ML20087H153

From kanterella
Jump to navigation Jump to search
Rev 0 to DAEC Cycle 14 Core Operating Limits Rept for Apr 1995
ML20087H153
Person / Time
Site: Duane Arnold NextEra Energy icon.png
Issue date: 04/05/1995
From:
IES UTILITIES INC., (FORMERLY IOWA ELECTRIC LIGHT
To:
Shared Package
ML20087H151 List:
References
NUDOCS 9504180489
Download: ML20087H153 (20)


Text

w l.

IES UTILITIES, INC.

Duane Arnold Energy Center Cycle 14 CORE OPERATING LIMITS REPORT Rev 0 April 1995 4

I Prepared by: Md 8Mb 3/Jo/95 r

Verified by: N 3 ~26'78 Concurred by: $f N) (lCUnld-3 2<P Manher, Nucihr Ucerfjhg

/

c-l li,,";Y

.3! f/W Manager, Engineering

)

9, h6%. Monn.

3hohs Principal Engin

, Nuclear Fuels

\\Vf

~4hFs

/

isorMeactor $ngineering

  1. /'//ff s//

/

Reviewed by:. Chal tfian, Operations Committee r

e f

Approved by:

[I/ MM S~N I

Plant Superintendent, Nuclear i

9504180489 950407 DR ADOCK 0500 1

i

1 i

3

-1.0.' Core Operating Limits Report This Core Operating Limits Report for Cycle 14 has been prepared in accordance with the requirements of Technical Specification 6.11.2. The core operating limits have been developed using NRC-approved method-.

j ology (Ref.1) and are documented in References 2 and 3. The Cycle 14 values for the core operating limits are provided in Section 3.0 of this report.

i 2.0. References

'{

1.

General Electric Standard Application for Reactor Fuel.

NEDE-24011-P-A*

.l P

2.

Duane Arnold Enerav Center SAFER /GESTR-LOCA Loss-of-Coolant Accident Analysis. NEDC-31310P, Supp.1, August 1993*

i 3.

Supplemental Reload Licensina Submittal for Duane Arnold Enerav j

Center. Reload 13. Cycle 14. 24A5171, Rev 0, March 1995 '

i 4.

Duane Arnold Enerav Center Sinale Looo Ooeration. NEDO-24272, i

July 1980 j

i 5.

Averaae Power Ranae Monitor. Rod Block Monitor and Technical i

Specification Inorovement (ARTS) Proaram for the Duane Arnold j

Enerav Center. NEDC-30813, December 1984 -

l 6.

GE Fuel Bundle Desians. NEDE-31152P*

1 l

~

l

  • Approved revision number at time reload fuel analyses are performed.

Page 2 L

s

y;,( 1

'e

. t. ;

W a:

3 l

i 3 0 Core Operating Limits

]

1. : Maximum Averaoe Planar Linear Heat Generation Rate (MAPLHGR).

j TS 3.12.A.

l

a. LThe MAPLHGR for each fuel type as a function of average planar exposure shall not exceed the limiting value shown in Figures 1-5 multiplied by the smaller of the two MAPFAC factors determined from Figures 6 and 7.

. b.. During SLO, the actual MAPLHGR for each type of fuel as a.

function of average planar exposure shall not exceed the limiting i

value shown in Figures 1-5 multiplied by the smaller of the two l

MAPFAC factors determined from Figures 7 and 8.

c.

Tables 1-5 provide the MAPLHGR values (KW/ft) for the exposure points (GWd/ST) used in the SAFER /GESTR-LOCA analysis.

' Tables'1-5 correspond to Figures 1-5 respectively, i

2.

Linear Heat Generation Rate (LHGR) - TS 3.12.B.

l l

a.

The LHGR of any rod in any fuel assembly shall not exceed i

14.4 KW/ft.

3.

Minimum Critical Power Ratio (MCPR) -TS 3.12.'C l

a.

The MCPR shall be equal to or greater than the Operating Limit MCPR,' which is a function of core thermal power, core flow, fuel 1

type *, and scram time (Tau).. For core thermal power greater than j

or equal to 25% of rated and less than 30% of rated (25% s P <

j 30%), the Operating Limit MCPR is given by Figure 9. For core H

thermal power greater than or equal to 30% of rated (P 2 30%),

the Operating Limit MCPR is the greater of either:

i) The applicable flow-dependent MCPR determined from j

Figure 10, or li) The appropriate RATED POWER MCPR from Figure 11 multiplied by the applicable power-dependent MCPR multiplier determined from Figure 9.

1 i

b.

During SLO with core thermal power greater than or equal to 25%

of rated, the SLO operating limit MCPR is determined by adding 0.03 to the operating limit MCPR determined above.

Cycle 14 MCPR limits are applicable to all DAEC fuel types.

Page 3 i

.j e

i 4.0 Reload Fuel Bundles

{

FUEL TYPE CYCLE LOADED NUMBER.

i GE10-P8HXB321-11GZ-70M-150-T 11 4

i GE10-P8HXB317-7GZ-70M-150-T 11 4

GE10-P8HXB321-11GZ-70M-150-T 12 24 1

GE10-P8HXB316-8GZ-100M-150-T 12 80 l

GE10-P8DXB327-10GZ1-100M-150-T 13 56 GE10-P8DXB327-8GZ2-100M-150-T 13 72 GE10-P8DXB327-10GZ1-100M-150-T 14 88 GE10-P8DXB327-8GZ2-100M-150-T 14 40 j

I i

l k

i Page 4

TABLE 1 L

Linear Heat Generation Rate as a function of Planar Average Exposure

  • Fuel type:

GE10-P8HXB321-11GZ-70M-150-T Planar-Linear Heat Average Generation Exposure Rate (GWd/ST)

(KW/ft) 0.0 10.77 0.2 10.85 1.0 11.02-2.0 11.27 3.0 11.56 l

4.0 11.86 5.0 12.08 6.0 12.24 7.0 12.41 8.0 12.59 l

9.0 12.78 10.0 12.97 12.5 13.12 15.0 12.89 20.0 12.25 l

25.0 11.57 35.0 10.24 45.0 8.68 t

50.5 5.86

  • - These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

j Page 5

l:

~

{n '.

/

s.

TABLE 2 Linear Heat Generation Rate -

as a function of.

Planar Average Exposure

  • m, Fuel type:

GE10-P8HXB317-7GZ-70M-150-T Planar Linear Heat Average

' Generation Exposure Rate (GWd/ST)

(KW/ft) 0.0 11.50

.0.2 11.50 1.0 11.56

-2.0 11.69 3.0 11.84 4.0 12.02 5.0 12.21 6.0 12.42 7.0 12.64 8.0 12.87 9.0 13.07 10.0 13.21 12.5 13.24 15.0 12.93 20.0 12.23 25.0 11.54 35.0 10.21 45.0 8.71 50.7 5.86 These are nominal values to be used for manual calculations. The actual lattice-tyre dependent values are modeled in the process computer.

Page 6 l

l

'l

? -'

i TABLE 3 Linear Heat Generation Rate as a function of a

Planar Average Exposure

  • Fuel type:

GE10-P8HX8316-8GZ-100M-150-T Planar Linear Heat Average Generation Exposure Rate (GWd/ST)

(KW/ft) 0.0 11.22 0.2 11.28 1.0 11.42 2.0 11.62 3.0 11.81 4

4.0 12.02 5.0 12.22 4

6.0 12.34 7.0 12.46 8.0 12.59 9.0 12.74

~

10.0 12.89 12.5 12.99 15.0 12.76 20.0 12.27 25.0 11.63 35.0 10.23 45.0 8.79 50.8 5.90 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Page 7

3

~3 '

TABLE 4 Linear Heat Generation Rate as a function of Planar Average Exposure

  • Fuel type:

GE10-P8DXB327-10GZ1-100M-150-T Planar Linear Heat Average Generation Exposure Rate (GWd/ST)

(KW/ft) 0.0 11.49 0.2 11.56 1.0 11.71-2.0 11.88 3.0 12.05 4.0 12.23 5.0

.12.42-6.0 12.57 7.0 12.70 8.0 12.82 9.0 12.35 10.0 13.09 12.5

.13.17 15.0 12.90 20.0 12.16 25.0 11.38

~

35.0

.9.92 45.0 8.51 50.7 5.77 t

These are nominal values to be used for manual calculations. The actual

. lattice-type dependent values are modeled in the process computer.

Page 8

i:s.

8 TABLE 5 l

t Linear Heat Generation Rate as a function of j

Planar Average Exposure * -

i Fuel type:

GE10-P8DXB327-8GZ2-100M-150-T Planar Linear Heat Average Generation Exposure Rate (GWd/ST)

(KW/ft) 0.0

.11.72 0.2 11.77 1.0 11.88' 2.0 11.96 3.0 12.04 4.0 12.10 5.0 12.17 j

6.0 12.24 7.0 12.31 8.0 12.39 9.0 12.47 10.0 12.56 12.5

'12.57 15.0 12.33 20.0 11.81 25.0 11.29 i

35.0 10.20 45.0 8.48 50.1 5.90 I

  • These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer, j

Page 9

!l!I)j 1'

ll 1

9

~

5 t

05 k

(

54 53 5

\\

2

(

02

)

5T 1S/d ET

5. W 2

1G 0

(

A5 0E P1 1R M

U 0

S S7 9 O

-Z P

VG X

1 8E 1

E 1

R R1 E

U G

G 2

G3 7A I

F B

R E

HX 6V H

A L

8 PP R

-0 5A A1 N

E A

MG 4 L P

3 2

1 p

2 0

O 4

3 2

1 e

9 7

6 5

1 1

1 1

i

{

~o3 sd W0h*a s35E2

4 e

4 S

MAPLHGR VS PAE GE10-P8HXB317-7GZ-70M-150-T 14 A,

m 13 m

5 s

x'

(

s T

2

\\

a 11 k

Z jo 5

o_

O

)

b*

k n

\\\\

2 2

\\

0

\\

26 t

5 0

0.2 1

2 3

4 5

6 7

8 9

10 12.5 15 20 25 35 45 50.7 PLANAR AVERAGE EXPOSURE (GWd/ST)

FIGURE 2

8

\\,

0

\\

5

\\

\\

(

5 4

\\

53 k

52 0

N 2

)

51 s

1S/d ET

5. W

-0 2

A5 1G(

P1 0E M

1 R

0 U

S1 S

0 9 O V Z-P G

X 3

8 8E R6 ER E

U 1

G3 G

IG B

7A F

HX R

H E

L 6V 8

A PP

-0 R

A1

,5 A MG E

NA 4 L j

P 3

2 y

1 2

=

0 0

4 3

2 1

0 v&u 6

5 1

1 1

1 EEE'O@a Z:

1$52 L

O b

MAPLHGR VS PAE GE10-P8DXB327-10GZ1-100M-150-T 14

- 13 y

g M 12 p

2

(

11 a

10 o.

5

(

t-1\\

1 e

k 6

h 5

0 0.2 1

2 3

4 5

6 7

8 9

10 12.5 15 20 25 35 45 50.7 PLANAR AVERAGE EXPOSURE (GWd/ST)

FIGURE 4

. m 4

m

+

MAPLHGR VS PAE GE10-P8DXB327-8GZ2-100M-150-T 14 13 gi2 k,

e 11 m

k Z 30 5

a.

9 Ii ye

\\

sE7 4

6 5

0 0.2 1

2 3

4 5

6 7

8 9

10 12.5 15 20 25 3:5 45 50.1 PLANAR AVERAGE EXPOSURE (GWd/ST)

FIGURE 5

FLOW DEPENDENT MAPLHGR MULTIPLIER TWO LOOP OPEPATION 1.1 1.0 i~9 f

0 b08 For F<75.8 g 0.7 r

MAPFACf=0.00678F+0.4861 For F275.8 O

MAPFACf=1.00 0.6 Where g

F= Core Flow in % of Rated 0.5 0.4 30 40 50 60 70 80 90 100 CORE FLOW (% RATED)

FIGURE 6

- 1

A.

POWER DEPENDENT MAPLHGR MULTIPLIER 1.1 1'0 E

[

S 1 09 6

5

/

+ 0.8

(

y 1

s = coae r'o*

3 For P<25: No Thermal Umit Monitoring Required O

For 255P<30 and F 50 1

1 MAPFACp=0.6+0.005224(P-30) g For 25sP<30 and F>50 l

00.6 MAPFACp=0.5+0.005224(P-30)

]

[

For 30sP<96 a

MAPFACp=1.0+0.005224(P-96)

For P296 MAPFACp=1.0 0.5 Where P= Core Power in % of Rated F= Core Flow in % of Rated

>50% CORE FLOW 0.4 20 30 40 50 60 70 80 90 100 CORE THERMAL POWER -(% RATED).

FIGURE 7

FLOW DEPENDENT MAPLHGR MULTIPLIER SINGLE LOOP OPERATION 1.1 1.0 e

y 0.9 u.

k0.8 N

E 0.7

~

1 i

F For F<56.6 MAPFACf=0.00678F+0.4861 3

For F256.6 Q 0.6 MAPFACf=0.87 2

Where F= Core Flow in % of Rated 0.5 0.4 30 40 50 60 70 80 90 100 CORE FLOW (% RATED)

FIGURE 8

POWER DEPENDENT MCPR LIMITS 2.4

>50 % CORE FLOW 2'

550 % CORE FLOW j

f a_ 2.0 O

For 25sP<30 and F150 2

OLMCPRp=1.9+0.02(30-P) g1.9 For 25sP<30 and F>SO OLMCPRp=2.15+0.02(3p) 1.8 For 30sP<45 Kp=1.28+0.0134(45-P)

For 45sPc60 1.7 gp.i.35.o.coss7(so p)

~~

For P260 Kp=1.0+0 00375(100-P)

Where OLMCPRp= Power Dependent 1.5 Operating Limit MCPR Kp= Power Dependent MCPR Mutpiler aM j*4 P= Core Powerin % of Rated F= Core Flowin % of Rated 1'3 N

1.2 --

Note:

Y-Axis Numbers Represent (a) OLMCPRp for 25sP<30 lI~

(b) Kp for P230 1.0 -

l l

,1 20 30 40 50 60 70 80 90 100 POWER (% RATED)

FIGURE 9 w

FLOW DEPENDENT MCPR LIMITS 1.7 1.6 For F40 OLMCPRf=(-0.00571 F+1.655) x I

(1 +0.0032(40-F))

For 401F<79.7 OLMCPRf=(-0.00571F+1.655)

For F279.97 OLMCPRf= Flow Dependent Operating Limit MCPR g -

Where y

F= Core Flow in % of Rated A

1.3 1.2 1.1 30 40 50 60 70 80 90-100 CORE FLOW (% RATED)

FIGURE 10

4 1

l MCPR vs TAU OPTION B OPTION A 1.32 1.32 i

1T 1.30 1.28 1.28 1.26 -

-1.26 x

s x

8 B

2

/

2

-1.24 1.24 -

7

/

/

/

1.22 -

-1.22 I Note: For TAU less than zero, 3

1.20 use TAU equal to zero for.

1.20 MCPR determination 1.18 1.18 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 TAU FIGURE 11

.--