ML20078A073
| ML20078A073 | |
| Person / Time | |
|---|---|
| Site: | Shoreham File:Long Island Lighting Company icon.png |
| Issue date: | 06/25/1983 |
| From: | Lyons W R.SCAN CORP. |
| To: | |
| Shared Package | |
| ML20078A057 | List: |
| References | |
| NUDOCS 8309220219 | |
| Download: ML20078A073 (108) | |
Text
{{#Wiki_filter:-. FINAL REPORT kO MON 0 STATIC AC0USTIC SOUNDER MEASUREMENTS TO ASSESS THE REPRESENTATIVENESS OF LILCO'S METEOROLOGICAL MONITORING Prepared for LONG ISLAND LIGHTING COMPANY Hicksville, LI, New York 11801 ( 4 I l l BY WALTER A. LYONS, Ph.D., CCM R* SCAN Corporation 511 Eleventh Avenue South Minneapolis, MN 55415 25 June 1983 l Dohdo!$8gjj2 k PDR R SCAN cc._ ~ ,,............._.-_.,...__-..-..,,.-.-,..__......._,,,,_._.-._-.,.,_-....-_m_,--_._-.-..
..:..=.-:.-..____.--.. b TABLE OF CONTENTS h PAGE 1. INTRODUCTION 1.1 B ac k g r o u n d........................................... 1-l ' 1.2 Acoustic Sounding of the Planetary Boundary Layer.... 1-2 1.3 Overall Goals........................................ 1-3 2. EXPERIMENTAL DESIGN 2.1 Statement of Tasks................................... 2-1 2.2 Acoustic Sounders.................................... 2-3 2.3 Supplierental Meteorological Data Acquisition......... 2-7 3. DATA ACQUISITION AND PREPARATION 3.1 Data Assembly........................................ 3-1 3.2 LILC0 Tower 0ata........................'............. 3-1 3.3 WSI Data Base........................................ 3-2 3.4 Facsimile and Satellite Data......................... 3-6 3.5 Other Data Resources................................. 3-6 3.6 Data Logging......................................... J-16 4. METEOROLOGICAL CHARACTERIZATIONS DURING THE FIELD PROGRAM ( 4.1 General Syr, optic and Climatographic Considerations.. 4-1 4.2 Site Climatography.................................. 4-3 4.3 Onshore Flow Periods................................ 4-10 4.4 Water Temperatures.................................. 4-21 5. ACOUSTIC SOUNDER ANALYSES 5.1 General Characteristics............................. 5-1 5.2 Categoriza tion and An alys is......................... 5-11 5.3 Similarity.......................................... 5-14 6.
SUMMARY
AND CONCLUSIONS.................................. 6-1 7. ACKN0WLEDGEMENTS......................................... 7-1 8. REFERENCES............................................... 8-1 APPENDICES A. SAMPLE WSI OUTPUT B. SATELLITE DERIVED SEA SURFACE TEMPERATURES (O R SCAN __~
1. INTRODUCTION D
1.1 Background
Routine meteorological monitoring (USNRC, 1980) used for the preparation of Safety Analysis Reports and ongoing assessments of routine releases from operating nuclear power reactors needs to be both properly quality assured (USNRC, 1981) and truly representative of the site. In addition, these primary tower measurements of wind and thermal stability are-to be used as input to emergency response planning (ERP) Class A models. Adequate backup wind data at the 10 meter level is also required (USNRC/ FEMA, 1980). A 400 ft instrumented tower has been operated by LILC0 for almost a decade at a site about one mile west of the Shoreham One Nuclear Generating Station. While these data have been quality assured to be in conformance with 10CFR50, App. B, ,0
- l. h there has recently evolved some question as to the representativeness of the lower levels (33 ft and 150 ft) of the tower's data, with regards to the wind flow and turbulence in the immediate environs of the containn. ant structure.
The major reasons for the possible lack of representativeness of the tower's lower levels are (a) the vegetation surrounding the clearing in which the tower was constructed and (b) distortion of the wind which the tower was located. Data taken at the highest level are less likely to be affected by these interferen-ces. Though these local site flow irregularities are expected often to be of second order, it is deemed prudent to analyze the boundary layer characteristics at the primary tower with respect to those occurring within the immediate vici-nity of the plant, especially during periods of onshore flow. ( 1-1 R SCAN COH r ORA TION 3
1.2 Acoustic Sounding of the Planetary Boundary Layer b Acoustic sounding of the atmospheric PBL was first seriously explored in 1968, with commercial monostatic sounders becoming available by 1972. In the subsequent decade over 300 such systems have been brought into use worldwide (Gaynor, 1982). Sounders operating in the vertical monostatic mode produce a signal pro-portional to the vertical profile of the temperature structure function (C )* T This parameter is determined by several factors, including the temperature lapse rate of the atmosphere as well as the characteristics of small scale turbulence. Facsimile time / height displays, though producing a qualitative record requiring manual, subjective interpretation, have been found to be valuable for inferring the complex structures of the PBL, including such phenomena as the height of the mixed layer, thermal plumes associated with convective mixing, sea breeze fronts and inversions, elevated inversion surfaces and associated wave motions, etc. Sounders have a useful operating range from 500 to 1,000 meters and can provide valuable insights into the stability characteristics of the lower PBL, that part most actively involved in the dispersion of emissions from near-ground releases. Sea and lake breezes are especially well monitored by acoustic sounders (Bennett and List, 1977). Monostatic vertically pointing sounders have been used to produce climatologies of mixing depths at coastal sites (Aggarwal et al., 1980; Rizzo and Lyons, 1977). Since the acoustic return as displayed on a facsimile chart essentially integra-tes a number of complex, interconnected atmospheric parameters, it is a reaso-nable assumption that if the traces from two sounders produce essentially iden-tical results, that under most circumstances, the characteristics of the lower PBL at both locations are also quite similar with respect to the parameters important to nuclear plant diffusion evaluations. 1-2 R SCAN ~, _ m
I Thus e sounder could therefore be used to validate the representativeness of the measurements being monitored by the primary Shoreham tower by comparison with sounder data located near the plant containment structure. 1.3 Overall Goals It was proposed to use two monostatic acoustic sounders, one at the existing pri-mary tower and the other at the plant site, to study the representativeness of the lower two levels of the primary tower. The sounders were installed (a) at the base of the existing 400 ft tower and (b) near the Reactor building at the plant site. They were run concurrently to ascertain, from the facsimile displays of boundary layer temperature structure function, if low level atmospheric characteristics are substantially the same at both locations. All types of mesoscale meteorological regimes were monitored, but primary analysis () emphasis was placed on onshore flow conditions. 1-3 R SCAN A
i 2. EXPERIMENTAL DESIGN 2.1 Statement of Tasks R* SCAN Corporation (formerly Meteorological Applications, Incorporated) was contracted to design and conduct a field data gathering program at the Shoreham site from about 15 J:aly to 22 September 1982. Data were to be analyzed to address the issues raised above. Included among the tasks were the following items: 2.1.1. Two Aerovironment Model 300 monostatic sounders were to be operated for about two months. The data were to be recorded on facsimile strip charts and forwarded to R* SCAN on a weekly basis. The two recorders were tested side-by-side at the beginning of the program to assure compatibility. Finanders were installed on both acoustic p enclosures to eliminate as much environmental noise as possible by reducing side lobe interference. 2.1.2 The monostatic sounder traces were to be analyzed as to TIBL height, and qualitative turbulence characteristics for selected periods, using techniques employed on Lake Michigan (Rizzo and Lyons,1977) and Chesapeake Bay (Rodney, Lyons, and Calby, 1980). 2.1.3 Complete supporting meteorological data were to be archived via real time climatology (RTC) to allow for comprehensive analysis of the sounder / tower data. These data included: GOES high-resolution satellite data. Hourly plotted radar sumaries. NAFAX surface and upper charts. Plotted radiosondes form nearby NWS stations. ) 2-1 v R SCAN ,n
_. _ _. _.. ~. _ _ Lists of hourly reports from nearby NWS, Coast Guard, O and FAA stations. Ship buoy, and satellite water temperature for surrounding waters, etc. 2.1.4 To the extent practical, there was to be data exchanges'with Brookhaven National Lab which conducted its own limited sumer field program during this period (SethuRaman, personal comunication). This included BNL 290 ft tower data, Tiana Beach tower data, Brookhaven Airport anemometer strip charts, and a monostatic sounder at BNL. Supporting information of this type can be valuable in case studies determining the true characteristics of mesoscale flows which are not always evident from single site measurements. 2.1.5 Limited case studies were to be performed for a variety of meso-synoptic conditions, concentrating on sound / land breezes. The data from the sounders, the existing primary 400 f t tower and the supporting ~ supplemental data were to be carefully intercompared to ascertain the representativeness of the measurements made at the various levels. 2.1.6 The mixing heights and mesoscale PBL characterizations at the two l locations were to be detailed and sumarized. Specifically, the following questions were to be addressed: i i. Are the measurements being made at the 150 ft.evel on the existing primary 400 ft tower representative of turbulence conditions at the same level near the containment structure, expecially during periods of onshore flow during sound breezes, TIBL and plume trapping situations? l ii. What are the frequences of the various Coastal Mesoscale l Regimes occurring at this site during the duration of the i field program? l 2-2 R SCAN g, ra ,g*
iii. What are the general characteristics of the P3L, including [s\\ such phenomena as TIBLs and Sound Breezes to the extent that Q the data assembled can reveal? 2.2 Acoustic Sounders Two conventional Aerovironment monostatic vertically-pointing acoustic sounders (Model 300) were rented. The equipment was nominally scheduled for an opera-tional pe-iod between 15 July and 13 September 1982. The first unit [ Figure 2-1] was installed on plant property, approximately 800 ft (250 m) southwest of the con tainment. This location is about 2250 ft (700 m) inland and at an ele-vation of approximately 45 feet above mean water level. It was located next to a temporary building adjacent to a pipe fitting shop. Occassional noise bursts from that facility were anticipated, but not expected to interfere with the tra-ces in other than a cosmetic way. This unit began operation on 16 July 1982, h) and continued through 24 September 1982. This site was selected from the %J several possible because:
- 1) nearby shelter was available for the recorder and electronics, 2) local vehicular traffic noise was comparatively low, 3) it was at an elevation and distance inland more comparable to the existing 400 ft pri-mary tower than most construction area locations, and 4) it was representative of the region into which a plume would disperse during onshore flow.
The second sounder was installed on the Shoreham west meteorological tower grounds, in the east side of the clearing created for this facility (Figure 2-2). The site is acoustically quiet by comparison to the plant. Recorders and electronics were located in the electronics shed at the tower base. Data taking began on 15 July 1982 and continued through 24 September 1982. 2-3 R SCAN
. _ _ _ -... _ _ _ _ _ _ ~. i \\ i l ^ ~h [' y. l I L 'Et- . m ..z., a _.c - j .L -
- fd
~. ~ .._i *' 6(ll 1 ), m'l.wW .. 9, 12 X ' l Y - 5 - A.',41 ,. v,;, ' ? ~.P ~' - k'. _ .. T.;,~'. _. : l Figure 2-1. Enclosure for the monostatic acoustic sounder located southwest of the containment structure at the Shoreham Nuclear Generating Station. . v. mww . i' .i* 'N '-hiI, o.ggg..pe'- i
- c. ;.W. "S @E'fd s
I e + l Figure 2.2. Enclosure for the monostatic acoustic sounder located ad.jacent to the Shoreham West meteorological tower. I l ^ l R SCAN. u........ -
a l l .~ > t _..4' s, g,1 {- l 6 .i
- f
,f*
- ,+f
~ s g ;-- m..,- Q. ~.. ,.y s l . -;) I I l Figure 2-3. Facsimile recorder used for each of the two monostatic acoustic sounders. l li e l I 1 l l 2-5 R SCAN
~ Data from both sounders were recorded in conventional facsimile format (Figure h 2-3). The chart speed of 1.20"/hr (nominal) produces a 24-hour trace approxima-tely 28.8" in length. FrequenttimehacksweremadebyLILCOpersonnel. No serious time errors were noted. Both systems were tested before installation by the manufacturer (Aerovironment) to assure that nearly identical traces were produced by both when operated under identical conditions. Using a common antenna and enclosure, both sets of electronics and recorders were operated at alternating 15 minute intervals under relatively constant atmospheric con-ditions. Both systems produced traces that were substantially similar. Thus, barring changes in system calibration or adjustments, differences in the appearance of the traces from the two sounders should imply differences in atmospheric structure. The maximum range for both systems was set at 500m. The characteristics of the systems, which were maintained throughout the observation program are listed in Table 2-1). TABLE 2-1 1 AC0USTIC SOUNDER OPERATING CHARACTERISTICS Maximurn Range 500 meters Sensitivity 9.0 l Pulse Width 200 msecs Band Width Wide The traces for each system were collected every week to 10 days and sent by Express Mail to R* SCAN for initial inspection and Q/A, in order to detect any operating problems. The traces were then checked and cut into 24 hour segments [0000-2359Z]. These have since been photo-reduced for routine use to minimize smudging of the sensitive inprint on the original traces. 2-6 R SCAN m ......m~
2.3 Supplemental Meteorological Data Acquisition b In order to properly interpret the sounder traces with respect to their meteoro-logical content, considerable supplemental information was deemed highly useful. All data from the LILC0 400 f t tower, recently refurbished, were received as original strip chargs. This necessitated hand reduction of the charts by R* SCAN staff. In order to answer the broader questions concerning the nature of the CMRs observed during the field program, other supplemental meteorological data were collected. At the R* SCAN Operations Center in Minneapolis, NAFAX and DIFAX charts were collected in order to provide an overview of general synoptic con-ditions affecting this site. When possible, G0ES visible and infrared images showing Long Island were acquired. All routine surface, marine and upper air data transmitted over the NWS communications circuits was automatically archived on disk using the WSI Computerized Weather Data System in Bedford, MA. These data, arranged according to a predetermined format, were transferred daily to R* SCAN via a 1200 baud dial-up communications line, and accessed with a TI280 printer. Data transmission routinely took 25-35 minutes per day. In addition to the real-time data acquisition activities, arrangements were made to receive data taken by Brookhaven National Lab at several sites in Long Island during the sumer. These are described below. The relationship of the various data gathering points in the general vicinity of the Shoreham plant are shown in Figure 2-4. This photograph is a Landsat REV high resolution view of the area of eastern Long Island surrounding the plant. Brookhaven National Laboratory (BNL) is located approximately 6 miles (10 km) b 2-7 R SCAN 9 .,.,-~_e,.,, ., ---,,.., -., +,,,
.... - ~ - - - -.. - e \\ . t '...f 7 i e - g.... -i ,4 . n.;
- y
. v. \\. t. ' Q* s y.. i '
- s. r
- $,...f, :g
- /. '?
..s Y \\ : '~f e l ' ~ ' . g,.,_ 4 . w 3, 2~ 3 7-- 7
- ik*%
+ e. t .I ?. ',. ', ,.} ~'
- 4,un 9....
- .)
t y N. ,..t. + ui,.W hf ./ 4 'y "a s
- ' ~-
,,f 3 +9 y r l .x I Figure 2-4. Landsat, RBV high resolution image of project area, 14 April 1982. Clearly visible on north shore is the plant construction site. To its south, the accelerator at BNL can be seen, as can the runways of the Brookhaven Airport, further to the south. l l' l l l 2-8 R SCAN I g a 4 .\\'
- \\
i L l -. ~.. -..
m ] v 3 1 __j g l \\ LONG l ISLAND SOUND s.-. [ / I$ I. nee N ~ 5k ,N,w ~, M..,t,' s,%.' Q g.,s;/Q W ~.o e -A.b. 'q . l '~ y =- ,p_ . s\\. s y% s* f(n 4 %. \\. c2 le 4 - 3,hyg,,. \\ N;- t,g. MVL, jg.g,*. 9 s 4 /(~ii::4 t. 'p 4 , 'o 1 3 t .. y. g g ,f o r ,. ~t - jy
- t. -
.= y ws- % .,rl s~ een "*' */ s$ f .=E 'g" [ =m .a= / '. ~ _..I ', j. <n.' - - 1. (, ,t.. .k., _. ::L 3 .-> sp =. =.. s y\\p., r-7 V* s 'y T q-T M /l1 i f &Q ' ' " ~ - - = Q- + &, 3 N '>l,.0c /.g g, y U_ R. ~ a T to- ,3 i 3( j t yi.m - f ..c .M.,. m t.~. -(. y,- 1 7 y . s... 1: x .e C%[.i.. "., f. ), al-bhtf f~. < %1Ik $ 3[~}e,j;QW g{fS;p.O,Eib g;t.l .. T ,, ~ ~ g' d "" a !h. d" hN e}-r w$.,Rs M *p.- / s , ;sav e 4 n*ONICM l J &
- W,9
.!f**])'N,,-=~, i /I IN \\ ~ '~ ji } 13 \\1, ATLANTIC OCEAN I i . J pr -y t JJ ) ) w >" s ~---- ~ g.,,~.~ x.. l Figure 2-5. Standard highway map of the general project area. 2-9 R SCAN . ~ M
due south of the plant. The Broo.khaven Airport, where an anemometer was main-tained by BNL, is located about 10-mMes (16 km) due south of the plant, closer to the south shore. BNL also operated an instrumented tower at Tiana Beach, on the south shore itself, to the southeast of the study area. The FAA is charged with continuous monitoring of hourly and special weather conditions at Islip's MacArthur Airport (ISP), about 16 miles (26 km) southwest of Shoreham. These observations were acquired, along with numerous others, through the WSI data service. Long Island Sound is approximately 18 miles (29 km) wide at Shoreham. A section of a standard highway map is also shown (Figure 2-5) to assist in the geopolitical orientation of the reader. lO l l r 2-10 \\ R SCAN
SUPPLEMENTAL DATA ACQUISITION AND PREPARATION O .1 3 Data Assembly ~ A substantial amount of meteorological information was acquired for this program for the period 15 July - 22 September, 1982. This encompassed a large sample of the sumer and early f all mesoscale weather regimes to be expected at the site. The data are described below, along with a catalog of available information with qualitative estimates of the utility of these products in meeting project goals. 3.2 LILC0 Tower Data All data collected on the refurbished 400 ft LILC0 tower at Shoreham West were collected and forwarded to R* SCAN. Included were strip charts with the following parameters: 33 ft temperature Ow, precipitation 33-150 ft temperature lapse rate 33-400 ft temperature lapse rate 33 ft wind speed, direction, sigma theta 150 ft wind speed, direction, sigma theta 400 wind speed, direction l The data were reduced at hourly intervals and (except for the precipitation) represent 15 minute averages ending on the hour. Thus, the data for 0500Z represents a quarter hour average from 0445Z to 0500Z. Greenwich time [Z-Time) is being utilized rather than Eastern Standard in order to more easily interface with standard offsite weather data s1urces. Each data " day" in fact is defined l as extending from 0000Z to 2359Z. This + hat the analysis day begins at l 8:00 p.m., EST. This was chosen because local dayt... m cale circulations 3-1 R SCAN l I
have generally spent their course by this hour, and the nocturnal inversion is q) just beginning to become established. It is perhaps the best compromise in attempting to specify discrete occurrence intervals for CMR phenomena. The data capture rate for the various parameters on a daily basis during the project (16 July - 20 September, 1982, inclusive) was tabulated. A total of eleven parameters were recorded and archived from the tower site. This resulted in a potential 17,688 total parameter-hours for which 16,783 were successfully acquired, for an overall data capture rate of 94.9%. 3.3 WSI Data Base In order to properly interpret the sounder traces in the context of the prevailing CMR, it is necessary to have as much data as practicable from the surrounding 100 miles or so, as well as nearby upper air, buoy, ship and radar reports. To V obtain these data after the fact through sources such as the National Climatic Center would be (1) extremely expensive, and (2) take months of time. Furthermore, the data would then be in raw form, on hard copy and require extensive sorting and handling before being ready for input into the analysis process. Alternately, the same data acquired on CCT would probably not be available for many months (if available at all) and would still require substan-tial post processing. Thus, in order to acquire the needed regional weather information, which is transmitted over a variety of teletype circuits, it became obvious that the most effective approach was to employ a comercial interactive weather data base. All weather teletype circuits are read by a bank of DEC PDP-11/34 computers in Bedford, MA. 3-2 R SCAN is un .\\' ~ _ _ _ _, _.. _..
At the request of R$5CAN, all data of interest were accumulated offline via a comand program and stored on a reserved portion of 30MBy hard disks. These were then accessed, in twelve hour blocks as described, generally on a daily basis, via a TI820 printer at 1200 baud at the R* SCAN Operations Center in Minneapolis. The data were also archived for up to a week's time. They could also have been transferred to CCT for later use, if requested. The data were formatted to be of maximum use to the project. A special map projection, showing Leag Island and surrounding areas, was created. It is shown, along with the larger region, in Figure 3-1. The 3 letter codes are standard FAA weather station identifiers. The 3 digit numbers in the Atlantic Ocean are the new buoys established by the National Data Buoy Office of NOAA. These report measurements of conditions, including sea temperature, on an hourly basis. Samples of the daily data collected through the data base are included in Appendix A. The data were obtained from 13 July to 20 September 1982. The data collected included: U 24 hour chronological listings of raw aviation TTY reports for 21 regional stations. 24 hour chronological listings for the NDB0 buoys near Long Island. all Coast Guard, Light Ship, and marine reports within the region bounded by 40*-46*N and 60*-74*W. upper air reports (raw data and plotted SKEWT diagrams) for Atlantic City, New Jersey and Chatham, Massachusetts. plots of 850 mb and 700 mb observations over the eastern United States. plots of hourly surface data (temperature, weather, and wind) around Long Island every three hours. plots of MOR (manually digitized radar) reports from the greater New York area, every three hours (see Figure 3-2 for a copy of the MDR grid from the WSR-57 radar in New York City. 3-3 R SCAN .s
SYR RE ALP !................... BAF........... UCA I I 80L ITH I WL POV ELM BGM....... " DIR \\. 96 \\. MSV 14Al......... GON \\. ..../ AVF \\. IPN \\ .... B(R......./ IPT 7TR ./ \\..... \\....../ .../ \\. / .../ / TD \\. / .............../..../ I 194 / LGA.............../ / I / / \\..../ AK I ER / NYC FRG ISP ... FOL....... \\ / .\\ ........./ \\ /. . \\... JK.......... / RDG \\ \\ TTN I IGi YORK CITY AREA CtY WII 1 442 STATION NAE: PNE IEL I 9PM (027) fri LMS PHL istl / 3-0CT-82 (E l 4 Set H H MitH Hit HfMMGM4 ($T lE/.TER MAP eies***s eteHuwenseeeneH YE lE6 YRO YDB/ CAR LII\\ ' /\\ itL a YOW Yli YSC./\\/ /\\ 6B' .................../ '/\\/\\ / . M55 PE: 1 /'\\/\\ 90R../ ./ /\\ BTV 982 /\\/'\\/\\ / ./ SLK t/ /\\/\\ ( IWN'/\\ ALL../ ./ /\\/\\/\\ ' /\\ f9V //\\/\\/'\\ ./ YGE\\./ /\\/\\/\\ 8 /\\ / /\\/\\ 8 ./ VN VTR*::::::: ART /\\/\\/\\ ' /\\ / /\\/\\/\\' IMI/ ....!!:::::::::::/ /\\/\\ RL'T LE) /\\ LCI' PWM/ FL' /\\ ' /\\ './
- /
\\ /\\ ( CON \\ /
- '""\\::::::::/ RME
'/\\ ' PSM 1AG RGC SYR LEA ' /\\ ' fET ' v &F AtB '... EEN......I' 445 / AYE BV() ITH PSF BEL B05 ' CEF 0Fm Cniu ELM EM . BAF....... NZW 'i BDL ' \\ \\.../' MSV POV ' WD ' PVD EliB (. SW DIR ' /\\ Fft,HfA IPT AVP /\\. IPN BDR 00N BID MVY ACK 7TB./ TEB LGA. ISP 443 PSB ( 100 EE.... FOL / ' JK ABE\\ RM TTN ./ 442 A00 Cry NIrr EL ' MLi LM5 PE lfil' ..................... Pit ) .. NGR ILG / '\\ MTN .\\. ACY fRB/\\.. BW1 '\\ MlV ' 444 FPE' DOV '/ IAD DCA \\. \\ \\ m e e ygg ifVG
- \\.
SPY / \\ 184' \\..../ ) ) WAL RIC \\. 'l pghg Figure 3-1 F N00 ORr .................p EC6 e FAST C(W.T e RWI \\ 8 SLF6 ACE AND 8 \\ 0 BUDY W 8 / 9 STATION MAE:8 OSB \\ HAT 8 8 Elsi e 9PM (02Z) 8 3-4 ira / 411 e a IM/" 4 3-ET-82 8 / e a
y } .......k....., "m vg Os g O k v 4 0 N 4 z v 4 k 4 s C + C z o N N q / O 4 p /'G r, z n c V i k m k 4 n 2 + t o 'l( f 4,
- 4 4
4 d "o 5 z 0
- t
- 4 O
4 N g v 4 B i O +z 'O % l[.- / m J N W-4 L k o V V p: o 9 0 O 4 A (a g [; O N / g o
- 4 4
4 4,* 4 9 44 s A N 4 / o 4 O O 'N g m O z O 4 A 9 z, 4 O 4 n 4 S y O,,. o 7 p lg [ r ) O 4. /Og 7 6' +, i / n Sh l. ,:.)*% ^ i,., /'. l{} Figure 3-2. MDR (manually digitized radar) coverage of the area of interest, based in New York City WSR-57 Radar. Shoreham is contained in cell "K0". Similar coverage can be obtained from the Atlantic City, NJ and Chatham, MA radars. These are all combined into the WSI hourly digital radar sunrnaries. 3-5 R SCAN .1* \\ L e
copies of NWS computerized'-forecast products including regional trajec-tories, LFM model output and MOS statistics. 3.4 Facsimile and Satellite Data In order to be able to quickly determine the overall synoptic environment in which the sounder traces were being taker, and also to better understand any superimposed mesoscale perturbations, it was necessary to obtain copies of the standard synoptic maps transmitt'ed over NAFAX and DIFAX circuits. Since the charts are large (typically 30" x 48"), it was necessary to photo-reduce them to include them in the DDF folders. A daily acquisition and reduction schedule was maintained for all needed maps. Table 3-1 shows those maps which were routinely acquired. Figures 3-3 through 3-8 are sample maps. Arrangements were made to acquire G0ES satellite images over the area of interst. Since R* SCAN circuits were only receiving midwest sectors, and a spe-cial data line to NESS in Washington would have been costly, outside sources were requested to forwarded as many GOES images as possible. The result was at least a few pictures for most days of the project. Table 3-2 is a compilation of the WSI, facsimile and G0ES satellite images available in each DDF for the project. Satellite images covering the project area totaled 238. Facsimile charts acquired, reduced and incorporated into the i DDFs averaged 42 per day, for a total of 2,948. 3.5 Other Data Resources Several additional sources of data were investigated. BNL kindly consented to provide copies of their routinely acquired meteorological data taken during the 3-6 a R SCAN g 84 .)* 8 *\\
LILCO/SHOREHAM Dato n => ,1982 Day._Exp.# NAFAX/DIFAX PRODUCTS LOG l + N/D PRODUCT R O X'
- N/D PRODUCT ROX
= .c y . 1 MQQB/01 0.. 00Z sFC ANAL e 35 /018s9 1335Z PADAR 2'N009/0018 01Z WK OEPICTIONe 36 /0152 13Z WK OEPICTION e 3 001 7~5515T HEDAR a 37 NOB 3/0164 1435Z RADER e ~ 4 N011/D019 0135Z RADAR 38~ 4895 " "-- ~ !~... L-5 N_of2/0 002 700M8 ANAL. 39 /airz i33x vAnaw 45!iD7DT79 15I 5FG ANAL
- 00Z 'BIOMB ANALe 40 i
N013/0054 0231Z#ADAsiY '1635IREDAU* ~ 4 9 sette#o ag e M E E ssul W m L 43 wea T a r lbT023/55E3- 03Z'Ift KNAL W N09Ti752TF 1735Z'VADER 11 /D156 0335Z RADAR 45 8E50 JzzJ41MEE- -~~ - " - ' 12 NO25/D050 0435Z RADAR
- 46 N105/0279 luz srC ENALs
" " ~ ~~ ~ 13 'MHD46 N 47 N106 12Z WIND!~EL6 Pie 14 N026 00Z WINDS AL0fTo 45 /D279 1B)fI RADA# e 15 'm028 tearssteBIEis 49 N107 19Z UK 5tPTCTIONe ., 16 NO33/0051 0535Z AdDAR 50- N105/D265 1935Z RADAR /W 51 N114/D234 2035Z *ADAR e NO35/0059 0635Z PADAR e 5Z NTT1)7DZuz 2135I PADAR 53 N120/D259 21Z 5FC ANAL e 1, y ' N041/00 06Z SFC ANAle 20 /9055 0735Z RADAR 54 4 h/0360 = m - ~T --- 21 =fS055. 072 W'_ -
- - ^
55i N124/D261 22)37 #ADAD
- 22 N050/0099 0535Z RADARt 56 N002/0009 2335Z RADAS 23 NO56/0110 0935Z #ADAR ST N60776DIT MLK TEMPS e 24'NDE7/0118 09Z SFC ANAL.
MISC / NOTES 25 wo60/Our tede 26 N062/D130 1035Z RADAR e 27 N06B/012B 1135Z 'ADAR 28 N074/0143 MINIMUM TEMPS e ~ 19~ /D140 1235Z RADAR
- 30 N075/0146 122 SFC ANALo 31 N079/D 700 MB ANAle
~ ' 32'4050/D 550 MB ANALe 3)~ N5B1/0167 24 HR PRECIPe '34 NOB &/0235 6; Z t O fu003 (MMT 511 Deventh Ave South hENNEAPOUS. MN 55415 (612) 333 1424 y oE........... ES<<>. <_, ...m,1..... <m,.<.>,oo.usescAy X-XEROXED.YES<1) 3-7
N, . q 3. .,.s_y\\ v.. .-(.o.> . v
- g...y
.1.... . 9.5g.O.- 8 M .g 4,1 ~ ...s-t r e,, ~, - y q. . +s. ..t,= c 1 = 'c n .;.c t_ 5 = i ,,qvg_ w1 s \\ ,e a g.; e, %g g _ my..... w m m mi ,so.,". ( g ---[ 8 5 i \\;,, y m a. % % f...- e = 4 = = = ,,e. w wq 'y 1 =, m lN 4 . H."... = t-g, .s r. i.'t 1 s ~- .s y
- . ix..m
,,i,.. i.. v. . m .... n....,,, - s- .......,.,..g,, ,,, V s 1 l g9 \\isa' s t f.e y1 so4Y i9n a._m.--osasz. stp 23. 1982 RADAf,S p Y e i Figure 3-3 ) k 1 3-8 ll 1 1 I l
l r-p 4 Q. ,s sn. .n,t.!- nc e , s.. a ,ce.. c,a llpi Q - aw ,-4 ,f.",, l.
- i id.' O,.
i-f! t I'l p{- = e % - e_ , f 'l *
- et Et i k,5 ~ m,rrt n
7-
- p(*i!
5. M., ,g N. - f,h g li
- =*
- _ p!
/- o o } } g o , cN e5 Ew g. s- .e.i.gg,... =. s o o o o o
- T]g i l
I l' i, ,.,-o . o.
- =
lg 5** o ey a *o d~-a n"-A i .o. Y( ,Rj1=:gsc= QI&
- a 1
o o -o.-- o o o o 5 a = o .:.e - q.o o o o o o o t k "o y M*y) ~ g*!.: i.. e o 4 4 4o %,o o g o o o o j .x e* o o ~ o C o V O -o 4._- .s s o o e .,r 4 F. o r ,e l o ab2-fp .#i .g,o 4, s eE o 8 .e l u,- .a t - s... o o *4 .E
- . w.s o, 4,4 gE
,s. g. ,,,= se c o 5-- - o .E /. .u,.. o o, o, 95 o . og. og *o g g, g ". = o ge m -e eE x *I._ I o u e is_ fi{ 4 s
- g. =
...a 34 ? o .r'. t* et = /~ly o / s g o .L. , =, Qo' : 9.X!! m :f , [S on ;. o o o o o o o o g m-y 4
- f&,h n f o
o o o %Q..,... _.. ' '
- Ja. -
- 3.,,.,;g
=.'ArierrggTys"I. p>.e s,. y ~ >,/Q' ~, -? Q' rs. $, gg$p. sp' s ,.ss,g -i \\ n a
- 3.,a,. /,
,a ~
- v c-4
,m en ..m' - E.g 35E,- i.. .,'.:^ ~a .r s a u 4g ,,8: o-e. i-- ~- 2 spi 2 :.! :e V ~ e W ;; j/
- e/
25, c? Tiir y - esyp*U i g % : ' % ly F.5 a tte- = 4= A t./ 4
- , 4,' '*' K~ 9 t % t h l '-q h
, a .9 ..x., W+1u=4 2 % c g.\\ & ^ ~ L~. W%)Wi~4 %y
- nh:Y:ah y w&& BA C
' e ;,,;- -A rm e w 4 k g.e. m ; p s B
- I $. k j e,
= 7f' N : vE N a I w.'.g.. :.: g **n ? %g{ % . M. ii g., .. s, ~ 4i 9 L. a %m f a t ,. w. M. e 3 . h, n v;k, 4 k h i D @.,l. k -k. ' k / O' s p : k..m., ~ b. 4 %w.2 n < sni %f'...e,'," 'A
- s.
u ' ~* % ' -Q,%% g!.% 'f, .,\\ & %';*% k
- "'g
\\ . N.,4 ;py._, u,, % P'T 4 . p 4 g, p ),2 y .S . cd g-k . p. .u gyv a J,k, '. g.. p ". %. 9 - *+*, p _x ,e 1 y,-s 1.;W ~.'%.Ky 5,,. m ., h,u '4q,n,:n. m$, "E._l'!j t wy , z y.., - ~'b N 5 p \\,. l ' W,- . s' m, s .e-a s a y~ dgy<K 24,. ' M38 ',_ tU [ 1- =% h..) q' h /~'
- E :,ht_
- ~ ~ '
. -,.31 3 /3 ,.g .s. ,4 W - , ::r-e.g.v t,;.5,_. s 1 ,,d:i 05 C => 24 . sql g.%<et -i :Eg,:fr ge,,'4. %,,,,:" ".. [ g (_~ 7 ~ x=. b ' ~ ~.
- r
"~ f9. s gy 3.s t ~,. 5:- g ~ < g : gp . e; cc u, "%a. ., $,; e.. 4 p i, Ti{_d:/'O'3 4h sh> g:$ ( i 1 3 as 4 ~ ,, p- %.:. -l g y r 7 =~. e. ~ 9I~-1,.h,s~'.diii
- 3. g?%;J :t
- . 2
's Jil .. _ 1 3 e-. __ -_ _.,,_ _ _,m
- - - - ~ - - ~ L...-. = R / ) m%~% 3g l's Y x p k k A m\\ me / 32' ~ P s I L gy, ( +s s 3 \\ e g \\ kw i gdg !e ~ \\- 9 '3W6 l w ~ \\ 10 ~ \\ Ig f I[- l [9 ? ."? L 1 / i i a e 1 n i% ev i "gj 1 x i .ty ' 8' ~ s .g w I M q b *
- )--
7 l ava av k ~ g h,$ + N ~ l _ o. / / _ #.15 / t I .~ -s ' '.'. L ~ 3)* }~ ~f _!M Vh ~ s'k ' t g ~ ~ _ _ _ ~ ~ -g s M \\ i 9 i, _ }, }, l l 3 3 0; N = hs t N~ ar "( / 2
7 ~ f. W ". ( E.'s.- . 3. d. K. N. E. S.. g. .~ H'l /.. /* e, # e
- 2. 5 c at z t :: t.t
.WI. sa 6 = c'. C. c . 304... c yf 9 .r . v=. rn ~< ~g n .5 .n - ..E l 4
- I N
$. f. 9 z g. .' s e- ~ u at 9 a. a.-c e . '. '1r s ,l / ii '\\. ?. _ :\\ n 3-gg (- p 3 a s g --4 s a .7 'a 'q - E p . :q -g ~ l M I M/ M,s ,) / 1 ~ i 7 n. qq " 'I 4-y n j, _.. p g q .=q g ag4 7 1
- g...
. q,.: T~b.n. ,, g n- $.., 1. Y J. R I 7, : . I. ;<E. >~1 L s >45. w s ,f l 5 E ~ 3.y< 1t R l u, _ N.a A ,l ', n l A ~ ~ i -'E W 5 E ',2 5, g ~v m 8 5 v4 w I >= N a 5 i + M n ii
4 ______m.____.._.._._ _. _. _ _ ~. _ _ _ _. _ _ ,; ' WX . R '. sg. -
- t. N g' p.
.i9 ' '? '.,Q &g'.Q./.R.si . y ,~_ ?. - y ;- sJss s). g 4, .. *49 a 47 n-s _ spy _i., p:4 _ p syj 'g_g u l ,, } *9 9 s.E h [. / ss e ^s P.ly sa g, 'N T 6f l' - si sa i ss 4,ps f 9 2, 7 2.- ..e. - /,. e v ss ? 42-s9 si si 4 ',ete i T7 'l J 64.4,gi,r71 9* s.9 ro.9s 7) 6,.,$s ss ? ,y 71 72 Prf u.se 73 66 i 67 6, m is kt D* g7 sy 9',99 } 7*'3 7h 7 71;' ss s ' 72 s - t' gy,, 9 s c7.- r so v ,vv-ss 7. = v . ima ss 9 7,0 6f " 29 67 i
- 7f
- I
j i ,.7 71 I D i 73 74 N-9 7) 7' 78) 73
- 3.,,
- A9 a
n n 1 72 7s 4 79 } 7, 7j t 7j 73* 74 7
- \\
m ss ss 67 y gk, 7 'E 80 7,2 , 7,2 73 ' S g,3 ? 73 7 7s ' s i^ < 6 l 7a 3.,,7j oE 4s 3 77 Ty ut.,r, li2ZTUE~':.~z1tgtf98 ~ 813 ' '?a- ^ %q *" " W ~ ~ 2,pL 1 h 7p>ii! - i g m .n ) ' MIN TE ERITURES Y' b ( [ ( \\ ;/W i +Y .12. n m. Figure 3-8 3-13
~. TABLE 3-2 DATA COLLECTION SCHEDULE, SUMMER 1982 DATE FAX SAT WSI DATE FAX SAT WSI CHARTS PIX RUNS CHARTS PIX RUNS JULY 15 39 5 XX AUG 24 43 3 XX JULY 16 37 9 XX AUG 25 40 1 XX JULY 17 43 5 XX AUG 26 46 1 XX JULY 18 47 2 XX AUG 27 46 1 XX JULY 19 44 4 XX AUG 28 49 2 XX JULY 20 32 8 XX AUG 29 47 3 XX JULY 21 34 9 XX AUG 30 35 2 XX JULY 22 40 5 XX AUG 31 41 0 XX JULY 23 44 5 XX JULY 24 42 7 XX SEPT 01 47 0 XX JULY 25 40 1 XX SEPT 02 48 0 XX JULY 26 44 4 XX SEPT 03 41 0 XX JULY 27 45 8 XX SEPT 04 51 0 XX JULY 28 39 5 XX' SEPT 05 50 1 XX JULY 29 39 3 OX SEPT 06 50 0 XX JULY 30 34 6 XX SEPT 07 48 2 XX JULY 31 47 6 XX SEPT 08 44 1 XX SEPT 09 49 1 XX AUG 01 47 2 XX SEPT 10 45 2 XX AUG 02 44 6 XX SEPT 11 48 5 XX AUG 03 45 6 XX SEPT 12 48 4 XX t( AUG 04 38 3 XX SEPT 13 38 5 XX AUG 05 37 1 XX SEPT 14 39 2 0X AUG 06 43 4 XX SEPT 15 44 6 OX AUG 07 43 2 XX SEPT 16 43 5 X0 AUG 08 45 6 XX SEPT 17 38 11 XX AUG 09 43 8 XX SEPT 18 39 6 XX AUG 10 43 7 XX SEPT 19 46 5 XX AUG 11 42 1 XX SEPT 20 44 5 XX AUG 12 42 4 XX SEPT 21 44 0 00 AUG 13 41 1 XX SEPT 22 41 0 00 AUG 14 44 1 XX AUG 15 48 3 XX AUG 16 4 3 XX AUG 17 40 2 XX AUG 18 35 2 XX AUG 19 42 4 XX AUG 20 35 0 XX AUG 21 43 2 XX AUG 22 45 2 XX AUG 23 37 2 XX l l () 'I# R SCAN
project period. Delivered at the end of November, 1982, were the hourly h averaged data taken on their 290 ft tower at BNL. These data included: shelter \\ air temperature, wind speed and direction at 37 ft and 290 ft, BNL Gustiness Class (Singer and Smith, 1966), solar radiation, relative humidity. hourly pre-cipitation, and station pressure. Values are generally averaged for a one-hour time span. Times are in Eastern Standard, indicating the end of the hour averaging period. Strip charts of 10 m wind speed and direction, using a standard Aerovane anemo-meter, from the site at the Brookhaven Airport were provided MAI by BNL staff during our September site visit. These data have been manually reduced, at hourly intervals, with 15 minute averages ending on the hour. A calibration check by BNL staff after the data were reduced revealed a 6* directional misalignment, and an 0.8 m/sec positive zero offset in the wind speed. Both were corrected for in the final data suntnary, along with an intentional 90* rotation of the anemometer to make the reading of predominantly southerly (180') winds easier on the strip charts used. Water surface temperature is an important parameter in assessing the development and characteristics of suntertime CMRs. A routine source of this information, frequently overlooked, is the approximately weekly maps of East and Gulf Coast water temperatures produced by infrared meteorological satellite sensors. 1 Figure 3-9 is a sample of such a map. It is generally felt that under optimom conditions the water surface temperatures are accurate to within + 1.0*C. Some smearing of the data near shore or in other areas of strong radiative surface 3-15 i R SCAN _.m..._
_ _ _.~.._. _.... _.....~.__ temperature gradients might be expected to make these data less useful, as in Long Island Sound. These charts (NAFA M98; DIFAX D127) are transmitted as special products about once per week. Those collected were assembled into Appendix B. Ship weather reports also include water temperatures (generally at intake level). These were archived through WSI, as were the more continuous reports from the Ambrose Light Tower near the mouth of New York Harbor and Buoy 443, southeast of Cape Cod (Figure 3-1). 3.6 Data Logging The quantity of data assembled is considerable. For 70 days, 24 hours a day, and at least 35 parameters of interest. on the order of 60,000 individual data elements can therefore be identified. A coding sheet (Table 3-10) has been designed to accomodate the. variables of v primary interest. The inputs, some of which are self-explanatory, will be described below in greater detail. The hourly data were entered onto this chart to be used both for a quick reference data sheet in each DDF, as well as a form for future key-to-disk data input. This would allow the data to be reprinted in several different formats, as well as be extensively sorted and stratified using microcomputer-based disk sorting software. Putting all rele-vant data onto a comon form allows for relatively rapid visual scanning of the data, not only for Q/A purposes (data inconsistencies often become patently obvious) but for making mental time-section analyses, which is central to classic mesoanalysis theory. R SCAN . - -, -.., - - _. ~,..... - -. _,,
..... ~. -. - - O ,m.-----, ,j-[-,3 f i .,,.,,.w.,-- 1 [. 8 _. t i s 1 L., i.~ J 6 \\ l m i l*" l an' as - .'.-jg .m es Jus r =. p &m m es. .m w l n..., .( . e. g. ;,, g-O g s m.. y e.
- l
.-1 .,~ e' g g wn W88 A s.w== = c M%N ./ L maLyst T p.3 l Figure 3-9. Sample sea water temperature maps derived by satellite IR measurements. 3-17 R SCAN .,..s
.. _.~..._-.. .g' l n-a 11*G g m y es ~ AAA 000 m. n., 1180 w m. SJ l R n ~ 000 ~l v=a I L ~! SJ , g I m 4%d*0 g i g .a 5 2'*T*C gdoc g
- Poo oc ggdoc
'I i ti E ePoo W IS e.17 Otel <1 puetu11 j u v....A B m [ l 900
- s m I "
i ad m e meu [ espas sositey g enn o sygdouAg 7 z-a w 3 89 3 8 8 8 8 8 2 : 2 2 3 2 2C 2 2 R N 2 2 2 esea b en man -u.
- 4. METEOROLOGICAL CHARACTERIZATIONS DURING THE FIELD PROGRAM G
v 4.1 General Synoptic and Climatographic Considerations The field program was operated for a 70 day period during the later part of the " warm season" of 1982 (15 July - 22 September). In general, conditions appeared quite favorable for the development of coastal mesoscale regimes (CMRs) due to typically light winds, the absence of frequent extratropical or tropical cyclonic disturbances, and generally dry weather. According to tower rain gauge data, measurable precipitation totaled 7.14", close to the regional average preci-pitation for that period. Rain fell on part of 17 of the 70 days. When one notes that much of the rain fell during three intense episodes (5.58" in three days), then 1.56" was distributed over the remaining 67 days. Only 66 hours of rainfall (4% of the total) were actually observed, thus characterizing the period as basically rather dry. No notable major mesoscale convection systems appeared to directly impact the site, although thunderstorm systems of at least medium intensity were within 80 km of the site on about a dozen days during the project. Rain free periods of seven (twice), ten, and thirteen days were noted (Table 4-1). Solar insolation was subjectively categorized for each day as weak, moderate, or strong, using the on-site measurements, ISP sky cover reports, and satellite imagery. Moderate to strong insolation was noted on 58 of 70 days (83%). One form of mesoscale perturbation or another, either from coastal effects or thunderstorm mesosystems, was found to exist for at least a portion of the hours on 60 of the 70 days. On the whole, meteorological conditions were quite propi-l tious for the experiment undertaken. A synopsis of the major events, rainfall, l and solar radiation for each day is presented in Table 4-1. 4-1 R SCAN _-.,,-,r-
Table 4-1 ERIEF $viewtv 0F IE50$ttoeTIC ConDITIOuS ( 3paluG F1 ELD PeDGAAM. 15 JULY. 22 5tPT 1982 at: # tedicates setailed case study not performed s Sun W. Weat; M. Moserate; 5 - Strong 6. Suu i July 15 Sound troere/Attentic Sea keene 0 0 July 16 5 Fles/5aed treese/Atl. See Breeze 0 0 July 17 SW Fles/$eed treeze/Atl. Sea Breeze 0 0 July It $w Fles/5eend treese/Atl. Sea treese 0 0 July 19 Su Fles/5ound Broere/inunderstores meer 0 0 M July 20 SW Fies/ Cold Front /Thunseestores 4 .M W July 21 m Fles/P1me Trm#mi ation/Atl. Sea keere 0 0 f
- July 22 W Fles#migation/testerly Confluent Flos 0
0 5 9 July 23 W Fles/ Westerly Confluent Fles/Atl. Sea troere 0 0 m f July 24 E Fle=#migation/Atl. Sea Desere 0 0 5 July 25 Led Breenet/ Sound Brosa !Atl. Sea Sreeze 0 0 f My M Land Breere/$ound Broere/$w flee 0 0 5 9 July 27 Eu Flos/5m Flos/Possible Sound Breeze 0 0 5
- July 28 Su Flos/Thunserstores 7 1.21 M
f July 29 Cold Front /ww Fles#misation 0 0 t
- July 30 W/5 Flos/ Sound Breeref/Shosers Late 2
.06 M
- July 31 5 Fles/ hostly Cloudy 0
0 W Aug 1 Pime Trap /Fetgation 0 0 5 i Aug 2 Fef gation/Atl. See Broere 0 0 m
- Aug 3 Land Breese# wigation/Atl. See Breeze 0
0 5 Aug 4 Sound Breele/Atl. See Breese 0 0 M Aug 5 Sound Broere/Atl. Sea peere/ Tate. Near 0 0 M l i Aug 6 F e igation/Atl. Sea Sreeze 0 0
- Aug 7 Land Breese/ Sound Breere/Atl. See Broere 0
0 l Aug 8 5 Flos 0 0 M Aug 9 5 Flow /Thuneerstores meer 0 0 M Aug 10 Thunderstores/5ound greeze/Atl. Sea Breeze 3 .09 M f Aug Il b/aw Flos/ Cloudy /5nomers 3 .11 W f Aug 12 Feigation/Atl. Sea troere? 5 .10 Aug 13 Land Broere/ Westerly Confluent Flos? 0 0 5 i Ag 14 Inf Fles/ Sound greete/Atl. See Breeze 0 0 f Aug 15 Inf Flos/Faigation 0 0
- Aug 16 Land keezet/mu Flow / Sound Dr./Atl. Sea treeze 0 0
5 A
- Aug 17 5m Flos/Taunserstorms 3
.18 M Aug 18 Feigation/Atl. Sea greeze 1 .01 5 f Aug Ig 5 Flos/ Sound Breere/Atl. Sea gree:e 0 0 5 0 Aug 20 W5e Flow / variably Cloudy 0 0 m
- Aug 21 NW Fles#migatton 0
0 M f Aug 22 mm Floe # e fgetton/At,1. Sea Breeze 0 0 I
- Aug 23 SW Flow / Thunderstorms 9
2.06 h f Aug 2a er Flos/Faigation/Atl. Sea treeref 1 .01 5
- Aug 25 fold Front / Thunderstorms /Fusigstion?
5 .28 m f Aug 26 kw Flos# piBatton/Atl. Sea treeze 0 0
- Aug 27 5W Flow / Cloudy 0
0 W f Aug 28 Cold Front #etgation/Atl. Sea greeze 0 0 5
- Aug 29 uw Flo=#wigation/Atl. Sea Broere 0
0 5
- Aug 30 5W Flow / Sunny 0
0 l f Aug 31 Sk Flos/ sunny 0 0 1
- 5ep I
$ Fles/Cloucy 0 0 W f Sep 2 Thunderstores/5 Flue 8 2.31 W l f 5ep 3 SW Flos/ westerly conf 1sence 4 .05 M 5ep 4 WW Flo=#eigation C 0 5 Sep 5 Sound er/Atl. Sea Breeze 0 0 5 i Sep 6 Land greere/ Sound keese/Atl. See Breeze 0 0 5 l f Sep 7 at Flow /Fetgation? 0 0 M l Sw 8 Easterly Confluence /Atl. Sea treeze 0 0 M Sep 9 Land Breere/ Westerly Confluence /Atl. Sea keere 0 0 m Se 10 Sound Breere/Atl. Sea keere 0 0 5e Il Sound Breeze /Atl. Sea Sreeze 0 0 5 Sep 12 Sound Broere/Atl. Sea koete 0 0 M Sep 13 Sound greere/Atl. Sea treeze 0 0 M 5e 14 Sound greeze/Atl. Sea Breeze 0 0 M 5e 15 Sound Breeze /Atl. Sea Breeze 0 0 M 5e 16 Cold Front / Sound Dresse/ Alt. Sea treeze 0 0 W f 5e 17 8 Flou#efgetton 2 .05 5 f 5e 18 SLY Flow / sunny 0 0
- bep 19 Folgation/At). Sea greeze 0
0 5 Se 20 Land treeze/$nosers 5 .35 W 5ep 21 E Flos/ Pipe Trapping 1 .01 W 5e 22 et Fles/ Cloudy 3 .07 W [F: LILC04-2.1) s 4-2 1 R SCAN m.
In total, 30 days were selected for more detailed analysis (see below). For each hour, a synoptic meteorological characterization code was assigned (Table d 4-2). In general it would be expected that overall conditions favoring the development of CMRs would be associated with codes 2, 13, 14, 15, 17, and 20 (although they certainly can occur at virtually any other time with the probable exception of code 19). Of the hours elected for detailed case study analysis, 55% were categorized by one of the 6 codes mentioned above. 4.2 Site Climatography In order to facilitate the task of collecting, interpreting and incorporating field data in a cost-effective manner for the planning, formulation and execu-tion of an emergency response dose assessment code (ERDAC), knowledge of a site's climatography is most useful. Climatography is defined (Lyons, 1983) as the identification and determination of the frequency of occurrence of the a several distinct mesoscale regimes impacting a given site. Most coastal zones in mid-latitudes not influenced by complex terrain have similar coastal mesoscale regimes (CMRs) contributing to their climatography. Thunderstorm mesosystems, though not coastal in nature, are generally frequent enough that their impact need be considered in any climatographic study. Table 4-3 lists 16 regimes of potential importance. Synoptic discontinuities, such as cold frontal passages, are included since a well defined frontal wino shift has mesoscale asp? cts within the context of defining the wind flow within 10 to 50 miles of a l given point. CMRs have been defined in great detail in other papers (Lyons, 1975; Lyons, et al.,1981; Keen and Lyons,1978). A brief, noncomprehensive description of each, in the context of the Shoreham site, is given as follows on the next page. J R SCAN m..... .--.,-.w
Land Breeze - nocturnal flow from stable land over warmer water during light synoptic winds and clear skies, often very shallow and highly sheared, rarely exceeding 5 m/sec. Near calm (pooling) con-ditions are likely to be a sub-set of this CMR. Classic Sound Breeze - typical of those described within the literature of lake breezes (Lyons, 1972), but quite a bit shallower and weaker. A distinct wind shift to onshore occurs after sunrise, and a con-vergenze zone, with updrafts and a return flow layer aloft are maintained until either nightfall, clouds, thunderstorms, or the Atlantic sea breeze intervenes. Ridge / Trough Passage Sound Breeze - often onshore winds from the prior night are maintained on a sunny day while changing synoptic pressure gra-dients develop flow towards the coast further inland. A con-vergen:e zone develops, and in all other regards a sound breeze ensues. Conflunce Zones - often when the gradient flow is rather strong, and nearly parallel to the shoreline, combined frictional and differential heating effects maintain zones of confluence at some distance inland. These "almost sound breezes" will channel effluents parallel to the coast for considerable distances. l Fumigation - onshore flow of neutral to stable air on sunny days results in l the davelopment of the thermal internal boundary layer (TIBL). Diffusion under these conditions has been described by Lyons and Cole (1973). Fumigation occurs in the sound breeze variations described above as well as during gradient onshore flow. 4-4 R SCAN e,>. ...m
Plume Trapping - potentially the most restrictive regime as far as diffusion from a near ground release in coastal zones is concerned. Often, s during the spring, the adjacent cold body of water is, rimed by a narrow band of warmer near shore water. The intense low-level conduction inversion formed during overwater passage is partially eroded in the last few miles of before landfall, resulting in a shallow mixed layer capped by intense inversion (Figure 4-1). Highly restrictive vertical mixing can be maintained for many miles inland at night or on cloudy days. This effect is possibly important at Shoreham during the March-June period. Atlantic Sea Breeze - frequently the Atlantic Sea Breeze (ASB) reaches the north shore of Long Island by the middle to late afternoon. Its pri-mary impact is a rapid reversal of low level winds to offshore. Mixing depths generally would be expected to increase, but not to the depth present over far inland areas. For Shoreham the ASB is j not a restrictive regime. i Gradient Onshore Flow (Atlantic TIBL) - when southerly winds are sufficiently strong, daytime onshore flow from the south develops a TIBL, which is reasonably deep by the time the Shoreham area is crossed. As in the ASB, this is not a particularly restrictive regime for Shoreham, though fully developed inland mixing depths are certainly not achieved. 1 4-5 l R SCAN m.._._
TABLE 4-2 ~~ SYN 0PTIC METEOROLOGICAL CHARACTERIZATION INDICATOR CODES 1 Near Center of Low (2* Latitude) 2 Cyclonic Flow - Weak 3 Cyclonic Flow - Moderate to Strong 4 Cold Front Approaching (Also Occluded Fronts) 5 Cold FROPA This Hour 6 Behind Cold Front 7 Warm Front Approaching 8 Warm FROPA This Hour 9 In Warm Sector 10 Stationary Front to North 11 Stationary Front to South 12 Low Pressure Trough 13 High Pressure Ridge 14 Near Center of High (2* Latitude) 15 Anticyclonic Flow - Weak 16 Anticyclonic Flow - Moderate to Strong 17 Straight Line Flow - Weak 18 Straight Line Flow - Moderate to Strong 19 Hurricane /T.S. Circulation 20 Poorly Defined Synoptic Features 4-6 R SCAN s ,se a
- . k ! on 52%
s ,r .n. --....,,, - -, - ~
A TABLE 4-3 V _MESOSYNOPTIC CHARACTERIZATION INDICATOR CODES Total Observed 0 Steady Synoptic Influences Predominate 316 1 Synoptic Discontinuity, > 50' Change /2 Hours 4 2 Gradient Onshore Flow (Cloudy / Night) with Plume Trapping 19 3 Gradient Onshore Flow (Sunny) with Fumigation 41 4 Gradient Offshore Flow - Stable Air Over Colder Water 0 5 Near Calm (Pooling) 11 6 Land Breeze 42 7 Classic Sound Breeze - Onset Past Hour 11 8 Classic Sound Breeze in Progress 54 9 Parallel Shore Confluence - From West 22 10 Parallel Shore Confluence - From East 6 11 Ridge Trough Passage Sound Breeze 44 l 12 Atlantic Sea Breeze - FROPA Past Hour 20 13 Atlantic Sea Breeze in Progress 54 14 Gradient Onshore Flow - Atlantic TIBL 22 15 Thunderstorm Mesosystem in Area 25 16 Poorly Defined Mesosynoptic Regimes / Inertial Flows 29 720 Hours 4-7 R SCAN c........._.s
l C' 1 ...v-3 s s.ean ne l s s s yv' 's \\s N's v s ~ % q- ~A ^*~~~ m l 's ~~ ~ ~. ,a .~ m w:=r. e-m-o _m; - ;r,7~~g y--
- l y.
_ m:= =, Reef A un l f ![ / fI l (,,j, llh [/, \\ / /, / e % s /[. g f ts i ~~- 6 /h ( $ 's ~~ I l ~ f f / \\ \\ i / \\ i i / / \\ s ~ I se \\ l \\ ~~ <I A [< ',MF-%% O,,.5,,
- m
- l 1.
r vie. [co,j Figure 4-1. Temperature time sections, surface to 300 m (0.5'C isotherms), 28 June 1974, taken at the shoreline of Lake Michigan near Waukegan, Ill. (top) and 3 km inland (bottom). Note the intense caping inversion above 50 m that con-tinued throughout the day. This was the result of air flow over a still cold lake, but with a brief period of remodification by a band of warm water near shore. Almost neutral conditions were found at 3 km inland, as the TIBL had generally developed above 300 m by that point. Similar PBL temperature struc-tures are possible at the Shoreham site from March through June during the warm-up of Long Island Sound. 4-8 R SCAN c........ _ ._-_-....___._,..---_.,-._.-_,,-___,_-_~____._.s_-
As shown in Table 4-1, and sumarized in Table 4-4, various CMRs and thun-derstorm mesosystems were frequently present during the field program data gathering phase. Table 4-4 does not account for the somewhat restricted mixing depths experienced during southerly gradient flows (Atlantic TIBL). For the thirty detailed case study days, a more rigorous inspection of all available data sources was employed in order to develop an hour by hour cate-gorization of the mesosynaptic conditions at the site. These are shown in Table 4-Sa,b. Note in this graphical format, the
- sign is used to indicate periods of onshore flow (270' - 070* inclusive) as measured on the 33 ft level on the Shoreham West tower.
During the 30 days (720 hours) studied in detail, 11 " classic" sound breeze passages were noted. A total of 137 hours of sound breeze-like wind flows were experienced. These would be associated with TIBL phenomena. As will be discussed below, since virtually no daytime surface-based inversions were found, the diffusion mechanism for a low-level release would de facto be plume trapping (under an increasing lid height) rather than fumigation. Similarly, for the additional 41 hours during which " fumigation" potential existed due to gradient onshore flow, releases with heights under about 100 m would not undergo classic fumigation [Lyons and Cole, 1973), but rather would be constrained in vertical mixing due to the gradually increasing TIBL depth while moving inland. During the later part of the " warm season", after about 1 July, it is considered unli-kely that daytime onshore flows during daytime with strong surface based inver-sions will occur with any significant frequency. Table 4-3 contains totals of the various regimes encountered during the 720 study hours. More than half (392 hours) had regimes (Numbers 0,13,14) in which s 4-9 R SCAN
conventional straight-line Gaussian modeling approaches would appear perfectly adequate for ERDAC purposes. During other periods not selected for their high probability of CMRs, this percentage would even be significantly higher. Precipitation is highly spatially variable. The on-site rhingauge, while cer-tainly useful, does not give indications of significant rainfall events occurring within 10 or 50 miles of the sites. These can cause local wind and stability perturbations that can be misinterpreted as marine weather effects if their presence is not recognized. Therefore, using the radar data available both from the hourly national radar sumary maps and the WSI MDR composites, plus the hourly surface reports from area stations, a code to alert the analyst to possible precipitation system interactions was devised and is shown in Table 4-6. Of prime interest to this effort are the characteristics of the lower PBL at each site during periods of onshore flow, TIBL and plume trapping conditions in particular. Table 4-7 lists the indicator codes covering these events and which can be used to sort and retrieve the appropriate hourly observations. 4.3 Onshore Flow Periods Since periods of onshore flow were the primary interest of this study, their occurrence was catalogued. For the purposes of this report, onshore flow is defined as a 33 ft Shoreham West tower wind direction between 270' and 070' inclusive. Table 4-8 highlights all hours during the project in which onshore flow was noted (direction in tens of degrees). Dashes are used to indicate Os 4-10 R SCAN
. _.7 i I TABLE 4-4 I 1 ~y NUMBER OF DAYS WITH C0ASTAL l MESOSCALE REGIMES AT SHOREHAM WEST TOWER 1 Land Breeze 9 l l Sound Breeze 25 P i Confluence Zone 6 i ( Atlantic Sea Breeze 36 Onshore Flow & Fumigation 22 l Onshore Flow & Plume Trapping 3 Thunderstorms Nearby 11 4-11 R SCAN . ~.. --, _,.,~,,,.,.-- - _ _ ,...-,,__-n_.,,,,,,
_. -. ~ _.... f' M -. ( TABLE 4-5 On-51TE IE50$wilC Otep4Citt1ZA110m (TROM DETAILtc ANALT$t$) MOUR ikDikG ll'TNE] 19u2 01 02 03 04 05 06 07 00 09 10 11 12 13 14 15 16 17 14 19 20 21 22 23 14 JUL a e a a a gg 16 U D D D D D 0 0 0 0 0 U" 7' 5' 5' 5' 17 13 13 13 h3 13 13 1 3 7 0 0 0 0 0 0 0 0 0 0 0 0 7' 5" 5" 5' 5" 12 13 13
- ,3 13 13
- ,3
' 5 0 0 0 0 0 0 0 0 0 0 0 0 0 7" 5" 5 5' 5" 5" 12 3 13 13 3 19 0 0 0 0 0 0 0 0 5: 0 0 0 D D 7" 5" 5' 5 lb 15 ,5 U 15
- 5 20 0
0 0 0 0' 0 0 0 0 0 0 0 l' D' D' U" U" c' 15' 15" 15" C' 0" O' 3' 3' 3' 3' 0' ll ZI 0' 3". 3'. 3". J '. 77 F. F. F. F. P. P. 7". l' P. P. 3'. 3" P 23 =
- 's 5".
5'. 5'. 32 13 13 13 IJ 13 O T' P5 13 13 16 16 16 16 16" 16 1. O O O O.
- '6 g7 is 39
- 11 01 0F 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 le 19 20 21 22 23 24
~ 0-P0F.2 1982 01 02 03 04 05 06 07 08 09 10 12 13 14 15 16 17 16 19 20 21 22 23 24 .K, 11 1 0 0 0 0 0 0* 0* O 2* 2* 2* 3* 3* 3* 3.* 3* 3* 3* 3* 3.* 3* 3* 3 3 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5" 5" 5' 5' 5' Il 13 13 13 13 5 0 0 0 0 0 0 0 0 0 0 0 0 0 le 14 7' 5" 5' 12 13 13 15 15 15 6 I 5 0 0 0 0 0 0 0 0 0 0 0 D 14 le 14 le 14 la le le le la le 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 lb le le 14 le le le 14 14 0 0
- 0 0
5 5 0 0 0 D. ( 9". 9'. T'. 9". 9'. T' T'. 12 13 0 5 5 0 0 0 0 3 .,7 e l .3 P. P. i ,3 01 02 03 04 05 06 07 Os 09 10 11 12 1: 14 15 16 17 la le to 21 22 23 24 f L D...e i J
- ~*
R SCAN
- c....... _
l i ~~
t,m / ') Cl TABEL 4-5(continued) i Oh 51TE IE505fr0Pf!C CMAAACTIR12Aflon [FROM DETAILED AAAlf5I5] teu# feDJas [Z.TIMC] A4 1982 01 02 03 04 05 06 07 08 09 10 Il 12 13 le 15 16 12 18 19' 20 23 22 23 24 16 ,7 . 5, 0 0 1 0 0' 0' U" O' U" 0" U" O' 3" 3" 3 3." 3." J.' 3." 3.' 3." 3" 3" 37 13 20 73 g7 73 ze = 75 yg 27 78 = = = = 7, 3C I 31 01 02 03 04 05 06 07 08 09 10 11 12 13 le 15 16 17 18 19 20 ?! ?? 23 24 1 D-Por-5 7 5UT i 1982 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 3 3 3 3" 3" 3" 3' 3" 15 lb 15 16 16" 16" 36" 15" 15" 15" 15' 15-15" 15" 15' 15" 5 U" D' 0' O' 0" O' 0' 0" U" O' 0" 0" U" II" 31' 11" ll' II" II" 13" 17 13 13 0 l 6 6 6 6 6 6 6 6." .6 6 6 6 6 36 7' 5." 5 '. 5." 5" 5' 5' 32 13 13 6 t. 7 = I 5 0 0 0 0 0 0 0 0 0 0 0 0 10" 30 30 10" 10" 10" 5" 5" 8 12 13 16 i 9 6 6 6 6 6 6 6 6 6 6 6 6 6 16 9' 9' 9" 9" 9 17 13 13 13 13 l 10 0 0 0 0 0 0 0 0 0 0 0 16" 7" 5" 5" 5" 5" 5' 5" 5' 12 13 13 13
- I O
O O O O O 0" O' 0' 0' 0' 0' 11" 11" II" 11' 11" 11" 11" il" 11" I? 13 0 7 0 0 0 0 U" D' O' U" 0 U" 0" ll" 31" 13" ll' II" 11" ll" 11" II" 11' 12 13 0 '~ l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7' 5" 8" 5" 5" 5" 5' 12 13 13 . 4 0 0 0 0 0 0 16" 16 16' 16 16" 16 31" 11" 11" II" 11" II" 11' 11" II" 11' li 13 .5 16 16 16 16 5 5 5 5 5 5 2" l' 31' II" ll' Al" ll" 11' 11 11" 12 13 13 16 34 16 16 36 16 3 0 0 0 0 0 0 7' 5" 5." 5' 5.' 5' 5" 5 12 13 13 13 ,,7 6, l FO O O 6 6 6 6 6 6 6 7 0 0 0 0 l' O O O O O O O C' 0" l 71 0' 0" 0" 0" 0" 0" 0" 0." D' 0.' 0" O' 0." O' 0' 0" 0" U." 0.' D' 0' l gg 0." 0 0 01 02 03 04 05 06 07 00 09 10 11 12 13 14 15 16 17 18 19 20 21 ?? 23 24 f MOUR5 THIS N0A D-P0f-3 ~ \\ 4-13 v R SCAN c.......- 1
TABLE 4-6 PRECIPITATION CHARACTERIZATION INDICATOR CODES 0 None at Site, nor within 80km 1 None at Site, but showers within 16-80km 2 None at Site, but Thunderstorms within 16-80km 3 None at Site, but Showers within 16km 4 None at Site, but Thunderstorms within 16km 5 Light rain, Drizzle at Site 6 Moderate Rain, Shower at Site 7 Probably Thunderstorm at Site 9 No Data Available TABLE 4-7 O TIBL/PBL CHARACTERIZATION INDICATOR CODES 0 No TIBL 1 TIBL - Onshore - Surface based 2 TIBL - Onshore - Elevated base 3 TIBL - Atlantic Sea Breeze / Gradient i 4 Elevated Inversion / Plume Trapping 9 Information not available O 4-14 R SCAN r....... ....,..,~ y- ,w<r w ---rv --r-
- ----e v
-- - ec --v-w'- ---w
=v-=
w------v-r --n--r --mew-s- + =- -w-=w v w --ww 'w-e-=v y-- --w-- w
.-,~~..-.-.. m where data were missing or possibly erroneous, but onshore flow could be v) reasonably assumed from other indicators. The rumber of hours of onshore flow . per day, as well as per hour of the day for each time block, are indicated in Table 4-8. When plotted in graphical form (Figure 4-2) the impact of Long Island Sound on the wind direction at Shoreham during this period becomes highly evident. At 1700Z, 53 of the 70 project days (76%) had onshore flow. The minimum number of N shore flow hours (8, or 11%) occurred only 7 hours later (0000Z). This appears to be the impact of the Atlantic Sea Breeze (or its remnant southerly flow) reaching the site and terminating the sound breeze. A total of 728 hours of onshore flow were observed during the project. The number of occurrences at 1700Z was 562% higher than at 0000Z. This is perhaps one of the more striking examples of diurnally induced local wind regimes at mid-latitudes that the author has observed. Though the sound breeze is indeed weaker and shallower than its oceanic and Great Lakes counterparts, if the prevailing synoptic flows are sufficiently light, it can be a persistent and repeatable phenomenon. Figure 4-3 is another representation of Long Island Sound induced or augmented onshore flow regimes at Shoreham. The initiation of the onshore flow is given l by a "0", and its termination by an "X". Some of these episodes were as short lived as four hours. Note also the large number of events in which the onshore flow was pre-existent at 1200Z. These represent either ridge / trough line passage sound breezes, or gradient northerly flows which are countervened by the advancing Atlantic Sea Breeze. 1 Table 4-9 suggests that on most days, if an onshore flow is not established by 1700Z, it is unlikely that an onshore wind shift will occur during the afternoon. 4-15 l R SCAN
.._.- - :--.-..~. A- ,!V TABLE 4-8 M81005 0F 055NORE FLCs (270* - 070* AT 33 Ftti) N0;>R E5D!nG (2-TMO c-e At M00R5 in!5 198J 01 02 03 04 05 06 07 08 09 to 11 12 13 14 15 16 12 18 19 20 21 22 23 24 Day 15 34 36 04 02 04 5 '. 6 31 33 .Il 23 9 ' 7 30
- U 29 27
. 5 a 75 l'6 75 FI 30 h 9 <'8 29 29 3 0
- l?
33
- 0 U5 04 02
- )4 35 36 36 36 JI 29 13 33 M
M M .6
- 16 35 l4 M
34 3
- le 31
- I5 33 33 32
- 10 33 34 C1 27 27 23 77 75 77 27
- '7
- '7 27 i'7 27
- '7
- 's 29
- 's 27 25
- '7
- '7 27 27 27 20
';I
- '7 i'7
- '7
- '7 27
- '5 i'7 Fe 75 i'8 PB 11 P4 29 05 U3 U3
- 16 U2 01 M
04 U3 34 32 74
- ll
- ll 32 D2 06 04 20
- '5 i'8 30 i'8 F5 25 5
'i% 77 25 79 i'9 i'9 25 25 79 5
- '7 27 30 30 75 29 29 M
34 04 06 15
- 'B 03 3
- '9 75 27 75 25 27 77 27 27 27 75 25 27 75 25 27 27 25 17
- U 27 27 25 29 J3 M
36 36 05 03 04 II
- l1 0
01 02 03 04 05 06 07 08 09 10 Il 12 13 14 15 16 17 18 19 20 ?! 22 23 24 9 M45. 1 70 N1h 2 2 4 4 8 2 8 2 6 4 2 8 11 11 14 13 14 12 9 2 5 4 2 1 Moust 170 IAuG . 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Th!5 Dev f nG#5 1962 01 02 03 04 05 06 07 08 09 7,0 i 1 27 28 29 30 29 31 30 29 28 29 30 29 28 28 28 28 16 J 79 27 25 17 25 26 25 30 32 31 J1 30 31 27 16 33 33 35 UI 04 06 04 04 05 36 De 36 li o 01 35 33 05 05 5 5 30 30 lb 3 5 79 31 05 06 07 07 07 07 07 06 06 07 06 le 7 J3 35 Je UI 4 5 ~ 0 y 0 0 F5 28 29 29 30 25 UI 7 1 27 27 25 35 36 36 01 33 27 32 35 34 27 27
- '7 27 il
. 2 34 01 UI 03 04 06 02 07 06 06 06 07 06
- l6
- th 35
. 9 4 3 05 07 06 31 32
- iD 3D 79
- '5 i'6 27 27 3
44 27 27 77 25 27 25 27 27 2P 30 29 31 30 30 29
- 0 30 29 i'8 9
35 27 25 30 30 JD 25 29 25 29 30 i9 29 27 i '5 25 27 .6 01 02 03 02 03 06 06 06 06 08 07 09 09 10 11 12 12 Il 11 09 08 06 03 00 '161 161 I (O.O 4-16 R SCAN .s ....,.._,----n....
... -. ~.. - v iygp p-g) soup unaP( M ut005 OJ eu$uouJ J108 )240.
- 040. VI tt J3311 NO W 3e0feS
)Z itM3[ uy e Wnu. I682 ot 02 ot ot 09 09 OL 08 ot IO ti I( 19 IS 19 IZ 18 IG 20 21 22 lE 29 MI501A 19 24 CO 26 26 26 fO 28 26 26 26 2# 26 28 26 15 ._. l, 21 2a tG fo ot os ot ot ot ot 0 os ot t9 ro fO 26 29 t9 la ts te ro u 26 2z 9 JD 0 dt 2z 2z 2e u 2a fo ti ot es 09 ot t9 ot te 26 tt ta r2 ti ti r2 2t ,2 r2 r2 r2 t2 tt ot te ot r2 f2 r2 ti ft te ff 26 26 ft r2 ff 2c at 0
- ,t 21 2e 21 2e 2a fo 2s 2a 26 2e le 2s te 2z re C
29 2e 2f te t ,L,9 21 29 tz__ u 2e 2a ts 2s
- a u
2s 29 2s 2s 2s 21 2s 2e 26 ro 23 f G JR 21 ta tf ti ts 02 ot 09 01 ot t9 t9 te tE !L u 26 fo (( t2 fO fE f2 tt (( (( r2 fi t2 f2 fO fO tt 2e 29 29 li
- 10 PY 0!
02 0C 09 05 09 04 08 06 10 II ti tE ID t$ 19 14 !8 !6 20 21 22 2( 2# a N08$ tt2 AM!S t t t 2 3 8 8 8 8 8 8 6 6 6 6 6 3 9 t 2 Z N00e 1$2 404-t O( g e%Wt 1682 01 02 ot ot 05 09 04 08 06 !O ti tE te 15 19 II !8 16 20 2f 22 2( 27 iwiS orb t 2 0 t 29 JR 26 29 21 2I 9 9 2L 21 21 21 21 21 2s te 28 2L Ja 2t 29 21 26 29 23 ti 5 26 26 M fo r2 t2 ni ft ti f2 ti f2 te tt re t9 t9
- 19 t9 t9 20 9
af fi tI te ft tt f9 f2 9 I 26 Jz ti f9 0# ot ot ot ot ot ot t9 f9 ot 05 ts 9 ot 05 ot 09 04 01 9 df 26 26 22 9 0 !if 26
- 10 fo fo fo 26 26 6
1 23 2e 26 26 fO u fO
- 10 ti r2 r2 fO 26 fo f5 2
fo fo ta fo fo ff
- 19 te ot ot ot OE 02 01 ot 09 t9 t
e 09 ot ot ti ot 09 i oG ff 01 09 02 ot 09 ot tS O ot 04 05 tt Y ot M t9 EG fi ot t i 09 01 tS ' 9 01 09 ot 09 09 02 O( t I z tt t9 M rt f9 ft fi f2 tt f2 ti tt r2 ff tt M fo ff 26 29 r2 22 a 1 9 f2 tf 02 2R ?? ' 6 22 2B 29 M ti ff ft fE fi ff fS fp M M tG ot f9 t9 M f2 ff 2f ?hC 01 ot 04 t !L 09 ot 05 OG 09 ot ot 05 ot 02 ot 02 04 09 W 01 09 01 09 09 09 01 22 J2 01 01 ot 09 09 GG 09 ot ot ot 09 09 ot 04 fG ot ot 09 04 te ot 02 ot ot 09 09 04 08 06 !O ti t2 lE te tS 19 14 18 16 20 2t 22 2( 2# des N0n3$ git e y g g g 3 tI 6 3 3 6 !0 te te il IL fO IG li 19 9 1 5 295 00.s 28 l 28 r2 l t(l SI l SI l SC l 10l99l90lfO es I[ (( tS te 22 29 tl CO !! tS I6 tl 8 428 .N N t-IL U S] FIN
NUMBER OF HOURS OF ONSHORE FLOW AT THE SHOREHAM WEST TOWER 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 i 14 l 12 10 a 6 4 l Local Local 2 Midnight Noon Oe i i 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 l Figure 4 2 TIME (Z) 4-18
L FIGURE 4+3 m TIMES OF ONSET [0] 0F ONSHORE FLOW REGIMES AND TIMES OF BREAK DOWN [X3 AT SHOREHAM WEST TOWER HOUR ENDING [Z-TIME] <12 12 13 14 15 16 17 18 19 20 21 22 23 24 l 7/15 07 X i 7/16 0 X 7/17 0 X 7/18 0 X 7/19 0 X 7/21 0 X 7/22 07 X 7/23 0 X 7/24 0 X 7/25 0 X 7/26 07 X 7/27 0 X 7/30 0 X 8/2 0 X 8/3 0 X 8/4 0 X 8/5 0 X 8/6 0 X 8/7 0 X 8/10 0 X 8/12 0 X 8/13 0 X 8/14 0 X 8/16 0 X 8/18 0 X 8/19 0 X 8/22 0 X 8/24 0 X? 8/26 0 X 8/28 0 X l 8/29 0 X 9/3 0 X 9/5 0 X 9/6 0 X 9/8 0 X 9/9 0 X 9/10 0 X 9/11 0 X 9/12 0 X 9/13 0 X 9/14 0 X 9/15 0 X 9/16 0 X 9/19 0 X 4-19 R SCAN ...... _ m -.
TABLE 4-9 TIMES OF ONSETS OF SOUND BREEZES, CONFLUENCE ZONES, AND ONSHORE GRADIENT FLOWS REVERSED BY ATLANTIC SEA BREEZES HOUR ENDING [Z-TIME] <12 12 13 14 15 16 17 18 19 20 21 22 23 00 24 2 5 3 7 2 1 0 0 0 0 0 0 0 i TABLE 4-10 TIMES OF BREAKDOWN OF ONSHORE FLOW REGIMES <12 12 13 14 15 16 17 18 19 20 21 22 23 00 O 0 0 0 0 0 1 1 6 6 9 12 6 3 1 4-20 R SCAN ,..........- ~ ... ~.,,.,, _,,, -.
,7
_.y__ ,7-- .,e
Thunderstorm mesosystems can obviously countermand this " rule of thumb". Also, onshore flow breakdown does not generally occur before 19002, but becomes rapidly and increasingly likely thereafter, with a peak in reversals to offshore being noted at 2200Z [ Table 4-10]. In many of the later afternoon cases it could be questioned whether or not an active ASB front had actually impacted Shoreham. This is said because by this late in the day, sun angles were often very low. In fact, tower stabilities frequently indicated neutral to stable conditions on both sides of the ASB " front". However a clear wind shift was in evidence. This could however be resulting from an " inertial" remnant of the ASB. This low-speed southerly flow across Long Island was often noted to persist well into the night, of ten against weak northerly gradient flows. This may in fact be a distinct and previously unrecognized CMR. It tends to mimic, and perhaps become absorbed into, a true land breeze as the night wears on. 4.4 Water Temperature Water temperatures over the Atlantic Ocean and especially LI Sound are of impor-tance to interpreting local diurnal wind flows and low level PBL structure during onshore flow. Unfortunately, such data are not always routinely acquired. For this program, several sources were utilized, including satellite IR surveys (see Figure 3-5 and Appendix D), light tower and buoy data, and some l data taken about I mile offshore from the Shoreham plant as part of the l l preoperational aquatic ecology study. Table 4-11 suninarizes these data. The satellite-derived Sea Surface Temperature (SST) for LI Sound agree quite well j with tne in-situ measurements. As appears to be climatologically normal, the Sound water temperature had reached its maximum by the start of the program, and i O 4-21 V R SCAN ~...,
~ i TABLE 4-11 LI SOUND AND OCEAN WATER SURFACE TEMPERATURES S A T E L L I T E IN S'I T U II) BUOY 44003(2) DATE LI SOUND 40*N/72'W SUOY 44003 SHOREHAM Apr 28 8.0* 10.5* 5.0 8.7' (1981) N/A May 26 12.5" 13.0* 8.5 14.8* (1981) N/A i Jun 09 12.0' 11.8* 9.6 18.0* (1981) N/A Jul 01 17.7' 18.l* 8.0 20.5' (1981) N/A Jul 07 18.8' 19.3* 13.0* 19.9* (7/6) N/A Jul 28 22.0* 24.0* 17.5' 22.5' (7/28) 16.1*/11.7* I Aug 04 21.5' 23.0* 18.5* N/A 18.9'/12.2' Aug 19 21.0* 22.3* 16.0 22.0' (8/18) 18.9'/13.3 l Aug 31 19.8* 21.0* 15.0 20.6* (9/2) 15.6*/14.4' ( Sep 08 19.5* 20.5* 15.5 20.7* (9/9) 15.6*/13.9' l Sep 15 20.5* 21.0* 15.0 21.7' (9/15) 17.2*/14.4* Sep 22 18.5* 19.9* 15.5 20.2* (9/20) 16.1*/15.0*(3) (1) Source: Geomet Technologies, Inc., Preoperational Aquatic Ecology Study, Shoreham Nuclear Power Station. Data taken about 1 mile offshore. (2) Maximum and minimum temperatures reported are shown. (3) Sept. 20 data. 4-22 R SCAN C'L) 6,' 6 *t ? *,'. \\ T is a% ,-,-,..,,,--,w
i TABLE 4-12 MEASURED WATER AND AIR TEM.PERATURES (C') .v i N BOUY 44003 AMBROSE TOWER ) T WATER T \\ed ('C) (Ta-Tw) 00Z 06Z 12Z 18Z DATE MAX MIN MAX MIN Ta Tw Ta Tw Ta Tw Ta Tw JULY 15 13.3 11.7 +4.4 +1.1 21.7 21.7 20.6 21.7 25.0 21.7 16 17.2 11.7 +3.9 -0.6 22.2 21.7 21.7 21.7 22.8 21.7 17 16.1 11.7 +5.0 +2.8 23.3 21.7 22.2 21.7 18 13.9 11.7 +6.6 +2.8 23.9 21.7 23.3 21.7 19 14.4 11.7 +6.6 +3.9 26.7 21.7 23.9 21.7 30.6 22.8 20 16.1 11.1 +6.1 +2.8 26.7 22.8 25.6 22.8 21 15.0 11.1 +6.6 -0.6 22 16.7 11.1 +3.3 -2.2 21.7 22.8 23 13.3 10.6 +5.5 +1.7 25.6 22.8 23.3 22.8 24 13.3 11.1 +5.5 +1.1 25.6 22.8 23.3 22.8 l 25 17.2 11.1 +6.1 +0.6 21.1 22.8 22.8 23.9 23.9 23.9 ,() 26 11.7 11.1 +5.0 +2.8 23.3 23.9 22.8 23.9 23.9 23.9 26.7 23.9 27 16.7 11.1 +3.3 -1.1 22.3 23.9 28 16.1 11.7 +4.4 +1.1 23.'3 23.9 23.3 23.9 29 22.8 23.9 21.1 23.9 i 30 13.3 11.7 +5.0 +1.7 22.8 23.9 23.3 23.9 31 16.7 11.7 +5.5 +0.6 21.7 23.9 20.6 23.9 20.0 23.9 22.8 23.9 AUG 1 18.9 14.4 +5.0 -1.1 22.8 23.9 22.8 23.9 2 18.9 12.2 +6.1 -1.7 26.7 23.9 3 16.7 12.2 +3.3 -1.1 24.4 23.9 22.8 23.9 4 18.9 12.2 +2.8 -2.8 22.2 23.9 l 5 20.0l 14. 4l +2. $ -2. $
- 22. 8 23. 9 21.7 23.9 6
19.4 13.3 +2.8 -1.7 25.0 25.0 7 18.3 16.4 -0.6 -2.2 22.8 23.9 21.7 23.9 ( 4-23 R SCAN CO M PORA T ION e,-w e. - 5. ma - .,__,,-,m-----e-,-4 ,_--__-_-,_,__m.. - - ~ -
MEASURED WATER AND AIR TEMPE.RATURES (C*) B00Y 44003 AMBROSE TOWER T WATER T ) (*C) (Ta-Tw) 00Z 062 12Z 18Z y DATE MAX MIN MAX MIN Ta Tw Ta Tw Ta Tw Ta Tw AUG 8 18.3 14.4 +3.9 -1.7 23.9 21.1 23.9 20.0 23.9 23.3 9 17.2 13.3 +5.5 +2.2 23.9 22.a 23.9 22.2 23.9 22.8 l 10 15.0 13.3 +6.1 +3.9 23.9 22.8 23.9 22.2 11 16.1 12.8 +5.0 +0.6 23.9 23.9 23.9 22.8 12 17.8 12.9 +2.8 -3.3 23.9 17.8 23.9 19.4 13 17.8 13.3 +1.7 -1.1 23.9 23.3 23.9 20.0 23.9 20.0 14 16.1 13.3 +3.3 -0.6 23.9 20.0 23.9 20.6 23.9 22.2 15 16.1 13.3 +3.9 0 23.9 23.3 16 16.7 13.3 +3.9 -0.6 23.9 21.1 23.9 25.0 17 17.2 13.3 +5.0 +1.1 23.9 23.9 23.9 21.1 18 17.2 12.8 +5.5 0 23.9 21.1 23.9 21.1 ( 19 18.9 13.3 +3.3 -2.2 23.9 21.1 20 17.8 13.3 +6.6 +1.1 21 13.9 12.8 +5.0 +2.2 22 18.3 12.8 +1.1 -3.9 23.9 14.4 23.9 18.9 23 18.3 13.3 +5.0 0 23.9 18.9 24 16.7 13.3 +4.4 +0.6 21.1 21.1 21.1 22.8 25 15.0 13.3 56.1 +1.1 22.2 22.2 22.2 21.1 22.2 25.6 i 26 14.4 13.3 +5.5 +1.1 22.2 18.3 l 27 14.4 13.3 +2.8 +0.6 21.1 22.2 28 15.0 13.9 +3.3 -0.6 21.1 20.6 29 15.0 13.9 0 -1.1 21.1 20.6 21'.1 16.1 21.1 12.9 20.0 16.1 30 15.0 14.4 +1.1 -1.1 20.0 16.1 20.0 15.0 20.0 18.3 31 15.6 14.4 +2.8 -0.6 20.0 18.9 l 0 R SCAN 4-24 CO HPOH A T ION
MEASURED WATER AND AIR TEMPERATURES (C') 80VY 44003 AMBROSE TOWER 3 T WATER T ('C) (Ta-Tw) 00Z 06Z 12Z 18Z DATE MAX MIN MAX MIN Ta Tw Ta Tw Ta Tw Ta Tw SEPT 1 15.6 14.4 +3.3 +2.2 20.0 19.4 99.9 18.3 20.0 20.0 2 15.6 13.9 +4.4 +2.2 20.0 18.3 20.0 18.3 3 16.1 13.9 +5.5 +2.8 20.0 18.9 4 16.1 13.3 +3.3 +0.6 20.0 22.2 20.0 15.0 20.0 20.0 5 16.7 13.3 +3.3 0 20.0 21.1 15.0 15.6 15.0 20.6 6 16.1 13.9 +1.7 +0.6 7 16.1 13.9 +1.7 -0.6 15.0 18.3 8 15.6 13.9 +1.1 -0.6 15.0 18.3 15.0 21.7 j 9 15.6 14.4 +0.6 -1.7 15.0 16.7 10 15.6 14.4 +1.7 +0.6 15.0 17.8 11 15.6 14.4 +2.2 +1.1 17.2 19.4 17.2 21.7 ( 12 16.7 14.4 +1.7 0 17.2 21.1 17.2 20.6 13 17.2 14.4 +2.2 0 18.9 20.0 14 17.2 14.4 +2.8 0 20.0 20.6 15 17.2 14.4 +3.3 0 20.0 17.8 20.0 19.4 1 16 17.2 15.0 +1.1 -1.1 20.0 20.6 20.0 22.2 17 16.7 15.0 +0.6 -1.7 20.0 20.0 20.0 18.3 18 16.7 15.0 +1.1 -1.1 20.0 18.3 20.0 15.6 19.4 18.3 19 16.1 15.0 +2.2 0 19.4 15.0 20.0 21.1 20 16.1 15.0 +1.7 -0.6 20.0 17.8 21 22 L 4-25 R SCAN CO HF 'O Ha% TIOr4 ___...___,_,..-~,...____.____,_f., __._____.,__.__.c'_" _.,. _. _ _ - _,. 7.'_,* *f."_..U_E_Ud...E _
Figure 4-4 DAILY WATER TEMPERATURE [*C] 25.0 25 00 24.0 24.0 23.0 23.0 22.0 22.0 21.0 21.0 . AMBROSE TOWER 20.0 20.0 19.0 19.0 18.0 18.0 17.C 17.0 16.0 16.0 15.C 15.0 14.C 14.0 13.0 13.0 12.C 12.0 i l BUOY 44003 11.0 11.0 l l l O 10.C-Illi lill Illi lilli Illi Illi Illi Illi lill lilli Illi Illi Illi lill 10.0 O 15 20 25 30 5 10 15 20 25 30 5 10 15 20 I JULY '82 AUGUST '82 SEPTEMBER '82R SCAN 4-26 co~yonar,0~ ~ ~ ' ~ T. 1 -. E. ~,.
p remained in an essentially steady state throughout. Satellite SST estimates from due sout'h of the site (40*N, 72'W) likewise suggest a nearly steady state ocean temperature, in the 20-24*C range. The Ambrose light tower, (Table 4-12) tended to confirm this value, except for a brief dip to 15'C during early September. The nearest operational NDB0 buoy (443), to the southeast of Cape Cod, was located in a region of strong SST gradients. It also exhibited rather marked variability in its hour to hour water temperature readings possibly indi-cative of instrumentation problems. The minimum daily values suggested a slowly changing base reference value, which perhaps represented the true temperature. These data are plotted in Figure 4-4, and show a steady rise into mid-September. In Table 4-12. maximum and minimum air-water temperature dif-ferences were noted for each day at buoy 443. They showed a definite preference for significant over water stability in that area. Around the immediate envirions of Long Island, however, water temperatures were warmer (20'-24*C) p throughout most of the field project. 4-27 R SCAN CO RPO r-M TIOry l l'
(m 5. AC0USTIC SOUNDER ANALYSES \\ 5.1 General Characteristics As indicated above, the acoustic sounder data acquisition effort was successfully completed as designed. Systems began operating within one day of schedule, and continued for an additional week beyond the initially planned period. Overall data capture was well in excess of 95%. A problem with drifting marking power intensities did make some of the traces more difficult to copy and interpret than would normally be the case, but rarely prevented an intercomparison of lower PBL structure between the two sites. All sounder tra-ces acquired were labeled, photoreduced and duplicated, and compiled into a Data Volume, submitted to LILC0 on 31 January 1983. S Upon receipt of the first traces, it immediately became apparent that in a b significant fraction of all hours the traces from both sites were very i similar, and in many cases, indistinguishable. In fact, care had to be taken to mark each da/'s traces as to location as well as date in order to avoid possible intermixing during handling. The obvious similarity of typical traces can be seen by inspecting the representative sample: shown in Figures 5-1 to 5-5. Figure 5-1 shows an intense elevated inversion with minor wave activity, slowly' growing in depth during the night. What appears to be a nearly neutral layer,~ with possible weak.. thermal plumes, is located closer to + the su' nce. These plumes do appear slightly more pronounced at the plant r l site, but this does not represent a significant qualitative difference l l in PBL structure. On these traces,~ horizontal lines are 10 m apart, and iN, Q ~ } l the; vertical markers represent one hour intervals. [ a( Q _ 5-1 1 - l ^ R SCAN _ -~ Y,
F f .csinitut itsc. .. // Arn: VIP.ONMMT sWC. ' f)/ As!.:r. [ a Q jg;. .e. p.:x........ n. c,... ..g f, -v 2, , cai n,, m
- 3 i e t sup.
...t__. ..i .. _ i(. t ~:. I. _. : L'__-'.. l :. L-. t_ ,t g- .p..i.. .h. 'T{._n. : '. -~. ~.. -r - l g
- .2--
j, ..1._,;-- g, , p, g .. 7 T ' - ~_ f i .l.- 1.~.d{.k"g::;:-. D.T.i *'
- - p,, :.
- ._ =
.-. ;. p, ;- ; - p. l 3 e t a s,0 j._.-- .I 4. {- y,,. . ; :g t
- u...
.k.j.., _. ... _ __.:Q..X. ~. r ..:l.=. t:-~ z ..~ \\ '. --.. ?- - r--- ?w j g .j... i ,,,l. -I- . L- [ i.i - L .;;-.; 3. - -
- '
- ".4.
p .g.i.;_: ]J.1 i r_ _.._
- ,7=.. _
I l y 3[i:l,r =I.. r '- I... .g_-.... r.._: j; r-- p 3 .. r=- r 7* i. .y c:7 j ;. lh. n E\\ %{.._. _:.
- r
._ r_.:._ 'p, 1 - 4' g._ E 'g._,,- :j yo l h p( ) i g
- p. l,I
.y,t. . r g; -.-- :-- t.j,:. =:--- - 1;;'t jif 7.};7;..lJ.
- _~)gj._hg (j j
s y y Q I - -+- -- _ _ :_ 1 .,g ;..___.,...4,g . J 7. h. .y 73
- g..
. 7 l ,[ pr. .fi I hhh k El I .N bh. o M 3-51,a g g @.}gd[.agggggy }' i p.3,s. h, 9 i h. Figure 5-1 Traces, night,,__13-14 September,,1982, for Plant (top) and Shoreham West lower (bottom), page 5-2 e. ' {- - _'Yd, use[i,9
- i- - - -,-.
. je. asnotwoomment nec. .'i.. .,1r. g casaoem.cee a
- i.
-,...e.., epo l movutommen sec .s a m.p c e t. a. w a= = = c ,x : t S ~ l - ;h, ? f a {r " s^ p m 3 _ ,.s. x ~ m-4 tr A 'c L pi--,. R t C -*-~~ ! ~5 d- ;[ h 't 2 ^
- [4p gi
^ ^ i ~ !.ftQy ,Jia M U NW' E~~' 'Mak c e: a 2 L. y 1. m ,.i y_-...._..q-p-.... Mis-g:wk4 g?ig. p ,,7 y y L. n [E '.fp tg t __ ~ ? T W s ih;MMQQ M gh. =. = ~ ? ~, + m ^^ MQ's - v m.x==~n w 3 Q 'c
- 2
- i '
+ M".if, ds 'd'! 4 '.hA4 l W4& . mw fM;' 41t hse %g ^* - -- -n-Mb t e r.h t w d i%it t %.d ~ 4 ! W @ e m a m ew% 4 R W N1R M M M M m !ui s iM M A = i RER 3 n M 5!!iMEBW,MFnsMEF Mn MiMas ?MWMM ' rem h E d emm st w...n e se m m a g i
- *praomo =re =c.
gP A*,Atit P8A. cat *0stes4 enomownw me. PASAf4884. C At WO8W84 Ocart 96. yrt tfirie geny, pg, yng,g,g, j if ._q .____( (n..ew._..... a_. -. 4... '... _.. 2 , w/ .+46.. .,. -. ;..-- t g i .4a. L; 9 ----.... _. -. .-.4 _..g.a.4 gamq Ag_ 4 - - a b-L -- ) 4--. y .j jl sa .plq I - -.2-, 1 I-I[ -+-- r-- - - t-g- i .= 4. , n r. 3-T * *i E ' k' l _.f '-T---- - I* Y _- *' b'k -_..t.!g4..l, ...A... 't ,a '1* I .. - -_- p 6. . a - 'l'. .f....
- j..
L, p ..I ~lto ? g e....- I..,_...h.,,. .9 1. 9,_. , p; -- g---. r A _..i .j %.A .a.. {... J. . &.a. .a 2... i lIl l- '~. ~_ ' , p d 4 ~E 1 1~ .. _. ~ al i. .A 4_ s, l.-. .-e '..a41... i 6 4.A .44 -? p 6_- - g __. t q....r.._..._ a ._q. t; r. .-, j '. "..*,y 4
- ,y.; ;.
_m._ . qig,.t.... U.,_.
- e _
.j i .e 7.. h j._.. p. <~ g p. j' . b. b. ._ 7.... 1 J 4 I.. P'.., _ 'o. - " . - _ * -..- r - .A...___ _. I ._ s... L. , _. 6 ,u 1.. _2. ..._ ! _a _.,'.'."._-'_l.~. g".. '..-p'-- -r l q P
- 8 g-
,,, i i 1 .i .i t. g.- ' '-'-*i-'~'.-*.-"'. _.. a g. , _...,.... T -.h m er1 - -
- ,p.a
,.p_.,.,4.- t +.,. -t M -t h'i .g ,-T*. 1 -l _ g. g.. g _ e i ; y _.@. _.i.'-].I 2.I l..., 4
- 6..
...$:_. _ _m ~. E-I...__u. +o J (._,,,_l, 1. it_.1 .j 4 . ] i._. e.1.,,,, _ (4.{m. -,t -..J C 11[.. _.s .-_-g n 4. Q., ~. "!,I _ E,I-1 I q 4- - m-1 .i
- 4
-~
- +. ; F--a g41" -_ _-
.. ~. 7 j w.q w. 1 i r;-{' ~1M, l n. h-a 11 e , m. -m ? ! . Mg.. X o. alipjif.q _. p g _.. _ i.i:.g'Mf. ", ..'f C..uk p; *t-t Pg if,.,M i a c -c i.. a. as.. ._., y D p.p-H. p 4 :-rerEr ' y r.'I h ET bg__ah r I : E'M L Ni. P r' u :m E! Bft' n . Nc..& F-r r1 I3. --1,; a .W1 -.'. a. 4re.i _. 1 ' m .1 % t.t h 3 4. , Y.. .pla,wL ..m i , i 4pa s :. >i .Is g$)Im,pl a4. -, d.;. .u.- J JI'u.u%..I1.. .rbc 4_ --i- - _. 4. e F } j. I I 7p I 4 <.a-a . ' Yd 'N d N I t -IEE-'{' I i-w.'.i ,a [ ], i--:-b, - S k l - - ^- G n M i wl hb k. L.j,1) Ed 't9r5 bE I [i f I a mr 4, u, .,___._.m .y. ~' - a y'-0..+. g' *.' b.g.. .a. . %,...)4. q# mJ,. 2 .,s o.- .g m y, i. i . 3i, ,i L 4 .a t 'i l' g y'.t & g9
- - i ;+tt --+-
i.' o . u
- n. i
.i e o t n P r L :j Tjr a q tr 2g j a ; 1 [,. m i ct @ / t I l { F igure 5-2. -. Trac.es, daytime,19 September 1982 for Plant (top) and Shoreham West Tower (bottom), page 5-3 l 7,. menowmossesem nec.; - j aJ,7
- annevuecesme n nec.
+4saoem. c=weassa - t omneswas n saoe m,e x ecwena e.d a muas . g. + - i I. a ^ s" ~. h ^ z. m :. m. ..o-. i n 1 rI a i.<j _m IA Y 1 i a 1 i. .i m m ri a m t t . m.m I ). 4 ~ ~ i J - 1 hg
- u. L i'
^ f 'W12r---MA T^ m i --- ;H1,.;_,. : .--I'... _^!- P 'r : ' 11 ^$ J '.) I t o--- 2M f2] _. / + ~ ~ ' '._I ^ ; '_ '. p.' -. - M.. _- t--* *' m i. .i. E_ ^ o ,t m i m m .m- -.r a f.b ^ b f i.i ^ h_kLa _ b i f- !n' 'i ,-j~~~Y ,Z.e[ ^' C. Yr 5 . r .- r.i.- g2 S..'
- t..fL.-A't._
^ i. u.4 y_ _. ;- 4 =7 l 1"Y 3 t w.,..f,g... m...-._...m.._- j - m i-..... t We, m I -i I ,ii i 1.- U_j ' _ ' s t'tt-trd"t1 oi. i '.. ,;C 1-f -If tJ ; f.,'d d "' '- _t ' i n s _ a i 1 - r*, o igW.27 - m
- t..A am
..A. i ' o w,W+,c-39 P..pa _=;1g_- w*++t=p a. i 2 i- _u i
- m. - -.- i, T *~JC' - '
PT
- 1. W '
= a g Mc _. bp_q-q q" r-m
- J 1
u- _u-a __- m. u.i rd W L ' H % u _1 m i -d iil ' ' nm 'e '?' ?^ n -r 4 + %M +R b ,- ^ l'; 17 MMw
- n. M'
. L M;_ it & mit W ti. ^ l "? ~f M 6 P -+^s! 'f t n 2: E.m i t i -hth fW - $ .^ 4x'.M'.I '- _ _. "E.Y.'..i S^ ,f.N R.d'_O I 0 l'_d. .N^gl i I !,i
- r.
a E i -. "uW**f-h-d i. I. O -dG_.a*. ki r i.i ! a I I m , a m a m a iz ;. a. m r x m. mi.. I t I b 's ~ 1 en g-ga w m M. v. qw,pme m t n w - ~ . a.- 4 en ,_u t b.bbbbbbblb; d h k $bb.bkkhk $M E
~ ,2 p / arnoviro m rwttwc. g
- g# isg'* t e o'=N. 7 e.c.noi um. cai a on=
-/I isc ascat e, = inne ._,4 C 'i ;_ ~ ~ - - ._. M .. l _ _ -- oian .2 -- a .._ Z-i. .. i ~. _. F._J...--2 l, ~ . -i jgu.L qg2 y -g 4-2,:j ~ ~ < z, r-F dY ---{,., 1, - 9 h. L 7 r: :_.U, . - -. =. < ii i g 1 . _1' ,._N p ,n,__. y -- ._q-ri-1= -:= ~ V-L - w...- Q :.; i-. :; i f.,.. I:.. - di - I _9:7gd .t,9Wb f. F- _,-Fr-4.._ i.d y i (,i3 s i. .., a e U $,=. _ i j u i,
- -- n.
ac
t u
' :t'd W ~.=~h ~$ y - -.. C 1 l.. r.....,,'. , r -'-- : a
- y Oh:
c'r A.-.!.h..2 . _.. rJp~tb;.d.r 1 -' "r r-C ,A \\ \\ M.~ j.. 7 " -- L & 4 ~ ~' -- 1 ~ > -"' j v i [ Elli. Y.t.MlEE~.NIlJ.*- _.M~ NIli ' : . _... _ -. J g-{. _ ~^ ~ ~ ~ , M_jk, i, bt 4 *~---*23'-- 4_Ng 7 %f;--K - t -- -- I i ~~ l., y 4 4. a.- i --..1 DI I i A,!, - 3n:,4w..i ,,d.._.
- - -- O"
. r---% ,y-lI.. etf.!ik.{ J pdp.Y'- ^ _ _j %- - 6 t-L1 m J E~d$ Ib- *. % -+ t -U- - - - - - + - - - 1 _'t - [hid$8M%IIIW;@0$NMNN$dNIN M M MN F c r n-n u m 6 a = r -- Nii:5 $Ndh4 NMi1$b D O Nh 5$M35M N IN I l F igure 5-3.. Traces, evening to early morning, 21-22 July 1982, at Plant (Top) and Shoreham We t T page 5 4 s ower (Bottom): h.',. .,...... i. 2 '. _ ' W.' 3,,,c, . ?.'.'.W_ _2' o,,,, ,s p: - = l" =---- t}'. ,I nI t. l i.
- _,p t..'... _..
.. t._.: -.- ~' l' - 7[,..3, t-u. I-- 3.i b i L. . # c,;"., i1 tj. 7! [j:Edl.; 3 .; y y 3 y -V. [l 3 g ilh h. .a: s,o,, 1 (' J6 -- ; o s ,f?4 ,.+,..'t.. .}.. :t ' . :. i. lp;,M,y r 1.
- r.i..
I,..' _paj,.. g gjpe,,;n:; , ; it,. _.2.d - i .p==
- + -
i 1.,.,,.. \\ L}h, / 4D ~ + ,y g p n g k-s k 1 f? I t da n. - a- %u m"Q,jjhEG$ym.== e m. v.... M s a m 1p d Q.Ey 'l.i':dp d s, W D.... w,isl!ici3}f35-1; $ $ 5!i E - hg:j C .i.tJ,.lij.f.pM gim - w= m%.wi=wn. =- 3 .a.a. $rm ,o N.liis 7 n hh. o.a.+ w..p~UM. fjinqiyFisgjiT T9.NPif i.h M .mn..gr p.yw e=r.r.%. W. w 4 w N e* w" ' w'. m e
'/ k"'T[;* 06 ge / arnn-awun:v ewc. ,,ntenr ewc. f'. ' ran( c,.m wi m ,nf c"5*'a ("*"='*'* ...l. \\
- c..
1-"}'f ~^IjY p -.- __-- M g;h__._ _.. 4 s = -- - '.pT p'!i~!j g." r-O ~' h 29 Cr r ~ = .I - if=.."gpEQ'. v. .,,h,. oj. ,b m d, j E I 3 . '. 8 :-- -, o __.2) g-- x.x r. f -.. . f :- i M h T3 hi~iEl2:=f W I M Z ~' C T ~ ~ ~ ~ ,..., Q- .a ~.J. d-O U..a g. 4' ct W ~ -,- . '5! , ( . j.,.I. , j 3 f..J-S h N ?}f. ) .. _. z'
- .-.t T- - - ' = 1-~.* r ::
. _,II.. . EU E. i . r-I r I t ~ ~ ~ ~ 7 __i.__,....~_.. Z 'I., - ~x ,.. l '.1 d i g _.. .! n. x.:g'4= = '. 1 _.:2 1.*.. . t 11 '-. J-"w'.. c;t^. l, . } ]h! LT'4'$2dII23
- .*.'!!$. 4 :
r;- =."m n io L- - t -1:i]4]oy d f,m, ' } - - - - 4( 7 - r,;.j - + +d:: -+r-y= r r- - rr! _. _ - =
- 1
'.. _.t _" a.rc.N'.thgv. o.3 : '.L zu i= ?..._..__......lr....,.;&.-.L..::; c- " ' ~ ' ' ~ ' ,., _ _n_z.:... .z 2 4..: O 1 m .. b.. +.. 's . ii - M'-- '*w^-Q r.itUt y + m .[3 C,'7 F C ]i.k J i.
- i{h-i
---~ ; a 4.~97- - -t; tr ..h _,; 2 '..'l c e m--+ d. a +--"t,- r { f {r ..L ~C - r M-g c M 4 g -tf,j 7y;,_,4--- -... ,3g,u o 7 - t-rt 'h. - - m . L,4~ L. eN d ir , '!' ?WP ., ^ =H.q;rnr.!; gr. t:,b. Mfp ;_i [ l I I' } q , I'l.dg. ! '.kjZ E 4,[, ~ CI'iur- @M g. %.; i Mi m' ^1i ra. 3 tFd -- +-+ @m=$-2 dd f.EM%1.i.E n. il N, u h.R$.$ y%MgT.g,U,A : dad Y m. g.y.<.... ll il l l j Figure 5-4.. Traces, morning to early evening,14 September 1982, at Plant (top) and Shoreham West Tower (Below) i page 5-5' j
- g. ) c....
,pf) s g g rasar r .wtns suc. anne r,,. ecoa. c,.m m.,,,,. . p.c c,... I p. _.____j' E.1 -x*d --- r Eri:
- x
. _ = i , yh: . crr. m 1 ?, g rt.', 7" !itI:rt'- r r _ l :rr.c ~ j q ?"- I s i --t-3 -ika % = ::
.
h =. : : ='= r- - - - - f f3' 1 'd b I-1 ~ ~ -W~ ~' " Ui$, I.t qf r.! 3 hy & g big; , f ..y .r m 1 --=== = = =1 ; .. =ur
==
- = =-
d.al. '.!2 E Zd ~ ~E 2 O 7EN --H-~~~~ E E s 1 t i j.g+. 9, j. M.i_j4,. hig,d'. p' !. .*..r7 i I j lc. j~~-3, r~ r : z' "-{.l gr 27--"e-- =- l 1 NC - ~^ p n.c i a 3 =. r= m=s. n &. + g n M = Mk.ngh, :y-t 4'. Q %n s.em=
- =L
= ~ ~ A%qd(pm' >f b l 9t,E; qu_ ,p ._ w +u +- w -,+ w E n s . FFC M-Td -- '--IN N:4p~j.Set v h 4 .i
- .a s.
c :__ _ -.- = . ED i:MH 2 41 d h. 3 yQg4%p=:pR pb =w n.&g m n-~ r=l h,.H.v.mt+Qn-i-- i-7 q it:, = =, - k r J r 12 : u x nie @)i y =*%p-: v: nq a n.n:W%n t;l m q j ~ =: My ( w
== ) MNd.MNEEMDfh MN l.WEUE RaiEEE n d d W IN9% %$k % @ M. M N M8MbME eh
Figure 5-2 represents a period when a deep neutral layer extended above 500 m with marked thermal plume development throughout the layer. Again the thermals appear just slightly stronger at the plant site, plausibly due to the larger area of heated ground near the sounder. However, ambient noise spikes also can on occasion appear much as thermal plumes, and when inter-mixed, could possibly add to the impression of enhanced thermal plumes. As before, however, no substantial differences between the two sites are noted. Figure 5-3 shows a complex surface-based inversion with pronounced waves. The patterns at each site are very similar even though separated by nearly a mile. At times, differences in the height of the inversion surface do appear to vary by perhaps 50 m, but these differences (likely the effect of propagating wave trains) were generally confined to altitudes substan-tially above the 150 ft anemometer. b l l Figure 5-4 shows what appears to be a distinct difference between the traces, namely the appearance of a series of sharp vertical bands at the plant site. In fact, these are the signature for bursts of environmental noise, easily recognized, and often annotated as such by LILC0 staff. The noisier plant location was in fact expected to exhibit these trace characteristics. The impact of the ambient noise, however, was found to be sporadic and generally of little consequence to the meteorological interpretation of the traces. l After all traces were photoreduced and copied, they were included in the daily data files. Visual intercomparisons were then made between the traces on a day by day basis. Except for the expected differences due to ambient noise, l L]J 5-6 R SCAN \\ _ _ ~ 1
marking power intensity drift, and occasional time shifts due to either d variations in chart speed or the propagation of wave-like disturbances, l few, if any, significant differences in diagnosed lower PBL structure were noted. The principal question to be answered in this report is whether or not the turbulence pattern 150 f t level data on the Shoreham West tower are in fact representative of conditions at the same level above terrain near the plant. If l l l simultaneously acquired acoustic sounder traces from these sites prove nearly identical, a high degree of confidence can be had that the turbulence and transport processes within the lower PBL are generally similar at each site. First impressions certainly indicate that little significant variability is to l be found between the tower and the plant sites, at least above the very lowest layers (above 50 m) of the PBL. We will now engage in a more detailed study of the selected case study days. R SCAN __~
TABLE 5-1 ACOUSTIC SOUNDER PBL CHARACTERIZATION CODES Total {D Observed Steady........ 14 ~ 1 Stable Layer, Single, Alof t, No Waves Ascending..... 9 2 Descending.... 2 3 Steady........ 15 4 Stable Layer, Single, Aloft, Waves Ascending..... 9 5 Descending.... 6 6 Steady........ 2 7 Stable Layer, Multiple, Aloft, No Waves Ascending..... 0 8 Descending.... 0 9 Steady........ 8 10 Stable Layer, Multiple, Aloft, Waves Ascending..... I 11 Descending.... 1 12 Steady........ 78 13 Stable Layer, Single, Surface Based, No Waves Ascending..... 3 14 Descending.... 2 15 Steady........ 12' 16 Stable Layer, Single, Surface Based, Waves Ascending..... 3 17 Descending.... 1 18 Steady........ 26 19 Stable Layer, Multiple, Surface Based, No Waves 20 Ascending..... 3 Descending.... 5 21 22 Stable Layer, Multiple, Surt ee Based, Waves Steady........ 139 Ascending..... 5 23 Descending.... 3 24 (_ 25 Thermal Plumes, Tops Above 500m 42 ( 26 Thermal Plumes, Tops Below 500m 73 Steady........ 58 27 Thermal Plumes, Stable Above, No Waves Ascending..... 18 28 Descending.... 11 29 Steady........ 66 30 Thermal Plumes, Stable Above, Waves Ascending..... 20 31 Descending.... 21 32 40 Weak Patterns, Unclassifiable 7 41 Complex Strong Patterns, Unclassifiable 0 l 42 Atlantic Sea Breeze FROPA 15 43 Thunderstorm Gust Front FROPA 3 44 Sound Breeze FROPA 11 i 45 Environmental Noise Predominates 2 46 Wind Noise 0 47 Rain Noise 13 1 48 Synoptic Front Add 50 to above to indicate trace very light, making difficult interpre-tation 3 9 99 Inoperative NOTES:
- 1) Ascending / Descending assumes + 50m change in prior hour
- 2) " Waves" require 50m amplitude during prior 2 hours n
5-8 R SCAN COF-1PCHA7 TON
i d i l 1 h \\ d TABLE 5-2 ACQUSTIC 50UNDER PSL Ot4AACTERIZITION CODES 70wtR SITE MOUR tuothG [Z T!nEj i &L 19u2 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 15 [6 .l3 ilF2 l'2 lFF lPZ l'2 !? 22 22 22 22 28' 44' 25" F5' P7" 42 Ji 30 30 32 32 32 32 i7 , 3 ,,3 , 3 .3 ,3
- l
- 3 13 13 13 25 28 44' M'
i'6 " P6" P6' 26 25 25 25 29 29 29 .5 . 3
- 3
. 3 ..3 .3
- l
- .3 13 13 13 27 27 25 44' P6' P6
- '6" 26" 26' M
26 29 29 29
- 9
, 5 . 3
- 3
.,3
- ,3 J;l 33 13 13 13 13 25 25 26 04" P7" i' 7' 27 43 4
4 5 4 4 PO 7 7
- 0 4
4" i> 4 5 6 19 19 31 31" 27' 27" F5" i' 7" 47" 47" 47" 47' 16" 16" 16" 4' 4' 21 16" l'. l'. l' 2". l.' l '. 6.' 5." 5." 30" 30." l l." i5' 25." 25." 25." 2 5." 25" 25" 42 77 7.3 7
- '5 22 22 22 22 22 22 22" 22 22 22 22 22 M
25 M' M" 26" M' M M M 29 29 29 P6 = = = p7 pg g, g J1 01 02 03 04 05 06 07 08 09 to 11 12 13 14 a5 16 17 lu 19 20 21 22 23 24 O_ 1982 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 22 24 22 22 22 22.' 22* 22 22' 22* 2 2.* 27' 28" 28.' 27" 27' 27* 27" 27' 27' 27* 29.' 29 27 y 3 4 22 22 22 22 22 22 22 22 22 22 22 31 31 44 30" 30' J0" 32' 31' 42 27 27 27 27 22 22 22 22 22 22 22 16 17 16 16 17 16 30 JO 44' 27" 27' 42 M. 25 43 21 20 5 13 . 3 19 P2
- '2 l'2 i'2 i'l P2 l'2
- io 31 P6 i'6 25 25 25 M
M 25 25 26 20 l'6 9 13 3 13
- .3 4 3 3
. 3 . 3
- 3
..3 3 13
- 8
'5 99 99 99 99 99 99 99 16 II li5 .0 5 < l7 6 <ll d l7 .6
- 7
, 8 ifa. .9 9 31 i!6 44" 30" 30". 30" M.' 26" M." 42 . 3 D 22 22 22 22 22 22 22 22 22 30" 30 30." 31" al" 26' 26" M." M' 26." M'. 26" 26" 26' 13
- .o
- .5 M,
a* n1 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 acte:
- Indicates enshore flow D11 k
5-9 R SCAN CO RPORA T IOfM
B -w t i s l TABLE 5-2(continued) l l l AC00511C $0UNDER PSL Ot4A4CTEAIZATlon C00($ 10WEA SITE IIOut Em0 lug II-TIstE3 i 1982 01 02 03 04 06 06 07 08 09 10 11 12 13 14 15 16 17 18l 19 20 21 22 23 24 l aus 16 17
15 40 40 45 15 16" 16" 19' 20" 20" I t" 24" 23" 27" 27" 2 7'. 25" 25" n.'
25." 45" 45" 25' 42 27 j
- m g3 37 l
_ H,,3
- g l
- ;g l ',I JO ll 01 02 03 04' 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 I I l O ) l J 5 EPI 1982 01 02 03 04 05 06 07 08 09 10 ' 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 19 l'l 19 19" 19' 22" ZZ" 22" 22 ZP 22 23 M' M' H5' M" M"
- '5 "
M" M" M" M" 2" 2' 5 2" l' 1" l' 2" 2" l' l'
- I" l'
10' 30" 30"
- ll' 32' M'
i'6 " 26" 26" 42 1 1 19 44' i' 7' 21" 27' H7' 25." 25" 42 30 30 22 6 22 Zd 22 22 22 22 22" Zi. 22 2P. 22 22 M. 7 5 27 27
- '7
- 'l l'7 27 N1 H7 P1 27 M7 27 25" 25 25 30" 30" 30' 30" 32" 32 42 2
4 l 22
- '2 P2 H2 22 J2 22 23 25 25" 25" 25" 25" 25 25 25 32 32 72 9
/2 22
- '2
- '7 i'
( no 23 21 FI
- 9
- .9 22
- '2 P2 H2 22 H2 22' 44" 31" 31" 31" 30" 26" 26' M'
42 32 30 30
- ll 24 22 P2 H2 J2 22
- '2" i7" MZ" N2"
- 7" 23' 30' 30" 30' 31" M"
M' 26" 26" 26' 42 30 i9 H2 ,7" P2' 23" lM' 30" 30' 30' 30" 32" Ju" 30" 31" 42 27 9
- .2 19 22 22 ke
- '2" 22" H2' i
. 3 72 22 22 22
- '2 10
- O
- D
- D LO 10 30 44" 30" 30" 30" 30" 30" 30" 42 32
.ll 4 '4 5 4 4 6 5 4" ii 4" 5 6" 32
- I; L '
30' 32" 30" 30" 32" 30" 30" 30" 30" 42 00 . 6 3 13 13 13 19 22 22 I U. 13 71Tl.i ';'2" 30" 31" 30' 32" 32" 30" 30" 30" 42 12 10 5 19 19 19 19 19 22 22 2d 22 22.;- "" 30" 30" 3 2." 30" 30." 30' 30 42 30 30 30 , g y PD 13 13 13 13 13
- 3 13 13 14 13 13 47 47 34 25' 25 M
26 47 47 26 26 47" 26" l'1 Z I' 27' Z T' 21' 27'
- ' I' 27' 27' 27" Z I' 21' 27' Jo' 30' Z T' 2 T' Z I' 26' M'
26' 26' 26' 26 26 13 15 13 13 13
- . 3' 13" 13" 4 T" 13" 47' 47' 13" 13" M"
26" 40" 26" 26" M" M" M" M' 26' 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Note:
- ladlCetel SR6here flow D-P0F-13 l
j 5-10 R SCAN Con r' ORA TIOfM w
A 5.2 Categorization and Analysis The proper categorization of acoustic sounder traces, which is basically a subjective analysis, is greatly assisted by the ability to reference as much informa' on about the local micrometeorology, regional mesometeorology, and synopti conditions as possible. Thus, for each of the 30 case studies selected for more intensive analysis, use was made of virtually all data assembled in the daily data files. Selection criteria for the case studies were skewed towards obtaining a larger sample of onshore flow regimes (sound breezes, TIBLs). A total of 720 hours of sounder traces were categorized. Table 5-1 shows the system of categorization codes that was employed. It is derived partly from the approach used by Schubert (1978) and partly from the author's experience in sounder trace analysis. Table 5-2 provides a l temporal history of the PBL characterization codes for each of the 30 days l (note that
- indicates onshore flow at the Shoreham West tower). Not unex-I pectedly, the most commonly occurring classes represented stable inversion layers, single and multiple, elevated and surface-based (39% of all hours).
Thermal plumes, with little indication of a stable layer above were found 16% of the time. For those cases were thermal plumes extended above the maximum range of tha sounder (500 m), a height of the mixed layer of 750 m was assigned. Thermal plumes, but with indications of thermally stable layers above, were observed 20% of the time. 9 The onset of the sound breeze at times was marked by a frontal like pattern of 1 l echoes, but more typically was masked by other structures. In most cases ( 5-11 R SCAN CO R i^'O RA T ION i
k'I;,;
- %E_h. m*j
} ~ k.- B;; ~" ! $ N_ h. h.. m. .m .pl r.-p=,'t%$'l . ] F ggfc 41 =- jlY' Md~j.r. h ,. i. ! f. ; m a m .r rr h wA,m:3. M$N 4, xi b., i } '; fi. h,h 7 0-iis 2eeda.wy.,P !y 1
- gl'!b fW
=i@
- t.L.-$(.
'.s E .ti: l s'f M%C !
- g p +.+41 dje=-
a-so- '.n t < i t. 34 p ir M .T.l...j.yi 8Q g m.C'4T lf'2M I.[Gr = A{n v:Ti M M -QRW W, ~1 cir.. +. strnt - - #2 i, % *e , n.in , w 'de-a mi n it-1 i f f. a,.,4 '*q,_ i'
- y M!
.t-m..g.t jT 'r ;} : ff6! 4 g _a m. e m. g.
- i:
e - c.: s_; -rP, c. a J ..vu.j p m; 7 - C.. ._.,4 T -- ~ ,.. ; s ,., i....i..am ,,.,,c T t -[ys m"-....um - 9,j.. w : + w. >,r o
- 3.,:..-
7,E.n y.... ra_:.m C'i'N. 77~' L7. t.er r r;4
- i. 4 t[
. tit wM;)l e e rs ;.: t r 3t a .jt: H y .ai+ e. 3 .w. = - - - i' 3 r< ....J g u. p,b h~ . 4 fk '. k. i-diF;
- d r4q.}
yy ..u --.c i
- w
--,_;--., - - -I ib{,j.bh ~ l. s l E-*
- U '
[. :', m g n .{..,, p.p r. M T su .. J :.ii.1,,w' i 'Lt IT m '( e. . l.
- 4.
p; l03 e- \\{.. f 4 ,j r? i. ..._ 4. _ p. s:s-~l.. I
- }'
, h. .I.8 Y3 . ~ s /;Gv s w
- =.
klH $.,7. A.< T< s- ~ 44 ,H,;j--i. i g - .. ;.t. m ;,. a
- s 71.=
m. l ..I[ .!'i t j $1M II$ - m%,,#.-,. 4 +f, t ,.,3 2 4*W '.ha
- 6.....=.. a.-
m % er .t. .ax bY m til TJrfh M* !.1. i 5-E 'p. 1e 41. h IM1l @..E .ew < --9
- i. _g l:'
~ k . ;;.,vi, g s-- I I l ~- - lTJ g p ]. e hh Lfh . ' + ' Q 44$ :.'*' d %-L 'i:.: .9 g + 46 g l 4.e g Eg y . :-.-- g - g Ec 't - _a4 '.I r ii'g. q' n: s fi. Il'8 .1 Dg. 'O" W'.
- jwfg-5.,.
i4 .,..a. 4 i.. w... ~ . s q gJ _3MEs>a tt ., 4,1.....j <m., i si. 2 6 .l. 2-t e t i N..., a{ li g 11uA4 ) **- .1 d]>$ oj 44 o -e'. i ei \\*** 4 t <b 1 .i $i i.' 8 e .&.e-1
- ")
. II 3 (..1,j d I
- e. T, i1 3< 4, i -
- y.
t R SCAN ?. e@h1 * %.2.w,2.di W$d x: lb. :TL F. 4.s :,1n n-Ln
Y ?h YY ^ ; j,, a Y. _ ' $
- i... _...
.Otp ' d. eM i t j .-F. - i..; -l 3 l ,f. ... 't,3.a$ -. =-....-a . t. i t- .l: ,e ye-- i g .j-j4 s i.A, , L e g -l l I I i -.:g. j. p -
- ijl,
. e-I - ?y eE -- r=- r. e* 'T. .n:M 6 l. :... -.. t' s wM. n..wt.{v. :-:; L._ M a. . a.ua,_.. s_. 1 a ^ "-2;m s... N t' 4 -,I" _r. i - %w.'_w 3.ew] ') eW'd TN AN *[Yh d'"- E-a.j- ' ,{,Lli' g 7 m.m . k'c e = i d;'.*.7lI'..~ ; 1 O_l!. G 7 *-5 Ah m 5 g . tiisma"E-@-W~'M.p e+3: aM5JD E ~ .:re -d W g-e.""t.a _ 1 F EM Eh rt, j ert rt;u-t 'a r'*w1 3 t1 T f ra - t r* -.- w-.Swsow-se=u.r.s o, r-C L. .a q. m [ hir=~qi.T-. . W.. ,, e .t.1 gs;;g g
- w :p.
. a- <m a,M,., n-rw:.
- s. :
""NW. 2 47 W-- ~; ~.. +. v~ -qLM 4.tm.7se.2m:::a:) m -, n.- l i =u. r_: =m. --
- . : :.,,.. = -,-
Li. r_idM, M,.-_-'M a l l !, m%- : ' - e
- p
.T- - J - :.- 1 e --- --* ~ M : L-w' =,- _ _ L. -.. y;.. -, ..y,'<-".'r -'-'. ..g. q.p g ~ r..
- I
. ;,i ; 4, ; :. ;., i T ... m -,,-.. . y_ r- + ~.,- . ---m .m .-r,= . n e, y g ...2 _ u = -= m $ ~,- _.- _ _. _:.x I W .._.-.,,..q.,; _4-o- - m._ +, i , e -.m4.,.-- i r _. __. : _%- --- 'T'l,6 i ,i.._. 2,:., d iE,ll 3~. w~4 $41 I e. m t.===-
- I, 1.El, ! "'.b:..,...
I I e i..
- Trp i
6 .. h. - .4.-n._
- ts.
..,_ n _1 e .. w,, ,' ;.a. - $. k 1M* W ^
- 4. ;.ny;
-. Hi y M e .i 4.m:, +w . :, ;m-s, -+. t w _. -
- a. A w
=- H.;,.-.- y-u ____ ;m. _2, P .f' dt _d .-i q.'y~~ d 2-3-*-,i- - :- = l L - - -.-i N - li' MdM Y:_. T. U.d.i @ ! i" i J r 1 i' . d..i a e MS+... _ c;..,
- 4.. '
7"
- l8
,r n-: .. -[ ;..; 3.H.
- t E., p-
.-i f ri.1 ~.s.t - 8 . ', '.._a4.:.S.. w.$. $r-b** ..j. p.t ..' :. ' ' [ :: r*-* 4 1 _.m..-.. LF" W g
- F.
. ::r e.m.. ; -M. Am, - -.i g'f,,g 9 i --m. s g a+,,,.: we "' p +..n!6.l.e.$ .-il w~--- f ';: .'~ 5= st.; ;i.. i i. I. IM ..* I ~ P. r* -rw4'> * - = - 1 F
- f" TT;s
- T t'! -
*'"1 -^ * * * .+: -e! d
- ~
'Z. ;,y - .s t y _.. l - r- -, s t.P 1 i' w eg-a d i .i :. f ,4!
- 1. [.1
.tr b-. y. -* g .u + d etw. ..T4 ..g . i j ;1 g i-I * ,16 lbeJ J.c >gC e - r. .#*F t -.-r-L4 ,A4=, ~.e=s e. p...a.. 4 e..a, N..{3-t~, - r%,.M.,,. ~~
- 1
~ Y , F I -u- - = N~ W'dlggli?,.. -O.f@RR R SCAN a
- 4
~: A*h*-O g *1 co+om7o~ 4 t,. : i Ls. - h.le.'
- 'I*
4.L 'g.-- T e-3 4* L.' * (K,,,u
- T'e s
q u. e..n B 14 g. pl %.,,,..lz 6 e.
- is a
&e= _
mixing had already begun and very weak thermal plume structures could be noted, often to the 500 m level. Upon soun'd bpeeze onset, more intense thermal plumes could appear, but capped by a definite stable layer. The ASB had two typical manifestations. It did sometimes appear as a classic frontal surface (Figures 5-5, 5-6). The front was gently sloped, and might extend to 500 m, or perhaps above. This apparently marked a zone of chimneylike updrafts known to be present with such features (Keen and Lyons, 1979). Immediately behind the frontal signature, a definite' elevated inversion surface would be found, this marking the top of the Atlantic TIBL. Beneath it would be found weak thermal plumes. The more common ASB frontal passage, however, was accompanied by a complete lack of any strong echoes. In fact, the sounder trace tended to go blank or be replaced by a pattern of weak, mottled echoes. It would appear that the ASB frontal zone was a region of intense mixing, thermals and udrafts, with the consequent adiabatic lapse rate. This lack of strong tem-perature gradient within the sounder beam itself is consistent then with this observation. It could be the ASB frontal zone represents a region of larger scale upward motions, perhaps convective elements substantially larger than typical thermal plumes which yield the familiar spike-like signature. In either case, there is an abrupt transition in the local PBL structure during and af ter l the passage of both sound breeze and ASB fronts. 5.3 Similarity For each of the 720 hours, a subjective deterniination of the similarity of the structure of the lower PBL as indicated by the two sounder traces, was made. A simple code was devised: 5-14 R SCAN _ _ ~
A = no apparent differences in lower PBL structure B = possible differences in lower PBL structure C = differences likely in lower PBL structure D = missing data; categorization not possible The B category generally resulted from one of several causes: weak echo patterns making determination of structure somewhat dif#icult; chart timing - errors putting discrete, recognizable features at both sites slightly out of phase; wave propagation effects causing similar features to occur at slightly different times; somewhat different patterns in overhead complex wave structures. For a C category to be noted, distinctly different atmospheric processes at each site would have to be in evidence - convective plumes at one versus a surface-based inversion at the other, etc. There were no C situa-tions noted during the project. Twenty-six hours could not be simultaneously classified at both sides for one reason or another. Of the remaining hours, 635 had A similarity class, with only 59 showing possible structural differences between the sites, and therefore being rated a B. There were no apparent dif-ferences in the statistics between onshore and offshore flow (Table 5-4), although a slight tendency towards more B classes was noted duirng offshore flow. This usually was found during period of PBL growth in the early morning hours, when patterns are complex and often rather hard to discern. During onshore flow, when a determination could be made, 276 out of 297 (93%), off all l trace comparisons suggested no reason whatever to suspect significant PBL dif-i ferences between tne two sites. The depth of the nocturnal stable layer, and the daytime mixing layer (herein both called the mixing depth) were similarly analysed and intercompared. This determination, again based upon subjective analysis and interpretation, was O/ 5-15 R SCAN CCHF >OH A T IO!V _-.._-,._.___...._._..__._._._..__._._.m,_,,_.,_._.,,_.,
. ;1 TABLE 5-3 v $0unDER TRACE SIMILABITY NOUR En0!bG I-TIME f Il M 1982 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 a e a a e gg 16 D D D D D D D D D D D D" A" A" A" A" A A A A A A A A ]7 A A A A A A A A A A A A A" A" A" A" A" A A A A A A A 15 A A A A A A A A A A A A A A" A' A A" A" A" A A A A A 19 A A A A A A A A A A A A A A A' A" A" A A A A A A A TO A A A A A" A A A A A A A A" A" A* A" A" A" A" A" A" A" A" A" A" A" A" A A". A". A". A". A". A". A* A" A' A" A" A" A" A" A" A* A" A" PI A" A '. pg p3 pa P5 A A A A A A A' A A A A A A A B' A" A" A" A A A A A A P6 = = = = = p7 HB = = = p9 _3g 31 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 C-PDF -21 AwG 1982 01 02 03 04 05 06 07 08 09 10, 11 12 13 14 15 16 17 18 19 20 21 22 23 24 16 17 38 A A A A A" A" A* A" A" 5' B' A" A' A" A" A" A" A" A" D" C" B" A 5 39 IG p3 py P3 = = = = = = = = = P4 p5 = = P6 F7 pg 79 L ,Il 01 07 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 i C-PDF-17 I ,f "-'s ((/ 5-16 R SCAN
( \\ TABLE 5-3(continued) SounCIR TRACE $1MILARITV N0bt EB0!nG [2. TIME) aus 1982 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 A A 8 B B A* A* A A* A* A* A* A" A* A" A* A" A' A* A* A* A* A A 7 3 4 A A B A A A A A A A A A B A A" A" A" A" A" 5 A A A A 5 A A A A A A A A A A A A A A B A" A" A" D A D D B 5 6 y 5 A A A A A A Ai A A A A A A A A A A A A A A A A A 9 A A A A A A A A A A A A A D D D D D D D D A A A A'. B. 5 A' A" A" A" A" B mp A A A A A A A A A A A A. A A A" 1 3 ,y '~~~' l A A A A A A A A A A" A A" A" A" A" A" A" A" A" A" A A". A". A". .A 01 C? 03 04 05 06 07 08 09 10 11 12 13 14 15 16 l 17 18 19 20 21 22 23 24 { l C.P0F-13 I 5 EFT I 1982 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 l i 2 3 4 A A A A" A' A" A" A" A A" A A A" A" A" A" A" A" A= A" A" A" A" A' 5 A" A" A" A" A* A* A" A' A" A" A" A" A" A" A" A" A" A' A" A" 4 A A A 6 A A A A 5 A A* A A A A A A j A". A" A" A* A" A" A* A A A A B B B B B A A A A A A A A A" A A A" A" A" A* A" A A A A 9 A A A A A A A A A A A A A A A" A" A" A* A A A A A A . 0 A A A A A A A A A A A A" A" A" A" A" A' A" A" A" A A A A l 1 A A A A A A A" A' A" A" A" A" A" A" A" A" A" A" A" A" A" A A A ,2 A A A A A" A' A" A" A A" A' A" A" A" A" A" A" A" A" B" B" 5 A A 3 A A A A A A A A A A A A A A A' A" A' A" A" A" A" A A A u4 A B B B B B B" 5 D' A A" A A" A" A" A" A" A" A" A" A' A" B 5
- 5 5
B B B B B B B B B B B" 5 A" A" A" A" A" A" A* A" A A A 6 A A A A A A A A A A A A A" A" A" A" A" A" A" A A A A A 7 g PD A A A A A A A A A A A A A A A" A A A A A A A A" A" P1 A" A* A" A" A" A" A" A* A" A" A" A" A" A' A" A' A" A" A" A" A" A' A A P2 5 B B B B B" B" B" B" A" B" A" A" A" A" A" A" A" A' A" A" A" A" A" 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 f I G 80F-16 s 5-17 R SCAN CORF >OH A T FOfV
TABLE 5-4 SUfEARY OF THE ANALYSES OF SIMILARITY OF ATMOSPHERIC STRUCTURE IN THE LOWER PORTION OF THE PBL AT THE TWO SOUNDER SITES [30 CASE STUDY DAYS] 0FFSHORE ONSHORE ALL CATEGORY FLOW FLOW CASES 4 A Essentially Identical 359 85% 276 93% 635 88% B Possibly Different 43 10% 16 5% 59 8% C Likely Different 0 0% 0 0% 0 0% D Data Not Available 21 5% 5 2% 26 4% 423 100% 297 100% 720 100% O 5-18 R SCAN COH! CH A7 rO!V
., O accomplished by penciling in the estimated mixing depth curve upon the reproduced sounder trace, and then reading off the values hourly to the nearest 10 meters. The traces from each site were analysed separately. Note that the entry 777 indicates that one or the other site had mixing depths greater than 500 m, 888 means one or the other trace was unable to yield a mixing depth, and 999 means one or the other sounder was inoperative. Differences could be ascertained for 560 hours (78% of the time). The average mixing depth difference between the two sites for all hours was 22.5 m. This further supports the homogeneity of conditions at both sites. As one would expect, the number of hours with mixing depths above 500 m were overwhelmingly weighted towards the daylight hours (69, or 96% of the observations). About twice as many of the hours for which the mixing depth could not be ascertained (codes 888, 999) were during the day, the result of the large number of observations of weak thermal plumes without any obvious limiting stable layer above. During the night, an upper limit to the likely dispersion of a near-surface released plume could almost always be determined. As suggested by Table 5-5, there appears to be no apparent bias towards under-or over estimation of the mixing depth, either during the night or the day. In fact, for 111 hours, values within 10 m a each other were analysed (20% of the hours for which a discrete value was obtained). l The distibution of mixing depth differences as a function of time of day and direction of the low level wind was investigated. On the whole, differences tend to be smaller (less than 20 m) during the night. This is because the noc-turnal stable layers produce much stronger and consistent returns, and are therefore somewhat easier to analyse. Also they are shallower and less subject 5-19 R SCAN CL)H F3O F,'s\\ T IC)N
to large amplitude variations. No obvious trend in differences depending on \\ whether the flow in onshore or offshore is noted. During the night, the 150 ft sensors were generally found within the nocturnal 4 inversion layers at both sites. During the day, since virtually no surface based inversions were detected, and since the mixing depth was almost always greater than 150 m, it is apparent that the middle level Shoreham West data are generally embedded within the same atmospheric layers. While site specific differences in turbulence and temperature lapse rate may exist, they would appear to sufficiently second order in nature to be largely unresolved by the sounders. i J 5-20 R SCAN _ _ ~ i ---,..,-..,,-.-._.......,....-,._,.__.m_.,-,--w..,,.n-m.,-- ...,_,_.e,,., -..,w., , _.,,,.e
TABLE 5-5 DISTRIBUTION OF DIFFERENCES OF AC0USTIC SOUNDER DERIVED MIXING DEPTHS (T0WER MINUS PLANT) [30 CASE STUDY DAYS] " NIGHT" [01-12Z] " DAY" [13-00Z] TOTAL HOURS 360 (100%) 360 (100%) MD > 500 Meters 3 ( 1%) 69 ( 19%) MD Higher at Tower 135 ( 38%) 97 ( 27%) MD Same Both Sites 77 ( 21%) 34 ( 9%) MD Lower at Tower 112 ( 31%) 96 ( 27%) MD Not Determinable 33 ( 9%) 64 ( 18%) i 5-21 R SCAN CORPOHA TION ._-.-,.--...~.m.,___m,.,,,-.,,,,,.,. ,,....,__,-.-__-.-.m,mm__.__._,
- 6.
SUMMARY
AND CONCLUSIONS J A field data collection program was conducted from 15 July to 22 September 1982 at the Shoreham West tower and at the Shoreham plant itself. The key component was the, operation of two Aerovironment Model 300 standard monostatic acoustic sounders. In order to interpret their output and to categorize the structure of the lower planetary boundary layer (PBL) at both sites, a considerable amount of supplemental data were acquired. The strip ciarts from the newly refurbished 400 ft tower (wind at 33, 150 and 400 ft; delta T from 33-150 ft and 33-400 ft; sigma theta at 33 and 150 ft; precipitation; temperature; and solar radiation) were digitized hourly (15 minute averages). An overall data capture rate of
- 94. % was noted.
R* SCAN also received the processed tower data from Brookhaven i National Laboratory (BNL), located 10 km to the south. Anemometer strip charts from the Brookhaven Airport (16 km south) were received, checked, and reduced. All available surface, upper air, marine, and buoy observations for the surrounding 200 miles were acquired via real-time climatological (RTC) data gathering with the assistance of WSI. Facsimile charts and GOES satellite ima-ges were included in the 70 daily data files (00F) assembled to support the sounder chart reduction. The project period was typified by light winds, sunny skies, and rather dry weather. Thus numerous examples of coastal mesoscale regimes (CMRs) were recorded. Between CMRs and thunderstorm mesosystems, 60 of the 70 project days had disturbances in the mesoscale atmospheric flow patterns in the general vicinity of the plant. Sincetheprohectbeganrather late in the warm season, both LI Sound and the Atlantic had reached to near their maximum water temperature (20*-22*C) by mid-July, with little change thereafter. O 6-1 R SCAN COHi *OHATION f 7, ,,._.___,-,,-_._,.y_,,,,, -y,,,...,,,,,-,,,w.,,,_._,_,-,,-m._...,,..-.,_,._,,,,_..,.,-,~,_,,._,--,m-_..,-w- -,..,,,,.,_..,_v
A climatographic analysis of the conditions during the project revealed that the several types of sound breezes occured on 31 days.. Land breezes were noted on 9 days. Periods of onshore gradient flow resulting in fumigation or plume trapping conditions occured 25 days. The Atlantic Sea Breeze (ASB) reached the site 36 days. On 11 days, thunderstorm mesosystems potentially affected winds i within about an 80 km radius of Shoreham. i Onshore winds were noted at the 33 ft level at Shoreham West 76% of the days at 1700Z. This was 562% higher than at the time of the minimum frequency (0000Z). i In many sound breeze or onshore flow episodes, the winds were off the water prior to 1200Z (24 days). When a definite shif t to onshore was noted, the most frequent time was 1500Z, and never later than 1700Z. The time of breakdown of l the onshore flow most frequently was at 2200Z (12 days). Analysis of the acoustic sounder traces showed little if any reason to suspect significant variability in the turbulence characteristics of the PBL around the 150 ft level between the tower and the plant site. Considering that towers at the same distance inland from Lake Michigan, but 42 miles apart, showed a high degree of correlation of wind patterns (Aron and Hodgson, 1982), this is not a surprising result. It should be noted that there are strong gradients of parame-ters normal to the shoreline, however. For the hours in which simultaneous sounder traces were analysed in detail (694), fully 92% appeared virtually indistinguishable. An additional 59 hours could possibly have been different, although no strong evidence was found to suggest this. No hours were found in which the lower PBL structure were clearly different at the two sites. O 6-2 R SCAN C OF4P DF44TIO N .. -,, ~,,,. - - -., -,. - - _, _. -, _, -., - - - -, _,, _., - -.,. _ _ -, _,,,, -.,. - - -, -
Daring daytime onshore flow within the period of study, the mixing depth almost invariably was greater than 150 m. Therefore the 150 ft wind and sigma theta measurements would appear to be within the TIBL layer for daytime on. shore flow periods and representative of the dispersive environment for low plume rise releases from containment at the plant. Mixing heights estimated at both sites averaged only 22.5 m difference. The values tended to be closer during the night when shallow inversions predominated. No impact of wind direction (onshore or offshore) could be found in terms of mixing depths differences between the two sites. O 4 6-3 R SCAN s -m -m v ,r--v,e .,-,w,w1 -n- -,,ne-n----n~----m------- .-n--,,,,,.m, w.-,, ,--n.,--..., wee-w-,v_,-memwn- -,,m. --n-m-
7. ACKNOWLEDGEMENTS The cooperation of the staff of Brookhaven National Laboratory, Dept. of Energy and Environment, who provided significant ancillary data, is acknowledged, in particular, G. Raynor, S. SethuRaman, and R. Brown. Synoptic charts and GOES satellite data were compiled with the assistance of Kavouras, Inc., WCCO-TV, and WLS-TV. Mr. Todd Glickman, of WSI, provided software support for data archiving routines on very short notice, which was highly appreciated. Ron Smalley and Don Huse of Climatronics Corporation installed and maintained both acoustic sounder systems; also on a very tight time table. Particular thanks are extended to Mr. David McGirnis of R* SCAN Corporation whose task it was to collect, catalog, and process the large amount of data assembled for this project, and without whose consistent efforts this report could not have been completed. l l l 7-1 s R SCAN cc. _~. ~
8. BIBLIOGRAPHY ,V Aggarwal, S. W., S. P. Singal, R. W. Kapoor, and B. B. Adiga,1980: A Study of Atmospheric Structures Using Sodar in Relation to Land.and Sea Breezes. Bndry. Layer Meteoro1. 18, 361-371. Aron, R., and S. P. Hodgson, 1982: Potential for Using Nearby Stations as Viable Backup Meteorological Measurement Systems. J. Air. Poll. Control Assoc., 32, 1148-1151. Bennett, R. C., and R. List, 1977: Lake Breeze Detection with Acoustic Radar. Preprints, Symposium on Applications of Air Pollution Meteorology, AMS, Salt Lake City, 151-156. Bornstein, R. D., P. H. Fontana, and W. T. Thompson, 1979: Effects of Sea Breeze and Synoptic Frontal Passages on Sulfur Dioxide Concentrations in New York City, Preprints, Fourth Symposium on Turbulence, Diffusion, and Air Pollution, AMS, Reno, 429-434. Brown, R. M., S. SethuRaman, and C. Nagle, 1980: Atmospheric Stability Comparisons at Shore and Inland Sites. Precrtnts, Second Conf. on Coastal Meteorology, AMS, Los Angeles, 27-29. Burda, T. J., C. A. Mazzola, W. A. Lyons, and G. T. Van Helviort, 1983: Simple Lake Breeze Front Position Technique for Offsite Dose e[J Assessment, Nuclear Technology (in press). Fisher, E. L., 1960: An Observational Study of the Sea Breeze. J. Meteor, E,645-660. Frizzola, J. A., and E. L. Fisher, 1963: A Series of Sea Breeze Observations in the New York City Area. J. Appl. Meteor, 2_, 722-739. l
- Gaynor, J., 1982: Present and Future Uses of Sodars in Air Quality Studies by Industry and Government.
Invited Paper No. 82-63.2, 75th Annual l Meeting, Air Pollution Control Association, New Orleans, 28 pp. Hanna, S. R., G. A. Briggs, J.
Deardorff,
B. A. Egan, F. A. Gifford, and F. Pasquill, 1977: AMS Workshop on Stability Classification Schemes and Sigma Curves. Bull. Amer. Meteor. Soc., g, 1305-1309. Hass, W. A., W. H. Hoecker, D. H. Pack, and J. K. Angell,1967: Analysis of Low-Level Constant Volume Balloon (Tetroon) Flights over new York City, Quart. J. Royal Meteor. Soc., 93, 483-493. Huguet, M. P., R. Zanelli, and J. M. Fage,19'82: Low Level Wind Shear Detection System for Airport Landing Approach Areas using the Bertin Doppler Acoustic Sounder (S0DAR), Preprints, AMS Conf. on Aviation Meteorological Systems, Montreal, 7 pp. ( 8-1 R SCAN A
Keen, C.S. and W.A. Lyons, 1978: Lake / Land Breeze Circulations on the } Western Shore of Lake Michigan. J. Appl. Meteor., E, 1843 - 1855. V Lazaro, M. A., W. A. Lyons, and J. M. Fage,1981: Remotely Sensed Meteorological Measurements in Coastal Zones for Nuclear Reactor Emergency Response, Presented, American Nuclear Society Annual Meeting, Bal Harbour, FL, June. Lyons, W. A., 1972: The Climatology and Prediction of the Chicago Lake Breeze. J. Appl. Meteor, H, 1259-1270. Lyons, W. A., and H. S. Cole, 1973: Fumigation and Plume Trapping on the Shores of Lake Michigan during Stable Onshore Flow. J. Appl. Meteor., 12, 494-510. Lyons, W. A., 1975: Turbulent Diffusion and Pollutant Transport in Shoreline Environments. Lectures on Air Pollution and Environmental Impact Analysis, D. A. Haugen, Ed. Amer. Meteor Soc, 136-208. Lyons, W. A.., R. H. Calby, M. A. Lazaro, and J. M. Fage,1981: Planetary Boundary Layer Structure During PEPE/NEROS 1980 Using Doppler Acoustic Sounding. Paper 81-62.4, 74th Annual APCA Meeting, Philadelphia, 16 pp. l Lyons, W. A., E. R. Sawdey, J. A. Schuh, R. H. Calby, and C. S. Keen,1981: An Updated and Expanded Coastal Fumigation Model. 74th Annual APCA Meeting, Philadelphia, 16 pp. Lyons, W. A., 1983: Meteorological Factors in the Design of Emergency O) Response Plans for Nuclear Plants in Coastal Zones. IUPPA, With World \\' Congress on Air Quality, Paris, 8pp. Pendergast, M. M., and T. V. Crawford, 1974: Actual Standard Deviation of Vertical and Horizontal Wind Direction Compared to Estimates from Other Measurements. Proc., Symposium on Atmospheric Diffusion and Air Pollution, AMS, Santa Barbara. Pielke, R. A., 1981: Mesoscale Numerical Modeling. Advances in Geophysics. Vol. 23, Academic Press, NY, 185-344. Raynor, G. S., P. Michae., and S. SethuRaman, 1980: Meteorological Measurement Methods and Diffusion Models for Use at Coastal Nuclear Reactor Sites. Nuclear Safety, 21, 749-765. Raynor, G. S., S. SethuRaman, and R. M. Brown, 1979: Formation and Characteristics of Coastal Internal Boundary - Layers During Onshore Flows. Boundary Layer Meteor., H,487-514. Raynor, G. S., J. V. Hayes, and E. C. Ogden, 1974: Mesoscale Transport and Dispersion of Airborne Pollen. J. Appl. Meteor, M, 87-95. 8-2 R SCAN CL)H o 'OH A TION l
1 p Rizzo, K. R. and W. A. Lyons, 1977: Acoustic Sounder Measurements of Summer Mixing Depths in a Coastal Environment. Preprints, AMS/APCA 4 g%._ / Joint Conference on Applications of Air Pollution Meteorology, 6 pp. Rodney, M. R., W. A. Lyons, and R. H. Calby,1980: Some Studies of Meteorological Perturbations Near Estuaries. Preprints, AMS/APCA Second Joint Conference on Applications of Air Pollution Meteorology, 6 pp. Schubert, J. F., 1978: A Method for Using Acoustic Sounder Categories to Determine Atmospheric Stabilities. Symposium on Atmospheric Diffusion and Air Pollution, AMS, Reno, 541-544. SethuRaman, S., J. Tichler, A. Patrinos, W. F. Dabbert, F. L. Ludwig, R. E. l Ruf f,1982: Workshop on Meteorological Aspects of Emergency Response Plans for Nuclear Power Plants. USNRC, Office of Nuclear Regulatory Research, BNL-NUREG-51552, NUREG/CP-0032. Singer, I. A., and M. E. Smith, 1966: Atmospheric Dispersion at Brookhaven National Laboratory. Int. J. Air & Water. Pollut., _10, 125-135. USNRC, 1980: Meteorological Programs in Support of Nuclear Power Plants. Proposed Revisions to Regulatory Guide 1.23, USNRC, Washington, D.C. ( USNRC, 1981: Domestic Licensing of Production and Utilization Facilities. 10CFR50, Appendices B and E. USNRC/ FEMA, 1980: Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants. NUREG-0654, FEMA-REP-1 Rev. 1. l l l 8-3 R SCAN CO H HOR A T IOlV . - =
s N N APPENDIX A f,> f s a i / Sample WSI Output [This represents only a fraction of material.Jarchived daily] l i 4 l l 1 /. / 1 1 I 1 ~ R SCAN CO F-44 'O H A T ION
a w
.,s-n-m--------- e-n,---- -. -
a-,-
--,,c
= s. .a. a. ' I B1D SA 1055 AMDS 26 SCT E45 p 100 p 20 57/49/1004/M PK IOC 05 000 ALT 005 f BID AOS 57/48/1103/M PK IND 05 000 BID AMOS 56/47/0903/M PK IND 05 000 BID AMOS 55/4/0000/M PK kND 02 000 IID AMOS 56/4/1005/M ID AMS 55/45/1104/M PK kND 05 000 ID MS 55/44/1202/M PK IND 03 000 ID A M S 55/44/1204/M PK &#Q 05 000 )!D AMOS 56/45/1204/M PK 180 05 000 slD amS 53/43/1002m PK 480 03 000 BID AMOS 57/46/1402/M PK les C3 000 BID AMOS 57/46/3602/M PK IMD 03 000 i BID AS 55/45/1303/M PK IND 04 000' BID AOS 56/45/1403/h PK IND 04 000 -t!LCD SEP20r BID AMCS 55/4/1703/M PK IND 05 000 BID MS 55/45/1003/M PK IND 04 000 BID AMOS 56/45/1904/M PK IND 05 000 BID ANS 57/45/2004/M PK 68G 04 000 SEP20.00 20-SEP-82 BID AmS 57/46/2004/M PK 180 04 000 007-117 DATA FROM 20-SEP BID Am5 57/45/1903M PK IND 04 000 l BID AMDS 57/45/2103/M PK IND 04 000 6 BID AMOS 57/44/2203/M PK IND 05 000 l lSF SA 1050 E80 p 120 CVC 101MI60/52/0806/001 hh h 5 20 MS/2WM N E 04 M AT Ih 0 5 060 000/607 ISP SA 0750 M32 BEN 10 163r %/52/0000/000 BID AMS 56/44/1904/M PK IND 05 000 M 20 WWMM N lac M M ET g 03 / 0000 00 / 807 71 h fh SA I i 910 AMS 57/43/2104/M PK IND 05 000 ISP SA 0450 CLR 15 173/49/48/0000/003 20 WWMm M M M M U s kSA105475-SCTE250p15176/46/43/3003/005 1 4 /0000/004 ISP SA 0150 aR 15 176/51/47/0000/004 PVD SA 0954 E250 BKN 15 172/47/42/3003/004/ AC SE-SW ISP SA 00$0 CLR 15176/56/48/0000/004 PVD SA 0855 E250 BKN 15172/49/43/2903/004/ 5001002 IW SA 2356 CLR 15166/60/4/0000/001/ 003 71 PVD SA 0756 E250 OVC 15169/48/43/E!302/003/ 96739 FOK SA 1045 E100 OVC 10 60/51/0000/00!! PVD SA 0654 E250 BKN 15 169/48/43/2903/003 6 PVD SA 0554 E250 BKN 15172/47/42/2203/004/ 6031002 FOK SA FIO FOK SA 0248 CLR 15 50/42/0000/002/LAST PVD SA 0454 250 -SCT 15 173/47/42/2205/004 FOK SA 0145 200 SCT 15 49/36/0000/002 PVL SA 0353 CLR 15 172/50/43/1603/004 F N SA 0050 200 SCT 15 54/41/0000/001 PVD SA 0253 CLR 15176/49/41/0000/005/ 307 FCE SA 2340 200 SCT 15 60/45/0000/000 , FRG SF 1121 E25 p SO OVC 7R-1004/000/VSBY LE S R505PVD SA 0152 CLR 15174/51/43/0000/004 PVD SA 0051 CLR 15170/55/42/0000/003 FR5 SA 1045 40 SCT E80 OVC to 0405/999 PVD SA 2353 CLR 15169/56/42/2106/003/ 214 46949 i FRG SA FIO BDL SA 1050 E250 OVC 25 177/43/36/0000/005 FE0 SA 0245 CLR 15 0000/002/LAST BDL SA 0954 E250 OVC 25 174/43/38/0603/004 1 FR0 SA 0145 CLR 15 0000/001 M0L SA 0852 E250 BKN 25171/42/38/0203/003/6031001 8 FRG SA (055 CLR 15 0707/001 Ba SA 0650 E250 p 25171/42/38/0000/003 BDL SA 0550 250-SCT 25174/43/36/0000/004/1031001470 FRS SA 2345 200 SCT 15 1808/000 JK SA 1050 M60 OVC 7Ai-166/62/55/0706/002/RB42 BDL SA 0450 250-SCT 25 173/45/39/3104/004 JK SA 0950 M60 OVC 10159/64/55/0906/0000 BDL SA 0350 250 SCT 25 170/47/41/1703/003 J K SA 0850 M60 OVC 10 156/62/56/0607/999/ 707 15// BR SA 0250 250 SCT 25 170/50/41/3104//003/ 110 1006 J K SA 0750 M60 BKN 10 159/60/55/0708/000 I B K SA 0150 250 SCT 25 170/52/42/E2002/003 JK SA 0650 50 SCT 10159/60/55/0607/000 l Ba SA 0050 250 SCT 25170/53/44/2003 J K SA 0550 30 SCT 10 163/57/54/0607/001/ 807 1500 69 JK SA 0453 CLR 10169/57/54/0607/003 1 W D SA 1056 60 SCT E110 BKN 20 3407/008 JK SA 0350 CLR 10169/62/55/1407/003 W D SA FIND JK SA 0250 CLR 10169/60/53/lM8/003/ 007 W D SA 0145 200 SCT 30 M/M/1704/006/LAST J K SA 0150 CLR 10 173/62/53/1708/004 WD SA 0045 CLR 40 M/M/1904/05 JK M 0050 CLR 15169/63/52/1708/003 W D SA 2345 150 SCT 40 M/M/1808/003 J K SA 2350 CLR 12 163/62/52/1608/001/ 103 69 i W N SA 1050 E55 OVC 15 166/54/50/0000/002 LGA SA 1052 M46 OVC SR-166/62/51/1509/002/R645 l WN SA 0950 E100 OVC 15166(54/50/0000/002 LGA SA 0952 M44 OVC 10 163/62/51/1211r001 WN M 0850 E150 BKN 20166/55/50/0000/002 LGA SA O m M46 OVC 10 15i/62/50/1209/000/ 603 W SA 0745 E150 BKN 20 166/52/49/0000/002 LGA SA 0752 M49 BKN 10 159/60/51/1209/000 86///W N SA 0 48 E150 1EN 20 169/50/46/0000/003 LGA SA 0652 M50 p 250 BKN 10 159/61/51/1106/000 H SA 0546 150 SCT 20 176/50/46/0000/005 LGA OA 0552 E250 BKK 10163/60/53/1107/001/7101006 70 WN SA 0447150 SCT 20180/51/47/0000/006 LGA SA 0452 E250 p 15173/61/53/1905/004 HPN SA 0345 250- SCT 12 180/51/47/0000/006 LGA SA 0352 E250 BKN 15173/61/53/1407/004 W H SA 0246 250 -SCT 20 180/50/46/0000/006 LGA SA 0252 200 SCT 15173/61/52/2107/004/1071002 HPh SA 0147 250 -SCT 20 100/53/46/0000/006 LGA SA 0152 200 SCT 15 173/62/51/1809/004 W W SA 0050 250 -SCT 20 176/54/45/1604/005 LGA SA 0052 200 SCT 15 173/62/51/1905/004 WN SA 2345 250 -Sti 20169/57/45/2204/003 LGA SA 2352 200 SCT 15 166/62/49/M/000/ 70 EWR SA 1050 M55 DVC 12R-163/63/56/1308/001 RM0 GON SA 1045 E60 BKN 250 OVC 15 50/M/0000/003E W SA 0950 M55 OVC 15 159 62/53/1204/000 GCh SA 0945 E250 BKN 15 50/M/0000/003 E m SA 0852 M50 OVC 15 152/59/54/3606/998 607 15// 00N SA 0245 CLR 15 55/M/0000/004 Em SA 0750 M60 OVC 15152/59/55/0306/996 (WRSA0652M70BKN200OYC15156/61/55/0003/999 GON SA 0145 CLR 15 55/M/0000/004 00N SA 0045 CLR 15 60/M/2205/002 Em SA 0550 M70 BKN 200 OVC 15145/62/55/100 00h SA 2345 1R 15 62/M/2305/001 Em SA 0450 E200 BKN 20169/61/55/2004/00s3 M SA 1047 E100 BKN 200 p 20 0506/002 E W SA W E230 OVC 20 169/61/54/1603/003 M SA FINO Em SA 0350 E1230 CVC 20169/61/54/1603/003 M SA 0145 CLR 20 M/M/00'00/003/LAST Em SA 0250 250 -0VC 20169/60/54/1603/003/ 0051001 M SA 0045 CLR 20 M/M/0000/003 E W SA 0150 250-0VC 20 173/61/55/2304/004 HVN SA 2345 CLR 20 M/M/0000/000 E m SA 0050 250-BKN 20 169/61/52/2 BDR SA 1053 M53 IKh 80 OVC 20 166/55/50/0308/002 163 001 -- -- _ _ _ ___- M%. p 10. O.V.C. 20.,u m/55/5,0/03,08/ w ca W 40 SCT E80 BKN 12( NC 12 49/34/2P'002 RTf R$ tov --... - im ut*
-.s. mmHuumHuuunenunmtwimtenen*
- t t illi t4 H e t Hiti t 4 H t 4 H MitH i tet H e ti t H Ht9H994 IUDY M TA
' STATION: 44005 TODAY'S MTE: 20 SEP-82 STATION: 44003 TODAY'S MTE: 20-SEP-42 TIN WTE TE WTR WI@ PRS IME TIE DATE TE WTR WI@ MtS IME
==
========
==
=========
2504 175 0501 M (002) 19 59 0904 170 0603 l M (00Zi 19 57 9PM(Ol!) 19 57 2404 100 0501 9PM(0!!) 19 59 10061769603 1(W((02Z) 19 $9 1206 176 0703 l 10PM(02Z)19 881 0501 i 11PM(03Z) 19 02 177 0701 I 11PMl03Z) 19 58 59 1206 177 0603 12M(04Z)20 177 0901 12M (04Z) 20 59 59 1306 174 0803 1M(05Z) 20 57 2404 177 0801 IM(051) 20 60 611400174 0603 2 M(06Z) 20 60 61 1306 173 0503 (062) 20 57 2104 177 0901 (0721 20 57 2004 176 0901 3M(07Z) 20 60 601206167 0903 4AM(00Z) 20 57 20041780901 4AM(08ZI 20 60 61 0806 166 0903 5AMt0921 20 56 0000 181 0901 l 5AM(09Z) 20 59 59 0806 171 0901 6AM(102) 20 56 0000 182 0901 6AM(10Z1 20 59 59 0708 173 0801 7 M (!!!! 20 57 1402 189 0801 7m (11Z) 20 59 59 0710 174 0001 l l l et G H m et H H i ni mm H H mnett u+t H eeinen+ee H um m ett*He+t+++e Mittet t 9999994Htte e et HiteHittiff titit 44f tettettttet HettHHetMfM44994 f EDT 20004 99449 70660 42998 0231B 10128 2011/ 40144 52025 22284 00!!4 20302= l FPLH 20003 99449 70615 42/97 02504 1014/ 4014/= C(N 20004 99443 70643 42/95132081014/ 4015/= GUZJ 20004 99442 70666 42/98126131013/ 4016/= LATV 2000199434 70659 41998 0300510100 40158 52015 22200 00110 20000= VIAD 20004 99442 70677 42998 02617 10125 2010/ 40146 52918 22274 00128= KFC0 20003 99411 70655 42898 30409 10156 2012/ 40160 51015 70200 82101 22224 1 00156 20601 30100 40801 50000= tkTY 2000199434 70659 41993 0300510100 40158 52015 22200 00110 20005 I E D 20004 99412 70656 42598 10207 10150 2015/ 40178 52012 70100 81/// 22213 00170 2//// 335// 40401 5////= FPLH 20063 99447 70626 42/98 C3209 1012/ 4017/= CGM.t 20064 99443 70643 42/98 01000 1010/ 4018/= LA7f 2006199434 70659 42/98 9220310070 40174 520!! 09/// 22200 00110 2////= GY0T 20064 99424 7067142/99123051004/ 4017/= i m D 20064 99421 70654 42995 03305 10156 2016/ 54000 7//// 8//// 22262 00172 2//// 300// 40401 5////= VCWI 20064 99449 70662 42990 0330410120 2006/ 40168 52012 22253 00130= SIUS8 KNYC 200700 ID WIVSB/WI@ / WAVE / SEA / AIR / PRES EMARKS STATI(>( N4E 50N PCC09/SO4 / CALM / /64 /3002 NOCKAWAY SIN CCIO /SSE07/ CALM / /62 /3052 SHORT E ACH 45N CCIO /ESE04/ CALM / /58 /3000 FIRE ISLA C N28 CYC10/509 /0202/68 /64 /3003 NEROSE TO S 34N C10 / CALM / CALM / /58 /3024 EATONS ECK WY t 18N C10 /ESE05/ CALM / /56/ EW LO@0N LEDGE N11 C10 /SE05/ CALM / /58 / E W HA S M RBOR 61N PC 10/ESE09/ / /67 /2996 l@lm RIER N91 CLR07/ESE06/ / /68 /2997 CAPE MAY 55N CDY05/ESE07/ / /62 /2999 ATLAhTIC CITY ST 3333 i SIUS8 KWYC 200200 ID WIVIS WINDS / WAVE / SEA / AIR / PRES EMRAS STATION NAE 34N CIO / CALM / CALM / /59 /3028 EATONS ECK NY ( 10N C10 /SSN10/0102/ /62 / EW L0e0N LEDGE N11 C10 /W10 / CALM / /M /2999 E W M VEN M R80R 50N CC09 /S05 / m M/ /64 /3003 a0CKAqAy 51N CC09 /$06 / WLM/ / M /3051 S ORT BEACH u 45N CC10 /903 / CALM / /60 /3000 FIE ISLAND It28 CCIO /SWO9 /0202/68 /63 /3002 WIMOSE TCtER hh kN / I g PC 06 ESE05/ / /62 /3003 ATLANTIC CITY
.._u_ .s_. IPPER AIR PLOT Fm: 0ti FOR 00!. 2 HEP 42 (C) 35 25 15 -10 -5 0 5 10 15 20 25 IPPER AIR DATA FOR: ACY F m 00Z. 2 M EP-82
- m L.ini.
LDEL EIGHT TIP DPT DDFTF 500, 575........\\......D...........h.........\\.0......... n............. 25026 (S) (n) (C) (C) (KTS) .\\ 0\\ \\' \\. e \\* 0 100 16470 41.7 2654 .\\. l 0 579.4000! D .T0 \\ .25025 150 13950 -60.9 25547 161 -60.3 s
- g*
0 g* 620 4200i .D\\
- TO
.\\ 25577 200 12140 -54.9 26042 .3900' \\. 0 \\. .25525 250 10700 -49.5 25642 .\\. 0 . \\.2502i 1 3=
- 00 -=. 7
-53.7 245a 700g.=n 348 4 ................... D........ \\... g.... T................... g l ..\\. g 455 -15.3 -45.3 l 745. \\. .D. 0\\ .T. 500 5760 -12.1 -42.1 24528 .2100' .\\. O i. .25516 \\ D 0 .\\T .26013 M9 4.2 -25.8 Ff.1800' 700 3097 5.8 -24.2 24024 550.1489..................D.................... 0.......T. \\.............. 310(4 879. .\\ D. 0 .T. \\. 405 9.4 -20.6 900! \\. 0 .\\ .29007 850 1497 27512 929. .\\. O D. T. i. l 1 g 134 1g.0 4.8 . 300! \\ 0 . \\.20503 .2 11.2 16008 1013 RN 18.0 12.0 15007 000. 140.................................\\..... 0.....D......T...........\\t7504 015.SIK! .\\ 0 D. T. .15004 ' tn).
- m :
I 22 -13 -4 5 14 23 32 41 50 59 68 77 ' 1PPER AIR DATA FOR: Oli F m 00Z. 20-SEP-82 LDEL ifl0HT TIF DPT 3DFFT te) (M) (C) (C) (KTS) THID0ESS AVG PRECIPITABLE l 2 (R) WATER llN) l 100 16440 40.3 25033 102 41.3 500 5610 0.45 127 -58.1 700 2952 0.33 1 150 13900 -60.1 25539 850 1349 0.24 172 -60.I g12100 7 24500 TO no 10660 24542 300 9450 -41.3 24539 309 -39.1 -49.1 22 4 13 400 7420 -24.3 -39.3 24040 500 5750 -13.3 -25.3 25026 -19 579 -2.9 -19.9 K IIEEI = 620 -1.5 -16.5 FORECAST mt TDP = 24 (C) 700 3092 5.0 -14.0 23521 745 8.4 -12.6 = 14 322 9.8 -20.2 LIFTED IIEEI 350 1489 8.4 -21.6 31008 SHOWALTER 1 EEI = 17 879 7.4 -10.6 929 8.6 3.6 (XINVECTION CONrOSATION LEVEL = 634 g 953 !!.2 4.2 1000 140 13.0 6.0 17504 = 960 g 1015 RM 12.0 8.9 15004 LIFTING COEDEATION LNEL i KVERE IfATIER DEEI = -1012 g
n -5 r i
- 4m4mammemmd e inet am w..'"..........................,
l - e:..xE :ExxEL T'etet am w =xxx-saiiE=:i:!irme ~ j \\. I j ). / 500000000000000000000 -10 9 5-/ e a l e -14D-/ e 1 -278
- 0 E4M1t SEWlES 6
-10e311
- e EAMit SEllVIES e 0400A e Is1RMASTEled USA e 1
02510s e IEORMASTEled USA e \\ e 20-SEP-62 002 e i e 20-SEP-82 002 e \\ e LEVEL.: 850 tel e 2 455 \\ e LEVEL: 700 le a -4 007 \\ 0 e / 0e341 ) e e p-pe - \\ e TTT lett e I 28510 \\ e TTT lett e i 27030 \\ e 900seHe TietISS e / \\ \\ s 800s12 let D00E e / g l \\ e GIFFF lta l e I \\ \\ s DOFFF (10 ) e / \\ \\0 0 / J \\e 0 / \\.. \\ e e000000000000000000 / ,\\ / \\ 500000000000000000000 / \\ / j' / .I \\ / .../ i g / \\.! \\ / \\.! \\
- \\
l 459 /- \\/ j \\ \\ -4 015 / \\1 \\. ..I ../- g \\ 0e339 ../ al - 1 \\ \\ -Os .=g \\ 26006 ..M \\ 27521 f \\ .- " g g g- ."\\\\ \\-
- "",\\.. " \\
\\\\ 1. .g -\\ \\e."\\ \\\\ / g = g gg/ -\\ \\ ).) 1 I \\ / \\I i...." -5 900 I \\ / \\/ e -6e I- \\ / \\ \\ t 065 ....=* 5 420 / \\ \\ 4 888 4e343. /- \\ .. 20020. M...f g / \\ \\ 2e340 .. 21029. %...I \\ / \\ \\ -17e - u-g ..I \\ \\ 25519 u-\\ ./ \\ \\ 27000 g, = j -6 909--- \\- \\ )...\\- ..." - \\ \\ \\ /\\ g*= 7 429--- \\- \\ \\...\\
- -4
% \\
- \\
-6e - \\ -/ ./ 3 Ort \\. = \\.. u= 2e362 \\ -I . e- ./ 5 490 \\. * \\.. -lSe -\\. ".-% /\\ -14e 2 \\ 5 09 -2s354\\. " \\ 0 att 25530 \\ / ./ 23510 % -29021 g / ./ 26512 \\ A -22e349 \\ /%-/ / -t ii \\ /
- 5 477
). " \\ \\/
- 31008
-\\ . 1/ \\ /
- 0 003
- t. * \\ \\/
- 23521 g
in-p / \\ 0 031 \\ / -30s - t 5.1 \\ 5 464 \\ / -le340 \\ \\.I 2 . 24019 \\ -\\ -los - \\/ \\ 20021 /.." - / u. \\. *.".3 . 20517 \\ -\\ Oe360 \\/ i g 23013 p .."-t \\.o \\. *. ". * \\% \\..". * -\\ /. * . A.'" \\% )..".
- I l.." -
I\\ \\ "\\ .I .g ,e .n. y y".e - /\\ \\ "\\ / -f f .I \\ \\ \\# -/ /- ..I \\ t t/ I / \\ \\. 6 09F g / -e3C \\ /""* / \\ t -20e - l g \\ - 497 i , f..." * )... ".". = / 4 063 1 20024 i '.fx 3 402 / 27512 f f Oe367 / / I / -26e - / / p 4 l \\ /- '\\ / / 175526 /- ....~'"\\ \\.. ! 1 f f 120004 l I i \\.. .\\ \\..! \\.. "" \\ l f p / \\. I"" /\\\\\\- / 5 065 I \\./"% A\\\\- I le 405 1 /. 9 500A i i / -25e - l. 2 0FTA \\ \\ / 25016 l' /* Os -A \\ \\ / 2e375 / 2m08 /= /* ŸA \\ \\ p 9 484 / 22010 A \\ \\ / /.. 4 079 / 24527 A \\ \\ """-14e t "t 3121 p ."..u.. Se374 / "\\ 12 516 / 1 0 493 / 24006 1 % 9e378 2 076 / 23022 / % le - f I \\ ./ \\ \\24523 - -288 5e376 1 \\ '/ \\ \\21507 - \\ M .....a= \\ n 31527 / t t t \\.. --265,11..,/ s. g !i ,l
seenmeeH+eeme****+e++e Lit-EATE MP eHHHet4HH+ffHeeH+tetH~
- .................. 49..............,....
s 54 56 x 2 i ......L 58 b-I !../ b ..../ ......... Q./ 57 \\ .... M......./. 51 ./ b.... b...../ .../ b / .../ I. / 59 \\. / .............../..../ / Q.............../ /.. I I // b.../b M ... M....../ 62 1 43 /- \\ /.\\ ........./ \\ /.. b. 42........../ \\ \\ 42 I LOC ISLAC lif NEA TD P (Fil l 42 I M 42 I Pfl10018 k 42 41 / 19-SEP-42 s e...m.m m m.m - uS .Te me.mmHmm.mmHeHH ^ I ~ I.................. 0000.....'.............. 1301 0000 0000 1 I 1 0000 1 i I 1906 12106 0904 1 I I-1 \\. 0000 1 I I !../ l t \\ \\. ..../ 0000........ 2305./ b 2204 \\ ... 2009......./. 0000 ./ b.... b...../ l .../ / .../ I / 1706 L / .............../..../ / 1908.............../ /.. 1 1 // %.../\\. 1104 1 1808 / - 1908 0000 .. 0000.......I \\ /.\\ ........./ \\ /.. b. 1608........../ t I \\ -\\ 1510 I LONG ISLM C IfY AREA WIND (DIOTSit 0000 I 1 0503 1102 I Fft (00D 2505 1402 / 19-SEP-42 me+ee::mumememe++e LIS EATE MP
- e s e**++++++e e***********Hi
-SCT -SCT !...................M................... I i M I I SCT 1 I SCT IM I E I L SCT .,../ L-M.........CLR./ b ..../ \\. -SCT \\ ....SCT......./. i -0YC ./ b.... b...../ .../..\\ .../ / s / -SCT % / .............../..../ -p' s I SCT...............I /.. 3 b... /L m -SCT 1 -4CT / - SCT CLR .. 9CT......./ g l I // \\ /.\\ ........./ 1 \\ /. . b..M.......... /. I \\ \\ SCT I LONG !! LAND IfY AREA -SCT I IEATG/ SKY: s P,flt002) 1 EmSCT ,I i -N P-82
. ~.. FouS53 KWC 200000 ~ ( 11WLECTORY FCST ~~~~~ ~~~~ 2000002 2006002 2012002 2010007 2100007 FOUS61kWBC200000 LATL0rPP LATLOWPP LATLOWPP LATLOW99TDPDEWT K STA RH RIR2R3 WLI WG0FF T8PSPTT $$4 !N$!!Nhl$ 804 700 379uG6719 374860718 374832714 3798017072.5 -12.3 16 12 46 674733 00011 571110 8815000 l 850 3U 827875 379815869 W1800661 384786855 11.1 7.2 I 38 73 706787 01107 $91308 9115000 SFC 376787970 380784910 38378291138UUP74 964 20.1 12.9 24 94 869692 01305 591410 9114000 $h hhhfh 9ll$ I 4M 2e 98 64 4 I W C 392787961 397783961 401780959 408776965 970 17.1 7.3 42 78 BU870 00402 610504 9215002 46 83 808183 00304 620009 9215002 I 88 3 b i.*f .f FOUS61 KW8C 200000 9 WC 405809972 411802973 41U97978 426791982 90515.7 5.9 gTA RH RlR2R3 WL1 NODFF TIPSPTT BTV 700 399823761406803747 41677U29 430754715 -1.2 -11.6 13 $4!N2$ !5 3 2 0 414757883 418749876 424745868 435730860 6.2 .3 12 69 687264 00509 591212 9015000,' 8 SFC 435713978 431712983 430719985 437726982 97812.4 3.2 gg 90 3094g9 01205 611707 9213000 $ 7 [gh $ N3 ad ALB 700 390640751393B17742 401791728 413764714.0 -10.6 16 850 394771887 399763879 407757869 418748860 8.2 3.1 l 36 70 79 M73 -0302 600l k 921300 l SFC 419723984 416723988 413730967 420736983 97814.8 5.2 48 84 918184 00904 620508 9114014 l LOA 700 376845740 377822735 383795724 393767712 1.8 -7.7 22-l 850 375779886 381770878 388762867 398751859 10.7 8.2 ! FOUS78 KWC 200000STA M R1R2R3 SFC 399724010 396726011 395733011 401737006 003 18.4 10.7 g ! D 694036 //fto 641302 9016/// CAR 700 425766743 433746726 442726714 455703706 -2.3-14.3 8 850 454717836 453704846 455697850 461687851 4.1 -1.5 06 45 704630 00505 630206 9315000 I SFC 468690981465679988 463675993 464674995 99611.0 4.1 ! 12 53 705634 -0103 631006 9415000 / PWI 700 3847967 3937767474047537304h9729716 -N 9 13 $93[9$95 850 4117308 4 1723873 4!5719867 4 6711860 7 0 87 789089 00798 672012 9713015 SFC 434676994 429678998 425666999 429695998 99414.1 6.6 36 84 748395 00298 672305 9712005 l b 0 20 9 SFC 420664009 415686010 412694011416702006 00516.3 8.8 CON 700 382810758 390790746 400766731 415741716.1 -5.3 15 850 40374'883 405737877 410732669 421724861 7.8 -1.1 SFC 428689997 423690000 42064001424707998 99514.6 6.4 - ~ ~ ~ t DATE/M 20/06 20/12 20/18 21/00 21/06 21/12 21/18 22/ DATE/ M 20/06 20/12 20/18 21/00 21/06 21/12 21/18 22/00 LGA POP 06 10 60 60 30 20 40 50 NL POP 06 5 50 60 50 30 30 40 P(P12 80 60 50 POP 12 to 40 60 ; GPF06 000/1 210/1 100/1 000/1 100/1 100/1 IPF06 000/1 000/1 100/1 100/1 100/1 100/1 IPF12 3100/2 1100/1 2100/1 (Pf12 2100/1 1100/1 1100/1 21 16 24 24 18 26 TS7M POPT 0000/3 0000/3 0000/3 0000/3 0000/3 0000/3 000 ISTM POPT 0000/3 0000/3 0000/3 0000/3 0000/3 0000/3 0000/3 POSH 99 99/0 9999/0 50 g MI/M 68 56 68 m/fti g POSH NT BE 88 MH HD RB E8 MH Hg i NT nn H HE B53 En En Ed U5: WIC 0000 3601 1406 0202 3604 3502 3604 010' CLDS 3412/2 0325/4 0127/4 0029/4 0227/4 0127/4 W12 1806 1006 1008 1100 3506 0206 0307 0207 I 000018 011126 001333 011332 011223 012223 0 CLDS 2423/2 0226/4 0137/4 0127/4 0226/4 0126/4 0137/4 0028/4 CIG VIS 000009 102114 001116 002215 002214 113113 0 000118 001225 001332 001233 011224 011224 001332 012332 CIG C/V 6/6 6/4 4/6 4/3 3/3 3/1 4/4 3/> IS 000019 002214 001117 001116 001116 002214 001126 001216 ISVIS 90!!/1 4114/4 6112/1 6114/4 4015/4 3017/4 621 6/6 5/4 4/6 4/6 4/6 4/4 4/5 3/4 IS 90!!/1 4214/4 7112/1 61I3/1 60I4/1 41!5/4 62!2/2 &lI3/2 y m
.s 9 , RADAR IGP ( 18 811 SEP-82 11:35 PM (0335Z1 NYC 1030 AREA 5Rhi/NC 92/95193/145 269/125 C2420 MT (D
- WP1 LP2191222 OK10112 PKilll22 E10021 R0!=
WfC 0930 AREA 5Rll/+ 101/95 216/125 253/95 C2420 NT atID22 2121 Ell 22 PL222 21= j WVC0735PPINE= ll
- e NYC 0635 PPINF=
l ) NYC0535PPINEs .. m.
- e.
NYC 0435 PPINE= 22 ........... 1111 1111**. 11 j 2211 111111 ((<< RADAR l%P ( 18. 811 5EP-82 2:35 AM 10635ZI >>>> l .ee I . e4 . ef. j s . MM 22. 11 es. ..... 2211. !!2211.. ....... 222222111111 j . 22 22222222 l 11 1122112211 111122111122111111 .2222 2222. 1111 22 l (((< RALAR MAP ( 16, 811 5EP-82 5:35 M (09357) >>>> (* 1 l
- . 2222 112211
...it 777777?? 11.. 222222 !!!!. 221111 lite. . 11.. 112211 /, - s\\... ... 2211 !!!!?2 ......ll. 22222222222M7M (v). 1122 11??????????3399 2211 11222222 22
APPENDIX B SATELLITE DERIVED SEA SURFACE TEMPERATURES 1 l l l l R SCAN , _c~
2... w-m
,--_..a
-a. s _1. ___na ,, _m_,<sa_ __ & %NG4 451 ) f M i j _ _m-s p l l m._ 5 _' 1 l 1 -Q.' g,iy g. au. y- ~ /_- }_'- Q .:. >. A ^-l a ~ R SCAN COHOOHATIOtM ___--_____.-_--._--_-----._....~.--_--------.,,..--.,-,,.----.--,-,--.-...c
N E. cweca:iu IW EXZ SIA ft-SMIS WG4 tfSn 7 n. ,;-(j 7.M *. '- 'a 1 g-m I / a f ,? 1 1 I r e.. i I,- e jQ y lp j v. ~' s .g / v i .W -a-f. .c are ' i e l + c .,I" 17 7 l ,DikT g es-l a N. > 3.uim ow wrce su =ppe== r.
- ..,:m 1
1 R SCAN _.v -,. ~ 1
O .. **= *** M d [ 'g*- La e e. -=e r - e e * -re -ep....,,.., ......_.g f 'll 7 k% $g}p < a K j fN?, 3. h. i /y y,g. i - f. 1 e t e s i N' =. . f . k.)l. O .r -h m e. i; (, 1 a
- f s'
/ - g' t. @i. 5 key K,.{l- - y.g 4.. 4 y,.5 ~ b j P N2.T _m O j .y. ,mTISIN. W.AN SNIE O M.N , o R SCAN COF 4+ ' ORA T rary
a_a J _u __._m.- i O ...L.. y 7 I = J ~ >> = -i as I 3 M f'. ,~,=Z,. = i , 38 l,*, q .Ehg M {Yl. l lQ e Y =*
- .,' =
?'. d. . as 1 as L g. - d ~ { t = .. '
- w.
= j g ,x- ~ q. a.. t 1 E M .E I an,., .T .y. ?. C., I q \\ s v p r ~ (g .maTEamu.humpt a ei.(- SEA SU ft$N ~ mi. t e S .m 1 ,-.9 e l ~ y " " ~ ~ " ~ ~ ~ ~ '~ R SCAN CO ' 4 f 'Old-\\ T ION - _ - _, _ _. = _ _ _. - _ _ _ _.
m ascar m n am m - n. _. [ \\ 7 U. \\.y Q.*.' b A i L r r \\, (s s s a i J U, e j s ./ = / ~/ y _ C.. ( f( /' m a j ~,= *' ~ TcQJ. .\\ / -, ' .N. I, .e + 4, ~ f fif%y. f / \\ = mur ' 3 l ' s sa's / ,j { ; 'W N ". *f f( - g s gy'. y t. .es
- umm *^m 4
1 I M WS ./ R SCAN 1 CCJHI 'OF4 rTION ., -,, ~ _-m.-_,.--4----- __,,cw,_..
- A a
uw -h --a --E --me w h 7 g g.-. ....w.. 7 g A J' ) r g.y. \\1 1 -lv s =
=== - l 't i I .m .m m. m ).! .m t
== i N m. \\ m. er 9 m I' . ser 4 = I l.a I m. ,d 4Q Q m-l .1 .m ( i = 4 4 in. A1 ~ ,g W ? pM Wm I I y 4 anL ~ < >,, - m. a R SCAN CO HF'OHA T ION ? 4
n a, .-_a a -,a .s' 'Q ~M*e k ~ asMya.#. r i r ). ,a g, r = 6 f s en. l .( . as 1 .W .g y 1 ). (. F. .se ~' g = u
- =
ins I l g g s m-R .t i me I e g 4 .ar s g 9_ g. 9 = p.~ .l 6 b/27 ^ an- ,iutinsen. tiEATHER i %N .anL -a;.;n. R SCAN CO r^4 6 'L.JR A T IOfV
,,__,,_u g. =7 r- [.. s / = T N e I N e e Q. s q . q ,s.-- v l . =.,- 4 j q, a ~ e, q. a' g / ' d' ' LJ . ( m ei, l m 4% ~ ' els ~ =< .ee 1 4 1 m c J .l j.1 -) O ~ get r m 9 m f)* M. e.". ,M
- * * +. *
,i -( n g.t g W+ w, .s ,m g sg. me y. 1 g g m % ivy .t .. 'r; ;..,ya g % :.. M.= ..n c_f -.*.o,. R SCAN c ~~-c~
. ~. -. l .~w.ggggggg w w w. --, asmoW ~{- ,(. -j ( p ane) f. f. f ? ~ f _ l y } - y. p .;1( ,;,, g l l-I l aus ~ g' s s'-. ,.~ p'1 m '\\ ..O.
- e'\\
1, J - me, ee, }\\ l-y C/ l gg .e" \\ ( ~ ( 4 = .+ r ~ I / o say r %. p os ' o s. rnma wama SEA 5mgM4 MN .a*Lu s ,g - IT ME. I ~ p I n 1_ R SCAN COHfL)R.% TION
-. _. ~ O a...- ,- ~ y p1 1 sj m. t (. m i. r g g / Q -j ~ l.*
- T q' 1
\\ l \\ . Net . iss.' 8'8 ~( y gj/y e,- \\ = . Set. s 99. \\ ~j, - ?, /- b .9 _m-I . nse, .gy e. l N ',' f am .m, . aus l f. ! = 3 ' ![ s,. 1 .-)m - ,,. + ' y 4 m 1 %'_&y 1 4 = . a.-h ?- / P E A l -<~ ~~ ~ A ~~ ....,u. / p 99 g, ICE N N,NATI(man.. WTip O stA q TeeERA ( 4 gs , mini.vst l ~% -3 ,ARAE. 1 [ l lM m m S l l: 5 .p- .u. ..l..= .3 .-g 4.ss. 4.t T.2 As e : t.. -, .\\ l ) a R SCAN CO Hva n,1T ION 1 . _. - -... _ - _ -... - -.. -. - -... _. - _.. - -,., ~ - -. -.. - -. - -,. - - - -. - -.. -, -. - - - - - - -,. -. ~ - - - ~ ~. - -
4 i 7=< u ';( 4 .I 1 y j,l f ,; ;p~. * ~ =. I. _1 .p _llh p l 1 l a,_ l I ~ M. l 8 .i,; I I ,1 anr-I , g t A ? 2,,, l ~ I cm k s .gaus. .x w l m ggs 9 'y p +I w car m 3 ~' b r s sus - ) l,4 / , :.m ' l 127 .ti9 8.- \\ . y= q. .,,.n wne s. v ". SEAS $tKFN h mai.m ~ I Rh q' - SEP,1 l l T ~-.... ,;.g. g7.c. x R SCAN - -c
a anw 1 m >ss - - ~ - a a ~ -r-- -,aae-- ---x a 4 e Us to ) 0 ,4 ~ I qf 'f 'r g.% ~ e yw". ime l . ~ - s (~ ), I
- l. m an.
( e m,. N*. / J set i . p, 1 * .A I 'U g 554 ' r 7
- tti, V.tasb er I
I-O @n. ERP sm .4 ess. I ,se aus (... i s i \\. j
- m. l n
s 4 y M / .,se k( .= ,,,g l 88 er w% H 2 DN g*Wm a m p % =m m=. m. h 3 4 t y ,1 d * ' 2 *;':'. ' ' 'c, . ~..
- ~~ ' ---- u hti.i p g
.,f~*.~' ..A. -..~.-.,; a.. ~ -- R SCAN CU W'OF4ATiON \\ .--n-.,.
a _.__ m ..a --5 _a-w -A i l _. ~ V . J [. /. g e _,r. I..' .g ' '. / 1 l g @t f l t.' f w j ar'
- sas
- t sas -
i h@ 1 q ". Y( =.. % k l = .r I . m j g. 93 .+ s J. ( C. >,. s = 127 \\ 'Ag emi F TER 2 a uarm wen a. m. b. s'- 22 (EP.' 1 d .6 c' e6 R SCAN COF 4F 'OF4ATION}}