ML20076J612
| ML20076J612 | |
| Person / Time | |
|---|---|
| Site: | Fermi |
| Issue date: | 09/15/1994 |
| From: | Sahiner H DETROIT EDISON CO. |
| To: | |
| Shared Package | |
| ML20076J576 | List: |
| References | |
| DC-5144, DC-5144-RA, NUDOCS 9410260131 | |
| Download: ML20076J612 (61) | |
Text
{{#Wiki_filter:, DESIGN CALCULATION COVER SHEET ff. Page1 of M {I PART1: DESIGN CALCUIADONIDENDDCADON A) Design Calculation Number
- 8) Volume Number y 0
Revision D) PIS Number)(22cc E) QA Level ~ td3Oll O Non-Q M1 01M T22.00f F) ASME Code Classification %A G) Certification Required O Yes ~ %No D Incorporation Code p LeadDiscipline NECHhL 10 j) Title 'l08BINE GENERf\\TED H\\ssit.E PROTECT)Ohj of BEACTD8/'/}OX. Buttet NCs AMD RHR Co M PL E X 10 Design Change Documents Incorporated (Number and Revision) 000G L) Design Calculations Superseded (Number and Revision) DC -514 Lt Ve{ J", Reu.jd { 2,3 Re,j, ) (t M) Revision Summary 4 _.Tnce9tatl Oe impd of EDP-14726.[ kmooal of 7 axJ 80 s h rokk$ $ skhena.3 out)inskflahon f gream pfah $r each(Lee LP3 4wbnes) % new cort {cguraken f -the mai.e .ktb ne. w:& impact b desegn 6 sis priuthine missife pedeckow. 9 DC-m4 Rea. A is prepre.4 % acq3 he adeyacg o( mist f, battiers. 5.,., - PART2: PREPARADON,REV1EW, AND APPROVAL in dQ9 : A) PreparedBy H.samass 1 $9ggg Sign Date 8/zs/94 B) Checked By A.P,Bvr6 Al'i'> 9 '>#' 94 Sign QQ, jke Date 9-9-94 o verified er / Ars 9-w-m Sign da 9, /jgun Date 9 94 Si U Date @ b t}- FormNEPG1-20 NIT 1P2/1070693 DTC:TDPCA9 DSN: Do f1P-f ' File:1801 Not decommissioning related Date: Rev: A Recipient: " '~ " 9410260131 941019 PDR ADOCK 05000341 P
- PDR_,
i b. Page1 ofM( f l., DESIGN CALCULATION COVER SHEET j PART1: DESIGN CALCWA110NIDENnFICADON l. B) Volume Number I A) Desip Calculation Number DC-51W I i O Revialon A D) PIS Number)('22ct B QA Level td3Oll O Non4 N1 01M r1 T2.2.o Of F) ASME code Classification %A G) Cattfication Required O Yas %No D Incorporation Code p LeadDiscipline NECRhL H) j) Title TLSBINE GENERf\\TED H\\sstLE PROTEc.Tiohj c1: BentToy/}ux. 90lt DidCs AMD RHR CoM PL E X K) Destp Change Documents Incorporated (Number and Revision) l N0dE 1) Desip Calculations Superseded (Number and Revision) Oc -SirW Wf r, Rw.p ( 2.3 %. I j M) Revision Summary -Tnc49ta% h impd of EDP-16726,(%,gaf og 7 g g4h s h rekk$ $ s.bdieng % W insheation f grenun pMes $r eack q Oee t.P3 4uthnes) A new cogurahen f & mak bh:ne. w:& impcf N. Jesign basis driutbine.mtss;& ptdeckow. 9 DC-51% Rea. A is prepred G nei(3 Oc adeguacg o( mtu & batriers. ~.: 5.r...,..; PART2: PREPARATION,REV1EW, AND APPROVAL %..hyp. ; A) PreparedBy H.samuen Sim Date sAs/94 B) Checked By A. P. Bwg' SIP d,P./3cw Date 9-9-94 O Verified By [ Sip Q,.9, &n Date 9 94 } Date @ fl$9f}- I FormhT.PCM1-20 ATT1F1/1070693 DIC:TT)PCA 9 DSN:_ ~ ' File:1801 Not decommissioning related Date: Rev: Recipient: = -
P.Z g DC sl44 %9.I b. A GAch9 p[ Tugeia mssas egacuou TAB LE OF WTE tJTS Pay
- D.C.Covec 5%ek l
Tau of Gdeds 2. Lecsc ( Ccdcufab 3 Con &si on. 4 Assur..gbs 5-7 B.J .4 CeuMio 3 n 8-32. bpenas s3 Apenhee s Al t; All App.8 _ roPeas 70Elt 4ppea A A1+AG 1 Ap.#_sAcJpges$omsz-Ta673tzis A7-AB 2 A.h_P9 pom q.9 sQ Evafuabn A9 j gg hyp.% _7t%ft,8.I.4,W K.stA. Atob A14 '~ "Desip e4 niss6 mis 6t corA bJs" f Art s _ thi bfine. wssfe_ JA, fm4 SEc AMLem t&u. A15-hl9 ^ A p#c _ com7Abob4es $c h o,esign 6is im'ss&. A20_ A21
l oc-sm u1 up eg3 .i Terwn. g<d umwn {3 7hoho beose or cat. cut.ArioM in A unbg coed o{ @be q Re Ev2. TutW senecoroc rdo r, missi9es ennabng pom de mackbte codd poetrail G outec cask ad 4de trajedoties bed 541 c4de.J farp s. % preose o!- 3 t Ms ccacJa. hon is to ruiew ne p< sod Turbba co$gueak dega1J 7 % s4 reidd eppm<A whkis spu@d as A bang p ck<.A pom +uAine mersfes as icknhp<J on ursan Figure 10.1-4 and uofue f b pdeckon povided b appe, pride. 3 3 76emai and orieddion of tb brbine unifs coAnd wi$ mscifc bastiers saishs NRC pddnes,(R(.@f Revision A o{ his catcu0ahn re-esafuates ihe.odequag.4%uss batrecs $r & nuftErbine. con (<pedim.The remo9d of 6 %pLle3 b 4 bp A. burshp spuA 4 4. M dap whd. As a r< suet A the desip LSe lutbinc masRe. A Rave a high e o we g. % _ s 4 v45% b cttees axe. tew(id $c sdequog.h rev.A dse ac&Jes 8HR co,4/m missifL. battier aJua4 ion.
i DC - 5i % Jck.T, f%. h Ph 1 l TJcbine 14issRe. b b Won Cora c tusioN C afcuf*kons pt(ormed demonshah Nak missife proYechon j oriedakien, combine) win b o(sling concret wssife 4 kettees pr vides ade$vdE prohckn $r be krgh an) krayekorg missif< s. %c cabem4 ton bes nc imract b cxisk"9 Ac"we d*4 ion (or & accep6cc ( & spewt 44 pod q yrobdi&43 oaps ept. wb;nc usse s u e. %. A.il oc-s va V,f t Ws ce-vecGeed se adequacg y l & excs k og k bine messifc krriers he tJ & ruiscJ A inuewse) wssil enerpes. & barriers are adeqe t, shp kigh u d fou; b g ec h tg arbine. missifes, t ,1 s l
f5 l g DC-swq \\M.T Ras.f c/19l90 w Wne hsh Lt,cken 'e, a.. - j This 79 is sugaseAJ. I-i.s &{e o, % reoision A, oc Bisbrical sqormation oq. AssummoNst 8ed.A ds/P A Y drev.n "The.Mohb Sout(.o q Nfbine WiSS i 4. b5 gNen i4 r e upsas to.2.2.% ERD rept,oet't {ToecAs -70ei z.) wkcA was gated as a cesponse. to veskon.ct.1 concerning missdes emanding (som % 4ukiu pudoc h AEC. [Abic Eneg O c= mau ' s % basis tr our cdcJ. lion. Efl0 Repet anohz.es he vnohi Uhe.ku soufte., Oe. e_nerg Vdues;'tfs sfee e, Q uj pssMe hfedoties (Ithru 1+) w0ticli hace been us.ed in Mu's cdcJdion.%se 4 hjcctories ex. 36, 6 ursa apus W i e l \\0.2.3v\\o.04.(1) 1 W i missi0c s%e., *<ea,wagt,$ udoc@ b<prc impci, l g l 3 are b vaQues uset L3 4e e.xtshg Mc.no m. @ w qamue.s used $c h c bh 4% pndreio.[ (4 h is akso k same. as used sk70E12.) atto (TDPCAS b.1 Turbine Gen <cated Nissfe froiechen dRMR Cowplo)@ L h boa 3 og h c & s b e u sc q k on q h... a e.
Pg 6 oc-5144 V4.1 Pa. A s/21/n T'uckne. 00ssife khckon A ss voiPnons : (f%. 6) A.( h c n e.Dec.Itt3 % cWnc incedd,4c. few pressure. 'tutbine 7 9 u u bc ac\\es i e tem *. H u;cveg4e. cisks Wid femaLi in p6cc. S s d acMey ne. k&de tcds. As a reue ogh efpcab, the og n d G in e miss 6 sp eca b scenute wat be. rewsJ os $b5: In A r.ew co n p p ra k, & des y bas s t Line. m ss A cs 4. s - c., d e isAe.120 semed o{ 6 she_ hsk,Bs&c. how=c,d is assuned 0 u k kofd d 32.60 rpm Vs. ~5 000 r7m orignh assunhl. 45 h m e turbinc. mule vo&es a re. &scJ om Appwb # 5, E hsb Elccktic h.tter, q E hif5Sil'e. kig'e.tdctiec VF5AR Figures
- 10. 2 -3 f.10.L4 O ht s44 cdaticl egmed te he proiecic]
f aue. n d cRangcJ. % e 6 g revns Ae. sa.mc Me. wussi baen'ecs are ts be. ce.-ver@eci l tr ensate 4eLc aceyacp $r desgn hsis wssites w;4k hghec emy., Lh % h c.A&kon,6e i!H R cc,wth cs Ao inckled. Pteud, Asip CJcAbn qua&hed YL missiC. Lacicc5 2.2 l f Ac. Cdv ';(. L b vniss;(k paeAtab. cdcda.hcns $w. origuw.0'g l
97 5 DC-51% 61.I bA s/z2/Sy 'TLchine Misgife froted*on Fo rmuf a is v5ed. [Redh used dcddjed Pe.hy Ja gene 5Tahon degM cdcu@altons prkwalcoec.htmu(g th coe$icled K (3 sekded he concedie wd compv.e dqh of 5700 psi, do rfd b achak shoft ojf concNIeaf fermi 2. shuckfes wkch is. 5'100 psi [Acluaf k pec lbs.pn cdcvAdons 5F-ooos ( ,s E-ol-E F, Shucbraf Desj n CriterA pc t%</Aoy, %, lhe design hasis wu'ssife ckoractecidi cs. 8<g. O. A R l c h ve; ~., Q u ? l f' . '3 l Ms 10" ~ . p,,tr.ny,my 16 .5" i.a l0 Disc. 5ea,myt hk 4' (Eluaton) is 5ct A-A Lwst Shp 4 Wu hIo{ %c. Segw1: 8660 6s. A fro sec Rej, @ N for Oc s l Nay. projedcJ area tl.65.(g2. Appodix
- h. p9dca aam: s. t 1 62-dee w a cn 4 se
~ A*ng-r$uW = : (ti 'ses.q 8.5yt' vauu. ~ ..~
f6 t Dc -s t% VJ I A A s/u/9 6004 of CA Lc.ut.ATi erJ 6 Energ c{ one (cogmedthL 10 ), Design basis missife (S650 &): 3oo0 e e m 3 2.60 epm A(ler fenetrakon f outer cost $, 3<+.2 42.s N 4^% 3coorp was & occginae wssife genuakon sy. Izeorem is b d misslPe p eco b n sped $c 6. medi(i<J lutbinc. udh & kf& nw l amoxJAom&i:sh As. p 3 (Trage&y # ) h enmm cAog, u.4 For bu; bje& t roc kgh herws(*2,#s $%)w cary 4 eauce.hpad emug as if k.h ee. miss,ic. battice. Pur J<ag c+kcAbns ax p$tnsed here, pt RfG)sETopicJ bpod TR67 5t.2.ll f. 38-40, g Offinal oic drag ccdcu(Mions Auc{ uscl b same =%/. At W inv.a d 4< kak h eaoses; u m 3 l TL l+2.T1__. WL T 4T = Fin =@ wod Iw(bf. Kindic cnergces (ihe missiPc. F L v1 = 8bso &, missife. pt-L 2W ((E w bete. u> =-0 074 yg au< densilb c,Lo oy c~gwr byaA**(Ayf.%) ur. A, c A - 6.3 cl p A
- ra o
o e \\
Pg.1 Dc -51% M I N. A e/zr/19 - Air Dra=, cdcAdions: l L 2* 8'Go - 17 865 (b 0.07 % 8.3 % 0 L I I \\ = q [ + q, 42.% 106 j,35 9650x 2.7865 I-2.Exto s31.s.to'.{&. ) 6 Tp =. _TL_ 4 x c 1.35 l.35 i o{ocI d.netg on missihc b arrier.s wifd he. Vor high Affecleties, V 31.sxto' {4%s. L 6 4xcgec40c7 cdc.s, & impact <.nug is 41.% to' (%,, as no air hg is considued. l l t%ssife. tecdy (er peneb6n bu3L k. tubine. casiny (V!.) hkc Enug 42.ssic' 3% - i w'd_L ecso # 2. z n.2. i m,[42.%10'a,st2.Y=52s{tj,c,=383 mph (Imph =l.w7(t/,,) l ( seso / L y as,,a$edc % ene<g s/ L missifc Wract44 (g) rv hqk tg 6 % e D=si.sio'ps._Liecso g l
- 2. 32.2.
q_I 6 l+84{t/g 2 330 mph T i s t\\0 ,2_,3 1.1 8650 s ( l
f).lo oc - 5144 V,fI L A e/23h4 Suom AM of -FUGirJE Ni sslL E DATA Fra3med A fe, %. g 110 Fra$ m d ide<3ht, lbs 6650 )Rin.9rojecid Area, $,"- 5.1 ?- 4.bjutJ Ana,(P
- 11. (,5 Eduic Speed, rym 3260 hdiaf delectL, vnph 385 j
(ohde. -Lrbine. casin Energics, 4.\\b < 10' g) iniho@,Tcanslahond 72.2. \\Aaf,RAAond 38.1 l Ns;Jc bbine asi~ 42.s Nax 5.Mio n.k A(hc Air cArag,pedicdTcqub ) 31.5 7 %&ond {
[p. ll DC -5'l% MJ b.A skr/9 DEFlh)lTioO oF W.M 5 h3D Ut4tTS - Fo8,MULAs Nc. de indien c Yr>ms aud unb ofe, eyhahe) bi be. Sechon o[Ne t cdcdahats Ju.re. k aw use). Howeoer, fwe de smaet ydrAn deph hemd
- Mokped feh Formafa" is desahJ. %s forniufa g
e Jehd) 6, Appe.oix4, Pay A II 4 Apped, *2, Pay 7 A D = K. A. Pob 'o ( t + i' ?ch kmuR 3 vscoo D=fenhab deen a u 4ni44 hksM JG K = Mdeme fropth conskt sm Ag*1, P.A6 g K, o.m2.s1 Sc 570o7s t conceti, ia % retn(eccemek(r,mc z. conecet rs %c su4iond pectsure.,pjg udis obMned b svie)ng E l AorA w e4p t 6 %. % eg b wc e wum a.g 7 h vn<ss&. 3 nd max, mum projedc2 anas oph ded. ] V i.s W missik. vdoc4 DE/ru] A 86eo stesoP6/p 8.3'l l D'- D (14 e. (&D, Fod(id ?ch Eme. A \\ D'= bhca% Qh in a. $nk &ckms sfab }{E J yu s u m eA <ss D ktnnin$n%Sd. Stak h.s0ab 4hakness hr leccentpds& psces buf kb bdion. T.- 1 o Pu(cean. He enA on. % y w; Sed ait vdoci I Sca b A h p e b3 eg c{ e back Sec. og4arg,oppdr tr & Sc,e. og impd
- m. sam 9 er_t musing s =2.2 o N.m,q.isc]
f.12. 3 D C - sl% V.f I, Res*A C, ifg) Oh O Crth Si s mp & gec6%opgtn u pae p +mg e &.Q (& b on AA b mssife we s d Ont CL Ch (5 E S otCE.Me.w e.1%lSS d M h I'$ a msm a % hk4 L aka ymd d 4e. zone b'mek 4
- MNb
- . d.'q"'ih
$. '"!.? Sc abblag e' W* --,,,/--e ---/n / x *Qf)
- g..
Q ..m f s'?f!_='-
- N' *
- b i al Missile Penetration and b) Target Scabbing Spalling
,j. 's, f ':;. e ok,4k y\\ g V//////S/ $ //A V/////////////
- [fk:?.'
~0 { ~ a t r iT 6I, f. (* L' '.
- .e t
$TL.;Q n b. '.' c) Pe rforation d) Overat! Target Resposee W
h.13 D C. 51M4 \\/o{ I Pew,p 'd I 3,j9c, Tur%e #ussil frotedian / Tiavctor[l_ This 4tfeclor3 s de ok low hajeclog dutbine missiPc. i N kous ftgechr3 missib are ejected $toiw $elurbue casing direck hwad an essenhaf sp ee. are mots dangs, den bcOjk hajabg missifes,dd t l have aboi[ Oerlicat brajedecies,6se of 8eJr high coe.<g and sped values. SRP %13 spc$<s a Acaptance crik.r6 4hd the p&cemed wl criedd. ton o( 4Ac durbine pecodor ud adh<rence b A Reg. Guide
- 1. E uA(& ke cowstdered acce pbble.Exc2ustows of sa% telded shc-bits, Sgsbnc, or componcaN hem (ow 4fgkekot3 urb <ne missi(c sfrbe k
2cncs cowsEkts ad<guabe ytekethon agaJosh (Ow 4tojedor3 uthine d misGSes.!{ Shiv te ded shuclutes io h tofected att wibu Me J y koWkt@ clot 3 SNe. 2ctus and are.suscqhNe $ pdediu E W5sife. dama # ' gn missift batr'ers shoufd rovide sujqcied mt'ssifc. 6 p 7tckuko n. [tb ferm( E, the. iptys! (eighth sfage) moin, f.0w-fressure. hfhine dee is considered as he, source o{Ihe worst missife.'The rediewg7 SM2.1 - 2.017 - Tu rbina Nouse 'Thd floor b E.43'-6" shows ht-Oe Conkto& Room [CompuIer Rooni udick is he possible o b 6pc63 missife bc@, is focaha eu6Je ib. shike.zonc.
I e4. s DC-51% M. I fb./ TuAint d:ssife.W4 ten C ' 49 'M shike zone., as dehn&ed On Reg.CutJe 1.115 Rg l, a na-af 15 depes to b. bbine wheef fanes bounded b bcs Usc ne p 6 ad psun3 4Leeup & ed wheP3 4 Re b-pssure sk ys. 7L nea m t co M a o o., cornec is at 9curmaIJb 6 d"8~5 "dIo pd ftcm de vnissik soucce. fee NRc-SRP 3.5. t.3 -r.I, exdsions f i SM-Rale) sfruchues hom few irgedo(3 hrbine missife shike zones 3 utbtne wssifes. conskkdes adquatE 7toiakon opsb b hjech 4 Tis is he. pre $cr<J mebd y p<otechon. Su@<ch: wssde prdechom is 2 & J3 pooided at Fete 7-pr low trajec6g futbtne. wissifes 6 Sverab 4urbine-peraht face h ed etieMion. g In A es cahAb n, conatti missA bantec abgocg s vercped t eum but it is ong tepted 4r pois bi be qwtale w xA, s-L as s.+g-tAsa suecace, am wm, We wss& sh% zones, shed b suppc.ied vnessA 6ttiers, in adkdtion, ConserVd.Ve nefed $c, ythechon prov(ded b j l h bo 6tiets - \\z" hick sudwick ad (sbP a.dconcure)=d t tt &ck tehprud conc.ed wdf %. (om:I-200) wkch woud l probag provide ade$ud yrokkon. by stopping N. missi9e bye L-i t
f.15 g D c-s illy MI b.A B/23/N W Wne A ssde PrAcckon reaches $c Conhc4 Poom. Se cowhined nichness o{ codofrootw thwediafc batr(e.c waff 2'-6"&ck Turkne Mg.waRf3 ed 2'-o" on & Auxiftag L6A.g ude.Caot mov.s was', %. 602.\\- 2.on) Tk misd chadecidics an given en fa.y 10. D: K.A.4 'l d ' S onnuk ) PJ F 2.5c00) iniliaf hhc EnetgA2.510'(ub. g 9 Esg3npR (8q'.fg,9) gmd = E dae4Lfewicoel%, [# es. h.iss4e bra )1 wdf kk he vlaff wd,
- o. 30 a.ng e. Censiclering e.
a f N Ye missdc componed dah J cause. pwltahv.' le - /* Y* gh"V %g* d % %.ca Go, resife.... pn V:%%0.5: 221.5- (t/3,c. D-2.82a6(iosoJogfiM N-o.444.ssin 115000 4 N O = 1.0 D : s'in D'= I + e D k$taken,.to - toin (f All) App 4 g,<,.o -5 g y redt scabbing, T)f C.A>\\o f i 140t1030,it'5 = i %pt e 17 in scoh;, e< kq.#14A poi scAny n 2 zo = z.z 1+ nud be nha%t +he. doe pma_. is rnore_. conswee A Inct e ne p o ntsp udness(tekg zo~/, p Act wl.lcz.2.i) i 17 31,2 = Z 0. 5" <C 30" =P o.K. i
e t>c -siw M.1,%,p Thse $sfe Protaken ip,l3o/go kb Ae.x and owa@ e$ds on h w J wd 4e g m a a g e p t,3 p g. s a ne m aa a coar.e %u wa %e a. p u bekeen%+unne wel., f. \\s l gbssi?e, A we: staLJnc:4a* seendag wssA h W1 & c4et room w e so & cc44 ecom wi# no, 6 $bl.de omaR (ds on de tutoint won d 4e nepdd4e=se q b segreken Geben de uds ei 6e Cup coda? cua (he misde, bust 6 need Of nem missife $tmubnd aMms Np'd uo, dud [s4arg nosa a,a-ua - yea,~,sn,_S s4 4r l ness & <3 suck &f pz"x~7f)& b is mm hsWWW (sktp load) teh b x 7eint fead(concedtodd). As tese o. fuy am o(& wat/su A be & % oaski-bhi & $rces/dwsSes.In adsen,4L inida0 loads on& wdt m ma s& 6em cm.ma htA spad-d y u n a acc @ e e. .-,,y, .,,7
P l7-g oc.5t44 ef r, A.p ph[y r e nc t % & fro b Fru 3, Hig % jufor$ Assdes-N h isc bbcne. misdes are cbrac6ized b bic nea@ vekcdl g h;echses.dah ht m e;ured neaq veth.J y bb \\ f too{ oj ne Mine 6dAtm ad 4bn elec & %che BudL6 j kuu hs roofor shi e.,/k Awikghf/.dLno eco(. Per WRC -sR P' ( e .~ / 3.s.t a - s e kon m. s, L c d p oiu hcp hjecht3 futbne mivd.s ( is insipi[icut u.nb5 & uubcab6 b tatea. s on A order y j y 'Q0%).or more.% sped sa se mesde. g 6 kon. um s L a j ~ ~_ ca pbabth atysts.% ptMfg of a bb7Jissifi~&gh L_ spi @ p e once. A lo,coopes.The vgcbj prWs paM Cs k %,wbA mg Jso kb N Ruder skdd P&pwkch an co'+kck n conue pup.TFgfz b ts b 4g $*r _b&f5Li.s y g 1Roor = mnoinig anas Ach an angz.ed in bo pass: t)shd.g u loo C.. bid hhd (sLc) b) (s' 8'&u) g 2.p,&ck 8.s. s F l Traj.*4 b t; 4e co a t e x u Atc.coJ.6?pm.J ud sGTs coog y a b.89. ukck is s' c"&ck conut 4 med deck cosmL 7 L& amah cs,b. enug es a b e 6 p ekaAng rucb;, w A c. y w eg.mM 6 qs b k gectJ. quFSoR Eg,lo.2A
a.4 a P.16 g DC -st y 4 @f.I,1b A e43/n T u e.e m s d 6 h h
- g,g Hi, Tmechg otm biec Anahya s:
p For Mf hgeclog angs,TrgI2. uin a wssile batt;et Nckness o{ s'-6" <s wore etiHed % reaj.% Acek,*s G'o%k. Tids.4 3 thsife kriec 4 i45 hste) in Ois cafc.on $'y 10,%Ie( cir deq sses,Oc St6sticemy O ch b utssih A 6 sI. slo'{ uhs. consaea,as c44 fec< Jah,, is c e 9 '- 6 " vs. c43'-c" 4arbine acck.b 4 ion.(40' Ac3 ur I 1 _L mv = q i 1 _1.,$650 ( V : ~!Il.5x t0 VI23AL10y V= 484$/sc , v=Infh a n.2 Modi ieM fekj Quodion;
- OSing e
K= 2.sbioT/tk (es;.Ag5)$c(,s9aoe/v - t D= 2.92x10'$ l030 doa ()+484 693 2h 1517_ D,= D l+e. [oo_q s47__2.)~ , 0.9% 1 + e*4'l =093ji r p On-+2D:lebbh -*'1MbbEb2fbdS*b7ik @* MCI 3 I (
fg.19 i b5lytt fasA Vd.T 6/2sh4 Tu6k dide freiesan ( dt 7gg 70 l In ordet to pavt scahg,chtch he ineguahMUFSAR 3.sq.12) Ag,#4 -S T >,ci.A3)o .) 3 Og=3b(FP[Lb) From Feg.i.WFM ) A: 1030 W/4p Seckon.L vbss _ wt,op minik/cuca of conbd-5 T), 3%o30 sto = 3. 5 (t. 0.K. sdudi f.h3.55 4.2..((.(T pr Act 3M-T=5.O{f)3.5{t 3 C.7 Owol 54tuchtak Sespona Eb 6 pad: This spct is mobh4 conshwb bt & mssdL gn G.e. peat &e sfob beu n4.c4 sMhs hearYnt pd/h5 sheat hrce4 axe pcded du bo Ntc. Rowb og w <1 on & sM, Ac pndraon{oemuh.(Lahas e 6t uad J wormq e;wdog. 4e s6c/poq s6uegemts on %e M. jc-ms) % s&A a s-206, se%k, % o.c. ss-ooos-z(q.zw & ih&om eq$ned 'I.c)ro.l. so & in c J foadag $ cts are~ yyd. ~ Aay %.e essa a m ass,-49 s w u (s a u,7Mie y Acr SM-ss sd. c.u.3. t-- n +r %ey-,n+ -m s e e a,.,-v.m_- e- -M --+8-W<rIP-e
- -N--z'se
8.zo Bc. 9 M \\M. I, f6 A s/c/w w weh eac%e Y, L&, 7l30f70 s;$ c.enkat E ph Wynh mWsite skks d b cefer og &c s0ab,he crHcal mode og be6 tor is {bure,& energ a8setLe) a,J krsiphJ h de s44(r ) m A L ca9cdakd as: i 4 4 4',g(N m)V' (b, Energy equakonQcce/qke Imrac rom.6 = [ tbds)\\/ =7 \\/, N 6 [Mouenb consenahon) A Ms l l l b kinchc en<rg b be a6 sorbed b %e sh g E, L (rLN) v\\ l b,Ms)f ai%',.L M ) %* (gg3p 2.(rbJs 2 2' j Ea = LI !% '. H m.f~ Hu.Hrss of utssile 2- \\HmAs i
- s=Hazeskh.kakre, 7
k 0 %, urssife vefccig g Assoc 4csL2 phanh moss <s LW 6 &&&n<ss(q a&J 4e $ac 5As ek. imp act, mess & bson.(M ym.)(c;g,h)(wsAR 5,d.3.5 nsc e H5. (ihs.6)x(e' ass.67')J 67e 6,3 Leg /,xe g 3 ~ 3 N s.cse,o.27 Ligt e n.2 Tt q at-r - 1. 1 S n0. 0 f Y N : b g Q: 2 ( O.174 6.3 50ab erhcQafion t rd u a %\\wea6 v w
fg 11 DC-5RlA 'lo?.T (?a>J.f Tukiw Msa ftdec hw fJt 7j3gjga %d4 6. bg 4 be and 4 cche h debr.ec 4e enecg toybed t s.U and toiate fkdotidk(nyob4_valuu( g ubde cdaan. Assame & 5'-e"(s.67') tJck s/4 (5-zoc)is sugor reJ 3s4Je:. l pd ad me. sdc (ree.6 coqqutahon,(ifa gield &nes assume.c ara l as shm 5 is Ac Qlub e4h sM db cedr. 5 wift cua robs d iefMinej y domed bes edwht d p Se. LNenaf enrag d 40.e dd. naw.rm %nx f '}~~~~~~ Lietaak 6necog 6d.9- % 4 e G2 Fl< $ 12.1.s -+. Oi A* ta ~ <. Ts_ ( is.ts 33 2.(14 $ W15 16.5 -+ 11 15/ N,,, n. l _. gec
- f(M,gn.zsl,2 s g,g/
k b1LS / E6 f.132.5)/ Njs ( 13.2.5 ll,L5 11 15 M =6% kyyg coevdg. Assna) dukuss,, use pom 0.c.. ss-ooo i fag 1.1. 6dpg b l l0 c y pt Acn W.92. c.2. (om uo) 5%i,lo, )2,82 S = 63%,s $..%
i fj. 22. DC - W4L\\ Gop I,9o,j. p' ] Tuke t%sde 2tdeckon gY i N i ) fcufde, b udirno.E foba.honal ga g &. p To e h4p b 8(.#10, f fl2 h t m J n 3. S. I y g fu = (0.00 6 5 d_) ru =uRkmak rdcdional. go i d: cliw: clegN of sedicn 68 -3': 65" c, dis ance pom Oe exbne cogressive (doet N ne neubf avis at udimatz mv.is. ] Incl L D avec incxw hcbes (DIP') p Act-3Y) App.C, b c. 3 y vaQut.: h'/ c3 -> concat2. skak Pc.= 0,m7.675,.lbo.GB.c = Fl.15 5 c T~. 2.o841.140= l37.7.B bp - c = 2. 7" c. b Sta6 ko% ryoremd l $5 Cow b Oa tsdtd(R4j.iovs sfeck is pf)C / u is, (3 "- 2.7": 0.3 " j elkck on $w. rokodionak Capaci c N.r.s(ab. g,', f.1,{,. = I.I^ 60_,o.oot3 'C y 6 # is ncedeel fo hauc, a. ower }{3aC g 2.cj *10' fu e 0.07 rad. >, ru ao.o 1 red. p oWrns 5
..F5hfe: Usi omd decttoAu 0.ts kr eacb I ksi nm A
,C a $.. assue rc,sser,u.sd,5g anrksi , p, = o.s s' o.os ( 7.375-4)
- 0. 68 4
l l co, o.ons. cs o,iss cact. yo.07to).
- 2.,7 j
Oseo,07talprPu pr R[to P llt re.r. C.3 s. y I
f.23 3 Dc4144 b A y y 8/13/9 4 TuAne *cs& khcbn Q13,j3,[9, p b = 9 " h .:-p & r d Q n.~er f [ !, d u ' 9 i / N, 4 %, 9 ota.ca wn.+a..cs L>A,+31! r Y1-Act witi se ccmyar<J wA P lo,omJ. ' j o h is fne wiax. Verb' cal Esp (acawedt gfb gid$ec,.C00$, 6 4 t h on. bdend cwg 149 = 8376.6 5 kpK & ew g t bc dsodech isoo 4up (9.:o) 34 EA3 6Lnap: A =a,837a5 = isoo 4 s = o.iss '-+e=3g.iss.013 % 0,02.7%) 4. s 20.o7 rad ,', Rotdion o( 7 takc. hin does nh 0 u oceed b u6 tat rob oncyack. Gaust o. As sM s 206 is M b & miss&,A ha j g gena <aon J h Aded ts o.93 6 w& p4<Aon 4186E %e. o9aod sfah d eypience gk@6g conMhens o.d roidiens w hek a t = abt ehr A utbat cab capcha % 'uwpd e. nag wa & abAed comg34 hs pteckng ~ sqq edahd c pJs W. % 5Q%k su Jn a atd bk,oue St.sawngeg_ wed is 0.K. bg cowgatison dat to N mdd decd adkkiona sW R.52Ag 4 b Ae gL wkakyki-dis sM) d 5
l $.14 l tt-Sm
- r A.4 l
Tukeb% fuitubn p og, Try/2 dso incfudes h. possibt&h og driking & do"%k sccken e$ h s*N. bckr Sedj.ie yWon 2 e ywfeg &ck M was calcAfed to be o.93 fA.scascAh pnch4 tom & 1g &k, sfak o D': D H "(us. sy = l.W gf-42. f f' !A ~ r^cr r.a.c l' Qteon: 1a =L.9Li.e41', f.e4 f.z,z2sp 72..p Sca&g wid occuc.1b possiW3 o( Mordon is not q 64 some eny asses (wcLos 7,0,w <on +kw
- Wne 6se aA reac6c eq refj
- beem ne/nh4, Euo ( 4he nessde h
l pharis Au A 5%t.. W causes seenmg mcssdee,h eee<g bd w$ 6e. smdf emujA di k abrbed & &ber (ha s6. 4 4" FL. Reac.f6g. sla is %"U =J l2"b. AA w4 proseisems prohch %u 4e_ b q. ussk. A w cenwM %ask cupu A ac' ~ p elow % MF%c Leuef.145 a re64 s2Ag reahW ep;p%t 4 MewT%dd,UFsonr,3 wi& b pteded % musife.s as )0.14
$.25 DC-944 t/ofI,bA g/u/94 Tur N ' Nim b fr$etAien k he.7f30f90 Cuera W 5 M In. pact d _ y hurock Sh=c @be e$-bdd % pd% sheer. " Ed feef(414 9 2 "8ks @ecome pudgrac6 eshe os 4. repca Lk-de shh kc\\ cuss be pb b e&c b, deraon Nckness or ffw sc&g bckuss (i{scoibg o$h cencafE Is aulestra&)and 4 ipote p,ckig sLc.c capc4 pc sMs sAjected k harbissife impack... pud!'ug'sheu fiMes 3 l Jun nk occurr d ei A wrsife inyoct bds J.tch b>e. b pcQcmc)." e Fer ourd feau olequog e,(y to A end og 4his s,c%n. cehd Leo # l Enero Eloe a0soded E , assu.m'usg6al shal) pacNeipa/ing d (94.*l/4) R = (: coot; = 6 coo. (2 4, gooo,% I435,7,g. ).p (v/ i484 / L blus o.{ p icqahng concrete. Use 24g = i3 ' N considec S-209 instead d 5-203 beccm of'tb ower Mo,G.nd bwer energg dsor[ ion \\ ~ c c Alse. consider o6dloj.S3uust j Cyaci a r2r.d win 2! "Mdchwess a.d 1.'DE 0 r Y l Wkefuxed. Nu =l\\l 6laft[g pe 55-coo 9 l'g, l. I t
Po,24 o Dc-s144 4e I, A.A e#h4 To @rc Niw & 6A u kon ,/30/70 )_L 268.6JT4 '=. l2B 7 kip {f Q:{) (=/ f650 ($650 + &&13150j 2 t_. 8
- A5-St Z Pf/Sec -
t NOMenk Sokdon s k N9,k. 3 MM.% 2.6 = 2.oS M& Mp: 1,1 Mv = 1.1 S ll4.6 = 11.6 kipf b/g 20 %\\16 & = 2.6? o 66-9 =. J3 8.1 = 0.os rol. radio. is requecd to dsoda E2. 26206 CaicAh. totahond c+ pod 4j fu = 0.00651 c o.co3 (f.n) g [ E =J.1x60 = 0.002.3 c 3 2' 5 1%(0 T= 1.th l.1 x 60 = B 5 02 kip kng. area. 4c siab Pc = 0.62, c,0.2547.375 t 11 - 51 153 e c a/lPc, G it,, Ca a o. cob 5al,0 06%d. 4
- c. a i.e
[6 ofdd Io hoxe fu 40.07td C.Shouf) hep 0 0065.11 y 2,g/' 3 O,0*1 e 0.07 ca.J uti@ go*to as he ubah refdiona.C So ru capag ( & sM. er = o,0 s ro J ( r se & AJ u h dsod 2h ow(g.
P.27 g Ix'-sitAt \\M.r (b;#A LWhfe bdetAton
- Id' 7/30/So Beam,Cofumn 4 We Ahuoy
A hMs cdcddion, during oca0 od owa$ do.b[ Wall ckecks, k & 449mg c4kse coweenes bs 6 ve$e).In mok cam fods ASe hshibutedn wehn one Lam.In a& hen 6 ass we s%p wkes & ky authemukes =A tiy&,.is, b wjuu;ng ydpued, att4ean1s udfe g & t Aska wsde nwetfcts de Ag oc bu L sqrta M s. t sau ydpedis Valadpt cobs k e m 6 p q case phe g.Tx enfe hiHing & walk wl\\% a kykal couponszt 6 kwei url; kuo cagoneds.% canonatt 9" F & dd is tesa*c {u fend-l ta6.4 coyonet pdd i bdf pnudes brizeQ Ad a rsMed b,s@ cop ac,on.w Ls-pbepece3 y .asyto.(nts y 4kmhos, hen cons <w aged +c cou - was eJaaer eg ecpe~.y a pdped.ibwas J cc0=us =1 sa[al 43o4 4!umpcheg. g l L
1 i f.,0 -v D C - 5 \\ +H- \\}c4 5 %.h m': u a q \\ \\ l 'TIAs nts GENER ATED WisslL G PROTE Cn ct) O F R HR cow f t.ex Tfds toJision supe (sedes khe, o cipnd cdc. 2.3 fb. ). %..n,Gewr.2 ? C Cd( o>y,co 3r, we.cc m a d c O'. T. d 5 06)iS Io n : wescl. aucps, <nia m facyc, k hun ansded l \\~% sew o r \\E ID bhlkL rc tiies U$co DCW adC Cchs i rTof W d W Reo ck r k'Y. U d s (0.WJ Yi l' $ $ h p ( 04 Lag ci, n
- q Y(.C ( 5 U $
MC. J.i i a 10'd'n30 t j 2ceme } < 3 W 2 5 Dnsi$<rc$. [$ h radJi.I p CL.' l M \\'S$ f., l g \\ / ~ ~$> n t 3 _. ,-n O m c k. W d N. t on,udi, er pene; cc\\ico h v r, < s om e s l CCC ' '. C d'.\\ b VN J$ L OC l' W' i d ',. [6VIb c c Vic$ C%ided ccrrcsptndd E 3kooph con ud,ud'ucao YL aAud sh w k e cena n J 6.d. is m oops;.ry k, t Moil, y k, CC CW. C C$ Of CONC N $ ben nf70p-is 3MJ in &s revisten. % dMe) eyganakon c4 h e. bs, (Sc h A. 'assa.g l hs" =a"D4nmenofwmsaJ oas mmum"a A i f. Whin C ,C. Ook.
h.' 'f DC - e @+ Vot r % A sl%s CctNNUE khe. vy is5.iic VOccd; $. Iwpod My[cs, N0 tic.onkd desftucc. (ckwe R H f 5 T Ecbine. dub is b o 500f. as b&a. 94Q hsume aLc daywWImtcla y yk quky. 's-Ak 500 = C cza& k k = GOO 4 Vcs& = VSh & k of,, O = T G 9 .l_ok,T k ? .]_a 500 zo
- 2. ( trca:9-t 2.503 = G&. C&c G = { Ah2F gr 5 d 1 2. 9, E0 0 %, 9 0 07 32.2 _ o.06F7 Y~
lt 84 % 2 9 = 14 (77~ 2s)- 0.0667 TT-2 e = 3.94 2 % / 76.0 6 B-88 i ,___ a {fu a dc g Sched Velocdy: 46Ns
- 4x 0, ere, #8 4' ggc.
Hort=uM v'ela
- 484 cee = 4e%os4=Ks ftSc.
~ vefcedg aud6spott au_ jed. -Lnhe noti 2craf (
la,30 c DC - 5l4Q Vd.: Pa.A g :r,m i beider 'J4'H co.1, im p.'t or, nw fMPs rcog,d Mic. D;;isicn I4E Common wa@ ao cat.c 3 y Q,0 UFs A R y,5,4,83. %cco.ser.l,2.(I or-(ert5 'J F 5 6 R 3. 6. 4. 8.1 hv 3 od fu.@{h ,%,b-. D= K. A.6C'*1-r# 115000 = 0,0^ '-$2 x 1030 x h" 1+ _N 4 9,4 T ziscoo b\\n.N.'.'c'vness N prew5 ptdorakpr.: 2 D = l.35 d0 0.<. '4 D,= D ', l t e. 4('I 1)' l +e. qI B --2) / l ) :- 0.93 -043 i \\ t ~5 To' pre >ed Scd{wg, i > C,.A s!') s >,3 4 0 (C30510 \\ s.K.) >- 3. E l f s!c",, t3-6 t ( I J h I n %N f ' O' 4-3 / ' \\ ' g _gu 1 v 4 '-01 X -~ Dwistend ufaz l ( l
.o d.L ,e. 4 m w -a -a .am -.--a e;..ss oc -ste M.I bA case i. hef00 les iC GLA 4 ff fit o f ahi,t b $50 mc, ne voi3S C RS i GM M OG U) bM 34,8 cis Ufing 04 c rab ofl 5a p,pe-W(5 Pes pec?o h = 1. s~ D '= K A v ' ( \\ + e-g g _1))g,.s icJnir{a inn u y
- 1. 5 = 0. co2 81 x io 3 0, V,{ l+ e._
(<ces2rona . 5L v ' { i + E'0' t N] - '/,:.2< f l + 215000
- .1w' U
V= C3 OIC \\ \\+0' = I,slR7 2 500o W l 7 6 2. 3 5, 'I ='p V = 42 O hs. 7: 910 fgs is req uCNd as (V,) in orclerIo fane rad ci,5 -Sh, s(ab, 26so , GE
- 2.3. 7 x 10 4 Endg Ledi g 3
- 14f4, inikd Energ,(f.loyeeact Ag.31,sy10'4f, g
LA cc. (RemawrpEnegg,(3) 5 - E3. 7) l/ =. 7,f> Is # g, 6 Edr Vehag Jh ppdon, E,,pvi _.,v, 2ca]'(, zH g,. (
. 52. oc s m w M a,.A. l l ChSE\\-(Osk'b l,4 ) f &) J e_ \\ / r v 1 e v i ce w en s l v> A M j -m l SSV MC 't' O. CA. C[ fct*[O ]C e) h$Ch [Oo .2 1g m ss 6 w;& L oi4 A.2 J wm tJs 6 mme n w J uA s=3v e o j .. Yekoci u i1c r hw I w 24[ su rd cc : \\/.ccs30",2,zflx,f,sg.203 o d fp s. D-.e2s ze320 Q N 20e ,,133, 2.s u lo n}[ m !4 ~9,. 0 9) 233 / , r iY C '.) 1 0 y$.= 1 $. l l. o 't o F Tin tJo s &n, oc scJe* t amen wd. 0 (T Case 2. led 2 odd impod & & jechn of 42 <dubr ed vof), s.4 ~ 1 conak. DC Ii20 ft V CI B kh6[ flE 5 'V l d.$ g(c,f(0 GUMAc c. (6
Ij.35 Dc-5144 sjef.I b.X A ' /19/9 o Turbine Missife froteckton REFERErdCE S @ FnM\\ 7-UFs A R - 5ect. 3 54.7,3,54 6 4 3 6.5 4 Io. 2.3. Fip.2-3 (.lf. l0 @_ ERO Regott 70 El'2. (TDPcAS-70E19-) @ US AEC/Ac.RS subccwi\\ tee 4eekng JOnutes, bch ?.,l'171. Eco F4tni Abic lower Nd und 2, AEC Uockck t4o. 50-34). @ SafeY Evo(Cuahon B L Aivision og fkache [icensing USAEC_, in ne waWer c{ %c Dei.3 3 Quon Co. E.Fa mi' A,P. P. lld-2., Dodet fdo.Co -341 dd4_d dq 17,lYll. @ _ 54 L Repoit SL-3075 froEecWon hgenshitbine d5sle-8HR Cowe\\ex. (Tb OAT A - S L 3015) l f?ea.1_. Turbine Generded dissife Pedw TDPcAs 2.3 RWR Com,ple x. Design og heticodes $c Hazaco\\ou: Etessute sgstems" h c.9. Moore. @ Drawi$s 6 A'lti-2cl7/ 2co3-2, 4 c711-134f,2341,1374,2377,'1506 @_ USNRC bdad biew Pfan 10.1,3.6.1.3, 3. 5.3. USNRC Reg. Guile 1.115. @__ AcI 34'l-76 Ag.c Specca0 Provisions $r lwpufsive. nad lwpoch Eyck s 11 DC-55-0009 (0009-2. -Rnaf Lead Check -bche $@d.EL.6S9I-6# g Desip Cde. 5F-000$ A l t.o l \\. Projectskocksi f Dmin Gderi. $ E Ol-E f' 1__?$hR Amendmeds N 5,12 4 l6 E.F. Ud 2., Dockd >Jo.so-341 - hskon:1.1 tkssife brott JVANRcA 50 3t+1 i Fib
- 16ol-r2co-2.31 h k bieu> o{ froceauces For-The Ancd.gsis % De Sign of Conce<h shucbres To ResistHissifck act E$ds R7., Kennedy f
i .C,Sil 4 d. hM e,nd2. t I TO Pc A s 70 Ei 2_ ~ A eendhA t APPENDIX A \\ t .L 4 % f tir 0f 'CM DW W n. I N, NV I%CMa~:. ' i f.,,4 Question 9.1 gmg g y Provide the following information which can be supported by annlysis, drawings and the experience gained from previous failures, I for the three different kind of rotors, (i.e., Hp and Lp turbine rotors and the generator rotor). Establish the maximum energy contained in a missile frco a. each of the three types of rotors. i b. Establish the minimum energy lost by the missfie in passing i through its rotor housing. j Using the remaining kinetic energy of each of the above c. missiles discuss possible trajectories and the adequacy of the intervening barriers provided for all essential equip-ment, power, control, and coolant systems required to achieve and maintain a safe shutdown condition, i
Response
It is assumed that an accident to the turbine generator might result in a progressive increase in rotor speed culminating in bursting of the turbine generator rotors. Heavy fragments might then be projected from the turbine generator with considerable energy. An estimate has been made of the maximum possible energy of flying missiles so that the adequacy of the intervening barriers between the missile and all essential equipment, power, control and coolant systems required to achieve and maintain a safe shut-down condition of the reactor could be investigated. The approach taken to establish the maximum possible energy of a missile emanating from the Hp or Lp rotor duplicates the analysis described in General Electric Topical Report 67SL211 by E. E. Zwicky, Jr. entitled, "An Analysis of Turbine Missiles Resulting from Last-Stage Wheel Failure." This analysis concentrates on the last stage wheel of these rotors. Based on various frag =ent sizes and energies together vith the nature of the surrounding structure the last stage whael fragments are considered to be the most dangerous missiles emanating from these rotors. This va confir=ed by the failure of Hinkley Point Station "A" turbine genera-tor on September 19, 1969. These wheels are also highly stressed and thus the most probable candidates for failure. Wheel failure is assumed to occur at machine overspeed when the mean hoop stress in the wheel is 0.85 times the ulti=. ate tensile strength of the wheel material. The total kinetic energy at bursting is proportional to the weight of the fragment, while the relative amount of translational energy is dependent upon the fragment geometry. It was assumed that the wheel burst into three 1200 since this mode of failure approximates a shape for which the missile segments i Ce ese c...
Dc4!p An.# 1
- j. At 70E12 Appendix A - 2.
translational kinetic energy would be maximum. For the HP rotor an additional =issile was considered having a length equal to one complete flow and a sector of 1200 for the discs concerned. A sum:.ary of the maximum energy of missiles emanating from the HP and LP rotors is given in Table I below. TABLE I ENERCY OF HP AND LP ROTOR MISSILES Fragnent
Description:
Enrico Fermi Enrico Fermi HP Enrico Fermi HP LP Wheel 8 Stage 7 Disc Discs One Flow Fragment Dimensions: Angle (deg) 120 120 120 Weight (1b) 8650 1460 10,270 Assumed Bursting Speed w $9 (rpm): ( 4000 4000 ~ Initial Energy: l Translational (ft-lb x 10 ) tQ' c - 6 '~ 2,4 Rotational 17,3, (ft-lb x 10 ) ' @ 3,n 6 L 1 4.8 34.6 i The above postulated accident is most improbable since it assumes: 1. Failure of various turbine protection devices despite the fact that probability of a complete failure to all protec-tive systems is virtually zero, 2* That the turbine is' capable of producing the torque required to accelerate the rotor system to the bursting speed, 3. That blading or other turbine damage does not prevent the bursting speed from being attained. i In the analysis performed to evaluate the maximum possible energy of missiles emanating from the generator rotor attention was focused on the failure of the generator rotor body, end bells, and fan blades. The caximum kinetic energy for each missile is given in Table II with each failure assumed to occur at 120 percent of machine running
- speed, l
l m 4-.--
Age.*l P. A3 D.L 9 $. 70E12 Appendix A - 3. TABLE II ENERGY OF MISSILES FROM CENERATOR Missile Type Kinetic Energy Rotor Body Segment 32.8 x 106 in.-lb/in. End Bell Segment 345.0 x 106 in.-lb Fan Blade 6 0.073 x 10 in.-lb Although details may differ, the general behavior of a portion of the turbine rotor which has lost its integrity is as follows: It leaves the rotor and travels with its c.g. moving in a tangential direction at its original linear velocity and rotating about its c.g., with a sudden increase in angular velocity. Initial impact with the surrounding stationary parts occurs in a few micro-seconds with the stationary parts cru=pling while deflecting the missile. The angular momentum of the missile enhances the irregularity and unpredictability of its path in trying to penetrate the outer casing of the machine. Although the rotational kinetic energy contributes to the confusion of the missile path it does not contribute significantly to the severity of penetration. Hence, in all cases the translational kinetic energy has been taken as the parameter to be associated with penetration. Energy losses in penetrating the machine casing were calculated using the "Standford Formula" which is based on tests with long right circular cylinders. This analysis is considered conserva-tive because of the ineffectural shape of the generated missiles. Cal-culations indicate that missiles e=anating from the HP rotor and the generator rotor vill be stopped before they can completely breach their respective outer casings. The HP and generator perforation energies are sufficient to preclude the emergence of a missile with any translational kinetic energy. The LP rotor mis:,ile is thought to be the only missile that could breach the casing of the machine. The energy contained by this missile as it emerges from the outer LP casing is given in Table III i below. TABLE III ENERGY OF MISSILES PENETRATING THE ~ OUTER CASING OF THE TURBINE GENERATOR Missile Description Rotational Energy Transla tional Energy LP k' heel No. 8 a.1 rg-120 Fragment h x 10 6 ft-lb 6 {3 y x 10 ft-lb mem
i)M M [ kl 70E12 Appendix A - 4 The only missile that could possibly do damage to essential equipment would be a missile emanating from the LP section of the turbine This missile could break through the turbine casing in any generator. radial direction. However, the direction of rotation of the machine is such that the motion of the top half of the rotor carries it away from the reactor and auxiliary buildings. Furthermore, these buildings are not in direct radial alignment with the LP sections of the eachine.
- Thus, the possibility of the missile taking a direct horizontal path toward the reactor and auxiliary building is remote.
If, however, the missile were directed horizontally toward the reactor as a result of an internal or external collision its emerging translational energy would be absorbed and the missile stopped by the concrete shielding which surrounds the turbine. This shielding would be only partially penetrated by the missile with the missile surrendering all of its kinetic energy. Another path that the missile emanating from an LP section of the turbine generator could take is nearly vertically upwards through the roof of the turbine building. It is estimated that such a missile would lose very little energy in penetrating the roof barrier and would t ,,7 leave the turbine building with about (4T2Jiii 100 ft-lb of translational kinetic energy. Again this missile vouE have to be deflected elasti-cally or acted upon by wind forces to give it a trajectory which would allow it to fall directly atop the reactor or auxiliary building. mated that the missile vill strike these structures with ggfrx 10Itlsesti._Jjl,j j ft-lb of residual translational kinetic energy after allowance for energy losses due to sir-drag forces. The missile, as it strikes the reactor building vill surrender little of its energy in passing through the roof of the steel superstructure and will rea the reactor building with aboutE2fr6 x 106the refueling floor elevation of O. g ci ft-lb of kinetic elih~g~y~. The~ W ~ LP missile would be potentially damaging to these building structures and the essential equipment each structure contains. Consideration will be given to the design of the upper floor portion of these structures to preclude the possibility of a missile penetrating an area directly above essential equipment. (See Figure Q9.1-3.). Consideration has been given to the probable effect of the LP missile on the Fuel Storage Pool. Analysis shows that there is a probable missile path to the Fuel Storage Pool, see Figures Q 9.1-1 and Q 9.1-2. The probability of a missile striking the fuel pool has been calculated to be a probable occurence of less than once in every 10,000 years. The following description of the Enrico Fermi Unit 2 Turbine Speed Governing System and overspeed trip system is simplified and is intended to provide a basic statement on the unique system characteris-tics which minicize the probability of occurence of an overspeed condition.
5 E Q 6 tw D gh, as W D " iE [] O ].". h.. t, a 11
- a.. z< am e t r
.-w 1; .4 e, r e swa p a(' .y:!,.. }. -,7 mi o d{I e e P 0 = lE < wEm wb2 gg2Z h @ *- 5 5:i y
- ,"5e
{ .".'t. 18 "" o a 4 2m =' 9 m w 3 a. g .r, .t.l 7
- 9.,
- m. :
..e v pi w p,p, a:.qg .a.
- u. <<
a. z [ ,y~ i-s m rc I.n c g
- p li
..I. u r im n ik ' n:.- q.l.,N .c e
- j
- L
-Q g 'w3 3 l < -w l} ' [ N g 'g lj (' y A p yl L ,i j f1 / Ct 1 r 3e W*g l[ e y* [- wlll,p M e j' N .r o r
- r p
.d. rig i,
- {-
\\ .f t: t__ g e q{ i .q j [ _l I f / j ag f. L A p ,iti,h : h 3:b g s l -! h N'i dd p / ly\\, (,sj j Q( L. = - - ? i
- j
.,... w ,i ~ ~ b ] A h.J=} . \\. Y ~ t, e m s g 3 O * [: J
- j l 6
i l \\.t d. T-' . s j II i Lp _. .s dl t . t: i \\. It (. 1;- - 'i .? 4,_.g i a -- ; s __, : __- _- l .e' s..t se .~i ab ,,L,p5 l T w=' i ,I. [.' l
- I t
-d-,, ,'l ~{ r E e: a <r /\\- i 4 L_.S s, il 14f c i J....h. g f i - I. r \\ -~ e N , e m 4,,f g y s,y^e 4,,,, \\ Q e]ll i l -s 9 l s 1 t Q NO . A LJ p s s ss.t v ,e % Q% I IN 'N, \\ c--, i N l 8 j.%g l [ o -o 3 b I !. J
- _. -h;'
.g j fp g a P N _N 1 4l u a e s
- g h
I >-6 @ b, g\\ Q ...E, } t .IN. t O-, .I
- 8 7
- ,c
.,s . p -
- s. 4, t
l 11.* l> 1 4 l t i l t I 'd 8.- 1 M;. i ); .!) }f 1 s'. ~ l h:
- J.*
.ti i e-o 1,i j fl "ll l g 4 I iIl I (5 H 1 (, .of -h I, ,l "Y 9 I ~ l gA_ g j l - q lifi ~ k I !S ~.e i q= y s er 5,- 3 ' 'N 2 e 't .-d e b i y e j .~ g, y, g rc Id I I! E i g
~ EE ! E D ( - 5\\ 'M. 0 *- b n n n u En k N 2::l.. 2 ;!; $ E, u e o b:9.. fp - o@ai =3:!$o @s '!:1 e M;,i ik < so mW 3 O s w <z " m e-g a Eg;. pl 0 a z o$wowd EE t-3 ;;f Ev h !:g; m. 3 dC4 !!:I
- id
EE 3lp 3r ~i .:5!'I h*M. 3::*: t g2 5 af 5
- r:
r 55 I::::I ! =....,;r.! seg
- 2
- -p
!!!!q!! 7,;2m.._-,fr.gp\\,s e e e w s s ses s e se e y 7.g: ~ > u -- -sre a.. on r-v.; e. o- ,on, e. + >. e-I I
- )
i I e== j I f.__. y _. ..q g ,l ;g. e a.. g,..4.,CI. g._ T,, -!A j,- - :,_ [ ... _ - -. 7 rr i t l 4.n r e,,.., ,$@g w d,. ,s. p l l 4 .I J ~7 #*"e A-""A es in 1 'a 3 - 9l1::t= , L1:Lu ,l.i - 51 . i T -+ ,. ; !pFg F 'g=,e ,; e: f j,__R_. -t s al g en.=, m. I .i I : t i i , =, ~ ~~i- ~ ~ ? s b s. w... n..p i d,. i.l i8Pp. i: i..,,l m: g s r i Ei; 4 8 f">op=a==w,Rt? e' s v T T'y 8!,' 5 iY e _ __4_4 1. _) f A, % h s_, ' _ _._ l ~" } l-t- 4
- tr ;
j mu'1 y oy .. ge g Q 3;j: sp g 7 i !.!,r!; = =_ e-.; L-pA,: +. @ . l AlM (.+k ".'i ~ d P. J kf:3
- gi!-
e) .R I ilfiall jlla { I W i* 1 hi:ji n:i L-4P L-4 !.8), A t l {.ig l =*!) i l i 4- ){ - I j' -4 M @l d '; g IN- . f-E.-* i e3, J' fM e,% .N Iql Qq 1 _m i I -l b,@. o] -j j 4-- l =.g _.....i h ' %..'.SI [ k )M 'fSS WA6 pg y p1E E p,55 ,3.4I"7[ .A M ... 4,..... ..g... G G @ @ @ @ G @ @'O b O O @ t 8 - / ~ G a -~e~.,..
w. g:. n.n wsg w%s;. 7 a.s m;.: ,. ~... 1.: :- _:. y..a, t.,; ,:. y y,.; n?C % g %. & : x}& % T'. 1R615L211 .1. .v. .y 3 . g :s. ~ ~.. 3n. .:9;.~n 3 ' y,
- f.,..pr~:D. >.f.k b.;;
.Q.. -... pene 4)
- a.:%.
& M., y, p. o_ Q'z ..l / ' * '
- N
?1 M-4 ,s - A &7 p I, renetronen of cener.to sseb s w.4. ..,- *,"WQp.,, S o 8' s g 2 ...., + _ t. 9 -> s e s The'essivatles of'ailestle effee'eilm e partleulair phant is e metter for else plant destener. ii
- # le this report,'e soapgleen.between earlous missiles was desired..for this, the work of l V Amirlkien (7) appees meetgpileable. Almere (4 a.lso sueseerises Amlriklen's appresch.
E in bee papes, sin abdig ;r.Jr kylredleted by the empleteel teletlene
- h', "x' Afs :.* 3p,_ f ll. A.. y ~~*:(gJy.6F I@D.).'O /.V/U-l:
fM ' G. _ ' Y ' :".,9 ' , ( -:. @.;y G k ;,[ whate O h~lbe.pese,bellen d l b#1).))'.- 14 '.n,!; ~ :..l.. ;' D s3
- T.
6' e.-.q..g ..p5iA.b..;:pb.k.r.1 3.,. w. ^ ,t,.. u. ~ ?. .. u. :. w. p.' ~. 2. q., 9 7 y.; -...,,.. .r .j. [p.6..- ! h, I.Q.c. c::.. "S ?,N~ $, '..,J 'k > b pWW delenfjegerlemnie ~ ' WI # '^ ' '.:V l <i .js site seetlenal presswe,Y IF j ff..M.*'j)"2 r / gI.. J ' [,' 0;.,..,, weight by its cree-gectlenel eroe 'I.%y.- p. - c. .. +, .x. e... y.. m. le e velocity foster m.,legg It,ggy l }- e. J ,l.' ".':. 1.
- v. totem al.ll. e leeity, et/see. J3 <; M i
i .W ...fw. .m-* pj u . k:- 3.:.. ). ...h ' ~.L j,:,' This Termula applies to' penetration Inte :an infinite sieb. Amlriklan reports Navy i emperiments which resulted in a eerrection facter for finite slabe ~ D. D,g:..... ,I t.e.e4g.ay] ... +.. f .,.s .s
- i.
'2) t
- r z ;..
,= a.:. e ..f. ~ where D 1 the pwwtratten depth in en Infinite slab, ft,. j '? t D'is penetrotten depth in a finite thickrom slab, ft. j
- 5. %.g a em f
g.. T/D ,,i D. '..' u. "...s a ' R if 'Is b slab thickness, ft. .~-n r ~ /, -+ e 1. ... For complete penetrattpor a slob, we must have [., y(q,.a) 7 g :./ '. R ( .1-3) ~ &,l'.. D',sT~e DJ,+4. . c: y r . w... I,.n.." ? 'Rearroneement of this isquation shows bt D = //2 gives complete penetration. Therefore, Me ikesu eg. (1-1), the thickest slab which will be perforated by a miulle Is 3 l=4):#-.3.. [,, S' I. e. j; .x.- .e j -l,;'J . This formula was used for flw present ealculations.' A,, was determined using % weight M. divided by b everoes of its minimum and maximum profected areas of the wheel. It was
- n fcit that the fragment rotation would tend to reduce penetration somewhat so that using the j'-
cinimum wheel was was too conservative. Amlriklon gives several values for b penetration coefficient, k. From his table 1 ) J. (also given by Moore) and his Fig.10, we have b values: j 4j = 1 )*.~
.s 2 y'jg,----- u. Aye #2. n6 nun D C - SKM q k Material . '? - . s. 4 .+ ' l .00799 2200 pl concrete i .00476 3200 pel concrew,1.M reinforcement .00282 5700 pet concrete,1.4 reinforcement. - i .00348 3000 psi concrete Specielli reinforced' J/ ' - .,5 ' 00277 4000 psi concrete ecoording to'y : ~ -., QE, ~ 5000 psi concrete,Amfrik!an Fig.M ;j.'.. :+."% .00224 f .c -
- >.u In the present calculations, k =.00475 was used as probably r+ ::::,he et,
j current construction. Obviously, from eq.1-4) and the table, this mey overeselmste j the penetration by a factor of 2 If special construction is veed. .,' ;,. x s-l One further remark should be mode. By use of eq.1-1) and I-$, it een be seen that the penetrotton depth In a slab of least twice on thick as the perforation i thicknesses given on pgs. 60 and 62 (i.e., for T > 2D') would be one-half the ~ V^^ perforation thicknesses shown.
- 9. >
i "g* a l, ~ e ] 's. t h hh OT b k y.4 l "An An4 sis egTuch HmiPes Ruuh %* Lab %. 3 l W 6 e a 4 = ' % c A u b n-I l t; ' I 2 1 ) i 1 i 1 i i 't
I, possible missile protection will be achieved through basic p ant h' hPPENMX _jY~3 2
- 3 0EF*
b, E0o h po fd2 -!'?" on y,. ,.:,u i ' L ' ~% " " f{Z M ' 7/ [r component arrangement such that direction of flight of these missiles ,,f' will be away from critical components. Special consideration will be *[o f ,7 7 'given to the segregation of components associated with the engineered s. safety systems (e.g., core spray and containment spray) such that the j_, ; /- failure of any component could not render the engineered safety systems inoperable. We find these design consid2 rations to be accept, f' 4 able and we will review the. detailed plant layout prior to completion of the plant. 3.5.7.3 Frotection From Turbine Missiles InAmendments12,%I,gy and 16 the applicant discusses the steps taken in the design of the facility to reduce the possibility of generating missiles as a result of turbine failures and to reduce the damaging effects of turbine missiles should they be created. The applicant's governing criterion will be safe shutdown of the plant. The applicant has stated that the turbine overspeed protection system will be designed, to the maximum practical extent, "to meet the IEEE-279 Proposed Criteria for Nuclear Power Plant Protection Systems to enhance the reliability of the overspeed protection systen and limit the maximum 7 anergy of potential turbine missiles. J4 h the orientation and location of the three low pressure turbines are such that any potentially generated missiles would have to be deflected in L order to cause their trajectory to intersect the volumes occupied by Iv/,.I equipment essential to attaining and maintaining a safe shutdown condi-tion for the plant. In the highly unlikely event that turbine missiles are generated and thus deflected, reinforced concrete barriers are provided to protect the plant equipment essential for safe shutdown. The thickness of these barriers has been made at least twice the, cal _- culated missile pen _etration,_ depth in order to prevent the creaths of secondary missiles. Detroit Edison specifically discussed the adequacy 1 of the barriers (in the form of walls and ceilings) that were provided for the control, battery, and relay rooms, the standby liquid control system and the standby gas treatment system. It also stated that the 6 feet thick concrete shield plus will adequately protect the reactor vessel head. We have concluded that the applicant's preliminary design decreases the probability of turbine missiles being generated, the turbine orien-tation. with respect to the reactor building reduces the probability that turbine missile trajectories will intersect vital systems, and the use of protective barriers will mitigate the consequences in the unlikely tvent that missiles are generated. N b
kPb N-5Q P A Io g M' s s J3/3 DESIGN OF MISSILE RESISTANT CONCRETE PAhT.LS m J. M. DOYLE Department of Materials Engineering, College of Engineering, University of flunois at Chicago Circle, Chicago, flunois 60680, U.S.A. ~- u and Consultant to: Sargent & Lundy Engineers MJ. KLEIN, H. SHAH Structural Departnwnt ~'H' Sargent A Lundy Engineers, Chicago, flunois 60603, U.S.A. iin.. I\\
SUMMARY
f i Protection against structural failure b case of accidental impact of several types of g projectiles must be a consideration in nuclear power plant design. The critical nature ~" ;;,;" certain items of equipment makes it necessary to surround some areas of the plant with i, l missil resistant structures. Ordinarily, missile barriers consist of reinforced concrete walls, j } roofs and floors. A design procedure for rectangular concrete panels subject to various types 84 of missile impact is outlined in this paper. M A number of different flying objects are usually postulated as posrible missiles in power plant designs, including planks, pieces of pipe, turbine parts and even automobiles. In g 5 eral, missiles fall in two different classes, rigid and. nonrigid. The behavior of a panel, of ' 4 m course, is different for each, High velocity, rigid missiles can penetrate and, in some cases, cause little structural darange to the panel outside the area of impact. On the other hand, I' nonrigid or collapsible missiles do not punch through the wall, but may cause failure of j n I 'he panel by shear or bending, depending on the location of the point of impact. Both la i [ [ l ized penetration and general structural behavior of plate elements are considered foi a r n e a bl. P hhh,"I.'N"dd' 'fyiis' ]i N variety of possibilities. The well known Petry formula is utilized to determine adequate thickness to prevent j i i , :p y',. m "f m: total penettstion and spalling on the inside of pancis struck by rigid missiles. As an ext y.j f O to the usual analysis, this formula is also exploited to obtain impact times for rigid missi!cs ' lirini: ' 1 Two different regions of impact are considered when evaluating general structural action; k'& and to estimate maximum dynamic response of panels impacted by rigid missiles. W near an edge and in the center. For edge impact, shear forces are of primary concern.Here, S ~ E they are computed using momentum principles, rather than the energy methods usually f employed. Flexure is the mode of main concern when the impact is in the centre! re ((. My a panet. Ir. the analysis presented here, the plate is replaced by an equivalent fixewat bea , min T-- and response calculations are made using standard methods of structural dynamics. Exper-imentally determined information on time history of contact force is incorporated in these computations, thus rendering a more nearly correct estimate than would be expected previous methods. Design recommendations are based on ultimate strength. A meth calculating the extra energy absorbing capacity of the reinforcing steel after failure of the concrete in ficxure is included. M e liEi M i
~ 1.0 Introduction the penetration depth should be restricted to less than 2/3 of the panel Protcetion against structural failure in case of impact by several dif-thickness to satisfy the inequality: Emnt types of projectiles must be a consideration in nuclear power plant T > C A x 10 (L) (2) design. In most power plant designs, a number of flyin:1 W" * - are usually - g In which C postultted es possible missiles ranging from wooden planko o a small auto. g depends on the missile velocity and can be obtained from the curve in Figure 1. nblio. The absolute minimum requirement for a panel design is to prevent the This paper presents a method for analysing reinforced concrete plate penetration by any missiles postulated to strike it. clemento subject to impact loads and outlines a design procedure to insure thit the structural integrity of such panels is maintained. Since the walls
- C I
Gr_rrounding critical equipment areas are usually made up of a series of con-s menti ned previously. only limited data are available for determining crato panels, the method presented here is particularly useful. contact forces. Suitable force-time relationships have been determined for some of the larger non-rigid missiles. Figure 2 shows contact forces vs. 2.0 Mimiles In the design of structures against impact, two general types of mis. time variations for two different automobiles crashing into a rigid barrier. In each case, the impact speed was different. Unfortunately, similar data cilos cro usually considerede high velocity, approminately rigid missiles are not av.lable for smaller, more nearly rigid missiles. A simplified (Tcts co a wooden plank, a piece of pipe, or turbine parts, and non-rigid analysis for such cases can be utilized, however, provided the time of impact bodiso Euch as a small a stomobile. can be established, To analyse a structural component for its behavior when impacted by a An equation of motion, which may be used to obtain an estimate of the miccilo, four items of information concerning the missile are necessary. They ara the weight, the area of contact, the velocity and the variation of time required for penetration, can be derived using the Modified Petty Formula. If it is assumed that the ratio of resisting force (F) to the mass contcet frrce during impact. Realistic assumptions on the first three can of the missile (m) is given by: be made quite easilys however, data on contact forces are limited. h"Vd=-1.15 exp(2 a (3} 3.0 Penetration ror the smaller, nearly rigid missiles, penetration of the panel is ? where usually the dominant concern rather than overall structural damage. The, y.2 = 215000 ft /sec (19973 m /sec ) 2 depth of penetration into a concrete wall may be calculated using the Mod- = Depth of penetration at any instant x itled Petry Formula V = Missile velocity at any instant then, straight forward integration of the equation of motion for the missile (1) D' = KAV'R yields a terminal penetration which is in agreement with the Petty Formula. However, the solution of the equation determines velocity as a function of wher3: distance. Due to the nonlinear nature of the motion equation, a numerical D' = Depth of penetration in slab of thickness h (L) Material property constant (L /F) integration is necessary in order to determine the velocity as a function of g = 4.76 x 10~ ft /lb. (2.97 x 10~ m /kg) for reinforced concrete time, which is required. = Sectional Mass, weight of the missile per unit cross sectional area Two separate cases must be considered in any design and the form of the A = 2 motion equation is ditferent for each. The two cases ares (1) missile in-of contact (F/L I 2 V' = Velocity factor = Log 10 V* the panel. Initial velocity of missile F r the first type of impact, tne panel will not deflect and the equa-V,2 = 2 21$000 ft /sec (19973 m /sec ) tion of motion to be solved ist V V8 = 2 e. Thickness ratio ye ,3, C1 = W** KA g .- = 1 + exp (-4 (e'-2)] = whero e' " h
- h subject to the initial conditions 1
5 T-fr t = O s x = 0, m = V, gJ and D is the depth of penetration in in infinitely thick slab. J M W mn M4 M Wm b W mu M W pM, W pd hM % ~... - .....sie~.ne na caeva+= aa th lat**iae *"rfaca-
m. _.___. _m ...m. _..._.m. ~.... _. m m m 9 - yy daflects. It can be considered as a single degree of freedom system. Its impact may be computed by the methode described in the previous section. equivalent mass and equivalent spring constante, which depend on the panel Then the impulse-momentum relationship gives the following empreselon for! gsometry, can be readily determined. Treating the system of the missile and total impulsive shear force on the periphery the elab, such that the force between the minelle and the elab is of the same av forie se the cose where no motion of the elab to assumed, the following two 0, = gp equations raeults wheres a = -1.15 " - esp [2. 3 Y (m (5) 0, = shear force per unit length of perimeter \\ i V, = initial velocity of the missile m = mass of the miselle (6) My + ky = - m-m T* = impact tirse with initial conditions: S = length of perimeter of active area t = 03.m = y = y = 0, x = V, since the time history of the contact force is known for the vehicular mi[ In equations (4), (5) and (6 ), elles, the maximum eheer force is given by: x = missile displacement F ya panel displacement Q, = gg 0 M = equivalent mass of slab e ue
- ntac fwce,
k = equivalent elab stiffness 1 Or e ar f wce, the punching ahear strees cG m = maes of the missile be calculated from the formula: It to suted that if the properties" of the elab are such that its displacement O y vanishes, the two equations reduce to Equatica 3, which in turn yields the y.f final displacement predicted by the Petry Formula. An examination of the equation of motion of the panel shows that ini-y = shear stress a tielly, when y = 0, the elab acceleration is equal to - times the missile 9 e i y eduction factor for shear force (Section 9.2 ACI StandC r.cceleration. For subsequent time, thle acceleration a even lose. There-318-71 [133 fore, neither the velocity nor the displacement of the panel, at the comple-d = depth from extreme compreselon surface to centroid of tension req tion of embedmont, will exceed " times the missile velocity and displacement. M forcement. For many cases of practical interoet thu mass ratio is less than 14. In 8
- *8 ""8%
M mPared with some a11m able such ast such instances, penetration time could be based on rigid target conditione ACI allowable e with very little error. The error would be on the conservative side since the predicted time would be shorter than actual. ' 1[f, (p where: Dy solving the equation of motion for several different values of nie. site weight and initial velocities a graph such as shown in Figure 3 say be ffisthe28daycompressionstrengthoftheconcreteused. established and used to determine impact times for a wide range of these When the stress exceeds the allowable, either the energy absorbing capacit{ pcrametere. of the reinforcement smaet be investigated (sec. 7), or the panel thicknees 5.0 Impact wear support The chief concern when a miasile strikes near a support, is the limitin9 6.0 Miselle Impact Near Center of Panel punching shear. In order to calculate the shear stress, the conservation In this case, the critical mode of behavior le flexure. To treet the of momentum is used. An area of elab is moeumea to be activated immediate1Y flexural problem, the maximum flemural displacement due to impact is obtaid upon impact. This active area is enclosed by a perimeter which entende by integration of the equation of motion. outside the contact area of the miselle by a distance of 1/2 the panel When small, rigid miselles are considered, the displacement and velocf thicknees. The shearing force is considered to be distributed uniformly at tP conclusion of embedmont may be estimated bys aroun1 this periphery. i y, g, ror the small, rigid miestles, it is further assumed that the shear p ggg ,=gy p forces are constant througnout the duration of the impact. The time of y
9P e -e-REFERENCES Then the maximum displacement is (1) American Concrete Institute Building Code Requirements for Reinforced (V / )2 V2 (12) = h D' + Y Concrete (ACI 318-71) (1971). \\ / If this approximation yields unsatisfactory results, the deflection (Y) and (2] Norris, Charles H., Hansen, Robert J., HolleY' Myle J, B1ggs, John M. velocity after impact (v 1 can be computed by carrying out the actual inte-Namyot, Saul and Minami, John K., Structural Design for Dynamic Loads, a trction. The values found in this way would be less than those obtained by PP. 160-162, McGraw-Hill Book Compeny, New York, (1959)* the ahort. cut method. The maximum displacement is given in either case by [3] Biggs, John J4., Introduction to structural Dynamics, pp. 72-79, Og ntion (12). McGraw-Hill Book Company, New York (1964). On the other hand, when the time course of the contact force is known, the panel deflection can be obtained by an integration of the equation of motion for the panel using the prescribed contact as a forcing function. As one approach to the solution, the panel may be replaced by an eq ivalent fixed and beam. Equivalent mass and spring constants for a single 30 60 90 120 150 180 degrce of freedom spring-mass usadel of the beam are tabulated in many sources '5l 3-
- I==*3=='g
- 30 including Norris et al. [2]. The analysis can further be simplified by re. placing the known force-time curve by an idealized triantrular variation of EI equal impulse. A typical idealization superimposed on the original is 8 4 00 - 25 O ^ 111n trated in Figure 4. With the triangular pulse eid a given spring-mass y model, the saanimum deflection can be obtained f rom the shock spectra given v - 20 I by, for example, Biggs [3). If the nazisma deflection exceeds the ultimate, the energy capacity of the reinforcing steel must be considered or the panel Q ~ T ~ 3 U F thickness increased. Z - 85 9 W Z 200 g 7.0 Energy Absorption of Reinforcement b In the case that either the allowable punching shear stresses a,re { - 10 k E czeeeded or the maximum deflection exceeds the ultimate value, the rein-W w g f rcing bars will still of fer some re 21 stance to penetration. In addition, O iOO U -3 O thero will also be some resistance lef t in the concrete, even though local U failures have occurred. A conservative evaluation of the additional resist- ,f,,,,,,,,,, cnce results from considering.only that of the reinforcing steel. The bars, in cffect, form a net to hold the missile. To determine the espacity of the VELOCITY WT/SEC) 100 200 300 400 500 600
- net', it may be assumed that the steel in the impact area is strecthed to i
i i 2M 3M 400 500 its ultimate and evaluate the stored strain er'ergy. If the sum of the energy ab orbed in the crushing of ductile missiles, the energy absorbed in the panel to reach the allowable shear or ultimate deflection, and the ultimate Figure 1. Minimum Thickness Needed to Prevent Penetration and Spalling. cnergy espacity of the steel in the impact area exceeds the initial kinetic energy of the missile, penetration can be prevented although considerable local damage might result. y ) Acknowledgement V; hi The authors wish to thank Mr. R. E. Itoppe for his many constructive cosseerts .{ + made during the preparation of this work.
M' D c -5144 ,,i l a -r PROBLEME UNI DES WIDER ".".7,. GEGE g c, l" \\ PROBLEM ..c, ~ ASS) ,a ... ^.. REINFOR ,rv n.
- o,
, ~~ .a riusau uituscconos W.S E rigure 2. Vehicle / Barrier Impact - Force-Time History fackgruppr 2.2: T. vo. u /srcoNo
SUMMARY
a a 'a 'a 'a The potential of danger l plants and the possible seri4 ' " ' ~ l impact loading must be tak l especially in the case of co of view it is often necessary o. 6 =a.. o n o no m swetures against impactio 8 i problems yet to be solved a This article only deals w r y made of reinforced concretr ..= At first, the problern o lead-time li.* tory is knowr = ^ = " " " " * * " Tne amount of the impact c However, also loads well d d taking the response of the i d a. a. .a = w. Then, some notes are m in structures loaded by imp. j ticated methods of analysi vo.ns of no use for this purpose./ rigure 3. Impact Time vs. Initial velocity for xigid Missiles g Therefore simple methods c Such methods of apprin f'i. a I. Only the amount of thein iocau n oro.co.ar cra. L
- 2. The amount of the pulse i.,,
.g $i [ I,,..,
- 3. Impact loading; impact is known, the shape of1.
2 s. /j o.,o at roaci o - impacted body is known .-('g n ~ \\g ' ****"
- 4. Load time history is kno E a i,
..'-v l o For all these methods iti f ( the possible maximum pf d 8 n a a in in ia in l rius in uiwsrcoNos neld of reinforced concrets I results of systematic investig rigure 4. Vehicle / marrier Impact - Idealized Force-Time History j mation capacity of structur h forced concrete structures patterns. 1 , {. _, ' a'i a=~ s =.1 ..p yg y ic u,s : ex. ? * ;u; 9... v.;::: = e.
ROMGECALSTHOMLSTENGINEERINGbEPT ITUII0B.169400:46'/ST.09142/No.3380433-857P. 2/S 4 kW5
- f. ar Als g
y F GECALSTHOM 's tLECUtOMECt%NICAL tarys Seeem TerWass Mr L.C.Fron, Director: Turbine and Special Projects, Fermi 2
Dear Mr.Fron,
Fermi 2 LP Rotor Missile Analysis During our meetings with NRC at Fermi on 3rd and 4th August they raised a number of points regarding the missile analysis for the LP rotors when they return to service without the stage 7 and 8 blades. In subsequent discussions with Mr.J. Walker and Mr.H.Sahiner l war requested to provide additional infortnation to enable DECO to carry out a revised analysis. The required data is detailed below. 1. LP Rotor Blade and Dise Weichts. The attached table lists the weights of each of,the shrunk on discs and the j individual blade weights for each stage. The oisc weight includes the blade root up to the bottom of the aerofoil and the blade weight is the weight of the serofoil together with the shroud, lecing wire or lacing rods as appropriate. For stages 1-4 the LP2 cylinder blade heights are different to those in the LP1 and LP3 cylinders. For these stages the blade weight value given in the table is that of the heaviest blade but in each case the difference does not exceed 10%. 2. Burstino of LP Discs I d i a) the burst speed for the no.8 disc (stage 8) was originally calculated i to be 3000 rpm. In arriving at this value it was assumed that the blades were attached at the instant of fracture so that the effects of j blade centrifugal pull were included in the calculation. e However, it was also escumed that the blades were lost from the resulting worst case 120' missile before it exited from the turbine. Hence, the mass and energy used for the 120' missile were of the disc and blade roots only and did not include the blades. g' Nehid Rood,Rgtn,Worwh CGI M, Englo d 8 Telephone; C788 577111 Teles: 31443 GAL To o Fox: 07a8 531700 Gi< AL$tHOM TuREANE GENERAioRS UMrTfD i s Reg. sacred Oftce Neeld Road, Rugby. we,w.ekshi. Reg:stered in f ngtond No. $61s$k ,I _m 9 a. asg y+
- 64
\\ (ROV.GECALSTF.0V.LSTENGINEERINGDEPT (TUE)08.15' 94 09:47'/ST.09:42/ No.3380433-857 P. 3/5 Ag.h TyqAlb DC-5N4 , ( b) the revised burst speed for the no.6 disc (stage 8) with blades removed but with root blocks in place is 3600 rpm. c) with both no.5 and 6 discs debladed the first disc to burst would be no.4 (stage 6) at a speed of 3280 rpm. This includes the centrifugal pull of the stage 6 blades. d) 3280 rpm is therefore the upperlimit of speed at which fragments of any disc could be released from the rotor. e) the worst case fragment of the debladed no.6 (stage 8) disc is trkore f massive and energetic than a corresponding fragment of any other disc. Hence the bounding case is to assume that at the burst speed for no.4 disc (3280 rpm) there is a consequential failure of the dobladed no.6 disc. The mass and energies of the corresponding worst case fragment (120') at the instant of fracture are listed below together with the corresponding values for the original case. 1 Oriainal Analvais ftevised Analysis 3000 rom 3280rnm ~ Fragment Mass (lb) 8650 8860 Translational Energy (10'ft ibf) 60.8 72.2 I Motational Energy (10*ft Ibf) 33.0 39.2 f) part of the fragment energy at the instant of fractura is lost in penetrating the surrounding casing and therefore the escape energy is less than the values given above. An estimate of the total losses ) for the debladed case has been made by scaling the dependent losses i and the resultant escape energy for the debladed case relative to the original are given below. Oriainal Analvula Revised Anafysis 3000 rom 3280rorg l Translational Escape 5 Energy (10*ft Ibf) 34.2 42.5 Rotational Escape t Energy (10'ft Ibf) 6.1 g.1 i j i i i l C i. i L, =.__ .__,s..
FE0M Gb ALSTROM 1. S T ENGINEkEING DEFT (TUE)08.16' 94 09:47/ST.09:42/N0.3380433-857P. 4/5 l a 4.#s 6.Jg ww= i 3. Cvelic Loadina of Foundation Drawing no. R5031/2572 gives details of the cyclic loads for a fault condition corresponding to the less at rated speed of 3 adjacent last stage blades. The centrifugal pullin this condition is equivalent to 1.6 x 10' abs (705 imperial tons). During the incident on 25th December 1993 5 adjacent last stage blade aerofoils were lost. The centrifugal pullin this case would have been 2.6 x 10'Ibs (1159 imperial tons). I i eN'Y P.M.McGuire. Head of Blading Design Group. Copy: Mr.H.Sabiner - Fermi 2 e ( L'
bOMGECALSTi!0MLSTENGKEEkkKGDEPT (TUE)08.Ih94 09:47/ST.09:42/N0.3380433-85 AgsPf/W t g DC-st'A Fermi 2 LP Rotor plade and Disc Weigh.ta Wt. of Each Bisde Disc No. Disc Wt. Ibs Stage No. No.of Bladeshow lbs l 1 299 0.65 1 17,300 I 2 299 0.86 3 299 1.10 2-17.650 4 237 2.30 3 11,500 5 189 4.45 4 14.600 6 162 11.10 i 5 20,100 7 132 22.10 6 25.950 8 64 90.30 Note: 1. Disc weight includes blade root. 2. Blade weight is the weight of the aerofoil section, plus shroud and lacing wire / rods as appropriate. 3. In those cases where different blade heights are used in LP2 cylinder the figure given above is for the heaviest blade. j ( 6 (
FROM SEC ALSTHOM TG ENG gg 33,3994 33:gg P. 2 kg. 4 f. Al9 g i DC -S P} f. 12' = y =z r r-- & %.} a u ).:t d 6 j .eN &e, I 4 N d L .n k. 1 i i l
- L i'
9" > = i a S 4 MI u h l 5s l M i 83 9 ' i 25 *.1[** I Fer., 2. hi~me.u .). LP N.. i (9s.8) b:su ( p.- adh ...gup..
dyndi b b b10 g DC-slH 4 % 5 %.h spsf% ~ Tt binc. Jess.fe_ daracierish c5 : Larr:sg asc w,qht zspsoes sy t ( twish Asc qki: tsqso BA 0. (DevSn bosi, sa:) 120 'Ihis weigh'i. Uzkudes 'he kkde. f00ks 'NWs is b Same. a4 b{ ore, akon. Y2. cf055 sec.dional an.os o dhe. disc segynced:(Projec'Ied a.reas wbck-haNe hen osed $r air deg utd pnetrahon formufasf 'L l s ,s-1* ./,,! "4 (hv [ g, 10$ E ^ /, l* 9 2.G.3C \\20*SegmeiY 't g,3g, Q Lastsh cksc. ~' Vias f-l
- Ninimuu rejecied
~' / /, ast1. k 2. piane. pe[rpendicufo.c(fo th // t These. a.te as o i j as depnd 6 6E Re7ert TR675L2.ll, f 40 f 72. g I tu) 9. -2.
- %;mu pojected area _
'L's secb of cofc.s are pf a a (3 d hrmelM mi 4e hh0 cafe. Vcducs used mu e A g,.m s.q&J@ < exu ocm e w
3 i l Aer*G g.A 2 \\ j DC-51 M \\/of I, Rw A g/2r/9 ] j diumum feojede) eca: l (12,7h toi11ti6,4 10.5 2.6,34 = Eio.786a'.p s.s s(t* t s i f topction of a.rch: (t7.5-17.Lca56o" x '26.% 230.65t i l A.,4.2. 55 +l.6 = 5,15 (( ' si 1 { %ej in re{crences. S.12f(l' c,k. 4 e s.w ph" l /2, 4 .x l10 6e9 men Min. ff 0lecbM i i M $\\MubA ( <C CLNWit
- 5 Sktoten en VI(M/ E 'l, l10 Sg Mcad f
heti2 odd projechon ata u,cafcu M cJ. .i section am(cotubeJ): 355w2.27.10(P l Onr Ceder /, u
- Tsk24 E_L.6.4l #'
a 14 4 1 i tom mn: 7.10 t 6.41 = 13. Sift
- l ftojec Won.
l3, Siy ces Io*,13.5lx 0. 965 = II.7c ff'. IlMfPusedas t h' cso o *. j using & onpJ piedel ow., Away poj...: 9 4 swa.sge g i E
J c.-. J. f I r 1 ATTACHMENT 14 l f
l } NUCLEAR GENERATION MEMORANDUM j l
- j Date
October 17, 1994 File 0801.21 1 TMPE-94-0588 i To: R. A. Newkirk, Supervisor { Licensing & RA K. E. Howard, Supervisor # [" / From: Mechanical & Civil 1 j
Subject:
Turbine Overhead Crane During the turbine incident, a missile had hit and dented the Turbine j Building overhead crane east girder at approximately 4'-10" north of I column row 4. As we had stated earlier, an engineering evaluation had i concluded that this dent did not have any significant impact and was i left as-found. Since the event, major lifts have been performed by the overhead crane. The largest load, close to the design limit of the crane, was the generator stator lift. -This load was 425 tons and both 3 turbine cranes (each with 250 tons capacity) were'used simultaneously. The attachments (one drawing and two sketches) will clarify the location of the hit / dent relative to the generator lift. The exact a j crane wheel locations during the lift and laydown positions, superimposed on the dent location of the east' girder are also included 9 J in the attachments. It is clear that caring the generator lift all i four wheels of the north crane and the northern wheel of the south crane were on the girder span between column lines 4 and 5, where the l hit had occurred. After lifting the 425 tons, the cranes traveled j simultaneously 12 feet south and placed the generator on the floor. During this travel, two southern wheels of the north crane passed over J the dented location. Later, the generator was'placed back into its i 3 original location. 1 f In addition to this lift, many heavy turbine components were moved over j the hit location and either laid down on the southern area of the floor j or sent out through the equipment hatch. Our inspection following these lifts found the crane structure in satisfactory condition, as i i stated in our previous response, dated September 26, 1994. 1 i l l Written By: H. Sahiner ' p)E l c j HS:dsb Attachments j cc: A. H. A1chalabi j ETS Correspondence 1 I 1 l i
w.,. - - - / Y -s f~ 8N e l % $ *= n.] 1 s ~O o I OI s t%J J-6 g 'L ) < 4, a v w - e2 w\\ s ~ w t-et82-124v9 33S N0tivnN!1NO3 WOJ _) .,b a d I a ,I t i, n W l 3 1 ga 2 ) l l (Py--- gg I I -g h_-f!. 9-Q>i-- h : /, . ) Ih-Es S_...a e 1 g a hl } l hg h l k ---.d) sj ' g J: R i jl L q" e +s *, -,\\, ,e s gj"~M I } h-- i g ! 'l e
- II_ _ tl
- i a
4 q ~,! -g,, '
- gt_d,
!,8 T--@ a,18 t
- ,{
4, :c""-{4. ll. n;J, c i i o i l
- d 3-a3 i
j !: ;t-! w,s j R - MG-h in j l vli . !.14-, \\ ': _ h,!. I.. il- ,N i f m _. N w p,, ] J .y i t i Mi ~. " e ~ s x y A f I ,, L f %=g, A,i, = x - t- ! V i..* h . /
- e.wn.
u s _ r* 5. e 3 o I N g l :J,rs ] . -lNu l ) W 4 vr yr 2.~ i, r v N i. Dl i J gl ir-J i ,,-_ +" n a c-70 r -a d,: m eN , ; ]c.- 4 0 '$ c
- q..]
g t - L a g [3 l3_ . u1 ' V, '. '. Q +g5 W hi! l E- *I .e .f, j!! / u \\J t .o l V T \\ ll~~' i)3--fd i.p j's 'g ~ . '\\ rr!O(m1. t7 L. y j!:3 s i f,.. 5 L \\ ,i j m g_ \\ j tu \\ .m s . f' 7,1hQ g u. 2,4,' \\ p i.l I
- , a :.. s r
L. -o = .y ~1 .< i 7-g_ ___. ~ 3
t j I V 6enuw\\.c k Slalor i d lag OWu locabq 3 NO C.Gewe rokoc f. Skakor k16hms) i l inim e,caton s w g i 3 2; f -o_ _. _.. {, _ __ 35 A 5 e,. D b I5 ~t TURBINE Deck fge,$" PLAtJ East Cta,ncPd IT Dent Locodd E"I""*I /. fap2/3 T v y W @w tz./ 32e @ ni S2r
a gmw--- G A It '- e" ? . s 'to",'t-2" 5-to ",_I42'"i-5'Io' s! o" i 's J / / J l / k b b h-Ib b b b A A A A ' y@ . r,a, ~I Denk i SECTIoH 1-1 East girder-looking ad. E f"d "" gnecdorfrom 1 {oundulian among b< whed blions den e4 o + *k"R f c"honS
- Dent focohon MmA were subm;tbl E r>c-ses2. V4.I. (Attuinuent A, Pap 3[
1 dc e. ~ (fy 3/3
C ATTACHMENT 15 1 1 l l t l /}}