ML20085M463
ML20085M463 | |
Person / Time | |
---|---|
Site: | Braidwood |
Issue date: | 02/01/1977 |
From: | COMMONWEALTH EDISON CO. |
To: | |
References | |
RTR-NUREG-1437 AR, NUDOCS 9111110025 | |
Download: ML20085M463 (213) | |
Text
{{#Wiki_filter:e
- 1
')
- y
.i 1 }
O t 4 i 4
,-O F
P. Y ai
-. 3 L
s O 9111110025 770201 PDR NUREG 1437 C PDH
,y Whky My Qln ~W&D QFl 2 &%nk? % '
I) h h'y kUhhf5 M M- Sp $hh 3
'l%udvd@[wpe%cu%p 4N@k Ji %gk %,%g y. .
x%:[w w e% i
.n , .
wqn g c 3 &- . ;w, 9+ - , Q . %r d q q;g e j y y s u,:
~
gM liq 4~- 23 m)u3~% w< na d. v _:' a&e :~x gb
.aan%g%fp$p yQ' w *1~ e i
3, m' Q qpp jij zg w[ i (;,rb $w , yh @wg w
- 9/- f ,
)g in E$M 8 6 y mg -q% W e ' ,. kwk _;@ky% @g kMk % V4hhh(';6tf A@AL bid W * *yyjQfw f 9 ppm; ' 'QQs O:. ,
r
+
9 54;aiQ L f:f@ R. i
'k b k 1 P+ &g;,
s-8];,yf FS s wN.VL : t
.i. A l sm : 5J -%PA d.
- l ?%
Ih hkf? , -
) $ , '" $ h h h
(, #^
^% } i: Q iQg; fpM MQ% -h fyi W ?
hj$$$4s$4%pg % O b Mgn%m d @ wdn g$M W W4 $g%h5%p N h dh?sfd@k$W%g&g is%M9EP 4Wpkg4C3gWnm:AW?W s m $ ww N .h & m $t hhhhhhha%Q$ $p$p% am(w%. u$lN$$ WMMdTf
- f. ~Jd[, ng%&yl&e)$~gW+@y?as 7
~1 M. wi i }gMgff AL '
j. 3 df4
%g ug 7 : ga y m a%p;.70 U <
g~"q. $zu hjgghT$ 5%Q % M % # d kf 4 } M W % # f%%% . s%1;,kJW6(4' mp]RQW yyh h?hi :, $t&gm .n Qp&c)fQ[gy;X ' h.Agg ff h g rmy . y &qy? ~ l c y ;y.- w A Wgf,La A A wyg
;pgxl mg V gA L S . W;4 yp $ yas: @ %;g ~A q g;^fsyh p y- - s "a :s }9 4
3 s.se 7 e A nwg wg pg 44m +, j <y wg p
)M_ %$4Ah4 $$hY k;$ .I kY I$
u A s ? -Mf M i' ,$ggp 4 x DC- id,i*8SM wc,MPw 4A n % ' /bf fi jy;g&p e 4 n 4 mMr - U, 4 @kNNkdhd N [ I[ h. N'
&ggv@$Q w tW pna& ?! Ma 80 & $'2%'* R #_s n %-W P ' n l[%,Id[me " [%" ' > bj&q/1 Ney e, p Qy%y p,
wg g "p'a& ,y i vdp +WW c pg
.j%M i - WP: ' " ' ;g (
4 3fgp '
- s W' , ww?. 4 A
m
- t ty-}q g %w 39_g S ~
;f9ft$ ^ : fQr. . % ~m -
Myg< g ' % fp < q
~ < i., n.
- 911Il20025 770201 wa cywad. 'D
- PDR NUREC '"? ' "-
4
- 1437 C PDR
- i l.
I O 316(b) DEMONSTRATION BRAIDWOOD GENERATING STATION MAKEUP WATER INTAKE SYSTEM , t O Prepared by COMMONWEALTH EDIE0!. PANY CHICAGO, ILLINOIS i FEBRUARY 1, 1977 O
l TABLE OF CONTDJTS O Section Title Page
1.0 INTRODUCTION
1.1 2.0 PLANT INFORMATION 2.1 2.1 Station General Information 2.1 2.2 Cooling Pond Makeup Intake System 2.4 2.2.1 General 2.4 2.2.2 River Screen House 2.7 2.2.3 Makeup Requirements 2.12 2.2.4 Other River Structures 2.13 3.0 GENERAL ECOLOGICAL SETTING 3.1 3.1 Kankakee River Hydrological Setting 3.1 3.2 Water Quality 3.6 33 Biota of the Kankakee River 3 25 9 4.0 FISHERY INFORMATION 4.1 4.1 Description of the Kankakee River and Historical Fish Populations 4.1 4.2 Commercial and Sport Fishing 4.7 4.3 Methods and Materials of the Pre-operational Monitoring Program 4.14 4.3.1 Sampling Stations 4.14 4.3.2 Collection Tecimiques - Adult 4.16 4.3.3 Population Estimates 4.17 4.3.4 Techniques Associated with Select Species 4.18
~
4.35 Fish Eggs and Larvae 4.21 O
~ Seetion Title PJIE3 4.4 Results and Discussion of the Pre-operational Monitoring Program 4.21 O 661 co==uat*v stru=*ur- 4.22 4.4.2 Kankakee River 4.24 4.4.3 Horse Creek 4.32 4.4.4 Population Estimate 4.36 4.4.5 Select Species 4.37 5.0 INTAKE EFFECTS 5.1 5.1 Entrainment 5.1 5.1.1 Method, Analysis and Conclusions 3.1 5.2 Impingement 5.32 ;
6.0 CONCLUSION
S 6.1
7.0 REFERENCES
7.1 s
.O 1
5 Y w 6 A
.O .
1 4 ..mm.ws. , . . .s m -- . , _ - , , . , , . . , _._ur....,,.c , . .'e, ~,._,,, - . . . . . , , . _ . . , , , , ,, _ _ . , , . 5_ m h . , ,_ . . - _ -' . ' , , ,
7 l.0 INTRODUCTION The Braidwood Generating Station is located near Godley, $ Illinois approximately three miles southwest of the Kankakee River. The station will consist of two nuclear powered generating units, each having an 1120 megawatt net capability. Unit 1 is scheduled cn&usG to be in service in 1961 with Unit 2 to be in service one year later. The station has been designed with a cooling pond of 2,640 acres. National Pollutant Discharge Elimination System (NPDES) Permit No. IL 0048321 was issued for the Braidwood Generating Station May 14, 1976. This permit requires Co:nonwealth Edison Company to submit to the U.S. Environmental Protection Agency Regional Administrator and the Illinois Environmental Protection Agency a demonstration predicting the ability of the intake system $ for the cooling pond to meet the requirements of Section 316(b) of the Act. This report is submitted in accordance wie chat require-ment. As required by the NPDES Permit, this report is based on presently available information regarding receiving water hydrology, intake siting and design, proposed intake operation and biological populations. This approach is utilized to allow the Agencies to assess the intake at an early stage.
=
0 1.1
2.0 PLANT INFORMATION ; 2.1 Station General Information The Braidwood site is located in the southwest corner of Will County in north central Illinois (See Figure 2.1). The roughly rectangular site covers approximately six square miles, two miles wide east to west and ~ three miles loag north to south. The community of Godley is adjacent to its northwest corner and its southern border lies along the Will - Kankakee County boundary lines. The Braidwood site is in an area where former farmlands have been displaced by strip coal mining. Elevations of the natural level surface within the site area range from approximately 580 to p 610 feet; plant grade elevation is 601 feet. Mining has significantly G altered the topography over large areas with vertical cuts approach-ing 100 feet. In addition, low mounds have been formed at various localities by refuse dumps from underground coal mining activities. A major feature of the site will be a cooling pond with a surface water of about 2640 acres to be formed by a dike that encompasses most of the boundary of the site (See Figure 2.2). The pond will have a normal pool elevation of 595 feet above mean sea level (ms1). Construction of Braidwood Station was begun in September, 1974 Completion dates for units 1 and 2 have been scheduled for - 2.1
NOTE: LATERAL MEASUREMENTS OF THE .
,/ h I
RIVERS ARE DISTORTED. l g6 ' J0LIET l ig y\.0M p* 9 & NNP . 4 U >- i Ei?E gd e WILMINGTON g 5
- od e ' 6, 9 ,
e BRAIDWOOD g ... r.i 5 % y-~T :PROPGSEDI v AC00 LING! O~ (- hPOND i d
* :l -:S i
(ILLINDIS8 Ei w -.... _ hl g._ t. KANKAKEE COUNTY ( / i N 1/ 0 1 2 3 i ~
*CALE . OF MILES Figure 2.1 Location of Braidwood Station O
2.2
- . . . - . .. . _- ~. - _ - - - . . . .-
O g ,-
/ BLOWDOWN o.M. s 0. R.R. s'r / C= ;- = W = > //" h p
w c c 4- MAKEUP h v h f j) > a
> > > r y j i ,p '
g c^:.:;i;p"s3+8 g;g:.; .: #P's f
. ( . . . , . .
- M88:g8!:: s s:c .
- :MMM <
gg;;; q.
, :e. .....: . :e: ' . 'sMi. %2 +,
- .. ....,... sy8t :2.::: q.:.p9
.,;gg -- ~. . ~ .
l n: g ' :gg*.
- v:*<.s.. , , , , <g;).M8 GOOLEY .. :;8iss:ii13!w *
'l e' .. .y. .s . .s..,, +
s-xg;;gi.gj,<.i:i?
~. - ^q.: ' ".t. - sis!: . .i.:i.k3:*:. -
ck'i. s
$~.!. .t.['s.
- gc.p@ + '
,- ,;gg.:g;.'. 'pa fl{ i- -
c, c. -
; -f ';.;; , ,.g 3 . . _ _, : i:.$4 pg z u.v". . . ..: 8:s+- .<E - .. . A: fi' *R:$ . 4::' ..:.
ae MR 't ; t,y8dh;il?d.8$*!*s. v .d:3Slij: . . . ' ' .:. .:.;5!i ' '
. ,j: A::
5 5$6 9 j?::i [
, %j$, T O P O F DIK E c;/
R ^ :.i<*. ,:,:8j E'is. : .c
- 1.
.b-i .N (f:::"
h.p<.L F
. 6 00* s: - O.0.8:8 .d , ..:.;2 :
ffIrJ"h '
, y%.3 ss . .s.;p:. s.s . ::.. :
- . <s
., q ,,: . . sii .
- .xg!yAv , ss a
.,s: ..:<.xs- ..:.:$.s%y.
x+g:.:e gg r..ygx i jjl . l
./~-- iSi3! n" .Si8 <ss":i35, "'. .. t .n: h@pgi8!j::..!j.!$R:i
- 'd84 ip t <2x e .. ., :
.g :csg. .+!:i: .' .:-::.5p . ,s,. . .s . (.: "" p;t$si:s,,8 s Ei.h . . .'l 8 .]
4%j:5:. li%s Si. I(.0.lE2 i:!$3
- p.[.Ji.:- 4, .
- u...
- e
'"4'}):.: ?54/'ti:!8;.. ...
y ....
~ ' :v'.!..:y;.:.g$4!:,
t0,Oi;; . at .+ ga;;x . ..; ps :e..
'J g.: .x....qi,/ ',:3g!:2:[y. .<g;e:;:gs 3 "w*8 I, s e " S-ie 4 :.w.ss .g. ~<m...,;
- !4.j;. .
- ,xc s 4:.g(.$"j
.. ::2 u.'i>J .,.sii'INI
- g;: . if . fr, .y.gs. '. .:.s.g.- gs . x.:.:. :. :.,
- s::
** ? ;:w.:s:s 8.!p'"Ik+i4 sis.:;.p s;p3<: ". 8
- c. em< s .,
ha POND EL.595' O. l :s.ga " i,sp o .v'iG -. . - p ..ss..
'.v. .c %L j:i. , <
- in s -
's4 2,640 ^yt ss . ::.;3 * .y e. -ACRES. . .3 . . . . < /A>. : "ot<iirg:00gy;:8si V.is' k ...i:s.::= . ,s: , '::!*i: .sss: '. "t.:.
- sy;iiiftf '"Bsi.T.W6s P.,p:):
' .:"j;pp. ' s? 8 c s
- j e agl.:%u:. ., j
.s ..... ss w e 390::A .. s4.. .:: . m'4;6:, c
- A.s+x .f:g.:g
'- s;ge..<;~. .;.si:! l,j}. , i:p p. .. N 1 Ai8s4..";8 sss.m, .s ji@iijgjiWi","ps:..1M... .:. !?jI..
- rgy"z f
p. ap. .s. ss
. , .. = , . . . -
s$i: .... il1!%?rp: ::x:X s ...
,.?? .. .. :iss M>:&,8:*:.. '.
lij' .43:g Ski! 9??: .(:;x. " .,, ...: iss u 3 n.. x :. sq
. :.2.:,.
PROPERTY BOUNDARY o U2 1
.. SCALE OF MILES Figure 2.2 Braidwood Cooling Pond 2.3 P , j ,y . - r,.. - - * ' " " " ^
r 1 October 1991 and October 1982, respectively. The station will usetwo pressuri::ed-water reactor (PWR) units manufactured by g Westinghouse Electric Corporation. Each of the two identical units has a rated net capability of 1120 megawatts electrical (MWe). 2.2 COOLING p0ND MAKEUP INTAKE SYSTEM 2.2.1 General Makeup water for the coeling pond at the Braidwood Station will be necessary for the continuous operation of the station. The takeup water will be withdrawn from the Kankakee River. The quantity of makeup will be dependent upon the following factors:
- 1. Amount of cooling pond blowdown necessary to prevent the total dissolved solids content from increasing to a level that is in excess of that permitted by the State of Illinois effluent requirements.
- 2. Need for balancing water lost and gained through evaporation, seepage, blowdown and rainfall.
It is proposed that the intaka structure be located i approximately 1000 feet below the confluence of Horse Creek with the Kankakee River (Figure 2.3). The proposed location l and orientation of the cooling pond intake system is shown f 1 in Figure 2.4 c
' The intake system consists of a submerged, rip-rapped _
intake flume extending approximately 180 feet from the shore-line out into the Kankakee River. The inlet area vill have g 2.4
y *
*i '\x s.
u! .
,_ .eg 4mme i e me wb ah4. - . . . .**9 '%-~J '* % ~y ; ,.,m ..5 L.. . T. \ ~%. . .:*.? -. - ,, N .'..+.. * * ~ N,r.Q% .......5,. y- '~.*4'.%,
- w...,%g% ,
*: s. %-4.C. a s.s % 4 t.a,= ..
N ~ .-
*gN %, ..
g,._m [ *f
- p ~ -.s. # "-g %,QN ,Q N. '* *d.her e%
Q.N'N.,
'.g -
pg. -.
-'N% sN .
t " a, pa#5'# ~, "~**g .
*"'~. ~'~.~g*g ;c/
g N' Qs
.N '.,.
A , x x. s.-
's' 'N' N ' \ &s n,.p-S &7 5 ~^ . - P- 1 7*,_"_~,.'# ,
s
. af'f *- *%t$.5 . . e,na es 2.) .%
- _ _;g ~.~ i~me . ~ . ..,. < .-
~ ~~~,. , ~. ~
ss
- s. % ,, -~~
- - (. - .- ",,? '?*** / ,p.-. - .~'"" ~*******
M ~ ..z~ s. % . -s. .... --w c-% W #
.__._ Nn%Q % ,, 'ss. r - n. ,. ~ ~ ~ , /.s ., 3 -7s' ..- \ / ; ~ , s / y. z V. ," t '
t.wc .
'g ~( -DN d'.*Q.OMf- .Y \
ue
$ T , *. 0 .' L
_ y' _N e**~s s - j i .' s
- s. . ~ ' ./
e' 2.5
,. . ~ . . ,
1 -_ _ _ _ - - _ _ _ _ - _ - - - - - . _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _. _-_ _ _ _ - _ _ . _ _ _ _ _ _ - - - _ _ - - _ _ _ _ _ _ _ _ _ _ _ _ - _ - _ - _ - - -
/ / .r a'
f' 1 a' e
? 9,,-
s:o /
; ;s ,/ / ,
2 ;m
/ .,x.a; , .'-- - .. ,/ -
p n f**,.s.- . ., .. r..,/,'-, / , - ; / x,s ,'/.
/" , ._.-...~..-....~A,f w , .; w,. . - 3= =:5t+s. w :: =-:-- m . +_ v: w ,;. .., ; ,/ ,, . .. , - :-5e; ,.y;w:.., - - =:= . = . . . - ..s.c . ~ . . . n .
_ ..ct <= ---- -- .-
. \ o. _ . ::e ,. . .- c. =sn.
w
's.-- ~ ~ ~ .. ..- - ~,Ta . ..,;.-.. , p ,. c.- . .n . - cs . 9,f. / ,, - .._ _ .. % ~. .._a ~---- -. . ._ - - y y-m) :r.-==== ~ ~ ~ = m-= 3 : . y:,c ;
- '.f&,./
S1 w .* ,".. " u ..-%-..- s ' ' APERTURE
'y q;i M ;o CARD h \h, \
l'\ t ' Also Available On
\ Aperture Card 11,4 Q QRCE CREE <
i
\ %~
i
\'
FIGURE 2.3 ', , BATil/ METRIC CllART OP ' KANFJdtEE RIVER AT PROPOSED 1 . INT 1.KP. AhD DISCH.\RGE - l1 I
# \\ , \ cogs -ct-
O
~
K A hJ K AKEE yog * % 44s' g<R.tV E tt L,ow w L.556.o' - - -%
** j M MILf 4 "O WILMtNdi g,, g ,/iLM t
6 N
- rWL'!?.(E^ms em c ,'", % .w.,g:l '.' uk .:*
~ r ' ;m e_ [ c h ;.7,'M 4 y.-
J ,' N.
- 4 e *Q .q' y
.th /- Mr-f, !
(
~o SO YYY ,
j ga t w 1 o f Y U ,~' s. k
'w.s E MAKE-UP PIPELINE pro"OSED :RtVE:t SCREEN -
er{ ~ s% , HOUSE "LA SJ
]
t BLo.ccW4 f 'I TP E LIN~m i PROPOSED EL6M"4WN .
- ouTLE r =v w slTUATION OLAN c' 1m' SCALE IN FEET ~
4 O. FIGURE 2.4 2.6 LOCATION OF INTAKE AND BLGICCh'N STRUCTURES 03 KA'.lKAKEE RIVER _ . - _ _. . _ - - _ . ~ . . . _ _ _ _ - _ . _ . .- - _ _ _ _ _ - _ . -
l a 31 foot wide flat bottom bed excavated to an elevation of ! O 53, o feet ==1 ia tre== topias a own to 326.0 feet as1 at the river screen house. Sides adjacent to the rectangular
' bottom will be sloped at 4L:In until the sides intersect the natural contour of the river bottom. The intake fiume will lead to two adjacent bar racks preceding two traveling screens located in the river screen house. River water wiD then flow to compartments in the lower bay area of the screen house.where the enclosed impe11ers of three vertical turbine pumps will be located.
The river intake system was constructed with no pro-visions for river intake deicing. Additionally, there will be no addition of biocides at the river screen house. ( 2.2.2 River Screen House The river screen house is located on the south bank of the Kankakee River approximately 8.8 miles upstream of the Wilmington Gaging Station. Figure ?. 4 presents a plan of the intake and discharge structures. A detailed plan and profile drawing of the screen house is shown in Figure 2.5. Calculations by the architect-engineer indicate that at 4 the normal make-up rate of 107 cubic feet per second (cfs), river intake velocities at the approach inlet near the shore-line will be 0.32 feet per second (fps) at normal water level (el. 538'-0" as1.) and 0.48_ fps at low water level 'e1.
~
534'-0" as1.), i 2.7 :
.. g nt.@.. n:1.q) -'% 0 2 - 81 1 (i) %. . L . n=e . ....... ..
r- i p-. n;C 4-..!
, 9, - - . _ . . .._.__m__ . _ ;d=d _.
1 f "' " !
, l .
x - .
/ .s - ice at g' . i.
m9 , u m . ,,,,
._.. g _ .
7
. . .g . .g . p . ._ p . g.g.. . v.
I o
-l, s tD;';n?* .. j i
l
.'?
y I [<.
; 3 , .. g. _
i - i .- 16' /*, w...e
-9 )i .y .e __
r --- t . .y
) --w + - r h. .r__1 .. __
e
. ( ss o. r, s.c. s s - - - - +-~ -
9
,, . . , h. ,. n ~
b
-. . - - , - . - . _ 1 Nji j b- -- -
C;*;'.?lt.- Ed
~*
u .4 li 1. M,
- nd b em
.w- w l
e _ .a . _- = = = -
.,.,__.u. , ,
L
- m. i.y! - s.-- .. 4 ,.
.__- s ,g.,.gg. -
A,
. > l, _ 'l.
y ,, a . . - - r-
.- r. r ..
1 l u ssi c. v..., ) , c _._.mc_ 29 .. s v-- L "15 .- ----J O @ Q 1 LCEL" i.u sas.N'A' w Pg-t- f t 1- g
-J =>+,.
C.L* *
, . . g e n c ._ s, ~ a , , j i
- a.i e se a.. e. * **w***
i r4_m.u p F , , , , , , , , _ , 5
[.e/d'e U e' ft"' '
sir.a e, {
, , - - ! i p_ s q.= ,pu p_v. thyCi Onq*'*TE ~ip dC m{ "'t *]'Q" ..ou, s , es . n, i -. w . w.. -
i ~ .,i u o,u k 1 R aban R &it E M ts .( 4L a - r l wt1 se SabM'eb
,o c.,
u wt .< -
. = ui .u . 3"i ? *'4'lf." '~" ~ ' ' ' '
I i j
.,,a..- , a, s.
t' $6 5' 1 a ime ;.qil
;j hs\ej 1 b ( N.N E k~'t , ]- . ',J. .c A..J f - -
a....,,.. au e ;_ .
=. - ,. ., ,. < v , 77 _m. ^%;' -*l l gg. *-~ * ,,,,, j* ( _ + -......q wQ i -
a c,auns , -.f v a e. . s.t r a ,
, j . , + % . ~ .. ~
gow wa t i n l
+u a "% . - . .
y, 7g, gl _ _,, .s, . , 7l , ., t t s s' # i y 4 ~.
~~ r 3 L. --
s - j g N } g. g.
~ NgiW."'** "' - * ~ ~* * ~ ~
g**
.r , ,,pp , p4 g # M :9.'. _ . - _A f - MY -
6 D @ @ S . - - a u e rion ~.e _ ; e ; e 1
-- e + i '
t 8 I f.8
n. y ,
, l , V D Y O D Y. * .g . . l'' % C' *_---- _f EC * *W-F . ,
it' W - - q i 3 ! [ wj . g, e.,c,s , . o _ ,, .,_ }Q_w mm.q vu , c; > - .4 A ~ _ m,. t , g w's ,.,;J s t . L ,Jw l e r.) gY($L ( 1 r y /, - ~ ,- w_ i4GN 3 1 g
.6ew ** i C 36 L ' c ca. t fat .o.
a u c s..Os..t.w. as N WL , a., "f < j ,im,7 I; J+i Ij .j
- A h _ y u.,4 ._._m _ a . _ _ _ _ .______.._g u m.. ~._
L - /bh b -4q s c ..m . . .. n . . , {w. w.f.n-e. .(@q ._
%h %p'/ u.]Im ,,. ,Q u ;.+.e._y q 3 j ,
- e. # ..p . . . p ,.
l .d c:a'= '3
! - s l g.,.._.
- h. , I_{o , 4
- c- s _
. _._ ; g
_h: 5 1.E Q e j l - .__) __._. s oe,.w n.n - . 4.-. -- _ _ _r a
.--j i ., -~.~ .m ,
9. v w.5:tw,nh2 -. . -
-T rT /, yf,. j _ _ _ . . . . . . . . . . . ,
s
, e r- u-rc rn-nc,w =E m, ___ _ ..ci unmt. : .* _1 ; ,_ : d4 . _ _ _ . __ _ __ _ . _ _ ___ t g ----3I. ,-4; --.. M, '* ,j iJ ... . w... . . .!
p 3ypg.";* Q
,,......e..~.
rg. 3 1c.E;-
,.. ,s I m .,e,:wp 1 54_L+ 'O '. b M MH s m .u- t { %,c hp p(7 m g ,
3 - n h ni t ?u a
/
4......., u. .. ..y ; * 'c' 4% .- .u~. ,u . . .u., __J ..= 1 -% . u i.u.., u-
- 4(^Ly...or - m . .
xJ ,
- 1 o W 2 4'_. _ bW EF_ _ cm m + D @ @ @ @ _
ynno. - aWc- a,I
- m. .,ggg;
. .,c 3 -
((*~'W" ~ APERTURE _ _rc_. $__.;w @ ~ CARD
' m ., 4 LT ;4N.'J5'j:., ' - ' - ~
i o Also AvaiInble On
- b ===-4 Aperture Card l . . ,.. -. _f 3.*g:r:..
..y }
i
, _L I
8,.......... - s NN _ .._.I-~4 7etdsN.r%.6-"A a Ed[, ,I,- p[^'Th GENERAL ARRANGEMENT
~
E$'hdLi 2 T rkaW'I."2 river SCREEN HOUSE BRAIDWOOD STATION UNIT l 62
""* " * ' COMHONWEALTH EDtSON CO.
CHIC AGO. tL LINOIS 4
. . a . o- . ._.t.ar.'.a . . . ..3aga . . a ** w-* ...=. s." . ... ~~~
a
' -thw- .(f tJ:':;T att .x j)
Mo cr#y In.u.s.u,x+' D ".' _" '- Q*sp - ..
. Gr ; u .iLb. . .w,:aww"'u"_
Figure 2.5
- ..s. hu.ii
- i i . , i i
4"T", t A a- i 6 I i l ., . 130XII _ _. -__ o '\ '\'\ \ '\ QQ t C)_. 1_ _i -
The river screen house will be protected by two bar f^ grilles recessed approximately 50 feet from the shoreline.
-U)
Each bar grille structure (trash rack) is located in front of a traveling screen system to stop large objects such as logs and floating debris from entering the intake system. Envirex Inc. rack rakes, with an effective raking width of 10 feet, will be used to remove debris from the trash rack. A trash cart will be used to remove collected debris for disposal. The screen house will shelter the two traveling screens, three circulating water makeup pumps and support equipment including reserve 1:(1 oil tanks, motor control switchgear and transformers. Depicted in Figure 2.5 is the size of the pump house and the relative arrangement of equipment. (- The intake structure operating floor will be located at elevation 557 feet ms1. The floor elevation of the intake channel will be 526 feet m 1, which is below the elevations for the mean annual river flow of 538 feet asi and the one
'ay lov flow of 534 feet es1.
Double entry, single exit vertical traveling snreens manufactured by the FMC Corporation have been selected for installation at the Braidwood S tation screen house (Figure. 2.6). The unit is turned so that the approach flow is parallel to 2 the faces of the screen. Water enters through both the _ ascending side and the decending side of the screen, there-() fore utilizing both sides for water cleaning. For a given , 1 2.9 :
y Dreveng gte' Guidt
.. , e. .S.P.f0det temon.at,wstatte so.v.iu.<,,s . e. .. o.
eg y '= ag sa.oz D. et
.m, D...ev.oie .',e.a e . .,,, e o . .e .
- L., ' ~g,d.dA,. 4 WPy4*
;", f,.';" **'
e *
?e ,-k " Q d , a f ' .
r
,- b. $ p.ner , . .**r*; W e W,J :w.
1
.. - 3' *l. j$'s f*/ ., I'd $ ~: 4 .1 g ,,,g,,m, H-r a p"....-..-.m........
t- 3ay.,.'pr. *? r,r/; <.3 - 4
, iM;.3 es ce <*eaae's & , Q@;;vW'e' V
l$. . f. C'.
\ **
- 6 *
- n D 5'." *ft ,
'* g-Dr 4r [ pi%j'*,'. ' *6if os 90' Ch8'"
Non.c.ot.o.d.ible m.', .. v u.. lj- s@=- ! -. . y %. #ya 'N';
*Y ['*l f. 'w'a,. C.
[4'N fY,tf 9 ** '*** I
~ '
i; G-M,M-d***Y.h.D Jf 1, r. * *y " *
- y. ,
- h,'i+ ,o e s .3" v-p * .
.. ,.t*F a g .j. o* . .,Q j t" y - , ,, d'?
(,, d Mi' ..' $2.*/ [q .,** {., V'i t,..C. Z'T' 4 L v %..<, \.y.t** M'ft .. /.s .* f 4 m-h*- , . .-:. m, :,P + -* v
- L t,,
$cteen tiedet sto locatieg h't;2.&* //.
Tf:
* *J d an' M . . . ' ?" 4.,a2D ,Q % ,]'%y[.Q f i # 3'44 N C,e.c ormt'.6le mem0ers M, O 'i - . ,j .' , tsfee9 0e**:n V a'tB de*# booe s ;;" c .se . . . c.an. . ** m.m, .::.:.sk ,, , > - t. . *' sn*"e "c'* .,I ,.' ,q,{#
bodily #f
,. fg+[e ;b [ , a ; #,7yyA.o,.
g . . .c e c%- .;piO (,.-f - e P. m.
.S g c+9 $' .. ... g?: %m.ce.*n. hG " y.&...Q'&i, .1 w. . . . ., n pm e, c.f,2;3M...y1 .;-r r , w- --
a,, ,.y u (
...- 4 -. q 3 42, 7; .,
a,,.3: x,;y,s; s . n..; . 3..'$ . ..+.,t
- b. m - ';. gd::,,u. , ,. 6,'-y e .. 4 ~
. . r . .. .u ,.. . i..,
e W;%:: 6. x v.: %.+ q p; M; .y/ f *J,'?H: .
. . . . . . :,i e ...i. . .. ,wn.. ,.
y m .; f i 77y . ==m- E , j
%.m....,i. ~.m
- p. p 4y
.c'r g y .%m.y<.=
f s-
.g 2 4 < sa~.. << ore w**
pai ni.a..
,, t ,,,o,.a . , a ,g:- p g ,, . ,,,,no .... ~ "1 g ! 3," * ~ " $ ~f8 '
i.. . , , ~ h] ; s.. . rJgr,. *. . ou.n.t.i. g. . - n ....%,..- s aie.
- w f
~^ 2:.S K e+]O / ~ O 'u ~ S.'ER .., w a e . . e . .-
w&u.g4 W.
.nw&J .J .ye.e g.p?,*;*'@ Yp.r. eW '
l' $WF~ 32* \
\ .* Q p . ~<-; axg%. '
l h,g.!p '
} M .. q N '
- .vv .: ,.. s-d
_ . 4 . m.-~ .
~ _
D- *'
.n$ 5,T.*' Figure 2.6 - Double Entry, $,",'n " Single Exit Vertical Traveling Screen, g
2.10
't.heoretical mesh velocity, the-screen will have twice the capacity of conventional single entry screens.
T%e 'creens will be installed app;oximately 30 feet behind ic e bar racks and will extend around upper and lower drive pulleyt, spaced at 22'-10 3/4" centers. Mesh size for the screening surface has been specified at 3/8" square openings. The screens will be mounted on O'W x 2'H trays. , Operation of the traveling screens will consist of passing water from the intake bay through the screening trays for removal of suspended and floating debris. When the subme' ged screens become sufficiently clogged with debris, the screens are. rotated through a spray system to remove 3 collected refuse. Spray wash jets capable of delivering ( ) 192 gpm at 60 pounds per square inch (psi) for leaves and general refuse and 229 gpm at 85 psi for refuse clinging to the tray will be used to automatically clean screen , surfaces. All accumulated refuse will be disposed of off site., The drive arrangement has the capability of r. tarting the traveling screens with a-5'-6" differential head and will maintain continuous-operation with a differentia 1' head-cf.2'-6". The. drive: arrangement will regulate the speed of. the traveling screens to between-3.9 and 11.4 feet per minute-(fpm).
, !~ During normal operation, 53 5 ets of water will pass -
l through each traveling screen.- However, each traveling ~h screen has a design capacity of 111.4 cfs (50,000 gpm) and 2.11 J
, , .,,,a+-. - , , , ,-, a , --,em - .,---ne-,,, ,, ,-------... , c-, - , , , - , . - - - . ~ , - - - - , , -
1 is capable.of screening water for the two pumps required for normal operation.- - gg 2PM] Velocities through the traveling screens under normal . operation have been calculated by the erchitect-engineer to be 1.03 fps for_ normal water levels (el. 538-0") and 1.52 fps for low water levels (el. 534'-0"). Under emergency conditions, when one traveling screen is out of service, the architect-engineer.has calculated velocities at the one operating screen to be 2.06 fps for normal water levels and 3.04 fps for low water levels. Three vortical pumps, each rated at 53 5 cfs, will deliver makeup-water to the closed cycle cooling system. The pumps, positioned 60'-6" behind the traveling screens will have enclosed bronze impe11ers. Normal operation of lh the station calls for one or two pumps to be used to maintain proper pond levels. The anticipated average water makeup requirement is 93.3 cfs which indicates that two pumps, which
-prov: .n
- cfs, will be operating the majority of the time..
One , aap vill serve as a common spare. Three pumps may be used during pond filling. The pumps will be operated at 870 rpm with a suction head of 5 feet and a net developed head-of 356' feet water. 2.2.3 Mggeup Recuirements . The_ anticipated seasonal water makeup rates range from 78.7 to 106.3 cfs. An average of 57.4 cfs may be consumed due to seepage and evaporation. Since 46 cfs will be returne 2.12
1 to the river as blowdown and approximately 10.1 cfs added
~
1 (_I from rainfall, the average net rate will be 47.3 cfs. l Actual use may differ depending on plant power le'.el and l seasonal variability of evaporation. The expected monthly lake evaporation rates are shown in Table 2.1 ; 2.2.4 Other River Structures The closed cycle cooling system blowdown structure will be located approximately 500 feet downstream from the river make-up structure. The relative positioning of the blowdown structure is shown in Figure 2.3. Detailed plan and section views of the blowdown structure are shown in Figures 2.7 and 2.8. The blowdown structure will consist of a 4 foot diameter blowdown pipe terminating at a
,m concrete bulkhead. Installed in the bulkhead will be a valve 's-)
for controlling flow. The centerline elevation of the dis-charge pipe will be 546 feet mal. Water exiting the pipe will fall to a concrete ledge, elevation 541.5 feet mal. overflow the ledge and fall to a 45 foot long concrete spillway, elevation 536.5 ms1. Water exiting the spillway will join the Kankakee River at an estimated average blowdown velocity of approximately 0.4 feet per second, or 1.7 feet per second less than the average surface velocity of the Kankakee River. Based on the location of the discharge structure, .the design of the discharge structure, and flow condition cf the C Kankakee River, the discharge plume will not interact with the Braidwood generating station intake area on the Kankakee r^g / V River. 2.13
O . Table 2.1 BRAID'.!000 STATIO'l C00 Lit:G LAKE EVAFO* DATIO'l RATE IIP 0 take Evaooration, 10 ord Tm1, Month __ ' Natural Forced- Total efs
- J an . -- 1.80 19.63 21.43 33.2 F;l 1.94 20.35 22.29 34.5 Mar. 3.90 23.27 27.17 42.1 '. Apr. 7.05 25.89 32.94 51 .0 ,
Ma; 10.19 28.53 28.72 60.0 Jun. . 11.70- 30.28 ,41.98 65.0 Jul.-- 13.33 31.59 44.92 69.5 Aug. 12.32 32.46 44.78 69.3 Sep. 10.96 31.84 42.80 66.' - :- Oct. . 7.30 29.29 36.59 56.6 Nov. ~4.42 25.69 30.11 46.6 Dec.- 1.95 20.55 22.5O 34.8 4
+. ~ *' Operating' condition = 2-1120 tN Nuclear units 'at 10_Of capacity
- l. Circulating water rate = 3253 cfs f
Condenser temperature rise = 20*F $ 2.14
~
-- .-u-. _
E
~
4" wy _a - {. ... _ - . - . - - I
.- - O .._ O, elG SX4 F'
d, g ( D 61 5 0 }1 , . , w ,, r
- , f_
u.m. b 44 -:',? O 8 '- _ A 1, .s ., m s. .. . . . . ..
,.- ts:w - y. O 1r _q . ,,. S L, - C er . ,.. .-
g are Aw. w-m ( ., . *a ms /. s i
-. 3 ,,C. ----g-.....- .. N.,
4 ,
, "' ' , / ,L------ - j -- -- - .p g%
a iy. fy y
^ / )
- I
, (D } , .1--.. ) _ _e-.f y,,,. 6[% V N; w .- - . .. q . m p -
E L'* 's , 'A {W. p l; _ . z.r:p g i
' k* . -- .. ;.-.l . .l.G;f"{
k*= a_ . % . . f . . ' .l,-._ -T - s' E J ..- ,l. _ .~ . .. +' l I- ) - ._
,d, ~1. lj. ,1 2 s-i** - "^ ~ - ~ .t.--- .- ,. a' . i r. .1. . . .. . . _ . . - . . .
m.m .
+ p #.
l / y_. ..{..l] l { {*, 6- ---{qa.(;~. .
. ., el e ,e ~,---- g,s , . qw :: ._.4 4. ;
_ , ,,.s
._1.. y,.
l
! . , m .. ; -
s 3.~y:x
+ e , m ,,, N . ~ . - . - . _---..,--..g,-)7.,,. " I . ~ ,X,aLLC .* 17 .2. . .:. 'M ' j. '
L.,, % . . %* ' A [k > m },iL .. AC, /
l-.:0.N?A.N d o' ! :.*e' f.d l. W.o .:y e f. . A i' va,y L-._ .___..c_.._ .we ut.e~+ ,,.v- .a \
Os O1 L
,$,j u ]'4 .p s .4.uJ = w v.e .
9 w v.A
-f/
s _PL LtJ s-t o' j f_ I l x
, zo25.,'.e* i . p e- . . 4 g (y q,, ..<,7 ad es a.T a cr . , , _ ,
f'"L3 , _' T.% f,
-6 gw= v - .r .w -' *
- t .
- T=
9 .*. a , a v'- en v a cm vee.' ,wrm ' m.yA, ,. ; i. ,, y l i lI < nw a _ $ & s, * ?. -
' * . . . 11 . . ~
g m. sai, c-I.'{. w - ".. M.iA2
- h. --% ,4 ar .* .
I.E, y e C., 4 ... < 's _----_ A.;_m ,
< #% e e- -+6.we Q. 19 , A., q-j .a , f ' .4 - ; w q. 1-as
( w a.s
.. 3 .. - - . .
w.. ,... , 4,q(
.y EMy =c -
r t, g,,.: ~. .~ ... - l, PS88 - *
%)t t e p ; ;_ . . -i e- l 4.q- .. _ . , ' , - ,e*e , ,, as m. ay,,
1
-=, - ^-3~" gy nah ' Ah--yw.*
l L. N
-_s,._.. 1 - ;, a~ . . v" u g s ., m * . am .
i
. - . f**
- a * . . j Q, . Lei e.% .
f,:-, .
.. o , .. ,& .,_ i . . - , e- ; . -
mg e 4 #. T
"-? *. L - ~ . ~
1
. ;-s,. .e-y**S.ijf ^' . . - - - ' E;.K / -- --- "N'- C T V~N A - . - . . . . . . ~ . . . - -. -
A 1 .,,.s
, + ,
[ 2. s. i l %v m.
.L
%_ . 1,_ c !- -. l . . .- ,, 7 g.. -. =l ha_y , . l.I _ , _4 87 .. .- .
F, . _
=:. ..w e #;
Ob 1 .,i. o w
.0 - ' ~ > 1 ~ ,_; w)g' i r- ..
{: t y 7
. > g 5 4 ,d< , ' 3 ;, s ,, . . , , . -_ , - p. l ,
I. . th l . r-
.c , r. + , .s4u a .- . ,i ~.m.
gg ~.i . . _. . *k,. --~
; , t -.
_ .. _ ; ;. n _ .- a - . i ,,7, 3,.
,-le m *>
s e __ _ ... . . -_ _ J. c , 1'
.s . .
1)
. . ~; :A= .o 'b *. ' . gy ,
Si
._.a - + p" 'J ,
APERTURE f ' S! i . CARD , w. 4L
* * ' =
s Also Available On 4 .;
, Aperture Card 9n 1
-a ._
~
p , d
,, 7- =
f+< ! a a
; 7.w' ,
- J-4, iv ' C - i-r b - 4 ;
, 7 e- , . ,. i w- . - - - - .m.,
i .;
- f., . . .g-.
- m. -
... / ,' . - . J
- m['_ }
8.. . , u'1., _ ,,,
) .',- J . -
Figure 2.7 Braidwood Station - y
, M -it<1L .- = - . .
e see:;.r*:- Blowdown Structure - Plan :t m ;_ m.g ; . m.
.m.w.m 1 and ecctions. .
m;,. I
-+ ^ J -s s ' , * " e , ,g - - - . ~ , ,, .. . .n h _^s. .- ,r dM = e^- u +w w m.' ,b 3
_.g f
'A_ ,,.jf .: ,_n,.= ... g, - ., s ~
sk c fh . . , ,
+, .
- e. , ,. --...,.---,w-,,- -
,w....- ,-+=.4~w..--- ~7.. ..,- - - w i ' ' ~ ' ' ' ~ ~ ~ ' " ~ ~ ' ~ ~ ' * ,,+.v~ 1..,,w--,-,.gr,-,,,-;,,,,-v w. , , , - #---e,-,w,,,,-.-~,Ey., .g,,,- , w o ey w y s y-w a,,a "[
a l l e I
% e . - . . - -
p ... - -_ Q - _ . s y me 3
** 4vu t ra 5 53 1
w, ,., . - n. J e,-, e, g ug%t t,mer+.s,a. l' l I .r #. 5 I---- 9 , E JC'J C .';7[ J' I _w L.L , _. t t-- + ' -' h-g *e~ ~ g ~T
- m. ww g-~--j*.
; e - _ . P,*w,-. . .
i ng +c .-n . _-y g i
. t . .,_ % .'~,---n.
6
+
i
' - ",. , i .,:
i Ir = I 1 c.c:e. in f i
- Jl s *
- t. f. ,.L. . . , ..
'*. r' } 2 -,. s. . i a ., e s;-9 g. _ ,,I -% n),, ,1 - i u .o y1 .s. 7 , .t pi b7--_ -, . . . . .
y n. .o_erlj
.3
- e. * - I, (
- +. -t . ,. r -- J ; g..[ -- .'l y y.r d ' ' ' " "
r 9
..a .
7-- ,}- r 3a ,a .o sp ' .A,J ded. ~ j'^~~ '
+ ----g = .j > 1 : , 4 n.r - +
G. _,, ..,..._=.,.-.i 3 .s w - n,. % . 3 a e-s
.)I f. . , - ; , , **T". , y , u.a.. . . : = -. -a OT nCN S +<P "* **<~
r.w
,'*,.}{,,___ '**% ' . *h . . . , . . . - , n w .. -w em E ~ %%q 9d i
1
-= * - ^C <g,,.,,,,,g._g,\.
- a
,e . . . . , . , .
g h.. ' . g am.m- aw I r
$ m .c , ._ _ m.y m s n.m c . ,s u e,n 4 o . i, ,,,, ;- > .t s. m- s. . 7 _ - g_ , -)
4, p - .
) .g IMh '
9",,
-- w .i__ .- . 2.1 6pm Q #,a e .m p.... g. , qj e
s, l- f i i Y, r (J -- M A J_ . . -i ...'u
,-*wr %-s e I 1 ! > .,...-.--go , l ,. . .
w
"( % & .O k % N' s
a n os, C' O P' e k e M e N 5 9 m O, 2.1 M ,-,, s - - - . - , e,, .-. - , - ,- - - - ,
, f 4 i a --. . ~.4....
b
~ . _ -w (L , s'No m. <.sssam
.,
- U '.k . ... ._. . f r - . . . . - . l
- 3 i __ ,. . . _ _ . - . 2 . _., J , .. . _ I, __1 [ .% S *-? *', 9 t s* P* *j u' , . . < = .< w 9.._.. , .f? O*'.'. ! ] _
1 *se g* '
% *' - , - sre p- .....,4- . ,
3
, g. _. .
t
.. , , ~.s . , , g.e... ,,
j .Y w r -- , ,.
' n .....:.s. , <- - = M e- l
(.. (t% - e. a t=.
-_t.. ..
r cy w EM. m.. .r.. .]. . 3 'i - -r -r: - igl 7y '.3 =/
,- 2 - - w _ . ,__,._... _ . . . , - .- y- - A..a '..... ,
4
.- . _. m , . .e m :- _.;_. . O . %crio_ = .u a , m. m.-___. ., , ._ . w._-4 . -a=.. m _ e ~ a. .. .. . . . . . ...z (a,! 2 ] ., #.., -m .. ,
c ,' . xr-- N _ __....___.L-' -- n i,,,1_ i
*sa y r.,.;. , L . : .,,? Li ..a c..~....
g' . .- - i _.g , n ei o pi . a . . .. .m.
. ,t g. **: <-.
- 3. .
,* 4t a-y.7$n y pg.4 ' s~- , _ w .=- , . u .=,s , , ..< i . .e .
eo . !, % - ,} , S E C T IO N G
.2..so;- N SI APERTURE , CARD Also Anilable On Aperture Card Figure 2,3 Braidwood Station ~~
31owdown St:'ucture - ad Sections and Details . k k f P \u\\oca s% ;
l 3.0 GENERAL ECOLOGICAL SETTING 3.1 Kankaksia Rivur Hydralogicul Setting ( The drainage basin of the Kankakee River is 130 miles
/^Y
(/ long and covers 5280 square miles as is shown in Figure 3.1 In Illinois, the Kankakee River is 55 miles in length with widths varying from 200 to 800 feet and depths from one to 15 feet. The Kankakee River is approximately 375 feet wide near the location of the intake structure but widens to about 750 feet one thousand feet downstream. The total fai. from the state line to the mouth is 127 feet. Channel slopes vary from j R less than one-half foot per mile to over four feet per mile. Channel slope in the project area is about two feet per mile. Most of the river bed in Illinois is on or very near bedrock. Felatively thin Land and gravel overlie the bedrock with some small areas of silt, r^s There are two dams on the Kankakee Fiver - one at
%,)
Wilmington about four miles downstream from the intake point and the other at Kankakee about 10 miles upstream. The Wilmington dam is 11 feet high and forms a pool two miles long. - The Kankakee dam is 12 feet high and forms a pool six miles long. Both dams are no longer used for river flow regulation. The flow of the Kankakee River is gaged near W11minton about eight miles downstream from the proposed river screen house and 5.5 miles upstream from its confluence with the Des Plaines River. The drainage area at the gage is 5250 square miles. The average flow rate in the Kankakee River at the intake is 3640 cubic feet per second (efs). The corresponding elevation - is about 538 feet ms1 and the velocity 2.1 feet per second (fps). 3.1
Wigud ll IIII II I I - - - - Y
- V %p. 3 ,s **
ocs m,3
/ aw.s .:, ur:ar_ &p %' ,f / c', cl'y q \r n
- (
1 'y% - (% ,.x, w , s y g %yw . 4., s
? , C < , r..'*
( 4;hiatI - ( Q Ne.a-s , (* ;ry de;E1 i ' R .,
~ ,. d e' O y,. . . _ ~ .
- } - . --- ---
s.';r 1 ! e*"*"**%, i a-
.. ve,-w ~ -m ,. .r %. ._, - ,5 +. . s /g -. " ' ./
0 ,'
\ / / g /o.t f, :.ra !8 s e ,/
h e. <
. 5 ,\ . & y 't w% ! ','.y . ~ E 'i . l o 6c. i ,
{W* ,s
+, M L f. /-: \ !
l *) ' x l- ' , t \'
-lI . . . k. , , , [ , /'2
- Q_ , /,
p[Wp O g- , ,
- s. #b g ..:-
- g. n
[ ., 4. ./. y-
~ .,t 's f..uj )) ~,,, ,.,.. l
- sy;/a.n .
- s. *
- 1. *i is j .-.' e /m a,. .,,
1 l
* "" Y
- t f I.
- c.) ; e ae ee //,,"h's ,
i h "'. l O t. -n ; f . ..em G, ' w f ---./ [ % h f
-. '\ #m ._s) g 2 . t u- r "' N g . - - . _ - _ - - ~ _ . . _ _ _ _ , _ _ _ _ .
w.s ,,r,9; p. .r- . - . -} - --- .M - 5 I
\
s$- }p .. .
'~
j
' D, '/
i . pS.- )
-v - ,,. , j xy's g f 7C 0' 0**
v/
' q[ /
4 sp-m
\
_cq g-
" I' -+/
A g
-v o s_a (s:;; _: s%v ,- ,; ] qt .
f 5 ,v C4 . c-
~' .,I(a- R o/
N wm. I O * ~ : G F c'r tu r v'N '. / '
' M. m, ; +a, -. :w' ' - - ,x, - / %e ;) f , ~j !.- \
y
./
R ot e,4 j> y . J,f. '-
/,
r *
.) ; w% / . , te o e' ).3 , - <. s .,
f,\(- /
-~
[ ' 8, ~r x ,- ~ , ,/ t
\ ,,3 4Q ----.-----r \ r*'
b q 9 f ocbc c3 or:D. j n.- "x. n': ' ' N~J O C 2*.a t '.)
~~._- - . _ . . . . .~ .,-
3,2
----_-_.-_____._.._____-_-__._a__.___m_ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ - - - _ _ _ _ _ 1
e , 4 t' *. = - . p- u. v.= . . . , ww - wn r.
. s-M \ ;' */. .t. }
l a .
,,?v y-- - s ' ,a' / a / / );m. . .s,, w ,
A,e g. y 1 W . /. . i
+ . , a u n.+ ..- ., _ \._ 7" \ ;e" /.- * / (-
o
- s. (7,' Q x'* % Q CWth
_....../ , A
. a.. .. ,..; _ _ _ ___. c, a_ . _ ..__s . . . _. . _ _-s t A
_y()vm, 3 ym 3 '- t, N
.' 4l-gj *?...- 1 v, 5 t - . .'s,,.- ' ,. x% , f'-)
- l s
~%. ;- ,, 7r J .c ) :
i r y l a . , , . . ,: . ,
. /~ ~~- s >
I
.< . .i
{L ,,-. m., s._
, i =' 5 ', w n. ! . M',, ,c h./A'. .
1,c a o . -:. , es s 3.
... s.. s .-
3
. n, I o.w 'c,.*,, y,-n 7 -
l C ./ o u.n, c .,
/- .fs ./ ,
b
} . .,s / i J+ *
(( -- p' c ar: *ctr p#,,= I, Q '14 9 e *g
./ - /- ;;
y ,. p - - l 3 me I > SI f m.4- 7' '. f "5 APERTURE - j; CARD 4 3- _ / a! o Also Available On T .- Apature Card
- j. ;
Q . W,:a+ gg-p , z $; f5.l 'D l -: a.,ca . . i
* ,W; ~ /- , .S e von #*ig; . suacr4as
(._ ._r 5 w l[ #~ ,-%" a,a11
- 4 l
[
\ / .- ~ . . - . . . . _ _ ^ ,r ,,
i :
; 1 e.
3c. L
.'3 kCI Cittle p l s .; O i., -
BR AIDWOOD- ST ATION: , s i 316(b) REFORT- _ , I
; }% .s . ~
( F.IGURE .3.1 - - , + ~ 4
; c .
a:
. i. ,
s , ^ ' O DRAINAGE' BASIN OFJ
~ }GNFAl'EE RIVER - ~ . _
M OOAS -o S- - - -._
Bacod on tha averaga annual river flow of 3640 cfs and an average river velocity of 2.1 fps, the corresponding p) (_ average river surface level in the vicinity of the intake and discharge structures would be approximately 538 feet mal. The average monthly flow rates at this location are given ir Table 3.1 The maximum known discharge near Wilmington (75,900 cfs) occurred July 13, 1957. Its corresponding gage height was 11.ho feet above datum. The estimated low flows for the Kankakee Fiver at the intake are given in Table 3.2. The minimum known discharge near Wilmington (350 efs) occurred in september 1964
's (J
e
+
s.) l 3.3 l
h 1 TABLE: 3.1
-KANKAKEE FIVEF FLOW CHARACTERISTICS 3 AT THE INTAKE-LOCMION W AVEPAGE FLOW- ONE DAY-(WATEF YEAP MINIMUM FLOW 1941 to 1971) -(WATEF YEAR 1964)-
MONTH- efs efs october- 1748 505 A November .2415 644 December 3052 624 January 4119 795. 1 February, 5465 894 l q March 6309- 1625 - o April- 7307 4398
- May 6462 2393 -
June- 4356 2016
- July- .3066 1624 k August .1508 577 -
. > September 1274 487 3 O 8.4 _= = _ - _ _ . ._ _ _ _ _ __. - . . .- -- . - _ - . _ - . ,
f TABLE 3.2 KANKAKEE RIVER MONTHLY MINIMAL _ FLOW CHARACTERISTICS O- AT INTAKE POINT *, MINIMUM TLOW MONTH cfs YEAR october 470 1963 November 510 1963 December 480 1953 January 470 1957 February 588 1945 March 686 1963 April 1529 1956 May 1245 1964 June 830 1963 July 498 1965 August 357 1941 september 343 1964
-
- Lowest flows which occurred for different months during a
-- period of 1941 to 1971. -
O 3.5
3.2 Wator Quality. Routine . water quality parameters were measured during the 1974-1975 Monitoring Program.Mean monthly water temperature lll ' values of' the Kankakee River varied from 37.1o F' in March to 75.5 F l in August with a mean annual temperature of 53.8 F. I comparison
~
of the water temperature compiled over the 13 month survey is sum-
~ -marized in Table 3.3. water temperature data for Horse Creek (Transect 4) are also summarized in Table 3.3, where they are com-pared with the Kankakee River data. H Conductivity in umhos/cm averaged 1.2 times the total dissolved solids-values in mg/l during the survey on both the Kankakee River and Horse Creek (Tables 3.h & 3.5). Over the sur-vey period, Horse Creek contained a- greater amount of total and dissolved solids than the Kankakee. River (Table 3.5) . Dissolved sol' ids data. collected during this survey indicate that both the Kankakee River'and Horse Creek contain the typical dissolved solids 0
content of -streams in this area. A stateoof Illinois limit
-of 1,000 mg/l_ total dissolved solids was never exceeded during the 1 survey-period. Fluctuations in turbidity occurred in the Kankakee Fiver and Norse Creek with ranges of 25 to 130 JTU (Jackson Turbidity Units) and less than 5 to 325.JTU, respectively, during this-. survey period -(Tuble 3.6). The Kankakee Biver exhibited a - greaterLeolor than Horse Creek over the survey. period- (Table-3.6) but in:both streams the color was below the recommended Federal criteria for public water-supplies of 75 units. state of1I111nois
(( General Standards specify the pH range 6.5 to-9.O. In both the Kankakee1 Biver and Horse Creek, the pH ranged from 7.3 to 8.7 (Table 3. ' O 3.6
'I TABLE 3.3 f SU W.ARY OF TEMPERATURES OF THE KANKAKEE RIVER AND HORSE CREEK DURING THE BRAIDWOOD AQUATIC MONITORING PROGRAM 1974-1975 i TEMPERATURE (*F) Trip Transect Number Date 2 3 5 4 Monthly. l 1 March 13,1974 45.4 45.4 45.4 42.3 37.1 2 May 2, 1974 62.2 60.9 61.8 56.3 61.8 3 May 9, 1974 51.d 50.7 51.0 48.6 61.8 4 May 15, 1974 59.3 37.8 59.4 60.8 61.8 5 May 23,1974 66.0 65.7 66.4 62.6 61.8 6 May 30, 1974 65.3 65.0 65.2 64.2 61.8
. 7 June 6,1974 66.7 66.6 66.7 65.3 71.3 I June 12,1974 65.9 66.2 8 64.4 62.6 71.3 9 June 21,1974 70.3 71.2 72.1 72.5 71.3 !O iO June 27, 1974 65.9 64.7 64.5 64.8 7i.3 11 July 11,1974 77.5 78.4 77.5 77.9 74.6 12 July 17, 1974 79.4 81.5 ** 81.5 74.6 l'
13 July 26, 1974 73.5 73.8 74.5 74.5 74.6 ( 14 August 13, 1974 77.7 75.7 76.6 78.3 75.5 I 15 November 13, 1974 43.3 43.2 43.3 42.8 49.5 16 March 11,1975 39.2 39.2 39.2 40.1 37.1 i F8
.-
- Kankahee River temperatures at Wilmington, Illinois, from 1957 to 1972.11)
** Data not available.
L 1 3.7 6
I 1 f
, TABLE 3.4 O SUMRY OF CONDUCTIVITY DATA COLLECTED FROM THE KA%KEE RIVER AND HORSE CREEK , DURING THE BRAIDWOOD AQUATIC MONITORING PROGRAM 1974-1975*
I I Transect [ Kankakee River Horse Creek . Trip No. Dates 2 3 _5_ 8 4 1 March 12-14,1974 540 545" 540" 665"
, 4 May 12-16,1974 527 536 563 563 June 12-14, 1974 8 545 540 535 610 12 July 16-19,1974 560 570 570 51 0 14 August 12-16, 1974 508 488 484 640 15 November 12-15, 1974 637 643 650 700 ,I 16 March 10-11,1975 573 586 543 6?2 g a
i. i i i
- Data expressed in phoms/cm at 25'C.
'~ ** Heter malfunction, value used from laboratory analysis of water samples. -
9 t l 3.8 ( k.
O <, O O TABLE 3.5 SUKMARY OF TOTAL SOLIDS. DISSOLVED SOLIDS. SUSPENDED SOLIDS AND VOLATILE SOLIDS COLLECTED FROM THE KANKAKEE RIVER AND HORSE CREEK DURING THE BRAIDWOOD AQUATIC HONITORING PROGRAM 1974-197S* I : l Transects Horse Creek i Ksnkakee River 4 l 2 3 _5 Trip ,, 5% v5 T5 DS 55 V5 T5 CS }$ }$ T5 DS 55 v5 T5 DS Mete r Dates 474 432 42 178 540 512 28 242 48 210 504 450 54 176 1 March 12-14, 1974 502 454 486 13C 258 626 494 132 256 792 536 256 302 4 May 12-16, 1974 632 504 128 226 622 w 626 456 230 223 756 516 '240 278 517- 163 262 730 522 208 322 b 8 June 12-14, 1974 680 533 505 28 190 619 599 20 201 523 483 46 103 12 July 16-19,1974 550 $14 36 148 493 350 143 138 536 492 39 202 August 12-16, 1974 524 366 158 146 523 356 167 212 14 426 392 34 107 440 422 18 106 108 439 391 48 97 15 Novee6er 12-15,1974 454 423 31 450 435 15 149 490 483 7 174 March 10-11,1975 443 427 16 133 460 443 17 151 16 l
- Values expressed in ag'1.
I ** 15 = Total soitds D5 = Total Plssolved Solids
$5 = Total Suspended Solids v5 = Totsi Volatile solids t .
,-- - - - . --.-~ - - . - - . - - ~ .t; 1 TABLE 3.6
SUMMARY
OF TURBIDITY AND COLOR DATA COLLECTED FROM THE KANKAKEE RIVER AND HORSE CREEK DURING THE BRAI'DWOOD AQUATIC MONITORING PROGRAM .1974-1975 1 j - j' Transects s Kankakee River Horse Creek Trip 2 3 5 4 Hy!!AILr_ Dates Turbidity
- Color ** Turbidit/ Coloy** Turbidity
- Color ** Turbidity
- Color- -
; 1 March 12-14, 1974 100 40 ' 90 40 85 40 15 12 '4 . May 12-16.1974 168 ,30 158 40 150 40 308 25 300' 38 310 28 308 28 325. 20 w.
8 June 2-14,1974
- P 12 ' July 16-19. 1974 60 10 72 10 28 20 5 10 0
14 August 12-16. 1974 220, 40 205 40 190 40 50 20 15 November 12-15. 1974 25 20 25 20 25 20 <5 20 i 16 . March 10-11. 1975 30 30 - 30 25 30 ~ 30 10 18
- Turbidity expressed in Jackson Turbidity Units (JTU).
l ** Color expressed in color units by American Pubile Health Associatten Method. t i i 4 G , e e
OJ = 0 o TABLE 3.7 SlM8.ARY OF pH..' ALKALINITY AND HARDNESS DATA COLLECTED FROM THE KANKAKEE RIVER AND HORSE CREEK DURING . THE BRAIDWOOD' AQUATIC MONITORING PROGRAM 1974-1975 . Transects Kankakee River Herse Cn th 5 4 Trip 2 3 g, Alk* . Hard** Eseer Dates g Alk* Mard** d Alk* 14e rd**_ d Alk* Hard**. 7.3 153 '277 7.3 161 268 7.5 til 343 1 March 12-14,1974 T.5 158 267 ' 4 .May 12-16. 1974 7.9 157 277 7.9 160 268 7.9 162 271 8.0 179 313 8 June 12-14. 1974 8.5 163 263 8.7 167 261 8.5 168 257 8.5 189 300 8.4 210 8.3 206 311 8.3 181 - 331 , ?H 12 . July 16-19.1974 8.3 210 ~300 304 H '14 August 12-16. 1974 }.gt 128 199 7.8t 129 201 7.9t 130 203 8.1t~172 272
- 15 November 12-15. 1974 7.9 196 325 7.8 198 328 7.5 196 328 7.8 200 344 16 March 10-11. 1975 8.1 172 308 8.i 172 316 8.1 176 312 8.4 196 362 e
- Alkalinity expressed as ag/l CACO3.
** Hardness (Ethylenedlamine tetrascetic actd) t Meter malfunction. value used from laboratory analysts of water samples.
l 1 .a. , ,
I Alkalinity in the Kankakee Fivor and Horse Creek ranged from 128 mg/l to 210 mg/l and 172 ng/l to 211/mg 1 respectively. The mean alkalinity of Horse Creek was slightly higher than that ll) of the Kankakee River (Table 3.7) . Illinois is classified as a hard water state by the U.S. Geological Survey and data collected from both the Kankakee River and Horse Creek (Table 3.7) were lower tnan the average for this area (400 mg/l CACO3 ). A hardness of more than 300-500 mg/l
' CACO 3 ) is indicated as excessive for public water supplies.
Levels of calcium and magnesium in the Kankakee River and Horse Creek are shown in Table 3.S. BOD values determined for the Kankakee Fiver transects did not fluctuate severely during the study period of March 1974-March 1975 (Table 3.9). Maximum values were found in March 1975 for all transects. BOD reached a maximum (7.3 mg/1) at Transect 3.O Maximum values for Transects 2 and 5 were 6.8 mg/l and 6.4 mg/1, respectively. Lowest values, on the other hand, were observed in July for Transects 3 and 4 (2 mg/1). Minimum values occurred in May for Transect 2 (2.4 mg/1).
$1nimum SOD values for Horse Creek were similar to those of Kankakee River Transects 3 and 5 (2 mg/1) and were achieved during the same period, July 1974 Maximum value for Horse Creek, slightly lower than those of the river transects (5.9 mg/1), was found to occur in March 1975 Maximum values of COD were evident for Transect 3 (32 mg/1),
[ Transect 4 (30 mg/l and Transect 5 (31 mg/1) in June 1974 (Table 3.9). Transect 2 showed relatively high values of COD in June 1974 (30 mg/1) but maximum values (34 mg/1) were achieved on March 12-14, 197h. (l) general, all transects may be considered as having high values of COD . 1 i 3.12
~~ -- - - -- - -- ~- ~ .- .~ -. . ~ - - ,
l TABLE 3.8 SUIEARY OF CALCIUM AND MAGNESIUM DATA COLLECTED FROM THE KANKAKEE RIVER AND ( HORSE CREEK DURING THE BRAIDWOOD AQUATIC MONITORING PROGRAM 1974-1975
- l Kankakee River Horse Creek Trip 3 5 4 2
No. Dates .*. [a, M pa M_ft [a MS Ca M March 12-14, 1974 68 24 70 26 69 24 76 38 1 23 70 24 70 33 4 May .12-16, 1974 70 26 71 June 12-14,1974 66 25 66 24 66 24 66 39 y 8 88 84 24 70 39 d 12 July 16-19,1974 81 24 21 55 34 August 12-16, 1974 51 18 50 18.5 50 20 14 15 November 12-15, 1974 83 29.5 82.5 30.5 82.5 30.5 78 37.5 March 10-11, 1975 83 25 82 28 82 28 84 38 16
- Values expressed as mg/1.
** Ca = Calcium.
Mg = Magnesfuma i
e1 TABLE 3.9 TOTAL ORGANIC CARBON, BIOLOGICAi. 0XYGEN DEMAND AND CHEMICAL OXYGEN DEMAND DATA COLLECTED FROM THE VANKAKEE RIVER AND HORSE CREEK DURING THE BRAIDWOOD AQUATIC MONITORING PROGRAt 1974-1975* Transects Kankakee River Horse Creek Trip 2 3 5 4 Number Dates ** TOC BOD C00 TOC B00 C00 TOC BOD C00 TDC B00 C0D 1 March 12-14, 1974 10.0 3.0 34.0 10.5 2.4 29.0 11.0 3.3 21.0 5.0 3.0 10.4 4 May 12-16, 1974 12.0 2.4 20.0 14.0 2.6 18.0 12.0 2.8 5.3 14.0 3.1 12.0 u> 8 June 12-14, 1974 14.0 5.6 30.0 14.0 4.5 32.0 14.0 4.2 31.0 15.0 4.0 30.0 e 12 July 16-19, 1974 3.0 17.0 2.0 19.0 2.0 15.0 2.0 16.0 14 August 12-16, 1974 13.5 5.2 33.0 11.0 3.0 32.0 12.0 3.1 28.0 7.5 3.0 21.0 15 November 12-15, 1974 7.0 3.0 13.0 6.5 2.8 13.5 6.5 2.8 12.0 4.0 2.2 8.0 16 March 10-11, 1975 5.0 6.8 15.0 4.0 2.3 17.0 10.0 6.4 24.0 4.0 5.9 8.0
* '/alues expressed as mg/1. ** TOC = Total Organic Carbon BOD = Biological Oxygen Demand C00 = Chemical Oxygen Demand O ,
9 O
(30-32 mg/1) in the month of June 1974 The lowest values were observed in November 1974 except for Transect 5, when lowest values occurred on May 12-16 (5.3 mg/1). COD values for all transects exceeded the BOD values throughout the study period. TOC values for the Kankakee River did not vary appre-ciably from transect to transect in the period of May-Nove.mber 1974 (Table 3.9). Values in March 1975 were highly variable between Transect 5 (10 mg/1) and Transects 2 and 3 (5 mg/l and 4 mg/1, respectively). Total organic carbon was high (14 mg/1) in June for all transects of the Kankakee Fiver. The maximum value (15 mg/1) for Horse Creek was attained in June, while the minimum value (4 mg/1) was observed in November 1974 and March 1975. The amount of dissolved oxygen (DO) for Horse Creek and the Kankakee River varied from 7.6 mg/l to 12.1 mg/l and from 6.3 mg/l () to 13.1 mg/1, respectively (Table 3.10). Data in Table 3.10 represent the mean values of oxygen concentration taken at meter intervals from near the surface to the bottom. No gradient was observed in I Seasonal variations, however, do ; oxygen concentration with depth. exist. At all transects, highest values of DO were noted in March 1974 and March 1975 r0 values were slightly higher for Horse Creek than for the Kankakee Biver transects. The differences never exceeded 1.5 mg/l (varied from ).2-1.5 mg/1). The State of Illinois General Standards minimum of 5.o mg/l dissolved oxygen was not exceeded during the survey period. The range of ammonia found in the Kankakee River was from 0.02 mg/l NH3 -N to 1.67 mg/l NH3-N and fr m 0.08 mg/l NH 3-N ~ to 0.53 mg/l NH3 4 in Horse Cnek (Table 3.11). In one case, the J 3.15
,, -- :.~- n.
. a -: -- -b ~-, - ^~- --- ~- ~ ~ '. ." f ~. '
i '1 L l TABLE 3.10 DISSOLVED OXYGEN CONTENT AND PERCENT SATURATION DATA COLLECTED FROM THE KANKAKEE RIVER AND HORSE CREEK DURING' THE BRAIDWOOD AQUATIC MONITORING PROGRAM 1974-1975 Transects Trip Kankakee River Horse Creek No. 2 3 5 4 DO*- % Sat ** 00- % Sat DO % Sat DO % Sat-
'l Marth 13,1974 TT3 '93.9 TF.9 99.3 TT.T 94.2 lET 37.T '
4 May 15,- 1974 - 8.6 - 85.4 8.8 85.6 8.8 85.8 9.0 90.0 I 8 June.12. 1974 .7.9 82.7- 8.2 87.3 8.1 85.3 8.3 84.3 u 12 July 17,.'1974 7.4 90.6 7.1 89.2 6.7 -85.4 8.6 108.9 L m 14- August 13, 1974 6.5 77.0 ' 6.3 73.3 6.4 75.8 7.6 97.1 15 November 12, 1974 10.2 81.6 10.2 82.4 9.9 7.9 1140 82.6 16 March 11.1975 18.1 99.8 13.0 98.4 12.8 97.7 14.1 107.4 1 i 00 = Dissolved Oxygen Content as mg/1.
' ** a Sat .= Percent. Saturation of Dissolved Oxygen.
G , G G g ,"r 3 wr ~ = - - ^ w %4
-m - , , c 3 e TABLE 3.11 l
SUMMARY
OF NITRATE, HITRITE AND AMMONIA DATA COLLECTED FROM THE KANKAKEE RIVER AND HORSE CREEK DURING THE BRAIDWOOD AQUATIC MONITORING FROGRAM 1974-1975 Transects Kankakee River Horse Creek 5 4 Trip 2 3
~
Ntaber Dates M03 4 M -N M y-N M 3-N M 2'" 3~ 2'" 3"" 3 _( l'
- 3~
7 5.0 0.059 1.50 5.4 0.058 1.67 7.9 0.020 0.20 1 krch 12-14.1974 4.9 0.057 1.25 0.078 0.48 5.8 0.076 0.57 8.6 0.054 0.58 4 N y 12-16, 1974 6.3 0.0B0 0.9 6.4 g 0.020 0.11 4.3 0.022 0.13 6.1 0.018 0.08 8 June 12-14,1974 4.4 0.026 0.0C 6.9 N -4 12 July 16-19,1974 0.04 <0.02 1.2 0.04 <0.02 0.5 0.01 <0.02 14 Au9ust 12-16.1974 1.4 0.tA 1 .02 1.6 2.6 <0.001 0.25 2.8 <0.001 0.25 1.4 <0.001 0.27 15 November 12-15. 1974 2.7 <0.001 0.24 0.2 <0.001 0.24 0.6 <0.001 0.13 16 hech 10-11.1975 0.3 <0.061 0,24 0.2 <0.001 0.21
- Values empressed as ag/1.
t .
.. .. = .
ammonia content of the Kankakee River exceeded the State of Illinois Oeneral Standards of'1.5 ms/1 NH3 -N. The recommended Federal limit for ammonia for fresh-water aquatic life of not greater than 0.02 mg/l MH -N 3 any time or place was exceeded in nearly all instances during the survey period (Table 3.1% in both Horar Creek and the Kankakec River. In the Kankakee River, nitrate ranged from 0.2 mg/l NO3'N tc 6.4 mg/l NO3-N and nitrite ranged fnam 0.001 mg/l NO2 -N to 0.08 mg/l NO 2 -N. Horse Creek ranged from 0.5 mg/l NO 3 -N to 8.6 mg/l NO 3
-N and 0.001 mg/1-NO 2 -N to 0.54 mg/l NO2-N for nitrate and nitrite, respectively. Fecommended Federal criteria for public water sup-plies suggest a maximum of 10 mg/l NO 3-N and mg/l NO 2 -N+
In no instance during this survey period were these limits exceeded. Total phosphorus ranged in Horse Creek from 0.008 mg/l PO 4 -P to 0.08 mg/l PO 4 -P while- in the Kankakee River it ranged freqgg 0.04 mg/1 PO4 -P to 0.19 mg/l PO4-P (Table 3.12) . State of Illinois General Standards limits phosphorus as P to a maximum cf 0.05 mg/l in any reservoir or lake, or in any T stream at the point where it enters any reservoir or lake. During the_ survey period, the Kankakee River exceeded this limit nine times. and Horse Creek exceeded this limit two times. Table 3.13 lists the results of heavy metal and cyanide analyses of both the Kankakee River and Horse Creek during this survey. None of the limits set by -the State of Illinois for those heavy metals listed or for cyanide were exceeded. Eecom-n. imended Federal criteria for freshwater aquatic life are also indicated in Table 3.13 O 3.18
-- - - - .- - e -. - - --- -~
O O
~
_ ~_ O <i TABLE 3.12 SUMMARi' 0F PHOSPHORUS DATA COLLECTED FROM THE KANKAKEE RIVER AND HORSE CREEK DURING THE BkAIDWOOD AQUATIC MONITORING Pft0 GRAM 1974-1975* Transects Trip
~
Kankakee River Horse Creek Dates 3 5 4 No. 2 Total Ortho Total Ortho Total Ortho Total Ortho l PO -P PO4 -P P04-P PO -P PO4 -P P04-P N 4-P P04-P l 4 4 March 12-14, 1974 .18 .10 .12 .10 .12 .12 .04 .02 te 1 May '?-16, 1974 .05 .02 .05 .02 .04 .02 .08 .01
$ .4 .04 <.001 8 June i?-14, 1974 .12 <.001 .08 <.001 .10 < 001 12 July 16-19.1974 .05 .02 .05 .02 .05 .02 .008 <.003 14 August 12-16, 1974 .04 .04 .04 .035 .04 .03 .015 .015 November 12-15, 1974 .04 .02 .05 .02 .04 .02 .02 .01 15 March 10-11,1975 .02 .14 .07 .19 .07 .06 .02 16 .11
- Values expressed as n]/1 Phosphorus (P).
s
g .t1 4 i TABLE 3.13 ! SlH MRY OF NEAVY METALS DATA COLLECTED FROM THE KANKAKEE ~.CVER AND HORSE CREEK' 4 DURING'THE BRAIDWOOD AQUATIC'M0tlIT0*,1NG PROGRAM 1974-1975* !^ Standards and ! Reconenendations Chemical ** Kankakee River Horse Creek StateN) FederalI7) Iron (Total) 0.56 0.22 1.0 t j Manganese 0.08 0.03 1.0 t F Zinc 0.04 0.07. 1.0 0.005 o Copper <0.01 <0.01 0.02 0.1 f ! Cobalt <0.01 <0.01 t t
~
! nickel <0.01 <0.01 1.0 0.02 Chromium (Total) <0.01- <0.01 0.05 0.05 l ! Cadnium ' 0.004
< <0.004 0.05 0.03 I ' Lead <0.03- <0.03 0.10 0.03
- j. Mercury <0.0005 <0.0005 0.0005 0.0002
!- Cyanide <0.005 <0.005 0.025' O.005 i
- Yalues expressed in ag/1.
** Values indicated are averages of data from five sampling _
periods (March. May. August, and November,1974 and March.1975).
- t. No criteria indicated.
i h .
. . ~ _ . . _ . . . . . - . . _ _ . _ . . . - . . _
_-- _ . , . . . _ . _ . . . ~ . . . _ _ . _ _ _ . _ _
l Data on pasticideo and polychlorinated biphonyls ara summarized in Table 3.14 k Sodium ranEed from 6.1 mg/l to 10.2 mg/l in the Kankakee River and from 6.0 mg/l to 14.5 mg/l in Horse creek (Table 3.15). Potassium ranged from 1.9 mg/l to 4.8 mg/l in the Kankakee River and from 1.6 mg/l to 3.4 mg/3 in Horse Creek (Table 3.15). Chloride was analyzed in March and November 1974 and in March 1975 during the survey period. Horse Creek contained 22 mg/l C1, 22.5 mg/l C1 and 26 mg/l C1 and the Kankakee River contained 20 mg/l C1,19.5 mg/l C1 and 22 mg/l C1, respectively. In no instance did either stream exceed the State of Illinois oeneral Standard of 250 mg/l chloride for the recommended Federal criteria I for public water supplies of 250 mg/l chloride. In the Kankakee F1ver, sulfate ranged from 34 mg/l to 103 mg/l and in Horse Creek from 38 mg/l to 103.5 mg/l (Table 3.16 (~)N s In no instance did the sulfate level exceed the State of Illinois General Standard of 500 mg/l nor the recommended Federal criteria for public water supplies of 250 mg/1. The ranges of silica in the Kankakee Eiver varied from 1.2 mg/l (S1) to22.0 mg/l (F1). In Horse Creek, Jilica ranged from 1.0 mg/l (Si) to 18.7 mg/l (Si) (Table 3.16) during the survey period. m
%^
O 3.21 l
+
e' H .M M W e e w w w e w e w w *= m w O so V L 01 e~ *= y a O. O. O. O. O. . . O. O. O. O. O. O. O. N. sa: ad; V V V V V -V V V V V V V V V 0 wg w Ph W M th O >i e= m m e m F F F w w m m N N Z m O O O. - r= e=. - O. O. O. O. O. O. O. N. O.
- O.
- 4 m f. * .
V V V V V V V V V V V V V V - m s air N
- W th 5~ . #m - - - ,= - - - -
-l E M 01 O
O. O. O. Om
*
- m. O. O. O.
O
- O. O. O. es.'
O 3
- v v v v v v v v v v v v v v
, g- c..
WE w .= M m e e r= w w m e. en
,,.s g a w w e r r=
J O ed (llri r= I* u O. O. O. O. O. m. O. O. O. O. O. O. O. O. O p. di 3 V V V V V V V V V V V V V V v .-a - 4 . e to aEC C a m L e= *= c-* .= e= 00 J Hl agl L W h - e= m e ra
.c3 *O H re r= r= 0 O. O. m.
i .c>- g - O. O. O. O. O. . . O. O. 4 4 V V V V 'V V V V V V V
, gH Cu: V-e M .mB W as; m
e W e & Ch. W M mm c= m e e= m *= IL1 c 3 m m - m r= e= e3 mgo - <e tlM e= r= Q Q O. O. O. O. O. m w a O. O. O. O. O. . . . . . F* 4 4 V V V V V V V V V V V V V V g OW w M 5Oh m h m O r=
*=.
O. O. O. O. O. .n. & m. ce gg: w g , O.
- O. O. O. .
V- V V V i O .E V V V V V V V V dM
'u~C >= - E d
m B* -, - -- - - - - - - - O e=
-l* r= e O 61 C.- O. O. O. O. O. ' O. O. . .
m O. O. . O. O. O. - (. g3 2; M 4 , V V V' V V V V V V V V V V V cn V. W aa; w N N W .L ; A ' I m ca: e= e= mm r== r= m- e= w r-a CO M *=
}- w u h (*) r= 0 0 es . es O
e w EM C. O. . O. O. e. .- C. C. O. 4- 4 m. ec u V V V V V V V V V V V V W
't:5 *** 4 W' m w T m AM .,y 3 W $L c e6 o- -I cu n. cx e p-a W- K h.
L&. m ee e m W M W-O #5 m 4 r= e= b cM 4 M 4 mm 4_ Q- MW
>- .C -
M c c= WE y gg: r= f0 m CL' & aq' W so O O H r=
-W M'Q O bm #= r=
O. O w oH L u
.c 3 -
m O 6
.U.= w w w w w e a w w w "O e se "W . se $
r= M > to Cir,
' E tul" W* -C3Wo O HH t- W CL to
- m W U U V U U 4
.c = Z = 2 2
- c3 c3 C === W u A. *
- 4-W (Q 80 40- 80 80 N N Q O Q O Q % 2 s*
3.22 A .*
. - . - , . . . . - . , - . - , . - - - . . . , . . - , . . . . . . ,. - -- ..-,,..m,.., - . - m,..- - . - , , ~ . . . .,
~
O O O "
.t TABLE 3.15 SIN 9tARY OF S00 LUM, POTASSitM AND CHLORIDE DATA COLLECTED FROM THE KANKAKEE RIVER AND :
HORSE CREEK DURING THE 3RAIDW000 AQUATIC MONITORING PP0 GRAM 1974-1975[
~~ ~
Transects-Horse , Trip Kankakee River Creek No. Dates 2 3 5 4
**Na K Cl- Na K C1" Na K Cl Na K Cl-'
1 March 12-14,1974 6.1 2.7 -- 6.1 2.6 20.0 6.4 2.6 20.0 6.9 1.6 22.0 to 4 May 12-16,1974 7.6 2.8 -- 6.8 2.4- -- 8.0 2.6 -- 6.8 2.2 -- g 8 June 12-14,1974 6.4 2.8 -- 6.7 3.0 -- E.6 3.6 -- 6.0 3.4 - 12 July 16-19,1974 9.8 1.9 -- 10.0 1.9 -- 10.2 1.9 -- 12.6 2.7 - 14 August 12-16, 1974 6.6 4.7 - 6.5 4.4 -- 6.5 4.6 - 14.5 3.2 - 15 Neven6er 12-15,1974 7.0 2.2 19.5 6.8 2.2 19.5 7.2 2.3 19.5 9.4 2.6 22.5 ~ 16 March 11,1975 8.6 2.0 21.0 8.8 2.1 21.0 8.6 2.1 21.0 8.6 1.7 26.0
- Values in mg/1.
** Na =
Sodium.
=
K Potassium. C1 = Chloride. ~ Double dashes (--) denote that analysis for C1 was not performed. t
- ~ .. . - _ _ .. ..
e i TABLE 3.16 SUfMARY OF SULFATE AND SILICA DATA COLLECTED FROM THE KANFAKEE RIVER AND HORSE CREEK DURING THE BRAIDEOD AQUATIC MONITORING PROGRAM 1974-1975 Transects u nkakee River _kwse Creek 2 3 5 4 Mu er Cates 4" 51** 4 51** 4" 51 " 51 " 1 March 12-14,1974 10.0 7.4 66.0 7.3 68.0 6.6 66.0 2.9 4 May 12-16.1974 66.0 1.2 70.0 1.2 58.0 1.4 62.0 1.2 8 June 12-14.1974 52.0 15.0 48.0 20.6 48.0 21.2 38.0 18.7 r0 c- 1.0 12 July 16-19.1974 74.0 3.9 68.0 4.4 70.0 4.3 129.0' 14- August 12-15, 1974 45.0 19.5 30.0 22.0 34.0 17.0 73.0 3.0 15 Novect>er 12-15, 1971 R7.5 7.1 89.5 7.1 90.5 6.8 103.5 4.0 16 March 10-11, 1975 103.0 5.2 100.0 4.9 98.0 5.4 99.0 2.9
- Valves expressed at sg/1.
" 50 4= Sulfate 51 - Silica t Valve is not an average.
9 , 9 9
3.3 Biota _of tha Kankakaa_ Pivor Introduction
) Two years of pre-construction monitoring have been conducted in the Kankakee River and Horse Creek near the pro-posed intake and discharge structure locations for Braidwood Sta tiots . The first year monitoring program was initiated in October, 1972 and was conducted through September, 1973. The data and results of this first year program are discussed in the Braidwood Station Environmental Feport and in the Braidwood Final Environmental Statement. Field surveys for the second year of monitoring were initiated in March, 1974 and were con.
ducted through April,1975. rata and results from this second year of monitoring are presented herein. Locations of samplin6 transects in the Kankakee F1ver and Horse Creek are shown in Figure 3.2 Monitoring for physical, chemical and biological parameters was done at various times during the months of March, May, June, July, August and November in 1974 and March in 1975. Phytoplankton The species composition, density and biovolume of phytoplankton collected in the Kankakee Fiver (Transects 2,3, and 5) and Horse Creek (Transect 4) are shown in Tables 3.17-3.10 -A j total of five phyls were collected during the 1974-1975 monitoring program, Over 200 species were identified during the study with most of the species belonging to two phyla: Chlorophyta (green E algae ) and Bac111ariophyta (diatoms ) . Diatoms were the most - numerous of the algal groups for both the Kankakee Fiver and L () Horse Creek. 3.25
+
i 4 l
- t' i
l TRANSECT 2 j '- 1 i
- TRANSECT: _
5 ' N = KANKAKEE RIVER ' TRANSECT L ? ... x 7, 3 , _ f h:1dL5%:=> Q O~
'k ' FLOW 55WIS% 5d?;
4 n
.;f. . . ._ ., a.._ ;,; z. U ?2?ff ;. ~' . ,f,-[ ,n n mn : -
ITRANSECT ) os ' ~ ~- 6 ( PROPOSED N&W RAILROAD TRAMSECT INTAKE 4
$ PROPOSED DISCHARGE i I
6.p$ ' i
'#gg i N 9 \ scALEOF FEET Figure 3.2 Location of sampling Transects Used During the Braidwood Aquatic Monitoring Program 1974-1975 9 , O e
Braidwood Station Phytoplankton Species Occurrence Sunmary. TABLE 3.17 V (Continued) BACILLARIOPHYTA. BACILLARIOPHYTA Navicula sp. L Achnanthes inflata Navicula sp. S
-Achnanthes lanceolata Nitzschia acicularis Asterionella formosa Hitzschia closterium Caloneis amphisbaena Centritractus belanophorus Nitzschia connutata Cocconeis sp. Nitzschia denticula Cocconeis placentula Nitzschia filiformis Hitzschia hungarica Coscinodiscus lacustris Nitzschia hungarica v. capitata Cryptomonas ovata Nitzschia palea Cyclotella antigua Hitzschia parvula Cyclotella glomerata Nitzschia sigmoidea
- Cyclotella meneghiniana Nitzschia tryblienella
- Cyclotella sp. Nitzschia spp.
Cymatopleura soles Opephora martyi Cymbella sp. Rhoicosphenia curvata j Cymbella tumida Stephanodiscus sp. i Diatoma vulgare Eunctia pectinalis Surirella ovalis Eunctia sp. Synedra acus Fragilaria brevistriata Synedra ulna j Synedra spp. Fragilaria capucina r Fragilaria construens Il Fragilaria crotonensis CHLOROPHYTA
'V Fragilaria intermedia Fragilaria lapponica Actinastrum hantzschii Fragilaria pinnata v. intercedens Actinastrum hantzschii v. fluviatile Fragilaria sp. Ankistrodesmus falcatus Ankistrodesmus sp.
Gomphonema acuminatum v. coronata Gomphonema constrictum Botryococcus braunii Gomphonema olivaceum Carteria cordiformis Gyrosigma acuminatum Carteria globulosa Gyrosigma scalproides Carteria sp. Cerasterias irregulare Meridion circulare Chlamydomonas sp. A Meridion circulare v. constricta Chlamydomonas sp. B Melosira distans Chlamydomonas sp. C Melosira granulata Chlamydomonas angulosa
- Melosira granulata v. angustissima Chlamydomonas globosa Melosira italica Chlamydomonas snowii Melosira varians Chlamydomonas sp. ; Navicula cincta Chlorogonium elongatum Havicula cryptocephala Havicula gastrum Chlorogonium euchlorum Navicula platysoma Closterium acutum " Closterium setaceum Havicula salinarum Closterium spp. -
Navicula tripunctata Closterium sp. A Navicula tripunctata v. schizonemoides Closteridium lunata Navicula viridula Closteridium sp. Navicula spp.
. h.
f i 3.27
I l TABLE 3.17 Continued CHLOROPHYTA (Continued) CHLOROPHYTA (Contirued) Closteriopsis lingis:,ima Scenedesums arcuatus v. platydiscus . Coelastrum microporum Scenedesmus acuminatus , Coelastrum morus Scenedesmus armatus Coelastrum sphaericum Scenedesmus bijuga Coelastrum sp. Scenedesmus bijuga v. alternans Coscinodiscus lacustris Scenedesmus brasiliensis Cosmarium botrytis Scenedesmus denticulatus Cosmarium granatum Scenedesmus denticulatus v. recurvatus
! Cosmarium sp. Scenedesmus dimorphus Crucigenia apiculata Scenedesmus longus Crucigenia quadrata Scenedesmus longus s. minutus Crucigenia rectangularis Scenedesmus obliquus
- Scenedesmus quadricauda g
Cricigenia tetrapedia Dictyosphaerium ehrenbergianum Scenedesmus quadricauda v. quadricaudc Dictyosphaerium pulchellum Scenedesmus quadricauda v. quadrispina ' Elaktothrix gelatinosa Scenedesmus quadricauda v. westii 1- Eudorina sp. Scenedesmus spp. Geminella sp. Scenedesmus sp. A 1 Glocoactinuim limneticum Schroederia setigera Glococystis ampla Selenastrum bibraianum l ~ Sphaerocystis schroeteri Golenkina radiata .
,. Golenkina radiata v. brexispi,a n Staurastrum sp.
Gonium sp. Tetrastrum heteracanthum 1 Kirchneriella contorta Tetrastrum glabrum Tetrastrum staurogeniaeforme h Kirchneriella lunaris Tetrastrum sp. i- Kirchneriella obesa I Kirchneriella obesa v. major Tetraedron minimum Lagerheimia (chodatella) genevensis Tetraedron trigonum v. gracile
; Lagerbaimia ciliata Weste11a botryoides
[ Lagerheimia quadriseta Lagerheimia subsalsa
, Lauterborniella elegantissima CYAN 0PHYTA Lobomonas rostrata Anabena spiroides Micractinium pussillum Anabena spp.
Oocystis borgei Anabena sp. A. I Occystis sp. Aphanocapsa sp. k Pandorina morum Calothrix sp. Pediastrum duplex Coelosphaerium collinsii Pediastrum duplex v. cornutum Gloeotrichia sp. [ Pediastrum simplex Gomphosphacria aponina [ Pediastrum tetras Gomphosphaeria sp. Pedinomonas minor Lyngbya contorta Polyedriopsis quadrispina Marssoniella elegans
~
Pteromonas angulosa Merismopedia sp. - Quadrigula chodatii Merismopedia tenuissima Quadrigula sp. Microcyctis sp. Scenedesmus abundans Nostoc sp. r Scenedesmus abundans v. longicauda Oscillatoria formosa g
~a .28
TABLE 3.17 Continued. O CYANOPHYTA (Continued) Oscillatoria geminata
- - Oscillatoria spp.
Raphidiopsis curvata l Spirulina major
- EUGLENOPHYTA luglena spiroides Euglena tortus Euglena spp.
Lepocinclis fusiformis Lepocinclis texta I, Lepocinclis sp. Phacus acuminatus Phacus lemmermannii I Phacus longicauda I Phacus orbicularis Phacus pleuronectes Phacus pyrum Phacus tortus . Phacus spp. '
- Phacus sp. A C Trachelomonas granulata Trachelomonas hispida Trachelomonas pulcherrima e Trachelomonas schauinslandii i Trachelomonas spp.
Trachelomonas sp. A Trachelomonas volvocina PYRROPHYTA . Gymnodinium limneticum Gymnodinium neglectum Gymnodinium sp. MISCELLANEOUS _ Chroomonas sp.
- Cryptomonas sp.
Cryptomonas ovata Oochromas mutabilis
;O i
3.29
TABLE 3.18 1974-1975 Braidwood Station Phytoplankton Major Groups Mean Total Number Per Milliliter. g Date And Eualenophyta
. Transect Bacillariophyta Chlorophyta_ Cyanophyta 31 Mar 74 7.5 2 277.5 6.0 4.0 187.0 8.0 0.0 18.0 3
298.0 25.5 0.0 19.0 4 154.0 27.0 0.0 1.0 5 25 May 74 46.0 1.5 2.0 4.0 2 40.0 2.5 0.0 5.5 3 58.0 6.0 0.0 8.5 4 79.0 4.5 0.0 6.0 5 12 Jun 74 2 181.0 33.5 0.0 4.0 3 142.0 18.0 0.0 13.5 t 4 166.5 25.0 1.5 12.5 5 153.5 31.0 0.0 6.5 l ,
. 23 Jun 74 2 160.5 30.0 0.0 18.5 &
3 156.5 38.5 0.0 21.5 W 4 179.5 40.5 0.0 12.0 5 113.0 57.5 0.0 31.0 6 Jul 74 2 208.0 84.5 '0
. 52.5 3 198.5 65.0 0.0 22.0 4 293.0 124.5 0.0 9.0 5 347.0 65.5 0.0 39.5 ul Jul 74 2 352.5 1. . 5 0.0 23.5 l 3 327.0 43.5 11.5 16.0
- 1. 4 181.0 47.0 0.0 18.0 5 321.5 71.0 0.0 25.5 4 Aug 74 2 173.0 103.5 0.0 4.5 3 143.0 59.5 0.0 1.5 4 163.0 29.5 0.0 6.0 5 122.0 106.5 0.0 0.0 s.
18 Aug 74
> 2 108.5 19.0 4.0 ,4 . 5 3 132.5 13.0 0.0 7.5 a W
4 121.0 14.5 2.0 5.5 5 144.5 5.0 5.0 5.0 3.30
TABLE 3.18 Continued. O Date And Euclenophyta Baci11ariophyta Chlorophyta Cyanophyta Transect 8 Sep 74 22.0 2 140.5 55.5 0.0 27.0 0.0 16.5 3 114.5 24.0 4 122.5 29.5 3.0 38.5 0.0 17.5 5 157.0 3 Dec 74 0.0 0.5 2 25.5 27.0 ' 12.5 0.0 8.0 3 30.0 2.0 4 33.0 13.0 0.0 9.5 0.0 1.5 5 28.0 12 Apr 75 0.0 11.5 179.5 20.5 7.5 2 24.0 0.0 3 216.5 0.0 6.5 180.5 20.0 8.0 4 21.5 , 0.0 5 205.0 . O O 3.31
' TABLE 3.19 1974-1975 Braidwood Station Phytoplankton Major Groups Mean Tutal Biovolume In Microliters Per Liter.
[' Date And Transett Baci11ariophyta Chlorophyta Cyanophyta Euclenophyta g . 31 Mar 74 0.6B1 0.003 0.008 0.015 2 0.404 0.005 0.000 0.057 3 4 0.605 0.031 0.000 0.065 0.004 7 5 0.449 0.007 0.000 25 May 74 0.091 0.001 0.004 0.014 2 0.333 0 002 0.000 0.044
. 3 0.111 0.003 0.000 0.030 4
0.144 0.002 0.000 0.022 [ 5 12 Jun 74 2 0.348 0.022 0.000 0.014 3 0.271 0.014 0.000 0.047 4 0.265 0.024 0.003 0.110 5 0.294 0.033 0.000 0.025 23 Jun 74 0.378 0.027 0.000 0.056 2 3 0.336 0.041 0.056 0.000 0.000 0.065 0.042 g 4 0.421 5 0.259 0.043 0.000 0.093 6 Jul 74 0.431 2 0.444 0.061 0.004 3 0.416 0.042 0.000 0.067 4 0.631 0.103 0.000 0.033 5 . 0.821 0.026 0.000 0.173 21 Jul 74 3 0.082
- 2 0.796 0.063 0.000 3 0.631 0.040 0.023 0.048 4 0.302 0.038 0.000 0.057 5 0.820 0.063 0.000 0.088 i 4 Aug 74 0.446 0.092 0.000 0.009 2
0.328 0.051 0.000 0.003 1 3 0.311 0.087 0.000 0.012 4 0.273 0.099 0.000 0.064
.. 5 18 Aug 74 2 0.250 0.010 0.012 0.012 3 0.282 0.005 0.029 0.017
[, 4 0.234 0.011 0.016 0.037 0.020 0.014 lll 5 0.297 0.004 6 3.32
1 LE 3.19 Continued. r Date And _ Transect Baci11ariophyta Chlorophyta_ Cyanophyta Euglenophyta 8 Sep 74 2 0.244 0.041 0.000 0.074 3 0.209 0.021 0.000 0.069 i 4 0.390 0.026 0.009 0.089 5 0.307 0.027 0.000 0.067 3 Dec 74 2 0.069 0.023 0.000 0.002 3 0.106 0.015 0.000 0.032 4 0.110 0.024 0.000 0.004 5 0.064 0.017 0.000 0.006
' 12 Apr 75 2 0.341 0.024 0.000 0.041 3 0.521 -0.015 0.000 0.027 4 0.282 0.013 0.000 0.020 5 0.478 0.014 0.000 0.043 0
WA 3.33
The total number of phytoplankton (all species combined) collected was highest during the suanmer sampling trips (Table 3.20). As shown on Table 3.20,the total number of phytoplankton ranged O from a high of 478 cells /ml in July, 1974 to a low of 43 cells /ml in recember,1974 (Transect 5). The corresponding biovolumes are shown in Table ' 3.21. The total number of phytoplankton per ml at Transects 2,3,4 and 5 are shown graphically in Figures 3.3-3.6. These results are consistent with studies of plankton communities in other temperate rivers which show plankton at a minimum during the winter, at which time most of the phytoplankton are represented by diatoms. The most abundant algal species for each of the sampling periods are shown in Table 3.22. Diatom species, both on a density and biovolume basis, prevailed throughout the year at all transects (Tables 3.23-3.24). CyclotellameneghinianaandMelosi3avariarg were the most common. Zooplankton Samples for zooplankton were collectej in the Kankakee River and Horse Creek from March, 1974 thru tpril, 1975. Forty-five species belonging to nine phyla were identified (Table 3.25). The majority of the species identified belonged to two phyla: Cladocera and Fotifera. The average total density of all zooplankton varied at each transect during the seasons of the year (Table 3.26) with the greatest number cf zooplankters ccourring in the summer samples. This is shown graphically in Figures 3.7-3.10 The density - of zooplankton was relatively uniform among the river transects until summer when density of organisms at Transect 2 was much higt 3.3h
TABLE 3.20 Braidwood Station Phytoplankton Mean Total Number Per Hilliliter. Date Sampled Transect 2 Tranteet 3 Transect 4 Transect 5 l ,31 Mar 74 310.5 226.5 362.5 187.5 25 May 74 58.5 48.0 72.5 89.5 12 Jun 74 232.5 188.S 224.0 209.5 23 Jun 74 219.5 227.0 239.5 201.5 6 Jul 74 373.5 298.0 438,0 478.5 21 Jul 74 475.5 414.0 288.5 446.5 4 Aug 74 311.5 239.0 211.5 250.C 18 Aug 74 172.0 188.5 169.5 195.5 8 Sep 74 251.5 170.0 199.0 255.0 3 Dec 74 67.0 63.0 54.5 43.5 12 Apr 75 230.5 269.0 218.5 256.5
],
we
.w 3.35 l
I TABLE 3.21 Braidwood Station Phytoplankton Mean Total Biovolume In Microliters Per Liter. g Date Samoled Transect 2 Transect 3 Transect 4 Transect 5 31 Mar 74 C.742 0.491 0.740 0.471 25 May 74 0.120 0.379 0.144 0.168 12 Jun 74 0.412 0.036 0.439 0.389 23 Jun 74 0.482 - 0.544 0.534 0.395 6 Jul 74 0.984 0.550 0.790 1.073 21 Jul 74 0.991 0.774 0.482 1.026 4 Aug 74 0.608 0.452 0.436 0.436 18 Aug 74 0.356 0.404 0.334 0.424 8 Sep 74 0.426 0.323 0.554 0.485 3 Dec 74 0.121 0.178 0.151 0.096 h 12 Apr 75 0.444 0.605 0.338 0.579 P' 9 3.36
10000 Per Milliliter At 1ransect 2. YEAR O o 1975 4 4 1000 m
~
a i: j'O . I, . - N l E I w 100 e pr =
%4 .O ' 10 1AN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV OEC 1 . 3L---_---_____
10000~^ ~' Por Milliliter At Iransec8 J. 4
'4 i
YEAR . ... o 1974 o 1975 h
>a I'
l l l l 1000: l ame E sw
" i i
_ b_ 2 M i w g as
-M llll O; * =
f. p. M 4 k knJ E CD J-j !i,0 N 1 f 7 m g. m I a 10 ' JAN 'fEB - MAR- ~APR NAY JUN lul-'AUG SEP OCT NOV DEC 3.38
10000 Per Militliter At transect *. YEAR o 1974 o 1975 6 e i 1000 { 5 s 5 OE o
?
100 O w
.O (UG SEP OCT NOV DEC ! MAR APR MAY JUN JUL JAN FEB 3.39
. - -. . -. -_. - . - . . - . ~ . . . _ - - _ . - - - . - - . ~ .
- 2. 3 . # . y , . . , , ., . . . . . . . . . . . . . . . . . . . . . , .
10000.w a Per Milliliter At Transect 5. - l i YEAR o 1974 g , o 1975 i' , j J t l 1000 ) I a E I
'g W 4 I 3 82 k- W z- 0- i '. m g 3 ~ .. a * ' aut .
W
. O i N 'M 4:
W k 1 M-O
& e 9
100 A , a 6 $9 ,
- w m.
O-
- 10. ._.
.JAN FEB . MAR- APR; MAY JUN .J U L- AUG SEP- DCT N0Y .0EC . . ..- .- - - ._ . . . - 3. 4 0. - _ _ - _ _ _ _ _ _ _ _ _ ._
I l TABLE 3,22 Braidwood Station Phytoplankton Abundant Species. >0 Date Genus Genus Genus Genus l Species _ Species _ Species Sampled Species Transect 3 Transect 4 Transect 5 - Transect 2_ Diatoma Navicula Navicula 31 Mar 74 Navicula salinarum viridula vulgare salinarum Cyclotella Synedra Achnanthes Diatoma vulgare meneghiniana ulna lanceolata Stephanodiscus Melosira Gomphonema Cyclotella . olivaceum meneghiniana hantzschii ' varians Nitschia Gyrosigma Gyrosigma 25 May 74 Gomphonema scalproides
- olivaceum sigmoidea scalproides l Gomphonema Melosira Achnanthes Nitzschia lanceolata acicularis constrictum varians Cryptomonas Trachelomonas Surirella Cyclotella volvocina ovalis meneghiniana ovata Cyclotella Navicula Navicula Cyclotella 12 Jun 74 cryptocephala meneghiniana meneghiniana cryptocephalt Cyclotella Cyclotella Navicula Gyrosigma sc.tlproides meneghiniana meneghiniana salinarum Cryptomonas Cryptomonas Cryptomonas Navicula ovata salinarum ovata ovata Melosira Chlamydomonas .
23 Jun 74 Trachelomonas Trachelomonas " volvocina varians globosa volvocina Synedra Trachelcmonas Nitzschia' Scenedesmus acuminata palea , armatus ulra Cymatopicura Chlamydomonas Navicula Hitzschia salinarum sigmoidea solea globosa
.rg _
e O 3.41
4 l TABLE 3.22 continued. .m Genus Genus Genus Genus ( Date Species j Sampled Species Species Species i Transect 2 Transect 3 Transect 4 Transect 5 l 6 Jul 74 Cyclotella Surirella Chlamydomonas Cyclotella meneghiniana ovalis globosa meneghiniana i I Chlamydomonas Navicula Melosira Navicula globosa cryptocephala varians cryptscephala Cryptomonas Gyrosigma Surirella Surirella ovata scalproides ovalis ovalis I 21 Jul 74 Cyclosella Cyclotella Nitzschia Cyclotella
- menegniniana meneghiniana acicularis meneghiniana Nitzschia Melosira Navicula Nitzschia ;
acicularis varians cryptocephala acicularis
,' Melosira Navicula Melosira varians cryptocephala varians Cyclotella Cryptcmonas Scenedesmus Chlamydemonas 4 Aug 74 meneghiniana ovata armatus globosa Chlamydomonas Chlamydomonas Navicula Cycletella ' globosa globosa salinarum meneghiniana Scenedesmus Scenedesmus Scenedesmus Navicula armatus quadricauda quadricauda salinarum 18 Aug 74 Cyclotella Cyclotella Cyclotella Cyclotella meneghiniana meneghiniana meneghiniana menegh" iana Cryptomonas Cryptomonas Cryptomonas Cryptomunas ovata o/ata ovata ovata l
I' Melosira Melosira Melosira Melosira varians varians varians varians gy .-
~
8 Sep 74 Cyclotella Cyclotella Cyclotella Cyclotella _ meneghiniana meneghiniana meneghiniana meneghiniana Chlamydomonas Melosira Melosira Cryptomonas l globosa varians varians ovata i Cryptomonas Navicula Trachelomonas Melosire ovata cryptocephala volvocina varians 3.b2
e- - __ ___ _ _-_ __ _ b TABLE 3.22 continued. O Date Genus Genus Genus Genus Species Species Species Species Sampled 4 Transect 2 Transect 3 Transect 4 Transect 5 Chlamydomonas Cryptomonas Chiemydo nonas Cyclotella 3 Dec 74 meneghinfana globosa ovata globosa Chlamydomonas Cryptomonts Chlamydomonas Cryptomonas ovata globosa ovata globosa Cyclotella Trachelomenas Cyclotella Cryptomonas meneghiniana volvocina meneghiniana ovata 12 Apr 75 Cyclotella Cyclotella Cyclotella Cyclotella meneghiniana meneghiniana meneghiniana meneghiniana Navicula Diatoma Navicula Diatoma cryptocephala vulgare cryptocephala vulgare Cryptomonas Nav'cula Synedra Navicula
- ovata cryptocephala acus cryptocephala O
R 99
'ee N O
3.h3
TABLE 3.23 Braidwood Station Phytoplankton Major Groups Mean Total Number Percent Occurrence. 9 Date And
. Transect Baci11ariophyta Chlorophyta Cyanophyta Euclenophyta, j
1.29 2.42 89.37 1.93 0.00 7.95 3 82.56 3.53 5.24 7.03 0.00 4 82.21 0.00 0.50 5 82.13 14.40 5M 74 2.56 3.42 6.84 78.63 0.00 11.46 83.33 5.21 3 0.00 11.72 4 E0.00 8.28 7.60 5.03 0.00 5 88.27 12 Jun 74 0.0 1.72 77.85 14.41 2 0.0 7.16 3 75.33 9.55 5.58 11.16 0.7 4 74.33 0.0 3.10 5 73.27 14.80
. 23 Jun 74 0.00 8.43 73.12 13.67 1 2 0.00 9.47 3 68.94 16.96 5.01 16.91 0.00 4 74.95 0.00 15.38 5 56.08 28.54 6 Jul 74 22.62 0.54 14.06 2 55.69 0.00 7.38 66.61 21.81 , 3 0.00 2.05 4 66.89 28.42 8.25 13.69 0.00 5 ,
72.52 21 Jul 74 15.67 0.00 4 . 9,. 2 74.13 2.78 3.85 78.99 10.51 3 0.00 6.24 62.74 16.29 4 0.00 5.94 5 72.00 15.90 m 4 Aug 74 0.00 1.44 2 55.54 33.23 0.63 24.90 0.00 3 59.83 0.00 2.84 4 77.07 13.95 0.00 46.83 40.88 0.00
. 5 '18 Au9 74 2.33 2.62 2 63.08 11.05 3.98 70.29 6.90 0.00 3
8.55 1.18 3.24 a 4 71.39 2.56 2.56 2.56 W 5 7 3.91 3.4h
TABLE 3.23 continued : Date And Transect Bacillariophyta Chlorophyta Cyanophyta Euglen.phyta o ; j 8 Sep 74 i 2 55.86 22.07 0.00 B.7S 3 67.35 15.88 0.00 9.71 4 61.56 14.82 1.51 12.06 5 61.57 15.10 0.00 6.86 3 Dec 74 2 30.06 47.30 0.00 0.75 3 47.62 1.1.84 0.00 12.70 4 60.55 . 85 0.00 3.67 5 64.37 .i.84 0.00 3.45 12 Apr 75 2 77.87 0:89 0.00 4.99 3 80.48 8.92 0.00 2.79 4 82.61 9.15 0.00 2.97 5 79.92 8.38 0.00 3.12 t 0 4 O e 1 a l N r-s - i L .O l
._ ._ _ _ ._ . 3M. . _ -- -- ,
Braidwood Station Phytoplankton Major Groups Mean Total i TABLE 3.24 Biovolume Percent Occurrence, g Date And Baci11ariophyta_ Chlorophyta Cyanophyla. Eucienophyta Trans_e_cl 31 Mar 74 1.08 2.02 2 92.72 0.40 1.02 0.00 11.61 3 82.28 8.78 81.76 4.19 0.00 4 0.85 95.33 1.49 0.00 5 25 May 74 3.33 11.67 2 75.83 0.83 0.53 0.00 11.61 3 87.86 20.83 77.08 2.08 0.00 4 13.10 85.71 1.19 0.00 5
'12 Jun 74 2 84.47 5.34 0.00 3.40 3 74.86 3.07 0.00 12.98 4 60.36 5.47 0.68 25.06 5 75.58 8.48 0.00 6.43 23 Jun 74 2 78.42 5.60 0.00 11.62 3 W
61.76 7.54 0.00 11.95 3 4 78.84 10.49 0.00 7.87 65.57 10.89 0.00 23.54 5 6 Jul 74 43.80 2 45.12 6.20 0.41 75.64 7.64 0.00 12.18 3 79.87 13.04 0.00 4.18 4 76.51 2.42 0.00 16.12 5
, 21 Jul 74 8.27 2 80.32 6.36 0.00 81.52 5.17 2.97 6.20 3
62.66 7.88 0.00 11.83 4 6.14 0.00 ~8.58 5 79.92 4 Aug 74 73.36 15.13 0.00 1.48 2 72.57 11.28 0.00 0.66 3 71.33 19.95 0.00 2.75 4 62.61 22.71 0.00 14.68 _ 5 _
! 18 Aug 74 2.81 3.37 3.37 3
2 70.22 7.18 4.21 3 69.80 1.24 3.29 4.79 5.9F g l 4 70.06 0.94 8.73 3.30 5 70.05 l m , b.5
TAELE 3.24 Continued. O Date And Euclenophyta Bacillariophyta Chlorophyta Cyanophyta Transect 8 Sep 74 2 57.28 9.62 0.00 17.37 3 64.71 6.50 0.00 21.36 4 70.40 4.69 1.62 16.06. 5 63.30 5.57 0.00 13.81 l 3 Dec 74 2 56.20 19.01 0.00 1.65 3 59.55 8.43 0.00 17.98 4 72.85 15.89 0.00 2.65 5 66.67 17.71 0.00 5.25 1
'12 Apr 75 0.00 9.23 2 76.80 5.41 2.48 0.00 4.46 3 86.12 5.92 j 4 83.43 3.85 0.00 2.42 0.00 7.43 ;
5 82.56 O I l I-l l N - N 3.47'
TA%E 3.25 Braidwood station Zooplankton species occurrence Summary. AMPHIPODA Hyalella azteca Macrocyclops albidus Paracyclops fimbriatus poppei
- ANOSTRACA . Harpa'cticoida Anostraca Canthocamptus staphylinoides DECAPODA CLADOCERA' Bosminidae- Orconectes Bosmina longirostris ISOPODA Chydoridae Acroperus harpae Asellus intermedius Alona guttate Alona rectangula OSTRACODA i Camptocercus rectirostris Candona Chydorus sphaericus Candona simpsoni b Cyclocypris forbcsi urycerus lamellatus
~ ,- Leydigia acanthocercoides Cypria turneri -Leydigia quadrangularis Cypridopsis vidua ; Ilyocypris Pleuroxus denticulatus Plev.oxus procurvatus Ostracoda Dephr.ida e -
Physocypria pustulosa
- Cariodaphnia quadrangula Potamocypris smaragaina Ceriodaphnia reticulata ROTIFERA i' Daphnia Daphnia galeata mendotae Asplanchna i/] V Moina affinis Brachionus Scapholeberis kingi Brachionus angularis '- '.,+.-
Simocephalus vetulus Brachionus calyciflorus Macrothricidae Brachionus quadridentata Ilyocryptus sordidus. Brachionus urceolaris Macrothrtx laticornis Brachionus variabilis Sididae Cephalodella Diaphanosoma brachydrum Colurella Diaphanosoma leuchtenbergianum Keratella cochlearis Keratella mixta BRANCHIURA Keratella quadrata
-Argulus Lecane L; Lepadella t -! Monostyla-L' COPEPODA f;otholca l Calanoida Notommatoidia L- Diaptomus Platyias patulus lI- Diaptomus siciloides Osphranticum labrunectum Platyias quadricornis Cyclopoida Polyarthra "L Testudinella i_ Cyclopidae ~
Cyclops vernalis Trichocerca
~
Eucyclops agilis Trichotria _ Eucyclops speratus
}
n
~
L) 9 3.48
e - I TABLE 3.26 Braidwood Station Zooplankton Mean Total Number Per Cubic Meter. Date Sampled Transect 2 Transect 3 Transect 4 Transect 5 31 Mar 74 27 27 33 50 25 May 74 2 81 259 159 336 12 Jun 74 238 208 218 246
.. 23 Jun 74 1091 926 760 543 6 Jul 74 266 241 81 220 21 Jul 74 49 41 33 52 4 Aug 74 170 144 276 86 18 Aug 74 -
60 57 189 66 8 Sep 74 245 166 76 202 l 3 Dec 74 478 644 355 400
" 12 Apr 75 115 118 92 104 l.
g e J l b we I 4 6 3.49 i
O
~ ~
O 1974 o
-1975 Braidwood Station Zooplankton Mean O
Total Number Per Cubic Meter At Transect 2. l Figure 3.7 LOG ME AN TOTAL NUMBER PER M , G~ a, - a= E u a_ 2 i
- FT1 EXF ooy
= ;
o GG
~~ ! U1 #
N l Wg En*4 O
; i I
l r-c CT) in r'1
*ta O =
c, r's L"3 i
~~" ~ .. . M. ' ,C ; . . .. .
11 Figure: 3.8 1974-1975 Braidwood Station 200 plankton Mean Total Number Per Cubic Meter At Transect 3.- 3
- LOG "MEAN TOTAL. NUMBER PER M .
g-> - gu, E=> .; g ..
- m. 6 -
sh M , E m FT) EMS E Dip - WW 4 4 OW ta g W -g; w X h C
- 1 C
< M i vs tvt N O ("3
= =f 2
- O t =Cll 4
O
. r'1 i .
n . . Figure 3.9 39W-1975 Braidwood Station Zooolankton Mean Total Number Per Cubic Meter At Transect 4. LOG MEAN TOTAL NUMBER PER M .
- g g . 3=> E w
o, m.
- r- ,
X
-v1 '
FT1 US E
- XS O DE l O gg
, s WW u Y wa,
- >=
C 2 s. C r-- 3a. C C") V9 F't
*O O
C4
--e 2
o 4 t"r rvt i
.. a-t.... . . . .
i! ,
~
Figure' '3.10 1974-1975 Braidwood: Station Zooplankten Mean Total Number Pcr Cubic Meter At Transect 5."
~
3 1 - LOG MEAN TOTAi NUMBER PER M f, g .g s.u .
== -
I X . i y M W , .d m O 0D>
> n.
o s' w ' 20 WQ M -J U1 A-(4 IE
- U1 M
.. t.4 4
'C M
w / G P > C c1 4 Y M o O M i O i u j 'O ! e e m G , e , . -- . ..
... . . . _ . . .. . . _ . _ - ~._. . _.. . _ . . _,_ ,r than the other river stations. Numbers in the river (Transect 2) ranged from a high of 1,091/m 3 .
on June 23, 1974 to a low of 27/m 3 on March 31, 1974-(Table 3.26). Table 3.27 lists the most -abundant zooplankton species during the, study-period.; Especially. common were species of the
' family Cyclopidae and the order Cladocera _(Tables 3.28-3.29).
Bosmina longirostris and Chydorus sphaericus were most commonly found through~out the study period. Periphyton The species composition, density and biovolume of periphyton collected in the Kankakee River (Transects 2,3 and5) _and Horse. Creek (Transect 4) 'during the 1974-1975 aquatic moni-
.toring. program are.shown in Tables 3.30-3.32 over 400 species-of -diatoms: were identified and- counted in the period March, 1974 Q _ through Apr11,J 1975.: Cocconeis placentula v., comphonema olivaceum, Cyclotellr. meneghiniana, Melosira varians, Achanthes
- lanceolata and Diatoma vulgaree were common throughout-the study period (Table 3.33).
-A comparison-of the total densities and biovolumes-
- of_ all diatom species shows~ very little difference either among the river transects or between the river and Horse Creek (Tables- -3.31-3.32)'. Total _ density ranged from a high of- 241,424 cells /cm2 on August 18, 1974-(Transect 5-R) to a low of 10,404 1 cells /cm on April- 12,1975 (Transect '3-R) (Table 3.31). Total biovolume ranged from'a'high of 77:ul/dm 2 on September 8, 1974 C _(Transect 5-R).to a low of-3u1/dm2 on April 12, 1975 (Transect 3-R) -
._ (Table 3.32) .
An analysis of the periphyton community iridicates
-3.54 1 =~--r--r- es~,n --
1 TABLE 3.27 1974-1975 Braidwood Station Zooplankton Abundant Species. Genus Genus Genus Date Genus Species Species Species Species
--! Sampled Transect 3 Transect 4 Transect 5 Transect 2 Bosmina Cyclopidae 'Bosmina 31 Mar 74 Cyclopidae longirostris longirostris Chydorus Bosmina Cyclopidae Bosmina - longirostris sphaericus longirostris Cyclopidae Leydigia Chydorus acanthocercoides sphaericus Chydorus Chydorus Chydoru: ' ~
25 May 74 Chydorus sphaericus sphaericus sphaericus sphaericus Bosmina Cyclopidae Cy'clopidae Bosmina longirostris longirostris Bosmina Bosmina Cyclopidae Cyclopidae longirostris longirostris 9 Chydorus Chydorus Chydorus 12 Jun 74 Chydorus sphaer ic."; sphaericus sphaericus sphaericus Bosmina Cyclopidae Bosmina Cyclops longirostris longirostris Cyclops cosmina Cyclops Bosmina vernalis longirostris vernalis longirostris Cyclopidae Cyclopidae Cyclopidae 23 Jun 74 Cyclopidae Cephalodella Chydorus Ceriodaphnia Bosmina longirostris sphaericus reticulata Cypria Ceriodaphnia Cyclops Bosmina vernalis longirostris turneri reticulata Les ( 3.55 Q I
l TABLE 3.27 Continued. Date Genus Genus Genus Genus
. Sampled Species Species Species Species Transect 2 Transect 3 Transect 4 Transect 5 6 Jul 74 Cyclopidae Cyclopidae Cyclopidae Cyclopidae i Rotifera Bosmina Rotifera Rotifera longirostris I~ Acroperus Bosmina I harpae longirostris 21 Jul 74 Cyclopidae Cyclopidae Cyclopidae Cyclopidae l
Lecane Cyclops Rotifera Keratella vernalis cochlearis Eucyclops Keratella Chydorus Chydorus agilis mixta sphaericus sphaericus 4 Aug 74 Cyclopidae Cyclopidae Cyclopidae Cyclopidae Eucyclops Eucyclops Keratella Canthocamptus , speratus speratus quadrata staphylinoides.
- Lepadella Lepadella Keratella Keratella cochlearis quadrata 18 Aug 74 Cyclopidae Cyclopidae Cyclopidae Rotifera
. Rotifera Brachionus Rotifera Lecane urceolaris -
Chydorus Chydorus Cyclopidae sphaericus sphaericus 8 Sep 74 Cyclopidae Cyclopidae Cy,:1c?idae Cyclopidae Bosmina Rotifera Rot ifera Brachionus longirostris quadridentata
~
Rotifera Acroperus Macrothrix - harpae laticornis 10 l
~
3.56
, TABLE 3.27 continued, l.
Genus Genus Genus Genus Date Sampled. Species Species Species Species, Transect 2 Transect 3 Transect 4 Transect 5 3 Dec 74 Cyclopidae Cyclopidae Cyclopidae Cyclopidae Bosmina Bosmina Bosmina Chydorus longirostris longirostris longirostris sphaericus Chydorus Chydorus Bosmina sphaericus sphaericus longirostris
- 12 Apr 75 Chydorus Chydorus Chydorus Bosmina sphaericus sphaericus sphaericus longirostr1s Bosmina Cyclopidae Bosmine Chydorus longirostris longirostris sphaericus Bosmira Cyclopidae Cyclopidae longirostris ,;-
O e 4 4 i g O i
-- ~~-
3.57
1 t g.. t p .. TABLE 3.281974-19758raidwood Station Zooplankton. Major Groups Mean Total
. Number Per Cubic Meter. 'q
- Number x 102 Date And ih Transect Cladocera Copepoda Ostracoda Rotifera n '
31 Mar 74 0
* *# 2 13 13 1 4 3 0 t 3 20 0 0 i; e 4 16 ' 17 0
ru 5 32 17 1
?9s i 25 May 74 @[h; 45 26 24 7$
- 2. 186 72 20 4 3 163 5 30 9 0 4 120 53 b$4 5 221 62 0 m' D Y: 12 Jun 74 5 4
%%'! 2 174 55 23 YAj i 3 137 37 11 10 16 Ay 4 126 66 P'~ j 41 1 -
5 199 ikkh. ' 1~~ ' ? 23 Jun 74 II 4 2 138 906 23 24 3 160 652 41 73 62 L 4 110 588 418 0 0 0 gij 5 125 6 Jul 74 -
$A A'-
- 2 3
4 6 251 227 0 0 11 8 7k 4 11 54 0 0 16 37 5 0 183 1.Jk]2 gge . dEU 21 Jul 74 W 2 0 44 0 5 Ed 3 0 37 0 4
$$f 4 1 21 39 0
0 11 9 5 4 S,gg G 4 Aug 74 N
"."25 . li 2
3 0 0 123 99 0 0 47 45 c.D; 4 0 218 0 58 63 0 23 ' ~bfG we i 5 0 ME, 18 Aug 74 10 T!Bidi 2 3 47 0 26 M'i 3 7 24 0 A ) 4 67 84 0 38
- e3 5 4 11 0 51 l
4 8 Sep 74
- f. " 60 143 0 42 2
61 0 71 ie- 3 34 'W 4 19 36 0 21
- ,5 ,
x ss _am 3.58 rd 50
TABLE 3.28 Continued. Date And Number x 102 g Transect Cladocera Cocepoda Ostracoda Rotifera 3 Dec 74 2 222 240 0 16 3 270 374 0 0 4 140 215 0 0 5 196 204 0 0 12 Apr 75 2 75 16 0 24 3 70 31 0 17 4 67 17 0 8 5 64 27 0 13 9 9' m O 3.59 - - . , - , _ _ _ _ _ . . _ - - - - . - - _ ~ . . . . . . -
. . . l yl , f 'ABLE 3.29 1974-1975: Braidwood Station Zooplankton Major Groups Mean Total Number '4 -
Percent Occurrence.-
*= Date And l ,
yTransect- . Cladocera Copepoda Ostracoda Rotifera 31 Mar 74 " - 2 48.14 48.15 3.70 0.00 3 74.07 14.81 11.11 0.00
- 4 48.48 51.51 0.00 0.00 5 -64.00 34.00 0.00 0.00 2S' May 74 ,
< 2' 66.19 16.02 9.25 8.55 3 62.33 27.79 7.72 1.54 -4 75.47 18.87 5.66 0.00 ~5: 65.77' 18.46 0.00 15.78 12 Jun 74-2 73.11 23.11 2.10 1.68 -3 65.86 17.79 5.29 11.06-4 57.80 30.28 4.59- 7.34 ...- 5- 80.91 -16.67 0.41 2.03 p ~ ' '23 Jun 74 .O 2- 12.66: 83.04 2.11 2.20 3 17.29 70.41 4.43 7.89 4- 14.48 77.37. 0.00 8.15 5 23.03 76.98- - 0.00 0.00 . 6 Jul 74 -
2 1.50 94.36 0.00 4.14 3 2.49 94.19 0.00 3.32-4- '13.58 66.67 0.00 -19.75
-5; _0.00 83.18 - 0.00 16.82
. )h; 21 Jul 74 0.00 89.79- 0.00 10.20 Y 2 90.25 0.00 9.76 1- 3 0.00
~
4 3.03 '63.64 0.00 ~ 33.33 17.31 5- 7.69 --75.00 0;00 L 4 Aug 74 - " 2 -0.00 72.35 0.00 27.65 r 3 0.00 .68.75 0.00 31.25 0.00 '78.99 0.00 21.01 47 4 0.00
~
5 0.00 73.25 _ 26.74 ,. 18 Aug 74~ 16.67 h 0.00 2 __5.00- 78.33 12.28 42.11- 0.00 45.61
- i. 3
,h -4 35.45 44.44 0.00 20.11 0 5 -6.06 16.67 3.6o o,co- 77.27 L
n--, -,p -ogg
., g9yggg g w g 3-wg, eacg-ai-,y-
-- .- .. . . - . - ~. . _ - . - -
f TABLE 3.29 Continued. Date And Transect Cladocera Copepoda 'Ostracodt, Rotifera h ' 8 Sep-74 2 -- ~24.49 58.37 0.00 17.14 3 20.48- 36.75 0.00 42.77 - 4 24.99 47.37 0.00 27.63 5 15.85-- 59.41 0.00 24.76
. 3 Dec 74 2 46.45 50.20 0.00 3.35 3- 41.93 58.08 0.00 0.00 4 39.44: 60.57 0.00 0.00 .
5 49.00 51.00 0.00 0.00 12 Apr 75; 2 :65.22 13.91 0.00 20.87 3- -59.32 26.27 0.00 14.41 -
- 4. 72.83 18.48 0.00 8.70
- 5 61.54 25.96 0.00 12.50 O
+
9
~
l 0 3.61 _ _ _ . _ _ = _ _ _ _ _ - . _ - . . . . .. .
I l g.
. TABLE 3.30 '197bl975 Braidwood Station Periphyton Species Occurrence Sumary.
v7 V.'
. BACILLARIOPHYTA ACHNANTHES-affinis. bacillum clevei. hyalina clevei v. rostrata lawisii '
ir deflexa ' lewisii v. inflata
! exigua silucula v. truncatula exigua v. constricta ventricosa v. alpina - exigua v. heterovalva ventricosa v. truncatula F exilis hauckiana COCCONEIS huackiana v. rostrata diminuta hungarica fluviatilis lanceolata- pediculus placentula lanceolata v.-dubia lanceolata v. omissa placentula v. euglypta lanceolata-v..rostrata placentula v. lineata lemmermanii scutellum lewisiana: thumensis linearis linearis v. curta COSCIN0 DISCUS ,
linearis v. pusila rothii v. subsalsa n microcephala i"/ CYCLOTELLA minutissima minutissima'v. macrocephala . antigua *
. montana atomus pinnata comta facetia AMP _HIPlEURA 91omerata kutzingiana micans kutzingiana v. planetophora pellucida kutzingiana v. radiosa menaghiniana-AMPHORA
".. operculata ovalis socialis-ovalis v. pediculus stelligera perpusilla.
" " CYLINDROTHECA a
gracilis
' ANOM0ENEIS:
CYMATOPLEURA sphaerophorum v. polygrama solea
-vitrea- < CYMBELLA .aequalis ~
ASTERIONELLA formosa- amphicephala angustata
.t CALONEIS angustata v.'hybrida amphisbaena br 3.62
TABLE 3.30 continued. - ' cistula prearupta v. bidens cymbifonnis roste11ata gracilis serpentrionalis microcephala tenella
, naviculiformis perpusilla FRAGILARIA prostata brevistriata sinuata brevistriata v. inflata tumida capucina tumidula capucina v. mesolepta turgida construens turgidult construens v. binodis ventricosa construens v. pumila construens v. venter DFNTICULA crotonensis tenuis v. crassula -
crotonensis v. oregona lapponica DIATOMA leptostauron pinnata anceps anceps v. -linearis pinnata v. intercedens elongatum v. tenue pinnata v. lancetula
- hiemale vaucheriae tenue v. elongatum virescens l- vulgare g l vulgare v. breve FRUSTULIA w vulgare v. grande rhomboides vulgare v. linearis rhomboides v. amphipleuroides rhomboides v. e.apitata DIPLONEIS rhomboides v. saxonica elliptica rhomboides v. viridula interrupta vulgaris oblongella puella .
G.0MPHONEMA ' smithii abbreviatum smithii v. pumila acuminatum acuminatum v. coronata EPITHEMIA~ acuminatum v. turris turgida angustatum zebra v. saxonica angustatum v. producta angustatum v. sarccphaugs EUN0TIA angustatum v. undulata arcus augur arcus v. fallax bohemicum curvata constrictum diadon constrictum v. capitata
~
elegans gracile - pectinalis v. minor intricatum praerupta intricatura v. pumila 4 3.63
i TABLE 3.30 continued. - lanceolatum mutica '- lanceolatum v. insignis mutica v. cohnii longiceps v. subclavata mutica v. stigma olivaceum 'mutica v. tropica olivaceum v. calcarea mutica v. undulata olivaceum v. minutissima notha parvulum oblonga parvulum v. micropus odiosa parvulum v. subelliptica peregrina sphaerophorum perpusilla pelliculosa GYROSIGMA :srotracta acuminatum pseudoreinhardtii attenuatum pupula scalproides pupula v.'capitata sciotense pupula v. elliptica pupula v. mutata HANTZSCHIA pupula v. rettangularis amphioxys pupula v. rostrata amphicxys v. capitata pygmaea radiosa MELOSIRA radiosa v. tenella distans rhyncocephala granulata rhyncocephala v. amphiceros
,Q granulata v. angustissima italica .
rhyncocephala v. germanii rotaeana varians - salinarum salinarum v. intermedia MERIDION- sanctaecrucis circulare scutelloides circulare v. constrictum secreta v. apiculata seminulum NAVICULA, seminulum v. hustedtii t accomoda simula ' [ agrestis subfasciata anglica subhalophila anglica v. subsalsa subhamulata angusta subocculata arenaria symetrica
, arvensis tenera asymbasia tripunctata atomus tripunctata v. schironemoides auriculata viridula i bicephala viridula v. avenacea i biconica viridula v. linearis ^~
canalis viridula v roste11ata capitata - capitata v. hungarica NEIDIUM ~ affine O l 3.64
TABLE 3.30 continued. I cascadensis affine v. amphithyncus h affine v. undulatum ] cineta cinna binode
' circumtexta , . bisulcata dubium clementis cocconeiformis dubium v. constrictum iridis v. ampliatum confervacea confervacea v. peregrina contempta NITZSCHIA contenta v. biceps acicularis costulata acuta amphibia cryptocephala angustata v. curta cryptocephala v. veneta cuspidata bacata cuspidata v. ambigua clausii decussis comunis elginensis commutata constricta v. parva elginensis v. capitata elginensis v. lata denticula elginensis v. neglecta dissipata excelsa Fasciculata elmorei flexa exigua fonticola exigua v. capitata frustulum frustulum v. perminuta
- t. gastrum frustulum v. perpusilla gottlandica graciloides gracilis gregaria hantzschiana grimmei hungarica halophila kittonii halophila v. tenuirostris kutzingiana 2 hassiaca linearis microcephala heufleri obsidialis i heufleri v. l'eptocephala hustedtii obtusa i palea inflexa paleacea integra parvula laevissima lanceolata recta romana latens scapeliformis lateropunctata sigma luzonensis sigmoidea menisculus lyra sinuata v. tabellaria menisculus v. upsaliensis stagnorum minima sublitiearis minuscula thermalis v. minor _
muralis tryblionella O
~
3.65
h. TABLE 3.30 continued.- .. . . , , , . . . - tryblionella v. calida producta [) '~ tryblionella v. debilis pygmaea tryblionella v. levidensis ' smithii
- tryblionella v. victoriae . -vermicularis STEPHAN0 DISCUS vitrea astrea astrea v. minutula OPEPHORA dubius americana invisitatus martyii , niagare swartzii SURIRELLA PERONIA angustata fibula ovalis ovalis v. pinnata intermedium ovata ovata v. crumens ;: PINNULARIA_ ovata v. pinnata
- i. abaujensis v. subundulata borealis ovata v. salina borealis v. rectangularis SYNEDRA I brebissonii I caudata , acus gibba amphicephala
- intermedia capitata nodosa delicatissima obscura fasciculata ids stomatophora fasciculata v. truncata i
i- subcapitata filiformis v. exilis subcapitata v. paucistriata incisa substomatophora parasitica l Ludetica parasitica v. subconstricta '2 viridis pulchella-pulchella v. lacerta
' PLEUR 0 SIGMA , radians .; delicatulum rumpens rumpens v. familia.is rumpens v. fragilarioides
[401COSPHENIA
-curvata socia tenera RHOPALODIA tabulata gibberula ulna gibberula v. protracta ulna v. spathulifera ulna v. subaequalis STAURONEIS ulna v. subcapitata anceps .. anceps v. gracile TABELLARIA - anceps v. linearis flocculosa
- TETRACYCLUS rupestris THALLASSIORA fluviatilus 3.66
t : I l TABLE.3.31 1974-1975 Braidwood Station Periphyton Mean Total Number Per Square Centimeter l'ransec t TFEE3eET. Transect Transect Tr5iisect Transects i l ITale Tranaect 5-F Sampled 2-L 2-F 3-L 3-n 4 5-L 36222.5 27114.5 40324.5 41576.5 38006.0 37024.0 31 Mar 74 36846.5
---- ---- 121250.0 ----
12 Jun 74 133295.0 ---- ---- 6 Jul 74 179864.5 ---- ---- ---- 202883.0 199136.5 168621.5 --- 182009.5 4 Aug 74 200207.5 187359.5 18 Aug 74 223760.5 228044.0 210378.0 - -- 215195.5 241424.5 as 190108.0 8 sep 74 168622.0 187904.5 200207.5 ---- ---- 174512.0 178261.5 65041.0 74409.5 56744.5 67450.5 46573.5 66913.5 3 Dec 74 74141.5 12 opr 75 23502.5 28975.5 28573.0 10404.0 43179.0 30600.5 ---- t Lef t (L) and right (P) side in an upstream view. I f I O , O e
._ ......., m . .. _ _ .. . _ . . . _ . _ . . _ . . _ _, _
7.._ . LOl n LO! 0;
.Tt:BLE 3.3211974-1975 l Braidwood' Station Periphyton. Mean . Total Biovolume- - Irr Microliters Per Square . Decimeter ,
Date Transect- Transect- Transect -TransEEl-- . Transect Transect Transecti? , Sampled 2-L 2-R 3-L- 3-R 4 5-L' 5-B- , 31 Mar 174 ~12.265L 12.084 13.746 13.092 12.290 L11.604 12.959' 12 Jun 74 46.775 ---- ---- ---- ---- 52.199 ---- i-L 6 Ju1174 52.891 --- - ---- ---- - ---- ---- ----- 4 Aug 74 -69.378 67.227 72.835 63.995 70.237 ----
'62.107- .
hg 18 Aug 74- 58.480 69.361- 66.585 65.976 ---- 64.421. 62.132-j 8 sep 74 59.283 66.728 59.741 71.358 ---- ---- 77.414
- 3 Dec 74 ' 25.057 20.402 26.253- 19.493 20.265 14.294 18.516 12 Apr 75. 4.571 17.123 7.180 3.128 17.348 .8.083 ----
i I Left (L) and right (R) side in an upstream view. ; i i i + s t
'I W M- -m r' e d d.... y w'---ep
l TABLE 3.33 1974-1975 Braidwood Station Periphyton-Dominant Species.-. Date And Genus Genus Genus epecies g Transect I Species, Speci es__ i 31 Mar 74 2-L Cocconeis Gomphonema Cocconeis placentula v. olivaceum placentula v. 2-R Cocconeis Cocconeis Gomphonema placentula v. placentula v. olivaceum 3-L Cocconeis Cocconeis Gomphonema placentula v. placentula v. olivaceum 3-R Gomphonema Cocconeis Cocconeis olivaceum placentula v. placentula v. i . 4 Cecconeis Gomphonema Cocconeis placentula v. olivaceum placentula v. l 5-L Cocconeis Cocconeis Gomphonema I placentula v. placentula v. olivaceum I l 5-R Cocconeis Gomphonema Cocconeis placentula v. olivaceum placentula v. 12 Jun 74 2-L Cocconeis Cocconeis Navicula placentula v. placentula v. radiosa v. 5-L Cocconeis Coc:oneis Cocconeis placentula placentula v. placentula v. I [, 6 Jul 74 2-L Gomphonema Cyclotella Navicula olivaceum meneghiniana viridula v. 4 Aug 74 2-L Melosira Cocconeis Coccnneis varians placentula v. placentula v. 2-R Cocconeis Melosira Cyclotella placentula v. varians meneghiniana 5 3-L Melosira Cyclotella Cocconeis ~ varians meneghiniana placentula v. ILeft (L) and right (R) side in an upstream view. h 3.69
- _ - - - ~ . .,. .- . - . . _ _ - - - . . .
TABLE 3.33- Continued. 1 Genus 4 )I Date And- _ Genus Species' Genus-Species Species
-Transect. ,
4 Aug 74
^
c ' Cocconeis- Navicula Cocconeis 3-R pediculus cryptocephala
'-[- placentula v.
Melosira Cocconeis Cyclotella 4 meneghiniana varians placentula v. Cocconeis Achnanthes Melosira 5-R varians placentula v. minutissima 18 Aug 74 Achnanthes-2-L Gomphonema- Cocconeis olivaceum placentula lanceolata Gomphonema Achnanthes Cocconeis r- 2-R _placentula olivaceum lanceolata t Gomphonema Navicula Achnanthes
' [i L lanceolata olivaceum cryptocephala Gomphonema Cocconeis- .Achnanthes '/" L 3-R lanceolata T -
oliv,aceum
-placentula' Cocconeis. Navicula '5-L Gomshonema cryptocephala v.
i . olivaceum placentula-Gomphonema Achnanthes Cocconeis
'- 5-R placentula -olivaceum lanceolata t.
I i 8 Sep'74: Cyclotella 2-L . - Dia t'oma - Melosira varians meneghiniana tvulgare Melosira .Cyclotella ' a .2-R- Diatoma meneghiniana
. vulgare varians .r Melosira - Cyclatella '- 3-L Diatoma. meneghiniana
- vulgare varians D3 .
Diatoma Cyclotella Melosira
- 3-R varians vulgare meneghiniana L' ;
Diatoma 'Helosira Meridion . 5-R circulare vulgare varians l? I 3.70
k. TABLE 3.33 Continued. Date And Genus Species Genus Species Genus Species g Transect 3 Dec 74 2-L Diatoma Achnanthe; Navicula vulgare lanceolata tripunctata v. 2-R Achnanthes Diatoma Navicula lanceolata vulgare tripunctata v. I 3-L Diatoma Navicula Navicula
- vulgare tripunctata v. salinarum v.
'~ 3-R Navicula Diatoma Achnanthes tripunctata c. vulgare lanceolata 4 Diatoma Gomphonema Achnanthes vulgare olivaceum lanceolata 5-L Gomphonema Navicula Achnanthes I. olivaceum tripunctata v. lanceolata 1 5-R Achnanthes Diatoma Navicula lanceolata vulgare salinarum 12 Apr 75 -
. 2-L Gomphonema Meridion Achnanthes olivaceum circulare lanceolata 2-R Meridion Diatoma Achnanthes circulare vulgare lanceolata ~
3-L Gomphonema Achnanthes Diatoma a olivaceum lanceolata vulgare 3-R Gomphonema Diatoma Achnanthes olivaceum vulgare lanceolata
. 4 Synedra Gomphonema Diatoma ulna olivaceum vulgare 5-L Gomphonema piatoca Meridion olivaceum vulgare circulare 4
I e r-1. 3 71
that there is very 'little difference in -.the density of diatoms collected-on either side'of the river, and therefore, conditions 9 for periphyton growth appear to be equally favorable on both sides of the river. .This is shown graphically in Figures 3.11-3.17. s i M'
.av OL t
3.72.- _ - . . . . -
..u.. ve r 'l00,hk f 3,11 2 3Per g ig n Centimeter At.vTransect Square . u . ....... no . t c . . eiv sv.. . .c u . . . v wo .
2-1.. E YEAR o 1974 h o 1975 t i 100000 1 l c i l- . "m \ o I a W l 1 lD m-m l = L E 10000 1 15 1 a O' l~ I' p$ ~
=
!A O 'Q m 1 o .
.a l
l- 1000 1 d las O
- 5 100 3.73 JAN FEB !t A R APR f,l A Y IUN l if t A !! r. SEP OCT !10 Y OFC
b .1000000,- Per square L,ent eter nt transect c-n. 4
~
L YEAR 4 - o 1974 1 o 1975 100000 N D o l 1 8
- s.a M i w'
h I es baJ m
.E =
10D00 n)- L g.
- en --
- p. . ,
E~
.4 w .M.
Un-CD a
-1 ;s 1000 s j-i r~ 'g.
4 A P A
-100 JAN FEB MAR' APR MAY' JUN JUL AUG SEP OCT NDY- DEC 3.74
l 10006${"" Ve'r'SquareCentimeterAtTransect'3-!.. I YEAR o o 1974 1975 I l - 100000 I o "m u 5 n. 5 m E 10000 9 E 5 E 1000 J I
~'
M O 100 3.75 _ - . o l A ll IES !.t A R APR :.i A Y J U li JUL U!G $[P DCT h0V Off i Al
1000000, rer square t,entimeter at ir an>eu a-n. Ie YEAR o 1974 O o 1975 100000
~
x t.: 5 OC w GH3
- 10000 0
0 =x
, o m
w a m S u 1000 8 gg
, .o 100 -- ~.--
JUN 101. AUG SEP OCT NOV DEC JAN FEB MAR APR !1AY _. . _. .3.76 . .
~ ' ,,, , ,0 0 e . .,.. . . -.. 1 g
- l
. 1
- YEAR o 1974 hl
. o 1975 I. .
It
- 100000 l o I:
~
1 x 1 . ae w tb g Oc w C.
" E 10000 m
a O
- W o - I =
1 w l (D o I- . l 1000 iJ i
, . ~ -
I k O l 1 100 __ . . _ . _ _. . . _ 3 J.L _ . . . . __ _ _ . . . . _ . - - . _ . J A tt FEB L1 A R APR i.1 A Y J U ll JUL AUG SEP 001 fl 0 V OfC
g 1000000. eu -w..$ . ...... .., ... ........, , ,, YEAR 1974 g c o 1975 100000 6 i f%d 4 N
- w E
=
iOO00 N
--f :;
EL -
=
d, E (3
- i -1 ?hs 1000 .h ls by 100 ____ ..., ,, . g ,_73_,,_, , _ _ , , , , , , , . ,, _ _ , ,,
i IDH 101 AUG SIP OCT HOV OfC J A!l fEB !.! A R APR !.1 A Y
g YEAR o 1974 o 1975 $ l l l l 100000 . 1 1 I l l ew 2 u CC w I = w CD E 10000
.=A suC
- O W
1 X auC w M u o I ' l. 1000 t I-O 100 . _ . . 3.79 lAAY JUN JUL AUG SEP OCT NOV DEC JAN FEB 1.t A R APR
j BENTHOS Benthic macroinvertebrates in the study area were () sampled by Ponar dredge and artificial substrates. Collections from the Kankakee River and Horse Creek are discussed separately and compared. P,onar Dredge _ Samples Ninety-nine genera of benthic macrotnvertebrates were collected by Ponar dredge from the Kankakee River (Table 3.34). Dipterans accounted for 41 genera and of these 36 were chirono-mids (non-biting midges). Mo11uses and obligochaete worms, which are the second and third most diverse groups, were represented by only 11 and 10 genera respectively. In addition to being the most diverse group, dipterans represented approximately 40 percent of the total number of organisms collected and chironomids comprised approximately 95 percent of the ( total number of dipterans (Table 3.341 Oligochaeter were the second most abundant group and accounted for approximately 34 percent of the total number. Ephemeropterans (mayflies) and trichopterans (caddisflies) represented 7 percent each. Although the molluscan fauna was m'oderately diverse, it represented only 1 percent of the total number of invertebrates collected. Genera which were most abundant in the Kankakee River, were the oligochaete Limnedrilus and the dipteran Chironomus. These two genera represented 18.0 and 11.2 percent respectively of all organisms collected (Table 3.34). Other abundant genera were the
~j chironomids Dicrotendipes, Orthocladius and Polypedilum. _
A wide range in density of the major mac roinvertebrate () groups was noted among transects in the Kankakee Elver (Figures 318-3.1 l 3.80
\
- 1. 1 1
TABLE 3.34 h F NUMBER AND PERCENT COMPOSITION OF BENTHIC MACR 0 INVERTEBRATES l COLLECTED FROM THE KANKAKEE RIVER BY PONAR DREDGE DURIWG ! THE BRAIDWOOD AQUATIC MONITORING PROGRAM 1974-1975 . Number Percent l Taxon of Organisms Composition ; Annelida - Hirudinae Rhynchobde111da Glossiphoniidae - Helobdella 2 <0.1 L 011gochaeta Opisthopora Lumbricidae g.* 18 0.4 i Plestpora-1 Aeolosomatidae Aeolosoma 12 0.3 ' Glossoscolecidae Paranais Naididae g.* 42 1 1.0'
<0.1 h
Dero 64 1.5 E Gium 16 0.4 Nais 103 2.4 , j0 hidonais 227 5.2 Tub 1(icidae g.* 1 <0.1-L 7 Branchiura 172 4.0
. Limnodrilus 781 18.0 -
Tubifex 7 0.2 Lumbriculidae 2 <0.1 , Lumbriculus 17 0.4
~ Arthropoda Arachnoidea Hydracarina .
Athienemanniidae ! Limnochares 1 <0.1 i Hydrachnidae . Hydrachna 2= <0.1 ,
.-- Crustacea -- Amphipoda -.
Talitridae
'Hyalella 10 0.2 . 9
- 3.lh .
, - . , , , , . . . - . . . . - - - - - - - , - , , ,m-. . , , _ , . . - - _ ~ . _ . . ~ . - _ . . . ..,,-._.,_.,,_,._,-...,4- -
i O 1xatt 3.3u (Continued) Number Percent Taxon of Organisms Composit'on Arthropoda (Continued) Cladocera Bosminidae 11yocryptus 2 <0.1 Sididae Sida 10 - 0.2 Decapoda Astacidae g.* 1 <0.1 Podocopa Cypridae Ilyocypris 14 0.3 Insecta Coleoptera Elmidae Cy11oepus 13 0.3 Dubtraphia 10 0.2 Macronychus 1 <0.1 Neoelmis 1 <0.1 Rhizelmis. 1 <0.1 O Stenelmis Hydrophilidae 21 0.5 Helophorus 1 <0.1 Psephenidae Psephenus 4 0.1 Diptera Ceratopogonidae Palpomyia 8 0.2 Chironomidae 15 0.3 Anatopynia 7 0.2 Calopsectra 110 2.5 Cardiocladius 1 <0.1 Chironomus 485 11.2 Clinotanypus 1 <0.1 toelotanypus 3 0.1 Constempellina 1 <0,1 Corynoneura 6 0.1 Cricotopus 4 0.1 Cryptochironomus 56 1.3
,Dicrotendipes 324 7.5 -- Endochi ronomus 5 0.1 - Eukiefferiella 1 <0.1 _
Glyptochi ronomus 15 0.3 Glyptotendipes 9 0.2 Goeldichironomus <0.1 O 1 l Continued) 3.82
TABLE 3.34 (Continued) g Number Percent Taxon of Organisms Composition Arthropoda (Continued) Hydrobaenis 1 <0.1 Kiefferullus 1 <0.1 Micropsectra 4 <0.1 Microtendipes 6 <0.1 firthocladius 221 5.1 Paralauterborniella~ 3 <0.1 Pentaneura~ 83 1.9 Phaenopsectra-2 <0.1 Polypedilum'~ 240 5.5 Procladius 48 1.1 Prodiamesa 2 <0.1 Psectrocladius 28 0.6 hseudochironomus 25 0.6 Smittia 1 <0.1 Stenochironomus 1 <0.1 St1ctochironomus 11 0.3 49 1.1 Tanntarsus 0.1 1 ibelos 4 Trissocladius 3 0.1 Xenochi ronomus 4 0.1 Empididae Hemerodromia 2 <0.1 Psychodidae Psychoda 1 <0.1 Simuliidae Eusimulium 2 <0.1 Simulium 2 <0.1 Tipulidae Pseudolimnophila 2 <0.1 Ephemeroptera 9.* 2 <0.1 Baetidae Baetisca_ 1 <0.1 Caenis 0 0.2 TrTcTrythodes 10 0.2 Ephemeridae Ephemera - 2 <0.1 Hexaaenia 236 S.4 Potamanthuc 18 0.4 Heptageniidae g.* 1 <0.1 Stenonema 47 1.1 ] _, (Continued) g 3.83
TABLE 3.34 (Continued) Ntsnber Percent Taxon of Organisms Composition Arthropoda (Continued) Hemiptera Corixidae 9.* 194 4.5 Odonata Aeschnidae Aeschna 1 <0.1 Coenaarionidae Ena11aama 1 <0.1 Hyponeura 24 0.5 Plecoptera Nemouridae Taeniopteryx 2 <0.1 Trichoptera g.* 5 0.1 Hydropsychidae Cheumatopsyche 115 2.7 Hydroosyche 39 0.9 Potamyia 9 0.2 (s Hydroptilidae Hydroptila 23 0.5 StactobieTia 2 <0.1 Lepioceridae Arthripsodes 2 <0.1 Triaenodes 1 <0.1 Psychomyiidae g.* 131 3.0 Polycentropus 7 0.2 , Mollusca - Gastropoda Ctenobranchiata g.* 2 <0.1 Amnicolidae Cithinta 1 <0.1 Pleuroceridae Goniobasis 2 <0.1 Viviparidae Campeloma 1 <0.1 Pulmonata Ancylidae Ferrissia 25 0.6 Lymnaeidae
~
1.ymnaea 2 <0.1 -- Physidae Physa 1 <0.1 (] s Planoroidae Gyraulus 1 <0.1 (Continued) 3.84
I i b TABLE 3.34 (Continued) g-t
. . Number Percent Taxon of Organisms Composition Mollusca (Continued)
Pelecypoda : Eulame111branchi i Cyrenidae Corbicula 21 0.5 . Sphaertidae ! Pisidium 11 0.2 ' Unionidae 1 1.1 Amblema 1 <0.1 r Pleurobema 1. <0.1 ~! Nematoda 9.
- 1 <0.1 ;
. Phasmidia Rhabitida -Diplogasteridae .
Diplogaster 6 <0.1 Platyhelminthes i Turbe11 aria TriclacH- .. Planar 11dae g"
.Curtisia 15 0.3 t ?
v T'
!~- .
P
- Unidentified genera.
G 3.85
- , _ . _ . . - -.-.-___..-. - _ ._..- _.2.. _ _ , _ . . _ . _ . . . _ . _ _ . _ . _ _ _ . _ . . _ . _ _ _ _
(] 100 i 1 - MAR 1974 100 I i124 MAY 1974 80 - 80 -
, 60 -
60 - 40 - 40 - 20 - 20 - 0 Es== e / o add g 100 JUL 100 AUG 1974 1974 h 80 - e 80 - , E g 60 - 60 - mm 5a 40 - 40 - oE g ;j 20 - EO - h 0les-N d 0 -ohead 200 500 255 NOV 597 MAR 1974 160 - \ 400 - 1975 120 - 300 - CD - 200 r . 154' , 40 30' - 34'* / 20 -
/
I 10 -E"E O$ 1 0 ' ' - LEGEN0 2 eOLIGOCHAETA TRANSECT TRANSECT 6 0!PTERA
.. m EPHEMEROPTERA Figure 3.18 CorA rison of Density by Month and Transect of 011gochaetes.
Dipterans and Ephemeropterans Collected by Ponar Dredga From y the Kankakee River During the Braidwood Aquatic Monitoring Program 1974-1975 o 3.86
20 1 I MAR 20 i i ggy h 16 - 16 - 12 - 12 - e < 8 - & - 4 - 4 0- 0 h .mN-oo_ 20 20 - E JUL AUG 1974
$x 16 -
1974 16 - w ' C E 12 - 12 -
-B gm ggo. 8 - 8 - =
g0- .- 0 .__._ 100 100 MAR NOV I974 80 80 - - e 60 - 60 -
,e 40 - 40 -
20 - 20 - 0 ' 0 _e > '* 2 3 5 2 3 5 LEGEND TRANSECT TRANSECT
- TRICH 0PTERA
-- a MOLLUSCA Figure 3.19 Comparison of Density by Month and Trarsect of Trichopterans and Mo11uses Collected by Ponar Dredge From the Kankakee River During the Braidwood Aquatic Monitoring Program 1974-1975 3.87
In datormining chang 3s in tho abundanco omong transocts, d3nsitios j
.of major taxonomic groups were plotted by transect for each sam- ;
h pling month (Figures 3.18-3.19). Density of oligochaetes and ephemeropterans was higher at Transect 5 than at Transects 2 and 3 ! during all months sampled (Figures 3.19). Thisincreaseinabundanceh of oligochaetes at Transect 5 was particulary apparent during May ! and July 1974 and March 1975. Lowest densities of these two major l groups occurred at Transect 3 except during November when density [ was lower at Transect 2. Dipterans were not consistently more ; abundant at one transect than another (Figure-3.18). High values occurred at Transect 3 during March and low values at Transect 2 In_ August the opposite occurred, with high density values noted at Transect 2 and low values at Transect 3 Mo11uses were not abundant at any transect and were usually less abundant e t; tran- l sect 3 except during March 1974 (Figure 3.19). No distinct O pattern of abundance was noted for trichopterans (Figure 3.19). The benthic macroinvertebrate community in Horse Creek was represented by 64 genera thus indicating a less diverse fauna than in the Kankakee River (Table 3.35). Although less diverse,- dipterans from Horse Creek, represented by 34 genera, were dominant. Dipterans also accounted for approximately 69 percent of the total number of macroinvertebrates collected in Horse Creek, 011gochaetes were the second most diverse and abundant group. Chironomus and - Limnodrilus, which were abundant -in the Kankakee River, were also - abundant-in Horse Creek (Table 3.35). In general, benthic macroinvertebrates. collected by penar
]
dredge from the Kankakee Elver and Horse Creek were dominated by O d19terene betonsins to the femi17 Chironmidee and c11socheete worme. 3.88
l l TABLE 3.35 g NLMBER AND PERCENT COMPOSITION OF BENTHIC MACR 0!NVERTEBRATES i 1 COLLECTED FROM HORSE CREEK BY PONAR DREDGE DURING ; THE'BRAIDWOOD AQUATIC MONITORING PROGRAM 1974-1975 Number Percent ; Taxon of Organisms Composition Ane111da 011gochaeta Plesiopora ' Aeolosomatidae-Aeolosoma 1 0.1 , Naididae Dero 26 3.2 ' NaTdium - 32 3.9 Nais 3 0.4 i UjhTdonais 25 ' 3.0 Tublficidae 9.* 1 O.1 Branchiura 21 2.5 4.9 Umnodrilus- 40 x Lumbriculus Lumbriculus 12 1.4 Arthropoda Arachnoidaa Hydracarina. . Athienemanniidae Krendowskia 1 0.1 Hydrachnidae-
.Hydrachna- 1 0.1 :
Crustace'a~ Amphipoda Ta11tridae Hyalella 3 0.4 , ' Isopoda i Asellidae Lirceus 4 0.5 Podocopa . Cypridae
-11yocypris O.2 2-Insecta-Coleoptera E Elmidae Cy11oepus 2 0.2 -
Dubiraphia 21 2.5 l Stenelmis 2 0.2 9 3.89 ,-. :.---..., . . - . - . . - . - - . . - , . - , . . - , ,._.,.-..--.-_.-,..z.-..-. ...-.-..-l
TABLE 3.35 (Continued) Number Percent Taxon of Organisms Cumposition Arthropoda (Continued) Hydrophilidae Helophorus 1 0.1 Staphylinidae . Pontox.alota 2 0.2 Diptern Ceratopogonidae Palpomyia 15 1.8 Chironomidae g.* 2 0.2 Brilla 3 0.4 Calopsectra 2 0.2 thironomus 314 38.2 Cryptochironomus 13 1.6 Diamesa 3 0.4 DTcrotendipes 7 0.8 n E~nToshironomus_ 6 0.7 Eukiefferie'li 2 0.2 O lllyptotendipes 3 0.4 \d yH drobaenis 1 0.1 KieTferullus 1 0.1 Metriocnemus 2 0.2 M'cropsectra 3 0.4 Microtendipes 6 0.7 Frthocladius 1 0.1 Pa rachironomus 1 0.1 Paralauterborniella 1 0.1
. Pentarieura 11- 1.3 Pnaenopsectra 7 0.8 Polypedilum 35 4.2 . ProcladiuT 22 2.6 Pr.ectrocladius 6 0.7 Pseudochironomus 54 6.5 Stictochironomus 20 ?.4 Tanytarsus 4 0.4 T ribelos 22 2.7 Trissocladius 1 0.1 Culicidae Chaoborus 1 0.1 Dolichopodidae g.* 1 0.1 Psychodidae -
Py chods 1 0.1 O (Conti nue<< > 3 90
- . l f
TABLE 3.35 (Continued) g Number Percent l Composition of Organisms _ Taxon Arthropoda-(Continued) Tipulidae Ormosia 2 0.2 - Polymeda- 2 0.2 Pseudolimnophila 1 0.1 Tipula 1 0.1 Ephemeroptera Baetidae Caenis 8 1.0 Ephemeridae Hexagenia 5 0.6
-Potamanthus 1 0.1 .
Heptageniidae Stenonema 2 0.2 [ Hempitera Corixidae g.* 1 0.1 Megaloptera Stalidae Sialis 3 0.4 g-Odonsta - G,wnphidae Dromogemphus 1 0.1 Trichoptera < Fydropsychidae Cheumatopsyche 7- 0.8 Hydronsyche_ 4 0.5 P.sychemytidae g.* 8 1.0 Mollusca i Gastropoda . Pulmonata ._ Ancylidae
-Ferrissia- l' O.1 ,
- i. Planorbidae Gyraulus 1 0.1 l> t L ,
Nemato'da -- Phasmidia
-- Rhabitida
- Diplogasteridae Diplogaster 1 0.1 ,
(Continued) g 3 91 L
1 l l l O T^ett 3 35 (coatiaued) Numoer Perc *nt Taxon of Organisms Composi'jg Platyhelminthes Turbe11 aria 1ricladia Planariidae Phagoca ta 2 0.2 s 1 l
- Unidentified genera.
l O
, 3 92
.m_.__.____._._..__. - _ _ . . _ . _ _ _ _ _ . . . _ . _ _ _ _ _ ~ _ _ _ _ _
f t These groups were most abundant in November 1974 and March 1975 and least abundant during the summer. Except for slight variations most numerically abundant gener a followed this general pattern. h~ Population density also varied by transects. 011gochaetes and ephe-meropterans were more abundant at Transect 5 than at Transects 2 and 3 (Figures 3.20-3.21). ! Artificial Substrates Artificial substrates were used during the 1974-1975 Braidwood Aquatic Monitoring Program to supplement collections made > with the- Ponar dredge. Eighty-eight genera were collected on artificial substrates, > oof which-23 genera were dipterans belonging to the family Chironomidae I (non-biting' midges). Other diverse groups were the Ephemeroptera (mayflies) and- Trichoptera (caddisflies) with 11 and 9 genera, respec-tively (Table- 3.361 ripterans and ephemeropterans each represented . r approximately32percentofthetotalnumberoforganismscollected.* l Geneza which were numerically abundant were Hyalella, (Amphipoda), i ! Cheuma topsyche , (Tricoptera), Orthocladius, (Diptera) and Stenonems l (Ephemeroptera ) (Table 3.36). Nnmber and percent' composition of major benthic macroin-vertebrate groups collected on artificial substrates indicated no consistent pattern (Table 3.37). Depterans were most abundant in March 1975 and least abundant in May and August 1974 In contrast, ephemeropterans were more abundant in May and August than in March. . ! a Maximum abundance of trichopterans occurred in May. Mollusca never [ [. .excee ed d two percent of the total organisms during any month and _ oligochaetes were present in large numbers only during March. I lh L l l 3 93 _ ._ __ _ __ . _ _ _ _ _
l
'O 100 i I i i i # 326 80 60 -
OLIGOCHAETA
./< -
40 - - 20 - - , O *
@ 100 g EPHEMER0PTERA LEGEND E 80 - - . MEAN DENSITY Q; 60 - -
G= 55
~ 40 - @ 20' -
O, g , .______, , . 1000 DIPTERA lj03 800 - 600 - 400 - 200 - e o MAR N.> i MAY JUL i .. AUG NOV i MAR MONTHS (MARCH 1974 THROUGH MARCH 1975) i NOTE: NO DATA WERE COLLECTED DURING JULY 1974 _ Figure 3,20 Comparison of Density of 011gochaetes Ephemeropterans and ( Dipterans by Month Collected From Horse Creek by Ponar Dredge During the Braidwood Aquatic Monitoring Program 1974-1975 l 3 94 l
i O 50 i i i i 40 - 30 - 3 20 t3 - x 10 - O e- o cBm b6 o" 50 Ei MOLLUSCA LEGEND - 40 - e MEAN DENSITY a W
- 30 -
20 - 10 -
' I ' '
0 e -- o - I e MAR MAY JUL AUG NOV MAR MONTHS (MARCH 1974THROUGHMARCH1975) NOTE: NO DATA WERE COLLECTED DURING JULY 1974
~
Figure 3.21 Comparison of Density of Trichopterans and Molluscs by Month Collected From Horse Creek by Ponar Dredge During the braidwood Aquatic Monitoring Program 1974-1975 3 95
.i i
s n TABLE 3.36 NUMBER AND PERCENT COMPOSITION OF BENTHIC MACR 0 INVERTEBRATES COLLECTED FROM THE KANKAKEE RIVER AND HORSE CREEK BY ARTIFICIAL SUBSTRATES DURING THE BRAIDWOOD AQUATIC MONITORING PROGRAM 1974-1975 , Number Percent Taxon of Organisms Composition Annelida 011gochaeta Plesiopora . N Enchytraeidae Lumbricillus 1 <0.1 Naididae Dero 1 <0.1 NiTcTium 1 <0.1
-Nais 6 0.3 Up5Tdonais 28 1.3 Tubificidae .
Branchiura- 6 0.3 O. Lim oer4ios Prosopora 23- i.i Branchiobde111dae. Branchiobdella 5 0.2 Cambarincola- 2 0.1 Arhtropoda Crustacea
.Amphipoda-Gamariidae Crangonyx 2 0.1 _.
t Gamarus 6 0.3 Talitricce Hyalella 73 3.4 Isopoda Ase111dae-
.Ase11us' 72 3.3 '
Lirceus 4 0.2 Decapoda-Astacidae Orcunectes 5 0.2
.s 1.2 s Orconectes kentuckiensis 25 Orconectes propinquus 17 0.8 -
(Continued)
~
3 96
.m ., _, . . . _ . ,
l f
. l TABLE 3.36 (Continued) g; Number Percent Taxon of Organisms Composition l l
Arthropoda (Continued) _; Coleoptera Elmidae Ai.cyronyx 1 <0.1 cy11oepus 2 0.1 Dubiraphia 6 0.3 Stenelmis 23 1.1 Collembola Isotomidae , Isotomurus 1 <0.1 Psephenidae-Psephenus 1 <0.1 ' Diptera _ Ceratopogonidae Palpomyia- 2 0.1 Stilobezzia 1 <0.1 Chironomidae Calopsectra 72 3.3 Chironomus 36 1.7 Cricoto)us Cryptoc11ronomus 16 6-0.7 0.3 Diamesa -18 0.8 Dicrotendipes 10 0.5 ; Diplocladius 1 <0.1 Endochironomus
'Eukiefferiella 4 0.2 Glyptotendipes 1 <0.1 Heterotrissocladia 4 0.2 ,
Microtendipes 2 0.1- , Micropsectra 1 <0.1 Orthocladius - 328 15.2 Paralauterborniella 32 1.5-Pentaneura- 53 ~2.5 Polypedilum 51 2.4 Procladius 16 'O.7 Psectrocladius 16 .0.7 Pseudochironomus 4- 0.2 liheotanytarsus 1 <0.1
- Stictochironomus 2 0.1 .y. Tanytarsus 1 <0.1 - Trissociadius 21- 1,0 _
Simuliidae Prosimulium -1 :<0.1 Simulium 5 0.2 L (Continued) p 3 97
O TABLE 3.36 (Continued) Number Percent Taxon of Organisins C_o_mposition Arthropoda (Continued) . Tipulidae Pseudolimnophila 1 <0.1 Tipula_ 1 < 0.1 Ephemeroptera Baetidae Ameletus 1 <0.1 Caenis 8 0.4 CloeBii- 1 <0.1 Isonychia 42 1.9 Tricorythodes 70 3.2 Ephemeridae Campsurus 3 0.1 Ephemera 2 0.1 hexage..ia 11 0.5 Potamanthus 7 0.3 . Heptageniidae Heptagenia 12 0.6 b- $tenonema Hemiptera 534 24.8 Belostomatidae L Balostoma 1 <0.1 i LepidoTiera Pyralidae Parargyractis 2 0.1 Megaloptera Stalidae Sialis 6 0.3 Odonata , Agrionidae Hetaerina 1 <0.1 l Coenagrionidae i . A ia 18 0.8 na agma 28 1.3 Gomphidae Octogomohus 1 4.1 l Plecoptera-Nemouridae e- Taeniopteryx 3 0.1 Trichoptera _ Hydropsychidae Cheumatopsyche 110 5.1
/"] gdropsyche 62 2.9
(> Potamyia 57 2.6 (Continued) 3 98
TABLE 3.36 (CONTINUE 0) Number Percent Taxon of Organisms Composition Arthropoda (Continued) Hydroptilidae g.* 1 <0.1 Limnophilidae Limnophilus 1 <0.1 Pycnopsyche 4 0.2 Psychomyiidae Neureclipsis 9 0.4 Polycentropus 6 0.3 Psychomyia 1 < 0.1 Psychomyiid genus A 103 4.8 Mollusca Gastropoda Ctenobranchiata Amnicolidae g.* 1 <0.1 Pleuroceridae Goniobasis 3 0.1 Pulmonata Ancy11dae Ferrissia 2 0.1 g Physidae s ' 2 0.1 Physa 9 0.4 Pelecypoda Schizodonta Marsoritiferidae Margaritifera 1 <0.1 Platyhelminthes Turbe11 aria Tricladida Planartidae A11oeocoola 1 <0.1 Curtisia 9 0.4 PhjLqocata 4 0.2 E _
- Unidentified genera, g 3 99
o n o. :o TABLE 3.37 NUMBER AND PERCENT COMPOSITION OF MAJOR BENTHIC MACROINVERTEBRATE GROUPS ~ r COLLECTED FROM THE KANKAKEE RIVER AND HORSE CREEK BY ARTIFICIAi. SUBSTRATES ; j' DURING THE BRAIDWOOD AQUATIC MONITORING PROGRAM 1974-1975* l i
- May 1974 August 1974 November 1974 M. arch 1975 ;
}- Taxonomic Group Number ** Percentt Number ** Percentt Number ** Percentt Number ** Percentt , t ! Siptera 24 -12.3 15 10.3 58' 28.6 118 67.8 ; Ephemeroptera 67 34.4 93 64.1 36 17.7 6 3.4 i Tricimptera 92 47.2 10 6.9 46 22.7 7 4.0 P . Mollusca 0 0.0 1 0.7 1 0.5 2 1.1 , e t
- 8 011gochaeta' 3' 1.5 3 2.1' 1 0.5 26 14.9 :
2 l 4 Since 12 artificial substrate samples were collected form the Kankakee River and only 1 from Horse Creek there is no distinction between the two sampling areas. !
** Mean. number collected per artificial substrate sampler t Percent of the total number of organisms collected. ,
(- 1 l - y . 1 1-
4.0 FISHERY IN1.3MATION 4.1 Description of the Kankakee River and Historical Fish Populations The Kankakee is about 130 miles long (55 miles of (l) which are in Illinois) and enters Illinois from Indiana, approxi-mately six miles east of Momence in Kankakee County (Langbein 1974). The Kankakee and the fes Plaines Fivers converse in Grundy County to form the headwaters of the Illinois Fiver. The Braidwood cooling water intake is located about 11 miles upstream of the confluence, on the Kankakee. The entire drainage basin of the Kankakee Fiver covers 5280 square miles of which 2218 square miles are in Illinois. Much of the mainstream's length in Indiana has ieen channelized up to the state line. Historically, much of the basin of the Kankakee was at one time swampland, marshy areas which afforded home to large populations of fish ac.J wildlife. According to information from the late 18co's there were 500,000 acres of marsh e
~
land within the valley of the Kankakee. Streams flows at that time were well stabilized and uniform throughout the year. Presently, however, almost all the lowland areas have been inten-sively drained for farmland, resulting in more rapid runoff of rainfall and in rapidly fluctuating water levels during periods of heavy rainfalls. Ice jams occasionally cause periods of great water level fluctuation at certain points along the river. These occur almost every spring and may cause considerable local dama ge (Langbein 1974) . The predominate bottom soil type ! of the Kankakee mainstream is sand, gravel and rubble. One of _ the features of the Kankakee is its extensive and productive rocky riffle areas, h h.1
Th2 only literature source which racords fish collections in the Kankakee River is from Muench (1964). In this account of
) the inventory of fishes in the basin the nearest mainstream fish collection location to the Braidwood intake site is near the town of Custer Park, just upstream of the site. At this location 14 species of fish were collected by electroshocking (Table 4.1) and eight by seining (Table 4.2)
Several of the species were sunfishes, along with a darter, both of which would be considered intolerant to chronically degraded water quality. Standing crop estimates in 1bs/ acre of fish were not made in the mainstream vankakee, although the weight-class data listed are useful for estimattng standing crop of fish in the Kankakee near the Braidwood intake as the popula-tions in both areas are similar (Table 4.3).
~
The fishery survey (Muench 1964) indicated a relatively high abundance of channel catfish, rock bass, smallmouth bass, northern pike and walleye in the Kankakee F1ver. Other species which occur are quillback carpsuckcrs, carp, bu11 heads, northern redhorse, silver redhorse, golden redhorse, green-sunfish, hog suckers, b'igmouth and smallmouth buffalo, black and white crappie, gizzard shad, longnose gar, bluegill, the weed shinner, which is endemic to the Kankakee Fiver drainage and a variety of other minnows, darters and sunfish. Even alewife and lake emerald shinners are found occasionally at the ta11 waters of the Kankakee River in Grundy County, Presumably, these two species migrated 5 to this point from Lake Michigan. _ Pollution does occur on the Kankakee, but is mainly ( soil pollution. Tons of soil are carried into the Kankakee from l h.?
f ? Tablo 4.1 Occurrence of fish species in the Kankakee-Iroquois river basins, excluding individual minnow species (Rotenone and shocker samples), 1963. Occurrence syecies la 2 3 4 5 6 ? 3 9 10 11 '. 2 13 14 15 15 17 Total Percent ttisc. minnows x N x x 'x x x x x x x x x x x x x 16 100 out11back (carpsuckers) x 0 x x x x x x x x x x *x x 13 91 Carp x T x x r x x x x x x x 11 69 Darters x x x x x x x x x x 10 63 Shorthead redhorse x S x x x x x x x x x 10 63 White sucker A x x x x x x x x y 9 56 S:.allnouth bass x tt x x x x x x x x 9 56 Green sunfish P x x x x x x x x x 9 56 Iteck bass x L x x x x x x 7 44 Chcnael catfish E x x x x x x x 7 44 Stonecat D x' x x x x x x 7 44 lic :'E u c k e r x x x x x x 6 39 Black bullhead x x x x x x 6 30 i;orthern pike x x x x x 5 31 Grass pick.erel x x x x x 5 31 47 Sca11rcuth butfalc x x x x 4 25 Bipouth buf f alo x x x x 4 25 Longear sunfish x' x x x 4 25 Vellow bullheal x x x x 4 25
-ite i crappic x x x 3 19 Ct::crd shad x x 2 13 Silver redhorse x
- x 2 13 Snotted su:ter x x 2 13 Lhrer cuth bass x
~
x 2 13 7 r.Minseed sunfish x x 2 13 Grahg2 spotted sunfish x x 2 13
.allere x x 2 13 Lengnose ,a r x 1 6 Dlack buffalo x 1 6 flow f i n x 1 6 Dluegill x 1 6 Total species - 31 14 6 19 5 3 14 4 12 13 14 13 6 10 16 10 9 a
Location 1 is nearent the Braidwood intake site. From: Nuench 1964 O , 9 O
Tabic 4,2 Summary of fiches and stations in Kankakee-( )' Iroquois basin collec'ced by minnow seine hauls, 1963a, Lampetra lamottei, American-brook lamprey: 9, 12 Dorosoma cepedianum, Gizzard shad: 4 Esox americanus, Grass pickerel: 12 Carpiodes cyprinus, Quillback carpsucker: 1, 3, 13, 14, 17.
-Catostomus commersoni, White sucher: 3, 6, 7, 10, 11, 17 Ictiobus cycrinellus, Bigmouth buffalo: 10 Minytrema melanops, Spotted sucker: 4 Moxostoma antsurum, Silver redhorse: 4, 12 Mo::ostoma eryttirurum, Golden redhorse: 4, 7 Moxostoma macrolepicotum, Shorthead redhorse: 1, 4, 15 Campostoma anomalum, Stoneroller: 3, 5, 6, 7, 8, 9, 10, 17 Chrosomus erythrocaster, Redbelly dace: 5, 6 Cyprinus carpio, Carp: 10, 13, 14, 15, Ericymba buccata, Silverjaw minnow: 3, 17,8, 6, 9, 17 liybopsis,bicuttata, Hornyhead chub: 3, 4, 5, 6, 7, 12 i'T Notamigonus crysoleucas,: Golden shi:. : 3, 4, 5, 6, 7, 8, * ~~
IJ . 9,.0, 12, 14, 16, 17 Notropis heterolepis, Blackoose shiner: 4 Notropis lutronis, Red shiner: 9, 10, 11, 14, 15, 16, 17 Notropis rubellui, Roseyface shiner: 4, 12 Nbtropis spilopterus, Spotfin shiner: 1s 3, 4, 9, 11, 12, 14 Notropis stramincus7 Sand shiner: 3, 4, 7, 11, 12, 15,. 17 Notropis texanus, Weed shiner: 12
. Notropis umbratilis,. Redfin shiner: 1, 12, 15 Notropis volucellus,. Mimic shiner: .4
_Opsopoedus emiliae, Pugnose minnow: 4, 12 Phenacobius mirabilis, Suckermouth minnow: 9 Pimechales notatus, Bluntnose' minnow: 1, 3 , 4, 7, 8, 9, 10, 11, 12, 13, 14, 15 Pimephales vicila, Bullhead minnow: 4 Semotilus atromaculatus, Greek chub: 3, 5, 6, 8, 10, 14, 17 Ictalurus melas, Black bullhead: 10, 17 - Ictalurus n'atalis, Yellow bullhead: 17 Ictalurus punctatus,~ Channel catfish: 14 Noturus flavus, Stcnecat: 12, 16
", Noturus gyrinus, Tadpole madtom: 7 _
Fundulus notatus, Blackstripe topminnow: 7, 12 (f'Labidesthessicculus, Brodk silverside: 12 u.u 4 e
Table 4.2 (continued)
'O Aphredoderus sayanus, Piratepereh: 12 Ambloplites rupestris, Rock bass: 1, 4 , 7, 12, 16 Lepomis cyanellus, Green sunfish: 9, 10, 11, 12, 14, 15, 17 Lepomis humilis, Orangespotted sunfish: 14, 15 Lepomis macrochirus, Bluegill: 4, 12, 15 Lepomis megalotis, Northern longear sunfish: 7 Micropterus dolomieui, Smallmouth bass: 1, 3, 4, 7, 16 Micropterus salmoldes, Largemouth bass: 1, 12 Poxomir annularis, White crappie: 14, 15 Pomoxidhygromaculatus, Black crappie: 12, 14 Etheostcma caeruleum, Rainbow darter: 12 Etheostoma nigrum, Johnny darter: 1, 4, 6, 12, 15, 16, 17 Percina maculata, Blackside darter: 3, 4, 10, 12, 14 Percina phoxocephala, Slenderhead darter: 9, 12, 14, 15 Identification of fish in minnow seine samples by:
Dr. P. Smith, Taxonomist, Illinois Natural History Survey a Location 1 is nearest the Braidwood intake site. From: Muench 1964, h w* g m 9 u.,
O o - O Oe . Table 4.3 Fishery data from the Kankakee-Iroquois river basins,:1963. Seine . Game Cowureretal Foraea Totals Ibs./ Strew Station site No. % tbs. % tb. t tbs, % tb. % tbs. t too, ths. Acre Kankakee River 18 %* 43 39 8.74 15 53 48 50.48 -84% 15 48 0.25 111 59.57 n . a .I'
- 5. Br. Forked Cr. 3 %* 6- 2 0.62 20 62 20 0.34 '10 244 78 2.23 70 312 3.19 31.90 Kartkakee River 4 %" 71 16 36.69 8 284 65 407.38 92 82 19 0.20 tr. 437 444.27 n.a.
, Rock Creek 5 %" 46 3 4.66 23 17 1 2.64 12 1289 96 13.63 65 1351 20.93 167.44 Watn t Creek 6 %" 0 146 12 8.56 43 1215 88 11.99 57 1361 20.55- 205.50 Extane Creek 7 %* 151 30 7.74 8 236 45 82.30 89% 140 25 2.43 2% 527 92.47 545.00 Trin Creek 8 %" 1 tr. 0.01 tr. 3 1 0.02 tr. 476 99 7.15 99% 480 7.18 143.60 rankakee River 9 \* 4 6 2.72 ? 59 84 142.76 98 7 10 0.25 tr. 70 145.7) n.a. ta..gan Creek 10 %* 496 68 12.89 i 198 ' 28 32.69 70% 27 4 0.51 1% 711 46.09 315.00 Beaver Creek 11 %" 92 90 6.74 1 11 9 3.89 15 13 11 0.05 tr. 116 10.68 106.80 Iroquois River 12 %* 20 16 4.16 L 76 60 64.30 93% 30 24 0.38 126 68.84 n.a. Prairie Creek 13 %" 9 1 0.44 7 427 70 4.76 73 211 28 1.30 20 647 6.50 U 5prin? Creek 14 51 92.00
, %* 60 1.68 26 12 14 4.66 73 23 25 0.08 1 86 6.42 60.03 m troquois Ptver 15 %* 17 9 3.69 2 167 87% 136.52 97 7 3% 0.07 tr. 101 140.28 n.a.
Sugar Creek 16 %* 22 23 2.50- 17 55 50 11.95 82 18 _ 19 0.16 1 95 14.61 73.05 teud Creek, 17 \" 194 19 1.65 19 427 42 60 463 1.71 5.04 46 21 1084 8.40 24.00 Totals 16 1213 94-93 2233 958.29 g 4259 42.39 7705 1095.51 160.40 4 a Location 1 is nearest the Braidwood intake site, b Not applicable. From: Muench 1964 1 e 4 J G
l its Indiana watsrahad and from tha Iroquois Rivor. Several pollution caused fish kills have been investigated on some or
~
the Kanhakee's tributaries, but none have ever occurred on llh the. mainstream itself. ! Smith in his 1971 publication, which classified , l numerous Illinois streams, rates the Kankakee-Iroquois River j system as excellent. A rating of excellent signifies, according l to Smith, that the expected species are still present in a num- l erical relationship to each other that indicates little modification of the stream from its. original condition. 4.2 Commercial and Sport Fishing The Kankakee Fiver is elassified as a fish preserve ! thus making commercial fishing in this river illegal (Langbein 1974). The-river is also not used for commercial shipping.
' Although recreational motor boating is important in the Six Mile - -Pool above the Kankakee Dam much of the Kankakee is rather shallow 9 :
and swift and therefore-better suited for canoeing. l 1 Sport fishing is the major stream use. Langbein (1974) l
. indicates that the' entire mainstream of~the Kankakee River in Illinois receives-a high degreelof usage by fishermen. The . proximity of this stream to the highly populated metropolitan c area lends: greatly to its recreational importance.
Muench (1964) reported that sport fishing usage near l
-1' Custer Park . (just upstream of - the : Braidwood intake site) . was heavy.
Species of fish from collections in thic area which were classi-Ib fied as commercial or " rough" fish were. estimated to comprise _ q
-84% by weight and game fish 15 % by weight of the fish population ]
(Table 4.3). lll l 1 N.7 l l
A creal consus was conducted on the Kankakoo Fivor between Transects 2 and 4, from June 30 through August 3, 1973 (~
\~s) during the 1972-73 Braidwood Aquatic Monitoring Program.
Horse Creek was also included in the census area. In addition to recording current fishing successes, the anglers interviewed were asked a variety of questions to provide background informa-tion relative to the fishing population on the river. A total of 186 fishermen were interviewed. All of the fishermen interviewed during the census were residents of the State of Illinois. Many of these fishermen (44 percent) lived in the immediate vicinity of the Kankakee P.iver (within 5 miles). The other major contingent (39 percent) had to travel 25 to 50 miles to fish. This second group of fishen-men included many individuals from the Joliet area. The ages of - the anglers ranged from 10 to 79. Most of these were young men (~'
't (25.4 percent) between the ages of 20 and 29 and men between the ,
ages of 40 and 59 (34.7 percent). Women comprised a very small , portion (3 percent) of the fishing population on the river. _ Almost all of the fishermen interviewed (97.1 percent) were interested only in the recreational aspects of fishing. Only a few of the anglers (2.9 percent) fished for food. The species of fish preferred to be caught by most were catfish and smallmouth bass (Table 4.4). Other desired catches were largemouth bass, bluegill and rock bass. The success fishermen had in catching these fish during 1972 and 1973 is shown in Table 4.5. The most
- 5. frequently caught fish was the catfish, followed by carp and rock _
bass. Smallmouth bass were fourth on the list during 1972 and Ok/ fifth during July 1973. Largemouth bass and bluegill were caught even less frequently. k.8 (
Table 4.4 h FISH CATCH PREFERENCE AMONG FISHERf1EN INTERVIEWED DURING THE CREEL CENSitS Percent of Species Number of Fishernen* Total Smallmouth Bass 72 23.6 Catfish 72 23.6 Bluegill 43 14.3 Largemouth Bass 55 18.1 Rock Bass 25 8.3 Walleye or Northern Pike 24 7.9 Carp 4 1.4 Crappie 3 1.0 Suckers 2 0.6 g Other Sunfish 1 0.3 Gar 1 0.3 Rowfin 1 0.3 Shad 1 0.3 l
- Fishermen may have indicated more than one preference.
l is O u.9
4 ,r'y Table 4.5 SPECIES OF FISH CAUGHT IN THE KANKAKEE RIVER DURING 1972 N1D DURING THE CREEL CENSUS, JULY 1973 1972 1973 Nunter of Order of Nunter of Order of Species Fishernen Pe rcent Catch Fishermen Percent Catch Catfish 122 24.3 1 141 44.7 1 Carp 91 18.1 2 45 14.2 2 Rock Bass 84 16.7 3 41 12.9 3 Smallmouth Bass 68 13.5 4 29 9.1 ' 5 Suckers 63 12.6 5 37 11.7 4 Walleye or Northern Pike 24 4.8 6 2 0.6 8 Largemouth Bass 23 4.6 7 2 0.6 8
- Bluegill 12 2.4 8 7 2.2 6 g
Crappie 12 2.4 8 2 0.6 8 Other Sunfish 2 0.4 9 6 1.9 7 Gar 1 0.2 10 0- 0.0 Buffalo fish 0 0.0 2 0. 6 8
- B oa fi n 0 0.0 2 ' O. 6 8 Chub- 0 0.0 1 0.3 9 Shad 0- 0.0 0 0.0 9e 'e .
O 4.10
4 The fishing effort among-fishermer. on the Kankakee River _ varied. LMost anglers (50 percent) fished less than once a week during 2972 A few (32 percent) fished once a week or more and some (18 percent) did not fish the Kankakee River at all in 1972 The average number of fish caught by these fisher-men at the time-of,their intcrview is shown in-Figure 4.1. Most anglers (59 percent) had an average catch of less than l' fish per' hour. Many fishermen (40 percent) averaged between 1 and-i 6 fish per hour and very few (1 percent) had an average catch l J of over 6 fish per hour. On a per trip basis, the most frequent catch among fishermen'was 2.5 fish (Figure 4.2). In conclusion, this portion of the Kankakee Fiver was lightly fished during July 1973, by local residents or individuals from nearby urban areas. Most anglers were young men interested - intherecreationalaspectsoffishing,whofishedlessthanonceggg a' week.- The preferred catch of most' fishermen was either catfish or smallmouth bass. Their success in catching these species Lwas good with regard to the catfish but-less favorable with the smallmouth bass. Generally, most fishermen averaged less that l i fish per hour of fishing effort but averaged 2.5 fish per fishing trip. N = 0 4.11
. I i ; , ; t i >
r e 0 v i 6 R M > k e e a k n a K e 0 h t 6
- n 0 o /
3 n r e n u ne3 o H h7
- r s9 e i1 P F 9 y t yl 2 h b u - g 0 u rJ a ug 2 C on Hi h r s ru r i eD F ?
w f t e o hi gv s ;5 - ' 9 r ur 1 e ae
- b Ct . 0 m n s- a hI 1
l f s i r e Fi g e . a f h _ r oT e rf v A eo b
- e X :x$'x ;p,/ < y[)N <
1 um i i r (tMak$x5'> t
'; e
. ge ah rt e _ vt Aa - X 3e XhsX z iO,h'hQd5;<~ )?x ~ Y , 0 1 4
.% 6lh'f:fC A, I$ ;
e r u I g i
# F i 0 0 0 0 5 4 2 1
- 5 hE w* b5*
,*w"
.g , fit .
25 - 20 -
~
- = i
- g- . '
i r-e 15 -
- 7 x
- y .
t 1 r . i
- s 10 . s
[.
- 2- .
- i' u . l
,' 5. I
~
- / N 0 .
.i.i.i.i.g.i.i.i.i.g.g.g. .i.i.i.i.g.i.i.i. . .g.i.e 5 10- g .i.i.e.g.i .e.g.i.
15 20 25 30 35 Average !! umber of Fish' Caught Per Fishing Trip to the Kankakee River During 1973 Figure it . 2, g 9-Sdwary of 'the Avera?.e 7:ur.ber of Fish Caught Per Trip to the Kantakee River Durine 107't
1 I 4.3 Methods and Materials of the Preoperatie.131 Monitoring Program The fisheries field and analytical procedures to be described were used during the 1974-1975 Braidwood Aquatic Monitoring Program. Adult and juvenile fish, larval fish and fish eggs were surveyed in the Kankakee Fiver and Horse Creek during the tonitorin5 program. Field studies of adult and juvenile fish of the Kankakee Biver and Horse Creek were designed to determine the number of fish species present, the relative abundance of each species and the distributional aspect of each species in time and space. Additional studies were conducted to estimate the absolute abun-dance of species in particular areas (population estimates) and to describe in detail the age structure, growth, feeding habits, incidence of ectoparasitism and condition of select fish popula-(~N tions. The abundance and distribution of larval fish and fish G eggs were studied because they are important indicators of the abundance, year class stability and population conditions of fish. 4.3.1 sampling stations The 1974-1975 program retained Tre.nsects 2,3,4 and 5 from the 1972-1973 progran (Figure 4.3 ). Transect 2 was re-garded as an upstream control area beyond the influence of the proposed intake and discharge of the station. Transect 3 would characterize the region of the river which will be directly affected by the proposed discharge and Transect 5 was considered to be well below the direct influe.ce of the discharge and . represented a potential recovery area from any impact which may h.1h
5 &.m, D % 4e-- - . * - 2-4h A - - - - J k $- O w 93%-
-a r.
g e y .jg g w d.m ue-*e,4 s o e :
-:.re. m %
5N " Vs p+"5'fi (g (n. 3 . y '$[!(@g, es: a g.
- x. K b y vs .r. O
- s. -en :l4. 3, - W TN[$'.+0. syn
%)[hS% C .,. um p e o A. wr g
e&$s:cqn %b ug
}
i33 'G n fki$ h- *C SW v
,'.%$ & O p 5 N-- O it 3C ,m 4 Q o
e w e . :e - w %a p g %*g e C
@ 9 w b
un gQ9b e w W
$w$* 26.:
y v({:G .C M . M ' m h . N?]$w.h;%in s O ww - C
'E .nj.k y. mM y j %iW O< n o n
M.. .m@Q 1 'o CE: M t-
! =c
- h. A W gL3r s aw m we :::2 w-* mM s
'u ea h 4.a o
g MM 48 g e.y..ir Am a
*g ' @,
O '
= C y <v g g m - ~
ZO ? Qm 4 E 9C ee h b w o Y 4 e d'k% ' ' > = =i;'. b e 8 O ' .. O 9-p;s e. _ W nW;x M 4..>5 a.
-- Q= n g
JO~IJ Z @. W
*:WM Yn w <p: e e .
Q :: 4e
.'?RIRIF-tE O ;Im.;.ew:t- -m S CW s,. .$gp+ t.3AW$ Al. w:q ,o.ae '4I... kb..w.~J v' N+p M 0 ;. e ev -
- g: a :.a. u%
O@
- ,.+ dy y ff
$lQ:hND) )&
Z u ,# w j ' (A [- M T* Zm __ +
% h, ,./t _, 4 -
H '
~:
s j ., e 12:?4.Bl a( * % v
.C's b
4.15
,_ _ , , .--r - + - - r- , - ~ ~ ,m, .
f , . .p e,- .v- --,--w
be associated with -the - discharge. ' Transect 4 in Horse Creek wac
. retained because off its potential influence on Transect 3 and i because it represented an area of biological value (potential fish i J
spauning area). 4.3.2 Collection Techniques-Adult Adult and juvenile fish were collected in the Kankakee Rive and Horse Creek using several collection techniques. An electroshocking unit, hoop nets, experimental gill nets and seines were all used at various times and locations during the monitoring program in order to minimize the effects of gear selec-H
. tivity and habitat variability.
Electroshucking was done with a 70-volt, straight DC system with four copper. electrodes from March (1974) through ;
-In-November and March (1975), an 840-volt pulsed DC system ~
August. with a modified steel cable electrode arrangement was used. In
- (])-
b-- the Kankakee Fiver, both shores of the river.were shocked at each . transect-(2,3 and 5) for a distance of 500 feet above and belowithe transect marker. This aret usually required 30 to 45 minutes of shocking time per station. In Horse Creek, the entire width'of-the creek was shocked from its mouth to a point 1,000 feet upstream. This area usually required 1 to 1-1/2 hours of electroshocking time. Four-foot diameter hoop nets were set near mid-stream
.at each transect (2,3 and 5) on the Kankakee River during June, 'Julycand August for a period of 24-hours. -These nets were used s to sample deep water areas in the river where other methods .were - -less suitable.
i u.15 1
A 100-foot long seine net with 1/4-inch bar mesh was used in the Kankakee River and Horse Creek during June, July and August. In the Kankakee River, four hauls were made at each transect (2,3 and 5), two on each side of the river. Four hauls were nade in Horse Creek. 0111 netting was done using 125-foot long and 6-foot high nets. Each net contained five panels with bar mesh sizes of 3/4, 1, 1-1/4. 1-1/2 and 2 inches. Gill nets were used ex-clusively in Horse Creek to study the movement of fish between the river and the creek. Gill nets were set at two locations in Horse Creek (one across its mouth and one at Trar. sect 4) during May, June and July. All fish collecte im the Kankakee Fiver and Horse Creek were identified to spes ts, enumerated, weighed and standard () lengths determined. Species selected for age, ectoparasite and stomach analysis were injected with ten percent formalin and re-turred to the laboratory for further analysis. 4.3.3 Population Estimates During the May Lnd August sampling efforts, attempts were made to estimate. fish numbers in select areas of the Kanakakee River and Horse Creek. Two areas near Transect 3 in the Kanakakee River and one area near the mouth of Horse Creek were selected for study. Population estimates were to be made by using a ccn-bination of Delury's method (Ricker 1958) and Baily's modificaticn of Peterson's multiple mark and recapture method (Ricker 1958) .
~ _
During the hby sampling effort, population estimate efforts were not successful due to intermittent equipment mal-functions which disc 110wed equal sampling efforts. In August, l 4.17 _ _ _ _ _ _ - .
. = -. ~ . . .- - . -_ _ . the degree of fluctuation in the first two collection efforts = indicated that~only a small portion of the fish populations in both the Kankakee River and Horse Creek was being obtained, making S the DeLury method for estimating fish populations unsuitable.
Subsequently, both of these collections were considered.to be the marking run for the Peterson method. The effort at each location was comprised of the marking run (m) and two census runs (c1 and c2 )* Eecaose of the small number of fish marked and recaptured, several assumptions-wera made in order to calculate the population estimates.
~1 When a fish species was not encountered during the marking run (m) but was encountered dur$ng subsequent
- census runs (c1 and c2), the first census run was considered as the marking run (c1 = m) and the second census run as the only census run (c2 : ci).
2 When a fish species occurred for the first time in g the second census run (c2) nc Peterson estimate of that species was possible and actual number of fish collected was recorded..
- 3. When a species occurred in-the. marking run (m) and .both-census runs (ci and c2), the census catches (ci t c2) and recaptures- (r1 e r2) we.re combined in making the Peterson estimates.
h.3.4 Techniques Assoejated With -Felect Species Rock bass, smallmouth bass, largemouth bass, white crappie and- longear sunfish were selected for age, ectoparasite and stomach analysis because of their potential importance as - gamefish in both the Kankakee River and Horse Creek. O 4 h.18
- . . , - - - - - - . - - . . . .--. -.- - - . _ - - ~_
J 1
" Aging of fish was based on the scale rethod (Picker 1971),
f . Scales. were - taken from underneath the tip of the pectoral fin- below l .the lateral line.. A microprojector was used to examine the en-
\'
larged images (X 13.5) of the scales. At least twc sca'les were measured from each fish and averaged. Scale measurements were taken in one direction from the scale focus _to the first, second, and nth annu11 und to the margin. Standard body lengths were 1 plotted against scale radius and best fitted by least squares ! i methods using the following equation: l fish lengh : C + b (scale radius) I l i where: b: the slope of the line C = the intercept on the length axis. l
)
When_the body-scale relationship was linear with an ! intercept- occurring at the origin (i.e. scale growth and growth' in length- were directly proportional), the following equation was used {]) for back calculations:
, Ln'I' "L l where: Ln : the standard lenth at nth annulus i i
L- ! fish standard lenth at capture (cm)
. 1 S
n : radius of nth annalus i S :. total-scale radius. In cases where body and scale. growth were not directly J proportional (i.e.-straight line did not pass through intercept), the following equation was used for estimating fish standard length
-at previous ages: ' ~
Ln fE(L-C)+C where:- C: intercept on length axis (Y axis)
- (2) Ln, L, Sn and S : the same as previously indicated. !
l 4.19 R l
Select fish opecies from the Kankakee River and Horse Creek were examined for ectoparasites. Fish body, fins, operculum and gills were carefully checked for the presence of parasites. The fish were scrutinized under a binocular dissecting microscope \s (X3 to x30) and the parasites were collected, identified, counted and described regarding the site of infection. Representative samples of the previously noted species were examined for stomach contents. Immediately af ter collection, ten percent formalin was injected into the stomachs, viscera and intestine of each fish to prevent further diEestion of food remain-ing in the stomach. The fish were then labelled, kept cool and sent to the laboratory for further analysis where they were measured to the nearest 0.1 centimeter and weighed to the nearest 0.1 gram. The fish were then dissected and the stomach contents were removed, we1Ehed and investigated. Food organisms were identified to the lowest taxonomic level possible. Relatively large food organisms (e.g. fish, (Ephemeroptera)) were enumerated and measured, and their volume determined. Percent fullness of the stomach was also described. Occasionally when stomachs were empty, a further : ep was taken by investigating the intestine for food remains. The above procedure was done on the fish from both the Kankakee River and Horse Creek. Condition factor for fish of the Kankakee River ano Horse Creek was based on the assumption that the fish length is proportional to the cubic value of the length, b K: (105 x g)ft _ u.ao q
where: K o condition fcetor 1 L: standard length (cm) W: weight (g). (N %) 4.3.5 Fish Eggs and Lcrvae In an attempt to describe the onset of spawning, year class stability and the ecological distribution of eggs and larvae in the study area, three different procedures for eggs and larvae collections were adopted:
- 1. Non-buoyant eggs were collected by using a submersible pump to pump water through a 76u mesh net.
- 2. Semi-buoyant eggs were collected by horizontal hauls with a stationary plankton net (lo50u mesh netting and 760u mesh cot end) near the bottom.
- 3. Buoyant eggs were collected by horizontal hauls with the same plankton net near the surface.
() The above methods were also used simultaneously for larval collec-tions. The plank:on net had a o.5 meter diameter round frame with a flowmeter attached inside and outside the mouth of the net to measure the volume of water filtered. Number of eggs and larvae per unit volume of water (cubic meter) was then estimated and averaged f$r each transect. The larvae were clso classified as being prelarvae and postlarvae. 4.4 Pesults and Discussion of the Preoperational Monit$ ring Program Two years of pre-construction mbni.oring have been conducted in the Kankakee River and Horse Creek near the proposed [ intake and discharge structure locati$ns for Braidwood Station. _ The data and results of the first year (1972-1973) are discussed
) in the Braidwood Station Environmental Report and in the Er31dwood h.21
Final Environmental statsmant. Field survoys for tha second year of m5nitoring were initiated in March, 1974 and were com-pleted in March, 1975. Data and result from the second year of $ m$nitoring are presented in this demonstration. 4.4.1 Co,mmunity Structure A total of 2,221 fish rei., resenting 46 species was collected from the Kankakee Elver and Horse Creek during the Braidwood Aquatic Monitoring Frogram. The family name, common name, number, percent composition and summary length and weight data of these fish are presented in Table 4.6. The majority of the fish species belonged to the families Cyprinidae (minnows, shiners and carp), Centrarchidae (sunfish) and Catostomidae (suckers). These families represented 33 percent, 24 percent and 14 percent, respectively, of the total number of species. Other families represented were Aphredederidae (pirate perch), Atherinidae (silversides), Clupeidae (herring), Esocidae (pike), O Ictaluridae (catfish), Lepisosteidae (gar), Percidae (perch) and Salmonidae (trout). Numerically more abundant species (species accounting for five percent or more of the total col-1ection) were bluegill sunfish, rock bass, mimic shiner, spot-fin shiner and spottail shiner. Fish species collected during the Braidwood Aquatic Monitoring Program may be categorized artificially on the basis of their feeding relationships within the fish community and their commercial and recreati$nal Amportance to man. This cate-5 g$rization developed by the Illinois Natural History Survey _ for the Mississippi River (F2rnickol and Starret 1951) places O 4.22
A %.\
'sJ t::
w ew z m
< a x: 9 -
H eg g c :
==wwwwww ..........===w mmmmmmmm m .. w w w w a . .
w =c gJ, a - e e s E jf E n! a 8 suss::ss::ee:asas -esta:se:eam:::= dfed--d"-d--ad s:=~.ss pi :iis3i g giggid"Eg
- 3 iz::::izzi j u e .. . *
- 88E888S 8888888888822838a288 2 8't 3 88 88 82 U$ud -S i n*ijn".8
_ n e............... s t s !*
- s 55 $ * * $ *". ". ". *. ". *. *. ". ". E 8 s e . . . .
n*
. g ea 2- a sassess sessses saa o n g _ g , ,, - g gg=3.., . ........-sesasses. ........_.....g. emes as s. - - 6 o
cu g
$ cY. 88 yi -=E838sq23EqqE3:4Eqq2;P53:30;2R;38 gggggag: ~~ ~ 2 =~~~- : ~~ga===a====--aS 2:t: 2;22 -2g 5 ==
- 2, 5-e a 2888888 2882882288%888288M82 8888 88 88 se gw o s , ,,
-p :::::a :::e: ::=,ca-~;------ ---- se ::
w e 3822333 2222332822282287RSE2 SSSR 23 22 ES u w z saaaang Asaaaaaa aasaan aaaa unas as aa a. e r o -~ - e w uz
- o. w . .e J . _.i M m o ,_
*E ssurs .. . .... :::s.m;8:.... 2*. _:. 8::
8:ET.- . . . m.. stsa:".9:t:. . .. 8
. . . E.... s a s 9. :.8 .
3 w w a e p& 0 1 a m x=B v m
;5 @ 1,2 < ,M, - - :-:: ~~- a m:e ssa a a-cut::~:~--:::~ :: ~=-- - -- -l =g W w o x
3o e z .--- - e it *1 g r' .. . S% gm m - e M: pg., f=. ll y &r t ! nJ e;n d.I:,iI 5 le fire!r.
.;: irns!
ril s
- c
.e.
t;. tvtm:.d: ;t cLjEs1 {la zilgy' p- -
- I r-.4:
e : e t et : .; e t2 -es. p t.: I-y v.,:nen!d..s ~ . s o
's 8 w- I ij p,ks; u *n.c ..H*' git.ii_p,;4i:
p- B 2! ;:
., p r ... ...,--. ..i p ., .. ., . .g.L,, . .,a_ ,sq . .~.3 - .<181i ..at i: .pi. , __!,I, I, i-
[- z w w t-- a i. .
.q---.-..----
- r. p r p r u em p, -.g gi_gi,e-p v ,
'..n1 a-v.p :4. :f,s..e 4La :. p t::1..a e-- . - < ze ed::el ry a2eenee .([.4._s< ru.Lyguas maan, anal:e:: =sisa =:=. . =lof.y,a ama.
o m u - :.3. . . ~, e t, s
.a < n -
e W ' x; ~o"* C
- 2 j:)u j bi 3-y e ,.t5; !e-I . . . . .
I, . :
.. 4 t
g If: $ !!,g.,e rt;h
.i }); 2 .
2 2 .. 2 . -i .1 z g m I; ;y
~i * :s pEe:ij:33.-
t f.s : 5 e ri: f :is3I.3 g .2 2s;2-223:: : -: :
- 2: ! t zt g o
.e u L - .s3.3.is *5** 5: *: ' -33 ds3 s5:: s= is' 2 .: g8t=s : [ [A.3 .4 + :
sl:as:.33aa. _ 2 as .:.,a~f 43:s e[ :g;i.P. see s: sas t..p:_s 1." a a: vss::: 1s:! :st a: rI3:s e a . sa a z a . sa*, . w =c p 3 :: . . 3 a 5Q z o
=jjai.
2 s i. m3 2 -.t 3 3. 3 i g 1: 3 p, g 3 :ma a a :s n: P : m O V h.23 1 l
fish into four groups, commercial, sport, predatory and forage species. In many cases, boundaries between these groups are indefinite because of th'e complex feeding relationships which lhk exist within the fish community and because of the abundance of a particular species required to const.tute a commercial or sport fishery. Commercial species include those species which are of some commercial value to man (food, fish meal, etc.) and are present in sufficient numbers to be commercially harvested. The classification of Kankakee River and Horse Creek fish by this system is presented in Table 4.6 None of the species collected during the Braidwood Aquatic Monitoring Program occurred on eithe: thc Illinois or Federal lists of rare or endanEered species. 4.4.2 Kankakee Fiver A total of 1,738 fish was collected from the Kankakee Elver during the Braidwood Aquatic Monitoring Program (Table 4.7 Thirty-eight species were identified in the collection. Species accounting for five percent or more of the total catch in the Kankakee Elver were bluegill sunfish, mimic shiner, rock bass, shorthead redhorse, spotfin shiner, spottail shiner and white crappie. Electroshocking was the primary collection technique usec throughout the program and accounted for 58 percent of the total fish catch (Table 4.8 ). The straight DC electroshocker used from March through August 1974 was generally less success-ful in terms of total fish caught than the pulsed DC system with - a modified electrode arrangement used in November and March 1975. O u.au
. i ,! ' i4 = , 6l' ,(' i +I *!(3L'
- I! ! .
tl e at 63%61664994367F9F473332 2e6657077356656p6l es 'e cs r e_16. a,10 7 0,5 9 4 5 0 3. M 2 9 8 4 2 8 6 5 3 3,0 9. e.13. g 13,8 8 0 3 0 l,0 I . e, 1 o
= e g O 0 4 C 0 0 210 0 9 2 0 4 S 0 0 L 3 0 0 0 0 13 0 0 e 0 5 3 0 3o6 0 0 510 0 0 p l 1 t
G N I R gI20721 i0o75ei6353244eI9 88 1 - t s1t12s F 3334tS432g3e95I3i312 2 lI 22 I5 2 9o 291 21 9 e 3 7 e 3 U I D 5 - - T 7 5E 2 3 t I I 5 2 C 9 t f 5 3 F E 1 n S N 4 e e r s3 e a m e c Ei r 44 1 3 l2I 5 3 13 6 1 2 e l 2 F li S I A 7 f R 9 T 1 T
-i2{ l 8 .F - I 1 9 2 4 1
3 9' I ' 5 9 - d .e 1 6 HM 5s E 32 - I 1 8 51 2 - 1 5 0 9 C A rt ec 7 A R b e E G ms3E ea es ' I 1 4 o t P 2 1 2 3 3 6 F O 1 ec T R 0 21 4 8 & A P m72E 3 8 1 3 5 R G 5E 3e 2 2 4 I 0 2 l 90 136 8 0 S E N t 1S 1 I 3 2 I V I t s e c 18 R I es3 o 83 3 a 3' ga n 046 1 0 O R O . a ai l 9 lI 6 2 I _ T T 2o 5 E. I E N '~'n . 84 16 I I 2I 4 . I2- 10~ 2 2 672 5 5 7 2 7 1 7 K O _ A K - M t 5E 74 93 I 28 22 3 1" 9' 3t 4 a 1 4 ' c . 4 N C ys3Ee A I l a es' 5 1 8 I 34 4I 3 2' 0 9 9 K T J - E A - L E U 72W 43 8 1I 33 - 2 22 1 3 9 2 l B I H Q A T A T . t.r
-5E . 49 2
4 8 8I 9 - 39 12269 3 7 l2 I 5 1 7 1 It - M D e e 8 O O a e s s3E IF2 9 6 551e2 10S- 04202 -S362 382 6 I % 6 R O J e 1 - 1 8 I 31 1 2 5 2 F W r 2 T D 2o. n 4I 3 19 2 1 3 1 0 65 6 2 2 1 4 D I 2 3 0 1 1 E A 5e T R m C B t" c 0 0' ~ E ys3 e a. L E a a M t 1 5 f8 ' 5' 1 - 2 4 4 ' 2 4 t' L H M'ai 13 I ' O T "
-T2 e.e 2 4 3 '5 '
- C - f i 3 I ' $
- F .
H O 5e. . 9l 9 6
' IF 1 - F '8 S t h I 95 I H h c
e . F T I$ c s3 o 1 l I 6 8 r n h - 2 I I - N e a p r - F O I 2- a
- 0. M 2h 3 2 F 3 l
l 6 i R H E C B A M E _ U r e s N h' s r t e n es e c- [ r t f a vr r i e L e e . e' a u c e se - le- - r se pt e l F S p A
- a
=
o d h e
. s a t
c s r e rJ a ra e rr a T m d aea a i rs isre e g erhra s ts a p - t s o s f 'r
.h sf eauean el eoa l scdh s ft oce ft oc f agdweseb eed rt c ee e O a o l el t er h ps - nne:tl ees ae t rf rgt e<
aaeet t owe dces: ebsal e isl hddd rs rs T n a p e - ahlhsls r h g w m et e rprr e hhh se lh plleee en ba en ba I. ae i l e rs1 sl -al : csesehaot se s eefff o mr a rsusue C eco1 m4 e a -el ldee sres s,moa h enpl osrsr rsoaeb eeert nc ct te snett slloac o= f bsh esI a uw aneooal aet acc t rbiis ttt wana el n r n ut c o 's naeaeesnen echh geeibr
. ttt 9t t nrh tllitl eeoeee la9 e l e ccaed i;laavee l rr ahealor aet atl ssdeagggett nt vltaioah eh oocoaseioort aehdril e c ao r a a s r r a e r l.mmmCpP0aE*SSWWsS5SmTtadd u
t t entl eoeoal l l t o ap t sSOSpgCClfCGGsJttt pctt eaaai lt ti f T f a U*UO q <4 , ' , y- - 2ji * ;l; < ;l3t1 ,j;
.. .b. -. ;- - - . . . --; ..a . - 4. - - .-- _ - --; -- - ---~ .
l , t 't TABLE 4,8 TOTAL NUMBERS OF. FISH COLLECTED.EACH MONTH FROM THE KANKAKEE RIVER BY-ELECTROSHOCKING, , SEINES AND HOOP NETS'DURING THE BRAIDWOOD AQUATIC MONITORING PROGRAM 1974-1975-t
-March . May June July August ; Novemt._.' March '
(1974) (1974)'(1974).'(1974) (1974)
'(1974) (1975) Total. Percent Electroshocking 93 42- 332 13 20- 204 321 1,025 58.9-Sienes * -* 157 137 384 *
- 678 39.0 floop Nets *
- 0 12- 23 *-
- 35 2.0 -
y
$ TOTAL 1,738 1
t
- Not used.
, t 4 O ,
-e e'
Seine nets were used during June, July and August and accounted
*for 39 percent of the total catch during these months (Suble 4.8 Hoop nets were also used during June, July and August to sample fish near mid-river. The total fish yield from hoop nets was only two percent.
Total fish numbers, biomass and species numbers in the
' Kankakee River fluctuated during the monitoring program (Table 4.9 Greater numbers of fish were collected at all transects during June, July, August and November 1974 and March 1975 than during March and May 1974 The greater numbers of fish which occurred in the summer months (June to August) may be attributable to behavioral responses of fish to increasing water temperatures and day length and to the use of seines and hoop nets in addition to electroshocking. The high nuLbers in November 1974 and March 1975 are probably attributable to the use of a pulsed DC electroshocker as opposed to a straight DC electroshocker in previous months.
More fish were collected at Transect 3 during the Braidwood Aquatic Monitoring Program than at either Transect 2 or 5 (Table 4.9). However, when the number c ollected at each tran-sect was examined during each month, the total number collected was not consistently higher at Transect 3. In March and August 1974, greater numbers were collected at Transect 5. In the Kankakee Fiver, the greatest number of fish species was observed in June and August 1974 and the lowest number of species was observed in March 1974 (Table 4.9). An
~
increase in number of species in June and August was due to the - use of seines and hoop nets. Similarly, the higher number of O h.27
.ti TABLE 4.9
SUMMARY
OF . TOTAL FISH NUMBERS FISH BIOMASS AND SPECIES NUMBER .. AT EACH TRANSECT COLLECTED FROM THE KANKAKEE RIVER DURING EACH MONTH OF THE BRAIDWOOD AQUATIC MONITORING PROGRAM 1974-1975 Transect 2 Transect 3 Transect 5 . Monthly Totals fish fish 5xcles Fish Fish. Species Fish Fish 5pecies Fish Fish 5pecies Mtsnher Blomass- Ntsnber lhar:ber Biomass Number Muader Blomass Mus6er N erN ; Semiess . Ihaber March 1974 21 4.976.0 6 21 3.063.0 6 51 10.652.5 8 93 18.G41.5 10
'Z-g May 1974 11 3.971.0 5 31 7.868.0 12 0 0.0 0 42 11.839.0 13 O Jane 1974 101 21.396.8 14 251 31.006.1 26 137 11.708.3 18 488 64.111.2 26 July 1974 28 9.300.5 11 90 2.364.1 9 45 3.171.2 14 162 17.104.7 20 . August 1974 127 4.564.3 17 120 1.%3.7 10 180 21.822.5 15 427 28.350.6- 21 Movestar 1974 58 3.119.5 6 76 504.5 7 70 793.5 9 204 3.417.5 11
- March 1975 65 778.6 9 221 4.594.2 15 35 345.0 7 321 5.817.8 J8 Totals 411 47.056.7 24 810 53.732.6 31 517 48.493.1 23' l.738 145.282.4 .38
{ h l l O , O 9
speries' collected in March 1975 as opposed to the low number 5f fish species collected in March 1974 most likely resulted from
<3
(_f use of the pulsed DC electroshocker. A positive correlation (r = 0.82) was exhibited between number of fish and number of species. Thus an incr(Tse in number of fish appeared to be accom-panied by an ir. crease in the number of species during the sampling period. L Total biomass of all fish collected from the Kankakee River during the 1974-1975 Braidwood Aquatic Monitoring Program was 149,282.4 g (Table 4 9 ) . The highest total fish biomass was observed in June 1974, while the lowest value of biomass for fish was observed in November 1974 Fish biomass in August 1974 was between the previous two values. The higher values in June and August could be attributed to the use of additional fishing methods, especially seines, and an increase in fish activity during these months. When biomass was examined among transects, maximum values were obtained at Tranrect 3 and minimum values at Transect 2 (Table 4.9). However, when biomass was compared among transects for each month no consistent relationship was noted. Fluctuations in total number of fish collected from the Kankakee River in each month of the Braidwood Aquatic Monitoring Program followed a pattern similar to that of biomass (Figure 4.4). Both biomass and numbers decreased from August to November 1974 and then increased in March 1975. Fis' species collected from the Kankakee River which represented more than five percent of the total catch during the - Braidwood Aquatic Monitoring Program included bluegill sunfish, a
O 80,000 ~ 650 LEGEND 60,000 -
~ * - - - NUMBER OF FISH -
600
/g i --o-- BIOMASS OF FISH 40,000 - [g \ -
550
$S 1 I , \
[ - 500 20,000 - g ,/ S I \ / l 18,000 - \ g f t / g E
\ d e 1
l
\
16,000 - g I g - 400 s $G g / $ $$ 14,000 - \ - 350 ", E8 12,00") - gs 8 [J ,
\
e 300 =3
\ \
10,000 - ) - 250 g 8,000 - 1* - 200 s \ 6,000 - '
- I p - 150
\ s t
4,000 - e ; cr / - 100 j 2,000 - s e - 50 I I I ' ' I I I O 0 MAR MAY JUN JUL AUG NOV MAR MONTHS (MARCH 1974 THROUGH MARCH 1975) Figure 4. 4 Total Number and Total Biomass of Fish Collected From the Kankakee River Ouring the Braid,;ood Aquatic Monitoring Program 1974-1975 4.30
mimic shiner, rock bass, shorthead redhorse, spotfin shiner,
- spottail shiner and white crappie (Table 4.7 ) . Bluegill sunfish U represented 8,46 percent of the total nonber collected, and their mhximum abundance was recorded in _
and August. A total of 234 mimic shiners espresenting ; rl treent of the total were collected. Rock bass were the most abundant species in the Kankakee River representing 14.85 percent of the total collected. No consistent difference" in the abundance of rock bass were noted among transects. The shorthead r.dhorse was abundant in
- ollections only during June. Spotfin shiner which constituted 13.13 percent of the total number were most abundant in July and tugust 1974, arge catches are due in part to the use of seines during these months. In contrast, spottail shir.ers were most abundant in November 1974 which could be the result of the more efficient collection of small fish by the pulsed DC electro-ahocker used during this month. However, spottail shiners were n>t abundant in the Kankakee River in March 1975 when the same electroshocker was used. Although white crappie were one of the more abundant gamefish, they represented only 5.35 percent of the total fish collected. Manimum numbers occurred in June 1974 Carp and golden redhorse constituted more than 50 percent of the total fish biomass in March and May 1974 In Junc and November 1974, biomass of these species were almost l
exclusively replaced by Diomass of shorthead redhorse. River carpsucker were abundant in August 1974 in terms of biomass, while northern pike was abundant only in March 1975. White - crappie represented more than 10 percent of the total fish bi$ mass in March 1974 and March 1975. 4.31
In March 1974, white crappie contributed about 55 percent of biomass of tetal fish collected at Transect 3 while carp were abundant.at Transect 5. Fish contributing to biomass at Transect 2 in March 1974 were carp, golden redhorse and rock
\\
bass. Carp were also important in May 1974, constituting 45 and 49 percent of total biomass at Transect 2 and Traneect 3, respec-tively. Shorthead redhorse contributed to a major portion of f fish biomass at Transects 2 and 3 in June 1974 and at Transects
- 2 and 5 in November 1974 Likewise the carpsucker was a major component of biomass at Transece 3 in July and Transect 5 in August. These changes in the dominant fish biomass component from transect to transect during different months indicate the inherent variability in fish collections and suggests no con- :
sistent differences in bicmass among trancects. 4.4.3 Horse Creek ggg A total of 483 fish representing 30 species was collected from Horse Creek during the Braidwood Aquatic Monitoring Program (Table 4.10) . Species that made up five percent or more of the. t i total number collected were bluegill sunfish, common shiner, green , sunfish, rock bass and spotfin shiner. Spotfin shiners were the ; most abundant fish-and, accounted for 42.44- percent of all fish col-o > lected.- Higher numbers of fish collected in June, July and August 1974 than in March and May 1974 may reflect both 'the e of seines
-and gill nets during summer months and-increased activity of fish L in the. area. .In turn, higher numbers of fish collected from Horse -I -Creek in November 1974 and-in March 1975 may reflect the use of the -
new pulsed DC electroshocker. 4.32 k l'
- -. . ~ _ . - . . . . . - - -..,,m. . - . . , - , . - . . . . . , - . , , ~ - . , - - - , . . - . ~ . . . . - . . . . . . _ . . , . . _ , . . c,,. - . - -
. . .) .y. . , . '
- g. - .....
o o
= .
.; e .o TABLE 4.10 TOTAL NUMBER OF FISH COLLECTED FPOM HORSE CREEK (TRANSECT 4) DL, RING EACH MONTH OF THE BRAIDWOOD AQUATIC MONITORING PROGRAM 1974-1975
]t i
j ... . i ' Mann Me n _ June __ July segust Hovember Herth i Tiensect Tre~ntect Treesect Trensect TFensed Trensect treesect l' 4 4 4 4 4 4 4 M: tent i E
~
< Commen None h h E E E E Total Caeyesttlem , Sleck bullhead 1 1 S.II i i Slech crepple 5 5 I?* , Stemtnese alone . 3 3 8 1.J4 i eteegelt 9 2 21 5 37 F.M
, Corp 5 1 1 F 15 4- ten === shiner 32 32 6.43 s
tuerald shiner - I 7 I.M j~ Fetheed al% 6 6 1.24 Elresed shed - 3 3 6 1.24 Goldee redherse. 7 1 2 I Il 2.28 ' 1 S.71 seiden shiner I Green ss= fish 10 .1 23 3 37 F.M S- targenowth boss 1 3 4 8.83
. Longnose 9er 2 1 . 0.52 (4 tongeer sentish 1 1 4 1 7 f.eg
- W M6 tc shiner $
- 9 1.M i northern pine 1 1 0.21 Pictere) 4 1 1 6 1.24 Pirate perch 1 1 0.21
- Pumpt las++d 2 3 S 1.04 i Redfin shleer 1 1 2 9.43 a
althen shiner 1 1 9.21 I Rock begs 1 16 14 32 6.43 i Shortbeed redhors, 6 i F t.e5 5 5mellseeth boss '1 1 F F 16 3.31 Spottin shiner 149 34 22 205 42.44 4' Spottell shtner 1 3 10 $ 19 3.91 ! Steelcolor shiner 2 2 9.41 ! m ite p eppte 1 1 3 $ t.04 1' tmtdentified Motsveter 3 1 0.21 l totes w or rish = i 2e 14 s3 63 er 67 43 ...., ! Per f-ensect i ! Total shs+er of Spectes 1 6 19 10 13 10 g Per Treasect I i 1
. - .. . . - ,~. - ~ . , . . . . _ _ , _ _ . _ _ , , , .
i Species which were numerically abundant in Horse Creek i varied from month to month (Table 4.10) . Spotfin shiners were the , most abundant spe:ies in June, July, and August 1974, while green sunfish were numerically abundant in May and November 1974 Spot- , tail shiner and emerald shiner were relatively abundant in August 1974 Number of species present in Horse Creek varied from one species-in March 1974 to 19 species in June (Table 4.10). As was true for the Kankakee River an increase in the number of species was correlated with an increase in number of fish collected. Carp, golden redhorse, shorthead redhorse, and northern pike, which were major components of fish bionass in the Kankakee River, also contributed appzeciably to total bionass of fish col-
- lected from Horse Creek. Gamefish such as- green sunfish and rock bass were important in November 1974 and March 1975, respectively, ggg and gizzard shad were important in August and July 1974 Total ,
fish biomass in Horse Creek did not follow a pattern similar to that observed for total fish numbers (Figure 4.5 ). Highest bio-ness was observed in May when only 28 fish were collected, which L indicates that during this month larger fish species were present e in the creek. In June, when fit numbers were high, bionass was also high. Low biomass and high n.imbers from August 1974 through March 1975 suggest the presence of many smaller fish species. Gill nets were used in Horse Creek in June, July and l August to detect fish movements in the area. A total of 12 fish were caught in these nets. The gill net catch in Horse Creek - indicates fish-movement-but does not conclusively demonstrate move-ment of fish between the Kankakee River and Horse Creek. !I , 4.34 ri r 4,gm --a u-w-oe- y ,-g+ -- ,e--,.- as we a-e%--i -- . imw, ,yp+m-, , w-,en,%,-w, q n-s prirsemi--, yg --r -.grw-9 a
i O 9000 200
~ %\ e LEGEND 170 l g -*- NUMBER OF FISH - CF - BIOPASS OF FISH 140 I g J: 110 5500 -
l i t1 5000 - l \ - 100 i \ 4500 .- l - 90 I e 4000 - I - g; g g m I
\
- 5
$g$ 3500 I S g -
70 as l s e a 3000 - - 60 l 0 2500 - I *\ - 50
\
1 2000 - l - 40 1500 - I / g - 30 1000 - I - 20 g I 500 - - 10 f 0
* ' ' ' ' ' '= 0 MAR MAY JUN JUL AUG NOV MAR MONTHS (MARCH 1974 THROUGH MARCH 1975)
Figure 4.5 Total fiumber and Total Biomass of Fish Collected From Horse Creek Curing the Braidwood Aquatic Monitoring O Program 1974-1975 4.35
\
4.4.4 Popuis tion Estims ta Studies of population dynamics depend on estimates of population numbers. When estimating population levels, common I problems encountered include low numbers of fish collected and the movement of fish into and out of the area under investigation. Fish collections were made in select areas of the Kankakee River and Horse Creek by electroshocking in order to estimate the fish populations present. Results of the effort during August 1974 indicated that the area sampled in Horse Creek had a lower total number of fish than eit.:or area sampled in the Kankakee River sunfish, sucker, and gar families were represented at all locations, with the sunfishes bving the most abundant group in all three areas. Green sunfish and smallmouth bass were predominant on the left bank below Transect 3 and rock bass and bluegill on the right. In Horse Creek, small-mouth bass were most numerous. Several brief trial elect'roshocking runs during the course of these estimates indicated the presence of relatively large numbers of fish at mid-stream above Transect 3. This mid-stream concentration of fish may have in part accounted for the low fish numbers encountered in the near-shore regions of the river. Population estimates based on the total number of fish captured and recaptured were relatively low when compared with total number of fish collected during the survey. Although the total number of fish marked and recaptured using this technique 5- does not necessarily have to be large, the obvious lack of suffi- _ cient numbers of marked and recaptured fish made the results less reliable. llI 4.36
l 4.4.5 select species Age and growth, food habits, parasites and condition factors of rock bass, longear sunfish, smallmouth bass, largemouth bass and white crappie from the Kankakee Fiver and Horse Creek were studied. Growth rates of these fish varied frcrn fair to good when compared to other fish populations described in litera-ture. Also, they had relatively higher condition factors (except in the case of white crappie (Table 4.11)). Annual increments in length varied from year to year. The majority of fish seemed to be growing well in the year 1974 (year of collections). Select fish species of the Kankakee Fiver and Horse Creek fed on a wide assortment of aquatic invertebrates and, in several cases, on minnows and other fish (Figures 4.6 to 4.9) . Aquatic-invertebrates were available in the study area throughout the study period. Some invertebrate species were fed upon selec-tively. In several cases, fish changed their feeding habits with - the season was largely attributed to the seasonal fluctuation of the benthic community. Fish collected from the Kankakee Fiver and Horse Creek were subject to parasitic infections. The degree of infection varied among species. Parasitic effects were not severe, as indicated by the growth patterns and condition factors (Table 4.12). In several cases, fish were shown to host more than one species of parasite at one time. Parasitic org nisms encountered in the stufy area were mostly trematodes (flukes) . Fish eggs are commonly classified as being buoyant, _ semi-buoyantordemersal(enbottom{ Ricker 197(). Collection 4.37
Ii TABLE 4.11 CONDITION FACTOR (K) 0F FIVE SELECT FISH SPECIES COLLECTED FROM THE KANKAKEE RIVER AND HORSE CREEK DURING THE BRNIDWOOD AQUATIC MONITORING PROGRAM 1574-1975 Kankakee River Horse Creek No. of Mean Cond.; ion No. of Mean Condition Fish Month Fish Factor (K) Fish Factor (K) Rock Bass March 1974 29 4.18 1 4.30 May 1974 7 4.44 0 0.00 June 1974 75 3.64 4.08 ((CD 1 0.00 July 1974 4 3.27 0 August 1974 61 4.53 0 0.00 November 1974 50 4.80 16 3.55 March 1975 4 3.40 8 3.30 Longear Sunfish March 1974 9 5.28 0 0.00 May 1974 1 5.28 1 5.96 June 1974 14 4.90 1 4.40 July 1974 0 0.00 0 0.00 August 1974 0 0.00 0 0.00 November 1974 7 4.52 4 3.21 March 1975 1 3.50 1 2.64 9 , 4 @
t
'O a D o i
i : TABLE 4 11 (Continued)
^
Kankakee River Horse Creek
' . No. of Mean Condition No. of Mean Condtion .
Fish Fish Factor (K) Fish _ Factor (K) l _ Month , , Smallt outh Bass March 1974 4 2.06 1 2.55 j , May 1974 1 2.52 0 0.00 June 1974 19 2.00 1 2.02-July 1974 3 2.01 0 0.00 l' 2.57 7 2.38- !
- August 1974 33 e Novecber 1974 2 2.77 7 2.20 j ,
March 1975 1 1.80 0 0.00 ; l @ Largemouth Bass March 1974 2 2.32 0 0.00 [ l 0.00 0 0.00 . i May 1974 0 June 1974- 0 0.00 0 0.00 i i i 4 i July 1974 0 0.00 1 2.74 August 3974 2 2.57 0 0.00 l November 1974 0 0.00 3 2.00 [ March 1975 1 2.07 .0 0.00 ! White Crapple March 1974 18 2.58 0 0.00 , i May 1974 4 2.85 0 0.00 i
- . 3.15 L June 1974 48 2.32 1 July 1974 2 1.98 1 2.47 August 1974 10 2.60 0 0.00 l
November 1974 0 0.00 3 3.52 ) 0 0.00 ' March 1975 9- 2.50 g l-i~~ -- - - , , - ~, , . _ _ , _ . . _ , . . _ , . _ , . _ _
MONTH FD00 ITEM AQUATIC V' ~ hTATION y
, COPEPODA D $ ~ CRAYFISH YH///H/HHHHH//H/HHH/Hus 5 DIPTERA 7
- h. EPHCMER0PTERA r__ 4' = = '
NEMIPTERA "3 ISOP00A b 'N AQUATIC VEGETATION O COLEOPTERA ,,__ @ CRAYFISH w/, 3 h DIPTERA D
'/u// u
[ EPriEMER0PTERA 8 HEMIPTERA 'Nm
^ LEGEND l TRIC!:0PTERA D 3 SMALL ROCK BASS (170 GRAM 3)
OTHERS g LARGE ROCK BASS (> 70 GRAMS)
, CRAYFISH ,
1 F 7 7 7 7 7 7 / 7 7 7"' h
~
3 EPHEMER0PTERA ; 7_r"///" z44 5 HEMIPTERA
-~
aJ MINNOWS & OTHER FISH ,' 12
@ ODONATA :n CRAYFISH r/af///a /w/)
DIPTERA D
'""/"""/a h ISOP00A E MINNOWS & OTHER FISll - 'n'rrzi f ODONATA TRICH 0PTERA h
D a'/"//A OTHERS [ ; ; ; ; ; ; O 10 20 30 40 50 60 70 80 90 100 PERCENT FREQUENCY OF OCCURRENCE
- NOTE: NO DATA WERE COLLECTED DURING MAY 1974. JUI.Y 1974 AND AUGUST 1974.
Figure 4,6 Percent Frequency of Occurrence of Major Food Items Collected From Stomachs of Rock Bass During the Braidwood Aquatic Monitori Program 1974-1975 4.40
O MONTH FOOD ITEM AQUATIC VEGETATION N COLEOPTERA M DIPTERA E LEGEND - EPHEMEROPTERA g { SMALL LONGEAR SUNFISH
, HEMIPTERA 6.zt/.J ,k ISOPODA r"""
V///A (LARGE
>36 GRAMS) LONGEAR ' SU y MINNOWS AND OTHER' FISH Z2) ** 110LLUSCA G DDONOTA ws2 wmme a TRICH 0PTERA O OTHERS 22)
V AQUATIC VEGETATION wwwaA E g DIPTERA raamm
- y$
EPHEMER0PTERA /wwwan ODONATA waamA yR ISOPODA k- .
*~ - --a l gE OTHERS F~~P- - T=i, , , , ,
l 0 10 20 30 40 50 60 70 80 90 100 PERCENT FREQUENCY OF OCCURRENCE l NOTE: NO DATA WERE COLLECTED DURING MARCH 1974. MAY 1974, l JULY 1974 .'.ND AUGUST 1974 L 1 Figure 4.7 Percent Frequency of Occurrence of Major Food Items Collected From the Stomachs of Longear Sunfish During the Braidwood O Aquatic Monitoring Program 1974-1975 k.41
1 l e MONTH FOOD ITEM MARCH 1974 CRAYFISH XW/H/MMMMHmmHMMM//ms AQUATIC VEGETATION * - LEGEND ARACHNICA 23 { SMALL SMALLMOUTH BASS COLEOPTERA D h CRAYFISH m'-u 'N/m w DIPTERA M Q (LARGE > 70 GRAMS) SMALLMOUTH BA , x 8 EPHEMER0PTERA unn HEMIPTERA n'="'> MINNOWS (OTHERFISH) L
~
a ODONATA 22 ; ; i l ; i l l l 0 10 20- 30 40 50 60 70 80 90 100 PERCENT FREQUENCY OF OCCURRENCE-NOTE: NO DATA WERE COLLECTED DURING MAY 1974 JULY 1974 AUGUST 1974,
^
NOVEMBER l'974 AND AUG'UST 1975. p.n Figure 4.8 . Percent Frequency of Major Food Items Collected From Stomachs ( of Smallmouth Bass Collected During the Braidwood Aquatic Monitoring Program 1974-1975 g h.42
l l I O MONTH FOOD ITEM DIPTERA m- - x ~ m = , EPHEMEROPTERA m/mmm/me-, 5 HEMIPTERA
~
O l MINNOWS AND'0THER FISH w/mmma l OTHERS 2] l COLEOPTERA 0 LEGEND 1
, DIPTERA rA -!
b_ , _. sw1LL WHITE CRAPPIE 3 EPHEMER0PTERA ar r -- -- (<,70 GRAMS) W HEMIPTERA rt "' - - S gj7g (LARr,E WHITE CRADPIE MINNOWS AND OTHER FISH C > 70 GRAMS)
-(] TRICH 0PTERA DIPTERA C
emm/17: 2 g EPHEMEROPTERA r T '._ w A
$ HEMIPTERA r wmm; 5
cc - ISOPODA Q M MINNOWS AND OTHER FISH r u OTHERS w m.w I I 1 I I I I i 1 0 10 20 30 40 50 60 70 80 90 100 PERCENT FREQUENCY OF OCCURRENCE NOTE: NO DATA WERE COLLECTED DURING MAY 1974. JULY 1974, AUGUST 1974, AND NOVEMBER 1975
~
Figure 4.9 Dercent Frequency of Occurrence of Major Food Items Colle:ted From Stomachs of White Crappie During the Eraidwood Aquatic O Monitoririg Program 1974-1975 4.43
t1 TABLE I4.12 NUMBER AND CONDIT10's FACTOR OF INFECTED AND NON-INFECTED SELECT FISH SPECIES AT EACH AGE CLASS COLLECTED FROM THE KANO XEE RIVER AND HORSE CREEK DURING THE BRAIDWOOD AQUATIC HONITORING PROGRAM 1974-1975 Number of Infect <A Mean Condition Factor (K)
-Ntsnber of Fish - Fish at Each Age Class Infected Non-Infected Non-Fish Month Infected Infected 0 II III IV V VIII~ Fish Fish 4 1 2 1 4.3 3.9 Rock Bass March 1974 2 8 4.2 4.6 June 1974 1 9 1 5 3 2 3.2 3.7 November 1974 3 6 3 1 2 3.4 3.4 y March 1975 6 ~
4 4 4.7 4.7 'g Longear Sunfish June 1974 7 November 1974 1 1 1 3.0 March 1975 1 1 1 2.6 3.5 2.2
- Smallmouth Bass March 1974 0 2 1 1 June 1974 2 8 2 2 3 1 ?.0 2.2 March 1975 1 0 ,
0 2 2 2.4
- Largemouth Bass March 1974 2.1
- 0 1 March 1975 1 9 2 5 1 1 2.6 2.8 White Crapple March 1974 1 7 3 1 2 2.7 2.3 June 1974 4 4 1 2 1 2.3 2.3 March 1975
- Hot applicable.
O e
- .__m _ _ _ . _ . _ _ _ _ _ _ - . . _ . _ . _ _ _ . . _ _ _ . _ _ _ _ _ _ _ . _ . - . _
i 5f eggs and larvae during the present survey was done using sur-face and bottEm plankton net tows and bottom pumping. These collection methods were used so that there would be representation ! in the sampling of the three types of eggs, Eggs collected by , plankton nets are most likely buoyant or semi-buoyant whereas ! those collected by bottom pumping would be primarily demersal. i Limiting or complicating factors to the assessment of fish eggs and larvae in any area are that eggs and larvae may be , concentrated in spawning areas rather than being widely distri- , buted; collection of adequate numbers of demersal eggs using traditional collecting methods is difficult, and mvvement of fish between different bodies of water (such as the Kankakee River and j Horse Creek) nake it almost impossible -to define population boun-dries during breeding periods. Bottom plankton tows and bottom pumping produced a small [} number of eggs (15)'and larvae (54); none were collected using surface plankton tows. Number of eggs arf 'itvas per cubic meter , of water at each sampli.1g location are prt'e-> 3 in Table 4.13 Since fish eggs and larvae were collected .uring the < first sampling (May 2) at Trantact 3, this indicates that spring spawning had already occurred by this time (Table-4.13). Larvae were. collected at Transect 3 as lato as June 27. Thus, the spring spawning period _ started before May 2 and extended beyond mid-June 1974. Larvae collected during the first part of the sampling probably belonged to earl- - ing spawners , whereas, eggs and
larvae collected in the la6a r part of che survey were from early _
summer spawners. O u.us
+- '
w oeooa 5ooo ooo
- ,, =,: doddd dddd d4o on..} e eeees sooe e.e ,, a e : :: ooooo oooo ooo %.t gaa .: : ~
ax
*5f~2 as C ooooU ddddd e, ooo dddo ooo dd6 e ?h ooooo aooo e**
ooo w O WG .
- U. o Oo o H
- u .E t oooa3 . ooo W cx: -
m
; dddd6 4446 od6 J D .J Q LA O N 6g g g -
y g m ig g. .e
, 3. o. o. o. o.
w r um. w eoooo WW t % g f g( af cc id"
> U N g= .
W r== ooooo
. *ee.
oooo kooo*.
- a to 2 E -
O O % 2" X 4. $ ooooo oooo ooo 4 0 *3 diddd dd&6 666 O O M 7 Cf. . O ef, ch. O , : ~ M g y . hz *k gw s [ *e**k ooooo
*8.
oooo 9* *** ooo r-4 m m ct: *
- M CC Q k ,,C oe 8oo oooo ooo
- A > *g u g W D"4 w dddNd dddN ddd tr. W z O M O
-J e" lE CD m Q 3 m ~
4 M u I t noooo Sooo ooo W "g h2 ddddd e' d d d ddd h.
** m 4, . -
oooo ooo G %* 35 ooooo u 0:: <
"38 aa 3 6666d eddd dd6 O E O g D O o ct: Eaf =a g-e ooooo 2 -
BoooO a oo
% w.
ce WWw ca A E .,t 3* 3t ddadd doed 6dd + O N Y Fm . .il ?m n* ooooo oooo ooo Q"M w >= W
, dd66d &ddd add .J % >= D &
H 7 E m I M ). U* Z W "2 - E cs I
*P.
49
- O $ " 0-- 2 a - 207 002.2 20%
E-33 3. E2 - [ EE200 0 - - "" i-no-~ .:. -R once =2 II N e h h h h h naama ,,,, 444 g h 46
It is known that different fish species have different temperaturas which induce spawning. For axample, the spawning temperatures for rock bass, longear sunfish and smallmouth bass have been reported to be 20-21oC, 24-30 C and 13-2100, respectively (Scott and Crossman 1973). Thus, it ic not unexpected that fish eggs and larvae were collected throughout the sampling period. Although some larvae were collected at each transect, no eggs were obttined from Transects 2 and 5 during the entire sampling period (Table 4.13). More eggs and larece were collected from Morse Creek (Transect 4) during va y 1974 than at all the Kankakee Fiver transects (Transects 2, 3, and 5) combined. This ausgests that spawning was more intensive in Horse Creek in May 1974 than in the Kankakee Riv-r at this time. Conditions in Horse Creek appear to be more ecolo-(} gically favorable for early spawning than the Kankakee River Horse Creek is shallow (mean depth of 4.6 feet) having conditiens. relatively warm water (ranging from 2.8-24.2 0C in March-June) and low flow. Fish movements between the creek and the river were suggested from the observations made during the 1974-1975 study. Both the creek and the river appear to provide nursery grounds for eggs and larvae. In general, a moderate'.y diverse fish community, noted in the Kankakee River and Horse Creek, did not appear to be sub-ject to any obvious environmental stress within the study area. 4.47
l 5.0 INTAKE EFFECTS 5.1 ENTRAINMENT A preliminary analysis of the projected impact of entrain-ment by the Braidwood Station on drifting larval fish populations in the Kankakee River was made considering the monthly mean flows of the river in the vicinity of the station location. The analysis is based on two assumptions, which may require modifications based on additional studies of the hydraulic characteristics of the river and the spacial distribution of drift within the river. These assump-tions ares (1) drift is dictributed evenly across the river; and (2) the proportion of the river drift entrained is approximately the same as the proportion of the river flov entering the Station. 5.1.1 METHOD, ANALYSIS AND CONCLUSIONS Montaly mean flows of the Kankake2 River at Wilmington, Illinois (Table 5.1) for the period 3916-1975 (60 years) were sta-tistically analyzed to determine the flows corresponding to various non-exceedence probabilitier in each month of a year. The magnitudes of monthly flows for given exceedence probabilities were determined using log Pearson Type III method, and the results are given in Table 5.2. Non-exceedence probability curves for each month of a year, excluding February, are given in Figures 5.1 through 5.11. Analysis for February (Figure 5.la) was based on mentbly mean flow data.for the period 1934-1975 (42 years). Figure 5.12 represents the lateral distribution of depth, mean velocity and flow in the Kankakee River in the vicinity of ggg the Braidwood Station intake. These data were determined from field measurements of depth and velocities at the site on November la,1976. _ _ _ . _ _ _ - _ ._--_--__-____M___---
- ~- -. . .. . ~
C (- Table 5.' l 8 CECO - 8RAIDWOOD Sfef!CN
- RAkAAttt RIVER MONIHLY NEAN FLOL FOR 60 TLARS
.FCAR JAN FE8 MAR APR MAY JUN JUL AUO SEP OCT NOV DEC MTAW 1986. 7700. 3340. 4290. 3t10. 4160. !?SO BIS. 774 1780. 1430. 1960, 1987. 1470. 3460. 5370. :lJ0e Sete. 1900. 4130. 982. 819 1600. 733, 1988. - 576. 5280. 286a. 3300. 1700. 1570. 151. 1050.
1989 4090. 804. 2070. 7040. 10000. 3970. 72'0. 240. V02. Ste. 468. 405. 849 Otto. 1920 4400. 7870. 10200. n4J0. 1470. 1040. 634 500. 1924. 1820. 567. 658. 904 37e0. 4190. *vf 0. 91L. ett. ette 1140. 1030. 4490. 5370. 1972. 4420. 8?CO. 10100. =40^. 17po. 943. 500. 794. 1903, 1100. 6700 et7. 44v. 950. 2850, 4 71i0 . 2040. 930. 1000. 1500. 1940. 24t0. 9090. 39:4 5640. 4860. 7320, 3600. 6700. 3950. 4880. 1840. 1000. 1925. 1840. IFeo. 2770. 7800. 2080. 1340. 404. 958. tes. 670. 811. 1640. 1430. 1926. 2100. L390 19700. 31/0. 3040. 1400 3030. 9:30. 11000. 4L90. 1927. 2440. 3700. 9807. 13 00 10000. /010. 2?u0. 3240. 1930. 3730. 4:20, 15400. 1928. 8500. 4511. 5090. tv00. 0330. 1940. 8470. Atto. 144v. 2430. 3U30. 1929 10500. 10401. 10900. 8f10. 57p0. 2020. 1580. 898, 1040. 1740. 2970. 19J0. 8400. 4660. 9000. 3190. 1440. 945. 738. 696. 630. 700. 1000. 854. 2000. 3370. 20J0. 1690. If31. itL4 7D9. 1932. 3920. 986. !?J0. 3080. 3J70. - ' 4020. 3790 1790. 1190. 1820. 1pJ0. 710 b60. tabo. 3JUo. 193J. 4340. 4:40.-11400. 14000. 2000. 1790. 949. 34t0. 3450. 100 2700, I 1934. 1f50. 1300. 1600. 3400. 1150, 790. $40 Ueu. 1950. 1300. 2700. 3800. 1935. t?)0. 5300. 9000, 4020. 8150. tJ 0. 3060. 1340. 776 775. 2410. 1930. 1934. 2400. 2644. 5300, fe30. 3070. 957. 456. 462. ??9. 1620. 2460. Atto. 1937 8560. -4891. 3100. 8060 t450. 3470. 1940. 1370. Ste. 1200. 1860. 1340. 1938. 1840, 704$. 9040. 9700. 3900. 5l00. 4790. 1690. 2900. 1860. 1860 3 10. 1939. 1730. /805. 10900. 9L00 3410. 4240 40D0. 1240. 609 736. 878. 943. 1940. 754. 1391. 24:0. 2340 SL00. 4130. 1190. 843. ev7. Woo. 1200. 1640.
, 1941. 1950. 2110. 2070. 3700 24J0. J000, 3090. 557, ou2. 6300.
3942. 4090 3370.
?400. 13460. 10u00. 80/0. 3300. 2700. 1620. 2840. 2000. 15/0. ello. 54 0.
1943. 74'0. 75't. S$70. 5340. 24000. 6530 3590. 3110. 18to. !? 0. Otto. 1300. 1944 1824. 1972. 7380. 15900. SL40. 5100, 14L0. 700. +46. 916. 9:5. H05. 1945. 700. De64 3tLO. 60J0. 10700. 4t10. 2000. 14/0. 1946.. 806L. 5149.. Sato. 3440. 3980. 5940 tWWO. 4two. 2450. 2490. 1750. 904. 648. 757. 1800. 1920. 1947 1948, 3010. 4t 2. 3470. 9010. 9860. 8390. 1990. 10:0. 1790, 1380 2050. 4060. 3000 3030.4 feeo. 7140. 8v90. 3C00 3090. 1870. 475. ee:. 900. 1340. 1949 4620. 8775. 5750 4100. 3u50. 0030. 3060. 1310 778. 1540. 1840. 4:50. 39:0. 16000. 12050. 11100. 18400. tv00. L970. 4340. 1u00, tWLO. 1490. 1460. 2740. 1951. 5820. 10820. 4400. 9260. 4050. 3710. 94 0. 2490. 1760. 2460. 4740. 4010. 1952. 9190. C938. 49.o. 07:0. t060. 8520e '2010. 1430 797 776. 901. 1953. 1700 04:4. 4400. 3eJo. 2440. 6060. 1820. 1310. 582. t?e. act. 748. 1954.- 911. 1787. 7440. 4020. . 7720. 39:0 3000. 2400 1340 8W8. 4740. 4000. 2630. 1955. 44*0. 4312. e430. 4390. 4b20. 5220. 2000. 009 905. te00. 1870. ;450. 1954. 1830 4443, ALLO. 2 80. 9140. 4990. 1830. 940 594 $29. 19f '. 1090. 1676. 1440 10600. 89J0. 5000. 12J00. 444 752. 1820. 991. 3690. J7DO. 4450. 1958. 4490. 2489. 4710. 2090. tW10 1 400. 6:30. 34bO. 1300. 935. 3710. 1570. 1959 2490. 11*30. 8840. 8440. 8050. WO. 2840. Ite0. eds. 2480. 4240. 40J0. 1940. 5:50. 8205. 4100. 9b90. 40LO. 4$40. 2300. 1490. 998. 960. '8380. 1870. 1948. 993. 16/3. ELt0. 4120. 6190 3t70. 1600. 3Clo. 3270 0800. 4700. 3790. 1942. 4tt$. 6500. 5590. 3370. 3P00. 1:40. 943. 1290. 906 1943. 700. ~ 710. 4901 1484UO. t00. 3090. 2840. 1390. 1940.- 953. 605. !!90. 514.. 457. 432. 1944. 805. 912. 1600. 4490. 2350, 2060. 1460. $81. 497. 732. 771. 1340. 3945. S340. 5348. 4900. 9950. 5440. 2170. 1900. 1820. 3670. 3410. 2 30. SL40. 1946. 5000. 4039. 49 0 4390 10000. 3340. 1300. 30n0. 741. 713. 2000. 7L40. 1947. 3150. $7 8 9040. 10:00, 7790, 3460. 1610. 909 746 1150. 3400. 9330. 1948 $000. 13870. 5090. 7600. 4360 5700. 40ro. 3480. 1450. 1150. 1430. 4010. 1949. 8850. 7800. 4130 10300. 4550, 3800. av20. .17 0. e:B. 2e60. 3400. Ot00. 1970. 1300. 3418. 3570. 18:00 13700. 4960. 0170. 1971. 1940. 4421. 4740. 3120. 22v0. 1640. 1070. 1660.* 3610. 4690. 3770. 2750. 910. 1640, 3300. 1030. 3180. i 1972. 4100.- 34t9. 5400. 10500. 7670 $010. 3310. 40v0. 5300. D190. Itt00, 9480.
,3 -' 1973. 18L00. 7040, 9890, 14000. 50to. 10400. 3170 2040. toro. 8:00. 1 30. 3:40. ,, 1974 S'CO. 8 tees. 9170 6J40 13400. 9910. 2330. 14to. 1600. 865. 3030. 3350.
9390. 8823. 6:20. 9:00. 4470 tit 00. . t- -..1975. .... MEeNa
. ...... ............................... 3300.
3.491 84J0. 1700. 3010. 1310. 4040. 5.LCV .3801 3.?s: 3.807 3.499 3.544 3 308 3.095 3.044 3 123 3.275 3.390 Sk!W3 0.175
.2304 .2397 .2678 .2061 .0073 .0129 .2/C5 .2991 .3002 .3330 0.C21 0.180 0.13 4 0.317 0 179 0 407 1 090 0.veu 9.3/7 0 84J e
\;
- 5.2 l
l'
___ _- . _ -- - - _ - . _ _ . _ . _ _ _ _ - . _ _ . - - ~ . __ i i i I Table 5.2 g! i i FLOW VALOCS FOR VARIOUS NON*E*CEttitNCE FR0tet!L111tt SN EACH MONTH [ l I h0NTHt 1 II0se-tX. PLOS. e 30 f.0 10 0 25.0 50.0 75 0 80.0 05.0 90 0 95.0 9s.0 99.0- 99.0 99 5 .
...... ...... .... .......... ....... ~ ................. ...... .......... ..... .. .......
FLOW R2fttCrg). 341. 703. 993. 1695. -3f75. 3773. 4507. 7793. 9332. 12752. 13573, 17109. 21144 2:546. , t MONTHf 2
'In0%-t2. FLob
- 1.0 5.0 10.0 25.0 50.0 75.0 86.0 85.0 90.0 95.0 94 0 '90 0 99 0 99.5
.. . .... ....... ....... ...... .............. ................. .....e.. ... . ... ........ +
1159. 2649. 4445. 7498. D2t2. 10772. 13360. 13950. 16292. 19567. 20772. ' FLOW SAT......C ( CF ...504 5.l .... 1625,
......... ................... '9420.
g-MONTH 8 3 . - - N EE. PROR. * . 10 5.0 10 0 25 0 -30.0 75.0 80.0 05.0 90.0 95.0 94.0 98 0 99.0 99.5
- FLOW RATE 4CFS)* 1211. . .2127. ....'.2703. .... . 4050. 6074. 8354. 09C1. 9656. .. ................................ - ............- .. . - ~ ~ ~ .. ~
10474 11940. 12133. 13170. 14062. 14835. 3- 4' e
'L- NONTHE 4- #0N*EX. PA06.
- 1.0 5.0 10.0 25.0 50.0 75.0 80.0 e5 0 90 0 95 0 94 0 98.0 99 0 99.5 - ,
............. ..... ............... ..... ......... - ................................... .... ....... g r$0W RAf((CF$le 1652.- 2517. 3131. 4388. 4520, 9503. 10:47. 11470. 12054. 15643. 14249. 18070. 21503. 24197. i 1
MONTH 8 5-
' ts04-EX. FR09. e 10 50 10.t, 25 0 50.0 75 0 80.0 as.0 90 0 95 0 96.0 98.0 99 0 99 5 , .. . .................................... . ...... ........... .............. ............. ~ ..... , FLOW RATC(CFst. 3121. 1771. 2240. 3:42. 50e5. 7739. 8423. 9584. 10904.. 13455. 18283. 16949. 19719. 2*e:9..
1-
-MONTH 1 4-Iso.e-t X. PROD. e . 10 5.0 10.0 25.0 30,0 75.0 80.0 85 0 90 0 95.0 94.0 90.0 99.0 99.5 . . . _ ... . - .......... ................. ~ .................. ...... .... ...... ........ ....... . ' LOW #ATEICF58= e48. -1818. 1474 2:39. 3622. 5424. 6843. 4995. 7942. 9043. 40300. 12096. 13901. 15725. .. . ..... ........ - ... ... ... .. .. ..... .... .............. .. ....... _ . .............. p t
1 MONTHI .7 *
' 080W-tX. t000.
- 10- 5.C 10 0 - 25 0 50.0 75.0 00.0 85.0 40 0 95 0 96.0 98.0 99.0 .99.5 498.. 742. 924.- 1327. 20es. 3352. 3cee. 4301. *023. 4661.- 70*d. esce. 10805. 13041. -
FLCW ... Raft.tCFC) 1 NONTH8 $ ' se088-EX. PA0p. = 1.0 5.6 40.0 25 0 50.0 75.0 - 80.0 85 0 90.0 1 95.0 96.0 98.0 99.0 99.5
,.... ............ .............. .. . - .... .......... . .. ...... - ~ ~ . - - - ... - ~ .
HOW RATC(CF81e 434. 559 440. 843. 1893. 1775. 19*2. 2205. 2:31. 3205. 3463. 4 se. 5233. 6J2...
. ....... w ..... - ... ..... .. . .. ... ...... ...... . . . .. . . ....-. - ... ..
l: $ .9 j ^ MONTH 8
- ef0N-EX. f109. e. : 10 5.0 10.0 25 0 50.0 75.0 80.0 85.0 90.0 95.0 94.0 98.0 99 0 99.3 -
. ........ .... .....e ... ... ... .. ....... .... .. - .. . . . ........... ....... .FLDW RAfttCF$) ' 430. 4t9. 515. 700. 190. 1599. 1741. 2139. 2553. 3714. 4004. 5534. 7562. 10246. - .. . .. . ............ - - ... .... ...... ..... .. .... . ..... ... . ~ .. .
L= MONTHI le 99.5 IIOP-EX. PA08.' = 1.0 5.0 10.0 50.0 75 0 30.0 - 85 0 90.0 . 95.0 94.0 98.0 99.0
~ .. .. ......'25.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ . . . - . . - . . . . . - . ' PLOW RafttCFSte 440 535. 411. 803. 4896, 2029 2255. 2752. 3358. 5005. 54*1. 7412. 10546. *4473. , -... .. . . . ~ .. ... ............. . .. .... - .... .... .. . . . ..... . 1 1 . MONTHS 11 4eL% *. PROS. = ' .-10 5.0 10.0 25.0 50.0 75 0 80.0 05.0 90.0 95.0 96.0 98.0 99.0 - 99 5 ~ .. ..... ............ - ... ................. .. .. ... . ..... .. ... ,
l
- - PLDJ RATE (CFS). 458. a53. 002. 1842. 1003. 2993. 3312. 3933. dest. 4440. etes. 8910. 18342. It*37.--
. .... ... ... - ~ ......... ........... ... ....... ...... ... - .. -. . . ~ . .........
\. t . .
- MON 9MI 111 180*t1. Ps.cp. e 1.0 5.0 10 0 25.0 50.0 75.0 20 0 05.0 90.0 95 0 96 0 95 0 99.0 99.5 FLt C E(CFS)* - 453.. 720. 945, 3447. 2452. 4247. 4740. See2. e743. 9336. 995D. 12u3*. telus. LW. .- .......... ... .. .... .. . .. . ~ .. .. . .. . .. . _ . . - ..... ..
53
# 3-- me, .- ,.- u m_m m__-,..~-,,,,~..,,,w , , , , - -~...w~g.m._.,.ms_m,. -. m,.m,_m . m m, , o ,m.-, . n ,mo m.
- ~"~
Mon-Exceedence Probabilit- in Percent T-_ , II 7 () $1l
,. ] 9) f- l't j h ,,,,
O" @ 99QeMyT %
+
II) 89 / (if) 4Q '4) [{} 99 9
% % RET * * ' - r - - , '30 T4 -- r - - i- -
r_~ ; _ . - Tr T - :<
' t . i- .
i j _ . . ._ , t m_[ -- -- ~ 0,$0 . TT.,. 14 g
- Tv
- p. , .rr ,,p -
.-.._6.i. , . t
_3--l t, i i 1 33 s . . i;i
. ..N. . ! N t./ M y ,'_.. !j l]', i 1' i 7,1. ., .: .. ,i . ' t {.t _.1;. p. !.! .4, i..; .i j-Im j I jJ' : m L. .e. iL f f; i; ! .- ' i s.j' a i : ,! j. +l i ,+ f, -l h! ;. t' - } ,i't. q' i ', .
i,, .! t It- I.. 's 8 o' ' , .
' ' *' }. ; j ; ,- ;;i .i , . ,
I, t l 4 i *. f I 1, c '. ' I : i . , .. . . j. : ii
' f "i i I i 4 8 +
p_;j ', 'I .ij_ . f;i
. Ll .:_il d.
i I" l 3 l' 11_' . _ 2 f 1. f -
' I ;;.. pj. ;.
Q i:. 3:
.t i. .ll,gt ni ! ! + -
- I,i
'l;
- 't 1
! I ;' e,iI U i ; 'l ' 'Ili ' 'i,i i s
lli'. 1 . l ' II 4 a a;: ;h3 ; !. e . i 'I3 'l'i t- 1.- ) ; < t h- ;.' r it;: it
- >!'i i, a.
l i !,
< n. . ! t , 'i ', e. i t i, . i. . .i,, n.. ,r _ , }y~l l N.II ! I. _.i. i m. :m g_ j., .
jm ;.
- . _ . u:. .,_ ; . , _.
t
, _. . A, .
g.t _._,,_. I!' _ j._.._ .g. ..1 o. . ' I 9 lifI *f*l 9 4,. .+_ ._ f, o o u'
;ff 'l '!i 4 jf I!' I m u,;
l iif' vh!!f; ml, 11,
.$ 4 !
I i i i , m . nn
- l. ,
n + ~t , ,
...a .e , , ^f.
fi ' f II 'tl} ! ' ! lf }< I ! 9 m =I ' o=t is W 0; iit. 'it4 J!t i
!. !g. ,
lh : . it i!H !+!. l l
!;ji ~ .- m :
e,w , t a , j!!
- c. L' ';
4
'! ;I! . ll t : . ' t __. ._ . 4 i ! 'il 4 ,8 -;l lli i ; .! 4
- s. . L l i .I . .i I
l !
! il. j '!
t_ . g ne
.l. !h i i1 iII ! i i ii , . f5' . i!*_ i' . . .
a o . 1 w - - r . n : o.. 7 ii ~ _a _ ij. m. i n.; ...q_ i
'_{w _ _ _ _ . g:
I 1_ _a x _ _ _ . . . . 7 l
.J ___ .
l_ 4..!; :_q. s. e -
- i :, i l: .
.F a_. ; 1 .
e : o . o .l . .- - _._. - _ . . .- 1.. 4- - ~.
?} ,
T ! ____m _i. _ _ , . _ .. : 1. ..- _ _ . . _ _ _._ .__ __ ___ s - ' __W .. . _ _ _ _ . . . II l, , . n .
. l . ,
j '.J . .. L . 4
-l -i l .,i -.-,.. l - .ih ! i .
- y. t 4
a 1; l, t , m ' ' i ;
't' ) i, 1 ' = h .: , ~ ~ ~ "~ *^ -~
i
..\ g' . . ~
- N l
~~ ~. I a i , ., ei , c >l . .
g U
- i
! .5' **; ! iI $ h!. 'l. (
r-1 .
- , - ~ - --
l5--- - l --
^
I ! J
.\.
7;e =i ,i,
~ .. .. , .. ..
i l 1. . , . 3: t . l. 1. . ! .
,.{. .,i. i , . .; , i. ..
h, i ; . .q .6 ..ls ,-
,g i .i . . _ , 4.__ . . __.
G I *! _. a
.. _ . 4. . _ . . .3,. _. .. .
a _ . _ . . ,t [ .[ ' f .,. ). ,\
\ '
4 b + i i ,i . , N i >
,__,j _
i i
.i 1 . . _ , _
l}e . i l .; . 6_.a . . __ _ ._ _ _ _ , _ , , _ . 2 . i. a .4 .l ._ _ __4_ 4
. _ . . _ . .1 t( \_ t . ' .;,- t I
I l 1 4 g I % . i ;
!I .i i- .! 1 i
gi 4 I I j i _i.. . '_.._ is l l
.i' I j <sl ' i i ' i j ; 6
- I i y' d .
ji
- 9 s
,_ i. l tmu ;_ y39, 5,3 , .1 __. . ;- - y _. _ ._. . ! . _. . _.. . . __ L __ _ . ' h-Non-ExceedenceProbability for January _.
a
" y _a _.L _ _I_. _ . _
1 i
. l _. . ,
r i ( . l I s ___f,_._ t : ;_ . _ _ . _ _ _ _ 1 - ...'. ; . _ _ . _. -. _ p _. ! l I + r, V1 i .j; t l
, i y_ m o
a M.._ __: _ _ _
,. . .. l , . .
i i . __i._ 3 s . i. p I I e . , i j
' ._ .1 - . ..
l , y .
}
8
, j .
8
! l i. -_.2
- 4 ~. _ . . . I. . ,_
l .< l
.' i. , f .
l
' ,'i l l .! $, !. l f. ' l
=
A_
~ .q ~-'~
t4 ora - E xc t'C D t NCE P Ro s A e t i.:T'g} w p t.t; C s WI .
- ,l [
j t-If l, a
'wt % no mi /o yo ,s i 40 an :'o to s ? 3 ti ti ? n: . . . < , ont M '. 99 9 (. M 4.! ~4 63n n ': . i, I .ij: ill- i j l *I l, 3 i i 1' 1' -l .. . ! i j l' .' .i.
3, .. i 4 .. i.. I .i
) ;} e l
I, , !1.-
> 1 a .i,- .. 4: . , ;. .Jj, ,..j ..,. ,l,
_ ,,.t
.i t i I
iti! 4 4 .1 s
+ 4 .
u_ - . . t-1 4 4e. i' 'fj 3 ' t
. i, l.
d ' ;i' , j t
.,' , f. l d - i' l t . 7:. ,;. i I ,
i , 6 3, , . j . . 4
< e .I , .{ + t* ' y ?. l ;
( d ie { ( -N .-g, .{ 3
.g4 4 i
{
. .iget i i j j 'h 4 i 4fi '-l; , +
- t
,. i, ..< 9 . . ej. , - .
i
. ~ K; j j.
i j l: 1 l . _._1 g_. 4 .p i ,a
..! .l .,
i , t. . 4 , .
- l. . h';# .
4 h. l <, 6 . 4
! i ;
9
; ;I l'I' I !<' ; ,l- ,, ,
j i , : i .% . h'.11._._L .L .ela.. ... .__. _ L .l. l i _g : rece.t 1 i L i i e , ;
.. , i eg ' .!.i . .
i , , ' ,
,lI e4 ? :j .
l i. :. - - . . t . M i . a n $1 Ih i I IIII !i ! IIN - !i- : ii . - 1 l a - jai j:. .:,i , . ih !;j-it: l t: :;-
- Ij.
.in ..: 1I !
t.,j
..:, t e- . ~~ ! ~ I ~ t f
I - . .t :.1 ! * ' ~ s',, -~ --
. . ~i {,,! g
_FEBR MC
.., ,l ,I .I Ili.3 j i+ .. I . . , . .4 6.4 . 4 .
6 II 'Il' ~'I~ ' I I'!I ; i' i 4 Ili I I a l_ __ il li! I lii! . ij: 2
! I i ij .' '! ! ! tl ! Ai+ ! ' 8j i i {
s 1. t it ip * '; t i. h .:i' : i !'ie +i t t i _. .!._ :. ,1 1 s _
. a j l t }- ] ,' i i i :_.j. :
2i .l - ( iu. u, i i .' I: I t l' {: { s a -- t-k k'- !kI f fl hf jf j _. u __. _n 4 4 ff - l!f" f - - u n__. .' # m _ x .. , _ ___ _ . . . _ _ _ _.
. ' ;ll ;,' j. , -j t ! '. '
r - ~. ..
=
a_ _. .a. -
? ..u I 4
I' M e i , 4 I g il ' I It *
. t' ! l , .I .r_ _ _ _ . _ . . . _ _ . _ . . . _ _ __
3 i g i 6 e
' 1 Nl i 1 ; j ; . h.
n <
-+ _. m. . t l
3 j i . i \, ' c) N ;. ,
.i , . I . . . . _ . _ . -- -
J ,
, s l t. i i.
i x{x.
.. _. s . _ _ _ _ _ _ _ _m. __ _. .
6 . l Ili ! : a i ! a l .
. ! s' i .lj ,. Fig. 5.la l10M l' }' -- Non-Exceedence Probability - -- J A- s '
1 i
' o' ~ i for February - . - - ---- - - - .__
9 . e , _.'. 6
? ' _ .i... . . . _ . . . _ _ _ _ _ ... . ___
I _ _ . _ . n
._ _ _ _ ._ ._t _ _ , _ _ _ , . _ _ _ _ _ . _ , . , _ _
VI 6 _ _ . _ _ I Vi ; 8
.t_ p.._ l >
I l . .1 ._ . _ _._1 __ . q! _.
+
I __ _ _. i ! l t ! t l ! I t 1 l .I* i !
- r ; ! i i .
i 3 1 : : i
- i __t__ *
- j i ,
- ;i ._ . _ _ . j j
g ,
- 6- .
4 l l i
) i
- l. t : 6 ij l l l 1
_ ,_. _ _ . - l l {
--M .
f' ...L_____.__.I._._____ _
* *r1 .t e o C fif 4 . ( ^'s il I (1 / .)'
A
~ - Non-Exceedenco Probabil Av, in Percent 0..os o on O
IOOOCh- : r .
<m t t a
r-- , m 93 os
<o m ~~ q .-
m
. ,o e m y.--
8 m m s 2 n2 9 sn
" ..J.__I d.. .d. . _! . .. + .I li . ..u.
m -
- 1. !
, l l' n - - " , , '
- 4 7
I _l - l*,:j'; .~5 f , ..
/ ' ' f ' *1- I 4
f _.. 6 jf '! . .f 'a ' h
.[
i i 1 l; O.
' 'i p,.;; 1; _
f , . . , _ 6 _.; j { qL .
, _ _ . _ ,7_.
L.2 ;1L _L. . _
' 1.:+ . . . f. ' >- g $ . .' i j! i ! f , .-4i . .
t ;r ..i2 l
.t ._.i ._..L f .j ; , j.. r::
i. 4 .. . ' ' - 42' :AL 4 t [ _ , . '-
- 4 l ' - 4
- g. _ __'. il . _.
- i
- Il . . . _1, a _. _ . . .
i .. C _ . : ._u 4 - g ' l.d{ __ If
. ' .L... I . . .
I _ _ ._ . _ .
..,1' l.! . . f . - .-__1 i ; L4 3
l l 5 fI ; [ ,. i '.
- i f
l t 3
!i l* - - -i1 ..s- ,! , ! , j , .' ; g . . _ _
ii : : :.1 :(- . , l' 4 .__
. . - + ; _. . ._ ~ p_.A._f ;yt 4 ... . _ _ . . .. --. ' # ' 5 ,
s4 4 t l. (.j 4 i) i i I
- i. ',
1 * <
, a t }
g{l
.*I I' a j .j!
jji
! 4 a I j 1* '
e 'L' , l_.. _ . . .. _ ... l' { < j { I y_ -
.+
- e
- 3. t +
{?4 l 1 I t.
,, l i ,
6 , j j i f i
. .L i , , ;p i; -
l;. ,
..,t .. _ _ . _ i _. _. _ . - . . . ' - i .J; . i. .; _._s . ..i.,
j i Ni j l le ' U) i!: D it ;- N .il ,,i. i i i
; i U 1I ) .: I ; {' . # ! . ., i '.'.i 5 ,.!g 4 ,
i
,! i. : ..
i
- , ! l , - I1 'N ~_' .i i p __ __ L. - _ _ . _ . _ _ _ _ . ._ _
e i + _-!i - # .u _ ' N_. _ , . . - . g i c,doo _ l' _ I! ' ___gJ 1._ . '-
._2 x _N. _ _ 1 _.. __ l . .m.. i . __ _ _ ._- ._.1.-_. .
4 9 ____ ' I I a I. N a
, t t
i f J - - N i l , a i '
'__: ' -Kg l.
l l , .l__.__. , 7 ._' l i ; - _ _ .__ _ _ _ _ _ . . _ _ _ _.__
' I t
e. N, i i_ i - - I _i. r _J - 6 !
.! :N I f l l ' '
b .l 1. _ . . ! !! I \ . _ i_. 5 __. __ __ 3 _ _ _ . . _ .__ ..__.m .
.\ I.
l. i .
-~' ' ^\N t -~~~ - - ~ - -" ' , i l '
Fig. 5.2 Non-Exceedence Probability - bI - - -- - - - 11-t ,o 4i : 4- ; N: 4 i :r i, ' for March _
. . _ _a., . y ___._,_
3 ;
, I ,
J 2 .j l 1 I ; I .\. . .. l _
?
m_ 1 l N y l OT 1 I ' I
. i 6 1 i e i + r ! !,
I ! , i 4
+ .
j ' i f af . ' 6 l
! i ; 8 i f
l I
! I f ; i < l 8 i l . I + j t t .
{ j e :
) '. ', , ' l i
i l , l I I i I ! l ! . ! _. . i . l _. l .. t , IO & L - --. b - mi L.- --I >
Non-Exceedence Probability, in Percent f1 ,a s 9 o? o1 , o ni m <n 9 c. 99 9a 95 no no 7r) y, 4n m :m to ;,* I m iooooo
. I.
i i
!!!! l _ .. - l. l:. .l .l ; }- } ; _. . . l l l _._.. ..
I. f_. j: i a _.; L :
'. _ i_.,!'
t i, a ih I- I i I I
*' i - >e II; ,. - '
I' . p 7 ,_ _ _ __ _, _ 1 1
- ii:
" IIII !' d.: ' ' i i' i ' I' *.,
p'ii- i '
- r. I I ' i - +
-. ~ '- ~~ --
g
= ---
t,_d . M _1_ _y g . ,,
.1.. . _ . . .
5
.! yr _1. 'I _L_j ~ ' I! _ ~l h . . .t _ _ _. _- ._ .._ . _ .i __ _. _L. s * ? .j ! i ) I !i k ..d {!b d_.
__b _. i.1 b$1 :i! - it
;ll ! lj lin :i i ;
j
; ! j . , . i i'
- Ii
. : 1. .. i , .., . . i. l 4 1
4 38h __L 1 ' '!!! 1u ri'i __ ' j_ Q, s 'liy .p. gg . '!i ' j iit , . t : i;
!,3 'ij A, i . _t i f!j_. !!g!.__{i_lt t 4i;
- 3. .
y;. t,u: ,< '. 9. . q ., M. c.; '.t I;it , .o!! 'n l't' ,, ... .. . . .. . . l,i I 1.nr i ;. i t : ; i. .t i.*. .! ! :1! tl
;,[; '. . ' :: isti .
3 3 , 4 l .
.' i i . },, .i l., T. ., I,.l ii . [ , . i, .. i, < ' .q , i,m. {t. _ . )' l. ;
i, i . i .. < ... .. , i
.1 l ! .i - i 4 . . ., : i , .i -
__ _.L .,_._,,;. i ., i i. i. u. I
.l& .. ,_; J ..!. . . ~s ,
4 . ..! . . v. i
._ i ., ... . .. . . _ - . . . . . .i I
i . _. n t i i I t
; 6 ri. l .:
- u. . . *i:
6
.i g
_4.
.'l , .y i . >. .', i
- 6 .
i
.t . I;
- b. ' . 1. .i.
lI- t ,!af , t .. . . i .
- i . 4 ,
!i 1i it.i _A y.g .t 41 2
i l i m N,i- .(_,. i
,i { .
- m a i p -
e iI . :i. .- i i
!,i . iN s j i,; !t: } ,;
l'i: 4 60 l!, 1 t 6i i. i
) !- I di t4 !; t i, i ). IM ,=. l+tl L_j.'!! ! i .
- i. <l i
, i, > I in l s m; ,, .o u._ L . . .. . ! ,
m ...a. 1 _f.! . _L ,_4 p.
,.q:_. j . .q. g_; D, . - . u, m ... .;..
I.,.
.. . _ . ~ .. .. .. . i m .
4 ii 1 i: ;t i . ,, .. ! - o ! in ii !!!! :jii 's. ::i: i' .' i:
. ,i . i ,,li ' .!. , i i
s . g 'i
. r < , - -
i-j! 'l :i i3Ij! l'- e. 4 : : il; t it 't> .l ' i !
- i , , ! ' - }li i ;'. ;"-Q ,
l lit .' 6: i 4
; {d i .,t 1
- {t j ! 1 1 '
]todd# ; !l ;
l j ._ , ! ' }, , !' ' ' ' Mk h , d,. _L 3 g; ___. s m " ' 'Lili. h._ i_.i_ . _ . . _g. ' _ .N l' p . .2 .. _ _ _ . _ _ _ _ _ . _ . . _ _ _ _ _ _ _ _ _ . .__. 2.__._ a
~
_1 _ r ; i ii. i i * - '< i
?. _111 % ii s ~:n; A ._.
n 7 !, ' _y_1.- _ _ I_ ' _ . . . __ . L t_ Lji il 'q _ .
! . . . - _. u . _ . _ _ . ._ . _ . .. _ . . _ _ _ _ _ . ? . . # {
- r. - : - i : - -
N. A
- p. . .. _ .. _ _ . _ _ _ ._ -_ __
W g-, _ . J . ;. . _ ._n.j j .i s
. _ _ _ _ _ _ ..__.. u. . . , j i .., 4., .l y
4 ..g:._- j . I I _ ___ 1 . _ _ _.. .___ _ a 4 .__ . _; : > -
*
- __ _ . . _ _ - _g ____
i I!: : i i, 'd'.
- 6 l t i }
r -[7- Fig. 5.3 6
._by y__ M -
3 i ;i_.I l! Non-Exceedence Probability *i {*- y;ii for April .li ;\ N .[ !, m 'i ..i.i . 1 .
- ., 2i _.
. . _ , . , ,, u _ . . . ' -l -3 !- .i ,d !! :l N h
7 _ __I_ ._ _____( , , ;
. }
- I i . ! t e i } i , ;
i~ ~ i 1 }' l 1 6 [
* ' i i
l . 1
- - i I 9' ,
__c_._. eil __ . . _!I . I j
. _ _ _ . _~
__. t
- . [
i I(. . m.n
. _. i 1000 ._ __- _ ___. _.____ . , . .- , ~. m . n e. . .
e + - NOQ-EXCOOdepCC &#EOU W 1114-ya m a wa
- 70 to s 7 1 v. 07 o- as n ot *
- n 100000 mO ;
999 f , 99 9a <*s g vi i q,.3-sa to rq , om 30
, q - p - - p ;-- 7 w..: ,;7 , , ...s_
j , jp
= ._ n ~ .. x .x- . . - . -_- _.
l 'h .. _ . . .1._. .i..A f. a a i I; -.th i Ii !! _!]l _. _ } _ _ . . - - i! ;f . - l. l_ h 1;_ ._ . [} _ _ ly 7 t _t.._. .il. ..; 2 .
',j ... . 'e11i i_._,l_2_l d.r .'.E !,' _ i;_ i.U_ _: ; l .y,. _ _ .
7 __ __2 . . _ ; 1 i _n !, :, : :. a, ; :: ;
.. m ,4 _:
i r i
.._ ' . . . . ' .>. ._', ~ _ .
m 1 ,i 7, 1 I. - . l .h.m i ..... -. 4 r ..
. . o .o
_t.
; ,it i - ., ,, . '
i _1i . s r 21
.: i ,
L l : I! i '?: iiji_ R. .1, , u.. ' j,1, _LL.
.,;L p!' ;;L L Hi ! i _ ;._ ._ , _ . . _ _ _ _ -
5 '; : : ' u yl i ii
.;y b Ly. ! : ! _. q_.
1} .g _l _p' 41r; _ _ _ . . = $ e r
.. !. - 1 8 g, .
i s;4 i a I ; i ,i p i. t s ! s :, . , , .i. n. . 4,
- i. !: .
.-:. s i. ;.; . . . . . ,
i ,-
* .i, 1
a l
, ;i , '
- n. g! .': a_ 1.. .i 7 .11 1_
- 5 ; +: ,4 ,
- 1- ::
; ': , I:.. .,. .g' ! u: . ' _. - l4 H- _;_
p" . .. f . .. .. i ,! m.
. i_. g! v _._...
- , ;. * ~, ,- '.., :;; ; ; : ;. . !. +i if I. "1 i !
- l. ,
. iil, t; : i ,i : i. .r ;f: !. .r. .. . !. gJh i ! t' n. . '. .! a. : . r !. , , :. . ~ ~ ' ~ ;1 . '3 '-** ^~**' * - ~ " ~~~~ T ., , ,. j 'f . , t i.,. ...; . . . . n. 1. . ,1 , : . ,
i . a u ._ 1 66
.a. , 4 . &, . -.e i. - u .t ,, .1 1
4 i: u
, _ . 4 . ; ,i.,. . . ._.:
- a. .,.
.I m.
i.; __ .. . -_4 _ -. i.u i so _.a. .
.- .. 4 .i,m. . ., . , . , , I 5 i i
i i . .
. 2 i r ; n. e, , i ! .. .r , .i. ,
e, , # j - 4 1
,Q j.,l .. t 7.... .i..
t . i. ),.!, .. .,, -
- q. t.
7
.n .
7
, q.i . i , 4 t.p . .w_ .
j ,;
. _i.. i , .
_4 .t ; i . t-l . ,; s.;. -4 i o ,. . 6 .,, .i t - :,, . .
.n .s 1 *;I . 4.; . , , , i ;
M i; , it it: ; r. , i i
,y_.m:i m + .: j . ) !! , . i. i !. i. . . ; , *o }'. ! , li: i . u{, :14 . L._ ..a .. . . m __
1) m .
.A.
i. _.2_L Ja
- ' ' i a. . 4- -
1 . o _1m a_ . 1;l;. i. -1! ,' : it ; i 'I ;
% o. :;i- .
l ,
.i . . - i t
L,. 4 i . o. , I, ' . .: ,.4 .
. i i.
i, i. .; n ,. ., - ,ii , i
., . 4 , , .
i ,, ;i. ; : i .s i .. .
!'i ,, 4 '
ll! M h,'! ' i J,, l ii If ! ! l^ j !! : !' li li l. ! .i + 6 t , .! . - ' l l l .'l :- :n i,!, , , l ll' a
} : i I: ) i. . . :!.
rl >
!Lii .SlAd. .. . '.1 ! -
r l
;i %1 Ji ._! _11 a.l.I _ 11i Li_ -
II ;_ ! i _._ A fo coa i i ,
- o. .p. t ;
, e i ;u: j;1 1: ,
i i, i , i:i; ii: ii:-u 1 . ipa i;.-
. p; { : . .: 1
- t. .t - w_
i 1
- 4. t . .
a - .1. ' ' g.
!hi w- -?!!
_.t_
~~
llU W tiii . _h i .:
.. _! i :_
l! . ! ',
' .i
- P : I! im i i .- ,
- i i .l
._.__ e a ,; '
g, ,*- 1(!?
* ,3 W;; O L_ ._ L a 5
i
- t l j' 't ;;;; * , ,
y; ..;l & i .= u. -
,lt
- .~
da \=. , _u:_3;l 1 1.L ..iL -_- iLy U .
, e. , <1 !. , t... . . . 't . t. ! ' r _ .. ;11 .,, t. t . . . ..
1,,,j . 1;I y_., , , L,_ ;;,
, i i ,1,.,; , g ,,
I ,
;_. , , , , , , , _ f,j_ ; L.,,,,_, s, .,j,,,,_. .j,ij , , ,.
6
- l ,, ,,,; , , , . ,_ '
!!:'q. :. < ! t .o _m .c m. _ 2_.. .. 4 b 9 h _. _'. .
i o_a .t1 f _ _ . . ... _ _ ._ __ I' '
- , m . -
i:;.
.i .
- l. __u.. a.
i ; :; .
.. 2:-
4
,7 s -
- p. !
i Fig. 5.4 i: ,. , p f M 9; . Ti- H % i' jj 9 Non-Exceedence Probability N N l- for May l' ~Il ! 9: .I
- di% *
; 9; @'
i i;! iI I
"f 'l i,
1,
. 'd .t :<: ! ! i. !l 4 . ;- :, l'i .
1 , . , I
.':l:
1, . .% _
. .a
- t. a _.
.. e l ,
I ', k! e f f , iha
.i ,
r ; i s . I . .
. .i
- i. ,
i.,..,4 e..t,. i, , , f i, le . .
.r .;
t .
- .t s% . . ;6 . . . 2
. 4 n, . !4.
- 4 1;e. . , . .
(D -_...i.
. i i
6 4: s , t I
. I t i - ' y {
I-I s (0 s \ b = 1 $ 4 i i *,
-l 4 \ ' l ! ! , ; */
6 I e t , . _ _ _ , , _ _ . _ _
. . . . . . . . . . u.
4 ,,, m..,,,, . . ..n [,$ [ # . . _ _
- s. . _ . - _
., -. - - - n I Non-Exceedence Prot iLity, in Percent ,m v9es m y +. v m m m Sr n v 9 to 5 ? I e o? 01 nos n ni-
- 34 R O m r r = y-- - - ---- -
- 7 ~- -
l -- .
- - ~ ~ - - - ;.. l . . l . _: .2 . __ __ .
I l
; ' l )
_.j.. .
! i '
4 - *- "' L. _4 A. ' ._ u p J. - L.. ' 4
}j
_! _ s. l
!!l L1' l' l b' .! '.1:
t.
- 1. ..-n{ . . .: . s ..s.
I'L. , . t 4
.y I ; -'t.
li '.i l!! il !
., lif -
i i- I fil i l'i, i :h . ,. i t
!! i !
U ,
. - ._.s l tl I
l, l
- .j i
i
.t-I i ; . l t u.. ,I ' . -w , +
I' , i lj.
.~
e
. .u .
i i _+i_ a-f,
.a .' ' l . i.
a 4.,k 4_..
~. .- . . . _ . . .. - - . . a, ,,*. - '. a.,.
i i 4,a- j - - -
, - I , : 6 a i. , . i i 1 ii1- 6 t . . I { i '! ti e,< a , , .e i .i4i4 .( ; , i 1.,. ., . .t ! : ;;' : t: . .. , i a 4i l6 2
e
-a i i f 4
{ i
.i' t J. . '
4 -
+,& . [' ,
1 I sij j; 3 l .
- a. . . ; ; . i .. :j' , .-; ,
! ; :., , 6 p. l l
I ' !;; i ; i ! !'i ;{- , .- l I'
'. tI i *! > I t' 1 i ' '!l ' t f 2 i;,i t, .
I t; ' :!' .:
' ' ' '- 'I' l ' *il -- p <
I s p._ J _. _.q
- g'a rl ((+
6
't LL .
44. 4;l
-l L.. .
1L
. .L.? lA_i , a>
6 t i- I t 5 P i. 24.. t t
!t * .. ,l.i. i i ' . . . . .!i atj; it. .t'! Jill f:t ., , .' t i .; ij.6 ( , . .!i ll , l ! i ! f i ,f r
l' i ' l j','t ' - i ! '!3 , f8 I
'f ' !: , ! i. l t ' l!' I I i
- llllri l'{
l . l .i i!' t 'I Ih Il!-' ! ! ! ' * [ t ! Ia 3eU > t' I f! I team LLlib _L .._i j l'!' ' M ' '! ,51. l' E' . E _ . ' I
' V I
1
, - ; I: ! .-.a: ! i i
N*x.L.d
. . x. _
1 l e _: .l- ' _ l. . _. . --. s.=
'i ,,
7 M ./. --- - . . f -. _.: g_O -. .1. . .. . . _ .. I __ . __ _- 8 U / b.l . _ L.'. :._. $. _'_* !. - - A .k .. I ll
! j .. la ' ! l
{ q*m._. g
.. ___ 2 2 r ; .
2 O 4 l'
.. .J ' I .!
a 1 N;
,' _ l 5 ' N g ._o .. .. ._.m- L. .;_ : . _._ . . . ..
1
+ -
1
. s .t . . ! 3 f %, , i i .
4 _ ._.i . - .1_ . .i._ _ . :. ;_ :s _ _ !. iC. M... .J..._ 4
.NI ,i 1 .
_..a .+ :2
- u. _. n;, . .
.i .t !.. '~!
I'j j' ;l,
\.
l 4 l i. {!* ;}'. ' ' i i ! I'
.' _' _! _' . .j..
i . . 3 _.. 9j . .: .' . . _ .
. u. _- .
z
.,7 . ... .. . . 4 t .. -i g I .l .,
t 4 4 .5. ,
, a t, . s: i e t 4.. . i-2 ..
i 5 .: 6 .
). 2 t. ..t_ 91 it .I4;}
I n y 6 . I,
- t.
i i
.s w
i
.4 .
l I 0 5 t- - tj g ., f l 14 I i h .I
- 1.
4 e e.
- 1se 1 .' .
, - *i .i ,
s- : A
; ) i.' ; ; s .i .I ._ . . . . a- . n .
- i. . i - ,
N,
, o t s.
Ul i $ I , \ 3
,, Fig. 5.5 ' - .N-Non-Exceedence Probability .i. for June i
t i fac t & , ., _ _ .._.. _ i 1 i
._.I ! _l : i l I
I
- l. I l. 1i i i
., ,i 1 i I .,
i . i n L l i, i. i i j i. t
! ' ! l i i : i .
f ! f i , I
.-. i ;
9""* m
^
( Non-Exceedence Pro lity, in Percent
-.J <n e j
m ,. - e m * .c , <, ,, s , , s. n , c i <,,,, n n,
] , .__. . g . . ..
t rtipg.-- _t j_ . __ p . ..i t i 'i-
; . ,. i . ; , , . , . . _ _ . ... ._. ._ . - ?
i j l' ' l '* s r i
.. I ; i i e . .... . _.4__.. _ . . .. . .. i . .+ .
29 i . ._ t -
, , t .i .. . , e f..
9 9s ,s. 4 ( l I; . i!. t ,1 l s 6 6
? .t 4 ) i} r , , . , ...
ll I
- fi :
1
, 1 l- fe !II 6 !4 5 ' +' i i'n' . 8, i. ! .44 &I j .' j , . . 4. ! . i t .ji e ; i. . ' , , . . , , i i i ;
__ J. L - ' _ . - . . -- . i ._ . L._ _u _L. -
.... l___ ' !' i! ' ~ , ) < !! 1 l i ., 4 - . + e ., I '
i :i- j 1 . i .h. t , i , , ; } i ..
' 7 t p. # t. . . ., . i . pi . i f j 6t i l i i ! l: h .t ,!
j
* ' ' E' -
l ,
;I 1 '![ !
j I, c'i '
!.o u '*.
M i . 1
! ;: i; .
3 i.-'
- ! +
/dCod I ' i . a 1 -i -'
I
!f I ~ b_I...g,_
a N ___._[ .. L._ ..jO.c._ __ _ -L_L..___'ll_. l . ,i l . . d 'j . . . -_ - . . . _ _ . . . _ a
. ~ ! ,b 7 ._ 'f , . .. .
h
.q :
i I
- l. l.i. 'I 7
o _.__2 Lif _ . _ . . a.. _u _L{q._.!._.lD.__.. O __.i ...l-. I _) . 1
- l. . ____.
J O L Y ._ -._. __ _. _ . . .. - _ _ _ +- _. .. . . _. . , _., .s . _ .
.I * ; q. ,
S , t_ _.j . N.. - l * . . .
. . - . . . _ _ _.. l_ _ __ . s a . .I.g 4
I. (O I i ' t m 4 .- .- - 1 -
- 1. m _. 4 U i 1 i - N :t ._ I__ ._
i
..k.
- p. ., _;
.[ u ;; M y ~ . p. ._ .., ._ .. .... . . _ . . _ _ .I. . . _ __ .. .. _ ... . _ _ _ _ _
s . ., ! ; i o ..! s , i, . .' i . :3. . N ; . wa 3 i l.. 1 -- -- g
- t. . . . i N .
..+..,.-$_.
s J. u. . l 4, 4.. _J.
!:I .,1 e. .J t
t.I. 1,. 4 I_ b ti
. i :
d.
..i ., _ . _ . ..,.& .4 _ ._ _ . . _ _ .l' s :
- t ' * * '
l k i.
- 4 t.
l l %- E a*. A 6 e
- f. g a .
g
.I:
1.; i i .. s ! ,. I ,) 1. i i , . g gL 2 n- * '
, 4 .
_._ _ _ . . __. /
. . 2 ,
O r
+, , I , i \\
I l I g . N !
, ,. Fig. 5.6 S, i , .i.. Non-Exceedence Probability s,i . , i l ' l T +
fcr July , , lQdy t N.i .
.s' l l .)._ 1 y, . _ l. . _ . ! %,t . l l_ .l .._
I g _, '.1 !- N i 3
.[_.. '4 o
l
.. ..l.'!! ., !, I 7
ls 's I I-I i *
.! l
- w. _.. t ,
a .
*, f j '
6 I h , , , l . l l- ' ' I.
. t.
i
.l I
q i l
.l i
l i
!'.e -I i
1 . I ! .
' I t .
I
! l ' i I i I i 8 : i t : ; ... i i .
I i 1
,_. . - reon c..weeuence nuuuu u. A i y , i.. a e m.. _ _
t
- a
- 100mn ; mo a 99 9a os m ro 7o r.. .an io o .m in s ? i s. oro. v> n oi ,n
. i i. :.i i. .r .
i I _,_L i
.i- ! ! e I
1 . . I. -{ , e ._L_I_ _i!. .I !l !- .ti_ _ __ _.L .+.... ! . . _ _
. ! ! l , . . :_; 1 i __ a 7 +
d _ _i i ' - - i' ' .! !* : I. . . . . - . f ._ . .'_ i_ / til W e i i i i t.m_ ij j; N(!n _;_: _. : __[1jo L.u yi .! , i I.
.j_i_
L __+_n 4 ,. _g. ' n: : a _= .
.+ 1. . ,, ,..i . . 2 9
2.; . _ 6 5 1! !i!. ' t i .-
*8 . ., r 3 , _ _ 1;_,_ _ ! , . ' _
_1_,_ L ._,li.I 7 g y -! -i : . N. ._ +_ .j . .. _L_ _ii}; g;- + 4 m' a ' m
. t ;
o ., m i
. ; :; , i' m- - . , .;: , . n, .; i - i u: .i +i ,; .yL i .c _.
gI' ;Ir
-3 i u. .' ! f I! ! !!' i !I II !I MWiMT ' ' Ii;! I 4
1 - .
. j; .n: , r: , , .
6 i !
. _!_ .. ..L. . u, ._1. ._ 4,. n;;
i
; L:,_
_ L- J . lib : -- 1.. .i!! ..u 11: -
- - 'i ,y -u',; :...
I-m i j ! ;"
- q i : .. i .
.p i, - l 3 ! +i i: - nr , ; .. t . .
j.: ;r . I . m
. 'i:
- i
. .t i. - 3
-c
.;;t - , pm : , , .a ..4;. .
i
;, .. ; . ,, .i; l: 6 ,l t t.A .
i + . at t..: e , N. ,-..%_ .
.1 .i ,u. ,s .. - t .
2 t f,. . aae 4 ;4 u ,#. t. . .m... _a._ _A _.w
. ..,i . .4___ ___.4 L ___ m 4, _ ._. A . ~ . .: -- .m .-
4--. ...L
.-., m , i ...i
- j. , . - .
1,4 ,
- i. : t
- 1. : s i ;.
,; 4 .
i . . . ..
.. .i, t, . . . i h. , .
yc.. .. , . i , .. ,
- o. i. 3e .
. j . 4 . , i. ;,i- , , i ,. ,. .i 2 i
2 .L. - =
. _ _ . _ _ _ _ . _ _ . __ .... _ _ _ _ _ . 2 .4 .o : , .: . i. 3 , g - 1., ,,
ll',
! . j[ i l - i: I! .i .
m ! i , . . . . . sx, . . 9 - , . . . w -t w a
- 4. _ .- a__ . -_. . .-
(,) i ! ;i 4 . .! ' \ . -+ 4, I : i i,i f ' ' i.
. i .
3: i i.j. j j . i <;! i: a '. ;' - N, N - ' o i ol i , - * !-
' N - ' '
_ _' .b2 __.IN'dl . d foco _ L 4! _ _.' __L _ -I __ _ i I ~ , ~J _2_..
<. ! 4 ! l l' - .l . . l _ _j __ l _
a 7 t-f i I. j i i I g _ i l _ l._ j
.i l'*-d l ls.jl.
i 1
.. J _ __ [_ ___.. a .> .. . _ . - _ . _ _ . . _ _ . - . . . + - . - 7 i :- l1 l t NN
- r. _ _ . - _ ___1 _ . _ ul _._ __ _.i___ _...l__.i._ ;l t. .
! l l .,
[ J .: L. l ._1 _ _ .L._. s _ ____ L i : i i i. !. I i ' i j . . _ _. ... _ . s
.l l .l ..
4 ! a_. Fig. 5.7 ! _ e
. , :;t ; Non-Exceedence Probability p 4" F "-
for August y
2' ' -- - , 4.
4
, i .
I . _ __ .
;}}