ML20086R256
ML20086R256 | |
Person / Time | |
---|---|
Site: | Three Mile Island |
Issue date: | 06/28/1995 |
From: | GENERAL PUBLIC UTILITIES CORP. |
To: | |
Shared Package | |
ML20086R234 | List: |
References | |
TR-099, TR-099-R02, TR-99, TR-99-R2, NUDOCS 9507310073 | |
Download: ML20086R256 (44) | |
Text
{{#Wiki_filter:_- TMI-1 Cycle 10 Core Operating Limits Report TOPICAL P2 PORT 099 Rev. 2 BA Number 135400 TMI-1 Cycle 10 Reload Task Force June, 1995 APPROVALS; [" h-f 3 Originator s'7 // Date h \\M ' 6ll3 91 ' ) Cy 10 Reload Task Forc hairman Dhte 7AXX-6/ 7/95- ~ Manager, 7NI Fuel Projects Date $~2/# ?$ Director, Nuclear Analysis & Fuel Date 6 2Bb5 Ybrnass W2W97 /2 G Gi sn Plant Rev;,ew Group Date 9507310073 950720 PDR ADDCK 0500 9
ENuclear
==d TR 099 g. TMI-1 CYCLE 10 CORE OPERATING LIMITS REPORT RW
SUMMARY
OF CHANGE APPROVAL DATE 1 LOCA 1imits in Figure 7 were reduced by 3-fo, pf 1.0 and 1.3 kw/ft at the 2' level for MkB8 and MkB9 fuel, respectively. 5/i4/Sr y_,- Conservative high burnup fuel CMS kw/ft monitoring limits administratively installed in Table 2 at B0C were replaced with BWFC-recommended fresh fuel limits ~ ~ ' ~ _. _.... (adjusted for the 2' level reductions) from 400-661 EFPD. New references added. 2 Incorporated Table 3. "BWST, BAMT and RBAST (- /3 - 7g-Minimum Boron Requirements for Cold Shutdown" into this report. The abstract and references were revised to reflect (,[(3 /9 f e this addition. This revision gcc; Stc eff:;t spen Nac87 cppro=' of TSC" 2:2 and is applicable after 500 EFPD of Cycle 10. d 6e y k< I e Aooooo3812 33
TR 099 Rev. 2 Page 1 of 42 ABSTRACT This Core Operating Limito Report (COLR) has been prepared in accordance with the requirements of TMI-1 Technical Specification 6.9.5. The core operating limits were generated using the methodologies described in References 12 through 31 and were documented in References 1 through 5. The information in this COLR was reviewed for use at TMI-1 in References 6 through 11. The Full Incore System (FIS) operability requirements contained within describe the number and location of Self-Powered Neutron Detector (SPND) strings that must be operable in order to monitor imbalance and quadrant tilt using the FIS. Quadrant tilt limits for FIS, out-of-core detector [OCD) system and minimum incore system (MIS) are given in Table 1. Table 2 is discussed below with Figure 7. The minimum boron volumes and concentrations for the Borated Water Storage Tank (BWST), Boric Acid Mix Tank (BAMT) and Reclaimed Boric Acid Storage Tanks (RBAST) contained in Table 3 will ensure that enough boron is available to achieve cold shutdown conditions. Rod position limits.are provided in Figures 1 to 3 to ensure that the safety criteria for DNBR protection, LOCA kw/ft limits, shutdown margin and ejected rod worth are met. Imbalance limits for FIS, OCD and MIS are given in Figures 4 to 6. COLR Figures 1 through 6 may have three distinctly defined regions: 1. Permissible Region 2. Restricted Region 3. Not Allowed Region (Operation in this region is not allowed) Inadvertent operation within the Restricted Region for a period not exceeding four (4) hours is not considered a violation of a limiting condition for operation. The limiting criteria within the Restricted Region are potential I ejected rod worth and ECCS power peaking. Since the probability of these accidents is very low, especially in a four (4 ) hour time frame, inadvertent operation within the Restricted Region for a period not exceeding four (4) hours is allowed. COLR Figure 7 indicates the LOCA limited maximum allowable linear heat rates as a function of fuel rod burnup and fuel elevation for Mark B8 and Mark B9 fuel. Bounding values for monitoring these limits for the current cycle in terms of cycle burnup and axial detector levels are licted in Table 2. COLR Figure 8 provides the Axial Power Imbalance Protective Limits (APIPL) that preserve the DNBR and Centerline Fuel Melt design criteria. COLR Figure 9 provides the Protection System Maximum Allowable Setpoints for Axial Power Imbalance which combine the power / flow and error-adjusted axial imbalance trip setpoints that ensure the APIPL of Figure 8 are not exceeded. l
TR 099 Rav. 0 Piga 2 of 42 , contains operating limits not required by TS, but monitored by the Process Computer Nuclear Applications Software as part of the bases of the required limits and setpoints. These include the core minimum DNBR and the Maximum Allowable Local Linear Heat Rate Limits. contains the bases cescriptions of the Power-to-Flow Trip Setpoint to prevent violation of DNBR criteria and the Design Nuclear Power Peaking" Factors for axial flux shape ( F*2 ) and hot channel nuclear enthalpy rise (F 3g) ther define the reference design peaking condition in the core. i
TR 099 Rev. 2 Page 3 of 42 TABLE OF CONTENTS PAGE Abstract 1 i References 4 i Full Incore System (FIS) Operability Requirements 6 Table 1 Quadrant Tilt Limits 7 Table 2 Core Monitoring System Bounding Values for. 8 LOCA Limited Maximum Allowable Linear Heat Rate Table 3 BWST, BANrr and REAST Minimum Boron Requirements 9 for Cold shutdown Figure 1 Error Adjusted Rod Insertion Limits 10 4 Pump Operation Figure 2 Error Adjusted Rod Insertion Limits 13 3 Pump Operation Figure 3 Error Adjusted Rod Insertion Limits 16 2 Pump operation Figure 4 Full Incore System Error Adjusted 19 Imbalance Limits Figure 5 Out-of-Core Detector System Error Adjusted 24 Imbalance Limits Figure 6 Minimum Incore System Error Adjusted Imbalance Limits 29 Figure 7 LOCA Limited Maximum Allowable Linear Heat Rate 34 Figure 8 Axial Power Imbalance Protective Limits 36 Figure 9 Protection System Maximum Allowable Setpoints for Axial 37 Power Imbalance. i l Operating Limits Not Required by Technical 38 Specifications DNBR-related Bases Descriptions 40 [ i L w . -,,n ,.-.- - ~. - -,.m... e 1 e.-
TR 099 Rev. 2 j Page 4 of 42
References:
Main Body I 1 BAW-2187 Rev. 0, "Three Mile Island Unit 1 Cycle 10 Reload Report," May 1993. i 2. BWFC Doc. No. 86-1223246-00, "TMI-1 Cycle 10 Limits & Setpoints," August 1993. 3. BWFC Doc. No. 62-1224552-00, " Power Escalation Test Specification TMI-1 Cycle 10," August, 1993. ) 4. BWNT Doc. No. 51-1234870-00, "TMI-1 Cycle 11 Task 4 Reload," K.S. Pacheco, dated January 19, 1995. l 5. GPUN Calc. No. C-1101-202-5412-219, Rev. O, "TMI-1 Cycle 10 Revised NAS MALHR Alarm Setpoints," R. Jaffa, February, 1995. ) 6. GPUN Safety Evaluation 135400-017, Rev. 2, "TMI-1 Cycle 10 Reload i Design," May, 1994. 7. GPUN Safety Evaluation 135400-013, Rev. O, " Tech Spec LOCA Limit Changes," June 28, 1991. 8. GPUN Safety Evaluation 135425-006, Rev. O, " Tech Spec 6.9.5.2 Reference to BAW-10179P (TSCR 225), " May 3, 1993. 9. GPUN Safety Evaluation 135400-019, Rev. 1, " Removal of Axial Power Imbalance Protective Limits and Setpoints from TS to COLR," May 8, 1995. 10. GPUN Safety Evaluation, 135400-020, Rev. O, "TMI-1 Cycle 10 Core Operating Limits Report," March, 1995. 11. BWFC Doc. No. 12-1235309-00, " Operating Limit Evaluation for PSC 5-94," B. Delano, December 13, 1994. { i Methodology 12. RAW-10122A, Rev. 1, " Normal Operating Controls," May 1984. 13. Letter from J. H. Taylor (B&W) to J. A. Norberg (NRC), " Extended Lifetime Incore Detector Error Allowances," April 21, 1988, JHT/88-28. i 14. BWFC Doc. No 86-1172640-00, " Detector Lifetime Extension Final Report for TMI-1," September 1988. 15. GPUN Safety Evaluation 000622-001, Rev. 1, " Control Rod API and RPI 24 Month Cycle Extension," April 16, 1992. 16. RAW-10116-A, " Assembly Calculations and Fitted Nuclear Data," May 1977. 17. BAW-10118A, " Core Calculational Techniques and Procedures," December 1979.
TR 099 Rav. 1 Page 5 of 42 References (continued): 18. BAW-10119A, " Power Peaking Nuclear Reliability Factors," February 1979. 19. BAW-10120P-A, " Comparison of Core Physics Calculations with Measurements," March 1978. 20. BAW-10180A, Rev. 1, "NEMO-Nodal Expansion Method Optimized," March 1993. 21. BAW-10141P-A, Rev. 1, " TACO-2 Fuel Pin Performance Analysis," June 1983. 22. RAW-10162P-A, " TACO-3 Fuel Pin Thermal Analysis Computer Code," November 1989. 23. RAW-10184P-A, "GDTACO, Urania-Gadolinia Thermal Analysis Code," May 1992. 24. BAW-10103A, Rev. 3, "ECCS Analysis of B&W's 177-FA Lowered Loop NSS," July 1977. 25. BAW-1775, " TACO Loss-of Coolant Accident Limit Analysis for 177-FA Lowered Loop Plants," February 1983. 26. BAW-1915P-A, " Bounding Analytical Assessment of NUREG-0630 Models on LOCA kw/ft Limits With Use of FLECSET," November 1988. 27. BAW-10104P-A, Rev. 5, "B&W ECCS Evaluation Model," November 1988. 28. BA%-10179P-A, Rev. O, " Safety Criteria and Methodology for Acceptable Cycle Reload Analyses," February 1991. 29. BAW-2149-A, " Evaluation of Replacement Rods in BWFC Fuel Assemblies," Decemoer 1991. 30. BAW-10143P-A, "BWC Correlation of Critical Heat Flux", April 1985. 31. BAW-10156A "LYNXT: Core Transient Thermal Hydraulic Program", February 1986.
TR 099 R v. 0 Pzga 6 of 42 Full incore System (FIS) Operability Requirements 9 The Full incore System (FIS) is operable for monitoring axial power imbalance provided the number of valid Self Powered Neutron Detector (SPND) signals in any one quadrant is not less than 75% of the total number of SPNDs in the quadrant. Quadrant SPNDs 75% WX 85.75 64.5 XY 99.75 75.0 YZ 89.25 67.0 ZW 89.25 67.0 S The Full incore System (FIS) is operable for monitoring quadrant tilt provided the number of valid symmetric string individual SPND signals in any one quadrant is not less than 75% (21) of the total number of SPNDs in the quadrant (28). l Quadrant Symmetric Strings - WX 7,9,32,35 XY 5,23,25,28 f YZ 16,19,47,50-ZW 11,13,39,43 i Source Doc.: B&W 86-1172640-00 Referred to by: Tech. Spec. 3.5.2.4.a and 3.5.2.7.a
Table 1 Quadrant Tilt Limits Steady State Limit Steady State Limit Msximum Limit 15% < Power _< 50% Indicated Power > 50% Indicated Power > 15%- Full incore System. (FIS) 6.83 % 4.20 % 16.8 % Out-of-Core Detector System (OCD) 4.05% 1.96 % 14.2% Minimum incore System (MIS) 2.60% 1.90 % 9.5% 7 F51 $.o -J O ?, O Source Docs.: B&W 86-1223246-00 Referred to by: Tech. Spec. 3.5.2.4
i TR 099 i Rsv. 1 Page 8 of 42 i ] Table 2 Core Monitoring System Bounding Values for LOCA Limited Maximum Allowable Linear Heat Rate (kW/ft) CMS 0-75 75-300 300-400 400-661 Level EFPD EFPD EFPD EFPD l 8 11.6 11.2 10.8 12.8 7 13.8 13.3 12.8 15.2 6 14.5 14.0 13.5 16.1 5 14.5 14.0 13.5 16.1 4 14.5 14.0 13.5 16.1 3 14.5 14.0 13.5 15.0 2 13.7 13.2 12.8 13.8 1 11.6 11.2 10.8 11.6 The maximum linear heat rate for each CMS level, as measured with the NAS Thermal Hydraulic Package (Display 4), should be less than the corresponding bounding value from Table 2 above. Source Docs.: B&W Doc. No. 62-1224552-00 GPUN Calc. No. C-1101-202-5412-219, Rev. 0 6
i TR 099 Rev. 2 Page 9 of 42 TABLE 3 BWST, BAMT and RBAST Minimum Boron Requirements for Cold Shutdown 6 500 EFPD to EOC 1. The minimum boron requirement for the BAMT and RBASTs is the equivalent of at least 906 ft.' of 8,700 ppm boron. 2. The minimum boron requirement for the BWST is the equivalent of at least 60,000 gallons of 2,270 ppm boron. i NOTE: The basis for the above BWST minimum boron requirement is to achieve cold shutdown conditions only. This requirement is bounded by the BWST ECCS requirement of T.S. 3.3.1.1.a. 3 I l Referred to by: Tech. Spec. 3.2.2 and 3.2 Bases
v ~ Figuro 1 (Pcge 1 cf 3) Error Adjusted Rod Insertion Limits 0 to 75 +0/-10 EFPD t 4 Pump Operation aR a 110 -5 llll g q. _ st.s,102 300,102 100 5 _ _E see,102 j - _.. o hk - NOT - -A / 90i - ALLOWED - / g i - REGION - / _/ g 80 -i - [- _/ ll -f / RESTRICTED f 242,7s n. j 70 = 7_ REGION . / y _E / E 80 -5 . y o _j _ / _f Y 50 5 - -{--- / ] ~ / .. as, 4e / 202,e g 40 - e 7 g 4 , -1 .5 30 _f _ { . y r : f _ / _ y PERMISSIBLE r <f ~ ~ REGION 204 7_ j 103)- / iP0, 2.3 O ,,,my,,,,,,,,m,pm im,nn un men un;w rrpoq a n;.y nn nr na im w w nn a,ntrar m p:npa nn o e o ang,m o n i m w nn nn my nn nn m nn nn a e ... r eum :ne 0 10 '20 30 40 50 00 70 80 90 100 110 120 130 14O 150 100 170 ISO 190 200 210 220'230 240 250 260 270 290 290 300 Each Div. = 1% WD Indicated Rod index, % Withdrawn 3*N
== Source Doc. 86W 961223248-00 Referred to by Tech Spec 3.5.2.5.h and 3.5.2.4.e.2
- 3 I
gow R. -0
Figuro 1 (Pcg3 2 cf 3) Error Adjusted Rod insertion Limits 75 +0/-10 to 400 +/- 10 EFPD E 4 Pump Operation 110 llll E _ 116.9.102 300,102 ,100 4 y 2s3. 102 o j 4 NOT 90 4 ALLOWED 4 REGION I - / 2s7,90 g s0 E / _/ ll 4 / RESTRICTED / 242,7s n. j 70 -j / REGION / _/ y 4 / f eO f / y o .E . f . / $ s0 -l . j. - ] 4 _ f._ se,4s - ef 202,4e 40.] - / C g -j . / . /::,- C 30 5 - -I l ._, xTI PERMISSIBLE e REGION 20-g - 7 p M _E 26,13 g-f - [ [{$ 10
- 5
.y e.o i 0, 4.3 sow 0 w mngmgnog. ug..uun o... .m e nc on >m im nnpin un mi mi mi tm tm tm e m mi n e m a nn o.; on an e u mom rm e mom s s m w im w w w w w mom e w w w w o* 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 Indicated Rod index, % Withdrawn source poc. saw so 122324640 Referred to by Tech Spec 3.5.2.5.b and 3.5.2.4.e.2
Figura 1 (Pcg3 3 cf 3) Error Adjusted Rod Insertion Limits 400 +/-10 EFPD to EOC t 4 Pump Operation g a1104 llll g q 214.e,102 300,102 , 100 _g .,o 2ss,102 .m j ~ / o0 _g NOT / ) s / , ]E [ [ _ ~ ' [ _~[ ~ ALLOWED ~ ~ ~ ~ } } } ( ~ ~ ~ ~ ~ )/ ~l n7, m I ~ ~ f / ~ g, REGION _ _/ j 242,78 e 70 _- _p._ .] g 4 _ / _/ GC 804 - / RESTRICTED _ / o .l . _i_ REGION ._/ tt 50J -11s,4e - R .i ____.1 c yes,se _ f 40 / c s g _g _ / _ _y c 304 y e q _ 7 PERMISSIBLE c 20 4 - I - y REGION Si y, f h f
- jj
-=r ,,, 3 3 10 - g~ c E 0, 4.s ,m n.3m,,m,; m;,m ,m im im nn mi an im an un i. iiii m. ...m an wpn a w m nn u e a e a w nn a nn nr no un im a nn a nn nn en men un nn mi e e mom m w mom x 0 0 0 10 20 30 40 50 60 70 80 90 1001101201381140150160170180190 200 210 220 230 240 250 260 2TO 280 290 300 indicated Rod index, % Withdrawn Source Doc. B&W 86-1223248 40 Referred to by Tech Spec 3.5.2.5.b and 3.5.2.4.e.2 ~
Figuro 2 (Pcg31 of 3) Error Adjusted Rod insertion Limits 0 to 75 +0/-10 EFPD E 3 Pump Operation 80 - - 82.3, 77 - 300,77 j 0 _E / 2ss.5,77 o-o NM 70 / ~ ~ ~ ~ f E ALLOWED g -~ ~ REGION ~ / y 257,sr g 80 4 / _ / RESTRICTED 8 5 ../ 242,58 n. y E REGION f j S 50 : - 5 y E ~/ 7 f ,,,,,o an : I / _j E ( e z so _- r
- g
_ 7 . 7 c 20 -- _E - / PERMISSIBLE 10 g / g,,,7-7 7 a-@ _E fi_ .}jl e nn e nn mm un m >m m. m. :m im e nn e nu m nn an c un un tm mum. n.n. ui an e nn ne nn e nn e w a rm mom im w e nn nn en>
- n e nn w =
[ O minr u O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 Each Div. = 1% WD Indicated Rod Index, % Withdrawn l Source Doc. B&W 88-122324640 Referred to by Tech Spec 3.5.2.5.b and 3.5.2.4.e.2
Figura 2 (Pcg3 2 cf 3) Error Adjusted Rod Insertion Limits 75 +0/-10 to 400 +/-10 EFPD t 3 Pump Operation ~ ~ ~ IIIi IilI e j 80 g 117.e, n 3,,, y 0 . f _j / 2ss.3, n o j 70 5 / / NOT E ALLOWED ~ REGION / y 257,s7 g ~ / _f g 80 - - [ E 5 ~ ~ / RESTRICTED / / , 50 - ? REGION y e / g q / 7 w / O = 40 5 /-. e - 7 / 202,35.5 y an 4 -. / - - 86, 36 .- y e .o 5 / / .n E f sg - / - yf PERMISSIBLE E / - y ,,;g / toj 7 g Y ; <y i mmm ... + mm.."m.... m m an mi m'n.janm 'm im mom mom nn mom nn im monum m: mnnom mnm em m nn an rm mnm mom mom em morum.m m >m mi un c-9 ~mp.,3. 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 180 170 180 190 200 210 220 230 240 250 260 270 280 290 300 indicated Rod index, % Withdrawn Source Doc. B&W 86122324600 Referred to by Tech Spec 3.5.2.5.b and 3.5.2.4.e.2 ~
Figuro 2 (Pag] 3 of 3) Error Adjusted Flod Insertion Limits 400 +/-10 EFPD to EOC 3 Pump Operation E IIIII llll 80 - . 215.8, n ago, n j O _I D L 263.3,77 o 70 - / NOT j f-257.87 u ~ ALLOWED e y e9 _- REGION _/ _ / o s G. __E / / 242,58 Q 50 E / / 7 / RESTRICTED / S .i REG lON ? l y 4n.? _ l ._] O 118,38 / / E ] f e 202,35.s ,y Q g _E / _ ; X 2 E / a_ 7 mmg PERMISSIBLE 51 / E REGION $3 10 4
==a _f. _.__.,.,,,__erTTT S!$*_ n-n ff. 3 3,,,, ,,,,,m ,,o l 7 ,mnnnc ,,,,,,,,,,,,,,e nn wwmr nnanna nn an an nnunimnnime nn on w e w ime e eme awwemom m: mew w *e =un ee 0 O 10 20 30 40 50 80 70 80 90 100110120130140150180170180190 200 210 220 230 240 250 260 2TO 280 290 300 ~ " *
- c Indicated Rod index, % Withdrawn Source Doc. Baw 88-1223246 00 i
i Referred to by Tech Spec 3.5.2.5.b and 3.5.2.4.e.2 t - ~ -.
9 Figuro 3 (Paga 1 cf 3) Error Adjusted Rod Insertion Limits 0 to 75 +0/-10 EFPD t 2 Pump Operation ,_,7,,. 83.5,52 270.3, 52 n. j 7- ./ m o 50 f NOT / q ALLOWED -I g-REGION / / 257,44 40 - /.- / E / RESTRICTED / 242,3e E / 30 j O 5 / g l - j ] go.-[ / 202,23.... - 35,24 y y .- c ~ / / PERMISSIBLE - o 10 - / ,- 2 REGION M' o g 1 -.L 8,0.5 - A / w 0 ,,,,m ,m ,,,, e emminn nn atm annnue im nnnnnnenmun nnae im un wm mionnn mimumeunmumrm mum
- mmnr mi 0
- nnn, 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 290 290 300 Indicated Rod index, % Withdrawn source poc9 saw es.12:324s-00 Referred to by Tech Spec 3.5.2.5.b and 3.5.2.4.e.2 9
Figura 3 (Pcg3 2 cf 3) Error Adjusted Flod insertion Limits 75 +0/-10 to 400 +/-10 EFPD E 2 Pump Operation I a I I I I I. I I'I I I~ 300,52 j 7 11s.s,52 2s3.7, 52 o o 50 l NOT I ALLOWED REGION / / 2s7,44 q 40l .) o / e RESTRICTED / 242,38 n. j j REGION ~ 7 ~ ~ ] r / j $ 30 --} - / _/ o i / / p {. 3 20--f - l - p ~ 88,24 / ,13-. yes e_, / T ..l - -c y / j ~ / PERMISSIBLE 10 - y - y / i.4 o ,g e s - a -f 4 ~ ftf.I.u no io, w no w in su ao e nn mi m: a nn nn nn nn im nn rm rm im rm m m..u nu m ,o, nn im mr nn e im nn un rm m nn a rm e e nn w mom *
- x w w e im nn 0
- n..
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 180 170 180 190 200 210 220 230 240 250 260 270 290 290 300 Indicated Rod Index, % Withdrawn sowce Doc. saw as.122324e oO normed to by Tech spec 3.s.2.s.b and 3.s.2.4.e.2
Figuro 3 (Pcga 3 cf 3) Error Adjusted Rod Insertion Limits 400 +/-10 EFPD io EOC t 2 Pump Operation f ~ M 263.7,52 -- --- o O Sof - j / ~ / _~ [ g 40 -~ ALLOWED / / 257,44 ~ REGION ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 7 ~ ~ ~ ~ ~ 'l O / 8 g, / / 242,38 - +_ } / y 3 ~ / RESTRICTED g soi - y ~ 2 j ~ REGION o i / / - - 118,24 /- / 1 202,23
- 20 i 8
j g to -~ / PERMISSIBLE
- o..
/ REGION g,<, j - 3,_- rrM ~ M w-- o ~g2.2r"""""""'"'"""''"""""""'"''""""""""""'"""'""'""'"""'l"'" o y. o to 2o ao 4o so ao 70 so 90 10011o 12013o 1401so too 17o 180190 200 210 220 230 24o 250 260 2TO 290 290 300 Indicated Rod index, % Withdrawn source Doc. saw es.122324seo Referred to by Tech Spec 3.5.2.5.b orid 3.5.2.4.e.2 + w r.,
Figura 4 (Pcg31 of 5) Full incore System rage 29 r 42 Error Adjusted imbalance Limits O to 75 +0/-10 EFPD E l 110 -
- RESTRICTED REGION
~ 110 i 23.0,102 ! i . 17.2,102 ! E 1 f I f 100 100 l 25.1, 92 i 20.2, 92 : i i { t ~ M - t M l [ i I l 1 l I t i l 3 -28.1, 80 g I 22.3, 80 E l i i i g n i l l l 6 i I l ~ 70 Q ~ 70 3 I i j 5 I e I I l w ~ y 5 i l l [ l l l I 5 i k j j 2 i i l 1 l g j 33.3, 50 i 50 O 1 24.6.50 50 g-PERMISSIBLE I 5 i l 1 3 REGION I a j 1 i i g 4 j i o l I i 5 i l l N I i 3 i 30 ~ l l i i l ~ 30 i 1 5 l 8 l l 5 t t y i i I I C i l t j 20 20 6 } l l i l l i e I t I I t 10 10 l ~ C 1 3 33.3, 0 I I l 24.s 0 l E O nn,oop,op4oioopnipnij.iopnip,o o o p nip ni g n o p n,;o o g n o p,o g n n p ni 0 50 40 -35 30 25 20 15 10 -5 0 5 10 15 20 25 30 35 A0 45 60 indicated Axial Power imbalance, %FP Each Dk. = 1% FP Source Doc. B&W 86-1223246 00 Referred to by Tech Spec 3.5.2.7.a and 3.5.2.4.e.3 i
i Figura 4 (Pcg:D 2 ef 5) i " SS Full incore System
- 9* 2o or 42 Error Adjusted imbalance Limits 75 +0/-10 TO 300 +/- 10 EFPD 110 -
RESTRICTED REGION 110 E I j + - 2.9,102 i 1 13.2,102 1 ~ i, 100 V 100 l i E l l -25.0,92 l 18.2. 92 i E + i i M _ M 1 i 1 1 I I i t l l ~ l l i I i 28.0, 80 i 20.3, 80 E 80 I l l l I W l i i II E l i i I .I E l i i l l i 70 ~ ~ j O ~ 70 i i I E t i g. l j i i 1 I' l i C m i i 8 l i M l ~# 1 i i i u l l i t e i j i ,i g I t 3 i 33.2, 501 c 22.6,50 i 50 - E-50 PERMISSIBLE i t u i .e REGION ,i i g i a j g i !l l I I l l [ o l l j i i j i i 'o 1 30 + e 30 l 0 l l E i 4 5 E i c I 20 ~ 20 E i l l } C I 1 } 10 10 3 E -33.2, O l i l 22.6, O g o 0 . u p m p m.p.m p.m p m p.i.m.p... p m..m.p, m p.u g.m p. m mmp,,,p...g.mgm., 50 40 30 25 20 10 5 0 5 10 15 20 25 30 35 40 45 50 indicated AxialPower imhainnca, %FP Each Dhr. = 1% FP Scurce Dot s&W 86-1223248 00 Motorred to by Tech Spec 3.5.2.7.a and 3.5.2.4.e.3
TR 099 Figura 4 (Pcg3 3 cf 5) nev. o PIga 21 of 42 Full incore System Error Adjusted imbalance Limits 300 +/-10 TO 400 +/-10 EFPD 110 - l RESTRICTED REGION 110 E I E l . 22.9,102 e i 14.2,102 ! i I \\. 100 _~ 100 I' l I i i i ~ i I 24.9,92 i 18.2, 92 l 5 i 1 i i i 1 M _ M t j i I i i l i 4 E 28.0, 80 l g i 20.2, 80 3 80 80 i i r 1 t E l II E I i i g i 1 I 70 ) t E z j g t g 0 l l W i i 60 - i ~ 60 E i i i j l E E I 1 i, i l l E W -33.2. 50 22A 50 0 50 o PERMISSIBL.E i 1-50 l l z I i i 'i .e REGION i 3 l 40 e '. E 40 l l l O } i l l l i I l O l i I I T l i E 30 e 30 2 i E. l l l 0 E i i i I I N i i l E E i 20 20 l 1 I i I j 10 : j l t. l i E l E l i 10 ~ E 33.2, 0 22.5,O E O 0. , uipin g u n g a u u piu p u.p uij u o p ui unpu puiju opui unpungung.upio 46 35 -30 25 20 -15 10 -5 0 5 10 15 20 25 30 35 40 45 50 ) Indicated Axial Power imbalance, %FP Each Dk. = 1% FP Sodrce Doc. B&W 86-1223246 00 ReSwred to by Tech Spec 3.5.2.7.a and 3.5.2.4.94 1 i
Figura 4 (Pcg3 4 of 5) "f$ Full Incore System p.g. 22 or o Error Adjusted imbalance Umits 400 +/-10 to 500 +/-10 EFPD 110 - I RESTRICTED REGION 110 E l E 15.1.102 5_ i 4, ,. 22.8.102 1 ~ 100 100 l i i I i l E I i 18.1,92 E 24.9.92 I i i j 90 90 4 t 1 i l l l j i i i e E l 27.9. 80 I n. 20.2.80 E 80 u i E 80 l l l at I l t n f I 5 l l i 70 ~ ~ 70 i f o i g ~ ) I d l l l i uJ 1 l I j 80 1 i i i t w i i l l I Q l l 1 ~ 3 33.1.50 5 22.5.50 E 50 0 -- PERMISSIBLE j 50 Q-1 1 !_ l l l l3 REGION i I j 5_ 1 i e i i. ~' 40 0' 40 [ fl o l l i [ ii i e i j E = i I l E c l 1 i 30 m 30 E l 5 l i o j l l 5 l 8 l E I i E l i E 20 I l l l 20 E i E I 10 ~ I E 3 10 E 3 -33.1 O 22.5,0 3 i 0 'oupuipuip upuijuopuiguujoupio ungoutuupio inipingun;nopui ' O un 50 45 40 30 20 15 -10 5 0 5 10 15 20 25 30 35 40 45 50 Indicated Axial Power imbalance, %FP Each Div. = 1% FP 1 Source Doc. B&W 86-1223246-00 Referred to by Tech Spec 3.5.2.7.a and 3.5.2.4.e.3 t h
TR 099 Figura 4 (Paga 5 ef 5) arv. o Pgga 23 of 42 Full incore Syst:m Error Adjusted imbalance Limits { 500 +/-10 EFPD to EOC 110 - RESTRICTED REGION 110 i i s 5 1 22.a.102 i i l i 18.0,102 1 = 100 100 i i i i j i 5_ 24.8, 92 l l l 18.1, 92 6 5 g l 1 i l' l l l l l 2 i l l i 3 27.9, 80 i l i 20.2, 80 g 80 i l l l i I } + l I l i I 70 - i Q 70 i I e l i g I I i w l i i i g g 5 l l i i l l l l E s j '..33.1, 50 l 22.5, 50 k 50 50 & -- PERMISSIBLE t g M l
- i I
5 REGION j g l i m "C t I l t a i i g e g g l I l 0 I i 9, { i 4 i l l l l I l 8 l 30 i I i I i y O ~ e 30 5 l i l I a i I l l l 2 l E 1 E i l i E 20 i i i i ~ 20 E E t 10 c ~_ 10 i i a i e 3 -33.1. 0 l 22.5,O E o 0 o o p.o p o.p,o..opo po.go.g.op m.o..;m..p.opo.p.o o..po.go,p...g.oi 45 40 4 5 -30 25 15 -10 5 0 5 10 15 20 25 30 35 40 45 50 indicated Axlal Power imbalance, %FP Each DN. = 1% FP Source Doc. a&W 85-122324800 Referred to try Tech Spec 3.5.2.7.a and 3.5.2.4.e.3 L.-
Figura 5 (Pcg31 cf 5) E" "S " ' ' Out-of-Core Detector System Error Adjusted imbalance Limits O to 75 +0/-10 EFPD I ! RESTRICTED REGION 110 110 E i E 16.8,102 11.2,1GE. ~ 100 I i '\\ 100 h.! !l l\\l l h i i 19.0,92 ! ' i I i 14.3, 92 l I \\ I i! 90 90 5ii.I / i i l l kIiiI 5 80 80 d l I i 1 ~ l 4 i I si I 70 70 hl l I i l h ll h w I I i g _g il II l/ i i !. 1II II !'i ' 'fl l l 3: l l l l 19.4,50 l I 1 i 27.8, 50 i 50 50 i i i I I i i l l i l l l l i i l l l li; j l l l I I i E I I 2 = 40 40 l l l l l l l [ [ l O l$ IIi l IIIi E 30 III I II E e 30 i I!I I! ! I5 III IIIIIiE ~l Ii! Ii'I1 l l l l l E i 20 ~ ~ 20 l 3 i ll I I!t Ii liII I E l PERMISSIBLE I I l l l E 10 10 h l l REGION hl -27.s,0 l i l l l l 19.4,0 l l l E O 0 .io p.oino p.op o oop.o p o.p o pio oopo.po.po. oop.opo.poqom, .o 45 35 26 15 10 5 0 5 10 15 20 25 30 35 40 45 50 Indicated Axlal Power imbalance, %FP Each DN. = 1% FP Source Doc a&W 86122324600 Referred to by Tech Spec 3.5.2.7 and 3.5.2.4.e.3
TR 099 Figura 5 (Pcg3 2 cf 5) aw. o pzga 25 of 42 Out-of-Core Detector System Error Adjusted imbalance Limits 75 +0/-10 to 300 +/-10 EFPD I RESTRICTED REGION 110 110 1 i -16.7,1 M 7.5,102 \\! i 100 I 100 I i l 15.9, 92 / l l\\ l 12.4,92 l I i / i i l l \\l l I E i i i i
- 22.1,s0 /l l
t l j \\1 14.7.s0 E, E '/! E i 11 g 2 5 l 2 70 70 / i i i Ii i i Iiii i w E I, I /. i i l II III I,E i i I,I/ i I Ig i II I lI'i
- 27.7. 50; / l Ip l
l d5.iO I I i aiI i I Ii! I o. l II Ii! I t E g l i l I i j l CC I l I I I I i 2 I l 2 40 e !'i l I o l i i } l E i i i l I I I lIi i l I i E 30 e 30 !l l l l l l l l N III Il l l 5 i ! I.! !II] Il l l l l i i i ! l!l ll !Ii llI i I!'E 3 i lii lIi PERMISSIBLa lI i I Ii E ~ 1c 10 !l l l l REGION l l l l l 5 i 3 l 27.7, 0 l l l l l l 17.5,0 l l E 0 0,
- o p.o p o.p.o p...p o p.o p o pio p o, oopo.po,p.o oopo,p.op.opoquo 45 35 25 -20 15 5 0 5 10 15 20 25 30 35 40 45 50 indicated Axial Power imbalance, %FP Each Div. = 1% FP source poc. saw e5-1223245 00 Referred to by Tech Spec 3.5.2.7 end 3.5.2.4.e.3
TR 099 j Figura 5 (Pcg3 3 cf 5) aw o i Pcg3 26 of 42 i Out-of-Core Detector System Error Adjusted imbalance Limits 300 +/-10 to 400 +/-10 EFPD l l 110 : RESTRICTED REGION 110 E l l -16.7,1iu 8.4,102 i E I / \\I E 100 100 f' l l f h4 i I is.s, sa j.
- i
- 12.4, e2 y :
I /' i ill i 1 g f ! l\\l l i I b i i t ) I k I 80 80 i 4 g l 11 70 I, l I I i O 70 i f l l l l E i i l / i i E l 5 I w 60 - ~ l l l b I 60 l l w 50 50 5 i i I i_ lli llIiii I 8, m i e e. 3 l l l l 0 l l i l I l E i t 30 l l I l l I ! !] l l I' l l l l I 30 i I i l l l l !3 l l l l l l 5 I 5 i l i l l i i i l l 1 e 5 i I go 3, EI II I Ii!i l l I I! 5 lIII II lI I i l I: E i 10 PERMISSIBLE 10 !l l l l l REGION l l l 5 e 3 l -27.7. ') l l l l l l l 17.5,0 l l l E o 0- ,o,p.o p.o p.o p.op o,p o p.o p o p o, oop,mioop.op op.op.op oq uoo o 45 40 30 25 20 15 10 -5 0 5 10 15 20 25 30 35 40 45 50 Indicated Axial Power imbalance, %FP Each Dhr. = 1% FP { Source Doc. B&W 86-1223246 00 Meterred to try Tech Spec 3.5.2.7. and 3.5.2.4.e.3 l
TR 099 R2v. O Figura 5 (Pcg3 4 Cf 5) riga 27 or 42 Out-of-Core Detector System Error Adjusted imbalance Limits 400 +/-10 to 500 +/-10 EFPD I RESTRICTED REGloN 110 110 5 l E ~ 16.6,102 j 9.3, 102 i ~ \\ 2 100 : I 100 i l l -18.8, 92 i I l \\ 12.4, 92 I/. i i ,/ i I i \\1ii: i 4 i E l 1 /, \\1 -22.0,.0 14... 0 i i i e i i l 5 i i 'I! t c 5 I n 70 70 P = j 4 I l if i i I i x r w i / 5 l l l i j E i i i i/l l .1Il l IIl E 227.7, s0 / l l (, I i i 17.5 s0 lI { 3, l v. i! i l l l i l E E 3 i j i 1 I I 40 E I 2 I I 40 i g j i i i l l i I I i i i i I l l l l l l l E I t so l 1 I l 8 l l l l l l l i E m 30 E i 1 I i i 5 i l l U = l l A 20 20 I i l l i i I! !l l 1 i E l l l { il i l l I E l i 10
- PERMISSIBLE '
10 5l l l l l REGION l l l l l l 5 5l 27.7 O l i l j' l l l 17.5,O l l l [ 0-- 0 i n j un jun pn.j u ng o,j u u..uip nip.o ini;o u pio;o n inijoogunp.njon,uo 48 35 30 25 15 10 -5 0' 5 10' 15' 2tr 25' 30 35 40 45 50 indicated Axial Power imbalance, %FP Each Dk. = 1% FP j Source Doc. B&W 88-1223246 00 Referred to by Tech Spec 3.5.2.7 and 3.5.2.4.e.3
TR 099 Figura 5 (Pcga 5 cf 5) "Ei h a 42 Out-of-Core Detector System Error Adjusted imbalance Limits 500 +/-10 EFPD to EOC l i 11o : ! RESTRICTED REGloN I 110 I 18.s,1Gs i io.2.102i 5 I I 100 100 h l l l I i r 18.8, 92 l 12.4,92 l I 90 90 r '\\l-l l i f E i i E i j r22.,80 f l 14.8,80 [ i So I i l ! Il d l / 2 H 7g l l l l l' l I t i I o 70 h f I i l l l l h g _ i liil'i' i !' Iiiii: E_ e i g I!!/l-l l I! l! i m8 50 50 i i l I l i l i 1I! IIII Iii s l. : l l j l 1 I l g i l l l = I i1 g g 5} !I l o l l !l l [ l i 30 l I l l l t '3 l l l l l 1 l 3 30 E l I 3 Il t I i l l E i i i 3 l E i I l i 1 l l U 20 20 l l l l 10 l l l l l l il l l l l IiE 2 PERMISSIBL8 10 l REGION l l l l -l E 27.7, 0 l l l l l l l 17.5,0 l l l c ~l 0 oupo.p.opo.p.o o o p o.p.o p.o p.o,,o p o y o o p.o o o p o.g o.p.o p o.g o," o 45 35 25 20 10 5 0 5 10 15 20 25 30 35 40 45 50 indicated Axial Power imbalance, %FP Each Div. = 1% FP Source Doc. a&W 861223248 00 Rotorred to by Tech Spec 3.5.2.7 and 3.5.2.4.eJ
.TR 099 Figure 6 (Paga 1 of 5) an o Paga 29 of 42 Minimum incore System Error Adjusted imbalance Limits 0 to 75 +0/-10 EFPD 110 : I RESTRICTED REGION 110 5 ~ E 14.7,10z i 9.6,102 ; g 100 i i f 100 l l l l h h' I . 16.7.92 !i ! l l 12.5.92 I I I I I '1 i i 90 90 i i i/ l i i l i\\ l I ii i E l[ h14.6.80 5ii 19.7. 80 [, j i g i i gg giii,.j g g 4 i 11 b I I 70 70 E i i i i i/l l l j i ll l l l l E so - II i i Illl. l l l l l l l lE 3 e0 3 i ! fI l l l l l l E 1 y -219. O l l 17b,50 l l 50 50 3 l l i I iiiV l l l l E e l t to l l I' C 40 40 3 t i i o l l l l l l I E g 30 I l I l l l l t l l l l l l l l l E 3 i e 30 5!Il l l l .h l l l l l l l l i 3 i i: 'iI3 III II I 'i 20 ~ E 20 !l !l l !'l l l l l!l l E 10 - I Iil I I I II IIE 3 PERMISSIBLE 10 !l l l l REGION l l !l l 24.9,0 l l l l 17.3.0 l l h 0 0 o o p.o p.o p.o p o, oopo.go.go.p.o o opio p o.. o o p o,p o.p.o p o yo o p o j 50 -45 40 30 20 15 5 0 5 10 15 20 25 30 35 40 45 50 Indicated Axial Power Imbalance, %FP Each Div. = 1W ] Source Doc. B&W 861223246 00 Referred to by Tecn Spec 3.5.2.7 and 3.5.2.4.e.3
TR 099 j Figuro 6 (Page 2 of 5) nav. 0 Piga 30 of 42 Minimum incore System Error Adjusted imbalance Limits 75 +0/-10 to 300 +/-10 EFPD 2 RESTRICTED REGION 110 110 1 14.7.102 6.3.102. 1 10C f \\ f 2 100 5 / \\1 i
- 16.7.92 /.
\\ 10.8. 92, i l /l I i go go if l i l lk! 5'i i i 5 l[, i k l 12.9.80 i j 5l 19.7. 80 5, g i go '/ j l i i at l g u I N I I 70 70 l ! fl i j l i l i 5I i i !t i 5 w 5 l l I l !l i I l l l l l I l 3 go go 5! I I l hI I l l l !I l 5 h I !I 5 5l l h4.9. 50 Y! I I 15.7.50 3o g 1 i I i i l l l' I l i i i i! V s l j j l l l i l l m 40 - i 6 CC 40 3 i o l i E ~ l l .~ 30 - I l l u l l l l l l = ~ c) 30 ~ Ul l l l l i.) l l l l l i l l !5 20 - l l i l 1 E l l 1 l l I i iE 3 ~ ~ 20 i l l l !l l l l ll l l ll 5 l 3 l 10 l l l l l l l l l l l l l E ~ PERMISSIBLE 10 !l l l l } REGION l l l l l 5 E -24.9.O l l l l 15.7,O E 0 O m o pim. m m p,m p m, m m e m p.m p.mp,;, m o p m p o,p m.p m,p.m p m.p m.p m p,m 45 35 25 15 10 5 0 5 10 15 20 25 30 35 40 45 50 Indicated Axial Power imbalance, %FP Each Div. = 1% FP Source Doc. B&W 861223246-00 Referred to by Tech Spec 3.5.2.7 and 3.5.2.4.e.3
gw yQ8 m gmOU U 0 mv g$ o ( $w
- g. GC3 58,m fgmg g,=1o, yQgmO3om oS [
Qoo 4ZO o A@ +$o mmyO t g t i m$ g $9gz a e v i .4 $ g5"8. t e r m d g t 8, , Oa 8 h i 8 op m e r t i _~ t i t 8 .gQ =o q t P g t i F 8 s w r i t 1 i = 1 8 h i v. 1 1 D 8 1 s_ h i t c i a r E ~_ i I 8 8, r T c ._ e . ; wO i t t r a w _u s t 8 g5g i o 8 r P 3 d 1 1 e t e R a t t i l e f o t i t 1 t 8 T d e T I 8 t a I T T ic I d n n i I 8 ~. f 8 l i T I 1 T T gr5y N i 6 ,ggz 6 1' t u T TT n, - _ g5o ~ T T go T i o T -[j: j kE ::_ j ~. :i: q j- ~ j _ j i_ g h g g *g.N.g b g.* o mg ,* g g g g g g 8 1g
- .N h 1 gO oRg gE mye 3 58,g T
~ r 1v0c " a mD:eE g g* x#gk g< gng]
- M g
- . u
RS eo fe u r 1 1 r 2 3 4 3 r c 1 8 g 0 1 ee 0 0 0 0 0 0 o 0 0 0 d D to o c 5 5 5 -E ~ - !0: _ ~ : - E E-i -E _ E 2: E_ i E i E-EI:- E-0. D y B o T& 4 e 5 p l l l l i cW o h8 4 S 6 0 i l l l l l i i I I i 'c u p 1 o c2 5 i 4 l l l 'l, l 2 R e2 3 2 3 3 4 E o S o.9 . 2 -3 p 0 l l l 1 5 i T E 5 4 I 6 n0 R 4r 0 1 2 d .o 7 I 0r 70 i 2 ,I 4t i 8 '7 1 T 0r M 6 C o 0 c5 o / / / 0 a-o fl 4 E a t e n e2 p l l 1 i I l !i / iF d f -2 .7 0 / i D +Ani d / 1 5 A1 p j i I 0 R / dig f 3 / jmu 2 E 1 5 u x u RP G r 2 4 a1 i EE I 0s u e i - tem6 e GR i i i I I O t 0 p l l N o P-o I M i E.5 di OI . i 3 Cu$oCag1g3 wNc g u
- w.
5 i n (P o5 p l NS J w .o S r BI l j li !l 0mc a e0 p l 0 o o br g I L m5 p l E l l l i l l .I l I, i + aee / laS4 b o \\ a1. \\ 1 ny o al 0 p l l l l ~I i I l. i )( 8 l \\ n1. !1 .0 0cs \\ l f et 1 E e5 c5 p l l l l 'l ' i 'I l lj 1 i i i 1 0 e o 0 2 p I l l l l l 1 l l l i I, 2 i l 8 i FLm) 1 2. i Pm %0. 5 5 2 Di 1 1 8 F2 o P5 p i l 'I l 'l l I, i l l l l, 8 i l s t .7' 0 0 5 o 30 p l i l l l i, i l l 0 I l l o E 3 l l l l l l l l li i 5 p a PnT c o l l. I I i i l. .l i ' i aeR h 4 l l l 0 p D gv e.0 .vi o l 3o9 45, l l 9 = o 2 o 1 5 %0 i[ E ~E 5 5 ~E - E E-E -E E E-i E E i o f F 7 8 1 1 4 P 0 1 2 3 4 0 0 g 0 1 2 0 0 0 0 0 0 jli1l11 lI !1)l 1 l,
Figura 6 (Pag 3 5 sf 5) " SS Minimum incore System Prga 33 of 42 Error Adjusted imbalance Limits 500 +/-10 EFPD to EOC i RESTRICTED REGIONI l 110 : 110 I 14.7,102 l 8.8.102 i 100 2 i! 1 100 / I \\ -16.7,s2 10.8,s2 -1 I I l i g g 5 l l l \\ [ i i i 5 1s.7,80 I/ g \\;12.s.s0 5 i l i f i 3; W 2 70 6 l 2 70 l 2 [I l I 60 fi' l l E I I I i l ~ 60 ~ !/ ' l l 5 3 u. 5 i I 24.s,5te l i i j l l !15.7, 50 i 5 3, 3, i i i i i i I } l l l l I l 1 E j 40 I I I 2 I E 40 I O } I I E i ~ l ~ ~ 30 i i i i e l 30 2 E l l l l I' l I 1, i u I I 8 g i 20 E 20 l i !l l l l ll l I h 3 I l l l l l l l l l I I E l 10 10 PERMISSIBI 8: 3 l l l l l REGION l l l l l l l l 5 l 3 l l -24.s,0 i l i j l 15.7,0 l l g 0 0 .o,po.p o p o po, o u p.o p o g o.,o o o o p o p,u p o,p op o,p.o p m,p o,p o,, 50 40 35 30 20 15 10 5 0 5 10 15 20 25 30 35 40 45 50 indicated Axial Power imbalance, %FP Each Dhr. = 1% FP Source Doc. B&W 86-1223246 00 Rotorred to by Tech Spec 3.5.2.7 and 3.5.2.4.e.3
4. FIGURE 7 (Page 1 of 2) LOCA Limited Maximum Allowable Linear Heat Rate Mark B8 Fuel 19 2R (32.000. 18.0) 18 4R ^ 17 ~1 f1 6 ft ^ o 16 ITL U Si g a x to a 15 h 4 14 2200 pe e. 13 12 (60.000. 11.6) l I i i l I ,o m g 11 0 10,000 20,000 30,000 40,000 50,000 60,000 j,i, Bumup, mwd /mtU Source Soc. BAW 2187, BWNT Doc. No. 51-1234870-00 o Referred to by Tech Spec 3.52.8 m <+
FIGURE 7 (Page 2 of 2) LOCA Limited Maximum Allowable Linear Heat Rate Mark B9 Fuel 19 2a (39,000, 18.0) 18 's 4a a 17 0 0 0 $q. 6y u u 16 g = = 15 10 n E o I " 14 2200 psia 13 (57,000, 12.6) t 12 I I I I I I 33 O 10,000 20,000 30,000 40,000 50,000 60,000 $$0 Bumup, mwd /mtU $L$ Source Soc. BAW 2187, BWNT Doc. No. 51-1234870@ o* Referred to by Tech Spec 3.52.8 u
.,8 TR 099 l -R2v 0 PIga 36 of 42 FIGURE 8 i AXIAL P'OWER IMBALANCE PROTECTIVE LIMITS Thermal Power Level, % - 120 43A.112.0 1 37A.112.0 I ACCEPTABLE 4 PUMP OPERATION + 100 -434 asA .21 37.s. sea C ~ C / ACCEPTABLE 3 AND 4 PUMP i OPERATION 80 8 se3. so.4 534. so.4 t 43.s. sah 3) 374. s2.o g ACCEPTABLE A W .ss3. s7A 2,3 AND 4 PUMP ss.0. 57.a OPERATION -- 40 e e 583.30.4 53.0.30 4 -- 20 1 1 I I I I I I I I I 1 -80 -70 -60 -50 -40 30 -20 -10 0 to 20 30 40 50 60 70 80 Axial Power imbalance, % EXPECTED MINIMUM CURVE REACTOR COOLANT FLOW (Ib/hr) 1 139.8 x 10E+6 2 104.5 x 10E+6 3 68.8 x 10E+6 Source Doc. T.S. Figure 2.12 b
TR 099 Riv. O PIga 37 of 42 FIGURE 9 PROTECTION SYSTEM MAXIMUM ALLOWABLE SETPOINTS-FOR AXIAL POWER IMBALANCE Thermal Power Level, % - 120 30.0.108.0 24.S.106.0 i ACCEPTABLE i [4 PUMP ! OPERATION i m1 = 1.900 m2 = 1.854 30.0.80.6 24.5.80.6 80 . ACCEPTABLE i 3 AND 4 PUMP i 50.0.70 0 ' OPERATION 45.0.70.0 so 30.0.53.1 24.5. 53.1 l ACCEPTABLE i !2,3 AND 4 PUMP 50.0.42.6 iOPERATION 45.0,42.6 40 l l l i 20 -50.0,15.1 45.0.15.1 o o-im o ? bi i$ n u:
- n n
E E! !B E I i I i i I I I I I I i -80 -70 60 50 -40 -30 -20 10 0 10 20 30 40 50 60 70 80 Axial Power imbalance, % Source Doc. T.S. Figure 2.3-2
e TR 099 R.ev. O Page 38 of 42 l l l l l I Operating Limits Not Required by Technical Specifications I i l \\ l l l
o TR 099 Rev. O Page 39 of 42. I 1. Core Minimum DNBR Operating Limit (
Reference:
BAW-2187) The core minimum DNBR value as measured with the NAS Thermal Hydraulic Package (Display 1 or 4) should not be less than 2.02 (102% ICDNBR). 2. Maximum Allowable Local Linear Heat Rate Limits (
Reference:
TS 2.1 Bases) The maximum allowable local linear heat rate limit is the minimum LHR that will cause centerline fuel melt in the rod. This limit is the basis for the imbalance portions of the Axial Power Imbalance Protective Limits and Setpoints in Figures 8 and 9 of the COLR, respectively. 'The limit is fuel design-specific; the value for the most limiting fuel design in the current core is used for monitoring as given below: e BWFC Mark B8/B8V LHR to melt " 20.5 kw/ft ) i
a TR 099 Rev. O Page 40 of 42 DNBR-Related Bases Descriptions t l l L-
e TR 099 Rev. O Page 41 of 42 l.- . Power-to-Flow Trip Setpoint
Reference:
TS 23.1, Table 23-1 and 23.1 Bases The nuclear overpower trip setpoint based on RCS flow (power / flow or flux / flow trip) for the current cycle is 1.08. This setpoint applies to four, three-and two-pump operation as described in TS Table 23-1 and Figure 9 of the COLR. 4 The power / flow trip, in combination with the axial power imbalance trip, provides steady-state DNB protection for the Axial Power Imbalance Protective Limit (Figure 8). A reactor trip is initiated when the core power, axial power peaking and reactor coolant flow conditions indicate an approach to the DNBR limit. The power / flow trip also provides transient protection for loss of reactor coolant flow events, such as loss of one RC pump from a four RC pump operating condition. Power level and reactor flow rate combinations for four,' three-and two-pump operating conditions are as follows: 1. Trip would occur when four reactor coolant pumps are -operating if power level is 108 percent and flow rate is 100 percent, or power level is 100 percent and flow rate is 92.5 percent. 2. Trip would occur when three reactor coolant pumps are operating if power level is 80.6 percent and flow rate is 74.7 percent or power level is 75 percent and flow rate is 69.4 percent. 3. Trip would occur when one reactor coolant pump is operating in each loop (total of two pumps operating) if power level is 53.1 percent and flow rate is 49.2 percent or power level is 49 percent and flow rate is 453 percent. The power level trip and associated reactor power / axial power-imbalance boundaries are reduced by the power-to-flow ratio as a percent (1.08 percent) for each one percent flow reduction.
~ TR 099 3 Rev. 0 1 Page 42 of 42
- 2. Design Nuclear Power Peaking Factors
(
Reference:
TS 2.1 Bases) The design nuclear power peaking factors given below define the reference design peaking condition in the core for operation at the maximum overpower. These peaking factors serve as the basis for the pressure / temperature core protection safety limits and the power-to-flow limit that prevent cladding failure due to DNB overheating. Nuclear Enthalpy Rise Hot Channel Factor (Radial-Local Peaking Factor), F"3, F",, = 1.71 Axial Flux Shape Peaking Factor, F"2 F", = 1.65 (cosine) Total Nuclear Power Peaking Factor, F", F", = F",, x F"2 F", = 2.82 .}}