ML20083K225
| ML20083K225 | |
| Person / Time | |
|---|---|
| Site: | Palo Verde, 05000447, 05000531 |
| Issue date: | 10/30/1978 |
| From: | Solanas C GENERAL ELECTRIC CO. |
| To: | |
| Shared Package | |
| ML20083K224 | List: |
| References | |
| 78NED286, NEDO-24142, NUDOCS 7901150081 | |
| Download: ML20083K225 (75) | |
Text
{{#Wiki_filter:..... 9 ,b I 3 EX1te. C 2 Y i 2 ,, g, u... A NEDO 24142 ..# " 2 78MED2M i CLASSI I O EX'i e<A COPY N fgf EEGO..'1T0T( CEliTRAL g .o 76/:s s' 4 FAST SCRAM CONTROL ROD DRIVE 5 QUAUFICATION PROGRAM 3 E n .3 C.H,SOLANAS 5 g i ji g p fif! O IICI.iTO CEMTRAl FGiS = 8=> EXTRA COPX i EXTRA COPY ggg A Sf/ GENER AL $ ELECTRIC ~ s
l NEDO-24142 78NED286 Class I October 1978 i FAST SCRAM CONTROL ROD DRIVE Q'JALITICATION PROGRAM C. H. Solanas 1 6 / i Approved: b8 Approved: R. L. Hughed. Manager 'J.eCacobson, Manager Reacter Equipment Design React ' Design ,y .~ Approved: / L[,, f 4.'G. Tibbils, Manager {: B'4R Test Operations
- l tl
\\ NUCLE AR thE mGy pmCJECTS Olvisio4
- GINSm AL ELECTmeC C0wPANY l
SAN JOSE.*ALIFCmNIA 95125 i l GEN ERAL h ELECTRIC d
I i I DISCLAIMER OF RESPONSIBluTY Des cocument was orecarea by or for the General Elec:nc Comoeny yerther me General Ewe Company nor er of me contnoutors to thrs document A Vanes any narranty or reoresentaDon. exoress or smotied. wem resoect to the accvecy. compteness. or osetusness of me entormstron contarwa e mrs cocu. m or met the use of any m:ormenon esscesea un ttus documern may not sthnge onvatey oanec ngres; or B. Assumes any resoonssery abr ucurny or camage of any nec wrucn may resu tr
- 0'" N kse d any m%rmacon c.scesec e this cocument.
I 1 I l r i s y I T i -l i l l J
NEDO-24142 TABLE OF CONTENTS .F,agg 1. INTRODUCTION 1-3 2. SYSTDi AND COMPONENT DESCRIPTION 2-1 2.1 System 2-1 2.2 Control Rod Drive (CRD) 2-2 2.3 Hydraulic Control Unit (HCU) 2-4 3. DESC7JPTION OF TEST FACILITY 3-1 4. DEVELOPMENT TESTING 4-1 4.1 Summary 4-1 4.2 Model Verification 4-2 4.3 Fast Scram Feasibility Demonstration 4-2 4.4 CRD Perfor:sance at Fast Scram conditions 4-3 4.4 Closed Buffer Initial Evaluation 4-4 4.5 Instrusaeted closed Buf fer Evaluacion 4-5 4.6 Instrumented Failed Buf fer Evaluation 4-6
- 4. ? ISCRD Functional Evaluation with Final Configuration of Closed Buffer Hardware 4-7 4.8 - Thermal Evaluation 4-7 I
5. DESICN ACCEPTANCE TEST 5-1 5.1 Summary 5-1 5.2 Five-Year Maintenance Life Evaluation 5-3 5.3 Forty-Tear Design Life Test 5-4 5.4 Extended Design Life Test (60 Years) 5-6 1 5.5 Contamination Test 5-8 5.6 Inoperative Buffer Test 5-9 5.7 verification of Modified closed Buffer 5-11 l iii/iv .\\ l l I
NEDO-24142 LIST OF ILLUSIRATIONS Piture Title h 2-1 C2 Hydraulic System Schematic 2-6 2-2 System Schematic - Changes for Fast Scram Drive 2-7 2-3 control Rod Drive Schematic - BWR/6 2-8 2-4 Control Rod Drive Unit (Cutaway) BUR /6 2-9 2-5 Schematic of Buf fer Region 2-10 2-6 Hydraulic Control Unit Diagram 2-11 2-7 Hydraulic Control Unit BWR/6 2-12 3-1 Control Rod Drive Test Facility 3-2 { 3-2 Test Vessel Asserbly Schematic 3-3 4-1 Scram Profile at 752 Insertion 4-12 4-2 Open Buffer Pressure Profile at Atmospheric Raactor Pressure 4-12 4-3 Axial Strain Profile During Hydraulic Buffering 4-13 4-4 FSCRD Buffer Entrance Velocity vs Scram Initiation Position 4-14 4-5 Peak Buffer Pressure vs. Scram Initiation Position 4-14 4-6 Buffer Piston Velocity Profile 4-15 4-7 Strain Cage Locations 4-16 4-8 Failed Buffer Strain 4-17 4.c .r.ocouple Location 4-18 4-5 ISCRD Vessel Alignment Requirements 4-19 3- ...a Scram Profile (5-Year Maintenance Life Test) '5-31 j 5-? Buf fer Schematic 5-32 l 5-3 FSCRD Scram Profile (40-Year Maintenance Life Test) 5-33 5-4 Buckled Spud (S/N 7084) 5-34 4 5-5 Damaged Inner Filter Assembly 5-34 h t l l v/d l + l s
F" NEDO-24142 LIST OF TABLES Table Title h 4-1 Control Rod Drive Scram Performance Equipment 4-9 4-2 Scram Velocities / Deceleration 4-10 4-3 Scras Initiation Position vs. Axial Strain 4-11 l 5-1 Design Duty Cycle (Five-Year Maintenance Life Test) 5-12 5-2 5-Yaar Maintenance Life Test (Cumulative Cycles) 5-13 5-3 5-Year Maintenance Life Performance Scram Date 5-14 5-4 5-Year Maintenance Life Performance Drive Data 5-15 l 5-5 TSCRD Seal Haasurements 5-16 5-6 40-Year Design Life Test 5-17 ~ 5-7 40-Year Design Life Test (Cumulativa cycles) 5-18 s 5-8 40-Year Maintenance Life Performance Scram Data 5-19 5-9 40-Year Maint nance Life Performance Drive Data 5-20 5-10 Extended Design Life (Cu=ulative Cycles) 5-21 5-11 Extended Life Perfor=ance Scram Data 5-22 5-12 Extended Life Perfor:ance Drive Data 5-23 5-13 Conta=ination Sa=ple Co= position 5-24 5-14 5-Year Maintenance Life (Contaminant) Performance Scram Data 5-25 5-15 5-Year Maintenance Life (Contaminant) Performance Drive Data 5-26 1 5-16 Inoperative Buffer Performance Scram Data 5-27 / 5-17 Inoperative Buf fer Perfomance Drive Data 5-28 i 5-18 5-Year Maintenance Life (Buffer Modification) Performance Drive Data 5-29 5-19 5-Year Maintenance Life (Buffer; Modification) Performance Scram Data 5-30 i ( I vii/viii l l l l l l
I NEDO-74142 1. INT?oDUCTION In early 1974, the CRD system scram insertion requirements for BWR/6 were determined inadequate at equilibrium cycle if the proposed prompt safery/ relief valve trip (PRT) feature was not incorporated in the BVR/6 nuclear cystem design. Since there were undesirable features associated with the PRf feature, a program was developed to provide an improved negative reactivity insertion capability by decreasing the control rod insertica r.ime, thus increas-ing scrca reactivity insertion rate. To accomplish this, the CRD system and system components were redesigned to provide faster control rod insertion. Parallel paths were chosea to redesign the system; one involved the acquisi-tion of empirical data by use of the CRD test facility, while the other involved the development of an analytical approach to optimize the system scram capability. The initial objective was to verify the computer program for the existing CRD system scram capability by ce=parison with existing CRD perfor=ance data accumulated in the CE test facility. Evaluations of proposed changes to the system and CRD vere then simulated by appropriate nanipulation of parameters in the code to determine which modification contributed the most significant improvement in scram capability. When a given change was idantified, hardware was modified and tested to provide correlation with actual perforsance data. Based on these correlations, further refine =ent of the computer model was possible to provide more accu-i race predictions of the effects of additional system modifications. This l I code also permitted the optimization of each of the respective changes. The / following system modifications were determined to be the most effective changes relative to the improvement of scram performance: 1 I (1) increase in scram accumulator pressure; l (2) increase in scram accumulator nitrogen volume; dl i (3) reduction of' pressure drops between HCU and CRD; and (4) incorporation of modifications aimed specifically at reducing start of action time (i.e., the time lapse between decision to scram and actual start of drive motion). 1-1 1
NEDO-24142 Based on the above system modifications, new design requirements were estab-11shed for CRD system cocponents. It was recognized that the increased scram spe9d of the CRD would require additional structural capability of translating members and significant improvement in hydraulic buffer capability. These changes were required due to the increased kinetic energy of the moving mass (i.e., translating members plus the control rod) which must be dissipated at the end of stroke. Since preliminary calculations indicated that a 2X increase in buffer pressure could be expected, design effort was immediately initiated on a new hydraulic buffer (closed buffer), while parallel ef fort was directed at the development of i= proved buf fer seals to permit the original buf fer design (i.e., open buffer) to withstand the increased buf fer pressure Since the level of design effort was expected to be significantly different between the open and closed buf fer designs, parallel programs were established. After extensite testing, it became apparent that the closed buffer design held more promise; therefore, design effort for the closed buf fer was accelerated while development continued on the open buf fer design until October 1976. Effort on the open buffer design was stopped at that time, since a satisfactory seal design had not been achieved and development test results with the closed buffer had satisfied all functional objectives. The qualification test program for the B'a*R/6 CRD being conducted in the San Joce test facility consists of four phases: (1) Development Testing; (2) Design Verification; (3) Production Qualification Testing; and (4) Production Verification Testing. A comprehensive description of each of these test phases will be contained in the appropriate sections of this report when f complete. This interim report contains all information on phases 1 and.2 of the test program. The test program, when complete, will be the most comprehensive evaluation of a CE control rod drive to date, and will demonstrate the adequacy of this component under simulated reactor service conditions. 6 1 1-2 i EEk t
I NEDO-24142 l 2. SYSTEM AND C0KDONEN* DESCRIPTION 2.1 SYSTEM The control rod drive system provides the pressures and flovo necessary to achieve normal CRD insertion, withdrawal, and scram and prevides cooling water to maintaic CRD temperature below 250*F. The system supplies high pressure demineralized water, which is regulated and. distributed to provide a series of constant differential pressures, to the hydraulic control unit (HCU). The HCU, through the use of solenoid and flow regulating valves, sup-plies the differential pressures for the proper duration to achieve rod inser-tion or withdrawal. This differential pressure is supplied to each CRD by individual hydraulic lines f rom its respective HCU. The HCU also provides a Ligh pressure water accu =ulator to achieve rapid insertion (scram) of the control rod. Each HCU accu =ulator is =aintained in a charged state by a ce==an header and supplies water through the CRD hydraulic lines, when reefaired, by neans of quick-opening diaphragm valves. See Figure 2-1 for a si=plified system schematic. / The CRD system underwent the following design changes to achieve fast scram: (1) CRD hydraulic line sizes (insert and withdraw) ware increased from 1 l . to 1.25 and from 0.75 to 1 in..'respectively, to reduce hydraulic ll loss; 1 1 (2) the systes design pressure washincreased frem 1730 psig to 2000 psig by redesign of the CKD hydraulic pu=p to achieve a final accumulator pressure of 1750 psig, nominally; and l l (3) stored energy in the HCU was increased by increasing the nitrogen .i volume (i.e., 2X) and pressure. A simplified schematic of the system (Figure 2-2) identifies each of the changes defined above and provides an assessment of the cumulative effect g l these changes had on system scram performance. 2-1 l l
NEDO-24142 2.2 CONTROL ROD DRIVE (CRD) The locking piston-type control rod drive (CRD) cechanism is a double-acting hydraulic piston. A sche:4 tic (Figure 2-3) is provided to show major CRD components. The area under the orive piston is bounded by the outer diameter of the piston tube and the inner diameter of the inner cylinder. The area above the drive piston is civided by the index tube into two further areas. The outer area is exposed to reactor vessel pressure, while the area inside the index tube is part of the fluid withdrawal path. Figure 2-4, together with its parts list, shows the CRD components in greater detail. The moving driveline consists of the drive piston and index tube and is coupled through the spud to the control rod. The index tube and drive piston are locked into position at fixed incre=ents by a collet mechanism. The collet fingers engage notches in the index tube (Figure 2-4) to prevent the unintentional withdrawal of the control rod but do cot restri-t control Tod insertion. In the normal position mode, the collet fingers support the eight of the control rad as gravity holds the tube notch against the collet fingers. The control rod is moved by applying a pressure greater than reactor vessel to either the top or the bottom of the drive piston. For rapid control rod insertica, or reactor scrat, all the control rods 9re driven into the reactor at a mari=un rate by high pressure supplied by the f HCU scram accumulator. At scram initiation, the scrsa discharge valve, located outside the drywell but inside the containment at the HCU, opens to vent the over-piston area inside the index tube to the fluid discharge path within the scram discharge volume. Si= ult neously, the scram insert valve; aisc located in the HCU, opers to provide an accumulator pressure of ?750 psi at the insert port. The differertial pressure across tha drive piston rapidly accelerates the driveline to a maxi =us velocity of l?S in./sec for a reactor at the nominal operating pressure. The CRD achieves 75% insettien of the control rod in sn average of 1.3 see from the fully withderwn position under these conditions. 2-2 j
l NEDO-24142 The control rod and moving driveline is decelerated oy the action of the hydraulic buffer at the end of the scram stroke. Figure 2-5 depicts the basic components in the buf fer region. Near the completion of the scraa stroke, buffering accion is initiated when the inside edge of the drive piston contacts the botten lip of the buffer piston. The buffer piston is carried upward along the baffer shaft, and its upuard motion forces the volume of trapped water (bounded by the skirt of the stop piston, the buffer shaft, and the buffer piston) through a series of small holes into the inside cavity of the buf fer shaf t (pert of the discharge fluid path). The kinetic energy of the driveline is reduced by the energy loss in the fluid due to the high fluid path resistance of the buffer shaft holes. The flow resistance of the trapped volu=e is farther increased by the upward motion of the buffer piston as it prettessively covers more of the buffer shaft holes. The impact of the drive piston is significantly da=pened as it :wzes to a comp 1ste stop against the stop piston at the end of the 2.5-in. buffer stroke. For nor=al positioning of the control rod, a series of solenoid valves, located at the HCU, is esployed to move the rod to discrete notch positions. For a CRL insertion, the under-piston area is pressurized to reactor pressure plus s90 psi, while the withdraw port is held at 15 psi above reactor vessel pressure. The dif ferential pressure atross the drive piston causes the control rod to be inserted at a no=inal rate of 3 in./sec. The collet fingers are spread out of the way by the tapered increase in diameter of the index tube at the notch area as the drive moves upward. For drive withdrawal, Josinple increase of 4 over-piston pressure will not suffice. To accomplish drive'vithdrawal, a short insert signal is applied at the insert port. This pressure raises the index tube slightly, unlocking the collet fingers from the index tube notch. A f withdraw signal of reactor vessel pressure plus 230 psi is then introduced to the over-piston area. This control pressure is applied not on.ly at the drive piston but also, through a separate parallel path, to the bottom c the collet piston. The collet piston rises, compressing the collet piston return spring, and brings the upper portion of the collet fingers against the cammed I: surface of the guide cap. This' surface ca=s the fingers radially outward so they cicar the index tube notch. The reversal of pressure signals from insert l to $4thdraw at the beginning of the cycle is so rapid that interference between the index cube notch and collet fingers is prevented. When the with-l l l 2-3 I
NEDO-24142 draw pressure signal is renoved, the collet piston return spring extends returning the collet piston to its normal position and the collet fingers again act on the surface and notches of the index tube to restrain withdrawal of the control rod. The nominal downward speed of the driveline is 3 in./sec. j i l 2.3 HYDRAULIC CONTROL L* NIT (HCU) Each HCU functions within the control rod drive hydraulic system (CRDHS) to actuate its individual lockieg-piston CRD. The ECU combines all operating valves and cot ponents required for normal (drive insert or drive withdraw) or scras (rapid control rod insertion) positioning of the associated CRD driveline asse_bly. The HCU directs differential hydraulic pressures supplied by the CRDES to insert or withdraw the CRD driveline ar; to provide cooling water to the CRD. The solenoid-operated valves that control normal directional movement cf the CRD respond to timed signals from the rod drive control system The scram accu.ulator and scram valves are interconnected with the I (RDCS). reactor protection syste= (.'u'S) to function, as required, to rapidly insert the CRD in response to a reactor scram signal. The state of readiness of the scran valves and accunulator is continuously monitored by instrumentation on the HC;* and displayed at the main control panel, j / 1 The HCU is equipped with four directional control solenoid valves to control 6 positioning of the CRD. Pairs of these valves function simultaneously to i accomplish'CRD driveline insertion (Figure 2-6) or withdrawal by applying a differential pressure in one direction or another across the CRD driving j l piston.
- he HCU provides the required stored energy for the scram function, which is initiated by actuation of a selenoid, which permits air to escape from 1
the scram valves. As air escapes from the scram valve diaphragas, the scram valves open and *.he high pressure water stored in the accumulator is permitted to flow to the ur.derside of the CRD driving piston by the insert scram valve, while the pressure over-piston volume is vented to the discharge scram volume. l 2=4
"I NEDO-24142 The HCU was redesign *d for BVR/6 tot (1) increase the stored energy charge j in the accumulator; (2) decrease hydraulic losses associated with scram <alves; (3) decrease the time sequired to actuate scram valves; and (4) up-grade piping and valve design to satisfy the increased system pressure. To acceeplish this, the HCU layout was changed from earlier designs to permi. incorporation of a nitrogen gas volume twice the original capacity (2200 in.3); however, the HCU's envelope remaias unchanged. Both scras valves vera re-designed to achieve higher C, and the scram pilot valve, which actuates each y scram valve, was redesigned to decrease solenoid actuation time. In sodition, air ports on this valve were incraased to permit more rapid decay in scran valve air pressure and, hence, a decrease in scram valve actuation time. Refer to Figure 2-7 for representation of the BVR/6 HCU. l i 2-5 a
w. y g gg gy = W i'A W R U 9 O C H H i l E W M = U L O R V iQ : JE E D L G A R NU C C A H C H a R G C a m H U U N S I C C eL O g H H l r E R E g = u O M s O O p 8 L T O R i S A T A ) O R W D E V C f P A C R R S C s E t s i H E e i E R T c G S V E o N I D A &W IS r 8 R A W EE P U D C I V UT I A s E L C H A m L 9A H R e G AV O N N t T S G E y R L S A C H e C v 9 ir D U UT C d H o O R l r or t n o C U k 1 g g ~ = i 2 M e A E f E G L Ne r ~ H R V u g C A U g K T E Af E V V L i N L s T l f S O F A A f ML L O f ST8 EG l nE l A O H i f NE1 l S V R T 3 t N f I D A (C O C T O L O N O N O NR D R E G R OC OO N B CT OP M I T C C R M E T Nt L S p LE L COnU u OT E l C uA f y RS Wf WS H p T Y OHOE O NS L L R Y MF OC F P H B C LU
s = =
R A l E R VVU T D E 0C C C M L Y F f F P H l e EE FI H K TT SSAN TYSA ASNT ME SN TIE NDG D ENA E MOR NOTCO A C RT E OS RT r a jjj .4 l
NEDo-24142 I 1 c.. a m .i f V i r -C t O \\ \\ A// ItJ,U!V! i '7..i ,11 g A I g% . m,.dm = = c e p V w Q I E i I O 8 As? TO 75% SYSTEM P AR AME'ERS pe t st NT SCR aw INSEAT'ON l i A CURRENT CRO system 2 95 g INCREASED SCR AM ACw.tLATOR 575 120B 2.52 PRECMARGE f os.gl l C INCREASED SCRAM ACC:,;V';LATOR I100 2209 2 40 VCLUME tcwo< ecw D INCR EASED PUMP HEAO ras.ge 1750 2005 2.04 E thCREASED INLET Lt%E 34AMETER te n t tass 1.62 F INCRE ASED OUTLET LAE c:AMETER M 6 3/4 1 Figure 2-2. System Schematic - Chsnges for Fast Scram Drive 2-7 4 s - -, - - - - - - - - - - - =
w mm a~m NEDO-24142 fn 1 -CON TR OLROC ~ ~ ^& g VELOCITY LluiTER ! L C047RcL %4 IW d hu 2N r'h p GuiOE RCD TO E^ i ORivg T y TuSE COUPLING D "l UP.00VPL*NG R00 I ~ OcTER FILTER 'i T 3" 3, MOUSING TO /[ t{ '1 VESSE L T WELO P P 1
- /'
REACTOR ' /y i j ' 1 x V ESSE L 3 4 t
- f:-Z soTTou q
L* J MEAD M0u G N 3 INNER FILTER TMERMAL SLEEVE ~ QW drive HOUSING ( !I STCP PISTCN AND SE ALS ' '(fA f 'I ! YJ '( guFFER MOLES INDEx TUBE i L j e p d}M Q .lj -, e Co uf,INGERS, ,.,,s,R I C ET SPAsNG COLLET SPRING - A Bu sER - I[g= 1 l jil - COL *.ET#iSTON l s PISTON ,j j z. g Q r? %NO RINGS 64 D { p 4[.%e m[,,: l P !jIl . ['k O 'a MouslNG TO FLANGE WELO Q *! I l DRivt PISTON .O *l 4 i FLANGE AND SE ALS i= 7 n '*1 I [V. Mus j e h !5-PR E SSUR E I H f ~ ~, 10 l9 3 UNDER PCRT / PORT f HouSsNG ~ '*l* i I f i,'], , g' 4, 'j B ALL CHECK VALVE d a FLANGE i.* 4 CAGE CRivE Y* I WELDEO MAIN FLANGE g;% i, PLUG g ',>]'f WELDED PISTON TUSE d
- x. A h L
i PLUG TO MEAO nELO i N 3 m - M AIN a's PLANGE 80LTS g 4.; l' PostTION INOiCATCR-WE LL '?"y, l d* I u w@,x ' I;> ' 4 y PtSTON TUSE MEAD s RING PLANCE l RING PLANCE SCLT g ; ~ i i-POSITION INOiCATOR MOV$ LNG Figure 2-3. Control Rod Drive SchemaciC - L"R/6 2-8 i f
a-g NED0-24142 b ?i fh @,,, N !;b!!U
- t q :::
!!ji! ilj.I Q i N s k F T!A v1'- -s = -C N -e M_g.;
- ,2 :
'S !fE!J A.: L ,r. s y, ; !!. li !!I. s d. { I A A
- s <
e ,7N i ' i! -e eg.(3-o L x @.h ln? -s sw m a _ y, i %anj; gQgt n p.q ?cev@ax?7 tw:s g 8J 4 d2 ? - f es'eJN iR I $gk8NS( ew N 5 B Ilji i [&s = gc@f ~- s J.., d*:' u
- Q.M. w -tb3 h
1 m
=
=
y,.
9a
=
g> e lg. h sJx x
m e-a rw l
w a
Mf9Jws A
n$
2 N
r S
h.i i
m e:L~t u
u n
Ii B il i
y 1
_a i
p.., {'l j
8
- f 3
'8 S. r[ l a p > mwoqi g y a, -- f: - G t! ^' it
- zi s
le ,e4!2+.f! $U-i i -- - i
- sp I
x l 30 i ' '? [ 3 ~ w; wz', li,
- t 4i 2
.i i d 1.i___f
- a v.
A y i e id a .s in c a '. l' ~ li r. +t. /. .-i j l l b.)I -d i' , p. l ? a ...yg i g (( il r O .2 ' EH j EH;j I -i i 8 e T l 1, i k Ei h!),3i h 1 l' -fv, -. m.yY';f# x,.: M, [ A l b, 1 4 1 I I (g ilt J l ob i v. a, -- CC 1] .;r l
- 1. b,1,
.= 1 t o. -.s,.- l 1:r~ ] i ]" 7hl*V
- =
t- )' .r, g. r e ,-y, y y
l 1 l F90-24142 l v ITE W O R 8 WihG l 1 PR ES3UR E V ESSE L. l 197E397 2 30TTCU ME A3 8 LANCE l 1344198t "1 3 HoustNG 9190260G1 7 4 COR E PLATE l 117C2853G* 5 Gus0E TUIE l 112C2344M2 = 8 UP'Em GRs3 9210922G1 + ~ 7 089ER BR ACCET 112C25w?G1 1 ~ 8 LowtR BR ACCET 112C2$Q7G3 9 CCNTRct 10 762E954C1 a 10 FU EL S UND LE l 1 4 5 3 77f,2 8 d ,( f 11 TCP MEAQ FLA40E i 932C94371 42 THEh.AAL SLE E. E l 11?C1435G1 13 FUE L SUPfCRT i 213A4237 14 CCNTROL iCO ORWE 768E534 15 PCSaT CN'ND'CATCR 762E 634G1 N )p t i \\ i 'I 1. I Figure 3-2. 30-in. Test vessai configuration 3-3/F4
FEDO-24142 t l 4 DEVELOPMENT TESTINJ
- n February 1974, changes to various syste= co=ponents were defined relative to i=, rove =ent of scram perfor=an:e. Since testing of =ultiple configurations for each system or co=pocent change was, i= practical, work was initiated to modify and verify an existing computer progras to provide a =eched for evaluating and opti=izing each specific change. This =eched saved consiterable time, since only :ne version of hardware.cd to be built to verify each of the final changes.
Oevel:p=ent testing was then conducted to identify those perfor=ance para =eters vni:5 satistiad syste= design objectives and to thor ughly evaluate the CRD co=penents. 4.1 SLW.AM The test progra=s discussed in this section were perfer:ed to deter =ine scram perfor=anc. capasility of the Sk'R/6 FSCAD and to previde esgineering data to used ia an itetative fashion eo i= prove the design. !=itia* tests were perfer=ed to evalaate th. effect of certain -hanges in syste= design relative to r ra= perfor=ance. Based on results of these tes S. these syste= design changes were in::rpot.:cd to acsieve the required scra= perfor:ance of 1.62 sec ? 75* insertion. The re=aining tests discussed is this section evaluated functional perfer:ance of the CRD as the FSCRD desig= evolved. fi Engineering data taken during these tests verified or ide=tified 4yna=ic load- / ing conditices un4*r botn nor=al and most abnor=al operating conditions. These data were tnen used. support the design or as a basis : revise the design. A su==ary of the core significsnt data obtained as a result ot this testing is given below: (1) demonstrated capability to =e required scra= Terfor:ance of 1.62 sec @ 71% vich approxi=ately 25% =argin; (2) verified t'anctional adequacy of closed buffer design; 4 4-1 7
NEDO-24142 (3) defined maximum buffer entrance velocity of 160 in./sec; (4) established velocity profile in the hydraulic buffer and identified maximum ter=inal velocity of an operative buf fer to be (5) defined dyna =ic loads during normal and failed buffer operation on various CKD components to assist in verifying ar.alysis and to determine functional adequacy under these. conditions; and (6) defined axial and circumferential thermal gradients under various transient and steady-state conditions to verify thermal analysis and component design. 4.2 MODEL VERIFICATION The objective of the first test series was to identify the pressure drop characteristics of the various flow passages within the CRD. A cylinder tube and flange assembly was codified to permit LP testing over a vide range of flows. These data were then used to correct calculated coefficients in the scram i performance co=puter code. System design parameters were analytically evaluated and optimized relative to their effect on CRD scram performance. At this point. hardware codification was initiated as soon as the analytical evaluation of each ork was also initiated to modify the test facility.f where change was complete. = required, to allow evaluation of initial system performance. I i 4.3 FAST SCRAM TEASIBILITY DEMONSTRATION i The purpose of this test was to determine: (1) the fe'asibility of satisfyir.g j che initial cold scram performance objective of 0.90 see G 75% insertion, and (2) the accuracy of analytically predicted scram perfer=ance by comparison with test data. Prict to this-test, the facility (Figure 3-1) was modified to i reproduce or sf=ulate the system configurations identified below: (1) control rod without velocity limiter (148 lb wet); e 1 (2) HCU N tele volume ubled; 2
- GE Company Proprietary inforsation deleted.
6 4-2 i! i + -
NEDO-24142 (3) scram accu =ulator charge - 1230 N precharge, 1760 H O final charge; y 2 (4) PU minicus line loss condition (Bk1/4); and. (5) PO maxi =u= line loss condition (Bk1/4). The control rod drive (CFO) utilized was a standard Sk?/5 (P/N 761E387) equipped with an index tube fabricated from a developmental =aterial which could better withstand hydraulic buffer pressures expected as a result of the increased scram perfor=ance. Scras tests were perfor=ed in a repetitive fashion at pre-3k1/6 sys:e= condi: ions to provide a baseline condition prior to initiatien of tests under 3k2/6-sys:em conditions. Tes: results were obtained as a func-tion of reactor pressure (i.e., scras profile) for both the baseline case (i.e., Sk1/2-5) and the =odified system described abeve. In addition. Table I-l identifies scras perfor ance results at other scras ac:e=ulator charge /precharge
- onditions evaluated at :ha: ti=e.
The results presented in Figure 4-1 identify the rela:ive dif ference in magnitude between 3k2/2-5 and Sk2/6 scram perfor=ance' observed and de=onstra:e : hat a significant i=preve ent in scram inser: ion rate was f easible if the proposed design changes were incorporated into system hardware. J. 4 CRD PERF0FF.ANCE AT TAST SCRAM CCNDITICNS The objective of this :est was to evaluate structural integrity of the CRD under fas: scra= :ondi: ions. The syste: configura: ion re=ained as identified for the
- revious test; however, the index cube was replaced with an index tube fabricated k i
from Ar=co 17-4PH(H1100) stainless steel for structural reasons. Various scram i se:u=ula:or charge /precharge conditions' were evaluated with and without increases i
- o the ni:rogen volu:e :o determine their effec: on scran perfor:ance.
In addition, the scras initiation position was varied fr== full-out to full-in, which increased the kinetic energy to be dissipated by the hydraulic buffer to .i a maximum at the short-stroke conditions. Translating assembly entrance velocities and ter=inal velocities in the buffer (in additica to buffer pressures) were l ceasured by the use of a specially instrumented test CRD. Since this CRD was of the open-buf fer design, buffer pressure had to be withstood by the graphitar 4-3 ~ \\
NIDG-24142 buf fer seals and was applied to the inner diameter of the index tube. Data evaluated at various accu =ulator charge /precharge conditions correlated well with analytical perfor=ance results. Further evaluation of accu =ulator charge /precharge pressure and nitrogen volume with the analytical pregra: decernined that no significant performance increase was pos.ible over the 1750/1200 psi charge and 2X nitrogen volume. Test results identified the following: (1) 1750/1200 osi accu =ulator charge with 2X nitrogen volume was confirmed as optimum; (2) =axi=u= entrauen and terminal velocicies were deter =ined to , respectively; and l be 133 in./see and (3) buffer seals were inadequate at fast scram condition. Figure 4-2 and Table 4-2 contain examples of the perfor=ance characteristics compiled during this test. 4.4 CLOSED ELTTER INITIAL E'IAIJ'ATION The objective of this test was to evaluate the suitability of a new hydraulic buffer design (i.e., closed buffer) from both a functional and a structural standpoint. A sche =atic of this buffer cesign is shown in Figure 2-4 The remainder of the CRD is unchanged frem' that reporte l'in the previous test. Since the CRD system design had been finalized by this time, no additional variations in system configuration were explored. The piston tube asse=bly was instrumented with strain gages, both above and below :he ring flange i elevation, to permit determination of stress and axial load during operati n of the new buffer. Throughout this evaluation, buffer actuation was evaluated by comparisen of axial load (i.e., magnitude and profile) and pressure-under piston (Pu) data with data taken under similar co'nditions with the open buffer design (i.e., st=ilar strain traces measured at the pisten tube assembly would be indicative of similst buffer function). Initial tests consisted of
- GE Ccopany Proprietary information deleted.
4-4
- m
l P NIDO-24142 nor=al red positioning (i.e., shim operation). It was-quaickly determined - tha: an air po:ket was present and that a modification to :he stop piston was required (Tigure 2-5). Once modified, the re ainder of func:ior.al testing was successfully completed. Initial scra=s were perfor=ed at low energy levels to verify correct buf fer function; however, all re=aining scraes were condae:ed at normal F.'R/6 scram conditions f rom f ull-in to f ull-out red pesitions. No change in buf fer perfor=ance was noted! during the test while c:: piling a design life equivalent of 600 scrams. Strain data as a function of scram ini:iation position are contained in T.able 4-3; Figure 4-3 is a exa:ple of :he axial load profile experienced durimg deceleratien. In su-.a y. :he axial lead reaches a maxi =um when scram :is initiated between posi:ica Co and 08. his is the position at which the emobined kin tic energy ef the syste= as the greatest. Test resul:s identified the following: was required in stop pisten; (1) C' r.?.T condi: ens yielded =axi=um buf fer entran=e velocities of l 1:0 in./sec vi:5 ter=inal velocities from (3) no delo.ation of co:ponents occurred; howevec., capability.tader i a pestula:ed failed tuf fer condition was questMened; and ll. l I (-) clesed su.'fer design spreared to satisfy funcedional requirements under all fast scram opera:ing condition:. s t t 4.5 ISS F M S I; C.CSI.) IUFFIS :"v'ALCATICN This tes: vas perfor=G to gain more detailed infor=atic:n concerning pen buffer tressutes associttac with the closed tuffer desigm, axial loading during 'I decelera:ica and the buffer pressure and velocity profile 'or various scra: initiatien positions. Jo acco plish this, a specially miedified buffer assembly was designed which permitted measurement of buffer pistom displacement vs. ti=e by utili:ing a linear potentiemeter and permitted Smffer pressure and axial loads to be =easured directly. All other port: ions of the CRD and system
- GI Ca=pany Proprietary infor=ation deletsd.
4-5 I
e NEDO-24i.2 re=ain unchanged free that previously reported. The test was performed at ambient pressure and temperature using mini =um hydraulic line loss conditions to provide maximu= entrance velocities, buffer pressures and axial loads (i.e., worst-case conditions'. As previously discussed, maximum entrance velocity is reached when scram is initiated between position 06 and 08. Axial load, as would be expected, also follows this trend; however, buffer pressure reaches it. =aximum during a full-in "00" scram and decreases as scras initiation position is increased. Figures I.-4, 4-5 and 4-6 depict the data discussed above. Results obtained can be su=marized as follows: vas obtained during position l (1) peak buffer pressure of "02" scram; (2) =axi=um axial stress of 17,000 psi was measured en the piston tube at the point of measurecent; and (3) =axi=um buffer entrance velocity and ter=inal velocity was 140 in./sec and , respectively. l 4.6 INSTRW.INTED FAILED BUFFER EVALCATION This test was perfor=ed to determine actual component loading under postulated inoper..tive buffer conditions. Assu=ptions for this tes were chat: (1) the buffer seal failed or was not installed and (2) the buffer pisten stuck in a full-up condition, thus subjecting the structural semb rs of the CRD to the respective i= pact loads associated with each of these enditions. Since previous tests had determined the =axi=um impact veloci:y and the velocity 1 associated with a missing buf fer seal, a velocity profile was run to determine axial loading from 3 in./sec (i.e., normal shim speed) to 95 in./sec. Maximum i velocity was limitad, since a 304 SS piston tube was utilized in lieu of XM-19 and higher impact velocities would have overicaded this component, thus pro-viding erroneous load measurements. Figure 4-7 shows instrumentation locations, while Figure 4-8 is a typical strain trace. The maximum impact velocity of 95 in./see corresponds with a piscou tube stress of 231si and a buffer shaf t
- GE Company Proprietary infomtien deleted.
4-6 t
NEDO-24142 stress of 31 ksi. These data were then used to evaluate and verify a dynamic
- odel developed to deter =ine leading conditions in other CRD co=penents of interest under the inoperative or failed buffer :endition.
1 4.7 FSCRD ITNCTIONAL EVALUATICN WITH FINAL 00NF!OURATION OF C* CSED 3UFFER HARDWARE This test was perfor=ed to evaluate FSCRD prcduction hardware (i.e., current design) prior to obtaining the design acceptan:e test FSCRD and initiation of the design acceptance tes:. The test utili:ed, for the first t ime, XM-19 piston and index tubes wi:h no unique data rec: ded (i.e., only nor=al CRD characteristics evaluated). This test de=onstrated that the index tube, piston tube, and buffer were functionally adequate with no unsatisfactory perfor=ance observed during cold or hot pressurized operation. 4.3 IEE??.AL IVALUA!!CN Prior to ini:ia: ion of the Design Acceptance :est, a ther=al evaluation of the 3WR,6 Design Acceptance test drive was perferre: :o deter =ine thermal charac-teristics under all nor=al = odes of operatien. This test also included abnor=al conditicas which si=ulated a leaking discharge scram valve and variations in CRD cooling water flew to define the ther=al characteristics of the CRD during all = odes of operr.icn. Specific data recorded durins this test assisted in [ the develop =ent and verifica:ica of a ther=al =odel ha CRD, which permitted f ther=al evaluation or other =cdeled CRD co= penes:s u..:.aricus operating conditions. The test CRD ?/N 768E534. S/N 6594 was instru=es:ed with 20 chrc=el/alumel ther=ocouples (Figure 4-9) The *.est facility was =odified to include a pro-duction SWR /6 HCu (P/N 767E800), and the vessel internals were aligned to wor.c-case =isalignnent reiuirerente of Figure *-10 prior to installation of Ba eline perfor=ance of the CPS was c:sfir=ed nor=al fro = both a the CRD. functional and ther=al standpoint. Cooling va:er flev variations were then perfor=ed under steady-state operation (i.e., la::hed condition) to obtain flow vs. te=perature' data with both axial and circu=ferential gradients l l 4-7 4 i i l f
NEDO-24142 observed. Scram cycles (i.e., both accumulator and vessel) were then con-ducted at various steady-state te=peratures with thermal transient data recorded. In conclusion, both a leaking discharge valve and a plugged cooling water orifice were siculated to provide both transient and steady-state ther=al data. The following conclusiens were reached as a result of.this test: (1) The FSCRD operated s=oothly and with no =alfunctions during all phases of this test at steady-state probe temperatures from 100 - 520'F. (2) Axial and circumferential ther=ocouple data indicated that cooling water =ixed well as it flowed fre: che orifice through the CRD (i.e., 20*F maxi =um circu=f erential gradient at flange). (3) In general, te=perature dif ferentials observed during an accu =ulator scram were less than those observed during a vessel scram. This is significant, since B'4R/6 scrams are primarily a result of the scram accu =ulator, while previous designs utilize reactor pressure f at normal operating conditions. [ l f (4) Steady-state position indicator probe te=perature data indicated that mini =um cooling water flow (i.e., 0.165 gpa) was not adequate e to maintain probe te=perature below the design objective of 250*F. -l 4-8 I I l. I
i NEDo-24142 Table 4-1 C0!mtOL RCD DRIVE SCRAM FEFJORMANCE l ~ l e ;- l i v 1 l g_ 3_l.233 I. ? .' i M > u! ". g i C 8 {i gs;s;g g j !. p l*w L; ;0,,,c F,. ^ y-j s h_a l _1u s. /, a,c;* -E e g-t .a s: sg 1-n n v m _.._r. d i I p11.e-_ __ l n. g %.~ 6 9_u :: a ' w i_g.a .r.e R s ,s _L_ -r = w., =_., i-q ;: n< I.1. =3 a c. a s H - E 15. ' t = i:.a s a h. c is 1 I t ' E la: Wf a, - i ~e M ~ s ;p
- t. ersalC., C61 2 ;s< e c. e' Ess 4. e. g:
e e, t i + i i e i e i .: e. -
- r. ::
a i e a. %c,- Tat -: e e irt;;?:i;..soir
- = ~
s.a s : r.I. n q a_ s K. ;.g 2 x; f; t r? ~.%** +: cc -ce s ir-, O ct;,z;?.e. saser;<e.sre ?: p.,
- ,,, 3 y gr.,,
l.. .,f , y A w. O,c a 3a. e ! Ic ; .<r e #:,, '=o : x
- r vis= '87 a,
- ee; AA. e r h l..
1 M.'.~~ n XL Ty* i i ?ws T::t 9le
- r 79. ~ il *
- w s ;A
- C.-
- :t: ' t.X ;c
- e, 77.
r... . M.:, v ~ ee, , i. r,.. a.e u :1p n ir ?ev ':. n e 1-. iss. W. .rc i
- 7..
N yr. yfr ev t > ?. Ut v5 <<;r. 7:c. c e s.e are a -/. N vr ,c. t- ':? bm.e ~- -a~
- o J... c.
- .d.,.'as ='s > !:.
': ~ ac l_t. re % a w eh s :s?
- ?t.
1.
- ci.
?>
- 'tv*r
- :. - 's w. 53 b? 4 441 i:i r *- -; Q'w - ?.: ? :
- t.
- 2'?
!i: ' "t5.=e? * ?"/* r,:~? ' ' * -. cc
- er n : ayw :y s e i
,D < - o, .'f;
- J99' j *e ;N *s v s t y;e i 7,2 8 -.,;
r, 1e. fn,Y w m i e
- r. n n~.%_*
<;r-e?* ??v 'i,; :*** :! =to : T* ** 'I O! .J lk: 7tr
- ft & =*.1
... i r_ ..s,, X ~. : s.. 1:_s. *;. ' g r -n
- < rew..< - ?s 3?: g +;;;e n voes M
.7
- st :ci.
- a. 's.n o 77?. r:q.. r;
-a- ?. ;- +ag y,s .~ ,M .e as ~ A .. !S s t ;u 'u s. ; :: ... ;..- r. g, ; ;W ,o, u.es ~ 5, a. r-. ~.M > 7cc ype u n.
- s kr i.w rer s r
- . :- g,:.
_.ee. ;yc : e g.: t K :. .pse
- gr.
,y ye.. ~;g, r.,;. ya r., s ~ -,. qg.;s c,4,&.._., ,,e .... ~ .ir .h~ ' ~. s 's. :st e
- _ '.. %v *t ~4
- v. u - je
.ss :vr e :: < < 9 r.
- t N '- >.
- t t s s ' 5~
e,, r y$ 4e r. - r - : . : v & we = - *
- v.
- m - M q.
.v
- w.
. r:. m.. a.... ne. - : - :3 ,egi,...,.m se y.; .1 h _ :- .e 4 du' . ??r k' ?;ws*res !:t o.wse?.c 70 1,;< =;c... *.... %. ':-.' N lr 3
- .t
- t?9
- s '. 3.r;?q i.CI r.m s*, '.:.e.s C ?$ 24'" n ? t e
. x se
- n. :. -s e
? :. :i. - ~. as y.s .<.. ?. ,.e s.: n.h..- ',,.
- **, - N.- 14
..t, ..?:,7'.. W ifg fH, : ?s,rg.:ns,W -o 1r: .n \\ '. ~ Nh
- ~L :W.
?.. v'e,.:. y5e rse a s ?: 5 r '.. my.' W.R, ; p.a 1 M' ?:..?? .m ?-c is + am. ire :s a *.:: a c k 1e L-.* :s so l . M ??e 'ik
- JN To 9 k iG t *
- 4 ft ? *t ;ew' &T ' ?$'r%
'b oW ie :et '~ c= ~ ~ = k; 5:' 4 2' lls
- 2*5 ~ !!$ ' sf ( * *,g? 5 {*? '
~. *
- 3 rc ( k t es.N - !* ien
- /
k'.a t' M'
- f 8.So l S? 8
- /:'i i Iso ; W f //fJ ! /4 I CGi PaI 4C flute (ca M ' a feet M
.r. .' N.* .l?* yg* .m i:t:.s.q trati 2tF ss s er ~ 9
- ur. <h M As*M
'. %c er ;;c. :q:
- sa
,9.;;* s pos 7 ' !!! 439; :: f y to $. 5;o& 95 -=+$l 'Q .5 e.J:y + ;,'g. . M '.72 ?(,g)IisVd* ?.ty p f,; f r,* y is 4 y. ;:c,M 3 .a. ~4 f* .N ?,. ;g ; :.y 7s a e ?_t t y? e,s.4 6 /Jp31 /7d a yr3 ?vi tg." 3 45 3 <.M <<f Jul 'i y _v -- = v._r_ _.2 1 _ _l __ i .N t t i t-- h +.. M.o.T h 7m i.a.e r:c efs.ev n-n c4, e -..m,,.c ri,# w 'N
- L* 17*. e's*
\\tC ? i20.RC2%* r0 L2
- 9 i C o_P %.? ** s ? ^) crQ.t;'"f o.i" w
'**. ' * ^ * e ~C *ers **.M.. e *2 v'Ml' 114 4 2Co*LA t3fl *nt 2 *r*t. @4 iCI'4' N-*CP!Jie. se, ut ) . M ' .*i*'r*e92*
- 1 CC C.299* 41ClLe o2.??P e.M =*.:C# W v;f,=4%-Q G e.eyl
- ,r.
- e d't vN '.d'e L*7'f'.."7II. /2f' f Q f.f_89 NC7'Ld'Mf!!CC { 6.r1C..". ?3r'N.Mh.. e%*R t l 8: ' 21' 1
I hoe .e. m: r 1,1a, a--zwc,wn.,e e.;;...... w,ce o.x..w i e:.
- s, j
l ? ? 2 21 3;Q
- Cm.TC L2_1l.it=~5lL*1%14 re *.?
P t !'o* ; :C A
- C?'*1M we,X N's*2 l
_Ad 22' N' P '.
- C T *f 1
- L2CPLt *5t W 'LCN'L it*n i-7' L9 P'dC= "%*2f*R 3)*] T l
P _s y.
- \\
s e e t i 6 e t i t A t e 6 9 t i i e s t 6 { 'A 1 t I t I e IN. I l I s f i 4 e 8 4 4X 1 t 4 8 t i t i j 1 g. I i 1 1 l - w. e ,,.,.-w--- e e. %-i- ,,r.mi. e ,-m ,.-,y- ,<-y e.
i NEDO-24142 Table 4-2 SCRNi VELOCITIES / DECELERATION Scram 1750/1200 psi Initiation Y Position E T i 111 48 109 117 36 117 120 24 120 126 12 126 y
- g 130 10 130 g
8 130 s 08 130 g 125 I 06 125 8 U ~ 0:, t 02 t ~ 00 t l V - Entrance Velocity g i V - Terminal velocity e T ^ ; b i 4-10 ~ f,
Table 4 ! SCRAM INITIATION POSITION VS. AXIAL. STRAIN Top Internal lower External Strain Cage Strain Cage Mic roat rain St reus Hierostrain St reus Pu Po Pn E Position (p E) (kst)__ p E) lkst) (ps til) his t il) (psig) sec in.fsee 1-48 440 12.5 445 12.6 2010 250 3600 0.051 118 2-48 460 13.0 420 11.9 2010 490 3550 0.051 118 1-24 560 15.9 480 13.6 2370 870 4200 0.045 133 2-24 560 15.9 480 13.6 2380 860 4200 0.045 1 13 1-12 580 16.4 500 14.2 2550 970 4400 0.043 140 2-12 590 16.7 500 14.2 2590 950 4700 0.044 136 'I l-10 595 16.8 490 13.9 2610 1000 4300 0.043 140 h 5 2-10 595 16.tl, 500 14.2 2600 900 4400 0.043 140 1-08 590 16.7 490 13.9 2550 1000 4450 0.043 140 0 2-08 595 16.8 500 14.2 2570 980 4500 0.043 140 1-06 595 16.8 500 14.2 2610 800 4600 0.043 140 2-06 595 16.8 500 14.2 2670 800 4700 0.04) 140 1-04 590 16.7 500 14.2 2650 1050 4650 0.044 136 2-04 590 16.7 500 14.2 2700 1040 4600 0.044 136' l-02 570 16.1 490 13.9 2790 650 4800 2-02 590 16.7 470 13.3 2660 500 4500
- m
NEDO-24142 23 5 8 2 l Y 5 22 .-an tu a caso a o i n i S l 3 1 Y ma s i.o 2 I I I I I o 200 eo soo ao scoo inco vessst emassuns w Figure 4-1. Scra:s Profile at 75: :::sertion Gooo l < i i l ei .E. b swmM CCNTmot poo 2x NITmOCepe l 1750/1200 em o t 7 i I I I I I I I.I i 1 sooo l 0 De 15 T2 16 3 38 2 32 35 e 46 de CRO SCRAW INGT1ATIOst POSIT 10st Figure 4-2. Open Buffer Pressure Profile at Atmospheric Reactor Pressure f' t 4 4-12 l'
e a*.u NEDO-24142 !s. .50 5 w $hl c* z c< s .r. ww pi
- s t
E I E2 l y>"i; 3 ' 33 5 (*l 1.* 0 i E I ~- f l c. t l e R I Og 2 g e a M j Q g 8 d 35. m 4 / .w 2 { a l \\ i\\ s a g n.. - .5 0 4-13 j;
NELJ-24142 100 i f t IM1 A sm ACCuasutATom 88#ta MINIMUM Limet LCSS VESSEL PRES $bME = 0 pp a. w 1 N. j 130 E l t P l 1A [ I r i -~ 1, 110 j 00 he 12 ts 4 34 25 2 as 40 es 48 armAM FOstTION i I Tigure ?.-4. TSCRD 3uf fer Entrance V.'locity ws Scram Initiation Position I i (CE COMPANY PR'OPRIETARY) > c i I t Figure 4-5. Peak Buf fer Pressure vs. Scram Initiation PosiLion (CE Company Proprietary) 4-14 l l lu ---- ~ ' ~ ~ ' " - - - - ~
-~ NEDO-24142 (CE COMPANY ?ROPRIETARY) Figure 4-6. Closed Suffer Pistor. Velseity Profile (CE Cc=pany Proprietary) l I e 4-15 t n- ,,,e,, e +
4 i NEDO-24**4 i i d s e { E e I z i 3 5 o E / I E s i jF \\ f e ( 74 i E i E i/ E i E V ~ t, i O O E I I N 4-16 I: i' ~
NEDO-24142 g g a I I i 4 g l M 9us = 0 0me 0 01 e O m n I k g N PisTC*e TUSE e gy) ~ s1 K (
- /\\
153S h, I k f SUFFEP SMAFT e I o., b ff a I. t Ian.= 500Aad 1 an
- S00 one
- i Figure 4-8. Failed Buffer Strain 4-17 e m -e --e -w -r ew" 4'*'-g
- -"T "8""-" " '
"N""r'r'"'W'
- C+
I NEDO-24142 1 o o g 0000C & v .A _, t e e t'J -- METAshEm "" 4 e e i os 43 >eeo o oc l- _,, yi ~ + e e i G I I I- _e, CYLINoER TueE g. AND FLANGE I I h, - THER MOCOUPLE 'l-4 AN us AN t i e'.t, & Il
- 4... a s _,,
\\ l LANGE iI i F 7 es* Yi o, J WATER I l NOTE: STAGGER T/C LEAos 70 ALLEVIATE CHANNEUNO l Figure 4-9. Thermocouple Location 4-18 e 4
m. 's NEDO-24142 l ano l ,3 ^ r l c Top Guet / I i 1. I I 6' l l ' g I !I i ne i I 8
- OmE PLATE f
i. W;$A L'CNVENT! aJ ] E S'ECIFiCATrcN l A ECU4R EV ENT ACTUAL O247 0 250 0 096 0 143 0130 0 121 y l 0 80TToad OF VESSEL f N. ? \\. \\ 8 C A t W r +^ r E e 0.103 4 1- - 4 0.121+ REFEREleCE 0.260 *, t A pe0U818eG FLApeGE 4 I i s 1 ~ Figure 4-10. E1/5 FSCRD Vessel Alignment Rarquirements 4-19/4-20 l-.. u
NEDO-24142 5. DESICN ACCEPTANCE TEST This phase of the test crogram was performed to verify the functional design adequacy of the FSCR3 o.er the equivalent of 40 years of simulated reactor life (i.e., design life). In addition, it was hoped that design nargin could be demonstrated by satisfactory perfor=ance over the equivalent of 30 additional years of simulated reactor life under both nor=al and absor=al test conditions. The test scope outline was: e 5-year =aintenance life test e 40-year design life test e 60-year overlife test 5-year =aintenance Jife test with particulate contamination e 5-year failed buffer evaluation e A comprehensive definition of test requirements is prese=ted as part of each of the following sections. The functienal areas addressed as part of this evaluation / qualification were as follows: e Scram reliability e Structural integrity f e Operatica under driveline misalign=ent e Normal insertionbrithdrawal (shim perfor=ance) e Scram performance e Buffer perfor=ance e Life and duty cycle 5.1 SUNMMAY l l The FSCRD's scram performance throughout this test progman was excellent. Scram performance at operating pressure ranged frea 1.235 sec to 1.389 see with a s s s, 5-1 e w..
/ NEDo-24142 zean (x) and standard deviation (c) of 1.284 see and 0.035 sec respectively. relative to the 1.62 see at 75% scram require =ent. All graphitar seals and bushings were found to be in excellent conciition at each post-test disassembly with the initial seal set lasting the entire 40-year life. The FSCRD satis-factorily completed a 5 year evaluation in particulate conta=ination (i.e.. CRUD test) with no deterioration in scram performance. Drive and shin per-for ance was affected but not to a degree which would prevent single rod, maneuvers. The buf fer piston was observed to " hang up" approximately 0.25 in, from a fully seated position during several post-test disassemblies. Since these inspections were performed in a horizontal position, it is not known whether this anomoly occurred in actual operation; however, an increased resistance to buffer piston travel was observed. Further observation during testing indicated a wear co=patibility problem between the buffer seal ring and the nitrided stop piston bore. A change in seal ring material and a reduction in seal ring radial force have alleviated this problem. I Midway through the 40-year design life test, a deterioration in hydraulic i i buffer perfor=ance was observed at drive operating ta=peratures over the nor=al maximum of 250'F. ~ ~ ~~ (CE COMPANY PROPRIETARY) A design modifi-cation was developed and tested in parallel with this test program and incorporated in the design acceptance test CRD at the conclusion of the failed buffer evaluation. An additional 5 year =aintenance life test was 4 performed at operating temperatures above 350*F following co:pletion of all i planned testing and verified that buffer performance was restored unde;r these conditions. Since -the cause of this problem and its solution we're not available for several months, the 60-year overlife test was initiated and completed. It was recognized that scram cycles run under these conditions would provide a significant increase in component loads as a result of degradated buffer performance at te=peratures above 250'T and that the equivalent of 5 years operation above 350*F was a test objective. At the conclusion of the 60-year test, all performance was within acceptable limits and all post-test component observations were normal. 5, 5-2 i 9 . i m______
NEDO-24142 l All FSCRD perfor=ance during the failed buf fer test was nor= sal; however, ( the coupling spud (Figure 2-4. Ites 8) was observed to have buckled at some point during the " hot test". Analysis indicated this damagie was 'the result of rebound loacs experienced following icitial end stop imp)act. A design modification was developed and will be qualified during the F.anufacturing Qualification Test Program; however, as a result of this terst, a system for detection of failed buffers was developed and will be incongorated in the BWR/6 product line. In ecnclusion, the Design Acceptance Test CRD was evaluated! from a life and duty cycle standpoint, the reactor life equivalent of apprcoximately 75 years with no deterioration in scras performance relative to the :1.62 sec @ 75% insertion objective. No functional problems occurred otherr than reported, and all prob)*m areas reported were resolved. As a result., this design is considered to have successfully ce=pleted this phase of the: test pr) gram and is ready for =anufacturing release. 5.2 FIVE-YEAR F.AINTENANCE I.IFE EVAL 1'ATION The design acceptance test FSCRD ;S/N 6894) previously used! in the thermal evaluation was reinstalled in the 30-in. vessel following c:enfirmation of driveline =isalign=ent and var:.s component measurements,..and the 5-year f- =aintenance life test (Table 5-n was initiated. This teste was designed to j de=onstrace that the FSCRD could operate satisfactorily fotr a duty cycle h equivalent to five reactor years of operation, with margin.. As'a result, replace =ent of expendable ite=s (i.e., seals, bushings, o-trings) was pro-l hibited during this test phase. Since the FSCRD is subjec:ted to all modes of operation (i.e., shim, scram, jog) at vessel pressures sand temperatures from ambient to rated pressure /te=perature in normal ser"icce, the test was structured to si=ulate this duty cycle as close as possibhe. For example, the 2 1 seras duty cycle was portioned into three categories: starrtup, operation, and scram tests. Each of these categories was further deflined relative to position of initiation (i.e., stroke position and vessel ptressure). A j detailed breakdown in chronological order is presented as Trable 5-2. 5-3 1
NEDO-24142 All performance during this test phase was observed to be normal and thus satisfactory relative to the above criteria. Sample data sheets from this phase of testing are provided as Tables 5-3 and 5-4 rcram performance observed during this phase is graphically represented in Figure 5-1. It should be noted that scram performance ranged f em 1.15 to 1.25 see at 75% stroke relative to the BER/6 scram time requirement of 1.62 sec @ 75% stroke. The following observations were noted during inspection of FSCRD components: (1) tendency for tha buffer piston not to return to a fully seated position when actuated by hand in a horizontal position (i.e., hung up i 0.25 in. from fully seated position) (The cause was attributed to seal ring /stop piston in compatibility and seal ring radial load.); (2) minor chipping of nitride case at several index tube notch positions; (3) no evidence of da= age to any impact surfaces of buffer components; and (4) all graphitar seals and bushings were in excellent condition. As a result, no expendable hardware was replaced before initiation of / the 40-year design life test. Table 5-5 contains actual seal wear data taken following post-test disassembly. 5.3 FORTY-YEAR DESIGN LIFE TEST The test CRD (S/N 6894) was reinstalled in the 30-in. vessel following 5-year post-test inspection and reassembly, and the 40-year design life test was initiated (Table 5-6). The objective of this test was to verify that the FSCRD was capable of satisfying the design life and duty cycle requirements with all performance characteristics remaining within nor=al limits. The philosophy of test structure remains as previously described. Expendable items such as seals and bushings may be replaced during the course of this l l 5-4 S
NED0-24142 test, provided the duty cycle equivalent of a 5-year maintenance life has been completed. A detailed breakdown in chronological order of cumulative test cycles is provided as Table 5-7. Evaluation of individual pressure-under (Pu) and pressure-over (Po) piston oscillograph traces identified irregularities at vessel pressures of 1090 psi and with FSCRD operating temperatures greater than the 250*F specification maximum, which indicated that only partial deceleration (i.e., buffering) of the translating assembly was occurring. (CE COMPANY FROPRIETARY) Since this partial buffering action was considered to be a more conservative duty cycle from a component loading s'tandpoint, the test was continued while design modification and develop =ent testing proceeded in parallel to achieve a solution to this anenoly. (CE COMPANY PROPRIETARY) It should be noted that the changes made in hardware design did not affect clearances or fits of any interfacing buffer components. All other drive performance remained within normal limits during the !.0-year evaluation. Sample data from this phase of testing are provided as Table 5-8 and 5-9. Scram perfor=ance observed during this phase is represented in t Figure 5-3. Again, scram perforsance remained well within the specification requirement of'1.62 see 3 75: insertion with performance ranging from 1.23 to i 1.38 see at maximum line loss conditions. The following observat'io.ts were noted during post-test inspection of FSCRD components: (1) minor chipping of nitride case on guide cap; f 6 (2) inner filter lightly contaminated with grit (filter ring vorm i uniformly); l I i 5-5 1 ll t a
+ \\ N2DO-24142 j (3) reduced preload in piston head /index tube joint attrib.ted to fit-up proble= with locking band and cc.rected (all other fasteners and locking d evice. tighd; ~- (4) pelished ars s indicating vest on six coils of the buffer return spring; (5) buffer piston de=onstrated tendency to hang up -; G.25 in. (observed during 5-year post-test -inspection); (6) buffer seal rang snovec appreciatle wear; however, frea in groove sno damage to buffer or other drive c sponemt irpact .urfaces); (7) all'Graphitar sea.s and bushings in co'd conditio:t; 1 (8) liquid penetrant test of til Fighly oaded cocponents (results negative). ~ 5.' EXTENDED CSICI IIT. EST (60 Years) 4 The.est drive "as reassentled following the 40- aar post-r..s c. inspection I. l l 8J ? vit.: all Craphitar seals and bushinga r placed. The object' ca 'f.r this l phas t of the test was te demonst ate mars in taith rt.pect to life ar.d duty i cyt.e requirem ts by su.3de: ting the test drive. to an additic:'.41 20 years ~ y r of si=ulat.d reactor life. In addition, the cy-lic equivalente of a 5 year mai-tenanc: life was r.s at CRD operating te.cperature greater c:an 350*T (i.e., prebe tempersture) as part of the 20-ycar extended lif.2 test c: denoestra i th's...SCRD s ability te satirfy perforrance requirements during . t extcnded period: of F4th st=pe.ature operatic.a. This porr.iom of the test was perfc~.:ed without besefit of the b affer design nadificatf.on discussed s N $-6 ( "*? g - f
i NEDO-241'2 previou.ly, since hardware could not te codified in ti=6 and r.he i=pcsed duty cycle, with partial buffering, was consiCer a' c nserva.ive f.:s a design qualification standpoint. The philosopba of te** s tructure recained
- identical to previeus phases with a Jetailed bre.kdown of cusalative cycles presented ia Table 5-10.
Terformance d'aring the extended life test was again ;casidered nar=al. Sample data sheets (Tables 5-11 and 5-12.' pro ide d.sta ' rom crie scrce and jeg nois of operation, re.spectively. Scran perfo*.~.nce satisfied spe.ification requirements and ranged it.<" 1.25 <ec to 1.33 sec e 75: stroke - mir.imum line less conditions. The vtriation observed in scras perfor=an:e is directly attributed to r5CRD optrating.espesature i.e., scram times incraase with probe te.peratur.) and..s observed ovar a range of probe te=:eratures from 200 '40 F. The only ob. arvattoa nott i during tes..ng was that the p' rton ;ube nut (Fi-Jre 2-4 Item 16) t 1 back--d of f several turns dura ag the 1790 psi ves.=el pressur e test ;hase. This. ent.as considered insignificant. since the au: was nor correct for this d ign (i.e., * ~/5 nut and tse nat had not been loenwired (a requirer.ent at the b4R/6 cesign). P.st-test dir sse bly and iripection yielded the following. The sp d fingers were yielded inward. A rev.ev of toleran:er. I deternin M that the ur:oupling rod (Figure 2-4. Item *21 did not pos.- tica.ae plug properly in socket and that the increased axial loacs ' associated with partial buf.cring would arudt e spud finger ) yieloter. Tne positi:ning.imessio. for the lo-k plug was changen as a r ; ult of this observation. s s e The btffer piston continued :) demonstrate a tcadec.cy t-hang tp l t 0.25 in. from sea 6 when stroked manually in a horizonta; pcsition. This prompt:- the de:fgn and test of a new seal ting fabs.2ced from U ~nes 25 and will be men: '.oned later in the report. s 5-7
I NED3 24142 7 l e Jaar at :as were obseeved sr. localized ara.: on three cotis of the buf fer string Nitt '.de case chipp.ng was ase*ved at 12 cl 24 index subs ' notches i e (not considsrea unusual ior this amount of 1 fe). l A1! Gra,altt.* seals were intett L 3 in gr.ad conditior ' Tabla 5-5) P e s'.th cons */arabis life ree sining. Ala buffer com9cnente and inpace surfaces were in good condition e with ao dfstrass obssrve;3 5.5 CON
- Mil"A*ICN TEST i
Follew.ag ccmpletica of the der.gn ace ;tance test (i.e., 1.5X desi,n life), j several av armal eva? scien, vera perforued. The purrise of the first of the e te es (i.e.. crud test) was to evaluate the sensitivity of the FSCRD g F relative to nerat.sn in a ;est system with sigaiticant part.culate con-tanication similar to that observed at sv aral docestic reactor sitse. This a r type of 'ontaminatian ha caused significan: cesratient& di'liculties in pre ious a:Js1 trives, since a large pe-:entags of scras water *s withdrawn from the vessei (her.ce, crud inha143) at operating pressure..The FSCTJ does aut require e significant per:eatage of vesselewater and, the-efore, was coasiderid rather in,ensitive to this anvircus+.2t. i The dety cy-le c?.osen far evaluation was the 5 year saiatenance life, test descrid.d previously. The crud sample, which was introduced directly into the control rod guide tube, was composed cf sand aad iros oxide (Tabic 5 13;. l h, l, l l I l l 5=S I i l I t s'l l ~ U
NED0-24142 The test CAD was installed, the test initiated, and the teet sequence completed (Tab *e 5-2). Sa=ple test data are provided as Tables 5-It and 5-15. All drive pertor=ance except scra= performance showed a general degradation ovar the test period; however, the CF.3 still re ained functioral, in that all required positioning was accomplished. Stall up/down flow (i.e., seal leakage), whi** is ac=inally 1.4 and 0.4 gpm, respective 1y, reached a =aximu= value of 5.0 and 4.1 spm, respectively, during the test. In spite of the obvious eclect cl crud ingestion on normal drive perfor=ance, scram perf or-manc.e re=ained unaffected and ranged from 1.210 to 1.255 sec 3 75: stroke. The FSCRD was considered to have successfully ce=pleted ths 5 year t.ein-tenance life test in an environment of gross parti:ulate contaminatien.
- cct-test disasse=bly and inspection identified the fo11 cuing Drive filters collected appresimately 60% of crud sa:ple e
int-oduced. The inner filter (Figure 2-2, Ite 41) was three-fourths fall of crud, while the outer filt r (Figure 2-2, Iten 45) was heavily caked on both inside and outside surfaces of filter cloth, i Drive co=ponents exhibited surfaa.es which contai=ed light o to medius coatings of ctvd. f f i e No crud was present on buffer. components. 5 \\ t e Drive pistcc seals and bushings were free but heavily scored, while ses.la exhibited light to moderate wear. 5.6 150PER4TIVE PTTIR TEST I This test was perforced to de.monstrate the sttoctural ede:; acy of the FSCRD under worst-case scrsa conditions with a eczpletely incperative buffer. To l I r
NEDO-24142 en,ure that the buf fer would remain inoperative during this test, the buffer spring was removed and the buf fer piston was boctomed in the stop piston (Figure 2-4 Item 33) and pinned to prevent out motion. The test CRD was subjected to the equivalent of a 5 year maintenance life (117 cycles completed) of inoperative buffer scrams under minimum hydraulic line loss conditions in worst-case duty cycle at vessel pressures from 23 to 1250 psi. These tests were initiated at both partial and full withdrawn stroke positions (pertinent scram and drive data are preses:ed in Tables 5-16 and 5-17). Following completion of initial test cycles from a partially withdrawn position (i.e., worst-case inoperative buf fer loading conditions), disassembly showed da= age to the spud (Figure 2-4, Item 8). The da= age was characterized by radial yielding (i.e., buckling) of the spud. The damage was attributed to compressive dynamic loading of spud fingers during rebound of the control rod blade. Further review indicated a high probability thac the test was run without the proper water level in the test vessel. This condition would contribute to increased dynamic rebound loads, since the control rod velocity limiter could not assist in dissipation of this snergy. The CRD was reassembled with a new spud and the test restarted. After four short-stroke scrams and 18 full-stroke scrams, the CRD was removed and in-l I spected. No damage had occurred to the spud. The CRD was reinstalled in / the test vessel and the remainder of the test program cospleted. Driveline i= pact ~elocities (i.e., terminal velocities) determined frza test data ranged from 80 to 166 in./sec. The CRD was removed from the vessel, disassembled, and inspected with the following observations: (1) spud yielded inward (i.e., buckled) (Figure 5-4); (2) the inner filter coupling spring and base were y$elded as a result of dyna it loading; '.owever, remained firmly ccupied to the stop piston (Figure 5-5); 5-10
ee.>e am,.a NEDO-24142 (3) all seals were in good condition; and (4) no physical distress or yielding were observed on buffer componen6s or other main structural components as determined by both visual inspection and liquid penetrant examination. Since this test was performed, the spud assembly was redesigned to incorporate a compression cylinder to prevent spud fingers from absorbing the rebound load; however, no spud interface dinensions were changed. Based on the above, the FSCRD'is considered to have satisfied functional requirements when subjected to failed buffer loading conditions. 5.7 "'IRIFICATION OF HDDIFIED CLOSED SUFFER This test was performed to demonstrate and verify adequacy of the buffer modification to prevent partial buffering at over-temperature operating conditions. The test consisted of an additional 5 year msintenance life cycle (Table 5-2) with stabilized operating te=perature ranging from 350 - 500*F. In addition to evaluation of the over-temperature fix, the buffer piston seal ring (Figure 2-2 Item 11) was changed from Inconel 718 to Haynes 25 and the radial load reduced to alleviate the tendency for the piston to " hang-up" (reported during earlier portions of this test). Partinent sa=ple data obtained during this test are presented in Tables 5-18 j and 5-19. All scrams were recorded with no instances of closed buffer mal-function observed. Scram times were consistent with those observed during other phases of this test and ranged from 1.25 to 1.36 sec 9 75% stroke. Post-test disassembly and inspection verified ali drive performance and i functions were normal. In summary, the buffer modification incorporated in the reference design was considered to have satisfactorily demonstrated functional capability at CRD operating temperature up to 500*F. t l l 5-11 l' i i b o
l l l NEDO-24142 Table 5-1 DESIGN DLTl CYCLE (FIVE-YEAR MAINTENANCE LIFI TEST) Activity Cveles 27 Scram tests M Startup scrar.s 48 Operational scrams 4 00 Jog cycles 175 Shim / drive cycles 4 I i l 5-12 I l g g w -*,,-w-r
NEDo-24142 Table 5-2 5-YEAR MA1!.TENANCE LIII TEST (Cu:aulative Cycles) i Scram a M ve Test y,,,,g Pa ra r.aph g Cold g Dcun g Down (psi) 3.2.4 2 FS2 25 1 1 3.2.5 20 20 0 3.2.6 288 288 3.2.7 25 3 3.2.9 20 SS 3.2.10.1 25 SS Heatup 0-1250 3.2.10.2 5 FS 3.2.11.1 25 1 1 3.2.11.2 40 FS 1090 3.2.11.3 3600 3600 15 0 150 3.2.11.3 4 FS 100 3.2.12.1 5 FS 1250 3.2.12.2 25 25 3.2.12,3 25 i 3.2.13.1 5 FS 50 25 1 1 0 3.2.13.2 100 100 Totals 28/54 20/7 4238 4013 198 198 (5-Ye ar) kest paragraph. 2FS = full stroke 3SS = short stroke 5-13 l 1
,- d NIDO-24142 Table 5-3 5-TEAR MAIh*IIMANCI LITE FIRFORMANCE DAT\\ Nd l I l r t I. 3 T E l %..* *{ :}. m! ;. f. .., 1., i. [i ! ]. f l
- t e.
..<,g b z. v2 .4 g-c e8 g w s-ii st. ss ' d er., * ' p,. satt f *** 'M $l =-g ; a l as . 13. l a. j !.s.4.g. y .i *. s _ g a tt-af iu a
- ag e ;.3s.1.g :
g i g 1 la,1..J... . 3 v m., w i l g ' 5.0 . s. I; s; ag :9( ::! e,. g s t g f.
- s.. = 2 r.
s- ,=!
- g. --
.. sz.. -i .. "w w .r + i s a s ,ste :.. m.:. y 1 .e. _. < s.c s.a es.re m.. n _..., ~~. Y Y-' - fe ... s:. -< 6.: .a -.. - s- . e e... r, e. _... r,- u.. '. *. " * ~ .s.. m.._ ---- 4 g iw.. _.... _ :. w:..:
- n. :. a: :-
-=-
- t. ?? c; s m : - a :,W.
. :w aan s + :..ao.ae s.n - - n i_- ;: n w e.s % w. i. a r = r. r. a.g.,,...-,e ._.:. % a.:.:, :.: s. e n -- - v.1r a s e s :e va a... ..r. ,::: n: we : .x ~- ..e. . v, ~ ->... -., r' ew - :-.,. a.; - : :- m su - - :.:
- m :.;A
- .c u o_
M. W = = r. . a* - - m.:s ss . m. w n.. 2. a..:.., z. .r.
- ::n :.a.
.:s
- ~
- ><e 3: s :..i....,
r
- si :.< ::e..
.-s .=. - : s. 4.~.: m,: .. 1 ~..u, :.. s:,.. i., e :. .hu =.u._t.y..'. e - ..:.s . <v
- .: 2:.:'.=;.s x :<:
i . J'G i einst% .-...as own 1 A_ i h,, * :: 01. 3 %; 'W) M MO i .;; - ! i t is * %7 i! 21': .*G.
- < t t i. a 4 4 *. *4 v.r. 4 i: A !
-02*/*4.4 ne ? 4.'***> .06 4 e .< * * :: ; u T. ~. i o. -es C *s O t. % & ? w 2..G e *.~,. d.s '.s* b ;. ::: : 4 l e."
- 3. -)
4,0
- w.
.**: es .eace -E. _4,,... ;.. 6 m 4 u _ - -,...- g,y-i.; ;
- te.% 3... y,,,, 4, g - -.,
.-w r
- ..0..: A
- AJ s..:t:.
I f r. c.n e.. !,: (. -s
- C
.,--e ,a$- = ;pr.,,, y -~ :'?,= :M..K t_:-r e..;.e= ' :... W - e ,e:.- . 9 =.....:.-,. c p. m e .v.,- i.,, - ey,...,. _ _ V i_...=...e., .e ...?. r. e t, :, -....a .e ne. -e, n..,,..-..,.v.n.....~..*'a=s ~ _... -o.
- . 1,,; 2,., a.-. s,
. m, _
- m
.re .c r - < .'s. ~ a*.s t:q. & = - - n *-~.A '.*; ' '. q :L.:=s ~* m-~ la - s~ &a :::.,...-.., +.: i $ i j .: w - .-e..,.- w e - -. -a / .e o s.3 ,, y,e e,u c,,,. i l l / i%... u.,.. c n' / ..rr:. m.. w..,,-. ::,.,.- [~ "F, 4 * ' " M'- s " ..:;**f( /~ 4 7p. -me.f Gs a44..g6 pg=,,. -CQ. l [ T-?.,."<6..,. .m - r-...- y i_y. ,.f,,,,,,,ff,, g i .'.5 - f. (, e j M ;* u i..r -. : ' x=,.:f. p. i.:$,, u.s y -_ .3. n s . - s. ,,og.. n n..,/ s t . Q g an_,3e ;,,, m -c 2, / ' L P.=. Gr .a,,n a-'. -. e / in, e.,.. -. 7. a-n l f
- M 3 w.
w e aet-' := i '--G .r 2 2',,e :aosare a ;**r:.s..' n ;;'i, t
- '*'**=****\\*
Tf * '.'* ' Cf s"^ P4 ~2
- 12.. *,.s *
- 3* i* re.** ! =f.-
. '?[ it. c s e * *._ "H e l
- 4 em
.c .f1 - ~ r ~ -s* -9H.u.:~. ur =< ~. s e e air ! o c_ i -. -j :so. m.*_ t i :.,; .o n.. : - l-s, : ra . _ e.._)< g. 1.e. a, ,.., i w, g i 5 ? $ */. :.oo C $*:' 'r.1 ??'*
- e t : 1. N" -
.rv.M
- _o
... M'.,e-e >3 . : 3 m. ;'? *,,,,,,, = _ - ~.; r. e we*. i w / ? n L:l r. u or e ',,,, W * *e ?A
- W **~ rs 2p* _ s * * * -
.e*t-s 02 V:<o &~' its* * :sf m
- i : M* *- - 2 : s*
..r y. a,*. an", <..( 69. s s.s.._w, :,-* 3,m,, 4_. _. t :._.. :. s a 110* *: ',,10 N,. 7........m.t. .. a.. 3.c i., 4.... 9j., e j,., l.v.,g..- 3-3 e W i -*. '*n. % ;',, ; <n: M 1.. t 3 4 ) e, :* e (< s.a a 3 ,, g. gujf,- - 4 Qt ,1 C e.. :.;;:s i.. t h i b 2, k,*. ;*h *)*"g'
- ,;
- ig':. a, y,;,g y i.d c;.., a p ;o] ; y g,;f;}--
.i 806* %* ? 5 U ::"1 .4 0 !' 1,* e6 :;i' i% Q '$431og.>LT 4A%ly.( g g g g C, t.4 4 a 3 Jf ^ ~ r. c-v.u.m.u- :n.s: M n: w: w,c2 w :.s of. w i.n :,.;. e,c; + 'is' M 7'
- h. k.b b>. 't N 1* O. O A * *M 1,* *. % w ' ;
T * %.4 N 4 M : t.14 : 4;9 ,) gg ;,, : M i g 1,
- L m. ' W.%
- e. W +123...,4 b g.c,,.a.tj "T; ;,;7, J
( !. L., 6:- ; ;.W i W Q ;
- 4 :%:.%
i,x r** ::M :i c HL.g..:~.* -%.::: %. <<:n.as.sw s.:*> e a,, era 5%. .58, t.*i's i i. . f.::....:.: :.c.-r y .:,,.v.-e.. u, s.n.1 .m _, g.. -2,,.,,, f if:M== # a'= ' ~.I-.b".di D.# [p.* 1 ga. d 's,.) C h*(f. kf, aM,. L.C,* ""4jyg A, i 5-14 I l
- _ - - -. ~.. NED0-24142 R 'E t! ~t: :: I i' -l - 7 t ,s c 4 4 i$g:m 3 a t... 4 s 4 t '~ , dl 'J ?.; I~ s s 'd. d s G 1 .s s J -.>s s s s u 4 Q %;s lt ? 5 $ P -r.1 L.rb '? > % b m.5; A h I 4 a e j )~~t'E:::1 C =: 2OO -4 4 0 I rs _a! =W -- 3 % 4 T Q , Q:: g ,-} Q C C q N l.a. s w - 6 ) :-m 51 el.-: ' a i=i l ' =. :i -.. :q c =.l'1yti::: a a m m i T T '# 'I k' N 5 E! : = M,, : 4 si y 5 a. g N es y% = N N -. 3 t,e, 3
- g
= M o-ev- ...m 3-o a. U D 1" El k. di k I ~1 '{ $T k $II k 2 .4 y 3 l s.i s ss = e ~ .s m Ms ci c s 3,,,1 e c c 0 o es st t .s s ,% y: 4.S -.3 g g\\l \\;\\l N 4 9 t add' 41J L s 4.s Indoe ucallvis c ,N s
- 1i I-; M ls 4 %. <
s s : !07 i sa "Vis x c L," 'dM 4\\ti\\ h,M. p. n,. k 7 \\
- s
'8808 501d' ':h4 CyA. s in.e, ucc 3mc t s > c n,, 1 .ou n me 8 s 2 s v., t % l (ns.wel I N.9 tg N tN l l U 4AC3 ONIAlWQ 033cs l N ~ t'- "m..v ve c.-uco :sima ! ::: % S E 2, " % D l 1 l 5 401sid u3CN3 iMass3kd i sg 5 % 9% s4 s. E4 U ici II c 'e 'i W s. d eni i Ty tic).71s c.-uc0 DNtAlWG I = s 401!!d 33^0 3Hnss3Bd i .NN 9 H,M %I e iCi%JCl*C C N h j 3 i t 21 of Ho.'Id-3 $,m kt, g - % sq 1d 4m00his3Wecddnsn.Hl, l gl N N N N q I 1-g n M w. m % <'c. n! t st as en Ox:AIMO C33 s e n ni u n v i i 2 - n :mma ' Cl S C *i * % * " C
- S: N d 8 C I
.= ca 4v Nc es: [3Aannssna ~ 9 N 6 Y N K Ml M Y % N% d MI - ""'feysn'Lse'b'k k s 5 h k NdM Nd'I m%n .nunmi.c.. e,n n w n h a e % m u e.,.. ns n: i e x x,, N '+ 'cisici e,',, c: ei 2F-, o y,A C N, N t; 'b4 '> 1 s.,'t g q q nj ni s; to q t,s. <, W u n:.vu3dn3 n eovd N ,s 5 ts rs ,3y,,,;,,, g '** h 4
- W *ei
- s1 }
i Lio) t i tk q \\Q 'Ql l 3Hn1TM3eA31n0110s 13ss3A [,cQd(@y$ @j.Q w anmuca:v.s-m nmiansswa,3ssla\\ n n auoaew i wwwNn x R a 4. q g a R q g g ~ ,J ~ ~~ ~+W wss n a s' e g, m uv. L 6 1 s. n
/ ~ Table 5-5 FSCRD SEAL MEASUREMENTS 8/24 9/1 9/22 9/22 10/11 11/1 2/22 3/21 3/21 3/22 Pre Test Post Post Pro 60-Yr Post Pre Ciud Pro Ruf f Hod Pont Pre Inop Post Ipop (New) 5-Yr 40-Yr (New) __ _gL (New) Mi Buff Buff 60-Yr 0.150 0.150 0.150 0.161 0.157 0.155 RADI AL UP (wear gap) 0.145 0.133 0.158 0.158 0.161 0.177 0.149 0.176 BRIDCE UP (wear gap) 0.182 0.133 0.170 0.165 0.156 0.161 0.161 0.161 RADI AL DN (wear gap) 0.147 0.133 0.175 0.160 0.195 0.150 0.150 0.158 BRIDGE DH (wear gep) 0.181 0.152 IIPPER STOP PISTON (Segment Thickness) 0.295 0.292 0.283 0.295 0.289 0.295 0.293 0.293 0.293 0.296 0.293 0.293 0.294 y 0.295 0.292 0.284 0.295 0.291 g g 0.295 0.292 0.282 0.295 0.292 0.295 0.294 0.293 0.293 g LOWER STOP PISTON 5 (Segment Thickness) 5 0.296 0.292 .0.283 0.296 0.287 0.275 0.293 0.293 0.293 0.275 0.293 0.293 0.293 0.295 0.293 0.283 0.295 0.289 0.295
- 0.292 0.281 0.295 0.289 0.275 0.292 0.292 0.294 UPPER DRIVE PISTON (Segment Thickneus)
- =
0.2 73 0.2 74 0.272 0.274 0.2 72 fe.2 71 0.273 0.268 0.273
- 0. 2 74 0.273 0.272 0.2 74 0.273 0.271 0.273 0.268 0.273 0.2 74 0.273 0.271 0.2 74 0.2 72 0.271 0.273 0.2 70 0.273 h
LOWER DRIVE PISTON (Segment Thickness) 0.2 74 0.2 74 0.273 0.2 71 0.274 0.273 0.270 0.273 0.268 0.2 74 0.273 0.2 70 0.271
- 0. 2 72 0.2 70 0.273 0.268 0.2 74 0.2 74 0.274
'O 2 71 0.273 0.273 0.270 0.273 0.268 0.274 NOTE: All measurements in inches. 9 w-e eg te m me'
NEDO-24142 Table 5-6 i.0-YEAR DESIGN LIFE TES-i l l Activity CWeles ^ Scram tests II.0 Startup scra=s 160 Operational scraes 300 Jeg cycles
- 3) 000 Shim / drive cycles n,000 t
f s s r g, o 1 i 1 -I 5-17 i + i i s
NEDO-24142 Table 5-7 40-YEAR DESIGN LIFE TEST (C1Y.ULATIVE CYCLES) Scras Jg Drive Tes 1 y,,,,1 Parstrach M e: C:: d to Down to Down (psi) 3.3.3 1 F3 24 1 1
- 3. 3. 4 120 SS 3.3.4 2 FS 69 2
2 0 3.3.5 3000 3000 100 100 3.3.5 5 FS 24 3.3.6.1 112 SS Heacap 3.3.6.1 4 FS 96 4 4 0-1250 3.3.6.2 20 SS 3.3.7.1 24 1 1 3.3.7.2 75 FS 3.3.7.3 5 FS 7185 706C 215 213 1090 3.3.7.4 160 FS 14570 14120 430 430 2
- 3.3.7.5 5 FS 312 238 10 10 3.3.S.1 10 FS 1250 3.3.8.2 1584 1560 40 40 3.3.10 1 FS 24 1
1 0 I I Total Para-132l255 120/13 26591 26023 804 804 l grapn 3.3 = I Total Para-25/54 20/7 4238 4013 19 5 198 graph 3.2 l Totals 160/309 140/20 30929 30041 1002 10'02 (40-Ye ar) [ Test paragraph l 2 t FS = full stroke 3 SS = short stroke
- = CK3 prebe te=perature at 350* F.
5-18 5
.c I NEDO-24142 Table 5-8 40-YEAR MAINTENANCE LITE PERFORAANCE SCRAM DATA . a g M 4 = ~ .s 1 l . i g i. ' .a A. g..i. i ? l
- e l i
.c. -.4 s 4. 3 -!a s.N i 3 = 3.5 5 5 s
- r. e.:... e.s 5
l .g ?.y. a. -: 1.- x: as 8: ss e 7 %. g, ' *.m 3 : c r v_ : p a s.,..
- g.;g.gg.
g yE. ,,.s s r .. e _.s e __._s_. ... - __'s. r. m:; s -t. e .I. 3. 2 -. ! d'EE 25 if: f.: til?H.ng. -. ii! 11 3. ' %.. 3 H m..- I r d i .?._ r ee w.... - ... s..... a,., .r,.. e _.. ,,,-r/... : e ve.... _.. E q., 3... . H.-...-. -..e ...s e
- G. J. \\
..e*
- 1 * *I
.z e s *y* s**.
- ( ^
- t:
r fjrt.x :_gs =( 's n. - ~ s *
- s-cper.:._sr.
e-m. 3 * - n-- .r /,g, .*g [ iths. T e = */ - s o.r l s -- n-a..fp e ',e e e t
- ' ' ~
- r
- * ** s, e L- * * <
- f * * ** *'-l
- C '_" ' *
- C * ( *
- r :T*
T 4* _* ** *"r *r *
- y QP>, ' *.r :
e, s - _. 4-9i.***
- w'
- *Ee
- e $ rw t *.. :*. ( * - f c a e ea'*cf SFC /
r= ... s - ~ * * * ' /,,.*' -= 4/in '=1 R,C'?su r! .?? 2 n*r*
- C_.
=w... ~. 4Ow;*.?
- ,.***'.,t e-oe aee" / '
-ar - .- ? *.- a t'- L /"'.
- $*' ' '. * -* " '. ^- N Y ~ ' '
qr rr, *:
- ?. e *?.:*vn s.e er oee
- *? '
W- ? s = -
- T.~ ' **
2rt'?M" / _ T -:M~. < C su
- eco s a c - ^=
es .kQ.._... ..s
- T*.*'
er.. / a4p. s.-*-... '..ss.c o ar *.=
- M ? * '
t-i' $ t?.. ~. V
- 9 m * * * ::.e ?*c: *e
.e r .t- - c.tf i .s t.=. s==J =J e -er c e -e r < r !*e /
- G
$=t..a .m T.] "' ' -@ _... a ' '7." " sw , -r e s,, e.,.e e - -< e_ce / ..s I St., 5. ; -c , ? f M' ee u "ff f/' /' 'M_" m -.A I"'" C * '
- "' 1 u. - >
_s * -?. Y 1 s s e r.: -e
- . e s :,- ' s,r-
.s-
- .-e
/ '"..?.'.
- .e f
- f.... n
< :... e
- r:
- =.==*T*$.N e4 ' *:# ' * *!
- t*?' 'h*
- S ** ~ ! ?
. _. ' % T1.i.' y. ~ ~ ' ' ' * * ~ v .cle n_ ' e s ::. ' rse* * ! t -?- h Jim :,. S. f-fa. 4.:.f._. -,.. e.s,- ee9X. _ 7e s '.. -ef %,' e'= aa-a. a
- r.....,..,.,..
..* ?g 23: >+-,,.u e. L a:: > ve n e .-y(' d? y. c ~~ >'!X
- * * ' s _-
- _. u~ '
m k O 1 " :'..,.'.r
- 3 5.M 5 :.J*
it-e.c M H' k * *C' :e': &**d"
- d ' r* " 't ' }& M G it="
s~ ~ =- 4= le** & l!Te CS" N
- W'11 t.' 6' ) :**' A " "rA.
E Q. T $ 7 '.%'? C$4.S
- Ld ? aki. CC.CWY l:
D k
- b w.M; se ev.;-4.Te s?:,.:C' :k S e'}C,* r h e c+ fI..'t+ *ee' " ? % ifal.~ ~ G M i~ u 4.m. m.c e (w J c d'O
- J.;. c 7 -r *,5*'ir *_ca ' f r.:: M: 'e f- '. ' f ' d' '6 7 8 ' r.'~4 Oe* !.'.
6 < d. T w.2 e :-c c=n J.ec s.J's. ': n :sc **.1C.. ~:0 :?** M 'I .k' e
- MM-4.'-a ~a -G ld- * ~s h
-::; %,'* w:^ i <. s.r.1c. ec es tse ari *.w.= s:*4 <' n s:~.acn.:~.S c: .~w 1.* Q ' W'- -
- a ~;L
"'r n"
- V, - t Y * < *1e* ~~e:- '> c: 2 ic '.cv.
<*'-4. e '. 4 %.=' ~ C ' : ~~ ~ ;' e". s,a F. s.~ r..ee
- f.*c a $ - 2e o :.e15 %* !!a : M s i *t * * '. 95 C a: "*M-en t' ~s M N" tM '
'( i
- = ' ". :.:'. ";:,**'G s :
.? %.??'* i+ su t ?/5 * * ~
- r
.s -?
- .. e
....a .. m... - ~ n: - ~..-t:- -':a
- :..- -er i "-.cr "r>-'
a'
- * ~3 ' ;
so.n.u :. w.:.e.*.d "^Y .,, n.
- ,:.. r to..
.e,- s.e..... _
- 1. r* f '. -* :*: '
'!] Y *- f *' Y* ** ? * '- ' ~. - ' ~ ~ o.o w -ce o - s o*.; r-t ~.1 aC*.-**' M - -** m 'M'~~*' *l ' ' ' ' W ' ' * ' ' O
- i a c d.s.-a U?-. -;
s-3.- ,.::-ttse" %* w m ' "c 's -w "* :- & 2 * ** = " 'K u - -.._. ac...ac, e._,....- ? n M. mr < _ e z~ r= '*K' ~ -
- ' %3.W
- c..,1.c,'
. 2 a. r_e_e. ~i 2 c: -se X,- .o a m -e y_-u ~ @,*o- "*T ~' l
- ef?f :;e '.'n ' e
-a. e
- (1 e r JWl'
/-F* g #.t.,,..,. v. a.g c. _3' s r.w.:: a.e...ew m ir* v '/ -% :~f A c W w '" ' *:$y v ': ~~*;;. T as.t e s s 2, e 1.- r : w .ch*% w '-a n:x' b
- D
'"'~* " " ' ' 5 a.y.; I.,,aa--es.. '.e c t. : cer *= < = l ee * *!_. !a * :Si* 'Le+* 9tfa T f *'1"*:RYi ? *SU D i A-.N' %~ N. S. *].i
- 9 'Y. 9i s
&{f C ',$ $[ $_**? ???: ~~." * * ! n~'- 2 :.e
- e=T 'Y :? ' M ~ ?*! ' C' ' M ' % ~*
??? "?' * ? ? I5
- Y q_ q.,y., ey E
- e. : a..~3-ur m u- ~:
m n., --e %. n ' m-e se > rn* " e ~~.?,4*'I... ' ere M :1<; m- ::e ~ " ~ ~ ':-e " ' " ' " 'T ' ~ t L
- " a
4 k.,... ~ r. e - = .rw 9==~-%" ?.*".** * " M l O'# 8 '*M
- 7* ' I**D * * #
- b N *N >,", ['
k-ef, y e .g.,,.' 4 -r -t. -,. ._.. -- : -- r e t... i.4,. :c y *.~.. 'i 4.r:'.:'a @ ' M-tVT'.~> >
- ~2 " ~ 3, '
~ ~ _ ~ T _.. ' 'A
- C$*' *W ' ' *l
- I~ * $ l ? '
- Y?
?~ y:g Q. '? i e i I ui l s 5-19 E'r
NILo-244.2 34tW ' 'Uh bfc[ 3 4-NyiMds:[N d4 ] R!vi QO 6o,.1*/ Y.$ n.wx :
- .i
-s.- s.=..-. ~ ~ ~ m, s ~ ~.. q tc w. ~ O c., im 9,y q 'S..v, I '3 e i ? s/',, :;
- r -== d ^os iM.
31"- (nb: w. et g 2 i._. . _ <.*y 1. a ,,,, g I I C .9. \\.**$h O!-E d 3 (,j k _ AQ. d %.' A.d + 41 C' 4._M q dw)q }C Ei ,; en o O R m - mi s.t s m ,- r __ N I 1 h l c^ ? t \\9 i ( e g e. -J <- e,c c 's, -a ec e r. 3Nt1 [. K 'c t Q,. syl
- = T~ h. Nk N h-
~ ~ ~ ~~ ' F..n M ' E C " q st 4 e. A?< D . t k ixd Y in...aole i ,\\ iT \\ %g N i f D Q ' A = 4 [~ 3. h . k b ' h
- \\
- '4 > a* f 4n Divo N! ~ E ~ (m...: j ipl p 4l %' v1 l l K ' Q- -x i o g .,4 uCG OktAIE0 733ds ' ~ '$4 t.& 1 M i
- lOf:.T
(!alK 3r.,Cs-coc ONIAiUQ o ~ ( (,k =
- i wouw v3 sn anssa.s -
i .i E (iz) &"d W-uCC Ok!A!VG.' :lq.--.C O' C O 9 T<- l n t c M L e e g N01sw 231.0 3MfEHd i l M N tl \\ N (X l d \\N N bd hU kiala vet:14-l eNy.%lNAg h l h 9 8 Na03 nn:s3Wd Pdans n0H { %M MN [ 'R U.7 $. 'Q:15!S.: 2 2:.X' 9 3 !n E sm.e dn entna::3 x -e
- .. l u
u t'. w.. 31 6 'ya Ga c e a k N [ Nd,* d-d.1 1AlHQ Y we M 4 A # M 44v ?.?^ S M ' voisw v3Aa nnssna o c 0 K i i d i O '4,' %lT' i i te i a 44i:4-in NrAtac i Cl " C s c ~ isois:a nexn unmue ' O '7-c:' ~ v: 8C 019. 1 hI l C. $ h, s, f,.J (ew.i ~., h. (iWidV Vdlid a n d dn unmu cddns o Cdi< $f C DO O k 7h D W C c (.q nnm3.c13 scud _ 's - g Q g a ' g, Si Q g g 3 et 6 } .i c,~. &w: - m.M .~. ~ 1.~ su a s ic w-u D a nnm3.cmu: um (4 '3 hWW e (*. I g b. 'T W W l.6l 'FJ N
- p. L
'.s ^ al, 8-rs a s S
- A *' no
.ie b (Jg 3Mn1YM3eM3130 Yds f31s.
- c n<(# e
.,"m' ~1 s' u.s, # vi %( I O D \\ '= D ~ - ~~+~ m ~
- :ll-
-,, l - ",,,,.d rIS. D Wi *s ^ m -A g m 21ro ? i I - w.s s e. e. e, s e- - ; s.u ~ ,..r., - .y i M
i 1 NEDo-24142 i Table 5-10 EXIENDED DESIGN LIFE (Cusulative Cycles) l !: ram og Drive g, Test Paracraph Cold g Down }'p, Down (psi) 3.4.2 1 FS2 24 1 1 3.4.3 68 353 3.4.4 1200 1200 0 3.4.5 50 50 3.4.6 1 is 24 1 1 3.=.7.1 84 SS .ie :up 3.4. 7.1 4 FS 96 4 4 0-1030 3.4.8.1 1 FS 2 1
- 3. 4. 8. 2 110
2; 1 1 3.4.8.3 4 75 96 329 329 1090 3.4. 3. ; 5 F5 10200 1308; 5 5
- 3.4.8.5 44 75 3936 3840 124 1~:
3.4.9.1 15 24 1 1 0 T-tal Par > - Pa/168 68/3 15648 15120 57 517 / .raph 3.4 / Tc;al 244/*-- 208/;3 46577 43161 151? 15 1' 60-Yasr Test T. se !!O/450 210 45002 45000 1500 1500 Required ' Test paragr6 :- FS = full st roke
- SF = sho:: stroke.
- 5-year aquivalent it 35)*T misiaan prise espe - tture.
I S-21 1 WW-
l r NGO-24142 Table 5-11 Er;D*CED LUE PERFOR.'WiCE SCIAM CA~A l l l l l I.e- ~ i i t t j1 1 A t ..a
- e e
- :-
s, i xo / i s s !.3..,.4. .s s...s...n. ..t'. 2 n.,i.3 r 3 g ' ?. i - g ' c. s r. s. j,_. l e, e. wn<, j,:g. p,-, .g xi n e si a e p:1r..l2.; d,.a4gl g s.slA.1: a - q s-L, : t,. T..l r
- r.. -
la. ' h
- ,s.
,pa I ; d,' I k g l a a :!.2 y. i_ ., e a:se. y i ::. s:.: si, - mt t r-c... .g i ! r, J I i 2 I - i ., u, a 1
- i f
6 3 TI J .8 W_ l 'I ' #8U L.,.. r-3_.Q,. '. -.=' % ec Trf'*.we e e*** ser %- ~ 1' u ? f: ?: rir.e .sr ,o a ? 3..-:e r.e.-c; ::- : ce r e-f. < >>= u,?.. c s o. 5-s. '.2 - :~ %- *?
- w s=s ?
_Giu. ?=. ' !: set
- T. : **
- .s :r.;Pr. 232. VJ' e asil. fi:*^9 s :st Is s e t.'t 2 0 s4 r -.r e
?.s
- s.. g ee. r u s s e. saa..e s ~*.a.#C. :3v s ic._lr *- ei.:?o.-t
>~ro'.- .ex<c 1 e....e f ! ~3 . r.- '. < t e ass *55 '.aa. *.c -~ % n.:. 3-r. t!:t i Tr rus s < ?: r.r tr < tas 3 ie se -." e l .* 3 ses -er '.:?
- s *
-s**'.. - ?: 1s t - m er**.m.It.A:t*&c . -ra.- - s es ' s a :.o.. a l 'S2 . 4 we* s r_? r-r.
- L * '* *:n***e :=. L*$ '. f'T C *e
- 15 Z:. -_3 p t *:.: */s c ** de. t 3. $, *.,, e a. ro p Ci 2 r
o e3 at. :s < s n a ss ~- :1 :.*% :ss,17s ; rue >.r;i*. r o Jro. % r.n sa grea c;r e,re aes -q.... ;, - r 3 e ur ; :,,; u -oo -yfr. 2 s.3,. g.. tj e ein o.,.e < : s ; *y. e ns.s.<, gs.es 's e.ta,
- .r. ? re 4
- s,s-tre N. we..= %
- .ta +.7-e '.osous. re:..or o 270s tesc vrx-p
.r-a-re,.o,e a r*- _s,es-p a *. e< r <-' ie *. ~2 s ? e, r. Lac ; a, e,g ; g.:_.; os ;..,.. %. 3.,,n s. -- pr..;iye
- 'i.,, a y..---
-r 19.ce:.. p. ; m-r.1-1 is r -..a gr.
- 1. r
- e. _ n,, ;<,1,.
3 t c or e -'e v - es ; i.".:9 M-a '<
- n:' o. roA r..w
--r a % ;-r-< - x.t s. 9s:, . +/r 2 ry~~ ~_s .crr & #T. v ~:; r. w r r i: ri % :.a ***3 n-a e< -..m.2 : f r ? e cr o *e.:1e.;.>-i 1z 3s szt:1.i.w' s 2a e Mv'P 3 i * '-uu .;;5 e<-e :<w..-:. c w :- s.-1-c; :::. : - se !a. <> _o;<s -is.:..w .7 s. 54 :.a mce 8 c ic, p r e < -c~ -:r.:ee. cec -%-: r,:-.sc.
- r,*mu.;7 r n?-<
w nc~c sw a:.- =c o. m G.m:. r.._o_.s.._1.t.-r' <v= > w %.w. 5s. 5 c.a = -is, n< w ir_r ;t_f *....n w is. ,-w,e ::r x:. ,~. -::- fr :e.. V,., ?so a.s n.<c *:Tes
- a om:.n ;x co :- r e 3. :,e.,. is t.rst - f e i. <o i.cr: p;.; 3 7 :.:7'. e-m r.5+..... < r.mi g, e % e n s < w.4',% (.WJ
^
- 've.. c. iv.w
. e :. i..etw. AVG :.-* *. :G :h~ '~ c *'~;~?T ' ;fo ? - ~ ' ! L Cu; " ~~ L ri ,,s... n er,.,~,.. .. -c a s ieu-m* e- /!nr r.' n: "*t.
- ttw.' r 3*
W4TaL.1' e s e.._,,re > %.. fre' f"Y("2 e e = e 7 7 ;"Mi ? 3 23 0 7d
- fII' # I7
- ' f ' IITI '*/1 T
- TM I.*} 'I 4 M E* ' " #
.ey,1r ',C s e. 2 3 cfff ff,* 8 r e '. ty r.~%. 21. '. Mf1_f w 814 0
- N W#-
7.' T*C """ I ? * -#-PA' r Ioan.tt9 *.*** ? Q ***f!"f**d!?*.C**.
- ~ *'
- M),) $ $ l' 0 S'# 0 ' E" F' * * ' **'t
- '*N f
lo a to cevrioc 't is fis'~r s
- t er'.s"% 2=M? ; ff'** ST*'A S L;' ''s
- TS T2 ),$ 't,"~' ' '*
S t r.,*t* p -n. $ ti" ' C t 0 ' ^c)I & E*?" ? * 'I t * *"'*
- Mi (U I ' ? l-S **'s A * # fI N H
'0 * ' ~ 5.vecw,'*w T-U C_ Wr.,--.-4:..; u m..w v-: n v: =m ww we e, 3 cm w' J.~ - =,. .- s-w.:, e..- :-me w =a.. -.ce - ~.-<. w ~ : . u. <. r w, -e.-w - =.; 3.e. r ,-r e re <w %.: 3 ; uJ i Ic. .-e#.e.r s.4. .. ' A rc i e:Sa' M" It'I ' M ' Nii* 4 * * # * '*''f****fN ' W8-' ' et..,.* ct c.' C'?** * $3 A* * * ^' NeC* **** '! S EE E3 ? *A ' * "N* t^ ' D 'M*'** ... ~ = = ~ O yt., s.-.a*==.<** M ; 55 i
- EM.
- C *W ? :.!s*
-e' ~ G "*
- r : c*
- I * * * ' ' P /7 **.e t ** i> si s.I 6 t*?'
E 'E s
- ' *.e* ? **t.c % ;" $ $% f s e%*0? & T = t o.e a 5-.-* r s se. I 2t
- 11st *% kast,,d c kn. Y-1 '.L.,,
,Q -c :.e r* 3.rQ s. e <r *.i.~t r' ctr*;* f. :,e t e.e e f.is-e ? o e,_se',... se, h,.g,., y +.l.* h ' o *'r. f eet- * *ari. L eq.I::csr.ut-Pfe= g 3 d _: fr91g=f *Y:12-f 't.'4
- n. oM" % ; %r s.*Z.'*Nr" f'*3"9^*
- 7 C6 ee-a ;em f vtu ; _*e.->'k y$^ S trs 1*. s 2!* r f.et' r )
- 3 av'19 'a. a.
- 2*)
- f.
b"<si C**'( as ,ggj_z.w.e4, se vs.iei.nca eM:.n!1. <<~:. *-89!"_. t1: r>rvaur lo a.
- ,.,.et i '4*.:/;m,
- TC st
- T ss. :ecfTs* $~f/*f.a C.. o 1-'.arb.t.6C '.** * $1.tEi ?. fr.h. i *f C.*.
- x,, y ~ t..) f 5 L =r
- 0 e4to R*.1(* && t w $ Q ****![s' 2 90 '.0 0? ' P'W.t* 7 t.3 7 :. f e$1 c. f*W. e 3 f..~
'lege u s t P re, e f, y 7. 4 0 ek y,i n *::es:. _*wo.,se, ne a%. s* uu =.y;.w er~. m m wrse, o -r ?*?.V~ -v i + i i.,. "t I e i i i i e j i i e i i i t e 6 e.,,#. e I t t e t 4 I i i I I i e ( i f I i 4 6 I t ife f ,,1 1 4 8 4 l f. t i i i i / i 1 i i i i l .t-( l 5-22 l
NEO-24142 a p u ~~ u :l - t ,, r.g 5w. N Q;p 4 : 4 -a u G4:2 E. A. C J Qp $tho..M N,,,M,. N $, ], ? i M i 47 a ~.-.e m a% g xw4:ys.24G T w-m .Jli., <, ~aj t..) $ fi. 41't.:. % %:9 aI a q S C-Si '< ! -p* 'R:7 G' Si S2 9 91 n c.; %.,.j p.! c; h.: t; t ^tl ql S 57 c c
- f e
C W N rai :n . w; w. .a ^e '& [cj"L i5'S st?.'i,c!Et ii 5 9 5 ?!5e %i Y *:t c4N t': 0 ae ii n k ,h I k 3"2
- d! MWeMWS, M$sM.>;sa\\m\\Gl\\1
\\9\\ N < ~, C M L k O f E.: s 9% \\d i me an-vu N(e., yy.ec ;a 'em.Np, p9 )q sj *a\\ok.- M e. + @ M.8\\ t \\.i N a N* o s b=w-o J \\ 9x ? ng. ac! es an m '.C\\ y uca.wtA*aa c37 2 :l=l3
- aj. ql(S.; $ tl E '-0l g $gj $ I y 'y I
un.,o ! I T @! M t O w Ml g6:. 5,y; n; 3 g y I,g & Rl q) t y s, t tl )x R' ilh.%y (b
- l ! D 5l dl QI tl D'
9 o 9mia sa c. mea: Nim 0 ? si q R, 5 esa ccsn:anm.a, I h umau-na-uc::sima = 3.! Sl @l.% 3!' ! A h@i n. ql, ql N q 6,n s h h '2i3 3 4 l yg sente dito Ianmae o N1 s 9 q 3.x q: es ni w Dda und-In Y M T M,i. $l d m $", *% q q$, n {nl@q$ fCl$$ $g l jU / uo:n-n.. A adns n w - h, 3 q nid g; q e f i N N8.$ 9 4..g. W +' N ':>i '>i sai >* 'o ta a N wx 3 !% gi ! di .l T.i S. 7:
- i %. -
s .w ',i N N t Til N 9 1 %g 'h l et] 9ei N cs. i = en.r'in t ima anos i !l 9VC M N d S.l % 4'klo I %jeivb3'M'WWHN. oc a ed.c.-en :x:ma ! , :9 %,, k a.i e s:4 u x a n m u, = om a u.n4-4a cuimo ! e>l >Mi s! N e, % h,9%e -J Q, ' d ' 4 d >J W esa u:xa nnssn. r> an unmu mans n:w il. k @ 3l 'm.oi QW t',t.O'1 y gj Q. g,q ) 'q i m a u us !' sk ,, s., nyn ,n, o l ei s. c i e oi. ,m i s < q u n m 3. m m u ja : z z 3 ; pl n g % g g amn.mLuma - e, ClQ!'&.& si,h Pl M %G v! w +1 v, 9 'G s m nv %me ~- %.o t) r,J:,a b b' hi W 4 4 es ? W y p'i 'e %l yD: o 'O 'n k wu u w ta.Innm3dn nus ans j
- ,n 'O W w,. *e v el D al el'l$! S jkl
&K ->nenuu= m rA e!@o &dM* e em e, e2 k ~ 5-23 e
l NEDO-24142 Table 5-13 C0tiTAMINATION SA!'2LE COMPOSITION i Size S and Steve Sire (u) 1 1 100 >150 75 i i 200 >?S <150 15 400 >38 <75 4 PAN <33 1 40 grams iron oxide (size undefined) e 4 ? l 5-24 n w w--m ww ws
~. _ _ NEDO-24142 Table 5-14 5-TIAR W.AINTENANCE 1.IFE (CONTAMINAND PERFORMANCI SCIMt DATA s* .., s.:.,.g ! a ' II l,i. = ! I .I W ..f. 4 ..sa re- .I..W \\ Elc. li i, < 5'- I gd' .I. I - g : 3,. : I. !..:. a v,, a. :. . ' H i; s., nn n. 31
=
n.- =.. H. I: d.. u. .s.d!.41,i. i!..s31;.:.. ~ ' .s .,t wa. e i !=, i=,. * =,
- 3 3
3- ..! H 8 , 'J ~*
- i2 1
l t e num e c n....- i 4 t c y... .s. sy . gs o.n,. g f p** r.= *s. .e s" e,g : i
- pt I
a e .*t. e, f.s., =* e f*, e-- .,.... i I e,e (; '/*. 3 . =rjr* i.t
- _=c.*...'..**
a.- ;N /s I e t s y;.. .g._. ,#J 2,, : g ,,a.; e *.***.r*.,f7 f. 2
- s o e:
7=: s e s 6 9.
- = -. :..;:,
. s I rc.* ?=?e s.. ;.,.. r ,4*
- s.t" %; e e *:. t Sa s..*= 6 ? *? ' "L e
.1.sg 4 se en u Y'T*
- e, :...
<w.:. :: n o +.... rw, s s e n. ur c s u.... m c -- m
- L****
r' 2 ' = ' r e s :* (D
- i U i '.* : * "*M..
- Le * *
- 14:". !s. r:. ' 21 =, < = *.
- t
.... r r < ' e- * -c' 2.o. L .1 - -- i : < - s... : ? ? r -n ccr ~ e e * : r': *. z.. cc -. lr : ' ? r- "* iT ' ? ? *? e* e v* *% w
- a
- n *.
' -' ' ' ' ~ w w 3 i : f. ~.. - -
- m. ff ' ' =~,.,
r : =jjd.. m e s~f1.::t-ete. 3 *., :;r* *4 e r. a. e fro. _.1.s tyr e ,-~s fre e : e? h*'
- * !! ! *.*r
- 1 ?T - -- ' 2%-* % !?**
- s* 4 - * * = '* * * * ' T s* %
1'~.**"*
- ==
7: < < s. e r.. e -. f.-e ,? <-*;>r.-*.-'~..e..*
- ff f", ?.., : ?:. ?
- y (. j.; *==
n er d og*,o o. o * = sr e -e. :.ae w *%_ y;= n. T ..s_. .. ;..Y.* 9 y
- o *>*
. s' ow e " te_> e _,e; ..-* a e oy: rr* r:;.1-~,..,.. e....g - y v.... L, c.~. , s.,... _r_. _a _s _... u, a s a..%. _,.._r. r,
- .. a r..,.....
.e m.
- c. = s:ee.# :.s:
<= r_s e.
- 1s": ~.-'%-
< ? e' s.4' e a r '..?>.,:: n s. - 3 m. '. - n? u~.. v n.. 2 r, are r s. u.. v., -,c s e ~ r-- r .. --. r .-:--~ u. a .......rr <!e .e e,cen : s.. e, r ~.r..- . _, e.
- .-r ::.m.
a: ?.. n n+-s'%*.. ? *- ne r::rr :r- ' '. ~. s ') # a r
- ~r ..
,-t,<.'e~ '. u,:r.... ~ es. -
- n.=~
- ., ~.. i n.-... e. f r.
.,,, :... >, r...e. +.. -, e c,. e..-.... :r.... .~...n. s. u....
- )
- s*
e.
- r*..-*, 'r r*, : ? ?? ? *f*)*f.*e L_e= L y-
. '"-s ' it r3 * *..-.
- s...v.
e ,. W d.4 L. *. =. e -**g .,f,. e.. f, * *.*. a...,= 2.- * = =,-M. 9 9,8 1 3 '.
- r.*.* per. * '
't r.,. _ t h "= p* * *
- ec. :...e.. :..n. s or_* w...e r.**d. : e.
s.:, v..'.s r. _ ' : ~.: . m..,.r a r* s er. er_T y s-* r.=.= ff a' f r =r!*f G =.** ,=s. .="?
- m.se s.,e.*s seres
?*** r** a s s- .,,a
- .3 '
.ev,,e ...... c. wg e,.... %.,,..- e --...r a.. 1 s e * *.: _. * *. ~~-' s. - : 1. ? ~r-@:' _.~ y r.. r -,p....e,,. g.,,. _.,,, l .,......c....r. ....,.3 a. p.,,,,,, y.. p a ; a 74-**..... e.* e.* s*., erei, p., sj, '. 4. g. e .s p 6 ray 4 .f- ,g 3- ,g j,,. 9, g. r..*.e. (. s e... .. g..a... ppg = yy _.. g..
- 1 r
_..,. : _..,, s.. g,, r e '. :ca. ; e
- c".--* _....,** * : hy *... s e t.
g... .**r. a -60 . -u 'g" *.,. y ,."1.,
- i.....,...
c..,.,ry,<..._.,.. __.,s .r. .5 1 *
- f
- e sy.,. m s :.:.,- Tr s..gyw.'. s-e y e==,y.....
_.r,. y. e.is'9 % _*ro i !? *e s.o.'*-.... * *L* T*s' s =. ' e;. *sn ,ee ,,s, s y s s
- q.,tr or * *...-' w:
1 B t
- =
- r9
? *.- r * * * '
- m=
- *; *s
- * * *$~..p o o y 8. s tJ
/*:.ra s..s...
- o. ts
_e It ese..='...: 9: .c e a ? 79. . i ? t,- - * :- ; ts*%- > e
- i ; s. *. ?
- e e * --r
?- a a
- ".s
,. n,e e.,,,,s ; e t i e e i 4 e a i e i i i e i a e e I t i 4 1 6 1 t t 6 0 8 0 0 l l 1 8 I e i e 6 e i e i e I l i I I i l 1 9 6 i l i 4 i e e l e a e e 4 t t t t 4 i f 1 I f 1 i 6 I 1 e 6 I t 6 i i I i t i + 4 I I 4 s e 4 l l } t i t 1 4 4 { t I t I e i l i 1 I t i t t i 6 6 t a 4 1 4 6 i i I I i e i e i e t i 1 e I 6 l ( I i 1 8 e e e t 4 t i 1 1 t I i r a n
---n. .NEDD-Z414Z 1.h -] s.* ! E k b b I
- y. hyS w S
<: c s oi t..a N s.9-et A, w ( id 4l -@ S: b G $ t! 9,., 2 $ G e. 4 9 y w t s 2 N
- .=
= O.SS d ;$@@ $WDEElzia$$d$d@ m o ~ D -e* *- u 2 4.h.n..-, A ***C'%==,* h' 3
- 4 * *
- Y ':" *d* '
..r.N.=a C.i %.**. 'd O %4 (.- e 4. N.,,,,' Ik 3 2"ll k $ h 9 $ C Q:^,'4 4.0.:d! Qti 3 m.cs.o w sm \\+\\ 3 3 % %.g wV @sW fad: NCC UY11; 22 g, '\\ My % jf,g D!d :.gg m\\l \\l ! ~% Rw a .o..n - vu 'n l j g j %. s % e't=! w: M-Q!y,4:1 x,3 g ~. ca M m % % m.,, s,q 9 to ,y ) (ns m8' = .s, ae s% 3 ucc emma cu.s., 4 Bl.CM M d dQ v=1.7 ded*cmsc: NIAiac i =l 'Ik N
- 4%.N at
- dP c=. ncun anna..
i dl< :::: mw g 75 W T >a i '::i.2.m::, ~ M % m - ci m m -3
- O ': - : :
- c 4 us).v wn.-ucc twisc : =,
- ' 2 g
C O. d2t.0 IEc m 2. I m'.; M W! Ml NI.N dN N ollNI W cx, N o f rS21.7 Wd.Ud** kstl l 'ih D hh 2 L-,N wts m'e@m a + v h ceiN 4 4g ucancn. s.csna: i I:was n OmAIMQ OII.s. **l l r % e.6 mi in -.i y q w I P*3 4! 'Nl 4 9 N d. Q O N N4 a lM N M1 M i d I fj l o=>.v u,n.-en :mma ; ] I I I M, i 4 q je H y-. l 3 c o monmn.. E e=>.y u.us.n emma il-.l l J d% 4 I'g'loab QNtO:co$m 2 < = 4 n asa n nss a. a I'., b huldv da:na ll ' Q *' $ Gl g& * %, & ls Rim m C$ y .n nemu..4ns.uw a. e w anms.m nou l, o L E e.-j p-cJo c C1 al e!.~ % a.-;N a e%-R's su s aa c 2 e- _, m, N n, N M 3 N 9 l -l0 9 ~3lld C DO G C h (3M l 13.;.p;j q g g mj g':f d,j. g anm2.mmuesusuj j w anm 2. e nv.sa ns gg 4 4 gt;:c Qg 4 g m $ E.q q3i$ g Q.a m e.s g ei c acim e m i a=>nnmu uma ;i ~j 5 q e,g ggg >w e. *yb, y.y..L # #. v. \\o, y. uto O ~. g% ::,.ht
- C. ::
- h. -i e
5-26
P i I I at.uu-m i Table 5-16 D40FI2ATIVE StlF7H FDLFORMANCZ SC2AM DATA m i .a. c- .i v .t .s '<.m q: - c:. e> ! ;. p f e. t "= ' ' ' ' k' y w b I i5. l I. ;5. E,.i $ I b *,. d'! E d o.o .r I p,. .,. H :: : y,.:3 I. .y s. s5 .s ;T;. (; 94 y g',*, 2 E. E ad" 's; ai c! w. u. p. a st- =3
- a. :
i e. t s 6 !.C .*d
- h i.S Zs..,, -
- s-. '..* *.. 4. :. V.70.:. : s R. :.t
.L :;. ;- ... 0, h *. C '.> en r- ' ~..- 'v. - l L...n n, ;r. ::
- ::: s :. % ::: M :' * : ~.
L,. s. I iis0 b ..*1 r', a .s ::*:
- 2 a::. t.: 6.6 : -i : ;:1;y:,
. 4 f 4s 6.' 's ..e
- 9...
- a. -... s.
.. _.....--..~. L.a.%
- w~. 3..s v.
~-:s e=* .,; i t : ,c:- Jec :e?t..- J a6,..,<,ecry j;s :.., ,r ys.. ,c g ; ue t?? . i e :.e 1 : _<. o :, n, ro p rr r. *w : ? :e y r = = e. :.=, ~ y.,., e_ m,e t ud it 't e_'? :
- s* * :t s s'#
rw.**~r..?=r'*.. *:r : *rra V' N s : ~ 5* * :. ** =.. ee _. e e ur s: 4U :*.i" : = s. :.< et.....~. e,.r re er e re
- e gr. e ;
1 wt 1 *= y'fr- : = *w m r= n r.. _.. r a r, : eres =,.a = : *
- (
lre .e # 5., ~~...: o
- o
-u \\ l.* ? * ~1 iCr*.,* f %~,.*=* ta=*
- 9 :. *. f... **fi. t J.
s *:re,* for ** e * : *- o= _ery M,.. *yy.
- ue s
,or r s* :
- s..r=,re.. c r.
r-.s e.o ;str :p; gz. m u - :: < c %+e tj e on ;; = : t : .r e.. ;*'r, : <*.yr:,o-. .- :.~. c ' -" : ' $. i. **..H. ( S.: or
- l.: i.M
- :c-r - L.~ cs.
r: 5 ..--.e ,, < L -. u:. o - fo Jr.:.H _ M
- lw ter,-{on C=*. o a y:=.; Y :=*. ;;:
- Q-. : ; e
- ;;,,, es C d!,:,. :
/ I" Sce:. 9.=<*.ge c.:;; ;~ e.:.. so g-* s.$s *. .~,.. I T*:Cr,: ~y- }c :
- d a !) c." **.e.. e. ?. a **** y n.. Le=
=y
- .
- =:.*. y._:. *..,, _.y
- 1r d_!
^:: *: *
- t*
ser ,.'R r,er.r.-<r urs -r e. _* r u. : =.= m.~.== ** * " ~. -,. ,=:e t o = n s f"* %' ea !.. : io! s cY.p 'c s.a .c q... r ;S.? ;;s.., '. -.,;; a c ;.: e7
- 3..
~,f ( r s/: ' " *i ~1:Y Mr " ; ' C, _, or,,*.a. c.o_oa ;w ge.: : n**.ge.s..,og-5 ..n.: 5? 1 - 4
- f -_ e
.r. .<ee r - c ::s.T serer. e...,- .e... q .a ,e i rt 2 pe ?.. .,cy: .-e.r ..*.re....,sa n.o=. g. e.. 1.: n.. u ;r.
- s.,.D g.
2*se.*-r* .* : r :. _. r e:.... e.. a... g yr,. n.... e-e e. : s. a.. .y e $0 1' .*r:: : *: :., =a .*v - s,
- ,:. g e n.
s,a _ ~
- s....
r,
- r c *.. :.e r
.a r
- =?..e
.... s;..r; _ 2 ry s=2 g, r: s. s ya e:..... 1, f z : * * ?:- .*T'*rr'?.? m a. re? - :?:r :.:(. r... n e =: :..e. m :.,
- s..
.? c 3 p o. r s ~ _~. > o.s' .e e : e a... m. :.w s a s. o = rs ey e..*, : e., y y. = a,
- s..
.e rsas e: ~u e. 1.2r1.. p 4? 9 e..:. e.~.
- r' o - f*n.erey.res:. ss ro'(**ae r. r *:
f ? s.f f'e i~!: ~ * * '. ** *. :*
- T.:0 t ? ~~
- 1 ~
4--
- ( 4e...... n..-....,... c,' t'. :. r e. '.'" ' *f= * :~: L fr* * ?
n ,,..~..n..n.-,...... C. *F (2 ff * ! *t
- A*(, !
s*f, ** : : C ' :0?i'. f rvr.e r*f, c **..fs*. se e s -. :9.2 9 *. an.,3 & 'f =ee g J., .e e o, g o n t... _* * *. s.* P..** *
- y..,,,, nes i sr.
s o.n* qf e4 .y n, 9p - y-m .p., 6
- . 4 ;.eT e, e ?
?. = f y' ::C* o o* _.,g:: _*.r ee.g r s 9 : er,,,.., -. -,, - ;=:: g.
- es.c o
1 e,.. r e, o..= r.. -r s *** e.s w..= -e.**ea.e. ee _r P.ro. r..*-_'. LF.,e -s 4 =p r t _re nes**.* N.* N.er? .==. :oa :..r: g q.~ tr *.
- v f.' r r.: = o s a*. sor
.is' * " - ?.
- .e
":. r< & rrt ? ??? ??- :V - =
- r' !. :' s= %*
L.~ 1.= z try.se _sie w=~:' .2 = :~ :2.c *
- if f* e ne_ e r *
- _r Tre n,.e.g. 32, w a st* : :
.a -. 1 _.,r e e 12 -acee*,. rer *>'.* :-e = ~rds.e.; :i.~ N* T4.***e s o r '.. o _
- s r=.: res; tg~, r.e..e r_r u :
- sre,, : sa => e a e s
\\ if 'reet. rt.:s w *.*x ::.: - e e* r.
- e r. ' r e.; *ee
- o= aarr.a ss.s:.r, r
- c aea i
.of h *re*e nyr'!r* r**~ir*
- rmee
- ?
fre* c=- o =: '*; r,,rcst re,. - e.
- .o
~ 7's % e *e rt. r fit' s*f.3 2 * **."C"~' t ~t Le * *.C
- 4n;cie,c
,,e ca.ss -e-a. , _
- _ og de :
9e *r e
- 9 2.5. ? 13: S W :'\\ :
. es t a *C '. ~1 cs: Ihe.ar *15 r_5 :*: e-1r,..~ 4 -~m.
- 19 ;ies:*oJoee rs. i:4 :et. - y..g e. :wr;, :rm er s q.,... ;g:
.c...e g-
- ,,, a st e g j
g Sc *st*ct M SLt U
- o*:
- ?.s 6 :,: :< t e r. __ r :,,:,
- .n; m ::..
t no.e i i l 4 it <e s !,i * :? ts. ' :: .r*.i.c*ct.svec 15:
- e. :.s :: sc er: rti 23 *-
- em me t i
G 's e *r '. ! y G.: sto s= 1$ :a:.zmas a u o arc .c
- e,i:. se:,:
o- - r.*. c 1 P3 sed, ' f s: it: rid p e e :is ?.r:.s's? * * ' ' fe r v ,-r* ree pc : s .t.....oa grad w,e .p.g v;. stv :se ..a..:. e ir :re >:c, ,,,;.:3.,f:.ru: 3g. a,.6 4 3 : FC < res :63s* in ne ::: -.....s u..
- r. r m n '.. : -.~ ~.s s s.
.i ro me t P f, tec*e* des T.e EJ* *.Le S ' .. 5 :.:. t"',. s g:
- a e.-
..- - :.: -M: g 3 p. ..e .a i D ieee s=e*
- 57. i53 23
_a*q
- r.. *. :t
.:~6 s aa a 3 r.es 6fr s ee he ~3 se 22 s i a#3 1 i l 1 1 5-27 t l l t I I 1 I I
NTD0-24142 ,1,, h m. s.J, %d , I,g,j J' > I s. w-2v
- 4
'El!2 & $.r*'g AN A .lE.1EIbd.Cdh,194hu
- . ** n o
5 1 W i g = i "a i tsit,9i M :i8s M!$ M. M'di4JM t,I.m i GI M1 G $ '$1 $3!'C.' Ul ~?! 0&T7 E! Il-I U.'$ $ T; m:nimi m-t 4 ,Jj.a S N, -e, Pf V M' M *14 j4 N 5
- 2 c M '*' $l'9! N R M d.4 :NY'3 N' I 3' N 5
I 8 W W -i 3 !.b #@~ s,i.p<n sau, * - @ h k p,s j c a
- a e Q c 2
- s w s. s.5
~s s-s ~s ',\\w S N w 9,J 4 s3 in. i ;hti n? (ndas sac 3 't.12;; c '4 w e eo's.n rvn ii1 } \\1 N .A.ge 33 h l g oo's.n i uyc ! t i NN l id (:ss. m. = M 4' efl r,, ecbNMkkhM$$1k5 b $ M M w Ites e.:.;O:J 6l ed tri ce N t41 *< E u00 OulMv0 332e1 N d' N 0' l act av C.-1sC3 ONtMWC l:::b d E; hj Q Q Q, s.bE, s; k!% % Q i ].:. D R 6 b Wi::4 33:kn nrs n. I x . na w M eg; cfd es n,i 6lMi $j ; b tai W t=.' W d, e 5 4 1 g a-
- 1,,,
m :.1.W 'O5..o.,, ..e.v 3...-uos esime i =j %. I 3u wm l i N wj c: cl Mi tt 3 sec s3r.c ar:Ine I e a 2. .=>.r... .I. i -J, eai d4 98 4 C8 "y,1 ee,
- 7
- c,j '3. l -si.A C
s ,x oca m s n....e.:a i i,.e l hm m egsin ni
- n. na n m
m I 3 I i J .:n.an n :stma 03:4 ' **I I e i e I . i.e...:..n :mme L! ol / -l~ e was ate n,s. -i 2 .I l l l i e r i ec,.e 4. c..n esma.~i I, I i se.:. a:sn n.~n. i. l mi.e,e.i i e .n um... . s - * !, A l w: w m 3.cu n:=. Nl h CI h ol N dQ g gg%l CI4, h,
- a I
C Qt C ,,s %.d %g h Ai '.st,'c: s e : hi c '<s.,a: 9 Q> da w % !w i
- 3uem3.a3;ac 08'it3A
.4.. <$ e et' ise e V. '*.am i tai t,R 4 0 O i .N I ! w:inem3.cn 3:v.s =1.: ll i %w] w v. h,n ml ',N ,i W "aii ' .e4 g o *PL p l e.. ci d aj Q' Ci M o ,,.n' n'n c,'<.yi 1 +4'W -I wi
- c4 i
Q .1.m: W:3ud 'icIA n 1;vc d.j%i aq W 'Jaj Jm' ban % h ' dg,,'s 6 *> ' ' ' 'i ' i8 *
- e N
- == 'M 'O' 't* @.' '"* '*,'ll"* %"
W %,.
- * $ -f e
S-2S - ~~
i Nco-24142 ..o$3 g e !! !.: =; o1... e.. edv w:'d-m. r.o. g %. e si ei m r 'l e v.b.:: wd q l 'N %, 9 E U k.U. h *CI A',g.Y %, M M '."4 -" ' "* '.m:ee-,- 8' E O %I 98s* a -e.
- T
== -- g g 3 7 - s. t. w ". u ai e [.s, .E J ai,.: .h N .,3 a <. vi i i 4 l v..E.i E. ! "..as. w.E.Q,,,E.~.: W,,. i., El 2 l g g,. 3,, y. w Q,* .=a== s a $ f N,.ims mi - u .F. w'A t S' 9 ** * > * *- l.3
- r-;;
>8 4 -, 1 Y '.al 'c d g l
- 9l %d Cl. '
- 3. -
,s <, r
- d. *.il. '3 4:
4 . "'1 et el 'e J :'! t 5 Q ti t17 El iE:- t >I. R I ~ 8 E N . :i no,o iwI l sa ~' p.t.2 <.,. V q'- k.At~ s , :iy Y e. t.i,< b *h. c' u nc: m e; e (u,m t .. p,., 1 J
- s. s - -:.: :-
no adn n u U
- nets to,41 7
2 3'.~ 'N *'.s\\'**. *h M M w qIS h 'i'E Y M.y Ob.\\1',,7<t' d l % @ 4 - gh t (nom uc:3Atact : sti p s I* N ba\\ Mb@< no7 s dn kiWO E ,. % m N:.N ; 'N %,.x ' u w > %sa w >i
- s. x -
o, n Ml x -o N C*.4 Cih (:st.mj C, a g uoa tww>o cas.s. =.: 2 31 :. iji i y <-:l nl 1.~ ~il n 2 s UN! e Udik$d**lEb (M dO I D C- (* l d 0%( , N '= 'e! s 9 9 % g sonid v3cun 3s ssad :
- " 3 ', 9 c,.I % s.
i e hl.N!'kld M 5 iicidvud,z:a-ucc:xwuo I =l d d h Ml Yl 2 %d 't! Ny!!'t!Mt NI sin l A5 would una nrsind t au u NI Ni 'u N N.N hl 'c i .! E ci c c ! S. M-.s if ey ci :: c; a #;g :, el s c. ni - es .s. > :,;,! 3 - s m:
- 02) eT' W=..td- = n ss oi i
y ta00 3anss3Vd A*det"3.*.*H. h g,,g Nl Mi N} N N 3; ( g es]y1 N '11 4 g es e,.i. ic.ei.-N.'.s: e w w s =3 g'j -]- = a m w. 7'r i St 8 %g m i! N N:1l Ni n}} Ni =o s t:as,on dn ONIA!NG 333os ! a r e i N -' e q f N NI N i g cit
- b *I9 }/
Ci timi v u.r:d-en samo ! T o! Y M' l, w:.tl Sluo, 'C 3 m.C e 4 .uidvuon,sm e+i vi *i,- >.... 'i.w s s 3 .Q!:. y p. x.,cl,w ',,,. glm- - li.,e.g;li et e p-l.c t :tl qi i g o=> de uc.-a :mya : ou:d asnnnsa. i s -k UWie? Vd. lid i Q 7-.{ N>g '.se oi >4.m *3 ,Q l $ k .n J,,( I SI N %, S 4.,.* k ').g og-i, .i , af f q gi, nt Ml N st; *-: g ,, g n g y I g: q as da 3Hn 53Vd A*.4. s n:M: 6 g ti R wanins.muend H
- ol u i j el ci N.oj g o s,l, w cm; y, gj <. 3; n
u gq%g y A ci,.- A w.- w :YI^
- i ai -, %'#1 flwm; c c t, w
E g Yt 'sil ' 'I N Y
- 8 $0s 3univuldn11n011:8'Iss3A
-al tl hl %l '"eJ b s:.'el % i 'c Vi - 'O 'c!9.,(. N %) '% NY h 'w: D t's
- f k *1 h s
- I 's-l N W M%
(.ielivitivk3dit313 vs3 mr3 LI l, W j % 'tl.h k-VI % .o .'.91 %9: w 4 n c.l, e 'cl % e p a t
- ;,c. A et
- 't 48 og 'a o
q C h'4 q; 4 9l h *ci ': 4 - D' Ce ti Cl *w* A b g g g, s,,, ti. F, 'C'=.-s.e k C c (hstIDassud '*3ss3A !, q s-*g O sl O, l C,, w t q o s. ~ ~ s 9'% .s = 5-19
=. _ =- 4 I i 1 EED0-24142 Table 5-19 5-TEAR MAINIEMA20CE LITE (3UTFER MDDITICATION)PERFORMANC': SCRAN DATA i s s 1' s i a I.* i 3 -.'..i l e# / A.. A. ? 1. I. i eseg s.
- c.. eC:
<t : s - II.
- I I.
s !o . =... ... = =. s er .e.: s
- e. as 4r a
.it' I..4 C -<i . *!
- j3
!. u 4: F a-- IE? 3!r. e :S. c ': i H; -1 :lij !! E! !! II,ii..E 'hI I ;!' hE -1 1 r. e !!;s! ilf6-M. 4
- 2. w i
.4 .~ +.. m. 1 ( ......,-y..., .s ,....s t .n... ....x....... .: r r... .: -a ?.. m ,.4...-.,... ..,,,,.l .o.. e_.... *.- n,.. :.3 ......,- : :.. r.... ..,.r....... <......,-. s.r-1. ,.
- _ -,, m
...,._..,...c,.....,.. ..,.t. or_.. r...m i:~
- e, y s: ?.. ::,, a e
.is t,4.,.....k r . s og.=**_._ _..-.c 1.e c a
- "*. *
- e. - g:..n* e::t ee.-*i 31 -
w** .=. s..se at:.w.. >> "3. : r * *
- _,
,s e, v.* . * *?
- =.r. J *t"
- .f. ' !.:.,".. C * ?
-n Fit.., ogs r e 'h' 21. ? r,*, [* *.;,'t '
- i l
4 r**... c'er-Jff A.*. fe...*M i.ef .-49 =6 ig". 3.._.4 *,." J. L L p -o c.,g , c'.,,3:. 3 :. 4-i r",, *f e.. e, fr :. _u.. -$ t _,.,. *;#.8 * *.., f_. a rf., h.f,6 c., g j,,,, ~= ! * **
- 2 ** Fi= d;~5 - is
- Yt.*
,s.,"; %2*.i*. .>-. *.?.? ?*ir
- 2S
- ll.,;, + * * '.* *
- s t
--7.s -,- s e-, ..:'...=., a -:~ y m '.u. L'r ** se* ..r _.ri',:'i: :Y.*! a.?./ rb T *=..n:..e ? 'i'..i tt ?c ' orr. h :12 i ss L. .a : ssci 2 7 ?,,.s.., _**r r _<._:-- g, ' u. r y,:, _ <,. 3c c 3 4 re.,,-...,,..ty..a.a f ; _ ,. 3.jc;
- t to. e=
.. ::? T~; .-'. pas.*% T g. Met eX.:.g.. p y.; 4'.,4 2,s t! _, ~ &e t_.~ein s . ' ~,. .e.,.. f'~_sii * :
- s.e* *% --
e?. sss: '.: >... s. 4 1s.-^ t
- t.* -.a,. s as e n.y.*
31' *? e_-+.. = fr" 5~i.w * ? !:-~,~'c3 _~~~_ e e-a *y.._*. y:o:r;.h *2.:y
- .;se e.a., e, y -
_~b!* e~ c....!<r"*.1**L.v-a re V..:u-seee <s e .<...,,.4i s * '.' es ~~.t , r. o 3: =; ;.;=.'s s a l = e : se e,.-:e i:.. %,.g:, c e,.,, cr..; :. -en, s :< <r ' o s x <.
- 1: se
.'.4.s r.'*
- .'-:sa.r
.ese si.* -3 . r*. *
- t -f ' r_e**.-e r S.* * *.
.~"2"'. I :, (. tse f g"* e er,. spe p ;?- av.,, 9,,,- 4 % g,v e S. J 6e?*. i I
- f ' * * *. * *..** !.*
- s~si' 1 f. '.
48 *": .6 (*=..rt ?
- Je i r :: I/, t 2. i." "'*, % _. * =e ** <r t
a. 1 k
- * * *? *. ' *'=J:* f_T r* s'*S* 2 c * : *s** /g L.,"
s=4 T'.o
- o.** '.. cio see.If ??.*.*o*?? % ~$$' **:.n e"
n ef. i e i 4 i e e a a e t f 8 I e i e t e 4 t g e t e e e t 5 O I e i t e 4 f I e j I I I i 1 I 1 1 6 4 i e i a f I t l 4 t i 1 e I f j e i e 6 e i e t i i e a s I t t 3 s i e 1 4 0 e 4 ? 4 4 0 t J e 4 f i f a 4 t t i e g a i i I a e 0 t I e I e I e l I I e t i e e s i 6 e i l 8 i e i i a 1 i e i 1 e t 6 e e i 1 I t t I i 1 1 4 1 i 1 4 1 I I i s e 4 4 8 I i t l t i i 8 8 6 4 e 1 4 e I i f i H I i e 1 a 1 e i f I I e i e I l 8 i l l l l t i l 8 9 4 4 i e 6 t I i ? I 4 1 i e I e e o 6 6 i 1 6 6 i a 6 e 8 I e e e t I t e e l i 1 i t I i e l a i i e i e I I e I t t 0 t i t i I i 'I g i i e e e a e i 6 yy~ . - ~ - -. -.. ~. . - - - -.. a --. J.. - 2 I. L
- w.%
--+.---,--w e--m --.-qw.-ew 7 w-w---4-+- -w a w
- v'
IED0-24142 l t I 1 m w ~ 8< c -:
- 3 g
= e. < ..g o Sg m 2 .e I m eu 5 C 2 El I w k GW> E a ~ se e 8e k I u h r 9 2 I / 5a* u i. 5 8 E Ed EE i F m w: 511 .t y r I mien c Es"- a II 5 c -l t I I I I e' o e 1 a n e e e = e OBut3M61 31HMd18 ffVtf38 W W 5-31 4-.amw...,_,_....,,_ s.,
1 i i i I .i i ?- I e h P lL f - r I~ [. i t r. w f, 2 M (CE COMPANY PROPRIETARY) y p. i a y ] n F i-t I l-l i 4 I (. l r 7, t I k l. Figure 5-2. Buffer Schematic (CE Company Proprietary) 9 I' e ., f. -a i t
s-hwm a e* , e*We e 4 NEDO-24142 e l t 45.l. II .s t I eeO IN D S .et, g Mu ] d I s 1
- 81. j 4
s t1 1 s-L 4 Ih' S ,s. e \\ 8 - n.\\ b E n ISh 5 l }} = 9' !3 u. e a / eg-egg e El
- r. L i
he.'- R J. c is e 4 i i i i i a i. = n 3 3 e l m s.n amou sm assee l a ' [ *' g 5-33. t ,,g_ aan + e -wwAE- '.'A* s p .. z
x A NEDO-24142 i 6.... u i n I g 5/N 7084 RI7Jir.E N 3 s l Emme=_- i i l g- -- _ _ _ ~ i n= W. : BUCKLE'; FINGERS k '- b# I AT KIDSFAN, POST-INOP 3C7 FIR,*EST l 'i Itgure 5-1.. Buc -d Sp. 4 (S/N 70%) ]i, l 9 t l i N 'lf'l,-{e'g's 1]'s, Pfi ' i 0: ~ d h._, t NOTE.AR.CED 3(SE. * ? TT-UCT ECFFER TEST. u l Figut 5-5. Da.aasei Inner Filter Assembly 1 5-u i l _ ' ~. f ? ' .L. - a p Q ,1 p a g* p ..., ~. _.
- }}