : P/Av e wston nr meso As. n op.gs .9 / 2. - J l .n')

Re tr t F for 4. coo -4uNu -7,Q iMC Dph 3.5 3Pc

.h. w ,

k = P/At P- W/3 b n(T @.W h-2.r,(.n) 2 Ay= \'7.903 iht -

Ai : "7(' 3.65 - 1.98')

= 7.9 '? S int P=- W/3 f+ = W( O.04180) fv- W /3 A, Q =. . 10,. 9-(~ci:R -

= w (.o2osa ')

9 7HatAo SHEAR- oN fu - 5; 2 99 pc t.ower TarstAo s

& = P/ Av A, tr Drw I /?_

Ice 5.00 - GON . % TH D u.y D,.tw- o - 'R = 4.e917 1 2.99 . n .is

, Sv= U ( hp )(719)[2.

- n.s w ia i

rg _FA, - w ( o.oisu )

y* i l

l 1

DATE CM E'D. 8 v DATE CM M'D. 8 v DATE ggy, g g y, AUTHOR NO DATE WESTINGHOUSE PORM 652130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TIT LE I N ttRN AL5 LOO U NbDATEC. 6 ST R T st p. . A LN C - , 3b or 0OATE OATE CH K'O. S V PROJECT S.O.

TSA AUTH$O84 % $CH4s.sv4~

CALC.NO. FILE NO.

VJe>GROUP TYGP- iBB CHE GUIDE SLEEVE (90 6 M AT'L - ALT M A 2'? b, TY Pe 304 ssT, HOT ROLLED, ANNEALED, ( RIC.KLE*Dc C OND A.

600 t.01.

P-

  • 50 Yo' i i [ L:n J.501.03

]

p S.000 - 6ute 2 8 N D 36 L 04 21.75 3.or.

\ DIA 33 ti.2 % 3.0 4 <

[\ "'8,* *_;x .m. 2 A40 s* oawia.

._ l u

k .

Ih e

N R N N usz.% Nm.N N \

N N

u.nt g g q N nE.Onass%. .

g g

~~

,, ,, o '" T*

1 l  ;

46 arf aw- *

.- rmr ..sm DATE CHE D Of DATE CHK'D.sv DATE mg y. ng y, AufMOR NO. DATE WESTINGHOUSS PomW 663130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TITLE T t44 RN A LS LIFTIN b RIG DATE CH STREih A N ht.mts DATE CH K'O. a v 39O.40 DATE PROJECT TBX e' AUTHQ CALC.NO, d G $ t FILE

/ MNO. M 6 /a u GROUP S.0.

TVGP-t9B CHE e

GUIDE SLE EV E- B E A RING OF C3 UI DE SLEEVE TO BOLT

\b s 4, = bn8s -2(.it)]z rr T e wsexo satxa Ac E3.31'7 + 2(.tE) f, = P/As P = W/3 Ac. R ,- A 1= 6.o 9 2. cn' Av m Dpit.h3/2.

A 2.99 .ss .i5 R = P/Ac Ir 5.co -G uN - u wo P=w/2 Dpah- 4.S917 fc. - w ( 0.0 54 72.)

A m ( 4.?WU( 2.2.9)/2

- P7.%G i# Qe _ h . 2.2.7 rsi fy YK = W (0.0tB94 ) ,

  • . 4,nd dmnuam,,a4

(, . A,s2 A n; ,

a,4 a5a 4

e M N W.O N RT T M AC, R t t. T. t v 4 P/Ae P= W/3 Ae V(s.w -s.os')

, 0.9 9 e fe w ( o.c44 9 8) 4- --

llU 6 H 3 me 5

AutMON QATE CM E'U. S V DATE CH E *D. S Y OATE MEV. RE V.

NO DATE WESilNGHOUSE PORM 882130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE fifLE TM3 SNkkh d E 7 7. N aOATE S 1'JCH K '

bDE e's AN@'NHS OATE CHK'O. S Y OF OATE P R OJE C T S 0.

TEX. AufbMk% b CALC.NO.

  1. M 4/o FILE NO. GROUP mGP-Re C H E.

ROTO- LOC,ysrv o - o 5 '].

ES.T' WT 3 'd. "

M AT'L- ASTM 6 564 T'f Pl~- 430 l'7-4 PRttIPITATION HA R D E N I N f.e ETAIN L.EM STEE L. Abt'. TP.E ATE D S.,

lloO*F FOR 4 HR5 ANL AIR C.OOt.ED,1%,000 P5I.

MIN TENSELE STRENGTH mmg. -

I I I II

. ---_4. s. --

N'."NUs

  • * ~ > l.Es.eso:,04 .. ,_, , , .

L-3g

  • " e 4t*ir g ' 7' Ns

.0M.c:R \ .41 t.ot R,

' tvp l

{

- lit s 1.005 -8 T( .

n.37 2.o 4

\  ?!.!0.

.E m CA*. Q Tw b{- ib lL

$. e 59 9 t.00111P W40 NIEW y _

1.4661*N 4 g"[

.e I

  • 03 I$ = 41'2 )$ wAmste.11P i

m.in .

Tf7 i== .is 49 9P 18t.01(***

l AUTHun Daft chm'O e v Daft chm'D ev Daft MEV. Mtv NO Daft WttfiNOHOWSt POMM $63130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION TITLE PAGE ThWtL N AW LTrTI N t- RI6 STEU'., BNhL%I$

19 o,40 PROJECT v OATE CH n'O. S v OATE

\S% AUT$HOL lDATEG s2 CEH$$s.$~flufn caOve s.O. CAcc.=O- este ~O ROTO-Lock sTu o* (0.4920)

E.(W/N)\O.

L= ,

W ed r7 C.omBIntD set AR ANc BENDIMe IN TOTAL L o Ao t s \v LAnos LO AC PCT 4 LTUC, It W/3 N = NOME ER OF L AN OS (e [1/ 'd 2 Ttnu ec. sru w_ r,r :.t c A.A b t.c d / 6

. w ib b.4 os)(.mW f* t P/A N (.o r.'784 o)

F. w/3 M. stnotsu n=nwr Px A mclYa P = w /3 m (2 Aos)*/4 .

4.5 5 4 in' romrur A n m -em.1 m. - .

f e = w /(3sa.t.c 4) w ( .n r7 3 i 9 ) j f, 19 078 n; A.E.. -

N.. *** N Styg O N'4RY . = m .

SHE AR Cr LiuD L ANDS t A L = P/A, N' N

ALd g, # (l'Nw1H Of LANDb k'.\\

d or9tn or u*cr. comm, c 4 . u. m cA = . 5 9 "? $wurnsuu mtu: man tnnetnt N r. tu l c, - M tt(L4Cf:) N l m .iw wo m e ,; tn - , . v . .. 3. ,

P w/3 t-c tw.r,,r,w o r s. tut n ar A 0.to'Y7AUTHOR 9N as rmt nx,, r tr e s.

OAte CHR D e v DAfa t e n'O. a v OAft mg v. mg v, NO OAft W4 tflNGHOVll P t18.M 662130

WESTINGHOUSE NUCLEAR TECHNOLOGY DIVISION PAGE TIT L E I mERNAL5 CFI N L.DATEC(.3 . STE t t> > ANALN m 40 O,90 R CHK'p TE CHK'O. B Y DATE PROJECT -

I BX AUTMHA okt CALL.No. FILE NO.

1/MOu GROUP S.O.

w= usd% of beersg sur fou A, = 3 01B - 2(.ow))ty

= 6 . 8 '7 2 0 @

= (2.o15 - 2. sos )/2.

.03 5 -- 2 ( o4)

$ '[2 2.958 +.2(.o35) [, f .

w= ,I95 %, - * %.9 4 0 2.in '

Ac .A- As xs moment m of. form

=. .Y +.o4+,oss = \.9 32. int e ,nasmo Al N No Ac

& = Y(.i7as)4ovno N) fc- P/A P ' W /3

.rrzc

.o m H k 4 =

'Y /(3 Us3 M(i. iso) k = % (.8531) 0,,,I~Mf+ff.f'4 C. 25alu. p E (E451'. * + omd).s T_(o.csia) 4.ss/z_ . co e = u m no m e u ON STUD HCAt '. t C. 08 L ., - 2 3 352 me

< i

_s y A,- ,

T 9.'7B5 -1(.ii)N h, - [3.317 e 2(.ts)

Ac A,- A = G.OS2.M ComPRtLLIVE GE ART Nb LTACLL CN LAND sugrA(Es (c= P/Au P= W/3 fc - W (o.oss7)

Se~.-. \ A,10 na Daft CH n'O. 8 v OAft CH K'O. s v OATE M g y, ggy, AVIHOR J

NO. 0 Aft WESTINGHOUSE FOR48 592130 l