ML20072Q614

From kanterella
Jump to navigation Jump to search
Final Rept on Ub Berkley Single Tube Condensation Studies
ML20072Q614
Person / Time
Site: 05200004
Issue date: 08/31/1994
From: Kuhn U, Peterson P, Schrock V
CALIFORNIA, UNIV. OF, BERKELEY, CA
To:
Shared Package
ML20072Q607 List:
References
UCB-NE-4201, UCB-NE-4201-R02, UCB-NE-4201-R2, NUDOCS 9409120133
Download: ML20072Q614 (477)


Text

{{#Wiki_filter:_ _ _ _ - . og UCB-NE-4201 Rev.2 i l l l l Final Report on l l U. C. Berkeley Single Tube Condensation Studies- l I by S. Z .Kuhn, V. E. Schrock & P. F. Peterson August 1994 (Draft and Rev.1 Submitted in May 1994) Report submitted to .c .

                                                                                                   .      c GE Nuclear Energy under .              [,               ,...           ,

Purchase Order Nu,mber 190-SB)VR-L9011[,

                                                                         .s du.'0:3. '

4

  • t Department of Nuclear Engineering . '

University of California, Berkeley Berkeley, California 94720-1730

                                                                          .s t
         < n!             ;
                                                                                 .p
                                                                    ~

e., 9409120133 940906 PDR ADOCK 05200004 A PDR

i I - I l 1 l 1 ' i l TABLE OF CONTENTS l l ' PAGE i l t TAB LE OF CONTENTS .. .... .. . . .. .... . . .. . .. .. .. .... .. ... . .. .... .. . . . . .. .. . .. . . . . . ... . ..... .. i f LIST OF TAB LES . . .. .. . . . . .. . . . . . .. .. .. .. .... . . .. .. . . . . . . . . . . . . .. . . .. .. . . . . . . . . . . . . . . .. . . .. .. .. .. .. . .. . . . . . . v i LIS T OF FI G URES .. . . .. .. . .. .. .. . . . . .. .. .. .. . . .. . . . .. . . .. .. .. .. .. . . . . . . . . . . . . . . . . . . .. .. . . .. . . . . . . . . .. . . . . vi

1. INTRO D UCTI ON . . . . . . . . .. . . .. .. . .. .. .. . . .. .. .. .. . . . . .. . . .. . . .. . . . . . . . . . . . . . . . . . . . . . .. ..... . . . . . . . 1

{ l 1.1 B ackground of Research ................ ......... ........ .......... . ...... .... -.. . ..-.. .. 1 l 1.2 Review of Previous Work ....................... ...... ..... ........ .. ...................3 l 1.3 Objective of This Expedment ... .... .... . . .. ... ....... .... ...................11 r I i 1.4 Summary of Current Research ............ . . .... ..... ... . . ......... . . . ... .. . 12 l

2. ASSESSMENT OF PREVIOUS EXPERIMENT ( Ogg [ 15] ) .... . .. . . . . .. ... 19

! 3. DESCRIIYTION OF EQUIPMENT ...... .... . . . . . . ..............................26 3.1 S team-gas S upply ... . . ............ . . .... . .. . . . .... .. . . ...... ........... ... .. . . ... . .. . 26 3.2 Tes t S ection .. . .... . . . . .. . . .. . .. .. .. . . . . . . . . .. .. .. . . . . . . . .... ..... ....... 27 3.3 Condenser End Section . .. ................. . . . . . ............................36 3.4 Cooling S ystem ... .. .. . .. .. . .. .... .. . . . .. .. . . .. . . . . .. . . .... .. .. . .. ... . ... . .. . 37 3.5 Instrumen tation .. .. .. .. .. . .... .... .. .. .... . . . . . .... ... .. . . .. . .. ..... . ...... . ... ... .. .... .. .. . 3 8 3.5.1 Thermocouples ..... ........... .... . . ...... .. . . . .. . . . ... .... . ..... ... 38 3.5.2 Absolute and Differential Pressure Transducers... . .. . .............. 41 3.5.3 Pressure Gauges ......... ..... .... . . . . . ............................42 3.5.4 Rotameter ..... .. ..... .. ..... . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 4 2 3.6 Data Acquisition System.. .. ..... . . . .. . .... .. .. .. . . . . . . 4 2

4. OPERATING PROCEDURES .. . .... . . . . . .. . . . . . . . . . . . . .. . . .. 44 4.1 System Check ... ..... . ... .. . . .. . . ... .. . ... . . . .. ... .. . . . . . . . .. 44 4.1.1 Routine Check.. .... ... . .. ... .. . . . . . . . . . . . . . . . . . . .. .... 44 4.1.2 Initial Check ..... . .. ....... .... .. ..........................47
                                                                                                                                                                                      ^'

4.2 System Stanup .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... . 4 9 I

F 4.3 Data Acqui si tion ........ .............. .. .. ......... .... . . .... ...... .... .... .... .... .. .. .... .... .. .. ... 51

                                                                                                                                                                                                   ]

4.4 System S h utdown . .. .................. .. . . .. ...... .... .......... .. . ... .. .. .... .. ........ .. .. . .. .. ... 5 2

5. METHODOLOGY USED IN DATA DEDUCTION .......................................... 54 <

1 5.1 Physical Phenomen a ............ ..... . . .... .... .. .. .... .... .. .. .. . .. .. .. .... .... .. ...... .. .... .... ... 54 5.2 Data Reduction Procedure .. .............. ............... .. ....... .......... ............. ... 56 , 5.3 Determination of Cooling Water Bulk Temperature ........... ............. ....... 61 5.4 Curve Fitting of Water Bulk Temperature for Wall Heat Flux............. ..... 67

6. EXPERIMENTAL RESULTS AND CORRFLATIONS................. ..................... 69 6.1 General Description ........... ...... ...... ...... .. .... ... ... .... .......... .. .... .... ... ........... 69 6.2 Condensation of Pure Steam - the fi Correlation .. ..................................... 85 6.3 Condensation with Noncondensable Gas - the f2Correlation . .................... 86 6.4 Limitations of the Correlations ............................. . . ..... .......................... 89 6.5 Comparison with Previous Correlations .............. ...... ............................... 89 q 6.6 Comparisons with Numerical Simulation ........ . ...................................... 93 l

6.6.1 Simulation of Run 1.1- 1..... ............ .... .... ............................... . 94 i 6.6.2 Comparison with Run 2.2-2 ........... .............. .............................. 95 I

7. COMPARISONS WITH OTHER EXPERIMENTAL DATA AND CORRELATIO NS .... .. .. . . . . . . ... . .. .. . . .. .. .. .. ... . .. .. . . .. .. .. . . . . .. .. . . .. .. .. .. .. .. .. . .. .. .. .. . . .. .. .. . . .. . 100 7.1 Comparisons with Other Existing Experimental Data for the Condensation of Pure Steam and Steam / gas Mixtures in the Pipe....... .....100 I l

7.1.1 Vierow's Experimental Data -Steam / air Mixture.........................100 l 7.1.2 Siddique's Experimental Data'- Steam / air and Steam / helium Mix ture . . . .. .. .. .. .. .... . . .. .. . . .. .. . . . . . .. .. . . . . . .. .. . . . . . .. .. .. .. . . . . .. . . .. ... . .. .. . 101  ; 7.1.3 Blangetti's Experimental Data -Pure Steam ...................... ......... 101 , 7.1.4 Goodykoontz's Experimental Data - Pure Steam.........................107 l l 7.2 Studies with Other Correlations for the Interfacial Shear Stress and Heat Transfer of the Liquid Fihn Flow in the Pipe ................................. ..108 7.2.1 Shear Stress at Liquid-vapor Interface.............. .......... .............. 108 !- ~ 7.2.2 Heat Transfer of the Liquid Film Flow in the Pipe......................112 l 11

I l l 7.2.2.1. Correlations of the Kutadeladze and Chun and Seban.. . . . . . . . . . . . . . . . . . . . . . . . . . .. .... . 1 12 7.2.2.2. Correlation of Blangetti et al. with the Approximation of the Levich-type Model. .......... ..... .113 7.2.2.3 Correlation of Chen et. al. [23] for Pure Vapor Downflow Inside Tubes......... ... .......... .................... . 115 7.2.2.4. Correlation of Boyko and Kruzhilin [31]........ .. .........117 7.2.2.5. Correlation from Annular Flow Modeling [36] ...........118 7.3 Condensation in the Presence of Noncondensable Gas - New Mechanistic Correlation s ........... ......... .... .... .. .. . . ..... ...... . . ........... ...... ..... . 122 7.3.1 Correlation Based on the Diffusion Layer Modeling.. ........ .. ....122 7.3.1.1 Effective Condensation Thermal Conductivity.... . ... .122 7.3.1.2 Diffusion Layer Modeling Based Correlations including the Blowing Parameter...... ... . . .. . . . . . . .. . 12 8 7.3.1.3 Diffusion Layer Modeling Based Correlations Including the Blowing Parameter and Richardson Number . ....... ................................................134 , 7.3.1.4 Application of the Correlations from Diffusion ' Layer Modeling Using an Iterative Method ... ......... .. 136 7.3.2 Correlation Based on the Mass Transfer Conductance M od elin g . .. .. .. . . . .. .. .. .. .. .. .. . . .. . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . 140 7.3.2.1 Mass Transfer Conductance and Driving Potential ......140 i 7.3.2.2 Couette-flow Modeling .. .... .. .. ..... .. ... .. ....... ...... 141 7.3.2.3 Mass Transfer Conductance Modeling Based Correlations Including the Blowing Parameter .. ....... 143 7.3.2.4 Mass Transfer Conductance Modeling Based Correlations Including the Blowing Parameter and Richardson Number. ... ... .... .............................153 7.3.2.5 Application of the Correlations from the Mass Transfer Conductance Modeling Using an Iterative Method . ..... .. . .... . . .. . . . . . . . . . . . . . ..................154

8.

SUMMARY

AND CONCLUDING REMARKS.. ... ... . .......................158

9. ACKNOWLEDGMENT.. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . ....... 161 1
10. REFERENCES.... .. ...... . . ..... . .. . . . . .. . . . ... ... 162 "

m l

s,.a -.. - a b.-- - - - . ,u, APPENDIX A QUALITY ASSURANCE .. ... ......... .. .... ....... .. .. ......... ... .. .. ... 165 APPENDIX B ERROR AN ALY SIS . ... ....... ..... ... . ... . ......... . .... ..... ... .. . .. ..... 17 0 APPENDIX C TABLES OF REDUCED DATA ... ... . .... ...... ... ... ... ... . . . . ..... C-0 APPENDIX D DATA REDUCTION COMPlh ER CODE . ... ............... ....... .... . D-0 1 l 1 i f I l l l ( iv a

I LIST OF TABLES PAGE < 1 1 Table 1 - 1 Comparison of Experimental Parameters ............. ......... ........ ........................... . 18 4-1 Data Collected in the Isothermal Check .... ............. .. ... ......................... ........... 45 5- 1 Temperature Profile Shape Factor......................... ... .. . . ........... ...... ................ 63 6- 1 Te s t Ma trix . . . . .. .. .. .. .. .. .. .. .. .. .. . . .. .. .. .. . . . . . . . . . . . . . .. . . .. . . . . . . . . . .. . .. . .. . . . . . .. .. . . .. . . . . . .. . . . . . . 6-2 Parameter Range of Experimental Data .......... ..... ... ..... .......... .. .................... 89 7-1 Coefficients for the Calculation oflocal Condensate Film Nusselt Numbers .....114 B-1 Uncertainties of Apparatus and Instrumentation . ....... ... .... ..... .... ..... .... .......173 O O V

l

   \

LIST OF FIGURES (b PAGE Figure 2-1 Check ofInner Wall Temperature Response in Ogg's Apparatus . . .. ... .. .. . .. . . 21 l l 3-1 General Schematic Drawing of Experimental Apparatus.... .... ................ .. ....... 29 1 3-2 Sketch of Test Section Dimension and Components. . . .... . .... ...... ..... . ... .. . 31 3-3 Thermocouple and Spacer Location on the Test Section . .... ....... . ..... . .... . . . ... 32 3-4 Configuration of Cooling Annulus ..... ........ . .. .. . . ....................................33

                                                                                                                                 )

3-5 Condensing Tube Packing Gland ..... . .. ..... . .... . ........................34 3-6 Jacket Packing Gland.... ......... ... . ... .... ... . . .. .. .. ..........................35 3-7 Detail of Thermocouple Mounting on the Condensing Tube....... . . ... . .. . .. . . . 40  ; l 4-1 Isothermal Check for Thermocouple Mounting on the Test Section . ... .. .. . . . 4 6 5-1 Physical Description of the Condensation Process.. ... . . . . . . . . . . . . . . . . . . .. . 55 (] 5-2 Temperature Distribution of Fully Developed Turbulent Flow in an Annulus for Various Heating Boundary Condition... ... .. .. . . . . . . . . . . . . . . . (/ .. 66 5-3 Dependence of the Temperature Profile Shape Factor on Wall Temperatures l and Cooling Water Flow Rate. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. 66 6-1 Temperature Distribution versus Axial Location for RUN 1.1-1... ........ . . . . . . 76 6-2 Temperature Distribution versus Axial Location for RUN 1.1-1R .. ... .. . . ....... 76 ) l 6-3 Temperature Distribution versus Axial Location for RUN 1.1-3R ... .. . .... .. ... 77 l 6-4 Temperature Distribution versus Axial Location for RUN 1.1-4R1. . .. .. ......... 77 6-5 Temperature Distribution versus Axial Location for RUN 1.1-5R1..... .. . . . . .. 78 6-6 Temperature Distribution versus Axial Location for RUN 2.1-5..... . . .. . . .. 79 6-7 Temperature Distribution versus Axial Location for RUN 2.1-5R ........... ... .. ... 79 6-8 Temperature Distribution versus Axial Location for RUN 2.1-8.. .. .... . . . ..... 80 6-9 Temperature Distribution versus Axial Location for RUN 2.1-8R ....... .. .. . ... 80 6-10 Temperature Distribution versus Axial Location for RUN 2.1-13.. . . .. . ... 81 tO g 6-11 Temperature Distribution versus Axial Location for RUN 2.1-13R . . . 81 vi

L l 6-12 Cooling Water Bulk Temperature versus Axial Location for RUN 1.1-1............ 82 6-13 Cooling Water Bulk Temperature versus Axial Location for RUN 1.1-3R......... 82 O 6-14 Cooling Water Bulk Temperature versus Axial Location for RUN 1.1-5RI ...... 83 6-15 Cooling Water Bulk Temperature versus Axial Location for RUN 2.1-5......... .. 83 6-10 Cooling Water Bulk Temperature versus Axial Location for RUN 2.1-8.......... . 84 6-17 Cooling Water Bulk Temperature versus Axial Location for RUN 2.1-13.......... 84 j 6-18 Plot of f omerversus 1 Film Reynolds Number for the Pure Steam Data Base ..... 85 ! 6-19 Plot of 1-f/f versus t I;x:al Air Mass Fraction for Steam-Air Correlation (K-S-P)................................................................................................................87 l 6-20 Plot of Experimental Heat Transfer Coefficients versus the Values Predicted ! by K- S -P Correlation . .. .. .. .......... .. .. .. .. .... . . ... .. .... .. . .. . . . .. ... .. . ... . ... . . . .. .... .. 87 l l 6-21 Plot of 1-f/f versus i Local Helium Mass Fraction for Steam-Helium Correlation (K-S-P) ................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................88 l 6-22 Plot of the Experimental Heat Transfer Coefficients versus Those Predicted by K- S -P Correlation . ...... .... .... .... .. .... . . .... . ... . .. .. .. . .. .. .. . . ... . ...... .... ........ . .... .. .. . 8 8 6-23 Heat Transfer Coefficients Predicted by K-S-P Correlation versus Vierow-Schrock Correlation ............................... .. .. ........ .... ............................90 6-24 Heat Transfer Coefficients Predicted by K-S-P Corn:lation versus Ogg-Schrock Correlation . . ...... .. .. .... . . .. .. .. .. . . . .. ..... . . . . .. .. .. .. ...... . .... . . ... . . .. ...... .. . 90 6-25 Heat Transfer Coefficients Predicted by K-S-P Correlation versus Vial-Schrock Correlation ... .... .. .. .... ... .. ...... .. . . . .... . ... .. .. . .. . . .. ... . . .... .. . ... .. . . ...... . 91 6-26 Heat Transfer Coefficients Predicted by K-S-P Correlation versus TRACG Co1 relation with in S 2 ....~ . . -~ .~ . .. . . .. ~.-~. .. .. .-~. . . . . . . .-~ 91 6-27 Heat Transfer Coefficients Predicted by K-S-P Correlation versus TRACG Correlation wi th f 6 3t . .. . . .. ..... .... .. .. . . .... . .. .. .. .. . .. . . .. . .... . . . . ... .... .. .... .. .. .. .. . 92 6-28 Comparison of Film Thicknesses Between Experimental Deduction and COAPIT Simulation .... ..... .... .. ...... . . ... ... .. .. . .............................97 6-29 Heat Transfer Coefficient Comparison with Simulations ................ .... ..... .. . ... 97 6-30 Wall and Interface Temperatures for Run 1.1-1.. .. . ... ....... .. .. ........... . . ... 98 6-31 Film Thicknesses Comparison for Run 2.2-2. . ..... .. . . ... ...... .... ..... . ....... 98 6-32 Comparison of Condensation Heat Transfer Coefficient for Run 2.2-2.. . ........ 99 6-33 The Wall Temperature History Comparison and Interface Temperature for R u n 2. 2-2 .. . . .. . . . . . . . . . . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . ... . . . . 99 vii

7-1 Heat Transfer Coefficients Predicted by K-S-P and Vierow-Schrock p) ( Correlations versus Vierow's Experimental Data ...... . . . . . . . . . .. .. . . . . . . . . . . . 10 3 7-2 Heat Transfer Ccefficients Predicted by K-S-P Correlation versus Siddique's Experimental Data for Steam-Air Condensation . ....... . .. .. ................ ............ 104 7-3 Heat Transfer Coefficients Predicted by K-S-P Cormlation versus Siddique's Experimental Data for Steam-Helium Condensation... . .. .. .. ........ .... .......... ..104 7-4 Comparison of Blangetti's Data and Correlations for Rev =15500.... ..... . .............105 7-5 Comparison of Blangetti's Data and Correlations for Rey =25435 .. ... ..... ... .... .. .106 7-6 Heat Transfer Coefficients Predicted by K-S-P Correlation versus Goodykoontz's Experimental Data for Steam Condensation. . ...... ......... ..... ..108 7-7 Comparisons of the Interfacial Shear Stmss Calculated by Several Empirical Models with the Local Parameters in Run 1.1-1. .... .. . . . . . . .. . . .. .. .. . . . . . . . . . . . . I 12 7-8 Comparison of Nusselt Number Predicted by the Correlations of K-S-P and Blan getti e t al. . . . . . . . .... . . .... . .. . ...... .. . .. .. . .. .. . . . . . . .................... ...... . 115 7-9 Heat Transfer Coefficients Predicted by K-S-P Correlation versus Chen et al. Correlation (Pure Steam) ...... .... . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .I17 7-10 Comparison of Heat Transfer Coefficients Predicted by K-S-P Cormlation {} with Traviss, Boyko, Shah, and Chen et al. Correlations . . ....... . . .. . ... ... .121 7-11 Ratio of the Experimentally determined Nusselt Numbers to the Theoretical Values Versus Blowing Parameter for Steam / Air Mixture .. . ........ .. ... .... . 130 7-12 Ratio of the Experimentally determined Nusselt Numbers to the Theoretical Values Versus Blowing Parameters for Steam / Helium Mixture ... ... ... ... ...... .. 130 7-13 Comparison of the Total Heat Transfer Coefficients Predicted by the Diffusion Layer Modeling Based Correlations and Those Evaluated from the Experimental Data for the Steam / air Case ................ . ..... .. . .... ......... . .. .. .131 7-14 Comparison of the Total Heat Transfer Coefficients Predicted by the Diffusion Layer Modeling Based Correlations and Those Evaluated from the  ! Experimental Data for the Steam / helium Case ... ..... .. . ... . . . . . .. . . . . . . . . . .. . . . 1 3 1  ! 7-15 Comparison of the Local Total Heat Transfer Coefficients Predicted by the . Diffusion Layer Modeling Based Correlations and Those Evaluated from the l Experimental Data for Run 2.1-8.. .... ..... ..... ...... .. .... . .............................132  ! 7-16 Comparison of the Local Total Heat Transfer Coefficients Predicted by the Diffusion Layer Modeling Based Correlations and Those Evaluated from the Experimental Data for Run 2.1-13...... ..... .. .. ... .. .. . . . .. . . .. . . . . . . . . .. . . . . . . 1 3 2 7-17 Comparison of the Heat Flux Predicted by the Diffusion Layer Modeling q Based Correlations and That Determined Experimentally for the Steam / air

 )       Case...............................................................                                    ..    ..........................133 viii

7-18 Comparison of the Heat Flux Predicted by the Diffusion Layer Modeling i Based Correlations and That Determined Experimentally for the l 1 Peam/ helium Case ....... .... .... .. ...... .... .. .. .. ... . . .. .. .... .... .. .. . .. . .... .. .. . . .... .. .. .. .. .. .. .... .. . 13 3 7-19 Ratio of the Experimentally determined Nusselt Numbers to Theoretical Values Versus -@.(1 + Ri) for Steam / Air Mixture... ... ... .......... ... ................. . 135 7-20 Comparison of the Total Heat Transfer Coefficients Predicted by the Diffusion Layer Modeling Based Correlations including blowing and buoyancy effect and Those Evaluated from the Experimental Data for the S t eam/ air Case .. .. .. .... ... . .. . . .. .. .. .. .. . . .. . . . . . . .. . . . . . . . . . .. . . .. . . . .. . . . . . . . . . . . . .. .. .. . . . . . . .. . . .. .. . . .. . 1 3 6 7-21 Ratio of the Mass Transfer Conductance with suction effect to that without versus Blowing Parameter for the Steam / air Mixture........... .. ..... ............ ........ 148 7-22 Ratio of the Mass Transfer Conductance with suction effect to that without versus Blowing Parameter for the Steam / helium mixture . ........ . .. ...................148 7-23 Comparison of the Ratio of the Mass Transfer Conductance for the Empirical Correlations in the Pipe and the Analytical Solution of Couette-flow M odel . .. . . ... . . . .. . .. .. . .... .. .. . . .. .. .. ... . . . .. . . .. .. . . .. . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . .. . . 14 9 7-24 Comparison of the Condensation Heat Transfer Coefficients Predicted by the Mass Transfer Conductance Modeling Based Correlations and Those Evaluated from the Experimental Data for the Steam / air Mixture ................ .. . .150 7-25 Comparison of the Condensation Heat Transfer Coefficients Predicted by the Mass Transfer Conductance Modeling Based Correlations and Those Evaluated fmm the Experimental Data for the Steam / helium Mixture .. ........... .150 7-26 Comparison of the Total Heat Transfer Coefficients Predicted by the Mass Transfer Conductance Modeling Based Correlations and Those Evaluated from the Experimental Data for the Steam / air Case .. .. ............... ..... .............. . 151 7-27 Comparison of the Total Heat Transfer Coefficients Predicted by the Mass Transfer Conductance Modeling Based Correlations and Those Evaluated from the Experimental Data for the Steam / helium Case ............ .. ................... .151 7-28 Comparison of the Local Total Heat Transfer Coefficients Predicted by the Mass Transfer Conductance Modeling Based Correlations and Those Evaluated from the Experimental Data for Run 2.1 - 8 . . .. . . .. .. .. .. .. ... . . . . .. .. . .. . 15 2 7-29 Comparison of the Local Total Heat Transfer Coefficients Predicted by the Mass Transfer Conductance Modeling Based Conelations and Those Evaluated from the Experimental Data for Run 2.1 - 13 . . . . . .. . ... .. .. .. .. .. .. . . . ... . . . . 15 2 7-30 Ratio of the Mass Transfer Conductance with suction effect to that without i versus -@ (1 + Ri) for Steam / Air Mixture..... . ... . .. . .. ........... . ........ . .. .. . 153 1 7 31 Comparison of the Total Heat Transfer Coefficients Predicted by the Mass l Transfer Conductance Modeling Based Correlations including blowing and

buoyancy effect and Those Evaluated from the Experimental Data for the Steam / air Mixture ... .. .. . . . .... ... .. . ... . . .. . . . . .... . . . . . . . . . . . . .154 l

l l ix

i i NOMENCLATURE A area Bmd mass transfer driving potential c molar density c, constant pressure specific heat cp constant pressure specific heat ofliquid cp,, constant pressure specific heat of vapor d diams c: , di inside tube diameter l do outside tube diameter 4 1 dia. diameter i D diffusion coefficient I f degradation factor F temperature profile shape factor fi correlation f=icifor pure steam f2 correlation factor for noncondensable gas i fshear f lfactor due to interfacial shear stress l f iom ' f factor 3 due to other effect fR friction factor gm mass transfer conductance gm mass transfer conductance without suction G mass flux Gr Gmshof number (in terms of the density difference between the interface and bulk value) h heat transfer coefficient hr, latent heat of vaporization h' fg pseudo heat of vaporization ( = hrg + 3/8 pc AT) j diffusive mass flux Ja Jakob number ( ratio of sensible heat to latent heat ) I k thermal conductivity l K-S-P Kuhn-Schrock-Peterson L condensate filmlength scale Le Lewis number M molecular weight M, air mass fraction 1

1 Mn, helium mass fraction m mass concentration . m" condensation mass flux 4 Nu Nusselt number n mass flux O.D. outer diameter I.D. inner diameter p absolute pressure q" heat flux R universal gas constant r radius Pr Prandtl number Re Reynolds number (refer to the text for the difference of its definition when used) Ri Richardson number (Gk2) Sc Schmidt number Sh Sherwood number, h,d/k, St Stanton number Sth heat transfer Stanton number Stm mass transfer Stanton number STD Standard deviation T absolute temperature V velocity 6 molar average velocity Xtt turbulent-turbulent Martinelli parameter W mass flow rate We Cooling water flow rate X mole fraction x quality and axial coordinate y coordinate normal to interface z axial coordinate Greek a void fraction

    ,     blowing parameter for the momentum transfer
    ,     blowing parameter for the heat transfer
    ,     blowing parameter for the mass transfer xi

es e the root-mean-square roughness and volume concentration (u) S thickness St film thickness without interfacial shear stress S2 film thickness with interfacial shear stress a standard deviation

                                                         $       gas / vapor log mean concentration ratio l'      mass flow per unit circumference dynamic viscosity v      kinematic viscosity p       density I        shear stress Sutscripts a        adiabatic and air b        bulk c        condensation and cooling water
     ^                                                   co       cooling water outlet
                   )                                     cw       cooling water l

cw,i cooling waterinlet cw,o cooling water outlet exp experimental value . 1 cor correlated value f condensate g noncondensable gas species and acceleration due to gravity He helium i liquid / vapor interface and inner wall of condenser tube inlet test section inlet j control volume number 1 liquid la laminar K-S-P Kuhn-Schrock-Peterson m mixture and mass transfer mix mixture / s sensible heat t total xii

l l i l l L th theoretical tu turbulent T1 Theoretical value without interfacial shear stress T2 Theoretical value with interfacial shear stress l l v vapor species l w tube wall 1 wi inner tube wall wo outer tube wall ( x axial coordinate l = bulk cooling medium l Superscripts s saturation l

  • dimensionless form and condition without transpiration l

l 9 [ 1 O ! xiii 1 1

l

1. INTRODUCTION ltp)

D 1.1 Background of Research The SBWR is a 600 MWe reactor that uses natural circulation and passive features to minimize dependence on active mechanical components and operator action. Like most of the General Electric BWR designs, the SBWR uses a pressure suppression ! containment to absorb reactor pressure vessel (RPV) energy release. In an emergency, I the SBWR vesselis depressurized and cooling water flows by gravity from an elevated l pool into the reactor vessel. A passive containment cooling system (PCCS), consists of l condensers which provide transfer of reactor decay power to the environmental heat sink. 1 ! The steam-gas mixture flows from the drywell into the condensers by natural fomes. The 1 steam is condensed out of the mixture and the condensate flows by gravity into the l l l Gravity Driven Cooling System (GDCS) for eventual return to the RPV, while the gas i l and a small residual steam content are vented into the wetwell. No operator action is needed to start this automatic heat transfer system or to sustain its operation for a minimum of 72 hours. The safety related PCCS is Scorporated into the design of the containment to remove decay heat from the drywell following a design basis accident (DBA) or in an accident causing activation of the depressurization system. In a scenario such as a loss of coolant accident (LOCA), the PCCS loops are initially driven by the pressure difference created between the containment drywell and the wetwell. As the steam pressure builds up in the containment drywell and drywell-to-wetwell pressure difference exceeds the hydrostatic pressure difference corresponding to vent submergence in the suppression pool (~ 9 kPa), the steam-gas mixture from the drywell flows into the PCCS condensers. The .PCCS condensers are sized to maintain the containment drywell below its 379 kPa (55 psig) design pressure in a DBA. The PCCS uses three elevated condensers (heat

 /~T Q    exchangers) in pools of water (which undergo boiling at atmospheric pressure) located 1

outside the containment to condense st:am released from the RPV into the drywell. The steam-gas mixture is channeled from the drywell to each of the condensers' tube-side heat transfer surfaces where the steam condenses and the condensate returns by gravity to the GDCS pools. Noncondensable gases, together with a small residual steam content, are purged to the wetwell gas space through vent lines submerged in the suppression pool. These low pressure PCCS condensers provide a thermally heat efficient removal mechanism. One of great concerns about steam condensation in PCCS condensers is the presence of noncondensable gases. It is already well known that noncondensable gases can inhibit the steam condensation process and lower the heat transfer efficiency. The noncondensable gases can include the nitrogen used to inert the containment drywell, a small amount of residual air, hydrogen generated by zirconium-water chemical reaction or radiolysis of the water, and minor fission gases released from damaged fuel rods. In order to analyze the downward condensation with noncondensable gases to O support PCCS development, an experiment was first performed in 1990 at the University of California at Berkeley by K. Vierow with natural circulation condensation of steam with noncondensable gas inside a one inch copper tube [14]. Later, further experiments were performed in 1991 by D. Ogg under forced convection conditions in a two inch diameter stainless tube like that of PCCS condensers [15]. In both these experiments, local heat transfer coefficients along the axial condensing length were calculated from measured tube temperatures, heat flux found from the axial rate of rise of cooling water temperature and the local bulk saturation temperature calculated from a mass balance on the gaseous phase between the inlet and the local position. An experiment similar to Ogg's was also carried out under GE sponsorship at MIT by M. Siddique [17]. A simple correlation developed by Vierow and Schrock [19] from Vierow's data has been O; . 2

employed in the TRACG code (with some modification) for the laminar film domain to carry out performance calculations in support of the SBWR certification. 1.2 Review of Previous Wor' The first theoretical calculation procedure for predicting the heat transfer coefficient in laminar film condensation was developed by Nusselt in 1916 [1]. He postulated a laminar film flowing down an isothermal venical plate, without waves on the free surface and having a linear temperature profile through the film. For very thin films of non-metallic fluids such as water, Nusselt's simple model provided a good prediction for pure vapor under natural convection laminar film condensation on plane vertical isothermal surfaces. For turbulent film flow, classical models were developed by Rohsnow [2] and Dukler [3]. Studies of the shear stress at the liquid-gas interface show that shear stress in the direction of the film flow thins the film and increases the local heat - 0 transfer coefficient above that predicted by Nusselt's model. Turbulence and waviness of l the film also reduce heat transfer resistance of the film. l ! For condensation heat transfer in the presence of noncondensable gases, Othmer [44] (1929) was one of the first investigators to give quantitative results with steam containing a small percentage of air. His apparatus consisted of a horizontal copper tube (3 inches OD and 47 inches long) placed in a stagnant air / steam environment within a small boiler. He varied the average air concentration from 0 to 5 pement by volume and found that the presence of 0.5 percent air by volume would decrease the heat transfer

coefficient 50 percent. In 1935, Meisenburg et al. [4] conducted an experiment to examine the influence of small amounts of air in steam on the condensation heat transfer under forced convection over the outside of a vertical tube. The apparatus used in the experiment was a single copper tube of 1 inch OD and 12 feet long. An empirical O

3

l I correlation of average heat transfer coefficient was derived in the form of a modification of the Nusselt theomtical equation: O rk'p gh* # 2 h" = 0.67 M*-#" (1.1) ( L AT , where AT is the average temperature difference between tube smface and steam and M. the air mass fraction. Since these experimental investigations, considerable progress has been made towards the thcontical understanding of the noncondensable gas problem for the case of laminar film condensation on plane vertical surfaces exposed to large volumes of vapor l with free convection (Sparrow and Lin[5], Minkowycz and Sparrow [6], and Rose [7]), forced convection (Sparrow, et al.[8]), and combined forced and free convection (Denny et al.[9]). Predictive theory was formulated based on the mass, momentum, and energy j conservation principles. Similarity solutions of the differential equations were found possible for free convection on isothermal surfaces. For the forced convection case the problem is not self-similar. A wide-ranging analytical investigation of laminar film condensation was presented. Besides considering noncondensable gas, the analytical model included interfacial resistance, mass diffusion and thermal diffusion, the role of steam superheat, and variable propenies in both the liquid and gas-vapor regions. Heat transfer results were obtained for a wide range of parameters including bulk concentration of the noncondensable gas, system pressure level, wall-to-bulk temperature difference, l and degree of superheating. It has been demonstrated that small bulk concentrations of the noncondensable gas significantly reduce the heat transfer rate. In experimental work done by Uchida [10], several different noncondensable gases such as air and nitrogen were used in steam condensation on a vertical tube under 1 I natural convection conditions. The empirical correlation fitted from experimental data relates the reduction of heat transfer coefficient to the gas mass fraction of the ambient 4

m mixture. A correlation based on Uchida's data has been widely used in computer codes i for light water reactor containment analysis involving condensation from steam-gas mixtures on interior containment surfaces. Similar experiments were also performed with forced convection by Borishanskiy et al. [11]. The experiments were performed with  ; steam-nitrogen mixtures at pressures from 0.8 to 7 MPa condensing in a 3 m long and 10- l l 22 mm I.D. vertical steel tube. The relative reduction in the average heat transfer l coefficient as a function of the inlet gas content was described by the expression : i h"" = 1 - 0.25 c (1.2) 8 hs where egis gas content (volume concentration) at the entrance. Al-Diwany and Rose [12] experimentally measured heat transfer for film condensation on a vertical plane surface in the presence of air, argon, neon and helium , under free convection condition. The vapor-gas mixture was led into a cylindrical glass t'% () chamber of diameter 0.46m. The steam condensed on the vertical copper test plate that was cooled on the reverse side by water. The fractional reduction in heat flux (q"/q"Nu) was reported versus gas concentration and temperature difference (T -Tw). 4 i The studies of noncondensable gas effect (Sparrow & Uchida) show that condensation induced convection carries gas to the interface causing a buildup there of noncondensable gas. The consequence of this buildup is that the partial pressure of the i 1 vapor at the interface is reduced. This, in turn, lowers the interface saturation temperature T', at which the vapor condenses, and diminishes the effective thermal driving force for heat transfer through the liquid film. The rate of condensation is then  ! controlled by resistances both within the liquid film and within the boundary layers on the gas side. The latent heat delivered to the liquid interface is the product of the vapor mass flux toward the surface and the heat of vaporization. The mass flux is controlled by ( ) the mass transfer process within the gas-vapor mixture. Since the liquid surface 5

i l temperature is lower than the gas-vapor ambient temperature there is sensible heat transfer to the interface as well. The total energy Gux to the interface is the sum of the O two and must be transferred through the liquid film to the heat transfer surface. The problem is then inherently nonlinear because the mass transfer resistance depends upon i the flux. ( l Though many of the studies described above have been conducted to investigate ! the effect of noncondensable gases on steam condensation for both natural and forced l convection, most of the reported results are in the form of very simple empirical correlations which relate the reduction in the average heat transfer coefficient to the amount of gas in the ambient mixture. Many film condensation experiments were done on vertical isothermal plates. Experiments for pure steam condensing inside tubes have been performed for both laminar and turbulent films. Most of the data have been presented in the form oflength averaged heat transfer coefficients. The experiments of Goodykoontz and Dorsch [24,25] and Blangetti et al.[21, 22] are the exceptions. Experimental data on local condensation heat transfer of steam from steam-gas mixtures inside vertical tubes were not available prior to Vierow's experiment. Her data were , reported as an overall heat transfer coefficient defined as the ratio of the local wall heat flux to the difference between the saturation temperature at the local bulk partial pressure of the steam and the local wall temperature. The overall resistance (inverse of the heat transfer coefficient) represents the sum of liquid film and gas side resistances. Detailed design of the PCCS condensers requires local information because all the variables, including the bulk gas concentration and corresponding saturation temperature, wall 1 surface temperature and heat flux, vary along the length of the condenser. Put another ) way, condensation from mixtures flowing inside tubes is more complex that the much studied case of external surface condensation for which the ambient or reference saturation temperature is constant. Like conelations previously used in containment i 1 codes, the correlation of Vierow and Schrock [19] expressed the local heat transfer l 6

l l l l l - coefficient in the form of a " degradation factor" defined as the ratio of the experimental l l heat transfer coefficient to a reference (pure steam) heat transfer coefficient and correlated it as a function of the local gas mass fraction and gas Reynolds number. In l this case the reference was chosen as a Nusselt like coefficient, k/S, where S is given by j the simple laminar film hydrodynamic model of Nusselt's original calculation for the local condensate flowrate (Note that h is not given by Nusselt's equation for the f isothermal vertical plate for which the local condensate flowrate may be different). This degradation factor approach is recognized as not wholly descriptive of the physical l processes as described in the previous paragraph. For example, the gas side resistances adds to the liquid film resistance rather than acting as a multiplicative factor. It is essentially an ad hoc engineering approach that is simple and may be used in complex ! system codes without adding significantly to the running time. An attempt to represent i the physics more correctly has been made in the method developed by Peterson et al. [38] and Kageyama et al. [39] as part of the UCB research program. This approach is discussed further in Section 7 of this report. It is shown in Section 7.3.1, that, with some modification, this mechanistically based correlation produces better accuracy than the degradation factor correlation. It, however, requires an iterative computation. In Section 7.3.2, the approach of using mass transfer conductance and mass transfer driving potential [40,41] is implemented to calculate condensation mass transfer rate in the vertical condenser tube. With the empirically derived correlation of the ratio of mass transfer conductance with suction to that without suction effect, the mass transfer rate in the steam / gas mixtures can be calculated as the product of mass transfer conductance (with the suction effect) and mass transfer driving potential. To suppo'rt GE's PCCS and Isolation Condenser (IC) design, three previous experiments have been performed at U. C. Berkeley [14,15, &l6] and one at MIT [17]. p Table 1-1 compares the features of the experiments and operating conditions of the above b 7

i l l I four experiments and the current new UCB experiment. An additional experiment is also < in progress at MIT. Because the reference heat transfer coefficient used in Vierow's degradation factor definition is based upon laminar film flow theory in the absence of interfacial shear and waves, the experimental values of the degradation factor sometimes exceed unity (these phenomena enhance the heat transfer). Therefore the degradation factor was treated as the product of an enhancement factor, fi , associated with interfacial shear and a factor, 2f ' representing the degradation associated with bulk gas concentration. The Vierow-Schrock [19] correlation for steam-air mixtures is f=ff3 2 (1.3) f = ( 1 + 2.88 x 10 Re,"' ) 5 3 f 2= ( 1- C M/ ) where Ma is the bulk air mass fraction and C = 10 b = 1.0 for M. < 0.063 l l C = 0.938 b = 0.13 for 0.063 < M,< 0.60 C = 1.0 b = 0.22 for Ma > 0.6 As pointed out in Reference 19, the Vierow data for very low gas content displayed an unexpected tube wall axial temperature profile indicating the heat transfer was degraded more near the entrance than further downstream. She called this phenomenon " temperature inversion". The exact cause of this behavior remains unknown. Data in this category were not included in the data base for the correlation. When measured heat transfer coefficients were compared with correlation predictions for the same local parameters, the standard deviation was found to be approximately 0.30. The form of this correlation has the correct limits,i.e., as Rem tends to zero f3tends to . I unity and f2ranges from unity at Ma=0 to zero for Ma=1. The data base covers the { range of mass fraction from 0 to nearly 100% and the Reynolds number of the mixture up 8

to 27,000. Vierow had previously developed another form of correlation in terms of gas mass fraction and liquid film Reynolds number. Although that correlation represented the data base just as well, it had the disadvantage of not tending to the expected limiting values. After the SBWR containment design was further advanced, it was realized that the PCCS flow is forced by the drywell-wetwell pressure difference rather than the natural circulation mode used in Vierow's experiment. It also seemed desirable to obtain data from test sections more like the size and material of the PCCS condensers. These considerations led to the design of Ogg's experiment (UCB-2) which employed the same experimentr.1 technique to measure wall heat flux. Ogg performed forced convection tests for pure steam, steam-air mixtures and steam -helium mixtures and developed the following correlations. - For air: f=ffi2 (14) f i= ( 1 + 1.2 x 10-3 Re,7) f2 = ( 1- 1.165 M, 26 ) for M, < 0.3 f 2= ( 1 - 0.905 M, * ) for 0.3 < M, < 0.9 f2 =1-M, for M, > 0.9 For Helium : f=ff 3 2 (1.5) f = ( 1 + 1.2 x 10-5 Re, ' ) 3

                                                            .2' f 2= ( 1 - 1.59 Mn,      )          for     M n, < 0.11 f 2= ( 1 - 0.865 Ma, ' d )          for     0.11 < Ma, < 0.86 f2   =1-M a,                        for     Mn, > 0 86 where Ma and Mue are air and Helium mass fractions respectively. These correlations are in the same format as the Vierow-Schrock correlation. Although the pure steam data lacked good reproducibility, the average results produced a correlation of the if factor considerably lower than had been deduced from Vierow's data.

9

l Simultaneous with the Ogg experiment, a similar experiment was carried out by M. Siddique [17] at MIT using a two inch diameter stainless steel tube. He used a unique technique to obtain the cooling water temperature profile. Air of unspecified flow rate l was mjected into the cooling water and it was assumed that this caused complete l transverse mixing of the cooling water such that a thermocouple placed at any radial position within the cooling annulus would observe the local bulk temperature. The steam-gas mixture was produced by injecting air or helium into the electrically heated boiler where it mixed with the steam. The experimental technique was otherwise similar l ! to the UCB experiments. Siddique, citing work of Conadini, assumed that the liquid film l contributed negligibly to the thermal resistance for condensation and then deduced t correlation parameters from the energy equation for the flowing steam-gas mixture. Actually both UCB and MIT data show that the liquid film resistance contributes very significantly for much of the data base. Siddique's conelations are the following. For air Nu, h'd - 6.123Re;223 (M... - M. 8 )m Ja-*' (1.6) k M,,, 0.1 < M ,. < 0.95 445 < Re, < 22700 0.004 < Ja < 0.07 where Ma,w and Ma,b are air mass fraction at tube wall and bulk, respectively, and Ja is a modified form of the Jakob number based on the steam-gas mixture density and specific heat rather than these properties for the liquid. For Helium Nu, h"d - 0.23Re ;" ( M"*'" - M"6 )2" Ja~ 5 (1.7) k M n,,, 0.02 < M,,, < 0.52 300 < Re, < 11400 10

0.004 < Ja < 0.07 where Mne,w and Mne,b are the helium mass fraction at tube wall and in the bulk, respectively. Siddique compared his steam-air correlation predictions with predictions from Vierow's original correlation and reported that, for low heat transfer coefficients, the MIT correlation predicted lower values, while for high heat transfer coefficients the MIT predictions were higher by up to a factor of ten. It was later showr. that the extreme difference occurred for only a few data points and that the two data basca are not in sharp 1 contrast. Still the differences among the three data bases exceed the assessed accuracy of each experiment. E. Vial [18] reviewed the data bases of Vierow, Ogg and Siddique and attempted to develop a single correlation representing the combined data bases. Questionable data from each source were eliminated from the data base thereby reducing the level of discrepancy. His results for steam-air are as follows. I The f1 factor was found to be : f i= ( 1 + 1.2 x 10 Re,2 ) for Re, < 5000 (1.8) f i= ( 0.767 + 1.07 x 10" Re, ) for Rem > 5000 The f2 factor was found to be : f2 = 1- 1.0846 M,a23" for M, < 0.4 (1.9) f2 = l- 0.9562 M,*" for 0.4 < M, < 0.9 f2 = 1 - M,a52" for M, > 0.9 As expected, the comparison of correlations and data show a higher standard deviation than had each experimenter's correlation. 1.3 Objective of This Experiment O 11

I The primary objective of the present experimental investigation was to further experimentally verify the effect of noncondensable gases on steam condensation in the vertical tube and determine the local condensation heat transfer coefficients in order to support GE's PCCS condenser design. The current experimental apparatus was modified not only to eliminate the potential error causing factors that may have been present in our previous experiments but also to simulate more completely the conditions that may be encountered in the PCCS condenser under accident conditions. Because significant discrepancies were found between the experimental results from previous UCB-1, UCB-2 and MIT experiments, an in-depth assessment of the previous experimental apparatus was necessary. The previous test section design and the installation ofinstrumentation needed to be re-investigated. In addition the operating conditions, test procedures, and data reduction procedures had to be reviewed to uncover any possible causes for these discrepancies. The final goal of this research was to obtain an experimental data base covering a O broad range of operation conditions and develop an empirical correlation, in a simple form consistent with the needs of the TRACG code, to represent the effects of noncondensable gases on the condensation heat transfer processes in the SBWR PCCS condensers. 1.4 Summary of Current Research The current single tube condensation experiment intentionally covered a broad range of steam / gas mixture inlet conditions that might be encountered in the PCCS condenser (See Table 6-1 for the test matrix) . The empirical correlation basically followed the format which was previously adopted by Vierow and Schrock except that there was further modification for the derivation of thei f factor. The new fi factor was a combination of multiplying factors, fishear and fi ger. The factor f ,3,,7 i was interpreted as O. 12 l l

the enhancement of the heat transfer coefficient caused by the thinning effect due to interfacial shear and was estimated by solving the liquid film boundary layer momentum equation with specified shear stress at the liquid-vapor interface. It was calculated from fae,, = S /S 3 2, where S iis the film thickness calculated from the laminar film analysis for zero interfacial shear and 62 is the film thickness given by the shear model (see Section 5.2). The factor f s,,was io used to account for the additional heat transfer augmentation caused by other possible effects such as waviness of the liquid film and shear effects not accounted for by the simple analysis. Since the enhancement caused by waviness dewnds upon the film Reynolds number this effect was not independently correlated in the representation of Vierow and Schrock. Detailed discussion is given in Section 5.2. More than 40 test runs were performed for pure steam condensation, which gave a sufficient data base for the correlation of thei f factor (since 2f = 1. f = f t). Based on 33 pre-selected qualified runs, f i ome, defined as fi/fishear was correlated against the film Reynolds number as fm = 1 + 7.32 x 10" Re f STD=7.36% (1.10) I' in which Ret = 4 More than 70 steam-air tests were run with the inlet air mass fraction ranging from nominally 1 to 40 %. Using the above derived fi correlation, f 2was correlated based on 68 qualified runs and the relation for 1-f/f1 versus local air mass fraction was plotted in Figure 6-19. Correlations for the f2factor were obtained as follows : For air : f2 = ( 1- 2.601 M, " ) for M, < 0.1 (1.11) f2 = ( 1 - M, .2 2 ) for M, > 0.1 STD=17.64% O 13

l l Steam condensation tests in the presence of helium were done at a nominal pressure of 4 atmospheres and with inlet helium mass fractions up to 15%. The results O l were conelated as follows \ l 2 Forhelium : f2 = ( l- 35.81 Mm " ) for 0.003 < Mm < 0.01 l f 2= ( 1 - 2.09 Mm"" ) for 0.01 < Mm < 0.1 (1.12) f 2= ( 1 - Ma*'" ) for M >0.1 l STD=12.97% I where M, and Mae are air and helium mass fractions respectively. The above new correlation was designated as the "Kuhn-Schrock-Peterson correlation" as it will be consistently named hereafter. The Kuhn-Schrock-Peterson correlation was compared with other existing correlations of experimental data for film condensation of pure vapor in a tube, such as the correlations developed by Blangetti et al. [21,22], Chen et al. [23] and other researchers [24,25,29,30,31,33,34,37,38], and was g also compared with the experimental work done by several previous researchers [14,15,16,17,18] for condensation in the presence of noncondensable gas. In general, the direct comparison of Kuhn-Schrock-Peterson correlation with Blangetti et al. and Chen et al. correlations for film condensation under these experimental conditions gave differences less than approximately 30%. The Kuhn-Schrock-Peterson correlation also gave good fit for the data from Siddique's experiment [18] of steam condensation in the presence of air and helium. In Section 7.3, more mechanistic and theoretically based models were presented to evaluate the heat transfer problem of the condensation in the presence of noncondensable gas. This approach was taken by combining the parallel steam / gas mixture sensible heat transfer and species boundary layer diffusion resistances in series with the liquid film resistance to give the effective total heat transfer coefficient of the steam / gas mixture and condensate liquid film. Two models were given in Section 7.3 14

i p and both gave excellent agreement between the results predicted by the correlations and determined from the experimental data. It is summarized as follows A. Diffusion Layer Modeling Based Correlations  ! The diffusion layer based correlations including the blowing parameter are gives as For air : 0.021 Re" Sc" = 1 + 0.05( m )' STD=13.5% (1.13) For helium : 0.021 Re" Sc"

                                                  = 1 + 0.137(-p   )'    STD=11.9% (1.14)

I where Nusy is the effective Nusselt number for the steam / gas mixture defined in i Eq.(7.58) and , is the blowing parameter for mass transfer defined in Eq.(7.82). 1 l Further improvement to Tccount for the effect of buoyancy is discussed in Section ' 7.3.1.3. rO LJ By using Eq.(1.13) and Eq.(1.14), the condensation heat transfer coefficient he l and sensible heat transfer coefficient h, can be calculated as l l For air : h, = 0.021 (k, / d)Re"Sc"(1 + 0.05( m)*) (1.15) h, = 0.021 (k, / d)Re"Pr"(1 + 0.05( )*) (1.16) For helium : h, = 0.021 (k, / d)Re"Sc"(1 + 0.137( m)*) (1.17) h, = 0.021 (k, / d)Re"Pr"(1 + 0.137( ,)*) (1.18) where the condensation conductivity ke is defined in Eq.(7-49) and ks is the mixture thermal conductivity. The total heat transfer coefficients h i can is defined as h, = (1.19) 1 3

                                                +--

O. 6 4 h' + h' V s T', - T' 15

where hr is the heat transfer coefficient of liquid film (the correlation for hr proposed by Blangetti et al. is implemented). Then, the total heat transfer coefficients he predicted by the correlations were compared with those evaluated from the experimental data in Figures 7-13 and 7-14. The relative standard deviation is 8.11% for the steam / air case l l and 5.83% for the steam / helium case, respectively. B. Mass Transfer Conductance Modeling Based Correlations The mass transfer conductance modeling as discussed detailedly in Section 7.3.2 is taken to evaluate the vapor mass flux in the mixture in terms of the classical mass transfer relations [40][41] using the mass transfer conductance and mass transfer driving potential. The ratio of the mass transfer conductance with suction effect (gm) to that without suction effect (gm*) is correlated from the experimental data. This ratio is also employed to account for the augmentation of the sensible heat transfer with transpiration (suction or blowing effect) at the interface. The ratio of gm/gm* is correlated as For air : E* = 1 + 0.54(m)" STD=9.65% (1.20) Em For helium h = 1 + 0.47( 8.

                                                 )"                     STD=7.18% (1.21) and further improvement to account for the effect of buoyancy is discussed in Section 7.3.2.4.

I By using Eq.(1.20) and Eq.(1.21), the condensation heat transfer coefficient he and sensible heat transfer coefficient h, can be calculated as e > E l g, --F- Bo hr, I 'E"' h, = (1.22) (T', 4 ) h, = (g / g*) 0.021(k, / d)Re" Pr" (1.23) O 16 l

j I i /N m** - m'd . The total j (j where Bmd is the mass transfer driving potential defined as By= m,,, - 1 1 heat transfer coefficients ht in Eq.(1.19) predicted by the correlations were compared with those evaluated from the experimental data in Figures 7-26 and 7-27. The relative i standard deviation is 6.51% for the steam / air case and 3.26% for the steam / helium case, l respectively. j Yuann [20] developed a computational fluid dynamics computer code (source l code called COAPIT) to predict performance of the PCCS and similar condensers. The code used k-e turbulence modeling for the gas vapor core flow. The same turbulence model was intended for use in the liquid film but this was not fully implemented and l Yuann's predictions were limited to the laminar film domain. Subsequent attempts by i ! X. M. Chen to apply the code for isolation condenser (IC) conditions revealed need for I O l b additional work on the code. Chen improved the code to make it more flexible and added ) an empirical correlation to handle the turbulent film flow regime. He also carried out extensive comparisons of COAPIT predictions against Kuhn data. Generally good ) agreement was found in these comparisons (see Section 6.6 for further details). ) p G 17

Table 1-1 Comparison of Experimental Parameters Ol SBWR UCB-1 UCB-2 UCB-3 UCB-4 MIT Design Vierow Ogg Kageyama Kuhn Siddique , Inlet pressure (kPa) 275-482 28-448 89-303 101-130 109-518 110-480 Inlet temperature ( C) 120-150 72-146 95-134 100-154 100-140 Inlet steam flow (kg/hr) 6-40 5.9-25 15-73 2.5-31 30-60 10-33 Inlet gas : Air mass fraction 0-0.4 0-0.14 0-0.4 0-0.7 0-0.4 0.09-0.35 He mass fraction 0-0.15 0-0.05 0.003- 0.02-0.05 0.15 Condensing tube : Type SS. Copper SS. Pyrex SS. SS. Length (m) 1.8 2.1 2.44 glass 2.42 2.54 g O. D. (mm) 50.8 25.4 50.8 0.76 50.8 50.8 Thickness (mm) 1.65 1.70 0.71 5.08 1.65 2.40 5.0 Jacket I.D.(mm) 48.31 57.4 59.2 73.7 62.7 Cooling water : Flow rate (kg/hr) 384-1431 967-1212 600-1200 205-232 Inlet temperature ( C) 49-53 17-32 26-32 7-24 Temperature rise

                   ,                  18-26    7-43               20-40    20-87 O

18

,- 2. . ASSESSMENT OF PREVIOUS EXPERIMENT ( Ogg [15] ) Several problems were found in the previous experimental apparatus. Therefore, it was necessary to make a careful assessment of the equipment design and instrumentation installations in order to identify appropriate modifications and improvements. The pmblems and their remedies are discussed in this Section. A. Cooling Jacket Design The jacket in the previous experiment [15] consisted of five pieces of 2-1/2 inch tube with different lengths that were connected by flanges at both ends and sealed by the "O" rings. A total of six 1/16 inch holes was drilled through the pipe to serve as thermocouple taps for leading the Teflon insulated 24 gauge thermocouple wires through the jacket wall. The disadvantage of such a design was that too many lead wires were jammed into the annulus and these can significantly affect the local flow distribution and cause modifications in local secondary side (cooling water) heat transfer coefficients. This in turn can cause changes in the local wall temperature and influence the measured condensing heat transfer coefficient. Funhermore,it was also inconvenient and unsafe to have so many thermocouple leads to handle while assembling the jacket by sliding a section over the condenser tube and simultaneously pulling thermocouple wires through the taps. Once it was installed, the only way to slide the jacket off the condenser tube was to remove the end flange of the condensing tube. Also, the CONAX seal fittings used made in necessary to cut the thermocouple wires to let the jacket freely slide off during disassembly. Instead of using several pipes connected by flanges to assemble a cooling jacket as done in UCB-1 and UCB-2, a new jacket design was developed that utilized a longitudinally split pipe of full length. After placement of the condenser wall q thermocouples (passing the sheaths through individual taps in the jacket halves and b soldering the junctions into grooves on the condenser tube outer wall), the jacket halves 19

i l l l were reassembled to form a tube concentric about the condenser tube by use of clamps l l and with silicon rubber strips mounted on the joining surfaces to provide a seal. The benefit of this splitjacket design is that it facilitates the installation of thermocouples on l l the condenser tube and simplifies and shortens the leads with;n the cooling annulus. This j design minimized the flow obstruction caused by thermocouple leads. Combined with a new tap seal design, the new jacket can be easily disassembled for checking or repairing l thermocouples. B. Mixer and Spacer Design In the previous experiments [14,15), metal discs with drilled small holes were l mounted in the annulus to serve as both mixers and spacers. Their functions were to provide mixing of cooling water for measurement of the water bulk temperature and also act as spacers to hold the jacket concentric abeut the condenser tube.. There were 6 pairs of mixers and spacers mounted along the test section annulus. Each spacer / mixer disc had 24 holes of 1/16 inch diameter. A special experiment was performed to examine the axial variation of the inner surface temperature of the condenser tube. This was done by modifying the movable probe such that a constantan wire was pressed against the inner surface of the condenser tube. At the junction of constantan wire and stainless steel wall, an electromotive force was produced corresponding to the local temperature. This thermocouple was not calibrated and it would be subject to an unknown error caused by fin effect and contact resistance but it did serve to give a qualitative indication of the variation. It was found that temperature dropped abruptly just downstream of each mixer. Three sets of i measurements were made to check the inner wall temperature during pure steam l condensation tests and the results are shown in Figure 2-1. The sharp temperature drop downstream of the mixers can be clearly seen. This may be explained by the fact that the O 20 l i

i i 4 l l 4 I (3 ia () j 5.0 - - - - - r 7 i j ,-

4.5 - + " "

lnua71l~l RuW l-' 4 i I

                                                                                       /

i

4.0 - - - -
                                  \e                               --      i l

q-4

                                               +  \  Y J'                         i i     E                  ,

I {3.5 lE 3-LLI l  ! l Run47-2 l . ! 3.0 - + +- - l i IMixw Lx l 2

2. 5 - --l "

l l l'  : - l 4 i 2.0 -

!                    I                                 I I                                I      I           I i

0 50 100 150 200 250 Axial Pos. (cm) Figure 2-1 Check of Inner Wall Temperature Response in Ogg's Apparatus O 21

mixers destroy the thermal boundary layers. There is then a thermal entry region just downstream of each mixer in which the water side heat transfer coefficient is , 1 considerably higher than in the thermally developed regions. A reduction in water side resistance tends to reduce the tube temperature. The exact magnitude of the effect is not known but its existence casts some doubt on the accuracy of previous heat transfer coefficient measurements. From the above finding, it was decided to abandon the use of mixers to obtain the water bulk temperature and new spacers were designed using sets of nylon pins inserted radially from four circumferential positions on the jacke' wall to keep jacket and tube concentric . The axiallocations of sets of pin spacers is shown on Figure 3-3 and detail of their fabrication is shown on Figure 3-4. The new design relies on the measured surface temperatures on both sides of the cooling annulus from which the bulk coolant temperature can be deduced. The details of this new experimental procedure are presented in Section 5.3. C. Gap between Condenser Tube and Jacket The previous selection [15] of 2-1/2 inch tube with 3.05 mm wall thickness as jacket material made the gap between the center tube and jacket only 3.3 mm. With the uncenainties of tube wall thickness (See Table B-1) and its straightness, such a small gap makes it more difficult to maintain concentricity and the effect of thermocouple lead wires may be enhanced. It was desired to have cooling water flow low enough to produce a temperature rise high enough to give good accuracy in the heat flux detennination. On the other hand it was also desirable to keep the cooling water flow within the turbulent domain in order to have confidence in the method for bulk temperature measurement. The new jacket design uses a 3 inch stainless steel pipe to l achieve a 11.4 mm gap. This size satisfies the above needs. . D. Installation of Thermocouples on the Condenser Tube Outer Wall 22 l

,r S In the previous experiments [14,15], the condenser tube outer wall temperatures (#l were measured by the thermocouples made from spools of Teflon coated wires. The ends were bared and junctions formed by soldering. The junctions were soldered directly onto the wall. The protrusion of the solder and the lead wires could cause flow perturbations that could impact accuracy of the measurement. The leads were taken away from the junctions parallel to the wall and in the downstream direction. Still some lead conduction effect was possible. An additional pmblem in Ogg's experiment was that the solder did not reliably wet the stainless steel surface. During the post test examination it was found that thermocouples numbers 3 and 6 had come loose from the tube wall. There is no way of knowing when the detachment occurred. With the thermocouple detached, it would read the temperature somewhere in the cooling water. The post test examination also showed that thermocouple number 1 had a length of twisted wires (soldered together) extending about 7 mm away from the tube. This meant that the O D effective junction was actually in the water rather than on the wall. 1 To solve these problems, very thin (0.5 mm) sheathed thermocouples were i installed by fully embedding them inside slots milled in the axial direction on the outside l tube surface. This approach can not only minimize the wire fin effect but also eliminates the perturbance of the local flow velocity and temperature distribution . The installation is described in detail in Section 3.5.1. E. Cooling WaterInlet and Outlet There was only one inlet and one outlet connection for the test section cooling annulus in the previous apparatus. Such a design is likely to cause flow nonuniformity at the entrance and exit regions. The new design has two inlet connections and four outlet connections. A F. Steam Inlet Condition V 23

Ogg built the steam and air supply systems for his experiment. The campus steam supply provided to the laboratory was equipped with a condensate trap to collect the O condensate produced by the heat loss from the long supply line. It was expected that this resulted in a steam quality in excess of 98 % supplied to the test equipment (metering station). Throttling of steam containing 2 % moisture to the test section pressure of 143 kPa would result in 13 C of superheat. Post test measurements showed that the trap actually allowed 3.5 % or more moisture to pass. Throttling then produces superheat of only 3 C or less. In addition, mixing with cold air could cause additional condensation. As a result it seems likely that in Ogg's experiment the steam contained some liquid at the entrance to the test section. More careful control of the supply steam condition was found necessary. A new centrifugal separator was installed between the condensate trap and the metering system. At the bottom of the separator, a 1/2 inch tube and needle valve were installed for discharging condensed liquid and some steam. The outcome shows that not only can the superheat state be easily achieved but also it can provide the ability to control the superheat level by adjusting the discharge rate through needle valve. G. Air Preheaters There was a concem that the air, without being heated up, might cause a certain fraction of steam to condense before it entered into the test section. Wet steam at the test section entrance, even with a small amount of moisture content, can affect the experimental results. Therefore,in the new experimental design heaters were added to the air supply system to heat up the air to the desired temperature before it mixed with steam. H. CondenserInlet Pressure Control In the previous experiment [15], most of the tests were done with the pressure in the test section near atmospheric pressure. This opened the possibility that air might leak 24  : 1 l

q into the system when the internal pressure fell below one atmosphere. No tests were V made to demonstrate that this did not occur. Furthermore, such a low pressure did not match the PCCS operating parameters as described in Table 1-1. Therefore, two control valves were installed on the test section on the steam / gas and condensate discharge lines from the test section to make test section pressure a controlled test parameter. I. Number of Cooling Water Thennocouples In Oggs experiment, there were only six thermocouples installed to measure the cooling water temperature distribution. Since the heat flux was determined by the water bulk temperature gradient, a long distance between thermocouples and the possibility of non uniformity circumferentially gave high uncertainty for the derivation of the local heat flux. In the new design, we not only mounted more thermocouples on one side of the annulus but also mounted some on the circumferentially opposite side to monitor possible flow non-uniformity. In addition the outlet temperature was measured (after suitable mixing length), by sheathed thermocouples mounted in the flowing water, on each of the four cooling water discharge lines. l l l 25

3. DESCRIPTION OF EQUIPMENT g

The experimental apparatus is described as six different systems. They are the steam and gas supply, condenser test section, condenser end section, cooling system, instrumentation, and data acquisition system. Figure 3-1 is a general system schematic of overall test apparatus. 3.1 Steam-gas Supply i A. Steam supply Steam is supplied through insulated pipe connected to the building service steam supply system. The nominal pressure is approximately 110 psig. B. Air supply Air is supplied through the building service compressed air supply system with a nominal pressure of approximately 100 psig and a temperature of 4 approximate 20 C. Two heaters, each with 2000 watt heating capacity at 120 V, were installed on the air supply system. Two variable transformers with 0-140 V regulating range and 20 amp current limit were incorporated to control the heater power. With them, the air can easily be heated to match the steam temperature and :he heater can also be used as one of the means to adjust the inlet temperature of the steam-gas mixture. C. Helium supply Helium is supplied, through a pressure regulator, from a high pressure helium cylinder at a maximum rated pressure of 2500 psia. D. Connecting piping and pipe fittings , As shown in Figure 3-1, each steam / gas supply was equipped with one or two isolation valves (V1 and V2 for steam, V13 and V14 for air, and V17 for 26 j i

                                                                                              ._J

I i gs helium) and a pressure gauge ( P1, P2 and P3) to indicate pressure level. Passmg i through the isolation valves. steam and gas were led, respectively through a metering sections each consisting of a high flow metering line with 1 inch SS pipe and a low flow metering line with 1/2 inch tube. Each metering line consisted of a flow orifice and a flow control valve (V3, V4, V5 and V6). For steam, the high and low flow orifices had a diameters of 0.594 cm and 0.462 cm, respectively, and for air,0.356 cm and 0.254 cm. Downstream of the flow meters, the steam and gas were mixed and led into the test section through well insulated piping. 3.2 Test Section A schematic of the test section is shown in Figure 3-2. The steam-gas mixture flows downward in the condensing tube and cooling water flows upward in the annulus. Cooling water is led into and out of the annulus by 1/2 inch tubes connected to the upper O kl and lower tube packing glands (two on the inlet, and four on the outlet). At the end of condensing tube, the residual gas and steam mixture was led into a separator. l A. Condenser Tube The condenser tube consists of a 3.37 m long seamless type 304 stainless steel tube with a 5.08 cm (2 inches) 0.D. and 1.65 mm wall thickness and flanges on both ends with Viton O ring sealing. The effective condensing length is 241.8 cm starting from the position of 80.65 cm (below the top of the loop) which is long enough for the mixture flow to become fully developed before entering the condenser. A total of 22 slots were cut on the tube to fit the sheathed wall thermocouples (See Section 3.5.1 for details).

 )

J 27

Key P - Pressure gauge > M T4 XP - Pressure transducer T - Thermocouple To o h r HX - Heat exchanger experiment DP - D/P transducer [_ L FL - Rotometer V11 V12 A N P4 do--oo-{D- 1I ' c 120 psig V107 ll 'l steam yg supply ll V3 V4 X V5 X V6k 3I Il Test wt Q3 g ** section b; , r@ L xp1 e T1 T _2

                                                                                                                                                            !i
                                                                                                                                                                                        <                                4                   vent XP2 (V20 Separator                                 Expansion                                                                                                                                                    vis V19 ll 100 psig air supply v7  --               Y                                                                                                           ll separator                                                               v22 S(      T3                                                 __
                                                                                                                                                             !I FL XP4            ----

p Water Heater V14 V15 V13 _ trop r 3_ggi.gg g 11 gg~= V25 - - V16& V26 x -- p e - O _ p4_ y --b4-- __ A Movable probe T5 Cooling *V27~ V23 V24 <, tetYnk tower 4 r HX V25

                                                                                                                                                                                               '                    ^

s W V21 - l @ City water { V28 Y ( He cylinder V30 l Condensate d" i" l Fgiure 3-1 General Skematic Drawing of Experimental Appartus l O O O

                                            +

i O B. Cooling jacket i A 3 inch Sclxiule 80 stainless steel 304 pipe was used as the cooling jacket. The steel pipe was first machined to make two equal semi-circular parts that were then reassembled to form a complete cylindrical tube. To make up for the loss of material when pipe was longitudinally split (approximately 0.04 inch), strips of silicon rubber ( 1/16-inch thick and 6 mm wide ) were attached on the cut edge to compensate the lost material and to serve as a sealing gasket. The two split pans were tightened together by metal strap clamps at about 3 inch intervals. C. Spacers Figure 3-4 shows the cooling annulus with the center tube, er lit jacket, and spacers. In order to minimize conduction heat transfer through the spacers into cooling water and also prevent possible deformation due to pressing the condensing tube,1/4 inch dia. and 1 inch long nylon screws were used. The ends of the screws had the threads machined off to leave a 1/8 inch diameter pin spacer. This was done to reduce the disturbance of the cooling flow. The positions of the spacers was carefully selected to keep sufficient distance from the thermocouples (See Figure 3-3 for spacer location). Five sets totaling 20 screws were mounted in the jacket and were sealed by rubber washers outside the jacket. D. Jacket End Fittings The tube packing glands were made of stainless steel as the end compomts . " the jacket. The glands could slip along the condenser tube. Their functions included serving as cooling water inlet and outlet ports as well as keeping the jacket in a concentric position and providing the means to seal the end fittings to the condenser tut ;. Two 3/8 inch holes with 180 radial spacing were drilled on the bottom tube packing gland for the water inlet and four with 90 29

spacing on the top gland for water outlet. This design minimized the nonuniform flow near the water entrance and exit regions. The gland was sealed by Teflon packing material and a metal compression disk held by screws. The jacket packing glands were made of aluminum and coupled with the tube glands. They served as unions to connect the jacket pipe to the tube gland as  ! well as to provide sealing the ends of the reassembled split jacket. Viton O-rings and Teflon gasket material were used to seal the leak path through the end of the jacket and junction between jacket and gland. Detailed design drawings are given in Figures 3-5 and 3-6. O O 30

I l i i ( Steam > 5 D f,. A E Condensing tube OD: 5.08 cm u Thickness: 0.165 cm a $ Tube packing gland es m Iy / A

                          <            c     ca       a       > Cooling water outlet (four 1/2" tubes)
                                                        \            Jacket packing gland 1        e i

I I i i I i Sch 80 3"SS jacket l OD : 8.89 cm i i Thickness : 0.762 cm I i 1 i 1 1 i I i I c[ Ave. gap between . tube I i & jacket = 1.14 cm i e o 10 E [i I e i I l l 1 1 , Movable probe I i i 1 I I e i i f n I r E 4t ]<----- Cooling water inlet

                   / ',                   --    --

(two 1/2" tubes) m NV . . L. A To Separator I 1 1 Figure 3-2 Sketch of Test Section Dimension and Components 31

Tube packing gland Axial Location , . Thermocouple inserted l ( cm ) in cooling water ' O.0 --6 ---

                                                                                "     -- # 8 ****'
                                     ,                                                      outlet 4.0     ----                     -'

y 9.0 ----h - - --- '

                                                          d
                                                                   ] g-<                Jacket packing gland 17.0     ----

O '* ' - - - ' ""- --' - - " 30.4 ---- O --

                                                         + tv 44.6      ----

p -s - - - s

                                                              - ti      ----

i f 1/8" Diam. nylon spacer 60.0 - - - nem d$ 61.5 ---- { '--'

                                                                    ; y               0.02" OD SS sheathed g                       J tyoe thermocouple embeded 7 9.8 - - - -               ( .i .--.              s. o.        - -

on condensing tube 1/16" OD SS sheathed 9 5.0 - --- - in- - y[ T type thermocouple embeded 99.6 ---- { - i .--. u-Q - - on plasticjacket 115.0- - -in== --, 121.3 - - - - { '-' --

  • 4 -----
                                                                     ^<            Cooling Jacket 137.0 - - -ie===                         maiei 145.1 - - - - { ' +                          ---    '  - (i      -----
                                                            -<                     Condensing Tube 4

l 171.5 - - - - 0 --- " (f ---

                                                                                         * : 0.02" OD J type TC 182.0 - - iaem                           nuar O : 1/16" OD T type TC
                                             '             '-                          - Nylm spacer 201.5 - - - -                 Q          ---

(N --- L

                                 -                                 J_

241.8 - i- - . cooling water h]- -- inlet

                                                               ]                                                       ,

i O Figure 3-3 Thermocouple and Spacer Location on the Test Section 32

i , (~ 25 mm

  't 11.4 mm 1.0 mm    ,/j, f                                           4 Cooling jacket
                                           ~

C = 1/16" hole 1/16" Thermocouple g" Condensing tube wapped around jacket

                                                                            <N             > Nylon Spacers 0.7 mm (wide) x                     ,

l 0.58 mm ( deep) x 1.27mm (long) stom ,

                                   >       See " Detail A"             1/16" silicon rubber shim / gasket 6mm 7.6 mm            11.4 mm i          w   i     u            w Y               y        y            y Nylon Screw                                                          ,

Spacer

                                                                    - 3.2 mm n

ib Ed4 Y

                                     '{ ' ' e f:s
                                             ,,             rk.",        gi inner Tube 1/4" Standard         Washer Threa0s
                                                                                 )

Jacket Wall Detail A Figure 3-4 Configuration of Cooling Annulus [ i 33

s~ 21/4" >

                                  <              2.08"               '
                                                                                           \/
        /k /\                                                   _

p i I M I I i

             \/  _           _i_____                      _____.J_                    _
                                    ~

o I (A _ i I i l 3/8" THREADED PORT I N/ i i eA S) /

                        ,                       2.8"                          m g ,,

5" [O se,e in<e.aea hole O , -c- ..

                          /
                             /                          , , 2-3/16" 6 .,
                                                                                 '\ s     m,
                        /
                    - t_ _

i,

                                                                         \ \- d i

O  ! P-

                                                                                       ;   8 4                                      ,
                         \,              sM                                         /
                             .,                                                 /

of . O

                                                  .ig_p i
                                                                   /

o O

                                                                                                                   "I Figure 3-5 Condensing Tube Packing Gland O

34

l i i

                     )r                          5.0"

. < > 1/2" l

, 2.864"
                                         ,                       m, hr A .A         ll          l                               l          ll N

ii I I

c. i ii l i
                                                                                          /k g                                         i N         I I    g                                         g     i I
           ~
                   )r      ' '

us 8 a 3-1/2" w', N I' r 1 7 m ri i I ri g 3 ei ii / se l I g o i i r

                                                                               *3 ia I
                                                                                          )J 3/16" 3r           ll l                                                l!!'                1/2"   ,
                                 ,               3-3/4"                  m 3/16"
                                                                 --> 4-- 1/8"                                     1
                    )/                                                                                            ;

V n n 1 A [] ps< % >% , m': e ' r 'J~ j lli] 6 acking P disc A 1/4" Q 5/16" Threaded Hole O.V .. -F=-%.x -

                              ,     ,-     2-3/16"                ';\

e/[

                                ,1*I
                                                                        *\
                                                                          ', \

O!! , ..

                                                                              !O
                                 \,                                     i:
v. . .

O % :: .r. .. O i O Section A-A O Figure 3-s Jacket Packing Gland 35

3.3 Condenser End Section g The condenser end section was a part of Ogg's experiment. It consists of a separator, condensate drain line and residual steam-gas mixture discharge line. A. Separator The separator was constructed from a 1.47 m long,4 inch IPS pipe with a welded blank at the bottom and a flange at the top. An additional small glass tube of 0.46 m length was installed at the lower portion of separator as a water level indicator. The function of the separator was to separate the condensed water fmm uncondensed steam and the noncondensable gas. A drain tap was located at the bottom and a vent tap at the top. B. Condensate drain line The condensed water flowing into the lower portion of the separator left the separator from the bottom tap and flowed to a 1/2 inch Armstrong float trap. The float trap allowed only the liquid to pass while venting gases back into upper portion of separator. Passing through the float trap, condensed water flowed into a small cooler, passed through a 1/4 inch needle valve (V21) and was then dumped into the drain. The condensate could also be collected to provide a supplementary measmement of the steam flow rate. C. Steam / gas vent line The uncondensed steam and noncondensable gas left from the top of the separator, passed through the control valve, and vented into a water filled 55 gallon suppression tank. The noncondensable gas could be collected and its volume measured to provide a supplement to the gas flow rate measurement. A 1 inch ball valve (V19) and a 1/4 inch needle valve were installed in parallel in the steam-gas discharge lines to control the test section pressure. 36

! I i lO 3.4 Cooling System 1 The cooling system consisted of a driving pump, a closed piping loop and a heat l exchanger. Cooling water entered the cooling jacket annulus at the bottom and left from l the top. The flow rate could be adjusted using control valves (V23 and V24) and was 1 measured by an orifice mounted on the pipe line, i A. Cooling Water Pump A Grundfos 1 HP centrifugal pump (type CR2) was used to supply cooling water to the test section. The motor driven pump operated at 3450 RPM and with a minimum pumping rate of 0.25 m3/hr to ensure adequate cooling. A bypass line was installed to maintain flow if there is any possibility the pump may operate l agamst a closed valve in the discharge line.

  'i (V  B.      Piping and pipe fittings Copper pipe was used in this closed cooling system and valves (V23,V24) were installed for flow control and isolation purposes. A square edged orifice flow meter (D/P5) was mounted in a one inch IPS PVC pipe before water entered the test section to measure cooling water flow rate. A 12 gallon accumulator tank,   l i

J located approximately 12 feet above the pump , was connected to the heat i exchanger tube-side to provide net positive suction head on the pump and an expansion volume to accommodate the cooling water expansion. 1 C. Heat exchanger A two-pass shell and tube heat exchanger was used to cool the heated water leaving the test section and maintain a low cooling water inlet temperature. Cooling of the heat exchanger was provided by the building cooling tower water service. 37

l An additional city-water cooling loop was established to cool the 5 gallon bucket that receives the discharged liquid / steam from the steam supply system separator. The cooling system provided a water flow up to 2000 kg/hr while being driven by l the pump in the closed loop cooling mode and even to a higher range while using city  ! l ) water in a once-through mode. In the closed cooling mode, the water inlet temperature j could be adjusted by controlling the water flow from the cooling tower to the heat  ! l l exchanger (V26 and V27). The desired cooling water inlet temperature was decided l according to the PCCS condenser operating conditions. 3.5 Instrumentation l 3.5.1 Thermocouples Twenty two thermocouples were embedded near the outer surface of the condenser tube wall -- 11 on one side and 11 on the circumferentially opposite side at the same axial positions. At the same axial locations (except at the top), thermocouples were mounted on the jacket to measure the adiabatic wall temperature. There were also another five thermocouples - one for measuring water inlet and four for outlet , temperature and a fixed and a movable thermocouple probe to measure center-line steam-gas mixture temperature. Detailed locations for all these thermocouples are given in Figure 3-3. A. Thermocouples embedded in the condenser tube wall The tube wall temperature of the condensing tube was measured by J-type (iron-constantan) stainless steel sheathed sub miniature thennocouple probes with sheathed O.D. 0.508 mm (0.02 inch) and 40 gage iron and constantan wires I (0.00314 inch dia.) inside. The thermocouples were embedded in longitudinal machined grooves 0.7 mm wide,0.58 mm dee-p and 12.7 mm long (except the < ones at the top, which were 50 mm long) and brazed with silver solder (2% silver l 38 j l i

and 98 % tin). The sheathed thermocouple leads were taken downstream in the 'd flow direction and then radially out through fittings in the jacket located 1 inch above each thermocouple junction. This design was aimed at reducing the flow disturbance caused by thermocouple wires. Figure 3-7 shows details of the thermocouple installation on the condenser tube. B. Thermocouple probe embedded in the cooling jacket The adiabatic wall temperature on the jacket was measured by T-type (copper-constantan) stainless steel sheathed thermocouples with 1.59 mm outside diameter (1/16 inch) and 30 gage wires (0.01 inch) inside. The probes were inserted through a 1/16 inch hole in the jacket with 1 mm intrusion into the water. There were 20 thermocouples installed in the jacket, each at the same axial locations where the tube wall thermocouples were located. Also two thermocouples were installed in the top jacket packing gland. O d i In the first attempt to install the thermocouples, the tips were embedded within the jacket wall at 1 mm from the inner surface. However, an isothermal check of all the thermocouples identified that the temperature reading of the thermocouples embedded in plastic jacket was consistently lower than expected i 1 and the trend increased as the isothermal temperature in the annulus increased. l l This proved that the thermocouples did not actually read the adiabatic wall temperature but rather the local temperature inside the jacket wall, which was significantly affected by heat loss through the jacket or the fin effect from the metal sheath. The new approach to correct this problem was taken by intruding the thermocouple tips slightly (1 mm) into the water and wrapping the sheathed leads around the jacket before passing them out through the insulation. In addition double fiber-glass insulation (total of 3.5 inches thick) was installed. Great 39

l 0.7 mm O l y r i l l 0.25 mm A , 0.508 mm sheathe f]4g thermocouple - 4 Silver solder 50.8 mm Cooling Jacket TC Seal Fitting 4 I4- 1.65 mm _ I 0.58 mm l [ h- l^ eh ;I Il e , , 5 l,, 0.02" OD SS sheathed il

    $       l                        l J-Type thermocouple V   _i l l

I I I l Figure 3-7 Detail of Thermocouple Mounting on the Condensing Tube g 40 1 1

e improvement was achieved for the thermocouple readings'in the most recent isothermal checks (see Section 4.1 for detailed results). Figure 3-4 shows the installation of the thermocouple on the cooling jacket. Additional 24 gauge T and J type thermocouple extension wires were used to connect the sheathed thermocouples to the computer terminal panels. i l l 3.5.2 Absolute and Differential Pressure Transducers Three pressure and five differential pressure transducers were used to measure local pressure and steam, gas, and water flow rates. They were variable reluctance transducers that operated on 10V DC power and produced a 0-100 millivolt signal that ! was led to a data acquisition systern for data reduction and storage. l A. Absolute Pressure transducers l Pressure transducers XP1 an XP2 (see Figure 3-1) were mounted on the ! steam and air supply systems respectively to measure steam and air supply pressures and another transducer XP3 on the condensing tube to measure the test section pressure. i l Steam and gas pressure measurements were made with Gould-Statham pressure transducers, model PA822-100, which had a range of 0-100 psig. The test section pressure was measured by a Validyne model DP15-54 differential pressure transducer of a range of 50 psid with the high pressure port connected l to the inlet of the test section and the low pressure port vented to atmosphere. 1 i B. Differential pressure transducer Steam and gas flow rates were measured as differential pressure across square-edged orifices. Low steam flow was measured with a Validyne model P300D differential pressure transducer (DP1) which had a range of i 5 psid and 41 l

i 1 , L ! low gas flow with a Validyne model DP15-50 (DP3) with a range ofi 3.2 psid. Higher steam and gas flow rates were measured with a Data Sensor, Inc. model PB413B-17 transducer (DP2 & DP4), with a range of 15 psid. The cooling water flow rate was also measured using a square-edged orifice and a Gould-l Statham model PM8142t 3.6 differential pressure transducer that had a range ofi 3.6 psid. 3.5.3 Pressure Gauges j Five pressure gauges (P1-P5) were installed to measure the pressures at the steam, l air, and helium supply systems and the test section inlet and outlet. l l ! 3.5.4 Rotameter Three high accuracy OMEGA variable area rotameters were used for air flow measurements. 3.6 Data Acquisition System The data acquisition system consisted of six terminal boxes, three data acquisition cards and a Macintosh Iici computer with installed software to display and log data. A. Terminal panel and data acquisition card Six Strawberry niodel T21 terminal panels, with eight channels for each, were used to connect all temperature, pressure, and flow analog signals from instruments. The T21 panel has screw terminals and an isothermal plate for l accurate cold junction compensation of thermocouples. Three Strawberry model ACM2-12-16 cards with sixteen differential analog inputs and sixteen digital input / output lines were used as an analog-to-digital converter. Six input ranges 42

 ,e q      spanned from 25 millivolts to 10 Volts full scale to accept data transmitted from terminal panels. Data acquisition cards were plugged into the 96 pin DIN connector corresponding to the slot in the back of the computer.

All temperature, pressure transducer and differential pressure transducer wires were mounted on T21 terminal panels that were connected to data acquisition cards installed in the peripheral connector slots located inside the Macintosh computer. By selecting signal type or specifying conversion formula, these analog output signals from experiment instrumentation were converted to digital data in the desired units and displayed simultaneously on a color monitor. The resulting logged data were compatible with the sprce i sheet used in the , l Macintosh computer and were easily reduced. The analog card and terminal panel recalibration were guaranteed for two years by the vendor and the new calibration numbers were stored in a ROM on the l card. All the tenninal panels and cards were newly recalibrated on 1/19/93. B. Data acquisition software and Macintosh computer The Workbench Version 3.1 software was installed on Macintosh Iici computer to read, display, and log data to disk and allows users to configure the analog input channels and digital input lines. It used icons that represent analog inputs, meters, and loggers. The icons were selected from a menu and connected l with wires. The input ranges and engineering units (such as degrees, volts, psi) were specified, and the software gathered data automatically accorcing to the specified sampling rate. { 43

4. OPERATING PROCEDURES O

The procedures for running this experiment include three major steps: system check out, system startup, and system shutdown. It is important to follow the specified procedure not only to obtain better data collection but also to protect the operator from being harmed by steam leakage and to secure the system from damage by any possible inadequate action. All the following component designations coincide with those shown in Figure 3-1. 4.1 System Check System check includes a routine check of the equipment and an initial check of the system befom experiment startup. 4.1.1 Routine Check A. Isothermal check An isothermal check was done by running the closed cooling water system at different temperature levels to check the readings from all the thermocouples. The heating of water was achieved by connecting the lines to pass through heaters using temporary connecting hoses. The water temperature was heated up to a certain specified level and then the variable transformers were adjusted to provide just enough power to compensate the heat loss through the uninsulated copper pipe. Waiting at least 15 minutes for the water system to reach a steady state, data were collected for 5 minutes at five second intervals. Table 4-1 gives the most I recent isothermal check results, and they are plotted in Figure 4-1. O l 1 J

m I I TABLE 4-1 Data Collected in the Isothermal Check G TC NO. Serial No. Temperature (*C) A B C D E F wl 1.0 17.0 23.7 31.0 44.1 52.2 60.7 w2 2.0 17.1 23.7 31.1 44.0 52.2 60.6 w3 3.0 17.2 23.8 31.1 44.1 52.2 60.7 w4 4.0 17.0 23.6 30.9 43.9 52.0 60.4 ) w5 5.0 17.1 23.7 31.1 44.0 52.1 60.6 l w6 6.0 17.1 23.7 31.0 44.0 52.1 60.6 w7 7.0 17.3 23.9 31.3 44.2 52.4 60.8 I w8 8.0 16.9 23.6 30.9 43.8 51.9 60.3 w9 9.0 16.8 23.5 30.8 43.9 52.0 60.3 wl0 10.0 16.8 23.5 30.9 43.9 52.0 60.4 wil 11.0 16.7 24.0 30.7 43.9 51.9 60.2 wla 12.0 17.4 24.1 31.4 44.4 52.6 60.8 w2a 13.0 17.5 24.0 31.5 44.5 52.6 61.0 w3a 14.0 17.4 24.1 31.4 44.5 52.6 60.9 w4a 15.0 17.5 23.8 31.4 44.5 52.6 61.0 wSa 16.0 17.2 23.9 31.2 44.3 52.4 60.7 w6a 17.0 17.3 24.0 31.3 44.3 52.4 60.8 l w7a 18.0 17.3 24.1 31.4 44.4 52.5 60.8 w8a 19.0 17.0 23.9 31.4 44.4 52.5 60.9 w9a 20.0 17.2 24.0 31.3 44.3 52.4 60,7 w1oa 21.0 17.3 23.9 31.3 44.4 52.4 60.8 l wila 22.0 16.9 23.6 30.9 44.1 52.0 60.4 i c1 23.0 16.7 23.1 30.6 43.9 52.2 60.8 l c2 24.0 16.9 23.6 30.9 44.1 52.3 60.8 ! c3 25.0 16.7 23.3 30.7 44.0 52.2 60.7 ( - c4 26.0 23.4 44.0 16.8 30.8 52.2 60.6 c5 27.0 17.2 23.7 31.2 44.4 52.6 61.0 c6 28.0 17.3 23.9 31.3 44.4 52.6 61.0 l c7 29.0 17.2 23.7 31.2 44.4 52.7 61.2 l c8 30.0 17.3 23.9 31.3 44.5 52.8 61.2 i c9 31.0 17.1 23.7 31.2 44.4 52.6 61.1 ! c10 32.0 17.2 23.8 31.3 44.5 52.7 61.2 l c11 33.0 17.1 23.8 31.2 44.4 52.6 61.0 l cla 34.0 17.5 23.6 31.4 44.6 52.9 61.1 c2a 35.0 17.7 24.0 31.7 44.5 52.8 61.1 c3a 36.0 17.2 23.8 31.3 44.4 52.7 61.1 c4a 37.0 17.4 23.9 31.6 44.5 52.7 61.2 j l c5a 38.0 17.2 23.7 31.2 44.4 52.6 60.9  ! c6a 39.0 17.3 23.8 31.5 44.4 52.6 61.0 l c7a 40.0 60.6

                                                                                  )

l 16.8 23.4 30.8 44.1 52.3 c8a 41.0 16.9 23.4 31.1 44.0 52.2 60.7 l c9a 42.0 17.1 23.7 31.1 44.4 52.6 61.0 c10a 43.0 17.1 23.8 31.4 44.3 52.6 61.0 c11a 44.0 17.1 23.9 31.2 44.4 52.6 61.0 , 11 45.0 17.2 24.0 31.4 44.5 52.7 61.1 01 46.0 16.7 23.4 30.9 44.2 52.5 61.0 i O2 47.0 17.0 23.7 31.1 44.3 52.5 60.9 03 48.0 16.7 23.3 30.8 44.0 52.2 60.7 04 49.0 17.1 23.8 31.2 44.4 52.6 61.1 Ave. 17.11 23.74 31.16 44.25 52.42 60.83 STD DEV 0.24 0.23 0.25 0.22 0.26 0.26 45

O 70 .

                                              ~
                                                             ~~ "             ~~~    ~
                                                                                                        ^
                                                                                                            ~~

60 ~--NV -

                                                  '+'

t 1 i 8  : 50 - J l t o . L - __v-o u a _

                                                                                                         +
                                                    +        +

gm 40 .  ;

                                       -                           +          r m       -

a - E - e [. ._ ~_.j -+

                                                             +

7

                                                                   ++
                                                                              ; - /ww                     +

h 30 _ _

                    ;__ ^                M      -

v- y 20 m

           -i
                                       +             +

i--+ i.

                                                                                                          +
                                                                                 .-?-                  w
                                                ^
            . ;=-

v . . _ . 10 - .ii....i....i....i.. .i....i....i....i....i....i...., 0 5 10 15 20 25 30 35 40 45 50 Serial No. (as shown in Table 4-1) Figure 4-1 Isothermal Check for the Thermocouple Mounting on the Test Section O 46

('%

   .      B. Leaking check y

v

        )

To ensure there is no leaking in the test section through valves, instrumentation taps, flanges, and other components, the air supply system was used to pressurize the test section to a nominal pressure of 100 psig with valves V19 and V21 shut. The pressure change in the test section was carefully monitored for 30 minutes to detect leakage from the system. ! C. Water and steam quality check The condensing tube was found to be fouled outside when the old jacket in Ogg's experiment was removed. Therefore, in the closed cooling mode, fresh l cooling water was infused into the cooling system before the experiment and released after to prevent possible contamination from fouling the condensing mk. (Q) The steam quWty also needed to be checked frequently to measure the residual content of noncondensable gas. It was done by condensing the steam in the test section with V21 shut. After a period of time, valve V21 was opened and the condensate was flushed into the 55 gallon water tank with uncondensated gas collected. 4.1.2 Initial Check Before system startup, initial checking is required for steam / gas supply system, cooling system, instrumentation system, and data collection system. The checking procedures are listed as follows : A. Steam / gas supply system i 'e) 1. Steam and Gas Supply - Normal

     'J       2. Steam supply valve VI, V2 - Fully closed l                                               47 l
3. Air supply valve V13,V14 - Fully closed
4. Helium supply valve V17 - Fully closed l
5. System isolation valve V9, V10, V11, V12 - Fully closed
6. Steam control valve V3, V4 - Fully closed
7. Gas control valve V5, V6 - Fully closed
8. Steam sepamtor discharge valve V7 - Fully closed
9. Gas blowdown valve V8, V16 - Fully closed
10. Suppression pool vent valve V20 - Fully closed
11. Condensed dram valve V21 and steam-gas vent valve Vl9 - Fully closed
12. Heater Power Supply - Normal
13. Variable voltage transformer - off B. Cooling system
1. Flow control valve V24 - Fully closed
2. Isolation valve V23, V25 - Open
3. Pump bypass valve V28 - Open
4. Cooling branch control valve V22 - Open
5. Pump power supply - Normal
5. Cooling tower water supply - Normal
6. Water level of suppression tank and expansion tank - Normal C. Instnunentation system
1. All thermocouples and pressure and differential transducers - Lined

! 2. Bypass valves of pressure transducers XP1, XP2, XP3 - Fully closed ! 3. Bypass valves of differential pressure transducers DPI, DP2, DP3, DP4, DP5-Fully closed

4. 120 VAC supplied to power supply cabinet and data acquisition system -

Normal 48 i I

                                                                                                                      )

m 5. 10 VDC supplied to transducers - Nonnal l

            \b D. Data acquisition system I
1. Allinstrument signallines on terminal panels - Hooked-up l l

i

2. Configuration of worksheet, charts, and meters in application program -

Completed i 4.2 System Startup Once the initial check was completed, the system can be started following the specified test procedures on pure steam, steam-air or steam-Helium conditions. The procedures are as follows : f A. Start instrumentation and data acquisition system : l .

1. Turn on 10 VDC power supply to transducers on power cabinet panel. I
                       ,h l (V i

l 2. Start the data collection program and check the pressure of steam and gas supply on the data acquisition system.

3. Specify the file name which data will be logged in B. Start cooling system :
1. Fully open cooling tower water supply ' valve V26 and V27.
2. Start the cooling pump.
3. Open flow control valve V24 slowly and verify that there is a positive signal on the data acquisition system from transducer DP5.
4. Adjust V24 and pump bypass valve V28 to obtain the desired cooling water i

flow rate.

5. Supply city water to the 5 gallon steam separator discharge tank
6. Verify on the monitor that all thermocouples embedded on the cooling tube and p

d jacket indicate reasonable range of temperatures. 49

i  ! i \ C. Start steam / gas supply system :

1. Open steam supply valve V1 and check that steam pressure is approximately 105-115 psig on gage P1
2. Open valve V2 and che-k that steam supply pressure appears on the data acquisition system from the transducer XP1 and no flow signal appears from transducer DP1 and DP2.
3. Open valve V7 to discharge the condensed water in steam supply and then shut it.

NOTE : Skip step 4 through 8 if no gas is used.

4. Open air (He) supply velve V13 (V18) and check gage P2 (P3) for gas supply pressure (approximate 100 psig for air).
5. Open valve V14 and check that gas supply pressure appears on the monitor from transducer XP2 and no flow signal appears from the transducer DP3 and
DP4.
6. Open valve V8 and V16.
7. Heat the gas by slowly inemasing the transformer voltage.
8. Check the air temperature until it has reached the specified level and then continue step 9.
9. Open isolation valve V11.
10. Open isolation valve V10.
11. Open steam flow control valve V3 (V4) slowly and verify that there are positive signals on the data acquisition system from transducer DP1 (DP2).

NOTE : Skip step 12 and 13 if no gas is used. 12 Shut Valve V8 and V9.

13. Open gas flow control valve V5 (V6) slowly and verify that there are positive  !

signals on the data acquisition system from transducer DP3 (DP4). NOTE : Skip step 14 if gas is used 50

14. Blowdown the air from the test section by fully opening V3 and V4 for kl 15 minutes. l
15. Adjust V3 (V4) to obtain the desired steam flow rate.
16. Adjust discharge rate through V7 to obtain desired test section inlet temperature.

NOTE : Skip step 17 if no gas is used.

17. Adjust V5 (V6) to obtain the desired gas flow rate.
18. Adjust steam-gas vent valve V19 and condensed liquid drain valve V21 to obtain desired test section inlet pressure.

l l 4.3 Data Acquisition ' To obtain better measurements, the following data acquisition criteria were strictly followed :

1. Data logging was started only after steady state at desired test conditions was

.QQ reached for at least 15 minutes. The steady state was detected by monitoring the l thermocouple's temperature reading and using the movable probe to check the condensed water level if vapor was fully condensed in test section.

2. Data were recorded every five second for a six minute period. During this period, system parameters were carefully monitored on data acquisition system. The pressure (XP3) in test section should be maintained steady with fluctuations less than i 5 % or 1.5 psig depending on whichever is smaller. Steam (DP1/DP2) and gas (DP3/DP4) flow rates are maintained constant to within i 3 % or 1 kg/hr depending on whichever is smaller and all the temperatures from thermocouples in the test section within i 0.3 C.
3. The movable probe was initially positioned at the bottom of the test section and then was moved upward at different location. The center-line temperature was recorded every 5 second in a one minute period after the probe was moved at a new l,t
   ,i V

51

l l t i position for at least 20 second. Confirm that the steady state conditions were maintained in the test section during recording data.

4. All the recorded data were carefully checked and average values were derived based on the data recorded over the time period.

l 4.4 System Shutdown Once the test was completed, the system was shut down following the procedun:s specified below : A. Shut down steam / gas supply sys'am : l

1. Shut steam supply control valve V1 and V2 and check whether pressure gauge l

l P1 indicates zero reading and the signals from XP1, DPl and DP2 decrease to zero. Skip step 2 if no gas is used.

2. Shut power supply for heaters and turn transformer 0 scale.
3. Wait until gas temperature decreases to ambient temperature or lower than 25 C (make sure heater temperature has dropped to a safe level).
4. Shut air (He) supply valve V13 and V14 and check whether pressure gauge P2 (P3) indicates zero reading and the signals from XP2, DP3 and DP4 decrease to zero
5. Open steam and gas blowdown valve V7, V8, V16 and check that XP3 decreases
                                                                                                                                       ~

to zero and then fully close the valves.

6. Open suppression pool vent valve V20 and then fully close it.
7. Shut steam flow control valve V3 (V4) and isolation valve V10.
8. Shut air flow control valve V3 (V4) and isolation valve Vll.

B. Shut down cooling system :

1. Wait until the temperature in the test section decreases to ambient or lower than 25 C.

O 52

i i l r 2. Fully open cooling pump bypass valve V28 and shut flow control valve V24. i j- 3. Secure the cooling pump. .}

4. Shut the cooling tower v ater supply valve V26 and V27.

j C. Shut instrumentation and dt.ta acquisition system. ,

1. Secure the 10 VDC power supply.

s j 2. Save the logged data file into a disk and change log file names in the worksheet , t i ! for next test (otherwise old file might be overwTitten). t l i , ,i lI F !O i ) . [ j i i i 4 I O 53

f. METHODOLOGY USED IN DATA DEDUCTION 5.1 Dhvsical Phenomena Figure 5-1 depicts schematically the physical process of the steam condensation in a vertical tube with the presence of noncondensable gas. Before the steam-gas mixture enters the condensing test section, there is a sufficiently long straight adiabatic section (

l L/D = 15 ) to establish fully developed flow. The steam-gas mixture enters the condensing section (at x = 0) with average velocity U i, temperature T ig,i, pressure Pi g,, l l (sum of vapor and gas partial pressures), and a bulk gas mass fraction Ma. As the condensation takes place on the tube wall surface, a condensed liquid film forms with thickness S(x) which is a function of axial position. The tube inner wall temperature Twi(x)is always maintained below the steam saturation temperature by a convective flow l l of cooling water in the annulus around the tube. The subcooling of the tube inner wall provides a driving force for steam condensation along the tube wall. Because the g l noncondensable gas is unable to pass into the water film, it accumul?tes at the liquid-vapor interface. As the gas concentration increases near the falling water film, a gas-vapor diffusion layer is formed through which the steam must pass by diffusion and convection to be condensed. The accumulation of noncondensable gas near the liquid-vapor interface tends to reduce the interface saturation temperature Tl(x) (corresponding to the interface vapor partial pressure Pyi) below the bulk saturation temperature Tl,(x), which corresponds to the bulk vapor pressure Pvb. In pure steam condensation, the liquid film provides the main thermal resistance to condensing heat transfer. With the formation of a gas-vapor boundary layer, thermal resistance between the bulk mixture and the heat transfer surface increases. If the gas concentration is high enough (as little as a few percentage by mass), the gas-vapor layer will become the main resistance to heat transfer and significantly reduce the overall heat transfer coefficient from that for pure steam. 54

1 l 4 3 1 1 1 4 4 E W, T,,, wo ' { 4 P,u,, j Gas-Vapor j y Free Stream 4 4 1 1 i l .. U .j' < T,( x) l t sii::  : i, i Jacket + li S. kI - T,,(x) 4 4 v.. .;:. ,; m .i).  :: + j Condensing _

                           % ;); .                       ll5     h Ttbe                                                 ::      ?               T"'(x)
::: B .

1 a :::: .::: s

                                ; ::::         U           : '0                   T, (x) 1 Liquid film               6 :::::                 r
                                , :::::                = ,

Pg (x) Gas-vapor  :... g . :. :

                                         .             :.: o i   boundary layer              17.. i                  E':i 1                               s .::::.                :.:: $'

] , l :::::  ::: 4',

                            . r; .:::::

e

't 7:; .:::::
                                      .:::::          ':::       c'
                                     .:::::     l     ':.:: O

< . g :::::  :::: ~; i g ::::: -::: : aR55555 555! I

a
::::  ::::

1 gg w :::::  :::: -:

                                   '.:::::                                  Ai i,                                                    -::: A b

t

                     +               + 6(x)

CooEng water W, f 1 1 Figure 51 Physical Description of the Condensation Prccess i 4 4 T

;                                            55-4 4

l l i YE:r design of the PCCS condensers,it is necessary to have a reliable method for predicting the overall heat transfer coefficient. e I 5.2 Data Reduction Procedure l l The following procedures were used to reduce experimental data. A. Approximate Heat Flux The first approximation to the local heat flux was obtained by assuming that the axial temperature gradient of the cooling annulus adiabatic wall is very close to that of the bulk cooling water. The adiabatic wall temperature data were then fitted to derive its derivative. The approximate heat flux at the inner tube wall was then calculated from

                                   ,.c, dT,(x) t                  q", (x) = -                       .                               (5.1)
xd i dx l

l l B. The inner tube wall temperature was then calculated, based on the approximate inner wall heat flux and the temperature measured by the thermocouple embedded in the tube and by using the radial heat conduction equation, it gives e r i q",i(x)ln d* ' - T,i = T. + ' d' ' . (5.2) k, l where d. is the location where thermocouple tip is embedded inside the condensing tube. i i i C. The outer tube wall temperature was next calculated io siinilar fottion from l ri g",i(x)ln e d2 ' T.,= T ,i - . (5.3) k"

                                                                                             \

56

i l D. The cooling water bulk temperature was then calculated fmm (./ T,, = T., - F(T,,,T, , W, ) x (T., - T, ) (5.4) where F is the temperature profile shape factor determined by theoretical analysis and listed in Table 5-1 (see Section 5.3). E. The bulk coolant temperatures found in step D were then fitted and differentiated to obtain an improved value of the heat flux W,,c, dT,,(x) q,,, (x) = - (5.5) xd; dx Iterate from Steps B to E repeated until ITew(0)-Teol < 0.2 C where Teo is the measured average cooling water outlet temperature, thus giving the final values for inner and outer tube wall temperatures and the heat flux at the inner wall. F. The experimental heat transfer coefficient was then determined by (3 9 (*) h,,,(x) = (5.6) T'3(x)-T (x) where T',(x) is the saturation temperature corresponding to the local bulk partial pressure of the steam in the mixture. The latter was calculated from the local l i vapor mass fraction which in turn was found with ai6 of a mass balance between the entrance and local position. The local vapor flowrate is the difference l l l between the inlet value and the local condensate flowrate. The gas flowrate is ' l \ j constant along the condenser. The local vapor mass fraction is then the ratio of

vapor to total flowrate at the local position.

f G. The condensate flowrate was then calculated from an integral energy balance between the entrance and the local position ! .x . xd 3 qw(x)dx em I'(x) = w'(x) W (x) = 3 and (5.7) ( hg xd;  ; 57 l

l Assuming a linear temperature and parabolic velocity radial profiles across the j liquid film gives the pseudo heat of vaporization as i h'r, = h,, + %c .pRAT (5.8) The coefficient of the second term on the right hand side is higher when other assumptions are made regarding the profiles. Yuann [20] calculated these coefficients in his detailed numerical analysis. The variation in this coefficient has only a smallinfluence on the evaluated experimental heat transfer coefficient. For the pure steam runs, the vapor / liquid interface temperature is the saturation temperature. For the cases with noncondensable gases, the interface temperature can be approximated by calculating the film thickness using Eqs.(5.7) and (5.9) and assuming hig=hrg'. Then, the temperature difference can be calculated as AT,=9 . Because e,,,AT, << hrs, further iteration is not needed. H. Calculation of film thickness with and without interfacial shear. For laminar fully developed liquid film flow without interfacial shear we can derive r 8% N' F = 1 ,(p,p - p,3 '  ; S, = (5.9) Pr 3 ( gp,(p, - p,3, where 6 is the liquid film thickness without considering the interfacial shear. 1 For laminar fully developed liquid film flow with interfacial shear we have F = 1 p,(p, - p,)b + Pr 4 T6'2 (5.10)

                      ,                3      2, where S2 is the film thickness with interfacial shear and                           l l

1 Ti = -f ap,V,2 (5.11) l l The friction factor for the turbulent flow in the pipe can be written as , 1 58 l

l i i f a= 0.046Rej2 (5.12) Then the interfacial shear stress becomes e 32 0.023 b t=i Re, ' (5.13) P: s dij j 1 (Note : Equation 5.12 neglects the effect of suction) j A modified form of Eq.(5.10)isp F = 1,(1 +'2 b) 3 (5.14) v, p, 2v, Now with Re,= F (5.15) Pr j and with dimensionless variables S; = b (5.1 61 i L l tl= , 3 (5.17) (N gp, 1b L V ( Pr s i where the characteristic length L is defined by f 2tM y L= 1 (5.18) i ( 8s . l Eq.(5.14) becomes i i

                  <        >                                                                j Re,     _ Sh tlS;'                                             (5.19) 1h          3        2
                  <    Pt s I. The pure steam runs were used to obtain a correlation for the shear subfactor of the degradation factor. Since for pure steam the gas degradation factor f2 = 1. We have h

fi = "" (5.20) h,7 59

l where the heat transfer coefficient h73 of the liquid film without interfacial shear is defined as h73=kr/Si (5.21) We assume that f1is the product of two factors, one the heat transfer enhancement due to interfacial shear as predicted by the simple modelleading to Eq.(5.19),i.e., fishm = hn/hT1 = Si/S2 , and the second to account for "other" factors (waviness of the film, variable propenies, etc). It can be written as f=f% xf, 3 3 (5.22) f' hopS2 (5.23) so fi f, - h"" 3 hr, h hr, k, where S2 is found by solving Eq.(5.19). The experimental data for pure steam were put in terms of f lother using Equation (5.23). Note that f ishm was derived from theoretical considerations alone. We assume that fl other is a function of film Reynolds number such that f . = f' 3 1 shear

                                = $(Re,) = 1 + C iRet                                (5.24)

The experimental data for pure steam were correlated in the format of Eq.(5.24). i l I J. Determination of the correlation for degradation factor for steam gas mixtures. As done in the previous UCB work, the degradation factor was represented as the l h product of two subfactors,i.e., f "* - f ix f 2 (5.25) , h,7 i with f = $(Re.,Rer ) 3 from Eq.(5.22), (5.23) and (5.24). With f idetermined from the pure steam data, the steam-gas data were correlated , as before, in the form f =1-C M/ 2 2 (5.26) O e

   -4u-n         w        & --- e l

4 i

K. In the above calculations the mixture Reynolds number was calculated from Re,(x) = "I* (5.27)
xd ,

where f X,p8 (1 - X,) *

                                      =                        +                          (5.28) l                                         X, + (1 - X,)&,          X,$, + (1 - X,)

t i MW r 31/2r 31/ 4-2 1+ 5 *

                                              <V,i         < M, ,

4'=- r 3-1/ 2 (5.29) M8 4 8 1+ }.

                                               .t        M,,,

and

                                                                       -2 r       31/2r        31/4 1+    b               8 (4:s          (M, ,
                                  &, =                                                    (5.30)
                                                   <         s-1/ 2
!                                                8   1+    '

_s M, , _ 5.3 Determination of Cooling Water Bulk Temperature A. The axial momentum equation for the coolant, assuming fully developed flow , is dP 13 av'

                                  --dz+ --(rp,       Dr  ) + pg = 0                       (5.31) r Dr By solving this momentum equation, the fully developed velocity profile Vzis obtained when Merr is derived by solving the turbulent k-c equation in which temperature dependence of properties were taken into account.

B. Temperature distribution in the annulus BT 18 pCp(v, BTdz + rv,-) = - &rBr (rk,,, ST) _ (5.32)

>O                                                      Br 61

or dT .' pc,v, 6 = 1 8 (rk, J-)Tg) (5.33) for v, = 0 and dT6 = BT dz dz with boundary conditions (5.34) T, = Tu at z=0 T=T, at r = R, T=T, at r=R, k, = k(r) for laminar flow (Thermal conductivity k(T)) k, = k(r)+ k,(r) for turbulent flow

                             = k(r)+ c e, A

C. Bulk Temperature The cooling water bulk temperature by definition is given as

                               >R.T(r)v,(r)dr T,=*     ,,,                                               Q.$

v,(r)dr and the temperature profile shape factor F is defined as F= * - 6 (5.36) T ,,- T, The F factor was calculated for the conditions of various inner and outer wall temperatures in annulus and cooling water flow rate. The results are shown in Table 5-1. Figure 5-2 shows the cooling water bulk temperature distribution for fully developed turbulent flow in the annulus for varying tube wall temperature and cooling water flowrate. Figure 5-3 shows the dependence of the temperature profile shape factor on varying wall temperatures and cooling water flowrate. These factors were then used to calculate local bulk temperature using Eq.(5.4). O 62 l

TA8LE 5-1 Temperature Profile Shape Factor We - 600 Kg/hr (T .o Tb )/(T ,o-T.) Two 10 20 30 40 50 60 70 80 90 100 T. 15 0.9679 30 0.9469 0.9471 45 0.9295 0.9291 0.9301 0.9301 60 0.9164 0.9164 0.9163 0.9158 0.9161 75 0.9069 0.9068 0.9073 0.9069 0.9071 0.9061 0.9060 90 0.8994 0.8991 0.8988 0.8992 0.8999 0.8988 0.8985 0.8989 105 0.8946 0.8949 0.8950 0.8956 0.8951 0.8950 0.8956 0.8958 0.8970 0.8970 120 0.8912 0.8916 0.8914 0.8916 0.8920 0.8919 0.8923 0.8924 0.8926 0.8899 135 0.8906 0.8910 0.8912 0.8905 0.8906 0.8911 0.8914 0.8909 0.8910 0.8926 We = 800 Kg/hr (T wo-Tb )/(T ,o T.) Two 10 20 30 40 50 60 70 80 90 100 T. 15 0.9870 30 0.9606 0.9590 45 0.9422 0.9419 0.9425 0.9408 60 0.9283 0.9282 0.9274 0.9267 0.9289 75 0.9177 0.9177 0.9178 0.9174 0.9165 0.9173 0.9147 90 0.9092 0.9095 0.9097 0.9098 0.9097 0.9102 0.9081 0.9111 105 0.9052 0.9047 0.9051 0.9046 0.9055 0.9043 0.9045 0.9055 0.9054 0.9028 120 0.9014 0.9016 0.9012 0.9015 0.9015 0.9016 0.9013 0.9008 0.9025 0.8987 135 0.9007 0.9007 0.9010 0.9002 0.9011 0.9007 0.9011 0.9009 0.9003 0.9000 We - 900 Kg/hr (T wo-Tb )/(T ,o -T.) Two 10 20 30 40 50 60 70 80 90 100 T. 15 0.9917 30 0.9650 0.9653 45 0.9467 0.9461 0.9463 0.9467 60 0.9324 0.9319 0.9319 0.9305 0.9321 75 0.9216 0.9212 0.9214 0.9212 0.9211 0.9220 0.9177 90 0.9132 0.9130 0.9136- 0.9130 0.9123 0.9122 0.9129 0.9165 105 0.9082 - 0.9079 9.9086 0.9083 0.9084 0.9083 0.9077 0.9083 0.9083 0.9055 120 0.9043 0.9046 0.9045 0.9049 0.9041 0.9046 0.9052 0.9050 0.9057 0.9055 135 0.9038 0.9038 0.9044 0.9041 0.9042 0.9036 0.9037 0.9043 0.9042 0.9025 150 0.9056 0.9059 0.9057 0.9051 0.9055 0.9058 0.9059 0.9058 0.9058 0.9055 63

TA8LE 51 Temperature Profile Shape Factor (continued) e l l We = 1000 Kg/hr (T .0 Tb )/(T wo-T.) 10 20 30 40 50 60 70 80 90 100 Two T, 15 0.9946 30 0.9700 0.9704 45 0.9502 0.9489 0.9495 0.9483 60 0.9352 0.9350 0.9351 0.9345 0.9360 ! 75 0.9245 0.9242 0.9240 0.9241 0.9238 0.9218 0.9234 l 90 0.9160 0.9158 0.9157 0.9158 0.9160 0.9160 0.9160 0.9158 105 0.9113 0.9110 0.9108 0.9115 0.9110 0.9116 0 9107 0.9100 0.9104 0.9060 120 0.9073 0.9070 0.9071 0.9069 0.9068 0.9075 0.9073 0.9073 0.9069 0.9081 135 0.9064 0.9065 0.9063 0.9062 0.9071 0.9063 0.9071 0.9064 0.9068 0.9065 j l We = 1100 Kg/hr f (T wo-Tb )/(T wo -T.) ! T., 10 20 30 40 50 60 70 80 90 100 T, 15 0.9954 30 0.9722 0.9715 45 0.9525 0.9524 0.9515 0.9498 l 60 0.9371 0.9375 0.9377 0.9371 0.9380 75 0.9271 0.9274 0.9275 0.9277 0.9269 0.9266 0.9237 90 0.9180 0.9180 0.9181 0.9185 0.9180 0.9192 0.9173 0.9186 i 105 0.9132 0.9133 0.9134 0.9127 0.9134 0.9136 0.9143 0.9134 0.9123 0.9218 t 120 0.9099 0.9093 0.9094 0.9099 0.9099 0.9098 0.9094 0.9098 0.9093 0.9097 135 0.9085 0.9087 0.9085 0.9091 0.9089 0.9091 0.9081 0.9092 0.9099 0.9089 150 0.9100 0.9102 0.9103 0.9102 0.9112 0.9108 0.9103 0.9104 0.9107 0.9107 l We - 1200 Kg/hr l l (T wo-Tb )/(T wo -T.) l To 10 20 30 40 50 60 70 80 90 100 i T. l 15 0.9960 I 30 0.9762 0.9739 45 0.9554 0.9545 0.9545 0.9557 60 0.9398 0.9398 0.9392 0.9393 0.9386 75 0.9293 0.9292 0.9287 0.9295 0.9278 0.9279 0.9254 90 0.9207 0.9198 0.9204 0.9207 0.9203 0.9195 0.9209 0.9204 105 0.9151 0.9151 0.9150 0.9151 0.9151 0.9156 0.9157 0.9155 0.9144 0.9065 120 0.9114 0.9111 0.9116 0.9111 0.9119 0.9120 0.9117 0.9117 0.9117 0.9105 135 0.9108 0.9106 0.9110 0.9107 0.9107 0.9108 0.9103 0.9106 0.9128 0.9102 O e I t

. . . . . _ -- .~ - -- . _ . - - _ .

                                                         -       _.              --        ...  . -           . . -   ~      ..     . . . - . ,

i l

                                                                                                                                              .1 1

TABLE 5-1 Temperature Profile Shape Factor (continued) We = 1500 Kg/hr (T .0 To )/0 o -T.) Two 10 20 30 40 50 60 70 80 - 90 100 T. 15 0.9977 30 0.9815 0.9818 45 0.9620 0.9621 0.9605 0.9627 60 0.9455 0.9451 0.9447 0.9445 0.9441 75 0.9340 0.9342 0.9345 0.9341 0.9338 0.9344 0.9359 j 90 0.9253 0.9253 0.9252 0.9253' O.9255 0.9265 0.9240 0.9238 l 105 0.9202 0.9201 0.9197 0.9200 0.9201 0.9195 0.9205 0.9198 0.9212 0.9133 120 0.9163 0.9160 0.9159 0.9157 0.9162 0.9160 0.9170 0 9158 0.9144 0.9176 135 0.9153 0.9150 0.9155 0.9151 0.9160 0.9152 0.9157 0.9151 0.9168 0.9148 j We = 2000 Kg/hr (T .0-Te )/(T .0-T.)) Two 10 20 30 40 50 60 70 80 90 100 T. 15 0.9995 30 0.9905 0.9908 45 0.9695 0.9685 0.9667 0.9685 60 0.9530 0.9513 0.9523 0.9515 0.9510 75 0.9398 0.9398 0.9400 0.9394 0.9395 0.9388 0.9393 90 0.9307 0.9308 0.9306 0.9309 0.9310 0.9303 0.9313 0.9281 105 0.9258 0.9257 0.9256 0.9249 0.9253 -0.9248 0.9236 0.9259 0.9244 0.9198 120 0.9213 0.9210 0.9209 0.9207 0.9212 0.9212 0.9214 0.9203 0.9209 0.9201 135 0.9202 0.9202 0.9204 0.9202 . 0.9207 0.9208 0.9213 0.9200 0.9211 0.9196 l l

    /

4 65

                                                              -                                        m.m-    w           .-   ,rw

i i i { I i i  ! l 120- e T.-120 *C i , j' We= 1000 Kg/hr 110- " R1= 2.54 cm -- p T.=105 *C R2= 3.68 cm g

       -   100-                             - ; --

o

       ~                                                                                      I
                                                                                                         +

l* 90  : T.=90 'O + l

       $    80-   -    -"                            --'                                                         -t-B                        T.=75 *C f, 70-\
       "    60-    -

T,=40 *C t \ l 50- - - + - - - i i 40- - i N 1 I i I i i i i i i i I i i 1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 (r-R1) / (R2-R1) Figure 5-2 Temperature Distribution of Fully Developed Turbulent Flow in an Annulus for Various Heating Boundary Condition 0.98- - r , , r-- l .= 40 *C Wc (kg/hr) = 0.97 '

                                                      ~
                                                                                                       -e- 600 0.96-   - - + . - +                                   j                                      -o- 800 I                                                                --+- 9 00 s' O .9 5 -

N--  ; i 4

                                                                                                       .<>_ 1000
                                                                                                       -A- 1200
      ) 0.94-
                                           -        -+-

i r..

                                                                                                   !   -A- 1500
      ~ 0.93 -q---                           -
                                                                                                       -O- 2000 7                                i H 0.92 -                    - '                                    --          -
                                                                                                            -                 C L                L 0.91 -                      i                         4              -

1~ - 4 o

                                                                                                             ^

0.90 - +- 5 i 1 0.89 - *  ; r - i l 0.88- -

                                                                    ,                     i 60                         80                       100                 120 T. (*C)

Figure 5-3 Dependence of the Temperature Profile Shape Factor on Wall Temperatures  ! l j and Cooling Water Flow Rate l O 1 i l l 66 )

a

 ~     5.4 Curve Fitting of Water Bulk Temperature for Wall Heat Flux l                                                                                                     '

1 Curve fitting was first used to determine the derivative of the axial temperattue s ' profile measured at the adiabatic jacket wall to obtain an initial approximation of local heat flux. This heat flux was then used to correct the condenser wall temperature data to i i obtain temperatures at the outside surface. Then accurate bulk temperatures were found , i j using the method explained in Section 5.3. The best analytic fit to the bulk temperature , ' ( data was then found and its derivative used to calculate the wall heat flux. Five fitting i 5 l methods have been tried to obtain best fit for the temperature profile. The fitting i 1

formulas and their derivatives are given as follows

x, Gauss : T(x) = K + K e {=*' ]2 o i (5.37) l Exponential: T(x) = Ko + K e-x2= i (5.38) , I

Double Exponential: T(x) = Ko + Ki e-*2' + K3 e** (5.39) I Polynomial:

2 T(x) = K o+ K xi + K 2x + - - - - (5.40) l 4 Line : T(x)= Ko+ K ix (5.41) l l Their derivatives can be written as j l Gauss : dT(x) = -2K i x-K 2 -x e( (5.42) j & K2 ( K3 j dT(x) = -K K e-*2' Exponential: 2 i (5.43) dx Double Exponential:

                                           *} = -K K e-K ' - K,K e-***

2 2 i 3 (5.44) dx dT(x) = K + 2K x + -- - - Polynomial: i 2 (5.45) dx dT(x) =K Line : i (5.46) dx The basic approach of the modeling of data is to design a figure-of-merit function that measures the agreement between the data and the model with a particular choice of parameters. The merit function is conventionally arranged so that small values represent 67

l l close agmement. The parameters of the model are then adjusted to achieve a minimum in l the merit function, yielding best-fit parameters. With a set of data points (xi,Ti) and the O standard deviation ci of each T i, the estimation of the model parameters is obtained by minimizing the quantity T, - T(x ,iki, k2 ,...k,)' x2 (5.47) i ( Oi j called the " chi-square". A computer program written using the Levenberg-Marquardt methods [13] was used to find the best fit parameters and to test the statistical goodness-of-fit against different models. This program is included as a subroutine called CurveFit in the data reduction computer code in Appendix D. It was also tested to compare the curve fit results from the commercial graphic software Igor. For most of the experimental cases, the double exponential form gave the best fit among the above five formulas. O i l O 68

6. EXPERIMENTAL RESULTS AND CORRELATIONS

'V 6.1 General Description The raw experimental data consist of measured steam and gas flowrates, inlet pressure and temperature, centerline temperature profile (not used to calculate heat transfer coefficient), condenser outside wall temperature profile, cooling water inlet and outlet temperatures, and cooling jacket (adiabatic) wall temperature profile. Section 5 i included a detailed description of the method of calculating the local heat transfer coefficient from the basic data. The raw and reduced data are all presented in tabular form in Appendix C. In this section, we give a selection of graphical presentations of the raw data in order to illustrate more clearly the nature of the results. These figures l l (Figures 6-1 through 6-11) contain graphs of profiles of measured condenser tube outer l l wall and jacket adiabatic wall. The selected cases span the range from best to worst from '((" the standpoints of smoothness of the profiles indicated by the data points and in terms of the amount of asymmetry indicated by thermocouple pairs located at the same axial position but opposite each other circumferentially. The figures were also selected to I illustrate the quality of reproducibility of data in repeated tests. It should also be noted , that the reproducibility rims were made long after the original nms such that they should be affected by any changes that may have occurred in instrument calibrations. For runs 1.1-1 and 1.1-1R (Figures 6-1 and 6-2) the data show excellent reproducibility. Also the data suggest that there is very little asymmetry on the cooling annulus. In run 1.1-1 only i four points of ten data points on the two wall temperature profiles show discernible difference between two thermocouples at the same axial location. The profiles are very smooth in contrast to those of the previous experiments [14,15 and 17], especially the condenser tube wall temperature. p Runs 1.1-1 and 1.1-1R are in the pure steam series. For these runs the centerline probe shows that the centerline temperature drops only a few degrees (consistent with the 69

l l 1 very small pressure change) over the length of the condenser. Since these runs are for i high steam inlet flowrate, the steam is not fully condensed and this is reflected in the ei3 centerline temperature profile. Pure steam runs at higher pressure and the same flowTate are shown in Figures 6-3,6-4, and 6-5. In these cases the higher temperature difference l driving the condensation produces complete condensation. Here it is seen that the l centerline temperature is a very accurate indicator of the point of complete condensation. l The probe can be moved to show clearly a sharp break in the axial profile. In these cases condensate fills the lower portion of the condenser tube and it is cooled substantially as it flows at very low velocity. Data were retained in the data base only at points of wall l thermocouples located upstream of the knee in the centerline profiles. l l l Runs 1.1-1 and 1.1-1R also illustrate a general problem in the experiment. The first condenser tube wall thermocouple (located at x = 9 mm) tends to read consistently low compared to the profile trend. During the development of the experiment we attempted to make a measurement at x = 4 cm. That thermocouple read consistently even lower. The end fittings provide a heat flow path that is very complex. Simplified analysis indicated that the effect should not be so large as observed. However, such a l heat flow evidently must be responsible for the observed results. ' In view of this situation,

it was concluded that the experiment was not capable of measuring the heat transfer coefficient at the position x = 9 cm and consequently data from that thermocouple were not included in the qualified data base. Data for positions near the lower end of the condenser required the same level of scrutiny to ensure that the data reduction procedure l is everywhere valid. The thermal entry region in the cooling annulus has higher heat l

transfer coefficients than in the " fully developed" region. Measurements in that region l also had to be excluded from the data base calculated results. This kind of scrutiny was not carefully applied in the previous experiments [14,15, and 17]. O 70 l 1

Figures 6-6 through 6-11 are for runs with noncondensable gas. These data show an increase in data scatter and greater circumferential asymmetry of the condenser tube data. However,in comparison with the previous data of both UCB and MIT these results are very smooth. Both Ogg and Siddique datr emed to show something like Vierow's temperature inversion. However, each had a different " signature" Also Vierow had data with temperature inversion only in the low gas inventory cases whereas Ogg and Siddique had irregular profiles associated with particular thermocouples consistently for all experiments. The present experimental data seem to indicate that there is no inversion phenomenon in the case of forced convection condensation. Recent experiments by Hasanein using Siddique's apparatus have resulted in the speculation (45] that an inversion exists and it is caused by the characteristics of the secondary side heat transfer coefficient. In view of the present results, it seems more likely that there was a faulty thermocouple in Siddique's apparatus. Figures 6-12 through 6-17 illustrate the reduced data for the cooling water bulk temperature profile. It is seen that the profiles are very smooth in comparison with earlier experiments. It is also seen that the profile found from wall temperature data agrees extremely well with the average of the four thermocouple readings in the four outlet flow streams. This is particularly important because the calculated wall heat flux has been found to be sensitive to analytic fitting of the temperature data. The present method of evaluating heat flux appears superior to both the one used by Ogg and the one used by Siddique. Vierow, Ogg and Goodykoontz all used mixers to measure bulk temperature. This has been shown to produce wall temperature variations that appear related to entry region heat transfer downstream of the mixers. Wall heat flux variations are also likely. In the case of Siddique's experiment, there has been no demonstration of the ability of the air injection induced transverse mixing to give accurate bulk temperatures. In fact, the q recent use of Siddique's equipment has shown that the measured bulk temperatures 71

I 1 depend upon the air flowrate. Furthermore it has not been found possible to reproduce Siddique's data. The main goal of this research was to obtain a data base and develop an empirical correlation to represent the effects of noncondensable gases on the condensation heat transfer process. The form and parameters used in the correlation describing noncondensable gas effect were implemented from the previous correlation established by Vierow and Schrock [14,19] as described in Section 1.2. It was described by a degradation factor f which is a function of mixture Reynolds number and noncondensable gas mass fraction. f=ff i2 where f = f im 3 xf. i (6.1) f =(1-cM/) 2 The factor f sheni was theoretically determined and depends upon the condensate flowrate l' and the interfacial shear stress. The factor f omer i was found by correlation of the pure steam data as a function ofliquid film Reynolds number. To correlate the data for steam-gas mixtures, the factor f iwas used as determ ned from the pure steam data. For the current experimental results,42 test runs were done for pure steam condensation,71 for the steam-air mixture condensation, and 24 for the steam-helium mixture condensation (some additional runs were added to demonstrate reproducibility of the data). The operating conditions covered a broad range of inlet steam flow rates in the test section and water flow rates in the cooling jacket. The test matrix is shown in Table 6-1. The test matrix was organized into several series with PS for pure steam tests and NC including tests with noncondensable gas. Each series is shown as a matrix of the nominal values of inlet conditions. Individual runs were given identifying designations that relate to their place in the matrices. For example, run 1.4-4 represents a test in series PS-I (first series in chronological order of experimentation). The first number after the 72

decimal indicates the nominal inlet flow (i.e., the fourth nominal value) and the number after the dash indicates the nominal pressure (in this case 4 atm.). Some runs are followed by an "R" which is used to designate runs intended to demonstrate reproducibility of the experimental data. Some of these were planned in the original test matrix. Others (" extras") were added as needed based upon initial comparisons. The data reduction was performed by a computer code written in the FORTRAN 77 language and presented in Appendix D. The reduced data are shown in Appendix C.

 /  6 l

l l l f LJ 73

Table 6-1 Test Matrix , Experimental Test Matrix O P : Test section inlet pressure (atm) Ws : Steam inlet flow rate (kg/hr) Ma : Air inlet mass fraction Mh : Helium inlet mass fraction Series PS-1 (Pure steam) : 42 runs Ws P 1 atm 2 'atm 3 atm 4 atm 5 atm 60 1.1-1 1.1 -2 1.1-3 1.1-4 1.1 -5 50 1.2-1 1.2-2 1.2-3 1.2-4 1.2-5 40 1.3-1 1.3-2 1.3-3 1.3-4 1.3-5 30 1.4-1 1.4-2 1.4-3 1.4-4 1.4-5 1.1 -1 R 1.1 -2R 1.1 -3 R 1.1-4R1 1.1-5R1 60 (R) 40 (R) 1.3-1R1 1.3-2R1 1.3-3R1 1.3-4R1 1.3-5R1 Extra: 1.1.4R2 1.1-4R3 1.1 -5R2 1.1 -5R3 1.2-4R1 1.2-5R1 1.3-1 R2 1.3-2R2 1.3-3R2 1.3-4R2 1.3-5R2 1.4-4R1 i Series PS-II (Pure steam), Simulate boiling secondary : 4 runs 1 atm 2 atm 3 atm 4 atm 5 atm 6.2-2 6.1 -3 61-4 6.1 -5 Series NC-l (air-steam mixture) : 32 runs I Ws - 50 kg/hr, P = 4 atm Ma Ma Ma 1 1 1% 2.1 -1 8% 2.1 -6 25% 2.1-10 2% 2.1 -2 10% 2.1 -7 30% 2.1-11 3% 2.1 -3 15% 2.1 -8 35% 2.1-12 4% 2.1 -4 20 % 2.1 -9 40% 2.1-13 6% 2.1-5

                                     ' '^
                                                              "?~" " ~ C""

2.1-3R 8% (R) 2.1-6R 25% (R) 2.1-10R 3% (R) 2.1-5R 15% (R) 2.1 -8R 35% (R) 2.1-12R 6% (R) 2.2-1 Extra :13 runs at same air mass fraction but 1 atm - 2.2-2 2.2-3 2.2-4 2.2-5 2.2-6 2.2-7 2.2-8 2.2-9 2.2-10 2.2-11 2.2-12 2.2-13 0 74 i

l l Table 6-1 Test Matrix (Continued) 0 Experimental Test Matrix P: Test section inlet pressure (atm) Ws : Steam inlet flow rate (kg/hr) Ma : Air inlet mass fraction Mh : Helium inlet mass fraction Series NC-II (air-steam mixture) : 39 runs  ; Ws - 60 kg/hr Ws = 30 kg/hr Ma P 2 atm 3 atm 5 atm 2 atm 3 atm 5 atm 1% 3.1-2 3.1-3 3.1 -5 4.1-2 4.1-3 5% 3.2-2 3.2-3 3.2 4.2-2 4.2-3 '4.2-5 10% 3.3-2 3.3-3 3.3-5 4.3-2 4.3-3 .4.3-5 20% 3.4-2 3.4 3.4-5 4.4-2 4.4-3 4.4-5 40% 3.5-2 3.5-3 3.5-5 4.5-2 4.5-3 4.5-5 Extra 3.1 -4 3.2-1 3.2-4 3.3-1 3.3-4 3.4-2R1 3.2-3R1 3.5-2R1 3.5 3R1 3.5-4 O Series NC-Ill (He-steam mixture) : 24 runs P - 4 atm Mh Ws 30 45 60 .45(R) 0.30% 5.1 -1 5.2-1 5.3-1 5.2-1 R 0.50% 5.1 -2 5.2-2 5.3-2 5.2-2R1 , 1% 5.1-3 5.2-3 5.3-3 5.2-2R2 3% 5.1 -4 5.2-4 5.3-4 5.2-4R 5% 5.1-5 5.2-5 5.3-5 5.2-5R j 10% 5.1 -6 5.2-6 5.2-6R i 15% 5.1 -7 O 75

140- r- , r  ; r ' i . i

                                                          ' -                  !.             .i
            -                 -                  ".            "                                                 f"       i                        l 130- 4!                                          -i 1

i.

                                                                                              "r--
                                                                                                                          ' a                  "
            -';          .                                1                 Ws= 60.2 kg/hr                     Tw (0*)

120- e-~~'R UN 1.1 ~I Wg. O kg/hr

                                                                                                        ~~
                                                                                                               -O- Tw (180*)
! l. We= 999.8 kg/hr -+- Ta (0*)

_ 110- + ~~

                         ;-           +

Pi= 116.1 kPa -O-. Ta (180*) i~ 1 O l  : Ti 138.8 *C M Tcw.i i L 100- i i j  ? i i

                                                                                                         ~
                                                                                                                 .+ Tew.o                 !~

i e  ! ^ - - - - - ^ 1

                                                                                                               -A- Tm                     l
                              "                                                ^          ^                                              *-

a" 90- 4 * '- -- i v% 2 l - - m i i i i 1 80- t b -+ 5  ; -i t

a.  !

l H 70- t-l 4 " i 4-l'

                                                                                     -                           *--              m      e l

4 r 60-  ; r T t i .

                                                                                                                          ~

i 4

                                                                    +                                                                    l-50-" m. .   -
                                          ~
                                                ~                   ^

j 40- i  ; - rI 4 r I i  ; ) ' , 30- ' X i l

  • I I i '

i I O 40 80 120 160 200 240 Axial Position (cm) Figure 6-1 Temperature Distribution versus Axial Location for RUN 1.1-1 140- - r 0 i , a.  ; i

                                             -c                                                                  3                         i i        ;               ,
                                                           . "                                4                    -
                                                                                                                      *           .        I, 130~                                                ;                                                                     ---           -
                                                           !    Ws= 59.4 kg/hr                 -O- Tw (0*)

120- 1- wg= o kg/nr -

                                                                                               - o- Tw (180*)
             +i                   RUN 1.1-1R                    wc= 1018.8 kgnir               -+- Ta (0-)

1d0- f + "- Pi= 116.9 kPa Ta (180*)

  ^

o l Ti 138.6 *C M Tcw.i 100- -- + + Tcw.o l e w 90-

                'f * ' - l,

_ 1

                                                    - - + - " -
                                                                    ^

i i

                                                                                           ^
                                                                                                -A- Tm 2m                                                        l                              "M                             -

5 80- i + Q. ] . E 70- 4 -' +---- -r d-4 I I  ! 60- - j L 4-- 4 i 50- - r -+- . -i , t ,

                                                                                                                           +                 r-
                                 - ..                     1           ,                                            ;                         j 40-    t                                4          I           T- = - 0              :-             -.

4-

                                                                                                                              ^

l 30- -l - i 1 -b 4 X l ' l l l I i 4 0 40 80 120 160 200 240 Axial Position (cm) Figure 6-2 Temperature Distribution versus Axial Location for RUN 1.1-1R 76

l 1 I l f% 1 150- T r i  : 1 T i 140-h E-' --

                                                                                                                                                    ^
                                                                                                                                                  - ll I                   1               l                                            i
                                                                                                    ~                                      i                      I     i l          130- t                       T               i-~RUN 1.1-3R                                                                      },                     i"     !
                  !                    i               i        <

i I l 120- + 1 j t 3  ! 6 110 - - i-  :-  ! L e 100- - i L 4 kI- - i 3 90-- +

     $                      j 7-Ws= 59.5 kg/hr Wg= 0 kg/hr
                                                                                              -e- Tw (O')
                                                                                              -o- Tw (180')
                                                                                                                                                               \l l     E. 80-  -

I-- We= 1108.9 kg/hr -4

                                                                                              -+- la (0*)                                                         i-     .
E  ! Pi= 319.6 kPa  ; .o Ta (180*) I
                                                                                                                                                                 ^~

l 70- t

                                                                                "~~~

l H Ti= 145.0 *C x Tcw.i  ! 60- -d -

                                                                                               + Tcw,o                                                 E l                         '
                            -h..               *
                                                                                              -o- Tm                                                                    l 50-                                                                                                                                                    p r -- -

m -- i 2 40- r-4-+ . i 7-I

                                                                                                                                           ?                      m l           30 T             '~~'

i - i - i - i

  • 1 I  !

O 40 80 120 160 200 240 Axial Position (cm) Figure 6-3 Tempvrature Distribution versus Axial Location for RUN 1.1-3R O) 150- - .

                                                             .                .                                           L                  ;
                                                                                                                                            '                      i i                                                                 'm                           a          ;..

140- - - ' T i  !  ! 130- + *- RUN 1.1-4R1 --~~ ~

                               .i        !               !                  ,

W"L a-120- -

                                                ,      i       .            ,.
                                                                                     ~                                                                 -

w w w w *

                                                                                           .E..

l 9 110-p j 4.-

     -                                                                                                                     I t      ,

i  ! .+ 100- . . . . . . 4._- e.

      $            +i                 Ws= 60.7 kg/hr                    -o- Tw (0*)

l 3 90- t ~--- Wg= 0 kg/hr

                                                                                                                                                            ... 4
                                                                        -o- Tw (180*)

E

o. 80- +I Wc= 1084.5 kg/hr -
                                                                        -+- Ta (O')                                                      -+                 N~

E

  • 70- ..

Pi= 410.3 kPa -o.- Ta (180*) \!.. Ti. 146.8 *C i F- x Tcw.i "B l ' 60- -

                                                 ;                       + Tcw o i

4

                                                                        -A- Tm                                               -

4 50- t , 3

                                                                                                                                              ~

40-

                                                                            }                                                                                       g l           30 j                  ,

i - i 1 0 40 80 120 160 200 240 Axial Position (cm)

 /~N Figure 6-4 Temperature Distribution versus Axial Location for RUN 1.1-4R1 O

t I 77

f O 160- - - i' i T Abh da i' _A  !

                                                          'i ._ __ a'
                                                                          ^

j .! i l 1 1 140- 4 L--4 - 5 - 4 i i l RUN 1.1-SR1 i 3 o 120- L " '. . i.-

 ^                                                 '                                                 d j--             ;

p  ;  ; -; .-.  ;

              +

y j ,

                                                                                            . -.;    7           +-
   $ 100-     1       Ws= 61.3 kg/hr                9- Tw (0*)          -

l To Wg= 0 kg/hr -O- Tw (180') , . . . _ . . { We= 1074.0 kg/hr -+- Ta (0') , E 80- Pi= 503.5 kPa -o- Ta (180*) ~-+ ~~t' i . . Ti= 151.3 *C M Tcw.i . .;

                                   .    !            + Tcw o 60-     -

t -A- Tm  ! i 3

                                        !                  1                 -                   1
                                                                             '                 4 40-                            -i     i
                                                      !    !"         '         ;                0    '

W I I I i I I I O 40 80 120 160 200 240 Axial Position (cm) Figure 6-5 Temperature Distribution versus Axial Location for RUN 1.1-5R1 I l l i 78

\ i l (~') 140- b

                                                                        '^                  ^

L I-i e 0-ti t- A i I 130- - 1 4 f f i

                           .                                    RUN      2.1-5'                                          i 120-             r                                 r------

6 110- --h . . T & 4 e 100- i  ! j l - . i. S 90- +- Ws= 50.5 kg/hr

                                                                                      " ~ ~ ~

i i~ m -G- Tw (0*) <

  • 80- W9 = 3.16 kg/hr ~
                                                                                                                         !                                                       *~

o- Tw (180*) a We= 1234.8 kg/hr ' 5 70- Pi= 396.8 kPa + Ta (0*) , 4 l F - Ta (180*)  ! 60- Ti- 143.5 *C

  • Tcw,i -- 7
                                                            + Tcw,o                                         '

50- g __. .. ,

                                                           -a- Tm                                                        ;                                                         j 40- 7----                                         :                                                         i1 i

r T-

                                                                                                                                                                                      )

1

                     '                                                                                    ~

30-W  ! 1 i 1 i I I I l 0 40 80 120 160 200 240 j Axial Position (cm) ) Figure 6 6 Temperature Distribution versus Axial Location for RUN 2.1-5 O) ( . 7 , c ._ _.. l

                  -           u                                           ^                 ^

140- t  ; + - - - r

                                                +--.                                                                    *                                                         '~

RUN 2.1-5R 120- --! H 4- r i- 4-3 i  ! O -

                        ^ ^Q              -ia   n             &
  • 100- T .

i

                                                                    ~
                                                                            -----   m i
                '    ["~~                               ~                                                            ~
                                                                                                                               "~+                                           ~^~
      $              ;    Ws= 51.6 kg/hr                    -*- Tw f o')

{ 80- h- Wg= 3.22 kg/hr We= 1237.8 kg/hr

                                                            -o- Tw (180*)

N' ! E

                . L. .                                   -+- Ta (0*)                                              .. .: . .

l i 60-

                   +j-    Pi= 390.0 kPa                     Ta (180')                                                 i Ti= 146.0 *C
  • Tcw.i l .-- p i. .
                                                              + Tew,o I

t : - i, i i

                                                            -A- Tm
40- -

e ,- - i .- 0 ' 1 y.. ... i I i ' i ' i ' I I O 40 80 120 160 200 240 Axial Position (cm) Figure 6-7 Temperature Distribution versus Axial Location for RUN 2.1-5R (oD l 79

1 1 140 ^

                            -- li           hi         i
                                                             ^

h  ; I 3; A

                                                                                                                                     .W         h;
                                                                                                                                                    -    l i
          .                       4         4         4                  1...         .;.-..
                                                                 -        1
                                                                                                                      -*- Tw (0')                        l 120-                                                      RU N 2,.1 -8...                                        -O- Tw (180')
                                                                                       +                              Ta (0*)

l 6 SS.dit . . j -<> - Ta (180')

                                     ~
                                               %~                                                                                              I
                                                                                       ~
                              ~
 !'- L                                                                                                                -o- Tm
                                                                                                                               #"i
                                                                                                                                               ],

h 80- b t- Ws= 49.8 kg/hr . . , '.- g, l l Wg= 8.6 kg/hr ~~ NI " j E i We= 925.4 kg/hr .

 $    60-              ,

Pi= 420.3 kPa , e J 4 Ti- 140.7 *C 2 40- b'

                                                                .        t                                        ;         +                        -
                                  !                   I         '         ?                 :                . '             .                   l i                  t i                  i                                    

j' W 20- 5 I b I i 1 l l l i ' l ' i i 0 40 80 120 160 200 240 Axial Position (cm) Figure 6-8 Temperature Distribution versus Axial Location for RUN 2.1-8

                                                                             ^

140-E ~t -

                                            ?"        t- A .                    ._...            .'.                 ;      !        .          !,
                                ]                     i              Ws= 51.2 kg/hr                              -O- Tw (0*) -+

120- t- y- RUN 2.1-8R Wg= 8.87 kg/hr -O- Tw (180*) .1. i i  !  ! We= 925.1 kg/hr -+- Ta (0*) l 6

           ~
               *-) -       e      i                   i              Pi- 415.3 kPa                               Ta (180') ~~T L 100-                              ;;'                             Tl= 145.3 *C                                     X Tcw,i
                                                                                                                      + Tcw,o 4..

e . 2

                                                                                                                 -A- Tm
                                                                                                                                             ~

R H--f.' 3

  $   80- r            4                                                               . '-                        '

o i i l

           - I                               r                           4-4                    j

[ j {. -j }..

 $    60-    -

E i

             ~
                                                 -- !.                                                                       i
                                                                .        1                                                   .
                        .                    i                             T                                  -              -
           - --.-                           +                                               m..

j 20- ----- L . . . . . . - . . .  !.. l I t g g g g 0 40 80 120 160 200 240 Axial Position (crn) Figure 6-9 Temperature Distribution versus Axial Location for RUN 2.1-8R O 80 1 1

l r%

 %-)     130- 5
                                    ^

I U- ' ^

                                                                                                      -d f'          .
                                                                                                           ~                                             -
                                                                                                                                                                     ~

120- - t Ws= 50.1 kg/hr -e- Tw (O*) h-110- .- :RUN 2.1-13-- Wg= 32.8 kg/hr Tw (180') Wc= 758.3 kg/hr -+- Ta (0')

                                                   }

6 100- - t- Pi= 414.8 kPa -o- Ta (180*) 7-e i Ti- 131.8 *C

  • Tcw.i i o

90- -

                                                                             ;               ;         .,. Tcw,o                                                   i~

t 5 80- +- i $- ^--l- -a- Tm j-70- -

                               ;                               -T                                         ! -- I                                                   h H

60- -*- i

                                                                                                                                'l 50-  -        ----

t - . i i i

                                                                                                                                                               ?
                                             ^                                                                                  :

40- r ' i i T  ? ' 3r- b " ^

                                                                                                                               ;                               Y f                                                                                                                                                   y 20-                                                                                                                 4 1

i ' I i ' l ' l ' l I i 0 40 80 120 160 200 240 l Axial Position (cm) Figure 6-10 Temperature Distribution versus Axial Location for RUN 2.1-13 l r i k- . . . , . 130- , -- - 2 A ^ '

                                                                                                                                                                 +.
                                          ;                        7.~      >                                                                           -

7, 120- 4 . Ws= 52.1 kg/hr l -e- Tw (0*) y-I i 110- Wg= 31.4 kg/hr -O- Tw (180') i RUN 2.1-13 We= 750.8 kg/hr -+- Ta (0*)

                                                                                                                                                                  ~~

6 100- -

                                          +-   --I         +          Pi= 422.3 kPa                 Ta (180')
     ?

90- %s L  ! i Ti- 132.8 *C

  • Tcw,i e -l + Tcw,o g 80- + + "----j m -.
                                                                                   ,,,, --+. -A- Tm                                                                7
                                                                                      +                                      I g

70- - j 4 * ' 4-60- r -- I t- 4 H  ! , i  : 1 50-y  ; 4 4

                                                                          --l [ -

i-j t a l 40- -

                                                          -+       -

F i 4 -p i L i i  : H  : L 1-30- e + -

                                                            ^
                                                             !     i'                                    .
                                                                                                         '                                                         W l

20- - l 1 I l ' I I ' I i l

O 40 80 120 160 200 240 l t

I Axial Position (cm) l i Figure 6-11 Temperature Distribution versus Axial Location for RUN 2.1-13R l n 1 \ l (v) l 81 t

i

  • i i  !

52-

  • i [I RUN 1.1-1 o Ta (measured) ~~~

i i i .

                                                                               --o- Tew (calculated) 4                  .!_ _. .1                   x Tcw o (measured)                             --

7. 3 48- y h f-L . .1 4._ o / . . 4 _ . t O E 44- O r-b . + u O + -N 4' .I-..- E o i I a 40-E 4 + o - o . _, 4 'O +- [ O l 36- -l--1

                  -              -+-                                  -r                                                    T--

4 i

                                                                                               -                            c i

32- - e

                         -                     -                                       '                       =

i I i i i l 0 40 80 120 160 200 Axial Pos. (cm) Figure 6-12 Cooling Water Bulk Temperature versus Axial Location for RUN 1.1-1 64-j - + 1 L RUN 1-3R o Ta (measured) - 60- .

                                ---{-.                  -
                                                                                -*- Tcw (calculated)                          --
                  .). 9. ...          . ..;                . . .

M Tcw,o (measured) - 56- d 1-_ - 4_ 6 _ i.._o ........ .!... L 52- r0 j-- 2 - t [ -- - O ---

                                                                                                                           -+--

y 48-  ; o l-- g .

                .7 t.

g... . .._.

                                                                                                                         .. 4...

a -4 , 4._

   @   44_J .             ,.

[ O ... j.._.

   > 4 0 --               L t-                 _
                                                                            +

g- -

             -                       5                  t
4. .

36- - L t 4- -- i- - O I-- y- 4 o-32-t-- t t 4 r-- p-- I l I I l 1 0 40 80 120 160 200 Axial Pos. (cm) Figure 6-13 Cooling Water Bulk Temperature versus Axia Location for RUN 1.1-3R O 82

rh i , i 1 V 70-, - - i i i i RUN 1-5R1 o Ta (measured)- l 65- ' ~

                                                                                 -o- Tcw (calculated)
                                                                                                                              ~~~~

l  !

  • Tcw,o (measured)
              ^

60--- -g . O  ! I L U  ! 55- -+- o

                                                   -     --+           -~

e i  ; h 50- b I 1 3

                                                                                                                           ~-

E o 45- * + o F-40- -"- + " "

                                                                  +                                                         +-

b 1 35-

                                 -+        -+-
                                                                                          -t O h-i i                                                    i                                             !

30- ' 4- +- I I I l i ' I - 0 40 80 120 160 200 Axial Pos. (cm) Figure 6-14 Cooling Water Bulk Temperature versus Axial Location for RUN 1.1-5R1 s i i i i RUN 2.1-5 o Ta (measured) ! 52- -t ~~

                                                   ,                             -e- Tcw (calculated) l                       -           +

r --

  • Tcw.o (measured) -
                - ,i-                                                                                                  4---

O $ l j o i n I . . . i i l 2 44-+ Ud u- - 4 Y . .( +. O . .L .. . . . . . .

                                                                  ~

5 O g 40- o -r ~7 - 7 o ,-

                                             .}    .        :    o.                                     .

L..._ hF \ 36- + 0- -g- N-

                       .            .._.._...      4                                                 ..o.             ....._9...

32-7  : 4 l

                                                                                                                             ?-                              \

l

                                                                                             .:.._ . . .             ........!r                              ,

I l l i ' i ' I O 40 80 120 160 200 Axial Pos. (cm) Figure 6-15 Cooling Water Bulk Temperature versus Axial Location for RUN 2.1-5 83 l

                                                                                                          .,.                       ~ . . . - - . . . . - --

i i i i

                  'i                        i"            RUN 2.1-8                o Ta (measured) 52- *                                                        ,          -e- Tew (calculated)
                                                                                                                                      -~~
  • a 4 x Tcw,o (measured) -
                                                                                                      .            i
9. 48- -+l d

l: l

                                                                                         ...-..     .. ,! ... . . ..9.

j44-- " fo 1 f {o-

                  }                              o          f~~"             f                        {

E 40- Y o - -+I^ . t t i g - - [ -i n-36-  ! O .

                                                            } .._ ..       ...o...                    >

l o 32- 3 l ', i o-

                                              !    m         !
                                                                      ..     .                                                      O_

I l l i ' l ' I O 40 80 120 160 200 l Axial Pos. (cm) i Figure 6-16 Cooling Water Bulk Temperature versus Axial Location for RUN 2.1-8 i i i ! 50- y A RUN 2.1-13 o Ta (measured)

                                                                                  -e- Tcw (calculated)
                                    ;
  • Tcw,o (measured) 45- +--t t r t- -t "-

o O i e o 0 i g 40- -o 4- *- 5 'o E O E o 35= o- --- t-- [ H o I  ! O i l 30- - t r-o - r-o l 25- + *

  • l I i '

l I I O 40 80 120 160 200 i Axial Pos. (cm) l l Figure 6-17 Cooling Water Bulk Temperature versus Axial Location for RUN 2.1-13 l O 84

 ,     6.2 Condensation of Pure Steam - the tf Correlation

!V The condensation experiment for the pure steam case was performed to obtain local heat transfer coefficients when condensation is not degraded by the noncondensable gas and to provide a data base for the if correlation. l The parameter f ishear was derived through analytical methods as the ratio of the liquid film thickness with interfacial shear to film thickness without interfacial shear. The parameter fioem, was obtained as an empirieml correlation from the pure steam experiment results. Figure 6-18 shows the plot of f1 omerversus film Reynolds number. A linear curve fit was made to correlate f omer 1 to Rer. l fm = 1 + 7.32 x 10-' Re r (6.2) The relative STD for this correlation is 0.0735. l 2.0 - - i {/ }\ l .

                                    ._.9                                                      .

1.8 - H !  ;- ---4 ---t l 1

                                        .                                                       4             1
                            ;-                                                                           --4           +

T f 3/ f ishear = 1 + 7.3 0

  • 10
  • R ei l 1.6 --- J 4 sto-o.o7ss 4- 1 1

l . . J a . s i

           .i 1.4 --                                  o                                             g         ;                            )

j . , ..o. .. _ . . O-- --Q-- q -- p - - - l N 1.2 -- *-- - p -k GR-j.O_%.6 j . 3-- ....Lgoo!..oo. .O % a , 1.0 - go-i- 4 _o j__

0. 8 - + a - -
                                                                                                       -- -t         -i I                    --

p-  ;'

                                                                                                                       -i C.6 -      ;                         j-                              -i-                         j-
                                                                                                           ...{.....

l l i ' ' i i ' 0 100 200 300 400 500 F% i ! Figure 6-18 Plot of f omer l versus Film Reynolds Number for the Pure Steam Data Base 'O l. V 85

6.3 Condensation with Noncondensable Gas - the 2f Correlation O The data base for condensation from steam-gas mixtures was used to develop the following correlations. For air : f=ff3 2 (6.3) f = f,,,,,( 1 + 7.32 x 10" Re, ) 3 (6.3a) I 1 f 2= ( 1 - 2.601 M,*" ) for M, < 0.1 (6.3b) f 2= ( 1 - M,a2n ) for M, > 0.1 (6.3c) Where Mais air mass fractions. See Figure 6-19 and Figure 6-20 for the plots. The relative STD for this correlation is 0.176. For helium : f=ff 3 2 (6.4) f=f3m( i 1 + 7.32 x 10" Re, ) (6.4a) 2 f 2= ( 1- 35.81 Mm "" ) for 0.003 < Mm < 0.01 (6.4b) f 2= ( 1 - 2.09 Mm"*" ) for 0.01 < M S < 0.1 (6.4c) f 2= ( 1 - Mm " ) for Mm > 0.1 (6.4d) where Mae is the helium mass fractions. See Figure 6-21 and Figure 6-22 for the plots. The relative STD for this correlation is 0.1297. l l l l O 1 86 l

j 4 2 t

                      }_    .
                                                                                 .9                 ..p.. ,,_ . 7._. 4.g v . , .                         ,                                                ,

, ( .

                                                                                    +                  a. p-..y p q..y .                                                                   .
                                                                                                                                                                                                        ..;. p .

7... .. 9 . 7.. .-

i. 6 y ~+--t--v-t-+-+;V * . #I,, . ..
                                                                                                                                                                          --i.- 4-- . - d.--l l                        $.      i.                                                                    ......                                          .
                                                                                                                                                                .. ... .. p... j.. y.                 ...{..a
4. .l81$ye . . .,..-a
                                                                                                                       .                                 2 i

2-i

i. ._.

< 3 L-- - a /.. -I- *.. : 5. --l- - + - - - -

                                                                                                                                                                                 - -- i[ -                     +--

i

                                              .. J..;e ..,.
                                                                                                       '*+

l!  ; 4-. ., 2- -r

                                                                                            .*       -i      H+ 1-i..i                                   1          ..

2-.- 4. . + - i  %  !.,..e

  • i i

5  : , i i

l. STD=0.1056 0.1 < M.
              -    0.1 ; c:                                                                                              STD=0.3071                            0.1 > M.
3. .* .
                                                                                                                         .                              .,                    .r                          ee 6                   .

4 p.4.. . 9.j . . .  ; .. p . 7 , .. p .p ..- 4 5 i. --e 4 :4 4 4 A- d.-- i-+- ! 4 -s L-p  ;! i- 4  ;! 2-.-

                                                                                                                                                                                  .. 4.. ;...               ...;..

3 . i - i 4 .a - 2 . Y. i l 2 3 4 5 6789

                                                                                                                     .g                                  '

3 4 5 6 789

                                                                                                                                                                                                                .g O.01                                                                                            0.1                                                                                       1 l                                                                                                                          M.
Figure 6-19 Plot of 1-f/f tversus Local Air Mass Fraction for Steam-Air Correlation (K-S-P) 4 (m'-) 1.2 -

f = f,* f,

                                                                                                                                                                                                +!

p. r f =f% (1* + 7.32* 10

  • Re,)

3 -- - i +i , 4 1*0- -

f,= 1 - 2. 6 01
  • M,C.706 M ,< 0.1 i '. i+' ..s......._...'; i 7.. .. . ._

f=1-M' 2 M ,> 0.1 i A 7-

                                                                                                                                                                       ++                            .

o.8 - -

                                                                                                                            +
                                                                                                                                                  $+. %              $                             .4 STD=0.1764                                                                                                                           :                            !
                                                                                      ,                          g ...                            .

j n.

                                                                                                                ~
                                                               !                      i
                                                                                                                                  +#p                                                                 :

l g o.6-

                                                             -t                     y               4+g g-                                     .i                       t                            4 o.4 -                                           m,                                            .          --+                  -
                                                                                                                                                                        +                          -+                -
                                                                                                                                 ...-...?..
                                                                                                                                                                      ..?...                     .. 4 J                                                                                                                                                                        $                             i
                                                                                                    .                                                                   i                             :

4' O.2 - T- + r -? 4 r ---..#...__ _1

                              !                                                        l                                                                                               !                               ;
                                                                                                    .i.

i

                                                                                                                                                                     ... .!                          .i                "

l j i  : i  !  ! . i l I i  !  !  ! i

0. 0 - -
                                                               +---                                 -           -            +              +
                                                                                                                                                                        +--                          .!               -

I i i i i i i i i  : 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 I k.s.P Figure 6-20 Plot of Experimental Heat Transfer Coefficients versus the Values Predicted by K-S-P Correlation r d 4 ', 87 1

1 ~~ ' l.ZI"i..  : 1. ... .........J 'M 1

                                                                                                 ! ' ! i.-.;..i.. . * * *
                                                                                         ~.

a_ 4-.l l.!  ! ..

                                                                                                                                                             .           4-- 4 i-4.-.

j-7 ----.! 1 I' t** i-f-f l- ,}*4,-ft' 1---l- f 6- 4 3

                                                                                                     ,,*                                                     i7                        -i s-                             FF-                         .        yt.
                                                                                                   *..4-                                   +                               4-                    l 7-4 4.4_            .
                                          ._. f             .. ;... ..j' . . ' . ;{
                                                                                                                                                      .f...        .
                                                                                                                                                                      .1f..i.c, !...            )

3 - i, f, _i l . .. # * +

                                                                     .;_....+
                                                                                                                                           .      ..+..
                                                                                                                                                       !       ...       ! .: l   ,- .

7.. r ' f l j+l **.* j

  ,,, e       2_          -                iN . . . *
                                        ,.g ; .j-j+
                                                                                --+

r J

                                         *! -        * 'I STD-0.0543 1 < Ma < 0.1
                                             .4 4                              STD-0.1514 0.1 < M. < 0.01                                                                 !
r O1 U STD=0.4971 0.01 < M,< 0.003 '
                     ..   . i..
                     . . ;-_.4_.y
                                 +

t { ,.

                                                                                    ,            ,       ,       .,                                    ,     ,       , .; .g- .

8 .p. g- , l- ~ p. -. p--t--{ 7--+ -- 7.- 7

                        .- + : . + i.- . :
                                                                     .I-           +                                                    -c--+                ;

j; i.-e-+-,i.---.. u -l-p-..j--2 !.r-1'-j -i 6 +. +-.

s. --.j-:._.4 y, ag y,-i 7
._.: _2. ..;,
                                                                                         ' '                  s~
                                                                                                                                                      +-                 . :: .
                      .      ! ' *l'I                   i             it            1                                                                  j     ' l j!
4. .
                                                 *                                 +
                                                                                         . .                                                           ...+..5 567....I 4 567....I 2                                                                     2          3      4 5 67                  .I 3 4                                                           3 0.01                                                         0.1                                                                    1 M.

Figure 6-21 Plot of 1-f/f iversus Local Helium Mass Fraction for Steam-Helium Correlation (K-S-P) 1.1 - s - . - l f = f,

  • f, j  ! i 1.0 - j f , =f, *(1 + 7.32* 10Re,) j 4 T , '4-j 0.9 - I2=1.aMj y [-p+_
                                                                                                                                                                                    + .]

a=35.81. b=1.074. 0.003< M, <0.01  ! y H- ++ -tj 0.8 --- s=2.09, b=0.457. 0.01< M <0.1 i -F I" i a=1.0, b=0.137, 0.1 < M m +' 0.7 --4 '

                                                                                             .-.+.. f..+t+-                          ..

4 STD=0.1297 +l +  ! I i

                                                                                         +p- ++- +-+

0.6 - . 1 j 0.5 - + .pFy-_ 0.4 - 4 - _- I+- a i- 4 --4 j

                                                                         -F                                                                                                                 !

0.3 - ++' 4- 4 4 -i

                                                                     +!                                                                                    i 0.2 -                    3-           --
                                                                         --4
  • l+ t I i 0.1 - t ' --J -t 4 +- t t i 4 i j i i i i  !

j i'  !

                                                  ~

i -

                                                                                                                                                                            !                l

! 0.0 - -

                                                             -i                                                                                                            a               "
, a s e , e n e a e s s I 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 l f x.s p l

Figure 6-22 Plot of the Expenmental Heat Transfer Coefficients versus Those Predicted by K-S-P Correlation 1 1 I I l 88 '

I l 'I l l l 6.4 Limitations of the Correleions The above correlations were made according to the experimental data which were derived within certain parameters and conditions. Therefore, it is recommended that the correlations be used within their experimental ranges, which will then give the best j prediction for the downward internal convective heat transfer for pure water vapor condensation or condensation in the presence of noncondensable gases. Table 6-2 shows the ranges of the data base parameter for each category of the experiments. ) 6.5 Comparison with Previous Correlations Comparisons were made between the Kuhn-Schrock-Peterson correlation and three previous correlations - Vierow-Schrock, Ogg-Schrock, and Vial-Schrock I correlations. The local heat transfer coefficients predicted by Kuhn-Schrock-Peterson correlation were plotted against the above three correlations and are shown in Figure 6-l 23, Figure 6-24, and Figure 6-25. The Vierow-Schrock correlation was currently adopted i i in the TRACG code except that a limiting value of 3 was set for thei f factor. Earlier a limit of 2 had been imposed. The comparisons of heat transfer coefficients of Kuhn-Schrock-Peterson correlations versus those predicted by TRACG code with fis2 and l fis3 are shown in Figure 6-26 and Figure 6-27, respectively. l Table 6-2 Parameter Range of Experimental Data Parameter Pure steam w/ air w/He inlet steam flow (kg/hr) 28.3 - 61.5 29.5 - 61.0 29.5 -61.9 1 Inlet gas mass fraction (%) 0.0 1.0- 40.0 0.3-15.0 l l Vapor superheat (*C) 0.0 -33.2 0.0- 29.3 0.0-12.5 ' l Bulk gas mass fraction (%) 0.0 1.07- 62.8 0.312 - 31.2 l Bulk pressure (kpa) 109.1 -517.7 114.3 - 517.4 388.0-433.0 i Bulk Reynolds No. 3840 - 35400 2310-45600 2520-31400 ' Uquid film Reynolds No., F 13.0-486.1 9.6 - 415.3. 14.1-416.0 Q U l

                                                                                                )

89 l

10000-- li-I t h  !! *- l 8: l::!'.7 O Rem < 10000 -d-+d.l.E".f .....Z:"/E*k'f.::C:  ! 7 !l4 + Rem > 10000 --t- :::{.::!? 4L , i !r

  • A LI 4 4-
                                                                                                                                        . .. .; .              ..t..j.....j         .. ...y.27 .*. .-;d.f*5 .... ._. ...; .
                                                                                                                                                                                                                        ..g.

s.

                                                                       .-9...
                                                                       -".~.+-                                                                                             .. - - - -                           .
                                                                                                                                                                                                                       --r-                      .-+-..-

5 4.. h , ... ...f . . . . 4 7 L 3- 5 g$},-1**C' .  ?,.* i 4. +..

                                                                      ~+ f +-r 4                                                                                  a                                       ...

i [ . t i .*

g. ., ..+ o-. a - . . ,.g,,,p.. .

_.g... -. s *,,..",sa v

                                                                                                                                        *?. . y o.% * * * ./

9 2!**M.M.--p..e#

                                                                                                                   *{ ;. 0.$),k-e ****f -i :-                                                                                                           H 1000.Hp . ! ' ..          7                  t epg. .p                                        .g. ... 9..
g. . . . ;. ..
                                                                                                                                                                                                                                                . .;. 9. .

8- r- -tt-  %'---- p 9 7. +l -+ 4-6 tt e---+-  ?--s 7- 4 4 4- .,*& - -

                                                                                                                                                             -                                                              4                      4
                                                                                                                                                                                                                                                  .j... ~ -
s. ot.y 4.. . ... 4 4.4 4..
                                                                      'di',
s. . . . .

678 2 3 4 5678

                                                                                                                                            . . .        l . ..L..,    u._

2 3 4 5678 1 1000 10000 hvi ,ow-senre Figure 6-23 Heat Transfer Coefficients Predicted by K-S-P Correlation versus Vierow-Schrock Correlation 10000-e i-+ 4

                                                                                            '-Hp..

9 . . ... .

                                                                                                                                                                                                .)..

8- t 'f ...J~ . . . . . . 7 - -t-a i--.4.-.i ' H 4. ... 6 ; . . . . 5 4-t - . . . . . . . . . .

                                                                                                                                                                                         ~
                                                                                      ; . !i                                                                                                                            .

4- y --+-4 ...a Ii 3-

                                                                                              -+-t
                                                                                                                                                                                        ..9...                                                             q h                             i x                             :
                                                      .C          2 -+-- a -4                                                      . -                                                 4.. ..;-
                                                                                       .        $ +4                                                                                                                     .

4- 4 1000-= t- . - p-

                                                                                                                                                                                                              . ...j..

t-t-8 .- . . . . ...; 7---+---- I. !-.. . ..+.+..[ ...i_ ...i

s. - - ' i. _ ... i. .. .. !

5 6 789l 5 6 7 89 .I 2 3 4 2 1000 10000 hogg.schre Figure 6-24 Heat Transfer Coefficients Predicted by K-S-P Correlation versus Ogg-Schrock Correlation O 90

i t

4 4

i i , j o oo o._ ;_L4_4_j _t_ ._L......_2_, __+.4

                                +            +.. 4 -                             ..+....4...             . , . .                . . . . . . . . . . . . . . .

t.. . 4 8 L- L. 4- k -.. --i..- ' L

                                                                                                                             ' _+ - + -                                              ..'.
                                            ,i i.i i .q                                              7 ,..,i t

7 7 7 ....p. , 6 . .' . + ...+

s. _1 a i- ..a #_ - .. 1- - I.

, 4 _J~r -;.+ -

            ,            ..   ._l _..! _.               .               .i.+ #M                                                                                    .!                ,

g 2 , , ' ~. ..4 --__.~.4

                                                            +
+ +l i+ .
                                                                                                                          ~+
1000. p. ! .; .i. t ,._. - . .! ... . 7, . ... ._1 t .....

7....

                                                                                                                     ...7..                                                           ..q) 8 7 p-y 7          . 7..      -

79 . . . . . . .

                                                                                                 ;                           +-

t i

                                           .-f.k{. y 6                                            -4.---->                         ~ 4 --      .1-                                                                 -4 l                               g-                      t--
                                                                                                                                                                -.}---
5
                                     ..J....L..i        j                        ..,..........             . . 1.                                                  i                       i
,                                .     ....g                             .          .            . . . . . .                  g                                    .-                      .

{ S 6789 2 3 4 5 6 789 2 3

1000 10000 j hvisschrock
;      Figure 6-25 Heat Transfer Coefficients Predicted by K-S-P Correlation versus Vial-
Schrock Correlation 1

i joooo_ + .p g

8 4_4_[i z 4 . 4. 4 7._.
                                                         .4_i_

t+_...

                                                                                                                   ..4.._
                                                                                                                            . 4 ..
                                                                                                                                     ...+_.
                                                                                                                                              .p . ..             4..
7 .. .
                                             ;                                                                    4.-           1.+ . .
6 ._; ...
                                                                                                              ~

), a s. ;!_ ;i_i  :  :

                                                                           .                                     .k                        .7

! ef 4. !_!.. 7-.  ? 4.  % ., .4 2... s E  ! i i '. . , l t 2 ., 3

3 .

4 . j . . p. . _ . . . . _ . _ . . .

i. . i.

E, e 1 2 ++4

                                                                 +t-                    j..                           1. ..

x 1 q E 4 , . 1 I A

1000. +y...+ +. .y.- .7- ....+..... . . . . _ . . .

8 .+ -e-j ..+.. 7 i. . : .+... . . ...+.. i +. ....p.-._....... 1 i 6 . a. ! : +; 1 i4 .,

6. . 7 . . .

5 6 ....i 89g 2 3 4 7 89 2 l hm (W/m *C) l l l

;      Figure 6-26 Heat Transfer Coefficients Predicted by K-S-P Correlation versus TRACG

> Correlation with f t5;2 1 f v 1 91

                                                                                                                                                    .=  __

i 1 E t 4

10000-ll I i
                                                                                 ...a...........
                                                                                                              ~L' I
                                                                                                                                         +. .}
s. ;-.. r f1 < 3 4 +.- -,-4.-+ a. -. ...A..
                                                                                                                              +.... . .......-3+

7 6

                      +g               .

H

                                                      };
                                                                      .t      -
                                                                              ,..i...
                                                                                                           .... 19.. . .
                                                                                                       ...; c                     ...e           4 l                                                                                                                       :I            -

f' --i-- f .I4 .

  • s 5-  ; }

4 O 7 - r-r , li . j

                      }. _ i .!...

j 4 -

4. . . .. 3... ~ .4.; p a i i [

e

                                                                            +

E 3 j.. . .p . ..!. -4....._. ..+ ....

9. . ...[...._.._...

3 i 2  !... . .i. . +. . --gi .. . . .. i . . :, .. -. p ........... e + ,

                                                                                      ^
                                  +                                    i                                           3                 i.
'                            -~~l
                                              + +t  -

l , g 1000.r 7 ... . -. .y 4.

                                                           . . - . - .4..
                                                                        .,._.                ..                 . 4 -+
                                                                                                                . . ,7.
q. . .;

J 8 . 7= +7- . ~-&;. y 1 i-

s. ,. ;

i~...l;t .+4 . 5 4 . . . . - . . . ...i.. ...-.&. ..

                             ...g                       .               .      .       . . . .                     .g                 .           .
6789 2 3 4 5 6 789 2 3 1 1000 2 10000 hm (W/m 'C)

J

Figure 6-27 Heat Transfer Coefficients Predicted by K-S-P Correlation versus TRACG Correlation with fi5 ;3 4

i 4 9 92

4 em 6.6 Comparisons with Numerical Simulation l In conjunction with the present experimental investigation, theoretical research was carried out by Yuann who developed a computer code to simultaneously solve the steady-state form of the transport equations for film condensation inside a tube with 1 downflow of vapor-gas mixtures. Yuann's doctoral dissertation [20] was delivered to General Electric in October 1993. The problem was formulated using continuity, z-momentum (uniform radial pressure assumed), two turbulence equations (k-e), energy, and the species concentration equations to represent the mixture region. The interface was assumed smooth and the liquid film was represented by the z-momentum and energy equations only. An option was provided to treat the effect of waviness by an empirical enhancement of the interfacial shear. The source code, called COAPIT, was written in FORTRAN. Originally it was intended to use the same turbulence modeling for the liquid film. The liquid turbulence modeling was implemented only for the cooling V) ( annulus analysis described in Section 5.3 (although Yuann did use the laminar-turbulent film flow transition criterion of Rohsenow [2]to confirm laminar film flow). Yuann carried out a parametric study for the case of laminar film flow, which is the expected film flow mode in the PCCS condenser operation. Upon completion of the current data base,it was desirable to have direct simulations of experimental data for comparisons. X. M. Chen, made some improvements in the programming to allow its use for this purpose. He also added an empirical eddy diffusivity model for the liquid film (from Blangetti et al. [21] [22]) and made some calculations for IC condenser performance. COAPIT performs the calculation marching downstream from inlet to exit of the I condensing tube. At each axial node the calculation is independent of the downstream condition. Initial and boundary conditions are required to conduct calculations with COAPIT. At the tube inlet, one specifies the total flow rate, vapor mixture mass l (3 fractions, temperature, pressure and flow velocity profile. The inlet velocity can be 1 t/ l 93

specified as constant or the fully developed profile can be generated using a subroutine. COAPIT also allows three different kinds of boundary conditions. They are: a) known O wall temperature profile along the axial direction; b) known wall heat flux along the axial locations or c) the condition outside the condensing tube is pool boiling (in which case the tube wall resistance is modeled as radial conduction). It is by design that the COAPIT code can simulate the experimental runs done at U. C. Berkeley. The experiments can provide good benchmarking for the code and, on the other hand, the numerical simulation can also shed light on the physics of the process. Many cases of numerical simulations were done for the experimental runs. We describe two typical simulations here in detail. One of them (Run 1.1-1) is pure steam condensation and the other (Run 2.2-2) has noncondensable air mixed with steam at the inlet. 6.6.1 Simulation of Run 1.1-1 The inlet conditions of this run, used as input to COAPIT, are: l total pressure 1.161 bar i steam temperature 138.8 *C total flowrate 60.2 Kg/hr mixture Reynolds number 36,000 i inlet steam velocity profile fully developed turbulent flow i Boundary condition: specified inner wall heat flux (from experiment) Figure 6-28 shows the variation of liquid film thickness along the axial length. Also on the graph is the film thicknesses calculated from the simple shear stress thinning model,6 2. One can see that close to the inlet, the liquid film thickness increases very fast. As the film becomes thicker, the thermal resistance increases slowing down the condensation. The shear stress thinning model predicts a thicker film, by about 5 to 10%, 94

1 than pmdicted by COAPIT. This is because the S2is calculated according to the smooth

  /]
4 v tube shear stress formulations and does not account for the effect of radial mass transfer.

Continuity of axial velocity at the interface is a boundary condition. On the other hand, l the axial shear stress in the liquid at the interface is equal to the sum of the shear stress in .1 the mixture at the interface and flux of axial momentum transported into the liquid by the radial condensation mass flux. The calculations show that the mass transfer effect is j predominately that of greatly increasing the velocity gradient in the mixture at the interface while the axial momentum gain of the liquid associated with the condensation mass flux is a relatively minor effect. Figure 6-29 gives the comparison of the heat transfer coefficients from the experiment and the COAPIT simulation. Although the two agree quite well, the , simulation tends to over predict the data by a small amount. Figure 6-30 compares the o inner wall temperatures measured and predicted and also shows the predicted interface j i ( i temperature. The simulation tends to predict a slightly higher wall temperature, j 4 I consistent with the higher predicted heat transfer coefficient. The liquid vapor interface i prediction is nearly identical to the saturation temperature (103.9 C) reported in the i reduced data summary given in the appendix C. This reflects the fact that for this pure i steam run the pressure drop in the test section was practically zero. The pressure drop was generally very small for all the runs. 6.6.2 Comparison with Run 2.2-2 Run 2.2-2 is a case with noncondensable air mixed in the steam. The inlet conditions are following. total pressure 1.199 bar steam temperature 134.6 *C inlet steam flow rate 50.3 kg/hr 95

l l l l l inlet air flow rate 1.18 kg/hr inlet velocity profile fully developed turbulent flow O Boundary condition: given wall heat fluxes along the tube l i l Figure 6-31 compares the COAPIT calculated film thickness with the shear stress t thinning model. For the same reason discussed above, COAPIT predicts a smaller thickness. Because the presence of gas produces a lower condensation rate, the difference is smaller than in the previous comparison. The heat transfer coefficients are i j compared in figure 6-32 where it is seen that COAPIT predicts the data very well. Figure 6-33 shows the tube inner wall temperatures from the experiment and COAPIT simulation as well as the COAPIT prediction of the interfacial temperature. In this case, the predicted interface temperature is not constant. In this run the inlet bulk saturation temperature is 104.3 C and it drops to 104.0 C at the outlet, again reflecting very small pressure drop. Near the entrance the predicted interface temperature is depressed more than further down stream. This is explained by the fact that the higher heat flux near the entrance causes a greater concentration of gas at the interface than further down 4. ream. The gentle decline of interface temperature following the maximum point is explained almost completely by the dmp in bulk saturation temperature. l O l 96

    . .~.     -                  __ _ . -         . _ _ _ _ .              . . _ .

i l i l0 -4 1.6x10 - l 1.4 - o j 1.2 - o [ o

           $         1.0 -                          o 8         0.8 -                    o                                      Run 1.1-1 fo                                o                                        (set q".)

E 0.6 - o COAPIT E. 0.4 - o&

          =

0.2 - )

0. 0 -

1 I I i 1 0.0 0.5 1.0 15 2.0 axial location (m) Figure 6-28 Comparison of Film Thicknesses Between Experimental Deduction and i COAPIT Simulation O o G 4 ,

          "E 1.4x10 -                                                                 Run 1.1-1           l I            $        1.2 -                                                            (set q".)           l

[ O COAPIT  ! _g 1.0 - o o experiment l o g 0.8 - o o u 0.6 - o 0 5 0 --

            'm       0.4 -

! E l u 0.2 - I 15 i E e 0.0 - l I I I I i 0.0 0.5 1.0 1.5 2.0 i axial location (m) Figure 6-29 Heat Transfer Coefficient Comparison with Simulations O 97

I l O 106-vapor / liquid interface 104- / P 102- ~ Run 1.1-1 y100- (set q".) E O inner wall COAPIT 98- O experiment g O

~
 !   96-O O

94~ o 92-1 I I I I 0.0 0.5 1.0 1.5 2.0 axial location (m) Figure 6-30 Wall and Interface Temperatures for Run 1.1-1 2.0x 10 - ^ E 1.5 - E o O

             ~

o o Run 2.2-2 5 o (set q".) 5 CO W c 05- o& I 0.0 - I I I I I 0.0 0.5 1.0 1.5 2.0 axial location (m) Figure 6-31 Film Thicknesses Comparison for Run 2.2-2 l 1 9 98

1 1 O ^ 4 o O 1.6x10 - N E 1.4 - 3: Run 2.2-2 [ 1.2 - (setq".)

          $       1.0 -                                                        UN
          ~

9 0 experiment e 0.8 - o 8 o

           ,      0.6 -                o            o                                                               '

e '

          )ce 0.4 -                                            o       o b       0.2 -

16 e C 0.0 - i 1 I I I 0.0 0.5 1.0 1.5 2.0 axial location (m) Figure 6-32 Comparison of Condensation Heat Transfer Coefficient for Run 2.2-2 104 -

              ^

102 - [ j o liquid / vapor interface

              -   00 -

Run 2.2-2  ;

               *                                                                (set q" )

98 - {5 96 - O O inner wall COAPfr O experiment l e O I 3 94 -  ! 92 - O O 90 - I I I i 1 0.0 0.5 1.0 1.5 2.0 axiallocation (m) Figure 6-33 The Wall Temperature History Comparison and Interface Temperature for l Run 2.2-2 O 99

7. COMPARISONS WITII OTHER EXPERIMENTAL DATA AND CORRELATIONS g In Section 7.1, Comparisons will be made using the Kuhn-Schrock-Peterson correlations with some existing experimental data for the condensation of the pure vapor and steam / gas mixtures in the pipe. Section 7.2 will discuss some existing correlations and models used for evaluating the interfacial shear stress and heat transfer of the liquid film flow in the pipe. In Section 7.3, more mechanistic and theoretically based methods will be presented to evaluate the heat transfer problem of the condensation in the pmsence of noncondensable gas. Two approaches are presented in Section 7.3 to deal with the total heat transfer coefficient combining the thermal resistances of condensate liquid film and steam / gas mixture in series. Correlations will be made from the experimental data for the condensation and sensible heat transfer in the steam / gas mixtures. Excellent agreement is reached for both approaches between the results predicted by the correlations and determined from the experimental data.

7.1 Comparisons with Other Existing Experimental Data for the Condensation of Pure Steam and Steam / gas Mixtures in the Pipe 7.1.1 Vierow's Experimental Data -Steam / air Mixture The Kuhn-Schrock-Peterson correlation was used to predict the heat transfer cociicients in Vierow's experiment and compare them with qualified experimental data for the vapor condensation in the presence of air. The comparison is shown in Figure 7-

1. Within the data base parameter range of Vierow's data the two correlations give similar results. Both give mean values close to the data, but the scatter is a little larger for the Vierow-Schrock correlation. Since the effect ofinterfacial shearis overpredicted by the Vierow-Schrock correlation, it would be expected to seriously overpredict the Kuhn data at the higher mixture Reynolds number data of the Kuhn data base.

i 100 l l J l

O 7.1.2 Siddique's Experimental Data - Steam / air and Steam / helium Mixture The Siddique's test section consisted of a single vertical stainless steel tube with the dimensions of 50.8 mm outside diameter,46.0 mm inside diameter, and 2.54 m effective length. A 62.77 mm inside diameter stainless steel concentric jacket pipe surrounded the test condenser. The noncondensable gas / steam mixture flowed down l through the tube while cooling water flowed counter-currently up through the annulus. The Kuhn-Schrock-Peterson correlation was used to predict the heat transfer coefficients using Siddique's local experimental parameters and compare them with the qualified experimental data for both steam-air and steam-helium mixtures. A total of 33 runs, extending from Run-20 to Run-52 [17], were chosen for the comparison with steam-air data and 21 mns, extending from Run-53 to Run-74, for steam-helium data. The data at the axiallocation of 10 cm from the top were excluded because of their uncertainty. The comparison is shown in Figure 7-2 for steam-air and in Figure 7-3 for steam-helium data. The general agreement is good. While the scatter is large, it is not as great as for Siddique's own correlations. The results for steam-air tend to full into two distinct groups that are characterized by high and low inlet flowrates, respectively. l 7.1.3 Blangetti's Experimental Data -Pure Steam The test unit of Blangetti et al. [21] consisted essentially of a coaxial double tube with a 3000 mm long and 30/36 mm ID/OD copper tube as a inner tube. Condensation l occurred over a 200 mm length of the central tube. The liquid film was introduced into the tube in the adiabatic section upstream of the condenser so that the liquid film thickness could be varied independently in the experiment. The film Reynolds number g was varied from 50 to 2000 and the bulk vapor Reynolds number was varied from 73000 to 25400. Both of these parameters extend considerably beyond the range expected in the 101

t 1 i

SBWR PCCS operation. The comparison of Nusselt number predicted by Kuhn-

, Schrock-Peterson correlation and Blangetti's experimental values is plotted in Figure 7-4  ! and Figure 7-5 for the vapor mixture Reynolds number 15000 and 25435, respectively (these values are within the range of Kuhn's data base). O l l O 102

i. i l l

                                                                                                                                                            \

I pJ 4- , . . . . 1

                                           !    ..!                :                                                  il                       :

l  ! i  : . !i  ! 3- + i y- - 2  :: l 2- , p - ;. 4--- -- l O h K-S-P ' Y!' ::. l g + h,.rw-serg y  :

                                                                                               +l              YI N

o 10000. . _ . _ . . 4 r---

                                                                       .          -1
                                                                                  '         L
_t-+ ..

h.. .:..J.". i

                                                                                                                              .-.~

4 { 7- .-  ! .k. 4.]' .; L. J'y fo Q. ...... 4-}-- o  ; l g s_  ! j .p: ..j:.y _ -p -h+o .f- , . .j.9... o.- o. a--. N s- -+ j

                                                ' -i-A                            O-G            'O-5S+W-         :: t
                                                                                                                                           ~~'--

j e 4- r. - -+- -*- d -+{ ---r ! ++. ' ~ MF - -- - + -

         .e l         l      i             i                                                                .

i l .9 3- 4 r- -+ l-4-4-! -+- -oh, - o-O . _: O:  : C . -! 04 i O!  ! ; O 2- -

                                    +---+--+-J-+                            -

t-  ? () 1 . t  : :i  :

                                                              -g           o 4              i                                                         i
                                                +: /dY 5                                      !!                               h               i "c  1000_ .ir-                  ._
                                                                                                -; . . _ , . . . - . . -                                i  :
                                    .t--"?~+k- ' i 40 4 -.

tt . . 4

         $        7-s-                                       p - rh     4- -
                                                                                        -4
                                                                                                 '        4
                                                                                                                       ~-

p s-

                       +[i-                  o;+ o!ii                            +i                                      -:            i ----

g

                                          ++- 3p                                  ---

y 4 .

                                                                                                          . _.. 7i oo               :2                              :
                                                                                                                       -i-                    +N 3-      l-                      -        --                               r             4 fo o 2-mi                                           ,    .         .
                                               +- ?-+ - - ;-- i                                 e                                                                                                   ~         ~                            >---~-.

l+j + i \ 100- -

                                    +-+-- :                                                    +-4                     4               ,          --

i 2 3 4 56 2 3 4 56....i 2 3 4 100 1000 10000 h W/m^2 og em. row Figure 7-1 Heat Transfer Coefficients Predicted by K-S-P and Vierow-Schrock Correlations versus Vierow's Experimental Data l l i t b l 1 l I ! 103 l

t ! 7- - . - - - - - . a < ! 6- --

                                                                                                                                                     }
s. -

Air !-lRun 20 -Run 52l~.. - -

                                                                                                                                                                -4.-j
4. .i j ,

_...... ..... 9. go-g ......~ d"~j , 3 dJ a 4 ngR. 9... ~ . . . ! g 2 I l .

                                                                                      !                         O!

2 4 -..s ..' a.+.... I  : i ...P. C + l g !OO ,g O 2 1000-- ..._.. dO' -r O ...;... .. ...j

                                                                                                                                                  .... .. 4.... 4.. j
                 .                          &..       p                          .
                                                                                              ... n ... U..                                   . -+--s--..--<

7- .- e-D-n- e.- .-U--- . -.-- i -- d d-d 6- i .r- D.- 7

s. J- .--+ - -+.-j
4. .
                                                ......                                                                                             .+._..               1
                        !                             . i                                                                                                                i 3_                      o.              -
                                                                        ._           .,                                                             ..!       . 2 a l                               oi o !                               !

I j 2 --

                              .. i          j... -                     3,                                                              ,             y         .. 4... .

2 3 4 5 6 789 ...I 2 3 4 5 6 7 1000 h,,%,

Figure 7-2 Heat Transfer Coefficients Predicted by K-S-P Correlation versus Siddique's l

Experimental Data for Steam-Air Condensation 7 -7....,.-.,...y.... .,

                                                                                                                                   > g pj-t--. O - i l              7-. j -.- -             - i--+ 4- & & 1 !                                             j- -i -

5-l s..t. +- He ---fl Run 53 - Run 74l-t.~"""T.q" o'"O' fiTi..Nbu -, i l .

                                                                                                                                 - - 7 r- o l               4-                                                   ',                                  g -                      .-g0, c3 l 3   .
                                         .,                         !-                            o.                         ..o             Oy.4 l                                                                       .:

O o o .;- 10 O ' i: l g 2- , 4++ A -.O - u..

                                                                                                                                                   - .4              -

l d> 3 i! x l

                                                                       $io t
                                                                                                                                                      ?!

i 1000-- T 7

                                 --~...g..
                                        -4
                                                                  +-
                                                                                             ... .;.4..
                                                                                                                                           .+p.+.p 'p 7-             -,...                            ......p.                     1                  -.1..p,.,......-......

7..+9

                                                                                                                                                ..u+.

6  : .. .. 2. : .t... .i. ._ 4 5-

4. 4 g [o .. f-W
4. ..
                                                          .m4                              ,    .

f

                                                                                                ....;..           .4 rjj;
                                                                                                                                               . ..;+9 i

i i  :  !  ! ii-3- 2 3 4 5 67 2 3 4 5 67 2 4 100 1000 10000 h, %. Figure 7-3 Heat Transfer Coefficients Predicted by K-S-P Correlation versus Siddique's Expenmental Data for Steam-Helium Condensation i r l l 104 i

100 i i i i Rep 15500 t 700 Fikn Condensation Heat Transfer Td*= 1.18 Test Substance: Water 5 Nu r 7 j 'C i i = 9.78% z . h 1 Nusselt w & w/o - 4 10-1 interf adai shear 2 Rohsenow 3 Kutadeladze 5 4 Blangetti's modeling 5 K-S-P correlation s  !  ! 1 01 2 5 102 2 5 .103 2 5 Ret Figure 7-4 Comparison of Blangetti's Data and Correlations for Rey =15500

100 i i i i Rey - 25435 k 365 FHm Condensation Heat Transfer rg*- 2.82 Test Substance: Water 5 g x 'se t . +2.82 - 2 Q% m < _{ g0 o

                                                                                                                                                                                                                                                                /
                                                                                                                                                                                                                                       '#2
                                                                                                                                                                                                                                           %       7-       /z 1   Nusselt w & w/o                                                                                                                              p' interfadal shear 1 0-1       2 Rohsenow 3 Kutadeladze 4 Blangetti's modeling                                                                                                                       5 5   K-S-P correlation 5                 !

1 01 2 5 102 2 5 103 2 5 Ret F'gure 7-5 Comparison of Blangetti's Data and Correlations for Rey=25435 O O e

I ! 7.1.4 Goodykoontz's Experimental Data - Pure Steam l l Local heat transfer data were obtained by Goodykoontz and Dorsch [24,25] for steam condensing in vertical downflow inside a tube. The single-tube test condenser was a coaxial-type double tube heat exchanger with vapor condensing inside the inner tube I and cooled by water flowing in the annulus between the inner and outer tubes. The test section was mounted in the vertical position with vapor entering at the top and coolant ! flowing upward in the annulus. The inner tube was stainless steel with a 3/4-inch outside j diameter,5/8-inch inside diameter, and a total length of 8 feet. The method of measuring local wall heat flux was similar to that used by Vierow and by Ogg. No information was ! provided on the method of fitting the bulk coolant temperature data and the shape of the heat flux axial distribution reported was inconsistent run to run. The range of variables employed was as follows : Steam vaporinlet flow rate 34 to 40 lb/hr

 %)         Inlet vapor pressure                   16.2 to 55.8 psia Inlet vapor velocity                  65 to 232 ft/sec Coolant flow rate                      1085 to 7680 lb/hr Coolant temperature : Inlet           87 to 104 F Outlet        96 to 140.5    F The prediction of the local heat transfer coefficient with the K-S-P correlation was compamd with the experimental data and is shown in Figure 7-6.

1 l l t l t O 107 l l

i

s. .

l . 4 .; J j.. .j. ,..j....y... e.--

                                                                                                                           ...]
                                                                                                          +                -J 3-  r                                       - - -
                                                                        -++-            + Y *'
                                                                                                  +

l

                                                                                                                  +

2- t + 1 I. ++ g f+ +

                                                                                    + +-- +g +                   +

j 10000-  ; 1

                                                     . i ' +_t 8_ ;                                                                 -F-+'"+                                   !

b--3 --} ~"J 7 3 --m: 4-6- i .

                                            +-i- -- '   M_kj       i-   p +h+ p +-

5- y --- g ~+Yqh-~ _f Y 7- +

4. i .
                                  .. 4    r_ 4       ' j+.. _.l...             ...-                      .j. .      - i. - ...)

a. l 3_ ,. ..y.....-... . 2- - - *-- - --' ---*----4

                     $         $       5      5- 5                 $$I                      $            $           $        $

10000 h,m.awna Figure 7-6 Heat Transfer Coefficients Predicted by K-S-P Correlation versus Goodykoontz's Expenmental Data for Steam Condensation 7.2 Studies with Other Correlations for the Interfacial Shear Stress and Heat Transfer of the Liquid Film Flow in the Pipe 7.2.1 Shear Stress at Liquid-vapor Interface A. Single-Phase turbulent shear stress in a tube The method for the calculation ofinterfacial shear stress in the Kuhn-Schrock-Peterson correlation employs the single-phase turbulent shear stress calculated for a smooth tube, including a surface friction factor and dynamic pressure terms. The friction factor in a pipe is usually given graphically as a function of Red and the relative roughness e / d, where e is the root-mean-square roughness of the pipe wall. For the turbulent flow in smooth pipes, the line e / d = 0 is approximately tangent to the following line in the Darcy-Weisbach or Moody chart and given as : f, = 0.046Re,-o.2 (7.1) 108

i 1 s p or f, = 0.079Re,-a25 (Blasius co: relation) (7.2) d and the shear stress is given by I 1 t i= -fap,V,2 (7.3) l l 1 B. Correlation proposed by Wallis [28]  ! 1 1f ,G 2x2 r t'. =  ; f, = 0.005 1 + 300 33 (7.4) 2 2p cr 2 ( d; where G is the total mass flux, x the vapor quality, a the void fraction, d the tube diameter, and S the liquid film thickness. C. Correlation proposed by Dukler [27] Dukler established the empirical relationship for two-phase pressure drop using of experimental data for adiabatic two-phase annular coeurrent downward flow of a gas and , f. a liquid. Using his empirical equation, an analytical expression for r* can be derived in the form ) E ' r (7.5) t,? = pt(gvi)2i3 = A(Re -Re,)t Re ** where A = 0. 25 " '**' 3 (7.5A) 2 M u53p at dgp Rer = Gd (7.5B) pi j D. Correlation considering transpiration (blowing or suction) at the interface Transpiration at the interface alters the structure of the turbulent boundary layer rather considerable, affecting the shear-stress distribution and the sublayer thickness. The momentum, heat and mass transfer analogy can be employed as an approximation to calculate the interfacial shear stress with transpiration at the interface. For the Prandtl numbers close to unity, the relation of the heat transfer and the friction factor can be 109

approximated by the equation = St, (NOTE: " * " denotes the condition without transpiration). By using the analogy betwei ' the heat and momentum transfer with transpiration at the interface, the reladan < e v,Tittenfaas-!k. As discussed by

                                                                              = St, Kays and Crawford [40], the ratio of the friuion factor and heat transfer Stanton number Sthwith transpiration to that without for the Couette flow can be derived as b=             Of      =

bt g, = 4 (7.6) f*x exp( r)-1 St 3 exp( 3)-I where r and , are the blowing parameters for momentum and heat transfer, respectively and defined as

                     ,=r. "h-       =

m" 7 3 (7.7)

                            - E-      pu       *-

(2, ( -2 ,

                     ,=             =         .

p.0 St, pu St If the Lewis number (Le) is unity ( Pr=Sc), the analogy between the heat and mass transfer leads to the relation for the transpired boundary condition, giving St

                   -f = StT= exp(           "

(7.9A) St 3 St. )-1 m ,, where the mass transfer blowing parameter is given by ,= ,= . in St. pu St. Eq.(7.82). l Therefore, this anaiytical solution can be impiemented to solve the transpiration problem for momentum transfer as well as heat and mass transfer for Couette flow, and the unique conditions of fa;- = Sth = St 7 and ,= , , = ,,, are obtained with Pr and Le t a St, St, to be unity. I10 I

For the turbulent pipe flow with transpired boundary condition, the axial l dimensionless velocity profile and interfacial shear stress can be calculated numerically l I by finite-difference tecnnique using the turbulent mixing length model or k-c model. It ( l requires intensive cetnputational work as what was done by Yuann [20] in the computer code "COAPIT" ( See Section 6.6 for more information ). Another alternative is to employ the correlations derived for the mass transfer conductance with transpiration (See Section 7.3.2.3) and apply them to the friction factor with transpired boundary (this approach needs further justification). Then, the friction factor can be approximated by the mass and momentum transfer analogy in the relation b = St = _g- (7.9B) f; St , g where g/g* is correlated in Eqs.(7.91) and (7.92). However, further investigation is needed to adequately apply the momentum and mass transfer analogy to the turbulent c internal pipe flow with transpiration boundary, especially when the Prandtl number and b Lewis number are not unity (Pr is close to unity in the Kuhn experimental data). Comparisons were done to calculate interfacial shear stress at liquid-vapor interface by the above discussed models and are shown in Figure 7-7 with the local parameters in Run 1-1-1. 1 l A U 111 l {

l i 1 0.6 ,

                 .   . .     .,...                   ,     ...,.              ...i, 0.s                IW^* M d*'l h                               f c(g/g*)0.046 Re .,
                                                                       .                 d
   ~
                    %          [                                           IDukter Modell -

i j 0.4 h

     =        :
                                                      ,                        /~:       4 -

j e 0.3 - -

     =        -                                                                            -

to - E 0.2

     .c
                                        -0.2                   -0.25 W         :          f f .046 0     Re         f f .079 0     Re                               :

, 0.1

              -                                                                          2 l              :                                                                            :
.i... i i ...i l g,o . . . . . . . . .

50 100 150 200 O Axial Pos. (cm) Figure 7-7 Comparisons of the Interfacial Shear Stress Calculated by Several Empirical Models w th the Local Parameters in Run 1.1-1 7.2.2 Heat Transfer of the Liquid Film Flow in the Pipe 7.2.2.1. Correlations of the Kutadeladze and Chun and Seban These two correlations give the relations of the Nusselt number for the laminar-wavy liquid film flow in the pipe in terms of the liquid film Reynolds number. i A. Correlation of Kutadeladze [37]: 4 22 Nu, = 0.55Re f (7.10) where Re, = F / , l B. Correlation of Chun and Seban [26): Nu, = 0.823Re,422 (7,11) where Re, = G(1-x)d / p3 = 4F / 3 112

l_ a i i i 7.2.2.2. Correlation of Blangetti et al. with the Approximation of the Levich type i M@l ] The Levich-type model developed by Blangetti et al. [22] is an extension of the l Rohsenow model (for pure vapor condensation) which provides a single method of ) predicting the Nusselt number over a wide range of film Reynolds number. The model provides a weighted correction to the laminar Nusselt film solution. As discussed in l j Section 5.2, the condensate film thickness Br depends on the local mass flow rate P and i the interfacial shear stress T, and is given by Eq.(5.10) as i p_8Pr(Pt -Ps) 3s , PrT: 32

3, 2, 1

1 1 l Being further modified in dimensionless form, it becomes ( Eq.(5.19) ) i ! Ret 6 T6 4 =-+ 3 2 l-l where Sl is the dimens,onless film thickness. j I i 1 1

Blangetti et al. suggest the existence o' a transition region between laminar and i

i turbulent film behavior. In their model, the local Nusselt number Nu, is written as i Nu,= ' = (Nul3 + Nul,)* (7.12)

                                                                       < 2sK                               !

where L is the characteristic length defined in Eq.(5.18) as L = 1

                                                                       <8>

The locallaminar film Nusselt number Nu,3 is given by 1 Nu,3 = b (7.13) i The local turbulent film Nusselt number Nu,, was correlated as 113

r I Nu,,, = a Re7 Pr*(1 + e t (7.14) I where Table 7-1 gives values for coefficients a, b, c, e, f . Comparisons were done of the Nusselt number predicted by Kuhn-Schrock-l l Peterson correlation and Blangetti correlation versus local film Reynolds number at two values of constant interfacial shear stress. The results are given in Figure 7-8 and show good agreement in the low Reynolds number region (Ret <330). As expected the agreement becomes poor at high values of film Reynolds number because the Kuhn data base was limited to the laminar film domain. l Table 7-1 Coefficients for the Calculation of Local Condensate Film j Nusselt Numbers rl = 0 0<rl<5 5<rl<10 10 < rl< 40 l a 0.008663 0.008663 0.02700 0.04294 b 0.3820 0.03820 0.2071 0.09617 c 0.5689 0.5689 0.5000 0.4578 e - 0.1450 0.4070 0.6469 f - 0.5410 0.4200 0.4730 l 9 114

s , 4 . - NuKuhn-Schrock-Peterson I I

                                                      -- Nu i sngotti 3 -                                                                    -

l i 2x10 1 : Reo = 0, t* =0 g 2 : Rea - 40000, t *. = 2.36 \ - 1 0.1  ;  ;  ;  ; ; ; ;;'  ;  ; ; 3 10 100 Rei Figure 7-8 Comparison of Nusselt Number Predicted by the Correlations of K-S-P and Blangetti et al. 7.2.2.3 Correlation of Chen et. al. [23] for Pure Vapor Downflow Inside Tubes

  • Chen et al. developed a new correlation based upon information and data found in the literature. An expression for the Nusselt number for film condensation of a quiescent vapor was obtained by combining results from the laminar-wavy regime (for which the film Reynolds number is very small) and from the fully turbulent regime (for which the film Reynolds number is very large). Combining the laminar wavy Nusselt number and turbulent Nusselt number gives the following expression :

Nuo = (Nu,"j + Nu"')*

                                       ,                                                (7.15) which is applicable for film condensation of a quiescent vapor (i.e., gravity-dominant film condensation). The laminar Nusselt number Nui, in Eq.(7.15) was calculated by the Correlation of Chun and Seban in Eq.(7.11) and the turbulent Nusselt number Nun, was f3 b

115

approximated by performing a least-square fit to Blangetti and Schlundets theoretical i prediction Nu = 0.00402Re," Pr"" (7.16) where Re, = G(1 - x)d / i = 41' / , (7.17) A general correlation for film condensation can then be obtained by combining the asymptotic solutions of stationary vapor and high interfacial shear stress regimes. Nu, = (Nu"2 + Nu.2)142 (7.18) where n1 and n2 are obtained from experimental data. For the high interfacial shear stress regime, a modified form of the relation proposed by Soliman et al. was used to predict Nu sa : Nua = 0.036Pr"# t[ir2 (7.19) where *i (7.20) Tl= Pi(8V i)2i2 Chen et al. used the experimental data of Blangetti and Schlunder to obtain ni=6 and n2=2. Their correlation for the local film condensation heat transfer coefficient was then written as Pr"

                        = h " ' "' '0.31 Nu ' k3sg,        =
                                         Re"-u2+            Re"2+       t! "

Pr" (7.21) 2.37 x 10 , 771.6 '

                                     -(                                         -

Implementing the dimensionless interfacial shear stress proposed by Dukler in Eq.(7.5), Chen et al. obtained their correlation in the form Nu' =k (g h "j ' "' '"'0.31 Re'-u2+

                            =                          Re"2.'

2.37 x 10 ,

                                                             +      Pr ""'r Pr" A (Re - Re')" Re 771.6 3

_( _ (7.22) where A and ret were given by Eqs.(7.5A) and (7.5B). O 116

i 4

Figure 7-9 compares the K-S-P and Chen et al. correlations (using local i,

i parameters of the Kuhn data base). The K-S-P correlation predicts lower values where i , the heat transfer coefficient is less than about 104 W/m2 C and higher values where it is I above 1.3x104 W/m2 C. 16x10 - !. 14- - With local parameters . . ! in Kuhn's Experiment l ._ N[ (

            -         12- 1--                                                                       d o                                                                  I --
           ~

10- + q- 3 b 8- is . ,

             .g                                               a.,yy       - =
            $           g_   ..
                                                                               +-                     a 4-                                    +      t         e-   -+

1 2- 4 .

                                                              ~      '         "        +
  • I I I I I I I i I 3

6 7 8 9 10 11 12 14x10 hchen.cor, (W/m *C) Figure 7-9 Heat Transfer Coefficients Predicted by K-S-P Correlation versus Chen et al. Correlation (Pure Steam) 7.2.2.4. Correlation of Boyko and Kruzhilin [31] In an early study, Ananiev et al. [30] proposed to correlate the local heat transfer coefficient for convective condensation with the relation r-A (7.23) h=h,IP. where r 3 r 3 3 3 3

                         - =       -

(1 - x) + x (7.24) P= (Pu (Pv s and he is given by one of the available correlations for the single-phase heat transfer i

  ~

coefficient for the entire flow as liquid. Boyko and Kruzhilin [31] evaluated this type of 117

approach for condensation of steam using the relation proposed by Miropolosky for the single-phase coefficient ho : hD (7.25)

                     = 0.021 Re" Pr*"'

k ( Pr. , where Prb and Pr are values of the Prandtl number evaluated at the bulk and wall temperatures, respectively. 7.2.2.5. Correlation from Annular Flow Modeling [36] At moderate to high inlet vapor velocities, annular flow is established almost immediately at the inlet and persists over most of the condensation pmcess. A number of investigators have proposed ways of predicting the condensation heat transfer coefficient for annular flow conditions. Three of the more useful correlations are those developed by Soliman et al (29]., Traviss et al. [33], and Shah [34]. In the annular flow analysis described in the previous section, it became clear that the shear at the interface and at the tube wall were linked directly to the transport of heat across the liquid film. The correlation proposed by Soliman et al. is cast in a form that explicitly acknowledges the importance of these shear parameters in determining the transport. Their correlation is given by 2

                         = 0.036Pr"d t,u2                                                             (7.26) where t, = t i + t, + t,                                                                   (7.27) d ' dp'          f dp'        2
                                                         --dp'                                        (7.28) t' = 4( dzsp      ,            =$ 8

( dzsr ( dzs, ,

                           $, = 1 + 2.85X,u23                                                        (7.28A) d t, = -(1 - a)(pi - p,)gsin 0                                                          (7.29)

G 118

1 _i O r i_x 3fp,3 2/3 r 3 4 i (j cx = 1+ - (assuming that S = A ) (7.30) l \ x ) q Pn > < Pv s d# 2 t, G dx'[5ct , 2p " '* (7.31) l 4 g p,,sdzs ,,i s pi j 9 ai = 2x bx 4 a2 = 2(1 - x) J a3 = 2(1- x - b + bx) a, = ris -3 + 2x (xs - r 13 l a=b 2 - 3

                                                                      -x (xs      _

b = interface velocity = 1.25 for turbulent flow mean film velccity i = 2.0 for la min ar film flow (dp/dz), is the single-phase pressure gradient for the vapor phase flowing alone, and Xu is the turbulent-turbulent Martinelli parameter. For flow in a round tube, these can be evaluated as i 4 2 2

                          'dPT
                                    =

2f,G x l (7.32) (dzs, p,d l 1 l where i

                                       'Gxd fa = 0.046                      ;                                         (7.33) l

( M/ l l g ( 30 5r 310

                                    ~*      b             b X, =                                                                      (7.34) !

> \ X ) \ Pn > (Vvs , 1 1 Traviss et al. proposed the following relation for the local heat transfer coefficient for annular-flow convective condensation :

                                                    ~                      ~

hd 0.15Pr, Rei " 1 2.85

                       -=                             -+                                         (7.35) ki             F7          ,X, X ," ,

1 bJ , 119

where Rei = (1-x)d (7.36) g and FTis given by F r= 5 Pr,+ 51n(1 + 5Pr,) + 2.51n(0.0031Re,ui2) for Re, > 1125

                                                            ~
                                             = 5Pr,+ Sin 1 + Pr,(0.09643 Re,""- 1)        for 50 < Re, < 1125         (7.37)
                                             = 0.707 Pr, Re,"       for Re, < 50 Based on a purely empirical approach, Shah has proposed the following correlatior. as a best fit to available convective condensation heat transfer data for round tubes:

h

                                                  --  = (1 - x)" + 3'8x"'(1 - x)"                                     (7.38) h a                   (P / P,)us where h3= 0.023                  Pri "                                    (7.39)

(dst ij and P and Pc, are the absolute local and critical pressures, respectively. This correlation was recommended for 115 G s 211 kg/m2s, 0 s Pri s 13. Comparisons were made between the Kuhn-Schrock-Peterson, Chen et al. and the annular flow model correlations in Figure 7- 10. O 120

i I i 12x10 - - Inlet flow rate 100 Kg/hr d j_ ..._.i... 4. _.f. , ._.._ 6 quality x : 0.35 - 0.96 [ , [ t u fb, ; 40 - 440 ~~Ii ii i"~~~~ E 10- - Rey : 21000- 58000 ' j--ll , y . .

l l

t E t : 0.8 - 4.8 m . 41I i i 8-e i i v 'ta ' Traviss 1 1--' i 1

               .9              ..   ._1     e              .
l. . .4 . . . .  ! .;

6-  ; d K u.hn_... I  !.Mj j ' o . l

                                                                ,           s 4     /               -

I M~ w . -.i  ! I 2in e s

                                                           /.
                                                         ,--i j

j g 4- r f j ---- Shk.;

                -              -                                       i            1. .-.-..a' E                           :              i           l,   ...._..;.

e i-e 2_

                                                                .                                     i.-                            ,
               =
                                                           . l-                  i                i      i t-
                                            ;_7                 j                  ].' ... .                !j '
                                                    '            '                                    i 0           I l

i ' l t i

  • l 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Vapor quality x l
                                                                                                                                     )

Figure 7-10 Comparison of Heat Transfer Coefficients Predicted by K-S-P Correlation 3 with Traviss, Boyko, Shah, and Chen et al. Correlations  ; ( \ l 1 l I 121 i

                                                                                 ~

7.3 Condensation in the Presence of Noncondensable Gas - New Mechanistic Correlations g In this subsection discussing the condensation in the presence of the noncondensable gas, two approaches are presented in dealing with the total heat transfer coefficient combining the thermal resistances of condensate liquid film and steam / gas mixture in series. In Section 7.3.1, the approach with diffusion layer modeling was used to derive the correlations for the condensation and sensible heat transfer coefficients in the steam / gas mixture and by combining the heat transfer coefficient of liquid film proposed by Blangetti et al., the total heat transfer coefficient can be calculated. In Section 7.3.2, another approach with the mass transfer conductance modeling was used to correlate the ratio of mass transfer conductance with transpiration in the pipe to that without. Then, the mass transfer rate can be directly calculated as the product of mass transfer conductance and driving potential. 7.3.1 Correlation Based on the Diffusion Layer Modeling 7.3.L1 Effective Condensation Thermal Conductivity This section presents an extension of a series resistance method which permits calculation of an effective condensation heat transfer coefficient representing the combined liquid film and steam / gas mixture conductances, as derived originally by Peterson et al. [38]. The method has been implemented into RELAP5 (Banerjee and Hassan[42]), using the original correlation [38], and is claimed to improve RELAP5 performance both in accuracy and computational efficiency. As discussed more fully by Peterson et al. [38], the total heat flux into the  ; liquid / vapor interface must equal the sum of the condensation heat q" and the sensible heat q" ,

                                                                                            )
                                                          '3T' h,,(T( -T') = q"+ q"= -h r,cM A + k         -

(7.40) i 122 i

i i l 4 jp where h gv is an effective gas / vapor heat transfer coefficient combining the parallel iV steam / gas mixture sensible heat transfer and condensation heat transfer, hr

s the latent heat, e the total molar density, My the molecular weight of the vapor species, Li the

! average molar velocity at the interface, km the vapor / gas mixture thermal conductivity, and y the coordinate normal to the interface. The average molar velocity at the interface, 6, can be related to the noncondensable gas mole fraction Xg by Fick's law. The interface is impermeable to the noncondensable gas, so the absolute gas species molar j 1 flux at the interface equals zero, and the condensation velocity is i j 6, = D 1 BX '= D --In(X,) = D-(In(X,,)- In(X,)) 8 (7.41) ( O ( As D si OY si s

where D is the mass diffusion coefficient (estimated from the Fuller, Schettler, and I

Giddings relation [46]). The gradient ofIn(X,) at the interface is related to the interface i and bulk gas concentrations, X,i and X,s, by an effective diffusion layer thickness 6,, and defined by the right side of Eq. (7.41). . 1

4 i

j It is useful to define a log mean mole fraction as

                                      =     X6 - X'                                              (7.42) 4 X"8      In(X, / X,)

i Under this definition, X b< X,y, < X , iand the condensation molar velocity can be written l j as D l D= i (X, - X,) (7.43)

g. ave g Assuming ideal gas behavior, the average molar velocity can be expressed as
                                 -          D u= i                                                             (7.44)

P,X,,,,6,(pi - pe) where py; and pyd are the partial pressure of the vapor at the interface and in the bulk fluid, respectively, and pt is the total pressure, assumed constant through the boundary layer. 123

i i l t The difference of partial pressures in Eq.(7.44) can be expressed in terms of saturation temperatures; then the wall, film, sensible, and condensation heat transfer coefficients can be combined. A Clausius-Clapeyron equation, where vrg is an appropriate mean value in the boundary layer, provides a relationship between saturation pressures and the saturation temperatures at the interface and in the bulk, T' and T',. Using a difference approximation to the Clapeyron equation Ap / AT' = h,,,,,, / T,,,v,,,,,, and the approximation vre.. = RT,,, / M,X,,,,,p,, where the log mean vapor concentration X,,,,, is defined in Eq. (7-42), the molar condensation velocity becomes E' = DhM,X' 2

                                     '" -(T'* - T*,)                                (7.45)

R T ,,X ,,,,,6 , where R is the universal gas constant, and T,,, = (Tl + T,) / 2 the average temperature in the diffusion layer. The Sherwood number relates the effective diffusion layer thickness 6, to the characteristic system dimension d. Combining Eqs. (7.40), (7.41), and (7.45) and replacing the molar density c using the ideal gas law gives d q"* ' ' R 2T'" 3 Sh o = d$ 2 (7.46)

                     =S,        (T',- T'                  2 h ,p,M,D, The first term on the right side of Eq.(7.46) is readily recognized as a condensation heat transfer coefficient. The saturation temperatures determine the driving potential for the condensation heat transfer coefficient h,, such that 9'                                                        (7.47) h* =

T',-T; The third term of Eq.(7-46)is the gas / vapor log mean concentration ratio, given by X , ,,,, in(1-X,,)/(1-X,)' (7.48) X,,,,, In X,s/X,,, gi 124

l Combined, the last two terms of Eq.(7-46) have the inverse units of thermal , conductivity, and can be viewed as an inverse effective condensation thermal conductivity,1/k,. The effective condensation thermal conductivity can be written as 2 2 - k' = 1 ' h 2,p,M ,D' (7.49)

                                        $s R T',     ,

The condensation thermal conductivity k, increases as the gas / vapor log mean concentration ratio $ decreases. As required, the condensation thermal conductivity rapidly becomes infinite when the gas concentration reaches zero, and approaches zero as the gas concentration approaches unity. The Sherwood number for condensation now becomes, Sho = h*d (7.50) k, When the bulk mixture is saturated, the condensation and sensible heat transfer N coefficients can be combined into a total gas / vapor heat transfer . coefficient, I l h, = h, + h,. When the superheated condition is taken into account, the gas / vapor heat transfer coefficient is modified as 6~ (7.51) h" = h, + h(T' -Tl j Then, the heat flux can now be evaluated to eliminate the liquid / gas interface l temperature, giving the total heat flux as

                                                               ~

q"= * = 6 3 (7.52) l

                                                                        +-

h, + h' 6 ' sT',- Tl , where h,is the condensing heat transfer coefficient given by Eq.(7-47), h, the sensible heat transfer coefficient and hris the heat transfer coefficient of condensate liquid film. The total heat transfer coefficient h , defined as i l- 125 l

l l h, = 1 1

                                                   ,                                  (7.52A)    g T6- T ' + h, h* + h' s T' - TL can be calculated from the experimental data, and takes the correct limiting behavior with gas concentration. For small gas concentrations, $            1, the condensation heat transfer coefficient dominates over the sensible heat transfer coefficient, which remains approximately constant with gas concentration. For any large gas concentrations $>>l and h,-+h , as condensation becomes negligible.

l l Employing the analogy between heat and mass transfer, the She1 wood number l l can be correlated in the same form cs used for the Nusselt number Sh = C i for laminar flow, Re, < 2,300 (7.53) Sh = C2Re" Sc" for turbulent flow, Reo > 2,300 (7.54) where Re = pud / is the Reynolds number, Sc = p/pD the Schmidt number, u the mass- h average bulk velocity, d the pipe diameter, and the viscosity. In the present work, the coefficients C 2=0.021 and n=0.5 recommended by W. M. Kays et al. [40] are employed (the present data include only turbulent gas / vapor flow). This equation fits experimental data for heat transfer in gases quite well in the Prantdl number range of 0.5 to 1.0. For turbulent flow using Eq.(7.54), the condensation and sensible heat transfer l coefficients can be expressed as h, = 0.021(k, / d)Re" Sc" (7.55) h, = 0.021(k, / d)Re" Pr" (7.56) Substituting these into Eq. (7.51), the gas / vapor heat transfer coefficient becomes O 126

l l 4 l l i

'f3         h, = 0.021 (k, / d)Re" Sc" + (k, / d)Re" Pr" T - T Q                                                                      ~

- - - (7.57) . r

                 =   k,(T'3 -Tl)+   pgek,(T3 -Tl) x 0.021 Re" Sc"
(Scj (T,3 -Tl)d j

l An effective Nusselt number for the steam / gas mixture can then be defined as 9 l Nu, = r e (7.58)

k,(T', - Tl) + -

(Scj k,(T3 -Tl) 1 a j All the quantities appearing in Eq.(7.58) are obtained from the experimental data , , l with the exception of the bulk temperature T, and interface temperature Tl. The measured center line temperature provides a reasonable approximation to 3T . After i selecting a particular liquid film heat transfer model, Tl can be evaluated from the experimental data. Thus Eq.(7.58) can be used to evaluate Nu, from the experimental 7 i(d data. ' l Heat and mass transfer coefficients are lumped parameters characterizing the boundary layer profiles. Eqs.(7.55), (7.56) and (7.57) neglect the physical phenomena of

                                                                                                        \'

the blowing and natural convection. It is now proposed to account for these effects by correlating the present experimental data in the form i Nu r _= function of parameters representing l (7.59) 0.021 Re" Scu - blowing and natural convection Section 7.3.1.2 develops an extended diffusion layer based correlation + considering only blowing, while 7.3.1.3 develops a correlation including both blowing

and natural convection.

127

1 7.3.1.2 Diffusion Layer Modeling Based Correlations Including the Blowing l Parameter The function on the R.H.S. of Eq.(7.59) was found to be strongly related to the blowing parameter caused by the suction effect of condensation. The data base for the condensation of the steam / gas mixtures with local gas bulk mole fraction above 3% was l used to develop the following correlations. The values of the experimentally determined o Nurv divided by 0.021Re0 8Sc .5 were plotted against the blowing pammeter (See ! Eq.(7.82) for the definition of blowing parameter for the mass transfer , ) and are shown in Figures 7-11 and 7-12 for steam / air and steam / helium mixtures respectively. The negative value of the blowing parameter in Figures 7-11 and 7-12 represents the suction effect due to vapor mass flux moving into the liquid-gas interface. The liquid i film model proposed by Blangetti et al., as discussed in Section 7.2 from Eq.(7.12) to Eq.(7.14) was used to calculate the temperature at the liquid-gas interface from the l experimental heat flux. Assuming local equilibrium, vapor partial pressure at the i mterface can be determined from the interface temperature and the gas mole fraction is then found using X, = P - Pe , Pi A simple functional form Ko + K x ( 1

                                                      ,) was used to fit the experimental data and the curve was forced to pass through unity (Ko=1) when the blowing parameter was zero, closing rr.at@ ige the, data in this region.

i The correlated curves were fitted as For air : 0.021 Re 7 , Sc,3 = 1 + 0.05( ,)*# STD=13.5% (7.60) For helium : 0.021 Re[, Sc,, = 1 + 0.137(-pm)" STD=11.9% (7.61) i l O 128 l

1

                                                                                                                        \

1 ' From Eq.(7.60) and Eq.(7.61), the condensation and sensible heat transfer coefficient can be further modified with the correlated curves and written as For air : h, = 0.021 (k, / d)Re"Sc"(1 + 0.05( ,,,)**') (7.62) h, = 0.021 (k, / d)Re"Pr"(14 0.05(-p )**') (7.63) and For helium : h, = 0.021 (k, / d)Re"Sc"(1 + 0.137( ,)***) (7.64) h, = 0.021 (k, / d)Re"Pr"(1 + 0.137( )*) (7.65) l Employing the conelations for the condensation and sensible heat transfer coefficient in Eqs.(7.64) and (7.65), the total heat transfer coefficients ht defined in l Eq.(7.52A) (now designated as ht .kuhn) were calculated and are compared with experimentally determined values in Figures 7-13 and 7-14 for steam / air and steam / helium cases, respectively. The relative standard deviation is 8.11% for steam / air case and 5.83% for steam / helium case. Figures 7-15 and 7-16 give the comparisons of the axial distribution of the local total heat transfer coefficients predicted by the diffusion l layer modeling based correlations and those evaluated from the experimental data for ! Runs 2.1-8 and 2.1-13, respectively. The agreement is excellent. Comparisons of the 1 heat flux for the predicted and experimentally determined values are shown in Figures 7-l 17 and 7-18 for steam / air and steam / helium cases, respectively and (as expected) the l relative standard deviations are the same as those calculated for the total heat transfer coefficient. I I lO 129

6- - - - - - - - - , & i Air > W 5- - t r 4 l e o Dam  ; o l 84- -- 1 + 0.05-(-N) 2 A7 + l STD=13.5% i o e E l 0 0 j-g 3-  ; o - o,; o '. i g-- I

     'a 2 -                            i 4

i o I O o 1- # 7

                                                                                                        -      4 i          I 0-                                         -

A i i i i i I i i i i i 1 Figure 7-11 Ratio of the Experimentally determined Nusselt Numbers to the Theoretical Values Versus Blowing Parameter for Steam / Air Mixture 5- . r -- O l He o O Data 4- ~ ~ o~ ' 1 + 0.13 7'(-N) '^* d STD=11.9% i i i i i o 6 m 3-y4 L-~ -4 g.-- y n C OO

       ,                               !                                            O N                                                                     .                 O O                                                                o    ;O O

o 2_  : + o00 d"- O--

       %                                                           o             o
        $                                                       O 00
  • Z .

0 oo 0 "o i ,n - 1- -=*6-o

                   % wvy-l           0-                                  -

i i i i i l i i i l 1 l

                                                                  -b Figure 7-12 Ratio of the Experimentally determined Nusselt Numbers to the Theoretical Values Versus Blowing Parameters for Steam / Helium Mixture                                   g 130

(3) g 8 7- . . +--

7. 7 - A ,i r y -

s/ s. i 4 .1...j... . . .. . . _ . . . 5 )- ...i......-..- - .i ...

                                                               ;                                         !                                  i 4  ;                                                                               .
           -             i                                    l! j,                                      i O*

3

                                                                    ....._...                        .. 4... _ .                              . . . .

u .

                                                               !! !                                      l
                                                                                                         ~

E i ' I! 2- 4"-

           }             '

lST-8.11 %l 5 M i d 1000- t e t-n- - t -4' 8 1

'. -.E g ~~'6 4 i

a + i~ 7 -

                                                                     ---} -                                                                -b- -~- - -
e. p z_ ._; f.o ) _3 . 4 .

7

s. ;_ ._.4
4. ( a ; ,
                                                        . ; .7 ;        .

1. I 4 5 6 7 8 4 5 6 7 89 2 3 1000

  • hs.., (w/m *C) i Figure 7-13 Comparison of the Total Heat Transfer Coefficients Predicted by the Diffusion Layer Modeling Based Correlations and Those Evaluated from the Experimental Data for the Steam / air Case 6  ;
                              .  -.4
                                           .f _e 4

i _.e.-.. He o [ 5- & +

4. i ! 4 O i "Es 3- r 0

0-- 1 lSTD=5.83%l e 2-is . x < t o 1

                                                     ~

1000-9 .....4.

                                            +--
4. . . . . . . . . . . . . , . . . . . . . . . . . . .

7 8 A- - .:

                            / i i i i i                                                            i                    i             i     i   i            i i i

1000 2 N..,, (w/m *C) Figure 7-14 Comparison of the Total Heat Transfer Coefficients Predicted by the Diffusion Layer Modeling Based Correlations and Those Evalurn' from the Experimental Data for the Steam / helium Case k l 131

l o " Run 2.1-5 Ol W l

  .*     3500-5                     n O hi ,,,
5) A b t,Kuhre 3000-g g --

Error bar g 15 e 2500- -- 0 g _. o " 5 2000- -. o . E Inlet parameters : .. 6 .. u 1500- Ws=51.2 kg/hr . O j Wa=8.87 kg/hr __ f r Pi=415.3 kPa 1000- .. To o 500-i i i i i I i 0 20 40 60 80 100 1e0 140 Axial position (cm) Figure 7-15 Comparison of the Local Total Heat Transfer Coefficients Predicted by the Diffusion Layer Modeling Based Correlations and Those Evaluated from the Experimental Data for Run 2.1-8 O F Run 2.1-13 "Es 2500- O hi ,,, A h,Kuhn i E O Error bar

     $2000-
     =

o h o E u .. n __ 5m 1500- -- N y -- E Inlet parameters : _, g _.

      ~

Ws=52.1 kg/hr _ g _. E1000- Wa=31.4 kg/hr _ o r Pi-422.3 kPa .. E~ o l l 1 i i l i I O EO 40 60 80 100 120 140 Axial position (cm) Figure 7-16 Comparison of the Local Total Heat Transfer Coefficients Predicted by the Diffusion Layer Modeling Based Correlations and Those Evaluated from the Experimental Data for Run 2.1-13 132

o s 3 A,r i i  : 120x10 - + l

                                                                                   -t                ' -o-o          0 o

_ 100- + -- g- - c -- G 1

           }

80- --- +- - - + , E 2 I cr eo i gn_ 40- -- -- 1 I I I i 3 40 60 80 ,, 120x10 4"exp (w/m ) Figure 7-17 Comparison of the Heat Flux Predicted by the Diffusion Layer Modeling Based Correlations and That Determined Experimentally for the Steam / air Case O 12 0 x 10* - U He o o 100- o- - o. _ o 5 80- - - h, - o-o . 3 o . Cr 60- -o o:o o o 40- *

                                                         +*                 ---

ll 1 1 I I i 40 60 80, 100 120x10 9"exp (w/m ) Figure 7-18 Comparison of the Heat Flux Predicted by the Diffusion Layer Modeling Based Correlations and That Determined Experimentally for the l Steam / helium Case O ! k_) 133 i

7.3.1.3 Diffusion Layer Modeling Based Correlations Including the Blowing Parameter and Richardson Number hlj l Although the function in Eqs.(7-60) and (7-61) was found to correlate the data well with the blowing parameter, data scatter was seen to increase considerably at higher absolute values of .. This corresponds to higher condensation rates and the radial density variations such that the buoyancy effects might be important. A further modification including the additional Richardson number defined as the ratio of Grashof number (based on mixture density difference, interface versus bulk) to the Reynolds number squared was used to correlate the experimental data. The relationship between the experimentally determined Nup divided by 0.021Re o.8Sg.5 and ,(1+ Ri) , is ! plotted in Figure 7-19. The fitted curve for air, which fitted the air data quite well , can be written as Nu" ,(1 + Ri))2~o STD=12.8% (7.66) 0.021 Re" Sc" = 1 + 0.07( This new correlation including both the blowing parameter and the Richardson number worked very well to pull the scattered data together in the high blowing parameter range as shown in Figure 7-19. Physically, high Richardson number causes the dcwnward acceleration of the heavier gas near the interface and thus thins the diffusion boundary layer, which enhances the mass transfer of the vapor to liquid-gas interface. The Richardson number for all the experimental steam / air data is less than 1 and most of the data are well below 0.3. Therefore, the recommended parameter range for use of Eq.(7.66) is Ri<0.3 and Re>2300. Figure 7-20 shows the comparison of the predicted and experimentally determined total heat transfer coefficients. The relative standard 1 l deviation is reduced to 7.03% from 8.11% when both blowing parameter and Richardson number are included in the correlation. O 134 l f

n 1 i i l For the steam / helium mixture, buoyancy forces are reversed from the steam / air q j V mixture and the upward buoyancy force thickens the diffu:; ion layer at low Richardson numbers and reduces mass transfer. At high Richardson numbers, helium buoyancy causes mixed convection which significantly enhances the vapor mass transfer, The correlation to address the buoyancy effect caused by much lighter gases such as helium and hydrogen needs to be studied further. Considering the data scatter in Figure 7-12, the buoyancy is not expected to have major effect for the steam / helium case at PCCS conditions. 6-  ? - Air 5- " "~" O Data y 1 +0.07*(-b(1 + Ri))2'C 63 4 - , sTo-12.8% + r -j A o 3

               .                                               .          .O   P      ;

g 3- --- i

                                                      +        t          t- ---4 o                                                               :

i  ! 2- -, > - 3 , 4---- z  ; etsp 1-0-- - i i i iii' i i i i i i 1

                                           - N( 1 + R I)                                      ;

Figure 7-19 Ratio of the Experimentally determined Nusselt Numbers to Theoretical i Values Versus ,(1 + Ri) for Steam / Air Mixture s 135

4

                   *: J 6-b-

p-A ----

                                               ;4; t

Air . h 4 i 4+, J ... . . j ... ...i- .--p. - -- j!7li.j

         -             !                                                l 0         3                                                    j ...                                        ?

[.-

       "E              l         lSTD=7.03%l g         2   5                ----    -----4                          ---             -

1 - f

         / 1000--
                                                                                                                     +p
s. j - + g- + _
                                                                     -i                             i                . -j-7  t                      gp3-3               -- - j- - -                       -   -
                                                                                                                   ---"T-'

6 +-- .

                                    , -dD-*~k          :                                                             "i 5- ----- -o          j             b               -i t                                           '
                                                                                                                          -j    '
                         .. o :           -            !
4. .

i iiibi' i i i i i ii 1000

  • h i..xp (w/m *C)

Figure 7-20 Comparison of the Total Heat Transfer Coefficients Predicted by the Diffusion Layer Modeling Based Correlations including blowing and buoyancy effect and Those Evaluated from the Experimental Data for the Steam / air Case 7.3.1.4 Application of the Correlations from Diffusion Layer Modeling Using an O Itarative Method The following section describes how to apply the correlations developed based on the diffusion layer modeling from Eq.(7.60) to Eq.(7.65), to predict the local total heat fluxes in vertical tubes with noncondensable gases. The tube is divided into axial control volumes of size Az3 and center position z3 With the steam / gas inlet conditions and an initial approximation of the boundary condition ( heat flux q") in the first control volume Azi, the calculation can be started from the beginning. The calculation procedure at each axial location z3. of the tube is compnsed of 10 steps. Step 1 - From the known total mass flow rate W, and noncondensable gas flow rate W, i 1 evaluate the local mass flow rate of condensate W,, the local mass flow rate of I the vapor / gas mixture W., and the local gas bulk mole fraction X,3, h 136

l, i W,(z )= W,(zg)+ 3 rs 3 i W,(z;) = W, -W,(z;) l i

W,

! M sb(Z i )

  • W,(z;)- W, W, M, M, i

where Wr (0) = 0 and A(z;) = xd(Azg + Az;)/ 2 { d j Step 2 - Assume a local interface temperature Tl, its corresponding gas mole fraction, and condensation mass flux. As an initial guess for X, either the bulk gas mole fraction, or an interface value calculated immediately upstream, may be used. For condensation mass flux, the upstream value can be used as an initial

                                                                                                                     ]

guess. Evaluate the local mixture transport propenies pm, pm, D, Iq, and c,, using an appropriate gas mixture model and tabular data or analytic expressions (see [38]), at the arithmetic mean of the interface and bulk temperatures and gas concentrations. Step 3 - Calculate the local steam / gas mixture Reynolds number Re m and fihn Reynolds - number Rey, 4W,(z j) Re,(z j) = xd , W,(z;) Re,(z;) = xdp, Step 4 - Calculate the condensate film heat transfer coefficient hr using Eq.(7.12). Also calculate the pipe wall resistance and secondary-side heat transfer coefficient. Step 5 - Calculate the blowing parameter 137

0=

  • p,u, x 0.02 Re72 Sc* p z) 1 Step 6 - Calculate the Sherwood number for mass transfer and the Nusselt number for sensible heat transfer, For air :

Sh = 0.021 Re" Sc"(1+ 0.05( m)*) Nu = 0.021 Re" Pr"(1 + m)') 0.05( For helium : Sh = 0.021 Re" Sc"(1 + 0.137( m)') Nu = 0.021 Re" Pr"(1 + 0.137( )*) l Step 7 - Using the interface concentration assumed in Step 2, calculate the condensation i thermal conductivity k, from Eq.(7.49). Step 8 - Calculate the condensation and sensible heat transfer coefficients, h, = Sh k/d h, = Nu k/d Step 9 - Calculate the local heat flux based on the cooling medium temperature T., and the bulk vapor saturation temperature, 'I'3

                    ,              T' - T.,

9,5 _ 1 1 1

                               ,            +-+-

6- ' " h,+ h' ( T', % where hy is the series combination of the condensate wall, and secondary side i heat transfer coefficients. l l Step 10 - Calculate the interface temperature, , O ( 138 l

 !           T' = T's -

7 i G T - T' 3 l h, + h' 6 T' - TI , the interface gas mole fraction, and condensation mass flux i X* = 1 P'(T P,

                                )

l m"= =

                          **~

h,f h,f i and compare with the values assumed in Step 2. If different, iterate-again j through Steps 2 through 10 until convergence to the conect interface gas concentration is reached within i10. 1 10 V G V 139

73.2 Correlation Based on the Mass Transfer Conductance Modeling 73.2.1 Mass Transfer Conductance and Driving Potential O; 1 In Section 7.3.1, the diffusion layer model was derived considering the Fick's law I of diffusion with molar quantities and the result of Eq.(7.41) was derived based on the assumption of constant molar density [39]. The gas-vapor condensation mass transfer was converted to a heat tmnsfer relation using the Clausius-Clapeyron equation. This allowed the combination of condensation and sensible heat transfer coefficients in terms of temperature difference. An altemative approach is now taken in which condensation is represented in terms of mass tansfer relations. This avoids the assumptions inherent in the " condensation thermal conductivity ke" and permits use of the classical approach to analysis of mass transfer with blowing. In dealing with mass transfer problem, the approach of us-.r.g mass transfer conductance and mass transfer driving potential has been commonly implemented [40,41] to calculate the mass transfer rate. The total mass Dux due to combined convection and diffusion may be written as n, = m,n + j, (7.67) where ny is the mass flux of water vapor my is the mass concentration of water vapor n is the total mass flux jyis the diffusive mass flux of water vapor At a condensation interface, because only vapor is transferred and the interface is o impermeable to the n ncondensable gas, n s.i=0, and then ni=n .i+ng,1=ny,3=m" (subscript i denotes the interface). Hence, the condensation mass flux m", substituting into Eq.(7.67), gives m"= m ,im" +j ,,i (7.68) The mass transfer conductance gm is defined as O 140

t l-l . !O g* = 3'd (7.69) V m ,3 - m,,, j where my,3i s the mass concentration of water vapor in the bulk. Substituting Eq.(7.69) l into Eq. (7-68) and rearranging gives m"= g, m'6 - m' ' = g,B a (7.70) m,,3 -1 m*,,- m,d where Ba= is the mass transfer driving potential. I m,,i -1 J 7.3.2.2 Couette.now Modeling The purpose of this subsection is to demonstrate how to implement the mass l ' transfer conductance modeling in solving the mass transfer problem with transpiration at i the interface. By considering the Couette flow with transpiration (suction or blowing) at the interface of a flat plate, the solution for the ratio of mass transfer conductance with transpiration to that without can be analytically derived. For. steady state with no chemical reactions, the species conservation equation can be written as

                                 &n + an" = 0                                                       (7.71) l 0x      &y For a Couette flow, the dependent variables are independent of x, thus On., / 8x=0 and then &n" =0 andisny,y             constant. Therefore By n, = m,ni + j, = m,m"-pDdm' = constant = n,,3                        (7.72)               1 dy                                                       l i

Rearrangement and integration between the limits of my,i at the interface (y=0) and my at y gives the concentration profile, S dm' =y 'd (7.73) O+ a, m,m"-n.,i ;pD i 141  !

     ,=   ,           ,                                              .                  . _ .    -

l 4 and if pD is assumed constant m, - n,,, / m" _ 'm"y' (7.74) 9l m,,, - n,,, / m" tpD j Since m"=n w=nw .i , the above equation can be rewritten as 1+

                      '  ~ *'d             Y (7.75) m,,i -1    = exp g
                                          *pD ,

For y=S where my (y= 6 ) =mv.b is specified, Eq.(7.75) gives 1 + *'* ~ *'d = exp (7.76) m,3 -1 "Dj (p Substituting Eq.(7.70) for the definition of the mass transfer driving potential, Eq.(7.76) becomes r ,ng, 1+Ba = exp or m"=pp In(1 + Ba) s pD , S and it can further be rearranged as m,,= pD In(1 + Ba) B a (7.77) S B, Comparing Eq.(7.70) and (7.77), it can be seen that pD In(1 + Ba) (Couette-flow model) (7.78) g, = 7 a It is useful to normalize the mass transfer conductance with its value in the limit of zero mass transfer rate. Eq.(7.77) shows that m"-.0 as Bmd-40, and 2 h.m In(1+ Ba)=h. m Ba -1/2Ba ,, , , =1 Bu *0 Ba B *0 Ba which upon substitution in Eq.(7.78) gives lim g= = b = g*= B0 6 (7.79) g 142

l where g*, is the mass transfer conductance with zero mass transfer rate (no suction or blowing). With the relationship g*, = pD / 6 established, Eq.(7.77) can be rewritten as m"= g, " B "d Ba = g'

                                                  ,g,a  hB                              (7.80) a                  (

l where h= g, Ba (7.81) Eq.(7-81)is the Couette-flow result of the ratio of the mass transfer conductance with transpiration to that without. It sometimes proves useful to work in terms of a parameter which is directly l l proportional to the mass flux m". A very common used parameter called blowing - l l parameter for mass transfer is defined as

                      ,= h =                 and g, = pu St,                        (7.82)
                                   *St.

{, 8. pu l where St, and St, are the mass transfer Stanton number with transpiration and that without, respectively. Then, Eq.(7.80) can be written as m"= g, exp( Bg = g,hB a (7.83)

                                    ",)- 1              g, where                     h=

g, eXP(@m)-1 (7.84) i l l 7.3.2.3 Mass Transfer Conductance Modeling Based Correlations Including the Blowing Parameter In Section 7.3.2.2, the ratio of the mass transfer conductance with transpiration to that withoutis analytically derived as shown in Eq.(7.84). In this subsection, gm/gm* Will be empirically determined from the experimental data for the steam / gas mixture flow in b v the pipe. We can further apply the heat and mass transfer analogy to the heat and mass 143

transfer Stanton number for the turbulent low in the pipe. Then, the mass transfer Stanton number without transpiration at the liquid-gas interface can be written as O , 1

                     *               *
  • 42 d5 St" = ReSc = = 0.021 Re Sc (7.85)

Re Sc  ! which upon substitution in Eq.(7.82) gives

  • 42 d5 g, = pu, x 0.021 Re Sc (7.86) and p" = 42 d5 (7.87) pu, x 0.021 Re Sc where for the internal flow in the pipe, the mixture axial bulk velocity us is used to substitute the free stream velocity u in Eq.(7.82).

Then, the vapor mass flux at the liquid-gas interface is given by m"= g; h Ba = h>pu, x 0.021 Ref2Sc d5 'd (Em s (8.s t m,., - 1 , (7.88) g A further step is done to empirically correlate the relation of gm/gm* in Eq.(7.88). The mass flux at the interface can be evaluated with experimental data by using the appropriate film model to calculate the interface temperature and the Couette-flow model for gm/gm* as an initial guess to calculate the sensible heat transfer with transpiration. Then, the vapor mass flux at the liquid-gas interface is given by E q'; - k(T' -Tl) 0.021 Re;' Pr 5 3 m"= ' E" ' '"* ' (7.89) hf , + c,(Tl -- T,) By substituting m" from Eq.(7.89), Eq.(7.88) can be further rearranged and the i ratio of gm/gm* can be calculated in terms of the experimental derived quantities and given by 1 l 144 l

l q". - k 0.021 Re[8 Pr" < d , (T, - T;) k = *, =- 7 3

 ~
                                         ' gm um,
                                                                           ,              s  (7.90)
      'E"'     E     "d                                                 45      " ~ *'d (hr, + c,(TI -T,)) x pu, x 0.021 Ref 2 Sc t

m,3 -1 , i l The data base for tl.c condensation of the steam / gas mixtures with local gas bulk mole fraction above 3% was used to develop the following correlations. The experimentally determined gm/gm* can be correlated as a function of the blowing parameter m. The results are plotted in Figures 7-21 and 7-22 for steam / air and l l steam / helium mixtures, respectively. The negative value of the blowing parameter in Figures 7-21 and 7-22 represents the suction effect due to vapor mass flux moving into l l the liquid-gas interface. l Again, the functional form Ko + K, x( ,)** was used to fit the experimental l data where and the curve was forced to pass through unity (Ko=1) when the blowing l parameter goes to zero. The correlated curves are For air : h = 1 + 0.54(- m)"' STD=9.65% (7.91) Em For helium hg,= 1 + 0.47( )" STD=7.18% (7.92) Eqs.(7.91) and (7.92) were then compared with the analytical solution derived from the Couette-flow model in Section 7.3.2.2 and the results are plotted in Figure 7-23. To calculate the condensation heat transfer coefficient of the steam / gas mixture, we can write r a m" hr , = g*, h B,,h r, = h,(T', - Tl) (7.93)  ; Q$m) l Then the condensation heat transfer coefficient he can be derived as 145

i > h* = g, Y E

                          'E">

B,,, h g (7.94) h (T* - T') Implementing Eqs.(7.86), (7.91), (7.92), and (7.94), the condensation heat transfer coefficient in Eq.(7.94) can be calculated by the mass transfer conductance modeling using iteration method with an initial guess of interface temperature or steam mass concentration. Figures 7-24 and 7-25 show the comparisons of the condensation heat transfer coefficients predicted by the mass- transfer conductance modeling based correlations and those evaluated from the experimental data (using the liquid film model proposed by Blangetti et al. to calculate the liquid-gas interface temperature). A total heat transfer coefficient accounting of both the steam / gas mixture and the liquid filmis defined as h, = 3 (7.95) g 6 - ' h' + h' t T', - T' where the condensation heat transfer coefficient he is defined in Eq.(7.94). The enhancement of the sensible heat transfer coefficient due to transpiration at the liquid-gas interface is correlated using the correlation in Eqs.(7.91) and (7.92) for g/g* and is given by h, = (g / g*) 0.021(k, / d)Re" Pr" (7.96) The heat transfer coefficient of die liquid film hrin Eq.(7.95)is employed from the model proposed by Blangetti et al.. The comparisons of the total heat transfer coefficients calculated by Eq.(7.95) using the correlations in Eqs(7.91) and (7.92) and those evaluated from the experimental data are plotted in Figures 7-26 and 7-27 with the relative standard deviations of 6.51% and 3.26% for steam / air and steam / helium cases, respectively. The predicted local total heat transter coefficients are then coinpared with the experimentally O 146

i l I 4 3 determined local values for Runs 2.1-8 and 2.1-13 and are shown in Figures 7-28 and 7-29 for steam / air and steanVhelium cases, respectively. 1 J, l 4 4 i i 1 1 1 ) 1 l iO i 1 J 4 3 i 4 1 I i i 147

8-l A a 7- . O Data 6- ~

                                         +0 #'l-Am) y                         1 6

O STO.g.g4f  ! 5- .~.-~ i l o.l g 4- * - o i l' 3- *~~ ,

                                    .                                  lo-
                                                                                           -~~~

2 7'~

                /
                                                                                         - ~ ~ L..      l 0   ~~, ~.,                           ~                                                ~~, . ,

4 i

  • 7  ;-~i i i i a

5 f 1

                                                             - Sm Figure 7-21 Ratio of the Mass Transfer Conductance with suction effect to that without versus Blowing Parameter for the Steam / air Mixture O

6-. , He c 5- . O Data o O 4-.-.. ' *0'47'l %) ' '* (Fitted) STO.71 S*/a Bo o 4_/ o g 3- - 2.4-~

                                                                         ~~g....             "

co O p_ o o ..

         ,_                       - . ~                                                      -.

0-i i i i I i 5 1 Figure 7-22 Ratio of the Mass Transfer Conductance with suction effect to that without versus Blowing Parameter for the Steam / helium mixture 9 148

l 'O ~

                                                 !       !    l      !!I                  i                             ;

4/(exp(N)-1) Couette-flow model

                                                       ' 1 + 0.54 * (-k)       (Air) 6-  --

1 + 0.47 * (-k) (He)

                                                                                                              +

i j ,

                                                                                                                 /

i l

                            .                                    ;                        i l

4-i

                             *4-o l

i I

                                                                          -               8
                                                                                                         .-   i   -7 I                                                                                                   *

! i ..',

                                                              !                           i,-

l l t 2- -- -- +-- -+ a' - . 4 7

w. w' l

t l i i i i i $5I i i i i i l 1 Figure 7-23 Comparison of the Ratio of the Mass Transfer Conductance for the p s Empirical Correlations in the Pipe and the Analytical Solution of Couette-flow Model l l l l l s. l l f3 (> I 149

1 I 2- ' ' Air

                                                                                                                  ---4-----

h 2 .i - 10000. 8

                            . ,                     ++.                     +
                                                                            +

i- . -:-

                                                                                                                                   ..r
                                                                                                                                                    - t--
                                         - . ' + .. e Y.

o 6-

                            ;                                                                             ;                                      . - + -
.       J               .
i. .,.. .i-1.., STD=9.64%l. .. .E, -~~ ... . , . . . . _ .

4 1, 1._;_. _.L.4_

          .E,                                                            _._                 4._                                      L E                 ! ! '

i i.! _ i. i il 3  ! x 2 i 4-.!. ,-.+ L - - - - .4 ---i-.--.. O

r
l i+

1000;s ; a t r.. . ..w

                                                              %            .3 a              .a--       - -
                                                                                                                                     .tp ..-     .-
                          . 9.                    ... ..g .4                y                4                                                o. 4
                                             -+         -!                                                                            i 4-+

i 6 f-. t---4-~ 8 ...i ,

                                                    .j.. ..                                   4                                        {..

a 4. 4. 5 6 .L... L-789g 2 3 u.. 4 5

                                                                                                                         .--.i.. ..g 6789                                        2 1000                                                         2 10000
;                                                                                he,.xp               (w/m 'C) 1 Figure 7-24 Comparison of the Condensation Heat Transfer Coefficients Predicted by l

the Mass Transfer Conductance Modeling Based Correlations and Those l Evaluated from the Experimental Data for the Steam / air Mixture i d . . . . . .

                                                                                                             .h...         .. . . . .
!                         . i..i 4                                                                                   ...
                                                                                                                                 ...!                                 o
                                     ~ li                                                                                            j 2     .. p.!                                                     .. 4                                        4
                                                                  ,                                                                  i                  o o                   ji                                                                  .

JE1000o_ vd_* - * ~ -

                                              ,                 _i                         _!_u :
                      *: i::i:l:ylSTD=7.15% ~:f:::$::
                                                                                                                         .. t -

,' } _ 6 7. .'t ..,.. ...p. 7 ., q .y. ., 7 g 4. +. ... . g .. . ...y........ .. q . i {. . ...4... .9..-........p. . .4... . . . . . . i 2 - 4.. ...,.. 4 ...L.. s..J...>...j 4 i

                                                                                                                                                                                     ~

j 1000-- ; f  :. ,

                                                                                            ...t:- " .                                   ..
8. 4 + - . .-

_14 . 78 2 3 4 5 678 2 3 4 S 1000 J0000 he,.xp (w/m 'C) Figure 7-25 Comparison of the Condensation Heat Transfer Coefficients Predicted by the Mass Transfer Conductance Modeling Based Correlations and Those 4 Evaluated from the Experimental Data for the Steam / helium Mixture 1

e 150 1

p) ( 8 - v.- 7- p -- j.

                                         ,-,r--

A ,i r 3 i

3. - -

QJ 6 s.- -

                                       -t..*.i-
                                         +- --.                                                   -

t -- -t.- 5 -[ $...+-.---.- - k- - , k.- t.. -- i  ! i i . 4 p. 4- +44...........

                                                                                                                    ..p. .. . .    ..+...

i i  ! o 3  ;... ... . . . . . . ;... ...; .. . . . . ~ . . . O I' E i g 2 r ..+lSTD=6.51%l ~*~ '" ' " ' " 2 E i . l t 10 0 0-- :. g- -

t.  :::- l
8. i
                              !__;- ; :r -

4 i  :

                                                                                                                                          ~

7 _--k- g. _- . . .-

                                                                                                         -{-                            i -

8 S- .- q j-j-q j

                                                                                                                    -{ ..j 7 3

4 6 '?  : i i iiii i i i i i i i 1000 2 he.., (w/m *C) Figure 7-26 Comparison of the Total Heat Transfer Coefficients Predicted by the Mass Transfer Conductance Modeling Based Correlations and Those Evaluated from the Experimental Data for the Steam / air Case rO a-  ;,.- 1 (j 7 ..-.. " "

                       }_ +.~.4                                               He                                                            -

s-1 17 ..2._.

s. l.- i o
         -         4-  u. L i. d o                                                                                                                                          1 J          3-
                             !                                                                                                                     1 E                                                                                                                                       1 3                            lSTD=3.26%l q      2-                 4 d.
         .e-l O

1000- r 9- p ...p.- o _. . . . . . . . . . . . . , j s- +. ;y 7- LL- -- -.. . . . . - . . - . . . 7 iiI i i i i i i i 1000 2 h, ,, (w/m 'C) Figure 7-27 Comparison of the Total Heat Transfer Coefficients Predicted by the Mass Transfer Conductance Modeling Bassi Correlations and Those Evaluated from the Experimental Data for the Steam / helium Case ( 151

. 1 l I 6

      *mb Run 2.1-8 g:

W

     ~

g .. o N,og A h i,xuan 3 g

      ! 3000-                                                                      Error bar n
      .E                                             ..

g2500- -- g g .. jg p 2000- -- jg .. m .. E Inlet parameters : .. jg __ b 1500- Ws=51.2 kg/hr

                                                                                  }

5 j Wa=8.87 kg/hr -- Pi=415.3 kPa 12 f 1000-a 0 500-1 I I I I I I i 0 20 40 60 80 100 120 140 Axial position (cm) Figure 7-28 Comparison of the Local Total Heat Transfer Coefficients Predicted by the Mass Transfer Conductance Modeling Based Correlations and Those Evaluated from the Experimental Data for Run 2.1-8 O P 3 Run 2.1-13 "E 2500-O h,.xp i

       }
       ~

A h i,gunn

                          "                                               - Error bar 3

20 2000-n o 5 -- U 8 I. I- " 5 1500- o g 9

        $              Inlet parameters :                     h       o               -

g Ws=52.1 kg/hr e g) p 1000- Wa=31.4 kg/hr _i g Pi=422.3 kPa -- _.B N 500- 1 1 I I I I I I I l 0 20 40 60 80 100 120 140 l Axial position (cm) l Figure 7-29 Comparison of the Local Total Heat Transfer Coefficients Predicted by the Mass Transfer Conductance Modeling Based Correlations and Those & Evaluated from the Experimental Data for Run 2.1-13 W 152

f I l 'p 7.3.2.4 Mass Transfer Conductance Modeling Based Correlations Including the Blowing Parameter and Richardson Number lQ As discussed in Section 7.3.1.3, high Richardson number causes the downward acceleration of the heavier gas near the interface and thus thins the diffusion boundary layer, which enhances the mass transfer of the vapor to liquid-gas interface. As shown in Figure 7-30 when the Richardson number is included and combined with blowing parameter, the relation of g/g* correlated to ,(1 + Ri) will be kg,= 1 + 0.59[ ,(1 + Ri)[2 STD=9.06% (7.97) l The comparison of the total heat transfer coefficients ht predicted by Eq.(7.95) using the correlation in Eq.(7.97) and those evaluated from the experimental data are shown in Figure 7-31. The relative standard deviation is reduced to 5.06% from 6.51% when both blowing parameter and Richardson number are included in the correlation. lf3 A 8-  ; r r- ,- l Air i 7- 4 t t 4 O Data fl 6 -- ~- --- i 1 +0.59*(-8m( 1 + R I))1.2 (Fitted) 1 5- STD=9.09% .

          +               l                  l l            d
  • 24-o
                  -"         "                                                      +

3- ,

                              +---+ -r ,                        ,              +    +-
                    ;                     1 2- L-       ;    p -+-- + e - s-.                                     +

1-- + + I 0- + - ' - 4 i i iiiii i 5 i i 4 i 1

                                                    - Sm( 1 + R I)

Figure 7-30 Ratio of the Mass Transfer Conductance with suction effect to that without p) versus ,(1 + Ri) for Steam / Air Mixture

 %J 153
                                                                                      .-u..=           - - < - -

a y , , ,7..,...... 7  !--+-h-i--.}-j --- Air i

                                                                                                                                + .

6 f j.- ,

                                                                                                                                 .---j-p74j S. ;              &                                                                -         -

4 t 4. ;. .... 6 s. ....7..7-.-.. . - . . . . - . . . . . . . . . . . . - .

       "E                       ' lSTD=5.06%l                                                                        ...;.. .. 4 3          . ._._.;.._...

2  !  ! 2  !

         # 1000--      +
                                               -t           -
                                                                                +

2

8. Y' L ---i 7-7 - --}- y- --- - h - ' -i--~i- -

6- m y 5- - -- --- f {----f-4.4 , . , 5 6 7 89

                                            ;-MI 2

i . 3 4 5 6 7 8 1 1000

  • hi ., (w/m *C)

Figure 7-31 Comparison of the Total Heat Transfer Coefficients Predicted by the Mass Transfer Conductance Modeling Based Correlations including blowing and buoyancy effect and Those Evaluated from the Experimental Data for the Steam / air Mixture O 7.3.2.5 Application of the Correlations from the Mass Transfer Conductance Modeling Using an Iterative Method The following section describes how to apply the correlations developed based on the diffusion layer modeling from Eq.(7.60) to Eq.(7.63), to predict the local total heat fluxes in vertical tubes with noncondensable gases. The tube is divided into axial control volumes of size Az; and center position z3 With the steam / gas inlet conditions and an initial approximation of the boundary condition ( heat flux q") in the first control volume Azi, the calculation can be started from the beginning. The calculation procedure at each axiallocation z3. of the tube is comprised of 10 steps. Step 1 - From the known total mass flow rate W, and noncondensable gas flow rate W, evaluate the local mass flow rate of condensate Wr, the local mass flow rate of the vapor / gas mixture W , and the local gas bulk mass fraction m,,3

                                                                                                                                               /

9 154

1

      &p&

9 ,9yo. %V" c 0 .g. . i & a%#'s IMAGE EVALUATION Eh %~//g// '4[ N%)t

                 #       TEST TARGET (MT-3)                               /                /$;h,f;p gp>                                            // ,           /

g"ik

      +                                                                     <<

l.0 lf a ni L Ug33 3ll! L li i.=== 2.2 , C bbs l,l

                             ._                          l.8 1.25         1.4         1.6 4                          150mm                                  >

4 6" >

 >>>+,,                                                             ++,p 4?f$/$jjjx#

d ')hQ#g$ M PHOTOGRAPHIC SCIENCES CORPORA!!QN '0" A h 770 BAS",Ei ROAD

                                                                       *Nhg                @>>(0-P.C. BOX 338                             .--

WEBST'.R, NEW YORK 14580 #F (716) 265-1600

9"(zJA(zj W,(z;)= w,(zg)# h ,, W,(z;) . W, - W,(z;) W,(zj )- W, m ', = W,(z j ) where W,(0) = 0 and A(z;) = xd(Azg + Az3 )/ 2 Step 2 - Assume a local interface temperature T', its corresponding gas mole fraction gas, and condensation mass flux. As an initial guess for X, either the bulk gas mole fraction, or an interface value calculated immediately upstream, may be used. For condensation mass flux, the upstream value can be used as an initial guess. Evaluate the local mixture transport propenies p , p , D, k,, and c,, using an appropriate gas mixture model and tabular data or analytic expressions, ('} U at the arithmetic mean of the interface and bulk temperatures and gas - concentrations. Step 3 - Calculate the local steam / gas mixture Reynolds number Re, and film Reynolds number Ref, Re,(z3 )= 4W,(z j ) xd , Rer (zj )= W,(z j ) xd , Step 4 - Calculate the condensate film heat transfer coefficient hr using Eq.(7.12). Also ' calculate the pipe wall resistarice and secondary-side heat transfer coefficient. Step 5 - Calculate the blowing parameter O 155

m" W,(z;)

                 "                                                           45       where u, =

p,u, x 0.021 Re72 Sc .A(z,) Step 6 - Calculate the ratio of mass transfer conductance with transpiration and without transpiration and mass transfer driving potential. For air : k = 1 + 0.54( ,)"' Sm For helium E-! -" = 1 + 0.47(-p )" 8.

                                                                    ' m - m, , '

where Ba = q m ,i -l , Step 7 - Calculate the condensation and sensible heat transfer coefficients, e a g, k

                             'E">

B ,h,, h* -- (T,-E) h, = (g / g*) 0.021(k, / d)Re" Pr" Step 9 - Calculate the local heat flux based on the cooling medium temperature T., and the bulk vapor saturation temperature, T3 . T 3- T., 4,, _ 1 1 1 7 3+-+- 6- ' " h* + h' ( T,, - M j where h, is the series combination of the condensate wall and secondary side heat transfer coefficients. Step 10 - Calculate the interface temperature, O 156

1 9 Tl = Tl, - 7 ,3 6 ' h' + h' ( T; - Tl , the interface gas mole fraction, and condensation mass flux X*. = 1 P;(T i ) P, m,, = q ', = h,(T;-Tl) h,, h,, and compare with the values assumed in Step 2. If different, iterate again through Steps 2 through 10 until convergence to the correct interface gas concentration is reached within i10-3 . O O 157

8.

SUMMARY

AND CONCLUDING REMARKS n O The present experimental results constitute the most comphensive and accurate set of data so far obtained for condensation of steam from mixtures containing noncondensable gas (steam-air and steam-helium) flowing downward inside vertical tubes. The stainless steel condenser tube is of the same diameter as used in the PCCS condensers of the SBWR and the experimental conditions span the range of conditions  ! { expected for PCCS operation. The experiment design was the result of experience gained from two previous experiments carried out at UC Berkeley. Great care was taken to l l demonstrate the accuracy and consistency of temperature measurements and in fitting the bulk cooling water temperature data to give wall heat fluxes at a high level of accuracy. Many tests were repeated to demonstrate the level of reproducibility of the experimental data. Many pure steam tests wem performed both to aid the correlation development and i to compare the experimental results with those of earlier experimenters. j Simple correlations (called Kuhn-Schrock-Peterson correlations) were developed OlI for each mixture case (steam-air and steam-helium) in which, like the Vierow-Schrock steam-air correlation currently used in the TRACG code, expresses the " degradation factor", defined as the ratio of the experimental heat transfer coefficient to a reference heat transfer coefficient k/Si , in terms of the local values of the gas phase mixture Reynolds number and the beal bulk noncondensable gas mass fraction and, unlike Vierow-Schrock, the local liquid film Reynolds number. For pure steam, the two new correlations reduce to a single correlation which expresses the degradation factor (f = ft ) as a function of the gas phase Reynolds number and the liquid film Reynolds number. The pure steam data agree with the correlation with a standard deviation of 0.0736, the steam-air conelation agrees with the new data with a standard deviation of 0.176 and the steam-helium correlation agrees with the new data with a standard of 0.130. These correlations do not distinguish between laminar and turbulent liquid film flow but the 158

calculated Reynolds numbers indicate that the preponderance of data within the data base D lie in the laminar film domain. They do represent a sound basis for the analysis of the performance of the SBWR PCCS condensers. The new data and correlations have been compared with earlier work for both pure steam and steam-gas cases. Prior experiments aimed at getting local heat transfer coefficients for downflow inside tubes have been few. The experiment of Vierow was the first to give local values for steam-gas mixtures. The form of the K-S-P correlation is recognized as being non physicalin the sense that it fails to represent the total resistance to condensation heat transfer as the sum of liquid film and gas side resistances. This ad hoc fonn is consistent with past practice in containment analysis codes. It represents the data base well but it should not be used outside its data base. A mechanistic approach, such as the one developed as part of the UC Berkeley research program, Peterson et al. and Kageyama et al., is more philosophically appealing, but it is much more complex to use and it still involves some approximations. Prior to the improvements introduced in the present report it was not clear that the mechanistic models could give a more accurate prediction of local coefficients. The results presented in Section 7.3 demonstrate that the more complex approach can yield superior accuracy. In predicting the total heat transfer coefficient combining the thermal resistances of the steam / gas mixture and condensate liquid film in series using the diffusion layer modeling based correlations, the relative standard deviation is reduced to 0.081 for the steam / air mixture and 0.058 for the steam / helium mixture. Using the mass transfer conductance modeling based correlations, the relative standard deviation is reduced to 0.062 for the steam / air mixture and er for the steam / helium mixture. The numerical simulations carried out by Yuann and by Chen in the Berkeley >O program show clearly that dimensionless profiles of velocity, temperature and 159

composition have significant variation in the axial direction. On the other hand, our mechanistic models are based on heat and mass transfer correlations which implicitly represent fixed dimensionless profiles. Funher work in the area of modeling is needed to assess the role of nonuniform boundary conditions as an influence on the heat and mass transfer coefficients. The present results indicate that so-called temperature inversions, first noted in Vierows' natural circulation data, are not present for forced convection conditions. The false effect in Ogg's data is exp'.ainable as instrument error. We believe that the same is true of the Siddique data. Our results indicate that secondary side heat transfer is not the cause ofinversions as proposed by Hasanein et al. [45]. O O 160

    ' 9. ACKNOWLEDGMENT

( The authors wish to acknowledge the contributions to the experimental equipment development made by Karen Vierow, Dan Ogg and Takeo Kageyama. Dr. R. Y. Yuann contributed considerably by doing the parametric analysis of heat transfer in the cooling annulus. His numerical simulation of the condensation process with noncondensable gas provided further physical insight. The further work on the COAPIT code by Dr. X. M. Chen also contributed. Dr. James Liu was also a constant resource for consultation in building up the experimental apparatus and programming the data reduction codes. The expertise of Dan Essley in fabricating the new test section and assisting the mounting of thermocouples contributed greatly to the success of the experiment. ( ) v O 161

10. REFERENCES
1. Nusselt W., " Die Oberflachenkondensation des Waserdampfes." Z. VDI, Vol. 60 (1916), pp. 541/546,569/575.
2. Rohsenow, W.M., Weber, J.H., and Ling, A.T., " Effect of Vapor Velocity on Laminar and Turbulent Film Condensation, " Trans. ASME, Vol.78 (1956), pp.

1637/1643.

3. Dukler, A.E.," Fluid Mechanics and Heat Transfer in Vertical Falling-Film System," Chem. Engineering. Prog., Symp, Series. Vol. 56 (1960), pp.1/10.
4. Miesenburg, S.J., R.M. Boaarts, and W.L. Badger, " The Influence of Small Concentration of Air in Steam on the Steam Film Coefficient of Heat Transfer ",

Tmns. A.I.Ch.E., Vol 31, PP.622/637,1935.

5. Sparrow, E.M., and Lin, S.H.," Condensation Heat Transfer in the Presence of noncondensable gas ", J. Heat Transfer C86, pp. 430-486,1964.
6. Minkowycz, W. J., and Sparrow, E. M., " Condensation Heat Transfer in the Presence of Noncondensables, Interfacial Resistance, Superheating, Variable Properties, and Diffusion ", Int. J. Heat Mass Transfer,9, pp.1125-1144,1966.
7. Rose, J.W., " Condensation of a Vapor in the Presence of Noncondensing Gas ",

Int. J. Heat Mass Transfer 12, p. 233,1969.

8. Sparrow, F M., Mincowycz W. J., and Saddy, M., " Forced Convection Condensrtiw in the Presence of Noncondensables and Interfacial Resistance ",

Int, J. Heat Mass Transfer 10, pp.1829,1967. < 9. Denny. B. E., Mills, A. F., and Jusionis, V. J., " Laminar Film Condensation From Steam-Air Mixture Undergoing Forced Flow Down a Vertical Surface ", J. Heat Transfer 93, pp. 297,1971.

10. Uchida, H., A., Y. Togo, " Evaluation of Post-incident Cooling Systems of Light-Water Power Reactors ", Proc. from Int. Conf. on the Peaceful Uses of Atomic Energy, 3rd Conference., Geneva, Switzerland,1964, Vol.13, pp. 93-103.

11 Borishanskiy, V. M. et al., " Effect of Uncondensable Gas Content on Heat Transfer in Steam Condensation in a Vertical Tube ", Heat Transfer-Sovit Research, Vol. 9, No. 2, March-April 1977,pp. 35-42.

12. Al-Diwani, H. K. and Rose, J. W., " Free Convection Film Condensation of Steam in the Presence of Noncondensing Gases," Int. J. Heat Mass Transfer, Vol.16, 1973, pp.1359-1369.
13. Press, W. H. et al, " Numerical Recipes ", Cambridge University Press,1992.
14. Vierow, K. M., " Behavior of Steam-Air Systems Condensing in Concurrent Vertical Downflow ", MS Thesis, University of California at Berkeley,1990.
15. Ogg, D. G., " Vertical Downflow Condensation Heat Transfer in Gas-Steam Mixtures ", MS Thesis, University of California at Berkeley,1991.

162

p 16. Kageyama, T., " Application of Diffusion Layer Theory to Venical Downflow ' g Condensation Heat Transfer ", MS Thesis, University of California at berkeley 1992.

17. Siddique, M., " The Effects of Noncondensable Gases on Steam Condensation under Forced Convection Conditions," PhD Dissenation, Massachusetts Institute of Technology,1992.
18. Vial, E., " New Correlation for Condensation with the presence of Noncondensable Gas ",1991 SBWR meeting in San Jose.
19. Vierow, K. M., and V. E. Schrock, " Condensation in a Natural Circulation Loop With Noncondensable Gases Pan I - Heat Transfer ", Proc. Intl. Conf. on Multiphase Flows '91 Tsukuba, Tsukuba, Japan, pp. 183-186, September,1991.
20. Yuann, R. Y., " Condensation from Vapor-Gas Mixture for Forced Downflow inside a Tube ", PhD Dissenation, University of California at Berkeley,1993.
21. Blangetti, F. and Schlunder, E. U.," Local Heat Transfer Coefficients of Condensation in a Vertical Tube ", Proc. 6th Int. Heat Transfer Conf., vol. 2, pp.437-442,1978. '
22. Blangetti, F., Krebs, R. and Schlunder, E. U., " Condensation in Vertical Tubes -

Experimental Results and Modelling ", Vol.1/No. 2, ISSN 0723-0966,1982.

23. Chen, S. L., Gerner, F. M., and Tien, C. L.," General Film Condensation O J Correlations ", Exp. Heat Transfer, vol.1, pp. 93-107,1987.
24. Goodykoontz, J. H., Dorsch, R. G.," Local Heat-Transfer Coefficients for Condensation of Steam in Vertical Downflow Within a 5/8 Inch Diameter Tube",

NASA TN D-3326,1966.

25. Goodykoontz, J. H., Dorsch, R. G.," local Heat-Transfer Coefficients and Static Pressures for Condensaation of High-Velocity Steam Within a Tube", NASA TND-3953,1967.
26. Chun, K.R., and Seban, R. A.," Heat Transfer to Evaporating Liquid Films ", J.

Heat Transfer, vol. 93, pp. 391-396,1971.

27. Dukler, A. E., Fluid Mechanics and Heat Transfer in Venical Falling-film Systems ", Chem. Eng. Prog. Symp. Ser., vol. 56, no. 30, pp.1-10,1960.
28. Wallis, G. B.," One-Dimensional Two-Phase Flow ", Wiley, New York,1965.
29. Soliman, M., Schuster, J. R., and Berenson, P.J., A gereral Heat Transfer Correlation for Annular Flow Condensation ", J. Heat Transfer, vol,90, pp. 267-276,1968.
30. Ananiev, E. P., Boyko, L. D. and Kruzhilin, G. N.," Heat Transfer in the Presence of Steam Condensation in a Horizontal Tube ", Proc.1st. Heat Transfer Conf.,

pan II, p. 290,1961. O 163

i

31. Boyko, L. D., and Kruzhilin, G. N.," Heat Transfer and Hydraulic Resistance during Condensation of Steam in a Horizontal Tube and in Bundle of Tubes ", Int.

J. Heat Mass Transfer, vol.10, pp. 361-373,1967.

32. Miropolsky, Z. L.," Heat Transfer during Condensation of High Pressure Steam inside a Tube ", Teploenergetika, vol. 3, pp 79-83,1962.
33. Traviss, D. P., Rohsenow, W. M., and Baron, A. B.," Forced Convection Condensation in Tubes: A Heat Transfer Correlation for Condenser Design ",

ASHRAE Trans., vol. 79, part I, pp. 157-165,1973.

34. Shah, M. M.," /. General Correlation for Heat Transfer during Film Condensation l inside Pipes ",ir.t. J. Heat Mass Transfer, vol. 22, pp. 547-556,1989.
35. Ueda, T., Kubo, T., and Inoue, M.," Heat Transfer for Steam Condensing Inside a l Vertical Tube ", Proc. 5th Int. Heat Transfer Conf., vol. 3, pp. 304-308,1976.
36. Cary, V. P.," Liquid-Vapor Phase-Change Phenomena ", Chapter 11, Hemisphere Publishing Corp.,1992.
37. Kutateladze, S. S.," Fundamentals of Heat Transfer ", Eduard Arnold Ltd.,1963,
Chapter 15.
38. Peterson, P. F., Schrock, V. E., Kageyama, T.," Diffusion Layer Theory for Turbulent Vapor Condensation with Noncondensable Gases ", ASME Journal of Heat Transfer, Vol.115, pp.998-1003,1993.
39. Kageyama, T. Peterson, P. F. and Schrock, V. E., " Diffusion Layer Modeling for l

Condensation in Vertical Tubes with Noncondensable Gases", Nuclear Eng. & l Design, Vol 141, pp. 289-301,1993.

40. Kays, W. M. and Crawford, M. E., " Convective Heat and Mass Transfer ", Third Edition, McGraw-Hill, Inc., Chapter 14,1993.
41. Mills , A. F., " Mass Transfer", Textbook in Draft.1994
42. Banerjee, S. and Hassan Y. A.," Condensation Heat Transfer Coefficient with Noncondensable Gases for Heat Transfer Thermal-Hydraulic Codes ", ANS meeting 1994.
43. Barford, N. C., " Experimental Measurements: Precision, Error and Truth" Second Edition, John Wiley and Sons, New York,1985.

44 Othmer, D. F., "The Condensatan of Steam", Industrial and Engineering Chemistry, Vol. 21, No. 6, pp. 577-583,1929.

45. Hasanein, H. A., Golay, M. and Kazimi, M., Paper at ANS Winter Meeting 1993.
46. Perry, R. H. and Green, D.," Perry's Chemical Engineers' Handbook ", pp. 3-285, 6th edition, MaGraw-Hill Co..

O 164

                                               .   -..            - - .        .     --     ~    .       --   .-.

APPENDIX A QUALITY ASSURANCE O The implementation of a quality assurance program in this research can minimize the possible experimental uncertainties and assure the quality of experimental results. , Carefully steps were taken for the design, construction, experimentation, data correlation, i and application stages in order to assure the best quality of the final results. They will be discussed in the following subsection.  ; Assessment of the nrevious erneriments As discussed in chapter 2, a carefully smvey was done to assess the Vierow's and Ogg's experimental apparatus. Several problems were identified about the equipment designs and instrumentation installations primarily from Ogg's experimental apparatus. The key items included the cooling jacket and annular spacer and mixer design, thermocouple installation and temperature measurement method, the control of experimental operating condition. Through the learning from previous experimental experience, several new approaches were taken to funher modify the testing apparatus and improve data reduction method. A brief summary is listed below : A. Embed sheathed subminiture thermocouples into the condensing tube by cutting a slot on the tube wallinstead of soldering bare wires at outer tube wall to measure - the temperature. B. Split thejacket in half and directly lead the thermocouple through taps located 1 inch upstream of each individual thermocouple and then assemble the split jacket back with silicon rubber on thejoint surface as sealing material. O 165

C. Use nylon screws as spacers instead of metal discs with small holes to keep the annulus concentric by inserting the screws with same length into annulus. D. Determine the cooling water bulk temperature by measuring temperatures at both walls of annulus and implementing the bulk temperature ratio derived through numerical calculation instead of inserting a thermocouple directly into water flow. E. Use two pipe legs for cooling water inlet and four for water outlet instead of using one at each end. F. Install air heaters to heat up air before it is mixed with steam and prevent wet steam condition when the mixture enters into test section. G. Install a additional moisture separator to discharge condensed liquid in the steam supply system as well as to serve to control steam-gas mixture inlet temperature. H. Additional control valves are installed at steam-air mixture and condensed liquid I outlet line respectively for adjusting test section pressure. I. All 60 channel signals from instruments are connected to data acquisition cards 1 mstalled in Macintosh computer which by running Workbench software program can greatly facilitates the collection of data. J. Other improvements such as the installation of thermocouples on the jacket, double insulation of test section, sealing of thermocouple tabs, pressure gauge indicator at inlet and outlet test section and others were done to facilitate the operction and obtain better qualified data. Desim stage for the new annaratus e; 166

l l gy Through the assessment of the previous experiment done by Vierow and Ogg, improvement design has been incorporated and the most recent changes to the SBWR PCCS condenser design were considered in choosing system orientation, operation mode, and capacity. 1 A. Careful evaluanon was put m the design of cooling jacket with the goal of I

l. ,

mmtmmng the disturbance of flow pattern by Thermocouples and spacers in the l l annulus. B. Test section material propernes were checked to evaluate the thermal expansion during heating process and the release of the stress was done by modifying the l way of test section support and the sealing of cooling jacket packing gland (end I fitting). C. The steam supply system was re-evaluated to make sure that their is no pass way l for air slipping into the system and modification was designed to assure the quality of vapor entering into the test section to be 100% without any condensed j l j water. l l l l D. The instrumentions including temperature, pressure, and flow rate measurement l were selected to assure minimum errors and best perfctmance in the range of experimental operating conditions. All the design requirement was detailedly discussed and the drawings, calculation sheets, and materials describing the experimental hardware were documented. Construction Stage 167

A. During the construction stage, detailed drawings were made with close tolerance specified for machine shop to manufacture et.ch component. After construction, each component was measured to comply with its design value. B. The splitting of cooling jacket was done by outside qualified contractor. The splitting process was monitored by this department mechanics to assure the curvature integrity of split parts and the loss of material within tolerance in order to assure the roundness of assembled jacket with unifomi flow in the annulus. C. The installation of thermocouples on the condensing tube were cavefully done to prevent the heating damage of thermocouple tip. Each thermocouple was checked to assure the specified portion of wire was fully embedded inside the slot and outer surface was polished with fine sand paper to get a smooth surface on the tube. Each of thermocouple installed on the jacket was surveyed to keep the same intrusion length (Imm) into the annulus. After installation, all thermocouples we were examined with thermometer to check their readings in normal range. D. Before jacket was amounted on the condensing tube, the orientation and position of jacket and end fittings were carefully marked on the tube. After the two split Jacket parts were assembled, the tightening of clamps were adjusted to obtain the best roundness of the jacket and sealing performance. E. Proper insulation for the test section was carefully done to minimize the possible heat loss and keep inner jacket close to adiabatic condition typically near the location with thermocouple intrusion. The construction procedure was designed for each stage and carefully followed in step. 168

i Frnerimental fitnoe - q O I A. Instruments used in the test apparatus, including pressure and differential pressure l transducers, and flow meters, were calibrated, i B. Step-by-step written procedures were used in verifying initial conditions, startup, l 1 data acquisition, and shutdown to ensure consistency in the method of obtaining data.

        - C. Reproducibility runs which had a "R" in their designation as shown in text matrix (Table 6-1) were performed to test the consistency of the data.                Poor reproducibility runs were carefully surveyed to identify the possible deviation of test operation or operating condition r

E. To investigate the possible fouling on the condensing tube, a special steel brush l was used to clean the inner tube wall. Additional 7 runs were performed to check the reproducibility of the data Data Correlation l A. All the raw data were carefully surveyed and unqualified data were sifted out l before data reduction. B. The data were reduced by a FORTRAN program and the reduction process and output were checked by hand calculation. Both results agree within negligible error. C. An error analysis ( Ref. to Appendix A) was performed to find a confidence level of the developed correlation. O 169

l APPENDIX B ERROR ANALYSIS The experimental error analysis for the reduced data was performed by using the standani error propagation methods as derived in Ref. [43]. The total error of a function j F with independent measured variables x1, x2, X3, Xn, was obtained as:  ; Bf Df af o, = [(3x o,,)2 , (8x g,* )2,,,,,,,,( 3X. g")2)v2 (B.1) 3 2 The relative error is derived by dividing or by f: E = [(b)2,(U , s)2,,,,,, ,(c )2ju2 a (B.2) j f x 3 x2 x, l The experimental heat transfer coefficient is defined as (see Section 5.2) : W,c" dT"(x) h,,,(x) = - (B.3) xd;(T,,,(x)-Tw(x)) dx , Therefore, u2 U,= h Gw. G(T. -r. ) , U tar ia>> gg h ,,, (W,)2,(h)2,($)2, c, d 3 g(T,, - Tg ), (dT, / dx , _ i The degradation factor is defm' ed as (see Section 5.2) : i ' f = h,,,(x)

                           .                                                            (B.5) hrdX)

Therefore,

                              ""       hn)2)u2                                          (B.6) f L = [( h ,,,)2 h ,( O ri Table B-1 listed the uncertainties of the apparatus and instrument. Uncertainties in measured temperatures, pressures, transducer accuracy, and calibration standards were all included in the error analysis. The calculation of the relative error of the reduced data was performed following the data reduction procedures as described in Section 5.2.

, Because the relative error in each reduced quantity is a function of the errors of several I I 170 1

variables that vary due to different axial positions and test runs, the average relative error d was derived based on the existing runs. The average relative error for the calculation of major reduced quantity is listed below : Reduced auantity Ave. relative error ( %j Heat flux 10.4 % Tin 0.99 C Experimental heat tansfer coefficient i 18.7 % Theoretical heat transfer coefficient i 3.36 % Degradation factor 19.0 % The most critical uncertainty for the calculation of heat transfer coefficient comes from the heat flux estimation and the temperature difference between saturation temperature and inner wall temperature ( AT). The axial temperature gradient of the cooling water (dTcw/dx) was determined from a least square f't of the cooling water p temperature. The fitting method, the uncertainty of the temperature measurement and the calculation of cooling water bulk temperature all can affect the accuracy of the determination of temperature gradient. With the information of the calculated standard deviation of the fitted local values compared with original data, errors from thermocouple measurement, and test results with different fitting technique, it is reasonably assumed that the relative deviation of this value was within 10% error. For the runs with noncondensable gases, the errors of the estimation of local gas mole fraction increases while water vapor was continuously condensed. The uncertainty oflocal mole fraction affect the estimation of local saturation temperature which corresponded to the local water vapor partial pressure. In general, the high errors occur near the top regions for pure steam runs and both near the top and condensing end regions for the runs in the presence of noncondensable gases. Also, in the runs with higher inlet pressure, the errors are comparatively less than those with lower inlet pressure because the relative error of A) t v the estimation of AT is smaller. 171

I l l If a more conservative error of 15% was set for the cooling water temperature l gradient through the derivation of curve fitting, the average relative error of the heat G1 I j transfer coefficient and degradation factor increases to 23.2 and 23.8, respectively. , l \ \ l l l l O l I O\ 172

I TABLE B-1 Uncertainties of Apparatus and Instrumentation A. Stainless Steel Tube I 1/2 inch 1/2 inch O.D. : 0.005 inch 2 inch O.D. : i 0.01 inch Wall thickness : i10% for 1/2 inch - 2 inch tube i B. Metering Orifice Diameter : i 0.001 inch C. Thermocouple J type (standard): i 1.0 C or 0.4 % ( vendor guaranteed limit ) T type (standard): 0.5 C or 0.4 % ( vendor guaranteed limit ) All the thermocouples were special types with carefully screened wires with the guarantee of best accuracy. Based on the isothermal check as described in Section 4.1, the standard deviation of the thermocouples was typically less than 0.26 C for the tested temperature ranges (See Table 4-1). All the amounted thermocouples were also checked by putting them into water at room temperature and water at boiling condition before they were installed. The results showed that the errors were within 0.2 C. D. Pressure Transducer Gold- model PA822-100 : 0.15 % Validyne model DP15-54 : 0.5% E. Differential Pressure Transducer Validyne model P300D : 0.5% Validyne model DP15-50 : 0.5% Data Sensor model PB413B-17 : 0.3% Gould-Statham model PM8142 : i 0.25 % F. Thermocouple Axial Position : 0.1 mm G. Data Collection Card ACM2-16 : 0.08 % i O V H. Crosby P. Source : 1.0 psi 173 1

i I. Volumetric 2 liter Cylinder : 20 ml J. Time : 0.1see K. Rotameter : 29c average accuracy i O l l \ l i l { l [ i 174 l i

O O O Appendix C Tables of Reduced Data UCB-NE-4201 Rev.2 U. C. Berkeley Single Tube Condensation Studies h;  ; S. Z. Kuhn, V. E. Schrock & P. F. Peterson l C-0

Run 1.1-1 116.1 KPa Tc,1 = 31.5 *C Tc-fit = D Ws - 60.2 Kg/hr Pinlet = 9: Point -11 Wg = 0.000 Kg/hr Tinlet - 138.8 *C Tc,o = 52.0 Kg/hr STD = 0.19 *C Wcw = 999.8 Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dicw/dX q' Wcond Wsteam Film-dx length W/ma 2 Kg/hr Kg/hr m cm *C 9C *C 'C *C *C 'C *C 9C/m 93.0 94.1 99.0 103.9 136.8 7.039 0.548E405 2.17 58.03 0.721E-04 17.0 47.5 51.4 51.0 3.85 56.35 0.874E-04 50.1 92.3 93.3 98.2 103.9 136.5 6.944 0.540E+05 30.4 46.0 50.0 136.0 6.844 0.532E+05 5.60 54.60 0.992E-04 44.6 45.1 49.0 49.1 91.1 92.1 96.9 103.9 91.3 92,3 97.0 103.9 135.4 6.727 0.523E+05 7.65 52.55 0.110E-03 61.5 44.0 48.1 47.9 50.36 0.120E-03 79.8 42.8 46.9 46.7 90.6 91.6 96.2 103.9 134.7 6.603 0.514E*05 9.84 45.3 45.4 89.4 90.4 94.9 103.9 133.9 6.471 0.503E+05 12.14 48.06 0.129E-03 99.6 41.1 14.62 45.58 0.137E-03 121.3 39.8 44.0 44.0 88.9 R9.9 94.4 103.9 133.1 6.330 0.492E*05 38.4 42.7 42.5 88.7 89.6 93.9 103.9 132.5 6.178 0.481E+05 17.28 42.92 0.145E-03 145.1 Length Re,f X Gas D Gas P steam P gas p(mix) Re (mix) Htheor Hexp Dfactor R(in) R (tube) R(out) KPa Kg/m^2 W/m*2.*C W/m^ 2.*C m*2*C/W m *2*C/W m^2*C/W cm mass % mole % KPa 0.000 116.1 0.0 0.122E-04 0.354E*05 0.946E* 04 0.113E*05 1.198 0.882E-04 0.109E-03 0.821E-03 17.0 0.145E402 0.000 1.216 0.105E-03 0.109E-03 0.835E-03 30.4 0.256E+02 0.000 0.000 116.1 0.0 0.122E-04 0.344E+05 0.780E+04 0.949E+04 44.6 0.370E+02 0.000 0.000 116.1 0.0 0.122E-04 0.333E+05 0.687E+04 0.766E+04 1.115 0.131E-03 0.109E-03 0.843E-03 61.5 0.507E+02 0.000 0.000 116.1 0.0 0.122E-04 0.320E*05 0.619E+04 0.765E+04 1.236 0.131E-03 0.109E-03 0.886E-03 79.8 0.649E+02 0.000 0.000 116.1 0.0 0.122E-04 0.307E+05 0.569E+04 0.674E+04 1.185 0.148E-03 0.110E-03 0.914E-03 99.6 0.795E+02 0.000 0.000 116.1 0.0 0.122E-04 0.293E+05 0.529E+04 0.565E404 1.069 0.177E-03 0.110E-03 0.935E-03 121.3 0.955E+02 0.000 0.000 116.1 0.0 0.122E-04 0.278E+05 0.496E* 04 0.518E+04 1.044 0.193E-03 0.110E-03 0.976E-03 145.1 0.113E+03 0.000 0.000 116.1 0.0 0.122E-04 0.262E+05 0.469E+04 0.485E+04 1.034 0.206E-03 0.110E-03 0.103E-02 length shear shear

  • Film-dx Film-dx* fishear f/fishear em N/m^2 m m 17.0 0.35E+00 0.18E+01 0.72E-04 0.58E-04 1.251 0.958 30.4 0.33E+00 0.17E+01 0.87E-04 0.73E-04 1.198 1.016 44.6 0.31E+00 0.16E+01 0.99E-04 0.85E-04 1.165 0.957 61.5 0.29E+00 0.15E+01 0.11E-03 0.97E-04 1.139 1.086 79.8 0.27E+00 0.14E401 0.12E-03 0.11E-03 1.118 1.060 99.6 0.25E*00 0.13E*01 0.13E-03 0.12E-03 1.101 0.971 121.3 0.22E+00 0.11E+01 0.14E-03 0.13E-03 1.086 0.961 l

145.1 0.20E+00 0.10E+01 0.15E-03 0.14E-03 1.073 0.963 { O e" e _ - --

rEi i ,[t  !  ! ;l ;l;[ ' i , .i  ;-  ; 6 ; ; ;: , . t xm 44433333 W 33333332 _ d l m 00000000 EEEEEEEE 60910985

                                                              )t/

( uC o *2 00000000 EEEEEEEE 50700312 _ i 28912234 80160270 . F 78911111 R "m 78889991 - _ 00000000 00000000 mr 87911029 ) W 33333333 - ah 14664169 e/ 00000000 e/ bC - - - - - - - - t g 75319741 u92 EEEEEEEE WsK 55554444 (t* 99090000 00101111 Rm 11111111 00000000 dr 23199081 ) W 43333333 n 29779374 n/C 00000000 oh e/ 23579247 i (92 - - - - - - - - EEEEEEEE Wg K 111 R* 25589176 m 51334891 91111112 00000000 55555555 r 96574868 "q 2* 00000000

                                     +++ + + * + +

o 12878428 . t 11011009 _ m EEEEEEEE c _

                                  /  90086394                  a     11111110 W  55421087                 f                                                                         -
                         *C 55555544                D                                                                         -

5 00000000 D1 2 pC 1 x 55939626 x". 54444444

                       =0     dm     53060478                        00000000
                              //     09865319                  e2 +++    + + 4 + +

EEEEEEEE t H^ _ it = c *C w 76666665 m 52140282 f n T / 07427506 i D d W 18776554 cot - TP S 00000000 l 30625802 r *C 44444444 - c: o. 00000000 T* 77665443 33333333 11111111 h* e2 ++ + + + + + + t m EEEEEEEE 94256758 _ H/ 37816296 W 97665544

                  *CC
  • 00000000 t 11111111 ) 55555555 a x 00000000 R 76 s *C 44444444 i *++++++ + -

1 T 00000000 m EEEEEEEE 2-

            -      12                11111111                (

88751726  : 1 35 o 43210875 C R 33333222 1

                    ==                                               00000000 n                                                     2                         r u     1, o,       i      78884948                )^      44444444               a    27894683 R

cc wC xm 00000000 e 04336542 - T* 87666443 i - - - - - - - - h 99900999 TT 99999999 m/g EEEEEEEE s . (p K 22222222 i 00011000 22222222 f 11111111 / f . 00000000 . w 78907405 s Pa 00000000 r 19833720 a T *C 32121009 aK g 00000000 a e 48531987 21111000 P *C 99999998 h K P s 11111111 i f . 96 68 oC 67907406 ma 99999999

  • m44443333 -

13 w aP x 00000000 11 T* 21010998 eK 4 66666666 d - - - - - - - - 99999888 t s 11111111 - EEEEEEEE _

                    ==                                               11111111               m    94681234 P

l 57891111 ~ i _ tt F 00000000 ee ll tC 56653062 s% 00000000 xm44333333 nn i a 00000000 d 00000000 ii f" 10987643 Gel 00000000 - - - - - - - - - PT - 55444444 1 o m EEEEEEEE c 1 00000000 l 38012345 T m i 78111111 F 00000000 wC 08775262 s% 00000000

  • 11111110 c a 00000000 r 00000000 rrr T" 20987643 55444444 Gss 0,0000000 a e

4 + + + + + + + EEEEEEEE hhh

                   ///

Xam 00000000 h s 7654321 8 11111119 ggg KKK 00000000 aC 20985250 f 22222223 r200000000 T" , 00000000 a^ 00000000 408 0 87543209 44444443 R e ++++4 EEEEEEEE

                                                                                 + 4 +      em++++++++

h/EEEEEEEE 8 sN32086419 9 00 5 0.1 82860763 46716061 33322221 12356891 1 00000000 00000000

                    ===       hm     04658631                 hm sgw                                               04658631             hm04658631 tc                              tc                           tc WWc          g n

70419915 g n 70419915 g 70419915 W e 13467924 13467924 n 13467924 L 11 e 11 e 11 1 L

Run 1.1-1R2 Ws = 59.2 Kg/hr Pinlet = 120.2 KPa Tc,1 - 25.1 *C Tc-fit - D Wg = 0.000 Kg/hr Tinlet - 137.2 *C Tc,o - 49.8 *C Point -11 Ncw = 993.1 Kg/hr STD - 0. 39 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q' Wcond Wsteam Film-dx

                                                                                                                                                                                                                                                                                                                                            'C       'C         'C          'C           *C           *C/m      W/m^2      Kg/hr     Kg/hr                            m cm                                                             'C                                                       'C                                                          'C 45.2                                                    49.1                                                                  48.5     90.9     92.2       98.1       104.8        136.1          8.452 0.653E+05         2.59     56.61 0.765E-04 17.0                                                                                                                                                                                                                                                                                    4.60     54.60 0.927E-04 30.4                                                          43.8                                                     47.7                                                                 47.4     90.3     91.5       97.3       104.8       135.7           8.336 0.644E+05 42.6                                                     46.5                                                                 46.2     89.0     90.2       95.9       104.8        135.2          8.215 0.635E+05         6.69     52.51 0.105E-03 44.6                                                                                                                                                                                                                                                                                    9.15     50.05 0.117E-03 61.5                                                          41.1                                                     45.2                                                                 44.8     89.6     90.8       96.4       104.8        134.7          8.072 0.624E*05 39.5                                                    43.7                                                                  43.4     88.9     90.1       95.6       104.8        134.1          7.921 0.612E+05        11.75     47.45 0.127E-C3 79.8                                                                                                                                                                                                                                                            7.760 0.600E+05        14.52 99.6                                                           37.7                                                    42.0                                                                  41.8    88.6     99.8       95.2       104.8        133.4                                           44.68 0.136E-03 121.3                                                                35.9                                                    40.3                                                                 40.1     87.7     88.8       94.1       104.8        132.7          7.588 0.586E+05        17.48     41.72 0.145E-03 145.1                                                               33.9                                                     38.5                                                                  30.4    87.8     88.9       94.1       104.8        131.3          7.403 0.572E*05        20.65     38.55 0.154E-03 Length                                                                    Po,f                                              X Gas                                                              il Gas P steam            P gas     p(mix)    Re (mix)     Htheor              Hexp    Dfactor      R(in)   R(tutx0              R(out) mass %                                                             mole %                   KPa      KPa     Kg/m^2               W / m ^ 2 . *C   W/m'2.*C               m^2*C/W   m^2*C/W         m^2*C/W cm 17.0 0.173E+02                                                                                                 0.000                                                               0.000           120.2      0.0 0.122E-04 0.344E+05 0.892E+04 0.965E*04                  1.083 0.104E-03 0.109E-03 0.695E-03 30.4 0.307E+02                                                                                                 0.000                                                               0.000           120.2      0.0 0.122E-04 0.332E+05 0.735E+04 0.854E*04                  1.162 0.117E-03 0.110E-03 0.712E-03 44.6 0.443E+02                                                                                                  0.000                                                               0.000           120.2      0.0 0.122E-04 0.319E+05 0.647E+04 0.712Es04                  1.100 0.140E-03 0.110E-03 0.721E-03 61.5 0.607E+02                                                                                                  0.000                                                               0.000           120.2      0.0 0.122E-04 0.304E+05 0.584E+04 0.741E+04                  1.269 0.135E-03 0.110E-03 0.768E-03 79.8 0.777E+02                                                                                                  0.000                                                               0.000           120.2      0.0 0 122E-04 0.288E+05 0.536E+04 0.664E+04                  1.238 0.151E-03 0.110E-03 0.796E-03 99.6 0.957E+02                                                                                                  0.000                                                               0.000           120.2      0.0 0.122E-04 0.272E+05 0.499E+04 0.623E+04                  1.247 0.161E-03 0.110E-03 0.835E-03 121.3 0.115E+03                                                                                                       0.000                                                               0.000           120.2      0.0 0.122E-04 0.254E+C5 0.468E+04 0.546E+04                  1.165 0.183E-03 0.110E-03 0.867E-03 145.1 0.135E403                                                                                                       0.000                                                               0.000           120.2      0.0 0.122E-04 0.234E+05 0.4 43E+04 0.531E+04                 1.198 0.188E-03 0.110E-03 0.924E-03 Length                                                              shear                                             shear
  • Film-dx Film-dx* fishear f/fishear em N/m*2 m m 17.0 0.32E*00 0.17E+01 0.76E-04 0.63E-04 1.220 0.888 30.4 0.30E+00 0.16E+01 0.93E-04 0.79E-04 1.171 0.992 44.6 0.28E+00 0.14E+01 0.11E-03 0.92E-04 1.140 0.964 61.5 0.26E+00 0.13E+01 0.12E-03 0.10E-03 1.116 1.137 79.8 0.23E+00 0.12E+01 0.13E-03 0.12E-03 1.097 1.128 99.6 0.21E400 0.11E401 0.14E-03 0.13E-03 1.081 1.153 121.3 0.18E+00 0.95E+00 0.15E-03 0.14E-03 1.067 1.091 145.1 0.16E+00 0.82E+00 0.15E-03 0.15E-03 1.055 1.136 e

l 1 O _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ 9"

                        '             !     ,                                   ,                        I :

- xm 44333333 )W 33333333 d 00000000 t/ 00000000 _

                    -         - - - - - - - -         uC        - - - - - - - -                                   _

m EEEEEEEE EEEEEEEE Y l 92678764 (o *2 63786414 - i 63012345 01269261 R ^m _ F 79111111 77777889 _ _ 00000000 00000000 mr 08756021 ) W 33333333 _ ah 51799848 e/ 00000000 e/ bu *C - - - - - - - - t g 86307417 2 EEEEEEEE _ 55554443 788S8888 WsK (t* Rm 00000000 11111111 00000000 dr 02354089 t W 43333333 n 03755706 n/ 00000000 - oh i *C - - - - - - - - c/ Wg 35703603 (2 EEEEEEEE _ K 11122 R^ 97662321 41335790 - m 91111112 00000000 r

                  "q 2^      555'00000 000
                                         ,5555
                             + + + + ++ +
  • t o

01570597 86352501 11122111 m EEEEEEEE c

                          /  42172702                 a        11111111 W  32198653                f 77766666                D
               *C

- 00000000 D1 42 pC X 06s41934 54444444 1

             =0   dm         84047898                 x*.      00000000
                  //         65420864                 e2 ++ + + + + * +                                         -

t wC H^ EEEEEEEE it = c* 88888777 m 55766817 f n T / 05335729 i D d W 18776554 cot TP S 00000000 l P. 7530141 r *C 44444444 cC . o. 00000000 T* 8888877 7 e2 + + + + + + + + 33333333 h* EEEEEEEE - 111111 11 tm 47958105 H/ 93483074 W 87655544 .

        *C*C                                                   00000000 t          55555555                )         55555555 a                                  x        00000000 56        s *C      00000000                i         ++++++++

2 38 T 22222222 ( m EEEEEEEE 4- .

      -                      111111 1 1                        96258009 1   35 R

e 32197641 33322222 C _ 1 . == 00000000 n 2 r _ R u 1, o, i wC 6191101 8 )^ xm 44444444 00000000 a e 83999951 24364968 cc T* 32010987 i - - - - - - - - h 00011000 TT 11111000 11111111 (m/ g EEEEEEEE 88888088 s p K i 11111111 _ 22222222 f - 11111111 / _ f - 00000000 s Pa w 17691132 00000000 r 73252124 a K a P *C T *C 75444322 g 00000000 a e 41976543 11000000 00000000 h _ K 11111111 P s 11111111 i f 08 20 oC 73268810 ma 00000000

  • m44433333 04 w a P x 00000000

- 21 T* 543321 11 t eK 22222222 d - - - - - - - - 00000000 s 00000000 - EEEEEEEE

          ==

111111 1 1 22222222 m 74712345 l 68911111 P i tt F 00000000 ee ll nn tC i* 31950480 s. 6 t 00000000 00000000 d xm44333333 00000000 ii f 76432087 6el 00000000 - - - - - - - - - PT - - 55555544 l o m EEEEEEEE _ c i m 00000000 l 73123455 - T i 79111111 F 00000000 wC 72962672 s% 00000000

  • 11100000 c a 00000000 r 00000000 rrr T' 76432087 Gss 00000000 a ++++ + + + 4 55555544 e EEEEEEEE hhh
         ///

Xam 00000000 h s 21044445 11198765 ggg KKK 00000000 aC 16283660, f 22223333 r200000001 T* , 00000000 a^00000000

5. 0 08 31087532 e ++*+ + + + + em+++*+++-

105 55544444 R EEEEEEEE h/EEEEEEEE 6 53774830 sN10865316 8 31910258 22111119 00 24581111 1 00000000 00000000

           ===

_ sgw WHe hm t c g 04658631 7041991 5 hm t e g 04658631 7041 9915 hm04658631 tc g 70419915 W n 13467924 n 13467924 n 13467924 e 1 1 e 11 e 11 L L L

Run 1.1-2R Ws - 61.2 Kg/hr Pinlet - 206.5 FPa Tc,1 - 33.0 *C Tc-fit - D Wg - 0.000 Kg/hr Tinlet - 141.4 *C Tc,o - 59.8 "'C Point -11 Wcw - 1078.7 Kg/hr STD - 0.19 "C Length Ta Tcw Tc-fit Two Tw Twl Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm "C *C "C *C *C 'C *C *C 9C/m W/ma 2 Kg/hr Kg/hr m 54.4 58.7 58.4 103.7 135.2 112.1 121.2 140.9 9.289 0.780E+05 3.18 58.02 0.785E-04 17.0 5.65 55.55 0.952E-04 30.4 52.8 57.2 57.1 102.7 134.2 111.0 121.2 140.7 9.157 0.769E405 44.6 51.4 55.8 55.8 101.0 133.2 109.9 121.2 140.4 9.019 0.757E405 8.22 52.98 0.100E-03 61.5 49.8 54.4 54.3 101.9 133.3 109.9 121.2 140.1 8.857 0.744E+05 11.23 49.97 0.120E-03 79.8 48.2 52.9 52.7 101.7 133.1 109.6 121.2 139.8 8.686 0.729E+05 14.43 46.77 0.130E-03 99.6 46.3 51.1 51.0 101.0 132.4 108.7 121.2 139.5 8.504 0.714E405 17.81 43.39 0.140E-03 121.3 44.2 49.2 49.2 100.6 131.9 108.1 121.2 139.1 8.310 0.698E+05 21.44 39.76 0.149E-03 145.1 42.2 47.4 47.2 100.6 131.9 107.9 121.2 138.8 8.101 0.680E+05 25.32 35.88 0.158E-03 Lengt h Re,f X Gas Q Gas P steam P gas p(mix) Re (mix) litheor flexp Ofactor R (in) R (tube) R(out) em mass % mole % KPa KPa Kg/m"2 W/m^2. 9C W/m^2.9C m^29C/W m^290/W m*29C/W 17.0 0.248E+02 0.000 0.000 206.5 0.0 0.129E-04 0.336E+05 0.875E404 0.854E+04 0.976 0.117E-03 0.108E-03 0.622E-03 30.4 0.438E+02 0.000 0.000 206.5 0.0 0.129E-04 0.321E+05 0.722E+04 0.752E+04 1.042 0.133E-03 0.108E-03 0.634E-03 44.6 0.635E+02 0.000 0.000 206.5 0.0 0.129E-04 0.306E+05 0.636E+04 0.669E+04 1.052 0.150E-03 0.108E-03 0.648E-03 61.5 0.867E+02 0.000 0.000 206.5 0.0 0.129E-04 0.289E+05 0.573E+04 0.656E+04 1.144 0.153E-03 0.108E-03 0.684E-03 79.8 0.111E+03 0.000 0.000 206.5 0.0 0.129E-04 0.271E+05 0.527E+04 0.625E+04 1.186 0.160E-03 0.108E-03 0.718E-03 99.6 0.137E+03 0.000 0.000 206.5 0.0 0.129E-04 0.251E+05 0.490E+04 0.571E+04 1.165 0.175E-03 0.108E-03 0.749E-03 121.3 0.164E+03 0.000 0.000 206.5 0.0 0.129E-04 0.230E405 0.461E+04 0.531E+04 1.152 0.188E-03 0.108E-03 0.788E-03 145.1 0.194E+03 0.000 0.000 206.5 0.0 0.129E-04 0.208E+05 0.436E+04 0.511E+04 1.174 0.196E-03 0.100E-03 0.839E-03 Length shear shear

  • Film-dx Film-dx* fishear f/fishear cm N/m^2 m m 17.0 0.20E+00 0.12E+01 0.78E-04 0.69E-04 1.139 0.857 30.4 0.19E+00 0.11E+01 0.95E-04 0.86E-04 1.106 0.942 44.6 0.17E+00 0.99E+00 0.11E-03 0.99E-04 1.086 0.969 61.5 0.16E+00 0.89E+00 0.12E-03 0.11E-03 1.070 1.070 79.8 0.14E+00 0.79E+00 0.13E-03 0.12E-03 1 057 1.122 99.6 0.12E+00 0.69E+00 0.14E-03 0.13E-03 1.046 1.113 121.3 0.10Et00 0.59E+00 0.15E-03 0.14E-03 1.037 1.111 145.1 0.86E-01 0.49E+00 0.16E-03 0.15E-03 1.029 1.140 0 --

9" e

   ,              '           '                                                    <  :#         ' o ; I i    f d

xm 433333333 000000000

                                              )

t/ W 333333333 000000000

                    -       - - - - - - - - -  uC        - - - - - - - - -

m EEEEEEEEE EEEEEEEEE l 194790000 (o *2 737220275 i 002346789 Ram ?02604571 F 911111111 344455556 000000000 000000000 mr 635845121 ) W 333333333 ah 775651551 e/ 000000000 e/ bC - - - - - - - - - t g 406161593 EEEEEEEEE 554433211 tu *2 777777788 WsK (Rm a 000000000 111111111 000000000 dr 475265989 ) W 433333333 n h 224348448 n/ 000000000 o i *C - - - - - - - - - c/ Wg 593838406 (2 EEEEEEEEE K 1122344 R* 686921044 612234814 m 911111122 _ 000000000 666666665 r 551014529 _

                   "q ^2   000000000           o        543544722                                                _
                           +*++ + + + + +     t         334566321 m EEEEEEEEE           c
                        /  530741734           a        111111111                                               -

W 222111009 f C 111111119 D 000000000 D01 84 p X 787891914 x *C 544444444

            =0     dm      899479747                  . 000000000
                   //      741840627           e2 + ++ ++ + + + +

t wC H^ EEEEEEEEE it = c9 444333221 m 406889669 _ f n T 111111111 / 049750560 i D d W 187777544 cot TP S 000000000 l 41,0864319 r *C 444444444 cC o. 000000000 T" 444333332 e2 + ++ +++ +++ 48 4444444 h* EEEEEEEEE . 111111111 t m 406221422 _ li / 635063086 W 765544433 CC

        **                                              000000000 t      333333333          )         555555554 aC                         x        000000000 19          s*     444444444          i         +++ +++ +++

3 T 333333333 m EEEEEEEEE 6- - - 34 111111111 ( 539244291 1 36 R e 085307403 C 322221117 _ 1

         ==                                             000000000 n                                              2                       r u 1, o,      i       393337120          )         444444444           a    854459146

_ R cc wC T* x *m 000000000

                                                         - - - - - - - - - h e   577001612 299998520          i                                 223566321 TT                 211111111           (m/   g  EEEEEEEEE           s 111111111                K   444444444          i    111111111 p       333333333          f 111111111          /

f 000000000 w 317030602 s Pa 000000000 r 752136063 . T 'C a K a 754321100 a 198999531 g 000000000 e 000000000 P *C 100000000 h . K 111111111 P s 111111111 i f - 13 7 5 oC 984819603 m Pa 111111111

  • m433333333

- 04 w a x 000000000 31 T* 866676319 eK 777777777 d - - - - - - - - - . - 000000009 t 000000030 - EEEEEEEEE

         ==

11111111 s 33333333'3 l m 402356789 811111111 P i tt F 000000000 ee s% ll tC 566271331 000000000 xm433333333 nn i* a Gel 000000000 d- 000000000 ii f 208631852 000000000 - - - - - - - - - PT - 665555444 m EEEEEEEEE _ T c Dom 000000000 l i 012456789 911111111 F 000000000 . s% wC 568655159 000000000

  • 000000001

_ c a 000000000 r 000000000 rrr T" 208641841 665555444 Gss 000000000 a ++++++++ e EEEEEEEEE hhh

        ///

Xam 000000000 h s 999888028 765432215 ggg _ KKK 000000000 aC 011730692 f 223333333 r2001111112 T* 000000000 a^000000000 05

0. 0 864196286 555544433 R e, +++ +++ + + +

EEEEEEEEE em++ h/EEEEEEELE 5 565716065 sN315816207 0 00 6 0.8 591504938 411122233 119764329 _ 1 000000000 000000000

          ===

sgw hm 04658,6315 hm 046586315 hm046586315 t c t c tc WWc W g n 704199151 134679247 g n 704199151 134679247 g n 704199151 134679247 e 111 e 111 L e 111 L L _

Run 1.1-3R Ws - 59.5 Kg/hr Pinlet - 319.6 KPa Tc,1 = 33.0 *C Tc-fit - D Kg/hr Tinlet - 145.0 "C Tc, o - 63.1 *C Point -11 Wg = 0.000 STD = 0.2 4 *C Wcw - 1108.9 Kg/hr Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx Length Ta Tcw Tc-fit Kg/hr Kg/hr m l *C 'C *C *C 'C *C *C/m W/m^2 l em *C *C 111.0 113.2 123.2 135.7 144.2 13.256 0.115E+06 4.83 54.67 0.874E-04 17.0 56.4 61.3 61.0 8.52 50.98 0.106E-03 54.5 59.4 59.2 109.0 111.1 120.9 135.7 144.0 12.962 0.112E+06 30.4 143.8 12.657 0.109E+06 12.33 47.17 0.120E-03 44.6 52.4 57.3 57.4 107.2 109.3 118.9 135.7 55.4 55.3 107.5 109.5 118.8 135.7 143.6 12.303 0.106E+06 16.77 42.73 0.133E-03 61.5 50.3 11.931 0.103E+06 21.43 38.07 0.144E-03 79.8 47.9 53.2 53.1 107.6 109.5 118.6 135.7 143.5 107.5 109.4 118.2 135.7 143.3 11.541 0.996E+05 26.30 33.20 0.155E-03 99.6 45.5 51.0 50.8 48.3 48.3 107.0 108.8 117.3 135.7 143.2 11.128 0.960E+05 31.45 28.05 0.164E-03 121.3 42.5 36.88 22.62 0.174E-03 i 39.4 45.4 45.7 106.4 108.1 116.2 135.7 143.1 10.693 0.923E+05 145.1 Length Re,f X Gas il Gas P steam P gas p(mix) Re (mix) litheor llexp Dfactor R(in) R(tube) R(out) KPa Kg/m^2 W / m ^ 2 . *C W/m

  • 2. *C m^ 2*C/W m ^ 2*C/W m^ 2*C/W cm mass % mole % KPa 17.0 0.423E+02 0.000 0.000 319.6 0.0 0.134E-04 0.303E+05 0.788E+04 0.917E+04 1.164 0.109E-03 0.106E-03 0.468E-03 30.4 0.739E+02 0.000 0.000 319.6 0.0 0.134E-04 0.283E*05 0.650E+04 0.757E+04 1.165 0.132E-03 0.107E-03 0.475E-03 44.6 0.106E+03 0.000 0.000 319.6 0.0 0.134E-04 0.262E+05 0.573E+04 0.651E+04 1.135 0.154E-03 0.107E-03 0.488E-03 61.5 0.144E+03 0.000 0.000 319.6 0.0 0.134E-04 0.237E+05 0.517E+04 0.630E+04 1.217 0.159E-03 0.107E-03 0.525E-03 79.8 0.184E+03 0.000 0.000 319.6 0.0 0.134E-04 0.211E+05 0.477E+04 0.600E+04 1.260 0.167E-03 0.107E-03 0.566E-03 99.6 0.226E+03 0.000 0.000 319.6 0.0 0.134E-04 0.184E+05 0.445E+04 0.568E+04 1.276 0.176E-03 0.107E-03 0.609E-03 121.3 0.269E+03 0.000 0.000 319.6 0.0 0.134E-04 0.156E+05 0.419E+04 0.520E+04 1.243 0.192E-03 0.107E-03 0.653E-03 145.1 0.314E+03 0.000 0.000 319.6 0.0 0.134E-04 0.126E+05 0.397E+04 0.4 74E+04 1.194 0.211E-03 0.107E-03 0.703E-03 Length shear shear
  • Film-dx Film-dx* fishear f/f1 shear cm N/m^2 m m 17.0 0.12E+00 0.77E+00 0.87E-04 0.81E-04 1.076 1.081 30.4 0.11E+00 0.67E+00 0.11E-03 0.10E-03 1.056 1.103 44.6 0.94E-01 0.58E+00 0.12E-03 0.12E-03 1.043 1.089 61.5 0.79E-01 0.49E400 0.13E-03 0.13E-03 1.032 1.179 79.0 0. 64E-01 0.39E+00 0.14E-03 0.14E-03 1.024 1.230 99.6 0. 50E-01 0. 31E+00 0.15E-03 0.15E-03 1.018 1.254 121.3 0. '7E-01 0.23E+00 0.16E-03 0.16E-03 1.012 1.228 145.1 0.25E-01 0.15E+00 0.17E-03 0.17E-03 1.008 1.185 9 G" 9
                      'd I                                                                                    )
                                                                                                             -/

Run 1.1-3R2 Ws = 59.4 Kg/hr Pinlet = 297.1 KPa Tc,1 = 30.2 'C .Tc-fit - D Wg = 0.000 Kg/hr Tinlet = 144.1 'C Tc,o = 62.2 *C Point =10 Wcw = 1059.8 Kg/hr STD = 0.21 "C Isngth Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx 9C 'C 'C *C 'C 9C 'C *C 'C/m W/m^2 Kg/hr Kg/hr m cm 17.0 55.5 60.1 60.1 107.2 109.3 119.0 133.2 143.9 13.351 0.110E+06 4.60 54.80 0.867E-04 30.4 53.7 58.4 58.3 106.8 108.8 118.3 133.2 143.7 '13.117 0.108E+06 8.15 51.25 0.105E-03 44.6 51.6 56.4 56.5 105.7 107.7 117.1 133.2 143.5 12.873 0.106E*06 11.84 47.56 0.119E-03 61.5 49.5 54.5 54.3 105.6 107.6 116.8 133.2 143.3 12.588 0.104E+06 16.14 43.26 0.132E-03 79.8 47.0 52.3 52.0 105.6 107.5 116.4 133.2 143.1 12.288.0.101E+06 20.69 38.71 0.143E-03 99.6 44.3 49.8 49.6 105.8 107.7 116.4 133.2 142.8 11.970 0.987E+05 25.49 33.91 0.154E-03 121.3 41.3 47.1 47.1 105.8 107.6 116.1 133.2 142.4 11.632 0.959E*05 30.60 28.80 0.164E-03 145.1 38.2 44.4 44.4 106.8 108.6 116.8 133.2 142.0 11.272 0.929E+05 36.07 23.33 0.173E-03 171.5 35.0 41.0 41.4 101.5 103.2 111.2 133.2 139.1 10.685 0.897E+05 41.75 17.65 0.183E-03 Length Re,f X Gas O Gas P steam P gas p(mix) Re (mix) Htheor Hexp Dfactor R(in) R(tube) R(out) cm mass % mole 4 KPa KPa Kg/m*2 W / m^ 2 . *C W/m^ 2. *C m"29C/W m^2*C/W m^29C/W 17.0 0.392E+02 0.000 0.000 297.1 0.0 0.133E-04 0.306E+05 0.794E*04 0.775E+04 0.976 0.129E-03 0.107E-03 0.457E-03 30.4 0.692E+02 0.000 0.000 297.1 0.0 0.133E-04 0.286E*05 0.656E+04 0.727E404 1.110 0.137E-03 0.107E-03 0.478E-03 44.6 0.999E+02 0.000 0.000 297.1 0.0 0.133E-04 0.266E+05 0.578E+04 0.658E*04- 1.138 0.152E-03 0.107E-03 0.496E-03 61.5 0.136E+03 0.000 0.000 297.1 0.0 0.133E-04 0.242E+05 0.521E+04 0.631E+04 1.211 0.158E-03 0.107E-03 0.528E-03 79.8 0.174E+03 0.000 0.000 297.1 0.0 0.133E-04 0.216E+05 0.479E+04 0.604E+04 1.260 0.165E-03 0.107E-03 0.565E-03 99.6 0.214E*03 0.000 0.000 297.1 0.0 0.133E-04 0.190E*05 0.447E+04 0.587E+04 1.314 0.170E-03 0.107E-03 0.609E-03 121.3 0.257E+03 0.000. 0.000 297.1 0.0 0.133E-04 0.161E+05 0.421E404 0.559E+04 1. 330 0.179E-03 0.107E-03 0.654E-03 14 5.1 0. 304E+03 0.000 0.000 297.1 0.0 0.133E-04 0.130E*05 0.399E+04 0.566E+04 1.420 0.177E-03 0.107E-03 0.719E-03 171.5 0.343E+03 0.000 0.000 297.1 0.0 0.133E-04 0.987E+04 0.377E+04 0.407E+04 1.000 0.246E-03 0.108E-03 0.716E-03 Length shear shear

  • Film-dx Film-dx* fishear' f/fishear cm N/m*2 m m 17.0 0.13E*00 0.81E+00 0.87E-04 0.80E-04 1.082 0.902 30.4 0.12E+00 0.71E+00 0.10E-03 0.99E-04 1.060 1.046 44.6 0.10E+00 0.62E+00 0.12E-03 0.11E-03 1.047 1.087 61.5 0.86E-01 0.52E+00 0.13E-03 0.13E-03 1.035 1.170 79.8 0.70E-01 0.43E+00 0.14E-03 0.14E-03 1.027 1.228 99.6 0.55E-01 0.34E*00 0.15E-03 0.15E-03 1.020 1.288 121.3 0.41E-01 0.25E+00 0.16E-03 0.16E-03 1.014 1.312 145.1 0.28E-01 0.17E+00 0.17E-03 0.17E 1.009 1.401 171.5 0.17E-01 0.10E+00 0.18E-03 0.18E-03 1.005 1.075 C-8

Run 1.1-4 Pinlet = 407.4 KPa Tc,1 = 33.4 *C Tc-fit = D Ws = 60.2 Kg/hr Point =8 Wq = 0.000 Kg/hr Tinlet = 148.0 *C Tc,o - 66.2 *C Kg/hr STD = 0. 4 9 "C Wcw = 1086.6 Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx Length Ta Kg/hr Kg/hr m

                                             *C      *C                     *C                                                                               "C                                                                      *C           *C         *C/m        W/m^2 cm          "C        *C 63.1   113.6     116.6                                                                       130.4                                                                            144.3                147.7         18.699 0.158E+06         6.80      53.40 0.962E-04 17.0       58.2      63.2                                                                                                                                                                                                                                                         11.98      48.22 0.117E-03 55.9      61.0                60.6   112.1     115.0                                                                       128.5                                                                            144.3                147.6         18.239 0.154E+06 30.4                                                                                                                                                                                                                                        146.4         17.764 0.150E+06        17.31      42.89 0.132E-03 44.6       53.5      58.5                58.1   109.4     112.2                                                                       125.3                                                                            144.3 55.1   109.4     112.1                                                                       124.8                                                                             144.3               144.9         17.215 0.146E+06        23.49       36.71 0.146E-03 61.5       50.1      55.4                                                                                                                                                                                                                                                         29.97      30.23 0.159E-03 46.8      52.5                52.0   109.8     112.4                                                                       124.7                                                                             144.3               145.0         16.639 0.141E+06 79.8                                                                                                                                                                                                                                        145.1         16.038 0.136E+06        36.75      23.45 0.170E-03 99.6       42.5      48.6                48.8   110.4     112.9                                                                       124.8                                                                             144.3 44.7                45.4   110.1     112.5                                                                        123.9                                                                            144.3               145.0         15. 404 0.130E+06       43.86       16.34 0.180E-03 121.3       38.2 Length       Re,f     X Gas          O Gas P steam          P gas                                                               p(mix)                                                                   Re (mix)                           Htheor             Hexp    Dfactor      R(in)    R (tube)     R (out )

mole 4 KPa KPa Kg/m^2 W/ m ^ 2 . *C W/m-2.*C m^2*C/W m*2*C/W m^ 2*C/W em mass % 17.0 0.637E+02 0.000 0.000 407.4 0.0 0.137E-04 0.290E*05 0.715E*04 0.114E+05 1.590 0.879E-04 0.106E-03 0.341E-03 0.000 0.000 407.4 0.0 0.137E-04 0.261E+05 0.591E+04 0.975E+04 1.651 0.103E-03 0.106E-03 0.357E-03 30.4 0.111E+03 1.524 0.126E-03 0.106E-03 0. 365E-03 44.6 0.159E+03 0.000 0.000 407.4 0.0 0.137E-04 0.233E+05 0.521E+04 0.794E+04 61.5 0.215E+03 0.000 0.000 407.4 0.0 0.137E-04 0.199E*05 0.470E+04 0.749E+04 1.593 0.134E-03 0.106E-03 0.398E-03 79.8 0.274E+03 0.000 0.000 407.4 0.0 0.137E-04 0.164E+05 0.433E+04 0.719E+04 1.658 0.139E-03 0.106E-03 0.439E-03 99.6 0.337E+03 0.000 0.000 407.4 0.0 0.137E-04 0.127E+05 0.405E+04 0.694E+04 1.715 0.144E-03 0.106E-03 0.485E-03 121.3 0.400E+03 0.000 0.000 407.4 0.0 0.137E-04 0.886E+04 0.381E+04 0.639E+04 1.674 0.157E-03 0.106E-03 0.531E-03 Length shear shear

  • Film-dx Film-dx* fishear f/fishear cm N/ma 2 m m 17.0 0.94E-01 0.62E+00 0.96E-04 0.91E-04 1.054 1.509 30.4 0.78E-01 0.51E+00 0.12E-03 0.11E-03 1.037 1.592 44.6 0.63E-01 0.41E+00 0.13E-03 0.13E-03 1.026 1.485 61.5 0.48E-01 0.31E+00 0.15E-03 0.14E-03 1.018 1.565 79.8 0.34E-01 0.22E+00 0.16E-03 0.16E-03 1.012 1.639 99.6 0.21E-01 0.14E+00 0.17E-03 0.17E-03 1.007 1.703 121.3 0.11E-01 0.72E-01 0.18E-03 0.18E-03 1.003 1.669 O 0" e

O O Run 1.1-4R1 Ws - 60.7 Kg/hr Pinlet = 410.3 KPa Tc,1 = 33.5 *C Tc-fit - D " Wg = 0.000 Kg/hr Tinlet = 146.8 *C Tc,o = 65.5 *C Point =10 Wcw = 1084.5 Kg/hr STD = 0. 4 6 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm *C 9C *C 'C 'C *C *C *C 9C/m W/m*2 Kg/hr Eg/hr m 17.0 58.1 63.3 63.1 115.4 117.8 128.9 144.5 146.8 15.086 0.127E+06 5.45 55.25 0.895E-04 30.4 56.1 61.4 61.1 114.4 116.7 127.6 144.5 146.7 14.833 0.125E+06 9.65 51.05 0.108E-03 44.6 53.8 59.1 59.0 112.6 114.9 125.6 144.5 146.3 14.570 0.123E+06 14.01 46.69 0.123E-03 61.5 51.4 56.9 56.6 112.3 114.6 125.1 144.5 145.9 14.263 0.120E*06 19.11 41.59 0.137E-03 ) 79.8 48.5 54.3 54.0 112.5 114.7 125.0 144.5 145.8 13.938 0.118E+06 24.50 36.20 0.148E-03 99.6 45.6 51.6 51.3 112.1 114.3 124.3 144.5 145.8 13.594 0.115E+06 30.20 30.50 0.159E-03 121.3 41.7 48.0 48.3 111.3 113.4 123.2 144.5 145.8 13.228 0.112E+06 36.25 24.45 0.169E-03 145.1 37.6 44.2 45.2 110.4 112.4 121.9 144.5 144.3 12.837 0.108E+06 42.70 18.00 0.179E-03 171.5 35.6 42.4 41.9 110.0 112.0 121.2 144.5 144.1 12.417 0.105E+06 49.63 11.07 0.189E-03 Length Ro,f X Gas O Gas P steam P gas p (mix ) Re(mix) Htheor Hexp

                                                                                                                                                      . a Dfactor       R(in)     R (tube)     R(out) cm                  mass %                               mole %       KPa                      KPa     Kg/m*2                       W/m^2.*C   WN    2.*C              m* 2*C/W    m* 2*C/W    m*2*C/W 17-0 0.500E+02          0.000                                0.000    410.3                      0.0 0.137E-04 0.299E*05 0.769E*04 0.814E+04                     1.059 0.123E-03 0.106E-03 0.439E-03 30.4 0.895E*02          0.000                                0.000    410.3                      0.0 0.137E-04 0.277E405 0.635E+04 0.740E*04                     1.166 0.135E-03 0.106E-03 0.455E-03 44.6 0.129E+03          0.000                                0.090    410.3                      0.0 0.137E-04 0.253E+05 0.559E+04 0.651E+04                     1.164 0.154E-03 0.106E-03 0.466E-03 61.5 0.175E+03          0.000                                0.000    410.3                      0.0 0.137E-04 0.225E+05 0.504E+04 0.620E+04                     1.230 0.161E-03 0.106E-03 0.495E-03 79.8 0.225E+03          0.000                                0.000    410.3                      0.0 0.137E-04 0.196E+05 0.464E+04 0.601E+04                     1.297 0.166E-03 0.106E-03 0. 532E-03 99.6 0.276E+03          0.000                                0.000    410.3                      0.0 0.137E-04 0.165E+05 0.432E+04 0.568E*04                     1.313 0.176E-03 0.106E-03 0.568E-03 121.3 0.330E+03          0.000                                0.000    410.3                      0.0 0.137E-04 0.132E+05 0.406E+04 0.522E+04                     1.285 0.191E-03 0.106E-03 0.603E-03 145.1 0.387E+03          0.000                                0.000    410.3                      0.0 0.137E-04 0.976E+04 0.384E+04 0.478E+04                     1.245 0.209E-03 0.106E-03 0.643E-03 171.5 0.448E+03          0.000                                0.000    410.3                      0.0 0.137E-04 0.600E+04 0.365E+04 0.449E+04                     1.229 0.223E-03 0.107E-03 0.695E-03 T ength     shear        shear
  • Film-dx Film-dx* fishear f/fishear em N/m^2 m m 17.0 0.99E-01 0.65E+00 0.90E-04 0.84E-04 1.061 0.998 30.4 0.86E-01 0.56E+00 0.11E-03 0.10E-03 1.044 1.118 44.6 0.73E-01 0.48E+00 0.12E-03 0.12E-03 1.033 1.127 61.5 0.59E-01 0.39E+00 0.14E-03 0.13E-03 1.024 1.201 79.8 0.46E-01 0.30E+00 0.15E-03 0.15E-03 1.017 1.275 99.6 0.34E-01 0.22E+00 0.16E-03 0.16E-03 1.012 1.258 121.3 0.23E-01 0.15E+00 0.17E-03 0.17E-03 1.007 1.276 145.1 0.13E-01 0.85E-01 0.18E-03 0.18E-03 1.004 1.240 171.5 0.55E-02 0.35E-01 0.19E-03 0.19E-03 1.002 1.227 C-10

Run 1.1-4R2 Ws - 60.5 Kg/hr Pinlet - 393.3 KPa Tc,1 = 32.7 "C Tc-fit - D Wg = 0.000 Kg/hr Tinlet = 146.3 *C Tc,o = 64.2 *C Point =10 Wcw = 1081.1 Kg/hr STD = 0. 48 *C Length Ta Tcw Tc-fit Two Tw Twl Tsat Tcl dTcw/dX q' Wcond Wsteam Film-dx

                                                                                                                                      *C                                                                      *C                                                                      SC         *C         *C     9C/m       W/m*2      Kg/hr     Kg/hr           m cm                                  i:        9C        *C 57.1           62.4       61.8                                               115.7                                                                    118.0                                                                             128.0               143.0      146.3    14.750 6.124E+06         5.30     55.20 0.888E-04 17.0                                                                                                                                                                                                                                                                                                                                   9.38     51.12 0.108E-03 30.4                          55.0           60.4       59.9                                               114.3                                                                    116.6                                                                            127.2                143.0      146.2    14.503 0.122E+06 52.8           58.1       57.8                                               111.7                                                                    114.0                                                                            124.5                143.0      146.1    14.247 0.120E+06        13.61     46.89 0.122E-03 44.6                                                                                                                                                                                                                                                                                                                                  18.55     41.95 0.136E-03 61.5                          50.3           55.7       55.5                                                110.5                                                                   112.7                                                                             123.0               143.0      146.0    13.947 0.117E+06 79.9                          47.6           53.3       52.9                                               110.8                                                                    113.0                                                                             123.0               143.0      145.9    13.630 0.115E+06        23.80     36.70 0.148E-03 99.6                          44.4           50.4       50.3                                               110.8                                                                    112.9                                                                             122.7               143.0      145.7    13.295 0.112E+06        29.33     31.17 0.158E-03 121.3                          40.8           47.1       47.4                                               110.7                                                                    112.7                                                                            122.2                143.0      145.0    12.937 0.109E+06        35.24     25.26 0.168E-03 145.1                          36.8           43.4       44.4                                               109.6                                                                    111.6                                                                            120.9                143.0      133.7    12.556 0.? O6E+06       41.50     19.00 0.178E-03 171.5                           34.7          41.5       41.1                                                109.4                                                                   111.3                                                                             120.3               143.0      118.2    12.146 0.10tE*n6        48.24     12.26 0.187E-03 Length                         Re,f           X Gas      O Gas P steam                                                                                                                 P gas                                                                   p (mix)                   ho(mix)      Mtheor      Hexp     Dfactor      R(in)   R(tube)     R(out) cm                                       mass %     molo %                                                                   KPa                                                                       KPa                                                      Kg/m^2                           W/m^2.9C W/m^ 2. *C              m^29C/W   m*29C/W    m^29C/W 17.0 0.491E+02                              0.000      0.000                                               393.3                                                                                    0.0 0.137E-04 0.300E405 0.775E+04 0.874E+04                                                                            1.128 0.114E-03 0.106E-03 0.463E-03 30.4 0.864E+02                              0.000      0.000                                               393.3                                                                                    0.0 0.137E-04 0.278E+05 0.639E+04 0.774E404                                                                            1.211 0.129E-03 0.106E-03 0.477E-03 44.6 0.124E+03                              0.000      0.000                                               393.3                                                                                    0.0 0.137E-04 0.255E+05 0.563E+04 0.647E+04                                                                            1.149 0.155E-03 0.106E-03 0.481E-03 61.5 0.168E+03                              0.000      0.000                                               393.3                                                                                    0.0 0.137E-04 0.228E+05 0.507E+04 0.586E+04                                                                            1.155 0.171E-03 0.106E-03 0.501E-03 79.8 0.215E+03                              0.000      0.000                                               393.3                                                                                    0.0 0.137E-04 0.200E+05 0.467E+04 0.574E+ 04                                                                           1.230 0.174E-03 0.106E-03 0.540E-03 99.6 0.265E+03                              0.000      0.000                                               393.3                                                                                    0.0 0.137E-04 0.170E+05 0. 4 35E+04 0.550E+04                                                                          1.265 0.182E-03 0.106E-03 0.579E-03 121.3 0.318E+03                              0.000      0.000                                               393.3                                                                                    0.0 0.137E-04 0.137E+05 0.409E+04 0.524E+04                                                                            1.280 0.191E-03 0.106E-03 0.621E-03 145.1 0.372E+03                              0.000      0.000                                               393.3                                                                                    0.0 0.137E-04 0.103E+05 0.387E+04 0.477E+04                                                                            1.233 0.210E-03 0.107E-03 0.660E-03 171.5 0.431E+03                              0.000      0.000                                               393.3                                                                                    0.0 0.137E-04 0.667E+04 0.368E+04 0.449E+04                                                                            1.222 0.223E-03 0.107E-03 0.714E-03 i

Length shear shear

  • Film-dx Film-dx* fishear f/fishear em N/m^2 m m 17.0 0.10E+00 0.67E+00 0.89E-04 0.84E-04 1.064 1.061 30.4 0.90E-01 0.58E+00 0.11E-03 0.10E-03 1.046 1.158 44.6 0.77E-01 0.49E+00 0.12E-03 0.12E-03 1.034 1.111 61.5 0.63E-01 0.40E+00 0.14E-03 0.13E-03 1.025 1.127 79.8 0.49E-01 0.32E400 0.15E-03 0.14E-03 1.018 1.208 99.6 0.37E-01 0.24E400 0.16E-03 0.16E-03 1.013 1.249 121.3 0.25E-01 0.16E400 0.17E-03 0.17E-03 1.008 1.270 t

145.1 0.15E-01 0.96E-01 0.18E-03 0.18E-03 1.005 1.227 l 171.5 0.69E-02 0.44E-01 0.19E-03 0.19E-03 1.002 1.219 l e e"" e

    .t I[l5                              I                                             ;i                 , '

d xm 3333333 0000000

                                                      )

t/ W 3333333 0000000

                         -       - - - - - - -         uC       - - - - - - -

m EEEEEEE (o *2 EEEEEEE l 0183578 6955502 i 0235678 9136059 _ R *m F 111111 1 2333444 _ 0000000 0000000 mr 0904163 W 3333333 ah 0863774 )e/ 0000000 e/ t g 3603579 544321 bu *C (t* 2 EEEEEEE 5566666 WsK 0000000 Rm 1111111 0000000 dr 0106947 W 3333333 _ n h 0146225 )n/ 0000000 i( *C _ o/ - - - - - - - c 8407531 EEEEEEE Wg 2 K 122345 Ra 0833849 0023345 m 1111111 0000000 6666666 r 1384258 _ "q 2 00C0000 o 64264S1 _ * + ++ + + * + t 4666777 - n c r EEEEEEE

                             /  4959371                a       1111111 W  8776655               f C            111111           1    D 0000000                                                                           -

D8 44 pC X 6190002 5444444

             -=    0    dm      6251321                x . 0000000
                       //       7260368                e2      + 4 + + * + +

t wC H^ EEEEEEE i t = c 1100987 0030449 fn i D T" 2222111 / m 0315292 cot d W 1987766 TP S 0000000 l 4555678 r *C 4444444 cC o. 0000000 _ T" 2222222 e2 +e + + + + + 5555555 h* EEEEEEE _ 111 1111 ttm 5601696 _ I/ 8605186 W 6554433 _

           'CC "                                               0000000

_ 5555544 t 2222222 ) a x 0000000 . 91 s *C 2222222 i **+++++ 5 37 T 5555555 ( m EEEEEEE 2 .

  -                             1111111                        2967731                                        1 1          36                                          e      8417340 1

R 2221195 C .

             ==                                                0000000                                             .

n 1 2 r _ u , o, i 8976652 4444444 a 2874097 - R cc w T 'C 3209998 i

                                                       )x ^m   0000000
                                                                - - - - - - -     h e      0994371 4556777 TT                  3332222                 m/g    EEEEEEE             s                               -

1111111 (p K 0000000 4444444 i f 1111111 1111111 / f 0000000 w 8359480 s Pa 0000000 r 2892731 T 'C a K a 4211000 a 7754555 g 0000000 e 0000000 P 1111111 h K 'C 111111 1 P s 1111111 i f - 21 42 05 oC w 4027392 m Pa a 2222222

  • m4333333 x 0000000 51 T' 4421222 eK 4444444 d - - - - - - -

1111111 t s 0000000 - EEEEEEE

              ==

1111111 5555555 m 6245689 l 9111111 P i tt F 0000000 ee ll 4551578 s% nn tC i* a 0000000 0000000 d xm3333333 0000000 ii f 3074062 Gel 0000000 - - - - - - - - PT EEEEEEE T c 6655544 Oom 0000000 l i m - 0245789 1111111 _ F 0000000 wC 0684501 s% 0000000

  • 0000011 c a 0000000 r 0000000 rrr T" 3074063 6655544 Gss 0000000 e

a + + + + + - - EEEEEEE hhh

            ///

Xam 0000000 h s 2122413 5432172 ggg KKK 0000000 aC 9347332 f 2333333 r21111112 T' , 0000000 a* 0000000 05

0. 0 7528496 e ++ + + + * +

EEEEEEE em - - - - - - _ 5554433 R h/EEEEEEE . 105 5887175 sN6173114 6 8 8396419 7643213 00 7112344 1 0000000 . 0000000 _

              ==-         hm      0465863               hm      0465863            hm0465863 sgw         t c                           te                         te                              -

WWc g 7041991 g 7041991 g n 7041991 W n 1346792 n e 1346792 e 1346792 - e 1 1 L 1 L L

                                             . 9   8                                              ,4

Run 1.1-5R1 Tc,1 - 33.9 *C Tc-fit = D Ws = 61.3 Kg/hr Pinlet - 503.5 KPa Point =9 Tinlet - 151.3 *C Tc,o - 67.2 *C Wg = 0.000 Kg/hr STD - 0. 4 4 *C Wcw = 1074.0 Kg/hr Two Tw Twl Tsat Tcl dTcw/dx q" Wcond Wsteam Film-dx Length Ta Tcw Tc-fit Kg/hr Kg/hr m

                                                                                                            *C      'C        *C                                  *C                                                            "C                                                            "C      *C/m        W/m*2 cm                                                          *C        *C 116.6     119.5                  132.8                                                          152.1                                                         152.4                18.317 0.153E+06           6.64                54.66 0.945E-04 17.0                                         59.2                    64.4     64.2 17.945 0.150E+06          11.74                49.56 0.114E-03 56.3                    61.6     61.8   115.3     118.1                  131.1                                                          152.1                                                          152.4 30.4                                                                                                                                                                                 152.1                                                         152.4                17.560 0.147E+06          17.03                44.27 0.130E-03 44.6                                        53.7                     59.3     59.3   115.3     118.0                  130.7 56.4   114.5     117.2                  129.6                                                          152.1                                                         152.3                17.112 0.14 3E+06         23.16                38.14 0.144E-03 61.5                                        50.5                     56.3                                                                                                                                                                                                                         29.63                31.67 0.156E-03 47.6                    53.7     53.3   114.2     116.0                  128.9                                                          152.1                                                         152.3                16.641 0.139E*06 79.8                                                                                                                                                                                 152.1                                                          152.3               16.14 5 0.135E+06         36.41                24.89 0.167E-03 99.6                                         44.1                    50.4     50.0   113.8     116.3                  128.0 46.6   113.0     115.4                   126.8                                                          152.1                                                         152.3               15.618 0.131E+06          43.59                17.71 0.178E-03 121.3                                         38.8                    45.6                                                                                                                                                                                                                         51.18                10.12 0.188E-03 36.3                    43.2     42.9   112.3     114.7                   125.7                                                         152.1                                                          152.2               15.061 0.126E+06 145.1 O Gas P steam      P gas            p(mix)                                                   Re (mix)                                                             Ht heor                       Hexp     Dfactor      R(in)              R (tube)    R(out)

Length Re,f X Gas mole % KPa KPa Kg/m^2 W/m^2 *C W/ m ^ 2 . *C m^ 2*C/W ma 2*C/W m*2*C/W cm mass % 0.000 0.000 503.5 0.0 0.140E-04 0.290E*05 0.728E+04 0.793E+04 1.090 0.126E-03 0.105E-03 0.366E-03 17.0 0.649E+02 1.191 0.140E-03 0.105E-03 0.381E-03 30.4 0.114E+03 0.000 0.000 503.5 0.0 0.140E-04 0.263E+05 0.601E+04 0.716E+04 0.000 0.000 503.5 0.0 0.140E-04 0.235E+05 0.531E+04 0.688E+04 1.296 0.145E-03 0.105E-03 0.408E-03 44.6 0.165E+03 1.331 0.157E-03 0.106E-03 0.435E-03 61.5 0.224E+03 0.000 0.000 503.5 0.0 0.140E-04 0.203E+05 0.478E*04 0.637E+04 79.8 0.285E+03 0.000 0.000 503.5 0.0 0.140E-04 0.168E+05 0.440E+04 0.599E+04 1.361 0.167E-03 0.106E-03 0.468E-03 99.6 0.349E+03 0.000 0.000 503.5 0.0 0.140E-04 0.132E+05 0.411E+04 0.561E+04 1.365 0.178E-03 0.106E-03 0.505E-03 121.3 0.416E+03 0.000 0.000 503.5 0.0 0.140E-04 0.941E+04 0.386E+04 0.515E+04 1.333 0.194E-03 0.106E-03 0.544E-03 145.1 0.486E+03 0.000 0.000 503.5 0.0 0.140E-04 0.537E+04 0.366E+04 0.476E+04 1.302 0.210E-03 0.106E-03 0. 590E-03 Length shear shear

  • Film-dx Film-dx* fishear f/fishear cm N/m*2 m m 17.0 0.80E-01 0.54E+00 0.94E-04 0.90E-04 1.047 1.041 30.4 0.67E-01 0.45E+00 0.11E-03 0.11E-03 1.033 1.153 44.6 0.55E-01 0.37E+00 0.13E-03 0.13E-03 1.023 1.266 61.5 0.42E-01 0.28E+00 0.14E-03 0.14E-03 1.016 1.310 79.8 0.30E-01 0.20E+00 0.16E-03 0.15E-03 1.011 1.347 99.6 0.20E-01 0.13E+00 0.17E-03 0.17E-03 1.006 1.356 121.3 0.11E-01 0.70E-01 0.18E-03 0.18E-03 1.003 1.329 145.1 0.39E-02 0.26E-01 0.19E-03 0.19E-03 1.001 1.300 C-13

1 , d xm 4333333 0000000

                                               )

t/ W 3333333 0000000

-                    -        - - - - - - -     uC      - - - - - - -

m EEEEEEE (o9 EEEEEEE m l 2727901 2 9539210 i 6134578 5780583 . F 911111 1 R *m 3134445 0000000 0000000 _ mr 8336627 W 3333333 ah 3051451 )o/ 0000000 e/ bC9 - - - - - - - tg 4937036 u2 EEEEEEE 5443321 5666666 WsK t a ( 0000000 . Rm 11 11111 0000000 dr 2774483 W 3333333 nh 0382982 )n/ C 0000000 o i (92 - - - - - - - Wgc/ 7274075 EEEEEEE 61 61690 - - K 112334 R^ 1357791 m 1111112 0000000 6666666 r 0637163 - - "q2^ 0000000 o 1934145 2222322 m

                             ++++ +* +

EEEEEEE t c _

                         /  2849493             a      1111111                                  _

W 6554433 f C 1 11111 1 D 9 0000000 DB 26 p9C X 5869439 4444444 dm x 0000000

         =0        //

7026872 1726048 Ie2

                                                       ++ + + + + +

- t wC l ^ EEEEEEE it = c* 9887765 m 5526837 fn T 111111 1 / 6648607 iO d W 8765554 _ cot - _ TP S 0000L00 l 8688147 r9 C 4444444 _ cC o 0000000 T9 1109987 e2 + + + + + + + _ 5554444 h* EEEEEEE _ 111111 1 t m 5010341 _ H/ 1927308 _ W 7554443

       *C*C                                            0000000 t 2      8888888            )       5555554 m    2                a9                         x      0000000 R   90           s      1111111            i       + + + + + + +

5 T 5555555 m EEEEEEE 4

     -  25                  1111111            (

9118250 1 1 36 e 8639626 C R 2221118 1

         ==                                            0000000 n                                              2                   r u   1, o,      i 2

1 294529 ) 4444444 a 7669890 x *m e Tw9 R 0000000 5502935 cc 3176643 i - - - - - - - h 1222222 TT 3322222 (m/ g EEEEEEE 0000000 s p K 1111111 i 1111111 4444444 f 1111111 / f 0000000 w 1554912 s Pa 0000000 r 6225063 a T *C 9743322 aK g 0000000 a e 4321100 0000000 P *C 1111111 h K 1111111 P s 1111111 i f 56 91 oC 1666257 ma 5555555

  • m4333333 95 w aP x 0000000 41 T' 6410199 eK 9999999 d - - - - - - -

1111100 t s 9999999 - EEEEEEE 1111111 4444444 m 2134678

         ==                                                            l    9111111 P                       i tt                                                             F    0000000 ee                                      s%

ll tC 8376416 a 0000000 xm4333333 nn i' Gel 0000000 d 0000000 ii f 1963073 0000000 - - - - - - - - PT - 6555544 m EEEEEE5 T c Dom 0000000 l i 6235678 9111111 F 0000000 w 1711214 s% 0000000

  • 0000001 e9 . a 0000000 r 0000000 rrr T 2974172 6555544 Gss 0000000 a e
                                                                             ++++++ -

EEEEEEE hhh

        ///

Xam 0000000 h s 4567920 5432116 ggg KKK 0000000 aC 7375297 f 2333333 r21111112 T* , 0000000 a*0000000 em 00

4. 0 6418505 e + + * + + + + -

5554443 R EEEEEEE h/EEEEEEE 2 6011476 sN0740880 1 6 0. 8 8273952 8654219 00 6112234 1 0000000 0000000

            ==

. sgw hm 0465863 hm 0465863 hm0465863 te . te tc WWe g n 7041991 g n 7041991 g n 7041991 1346792 W 1346792 e 1346792 e e 1 L 1 L 1 L

Run 1.1-5R3 Kg/hr Pinlet - 517.7 KPa Tc,1 - 28.2 *C Tc-fit - D Ws - 61.2 Point =9 Kg/hr Tinlet = 153.8 'C Tc,o = 64.1 *C Wg = 0.000 STD = 0. 66 *C Wcw - 1020.4 Kg/hr Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx Length Ta Tew Tc-fit Kg/hr m

                                                                                                                                                          'C      *C        'C                'C          "C                                        'C         "C/m       W/m*2            Kg/hr cm          "C        'C 118.2      121.0      134.1              153.2                                      153.7     18.987 0.151E*06                 6.55      54.65 0.938E-04 17.0       55.8      61.5                                   61.0                                                                                                                                            49.64 0.114E-03 58.7                                   58.5   117.1      119.8      132.6              153.2                                      153.6     18.565 0.148E+06                11.56 30.4       52.8                                                                                                                                                  18.129 0.144E+06                16.75      44.45 0.129E-03 44.6       50.0      56.1                                   55.9   116.7      119.4      131.9              153.2                                      153.6 i

53.5 52.8 116.3 118.9 131.0 153.2 153.5 17.624 0.140E+06 22.76 38.44 0.143E-03 61.5 47.1 29.08 32.12 0.155E-03 l 79.8 43.6 50.3 49.7 116.3 118.8 130.6 153.2 153.2 17.092 0.136E+06 i 46.7 46.3 114.7 117.2 128.6 153.2 152.9 16.535 0.131E+06 35.66 25.54 0.166E-03 ( 99.6 39.8 42.61 18.59 0.177E-03 121.3 34.2 41.5 42.8 113.2 115.6 126.6 153.2 152.8 15.945 0.127E+06 l 31.1 38.9 39.1 115.7 118.0 128.6 153.2 152.6 15.322 0.122E+06 50.07 11.13 0.186E-03 ! 145.1 X Cas O Gas P steam P gas p (mix) Retmix) Htheor Hexp Dfactor R(in) R (tube) R (out) Length Re,f m* 2*C/W m^ 2*C/W cm mass % mole % KPa KPa Kg/m*2 W/m^2.*C W /m ^ 2 . *C m

  • 2*C/W l

i 17.0 0.646E+02 0.000 0.000 517.7 0.0 0.141E-04 0.290Et05 0.733E+04 0.790E*04 1.078 0.127E-03 0.105E-03 0.405E-03 30.4 0.113E+03 0.000 0.000 517.7 0.0 0.141E-04 0.263E+05 0.605E+04 0.717E+04 1.184 0.139E-03 0.105E-03 0.425E-03 l l da 6 0.164E*03 0.000 0.000 517.7 0.0 0.141E-04 0.235E+05 0.535E+04 0.677E+04 1.267 0.148E-03 0.105E-03 0.452E-03 61.5 0.222E+03 0.000 0.000 517.7 0.0 0.141E-04 0.204E+05 0.482E+04 0.633E*04 1.313 0.158E-03 0.105E-03 0.485E-03 79.8 0.283E+03 0.000 0.000 517.7 0.0 0.141E-04 0.170E+05 0.444E+04 0.601E+04 1.353 0.166E-03 0.105E-03 0.525E-03 99.6 0.344E+03 0.000 0.000 517.7 0.0 0.141E-04 0.135E+05 0.414E+04 0.535E+04 1.291 0.187E-03 0.106E-03 0.557E-03 121.3 0.408E+03 0.000 0.000 517.7 0.0 0.141E-04 0.985E+04 0.390E+04 0.477E+04 1.225 0.210E-03 0.106E-03 0.595E-03 145.1 0.483E+03 0.000 0.000 517.7 0.0 0.141E-04 0.589E+04 0.370E+04 0.495E+04 1. 337 0.202E-03 0.106E-03 0. 674E-03 l i Length shear shear

  • Film-dx Film-dx* fishear f/fishear cm N/m^2 m m 17.0 0.78E-01 0.53E+00 0.94E-04 0.90E-04 1.046 1.031 30.4 0.66E-01 0.45E+00 0.11E-03 0.11E-03 1.032 1.148 44.6 0.54E-01 0.37E+00 0.13E-03 0.13E-03 1.023 1.238 61.5 0.42E-01 0.28E+00 0.14E-03 0.14E-03 1.016 1.292 79.8 0.30E-01 0.20E+00 0.15E-03 0.15E-03 1.011 1.339 99.6 0.20E-01 0.13E+00 0.17E-03 0.17E-03 1.007 1.283 121.3 0.11E-01 0.75E-01 0.18E-03 0.18E-03 1.004 1.220 145.1 0.45E-02 0.30E-01 0.19E-03 0.19E-03 1.001 1.335 C-15

g s s Run 1.1-5R4 Ws - 57.1 Kg/hr Pinlet - 498.0 KPa Tc,1 - 30.6 *C Tc-fit - D Wg = 0.000 Kg/hr Tinlet = 151.5 *C Tc,o = 62.5 *C Point =8 Wcw - 1057.6 Kg/hr STD = 0. 59 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX qa Wcond Wsteam Film-dx cm 'C 'C 'C 'C 'C 'C 'C 'C 'C/m W/m^2 Kg/hr Kg/hr m 17.0 54.1 59.6 59.3 114.4 117.3 131.0 151.7 152.6 19.110 0.157E+06 6.83 50.27 0.956E-04 30.4 51.6 57.2 56.8 113.6 116.5 129.9 151.7 152.5 18.642 0.154E+06 12.04 45.06 0.116E-03 44.6 48.9 54.5 54.2 110.3 113.1 126.2 151.7 152.5 18.150 0.149E+06 17.39 39.71 0.131E-03 61.5 46.1 52.0 51.2 111.3 114.0 126.6 151.7 152.4 17.582 0.145E+06 23.61 33.49 0.145E-03 79.8 42.3 48.6 48.0 111.7 114.3 126.5 151.7 152.3 16.986 0.140E*06 30.12 26.98 0.157E-03 99.6 37.2 44.0 44.7 112.1 114

  • 126.4 151.7 152.2 16.365 0.135E+06 36.91 20.19 0.169E-03 121.3 33.7 40.5 41.2 108.7 111 122.4 151.7 152.0 15.710 0.129E+06 43.94 13.16 0.179E-03 Length Re,f X Gas il Gas P steam P gas p (mix) Reimix) Htheor Hexp ofactor R(in) R (tube) R (out) cm mass % mole % D* KPa Kg/m^2 W/ m ^ 2 . *C W/m^ 2.*C m^ 2*C/W m^ 2*C/W m*2'C/W 17.0 0.661E+02 0.000 0.000 498.0 0.0 0.140E-04 0.267E+05 0.720E+04 0.760E+04 1.057 0.132E-03 0.106E-03 0.374E-03 30.4 0.116E403 0.000 0.000 498.0 0.0 0.140E-04 0.240E+05 0.595E*04 0.703E+04 1.182 0.142E-03 0.106E-03 0.390E-03 44.6 0.165E403 0.000 0.000 498.0 0.0 0.140E-04 0.211E+05 0.524E+04 0.585E+04 1.116 0.171E-03 0.106E-03 0.402E-03 61.5 0.225E+03 0.000 0.000 498.0 0.0 0.140E-04 0.178E+05 0.474E+04 0.578E+04 1.219 0.173E-03 0.106E-03 0. 444E-03 79.8 0.237E+03 0.000 0.000 498.0 0.0 0.140E-04 0.143E+05 0.437E+04 0.555E+04 1.270 0.180E-03 0.106E-03 0.487E-03 99.6 0.351E+03 0.000 0.000 498.0 0.0 0.140E-04 0.107E+05 0.408E+04 0.531E+04 1.302 0.188E-03 0.106E-03 0.535E-03 121.3 0.411E+03 0.000 0.000 498.0 0.0 0.140E-04 0.700E+04 0.384E+04 0.442E+04 1.152 0.226E-03 0.107E-03 0.558E-03 Length shear shear
  • Film-dx Film-dx* fishear f/fishear em N/m^2 m m 17.0 0.70E-01 0.47E+00 0.96E-04 0.92E-04 1.040 1.016 30.4 0.57E-01 0.39E+00 0.12E-03 0.11E-03 1.027 1.150 44.6 0.46E-01 0.30E+00 0.13E-03 0.13E-03 1.019 1.095 61.5 0.34E-01 0.22E+00 0.15E-03 0.14E-03 1.013 1.203 79.8 0.23E-01 0.15E+00 0.16E-03 0.16E-03 1.008 1.260 99.6 0.14E-01 0.90E-01 0.17E-03 0.17E-03 1.004 1.296 121.3 0.63E-02 0.41E-01 0.18E-03 0.18E-03 1.002 1.149 C-16

xm 44433333

                                                      )t/

W 33333322 00000000 d 00000000

                  -         - - - - - - - -            uC         - - - - - - - -

m EEEEEEEE EEEEEEEE l 57399864 (o *2 29608948 i 16801234 67935800 F 78911111 R ^m 88899911 - 00000000 00000000 _ mr 19910782 W 33333333 ah 69232950 )e/ C0000000 e/ bC - - - - - - - - _ t g 754207 53 u92 EEEEEEEE WsE 44444333 (t^ 99000000 00111111 Rm 11111111 00000000 dr 91190328 ) W 33333333 n h 0743571 6 n/ 00000000 o i( *C - - - - - - - - EEEEEEEE c/ Wg 235791 46 11 1 R^ 2 04195537 _ K m 01335780 _ 11111112 - 00000000 55555555 r 73354422 j 'q *2 00000O00 o 41052792

                            + + + + + i + +            t         01111000 m  EEEEEEEE                    c                .
                        /  81345542                     a        11111111

_ W 2210987 6 f D C 55554444 9 0000000U D1 9 2 pC 44444444 1

          =0 X

dm 04486792 78987529 x*. e2 00000000

                                                                  + + + + + * + +
                  //        21098764 t               wC                                 H^        EEEEEEEE it       =      c'      66655555                          m  85414374 f n            T                                         /   97624748 i  D      d                                         W   98776554 cot                                                         00000000 TP S r C      44444444 l

cC 060481 37 . o". e2 00000000

                                                                  + + + + + + + +

T' 43321109 h^ EEEEEEEE 33333332 111 1 111 1 t m 36343313 H/ 58927307 W 97665554 "CC " 00000000 _ t 88880888 ) 55555555 aC x 00000000

                                                                  + + + + + + + +

11 s' 22222222 i 7 1 T 00000000 m EEEEEEEE 1

  -  10                     111 1 1111                  (         11196282                                     -

2 35 e 98754310 C R 22222222 1

      =-                                                          00000000 r

n )2 44444444 a 43629425 u 1, o, i 69192423 R wC . x ^m 00000000 e 87853037 cc T' 76655443 i - - - - - - - - EEEEEEEE h s 89900009 TT 99999999 (m/ K g 22222222 i 00011110 p 22222222 f 11111111 / f 00000000 w 82537091 s Pa 00000000 r 43882988 T 'C . a K a 84198654 a 2211 0099 g 00000000 e 11100000 P *C 99999988 h K P s 11111111 i f 11 25. 13 oC 825371 02 m Pa a 11111111

  • m44443333 x 00000000 w

11 T' 11009998 eK t 22222222 1111 1111 d EEEEEEEE 99998888 s 11111111 m 06891234

       ==                                                P l

i 67891111 tt F 00000000 ee ll 24554207 s% 00000000 xm44433333 nn tC i* a 00000000 d 00000000 ii f 98765431 Gel 00000000 - - - - - - - - - PT - 44444444 m EEEEEEEE T c Dom 00000000 l i 17812344 78911111 F 00000000 w3 65568390 s% 00000000

  • r 11110000 c9 ,

a 00000000 00000000 rrr T 98765422 44444444 Gss 00000000 a + + + + + + + + e EEEEEEEE hhh Xa m 00000000 h s 32104556 11119876

       ///

ggg KKK 00000000 a3 86668278 22222223 r200000000 T9 f, 00000000 a* 00000000 04 54321087 e + + + + + + + + em++++++++

7. 0 44444433 R EEEEEEEE 85449268 h/EEEEEEEE sN53208753 902 4 9 34581610 22221111 00 12346791 1 00000000 00000000
        ===                                               hm                           hm04658631 sgw hm      04658631 t c 04658631 tc t c                                                               g WWc     W g

n 7041 9915 13467924 g n 70419915 13467924 n 70419915 13467924 a 1 1 e 11 e 11 l L L

xm 44333333 ) W 33333333 d 00000000 t/ 00000000

                   -      - - - - - - - -   uC      - - - - - - - -

m EEEEEEEE (o92 EEEEEEEE l 88466542 39973423 i 51012345 56725938 DV F 79111111 00000000 R ^m 77788899 00000000 mr 55686701 W 33333333 ah e/ 75257762 )e/ bC 00000000 tg 75307418 u92 EEEEEEEE WsK 44443332 (t^ 78880880 00000000 - Rm 11111111 _ 00000000 55424309 ) W 33333333 dr nh 80308803 n/ 00000000 _ o c/ 25702592 i *C - - - - - - - - EEEEEEEE Wg (2 _ K 11112 R^ 84867029 02446801 . - m 11111122 _ 00000000 55555555 r 69227369 "q 2 00000000 o 27259930

                      ^  ++ * + + * +
  • t 00010000 m EEEEEEEE c
                      /  86494013           a     11111111                                      -

W 98754219 f C 66666665 D 00000000 D11 6 3 pC X 67234427 44444444 _ - 0 dm 84035664 x*. O0000000

                 //      21086420           e2     i + *+ ++++

_ t wC H^ EEEEEEEE it= fn T' c 88877777 m 97349656 20789595

                                               /

i D d W 98665544 - cot - TP S 00000000 l 73063083 r *C 44444444 cC o. 00000000 T* 88877766 e2 *+ ++ ++++ h^ 33333333 EEEEEEEE 11111111 t m 68946982 H/ 04594075 _ W 97655544

        *C*C 00000000                                       _

t 99999999 ) 55555555 _ a x 00000000 30 s *C 99999999 i * +++ ++++ 2 T 11111111 m EEEEEEEE 8

      - 17               111111 1 1        (

75169234 1 _ 2 35 e 76531086 - R 22222211 C V1 n u R

          ==

1, o, cc TT i: Tw9 44921659 21909876 11010000

                                           )

i (m/ 2 x *m g 00000000 44444444 00000000 EEEEEEEE 88888888 h r a e s 89052799 29695508 99900009 00011110 p K 11111111 i 22222222 f 11111111 / , f _ 00000000 . s Pa w 23944016 00000000 r 00522471 aK a T *C g a 00654322 - P *C 65343321 00000000 e 10000000 - 00000000 h K 1111 1111 P s 11111111 i f 84 _ 79 oC 90612895 ma 88888888

  • m44433333 _

93 w aP x 00000000 11 T* 44232100 00000000 t eK 77777777 99999999 d EEEEEEEE 111111 11 s 11111111 m 95812345 _ - == l 68911111 P i tt F 00000000 ee ll st nn tC 875..8370 a 00000000 00000000 xm44333333 i* d 00000000 ii f 54320976 Gel 00000000 - - - - - - - - - PT - 55555444 m EEEEEEEE T c Oom 00000000 l i 62023345 79111111 F - 00000000 wC 40640573 s% 00000000

  • 00000000 c a rrr T' 65321976 55555444 Gss 00000000 00000000 r

a e 00000000

                                                                         ++++++++

EEEEEEEE hhh Xam 00000000 h 69146803

         ///

ggg s 87765443 KKK 00000000 a 73951451 22222333 r200001111 T 'C f, 00000000 a^ 00000000 605 0 10876421 55444444 R e * + ++++++ EEEEEEEE em++++ h/EEEEEEEE 1 10301149 sN54210418 0 0.8 5 00 29678246 11119875 23579111 1 00000000 00000000

          ===

sgw hm 04658631 hr 04658631 hm04658631 t c t e te WWc W g n 70419915 13467924 g n 70419915 13467924 g n 70419915 13467924 e 11 e 11 e 11 - L L L fV -

Run 1,2-3 Tc,1 = 32.6 *C Tc-fit - D Ws = 49.1 Kg/hr Pinlet = 304.3 KPa Tinlet = 141.5 *C Tc,o = 58.4 *C Point =9 Wg = 0.000 Kg/hr STD = 0.24 *C Wcw - 1086.2 Kg/hr Twi Tsat Tcl dTcw/dX q' Wcond Wsteam Film-dx Ta Tcw Tc-fit Two Tw length

                                                                      'C     *C                    *C                                                             *C                                                            'C                                 'C/m      W/m^2      Kg/hr      Kg/hr           m cm                         *C        *C            *C 121.1                                                         134.0                                                         140.4                                            13.467 0.114E406        4.81     44.29 0.877E-04 17.0                    51.5          56.6       56.2     109.0  111.1                                                                                                                                                                                                                    40.62 0.106E-03 54.5     107.7  109.8      119.5                                                         134.0                                                          140.1                                           13.117 0.111E+06        8.48 30.4                     49.5         54.7                                                                                                                                                               139.9                                           12.755 0.108E+06       12.25     36.85 0.120E-03 47.3          52.6       52.6     106.4  108.4      117.9                                                         134.0 44.6 108.6      117.8                                                         134.0                                                          139.6                                           12.338 0.104E+06       16.62     32.48 0.133E-03 61.5                     44.9         50.4       50.5     106.6                                                                                                                                                                                                                21.19      27.91 0.144E-03 48.3     107.2  109.1      118.0                                                         134.0                                                          139.5                                           11.902 0.101E+06 79.8                     42.8         48.5                                                                                                                                                               139.5                                           11.447 0.967E+05      25.93      2 3.17 0.154E-0 3 39.9        45.9       46.0     106.8  108.6      117.1                                                         134.0 99.6 106.1  107.9      116.1                                                         134.0                                                          139.4                                           10.969 0.927E+05       30.91      18.19 0.164E-03 121.3                     31.0         43.2       43.5                                                                                                                                                                                                                           36.15      12.95 0.173E-03 41.0     106.3  108.0      115.8                                                         134.0                                                          139.2                                           10.467 0.885E+05 145.1                      34.8        41.2 Re (mix)                                                             litheor                                                  !!exp  Dfactor      R (in)  R(tube)      R(out) length                       Re,f        X Gas     O Gas P steam     P gas     p(mix)

W/m^ 2.*C m*2*C/W m^2*C/W m^2*C/W cm mass % mole t KPa KPa Kg/rr^2 W / m^ 2 . *C 0.000 304.3 0.0 0.134E-04 0.247E+05 0.785E+04 0.881E+04 1.122 0.114E-03 0.107E-03 0.495E-03 17.0 0.415E+02 0.000 1.181 0.131E-03 0.107E-03 0.513E-03 30.4 0.726E+02 0.000 0.000 304.3 0.0 0.134E-04 0.227E+05 0.649E+04 0.766E+04 0.000 304.3 0.0 0.134E-04 0.205E+ 05 0.573E+04 0.669E+04 1.168 0.150E-03 0.107E-03 0.533E-03 44.6 0.104E+03 0.000 1.242 0.156E-03 0.107E-03 0.575E-03 61.5 0.141E+03 0.000 0.000 304.3 0.0 0.134E-04 0.181E+05 0.517E+04 0.642E+04 0.000 304.3 0.0 0.134E-04 0.156E+05 0.477E+04 0.626E+04 1.312 0.160E-03 0.107E-03 0.626E-03 79.8 0.100E403 0.000 1.285 0.175E-03 0.107E-03 0.672E-03 99.6 0.220E+03 0.000 0.000 304.3 0.0 0.134E-04 0.129E+05 0.446E+04 0.572E+04 0.000 304.3 0.0 0.134E-04 0.101E+05 0.420E+04 0.516E+ 04 1.231 0.194E-03 0.107E-03 0.722E-03 121.3 0.261E+03 0.000 1.219 0.206E-03 0.107E-03 0.790E-03 145.1 0.304E+03 0.000 0.000 304.3 0.0 0.134E-04 G.722E+04 0.398E+04 0.485E+04 Length shear shear

  • Film-dx Film-dx* fishear f/f1 shear cm N/m^2 m m 17.0 0.88E-01 0.54E+00 0.88E-04 0.83E-04 1.054 1.064 30.4 0.75E-01 0.46E+00 0.11E-03 0.10E-03 1.039 1.137 44.6 0.63E-01 0.39E+00 0.12E-03 0.12E-03 1.029 1.135 61.5 0.50E-01 0.31E+00 0.13E-03 0.13E-03 1.021 1.217 79.8 0.38E-01 0.23E+00 0.14E-03 0.14E-03 1.014 1.293 99.6 0.27E-01 0.17E+00 0.15E-03 0.15E-03 1.010 1.272 121.3 0.18E-01 0.11E+00 0.16E-03 0.16E-03 1.006 1.223 145.1 0.96E-02 0.58E-01 0.17E-03 0.17E-03 1.003 1.215 C-19

d xm 433333 000000

                                  )

t/ W 333333 000000

              -      - - - - - -   uC     - - - - - -

m EEEEEE (o9 EEEEEE l 861589 2 545953 i 513456 912505 F 911111 R *m 344455 000000. 000000 mr 011156 W 333333 ah 097749 )e/ 000000 e/ bC9 - - - - - - t g 372603 u 2 EEEEEE 433221 666666 WsK (t* Rm 000000 111111 000000 dr 099954 ) W 433333 nh 779927 n/C 000000 - o i (92 - - - - - - c/ Wg 616295 EEEEEE K 11223 R* 650291 814557 m 911111 000000 666666 r 195161

            'q 2*   000000        o     166933
                    + + 4 + + +   t     443344 m EEEEEE        c                   .
                 /  516159        a     111111 W  554432       f C          111111       D 9

000000 D7 04 p90 X 155464 544444 dm x 00O000

    ==0     //

52861 4 271592 e2 * + i + + + t

          =

w H^ EEEEEE it c *C 877655 m 1 35875 f n T 111111 / 071528 i D d W 187665 cot TP S 000000 0 l 333222 r9 444444 cC o. 000000 T' 555555 e2 * + + + + + h^ 444444 EEEEEE 111111 t m 944378 H/ 192730

                                    .W  755444
  *C*C                                  000000 t      111111       )      555554 aC                   x     000000 61        s*     555555       i      6   + * + * +

4 29 T 444444 ( m EEEEEE 0

-                   111111              357516                             2-2   35                             e     307415 1

R 221117 C

    ==                                  000000 n                                    2                  r u 1, o,     i       887759       )      444444           a   363788 R             wC                   x ^m  000000           e   634722 cc TT T'      974332       i m/g   - - - - - -    h    341344 222222              EEEEEE           s 111111 (p K   888888          1    111111 333333          f 111111          /                     .

f 000000 w 319476 s Pa 000000 r 646063 T 'C a K a 321100 aC 641111 g 000000 e 000000 P9 111111 h K 1111 11 P s 'l11111 - i f 31 65 o 492822 ma 333333

  • m433333 14 w *C aP x 000000 41 T 319899 eK 666666 d - - - - - -

110000 t s 111111 - EEEEEE 111111 444444 m 313467

    ==                                                  l    911111 P                     i tt                                                   F    000000 ee ll                              s%

tC 172443 000000 xm433333 nn ii i' a Gel 000000 d 000000 f 631852 000000 - - - - - - - PT - 555444 m EEEEEE c T Qom 000000 l i 623567 911111 F 000000 wC 536419 s% 000000

  • 000001 c9 a 000000 r 000000 rrr T 641851 555444 Gss 000000 a +EEEEEE e
                                                               ++++ -

hhh

   ///

Xam 000000 h s 125713 432115 ggg KKK 000000 a0 969482 f, 233333 r2111112 T9 000000 a^000000 08

7. 0 085285 544433 R e ++ 4 + + +

EEEEEE em h/EEEEEE 906076 9 0. 09 4 215162 sN208662 653218 00 611223 1 000000 000000

    ===

sgw hm 046586 hm 046586 hm046586 tc te tc WWc W g n 704199 134679 g n 704199 134679 g n 704199 134679 L e L e e L

Run 1.2-4R1 Ws = 48.2 Kg/hr Pinlet = 409.3 KPa Tc,1 = 32.0 *C Tc-fit = D Wg = 0.000 Kg/hr Tinlet = 148.1 *C Tc,o = 58.5 *C Point =9 Wcw - 1095.8 Kg/hr STD = 0.80 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam F'i lm-dx cm 'C 'C *C *C *C 'C 'C 'C 'C/m W/ma 2 Kg/hr Kg/hr m 17.0 51.3 57.1 56.2 115.7 118.0 128.7 144.5 146.4 14.487 0.124E+06 5.29 42.91 0.887E-04 30.4 49.0 54.8 54.2 114.0 116.3 126.8 144.5 146.3 14.155 0.121E+06 9.34 38.86 0.107E-03 44.6 47.0 52.9 52.2 112.2 114.4 124.7 144.5 146.2 13.810 0.118E+06 13.52 34.68 0.122E-03 61.5 44.4 50.4 49.9 111.5 113.6 123.6 144.5 146.0 13.412 0.114E+06 18.36 29.84 0.135E-03 79.8 41.3 47.5 47.5 110.5 112.6 122.3 144.5 145.9 12.993 0.111E406 23.43 24.77 0.147E-03 99.6 37.4 44.0 45.0 110.1 112.1 121.5 144.5 145.4 12.554 0.107E406 28.74 19.46 0.157E-03 121.3 34.3 41.2 42.3 111.2 113.1 122.1 144.5 144.4 12.091 0.103E+06 34.39 13.81 0.167E-03 145.1 33.3 40.4 39.5 111.8 113.7 122.4 144.5 143.8 11.602 0.989E+05 40.34 7.86 0.176E-03 Liangth Re,f X Gas il Gas P steam P gas p(mix) Re(mix) Htheor Hexp Dractor R(in) R (tube) R(outi cm mass % mole % KPa KPa Kg/ma 2 W/m^2.*C W / m ^ 2 .*C m* 2*C/W m

  • 2*C/ W m^2*C/W 17.0 0.493E+02 0.000 0.000 409.3 0.0 0.137E-04 0.233E+05 0.776E+04 0.787E+04 1.014 0.127E-03 0.106E-03 0.515E-03 30.4 0.864E+02 0.000 0.000 409.3 0.0 0.137E-04 0.211E+05 0.641E+04 0.685E+04 1.069 0.146E-03 0.106E-03 0. 530E-03 44.6 0.124E+03 0.000 0.000 409.3 0.0 0.137E-04 0.188E+05 0.565E+04 0.596E+04 1.054 0.168E-03 0.106E-03 0.544E-03 61.5 0.167E+03 0.000 0.000 409.3 0.0 0.137E-04 0.162E+05 0.510E404 0.549E+04 1.076 0.182E-03 0.106E-03 0.575E-03 79.8 0.213E+03 0.000 0.000 409.3 0.0 0.137E-04 0.134E+05 0.469E+04 0.500E+04 1.065 0.200E-03 0.106E-03 0.608E-03 99.6 0.260E+03 0.000 0.000 409.3 0.0 0.137E-04 0.105E+05 0.438E+04 0.466E+04 1.064 0.215E-03 0.106E-03 0.650E-03 121.3 0.312E+03 0.000 0.000 409.3 0.0 0.137E-04 0.748E+04 0.413E*04 0.462E+04 1.118 0.217E-03 0.106E-03 0.714E-03 145.1 0.366E+03 0.000 0.000 409.3 0.0 0.137E-04 0.426E*04 0.392E+04 0.448E+04 1.143 0.223E-03 0.106E-03 0.782E-03 Length shear shear
  • Film-dx Film-dx* fishear f/f1 shear cm N/m^2 m m 17.0 0.63E-01 0.41E+00 0.89E-04 0.85E-04 1.039 0.976 30.4 0.53E-01 0.34E+00 0.11E-03 0.10E-03 1.027 1.041 44.6 0.43E-01 0.28E+00 0.12E-03 0.12E-03 1.019 1.034 61.5 0.33E-01 0.21E+00 0.14E-03 0.13E-03 1.013 1.062 79.8 0.23E-01 0.15E+00 0.15E-03 0.15E-03 1.009 1.056 99.6 0.15E-01 0.97E-01 0.16E-03 0.16E-03 1.005 1.058 121.3 0.82E-02 0.53E-01 0.17E-03 0.17E-03 1.003 1.115 145.1 0.30E-02 0.19E-01 0.18E-03 0.18E-03 1.001 1.142 C-21

i' xm 4333333 )W 3333333 d 0000000 t/ 0000000

                -       - - - - - - -    uC     - - - - - - -

m EEEEEEE (o9 2 EEEEEEE l 1948900 3245906 i 0023467 8003718 F 9111111 R *m 4555566 0000000 0000000 mr ah 7005978 8620586 )e/W bC9 3333333 0000000 e/ u2 EEEEEEE t g 3950482 6667676 WsK 1333211 (t^ 0000000 Rm 1111111 0000000 dr 3005132 W 3333333 n 5823857 )n/ C 0000000 oh i - - - - - - - Wgc/ 5949406. 11233 (92 R^ EEEEEEE 6877970 K 3478809 m 1111121 0000000 6666666 r 11611 43 "q 2^ 0000000 o 6717520

                       + + + + + + 4    t      9000113 m EEEEEEE           c
                    /  9752962           a     0111111 W  2222111          f D

C 111111 1 0000000 D8 26 p9C X 2579140 4444444 dm x 0000000

      ==0     //

677267 6 9630628 o2 4 *+ ++ +

  • t wC H^ EEEEEEE it = c* 5555443 m 4546037 f n T 1111111 / 3763382 i D d W 7655545 cot TP S 0000000 _

C . l 4444554 r9 4444444 cC o 0000000 T* 5555555 e2 h^

                                               +* +++++

4444444 EEEEEEE 1111111 t m 4050195 H/ 6350620 W 7655444 CC

     *9                                        0000000 t       7777777          )      5555554                                 .

2 a9 x 0000000 R 75 s 4444444 i + + +++++ 4 T 4444444 m EEEEEEE 2 .

   - 97                1111111          (

8413327 2- _ 2 45 e 3196308 _ R 2211116 C s) 1 n u 2 0000000 r _ < 1, o, i C 1960384 4444444 a 4277190 _ R cc Tw9 7522203

                                        )x *m i

0000000

                                                - - - - - - -  h e    2495410 9090113 TT                2222222            m/g  EEEEEEE 7777777 s

0101111 1111111 (p K 3333333 i f 1111111 / f 0000000 w 8873966 s Pa 0000000 r 0793052 a T *C 5411103 aK g 0000000 a e 4211000 0000000 P *C 1111111 h K 1111111 P s 1111111 i f 55 26 oC 4440745 m Pa 5555555

  • m4333333 -

14 w a x 0000000 41 T* 3299981 eK 2222222 d - - - - - - - - 1100001 t s 1111111 - EEEEEEE 111111 1 4444444 m 7124567

      ==                                 P l     8111111 i

tt F 0000000 ee ll s% tC 9860344 0000000 xm4333333 nn i' a Gel 0000000 d 0000000 ii f 4208529 0000000 - - - - - - - - PT - 5554443 m EEEEEEE c T Oom 0000000 l i 0124567 9111111 F 0000000 w: 6615452 s% 0000000

  • 0000011 cS a 0000000 r 0000000 rrr T 531851 9 5554443 Gss 0000000 a + + + + + - -

e EEEEEEE hhh Xam 0000000 h 2581515

     ///                                                         s   4322194 ggg KKK                                                             0000000 aC      9734089          f      2233333          r211111 12 T9                        e, 0000000          a^ 0000000 00
4. 0 9752941 *++ + +++ em- - - -

4444333 R EEEEEEE h/EEEEEEE 2 3395555 sN5443340 94 0. 4 1027273 6543217 00 5911223 1 0000000 0000000

       ==-

sgw hm 0465863 hm 0465863 hm0465863 t c te t e WNc g 7041991 g 7041991 g 7041991 W n 1346792 n 1346792 n 1346792 e 1 e 1 e 1 L L L s

xm 33333 ) W 33333 d 00000 t/ 00000

                   -         - - - - -      uC         - - - - -

EEEEE EEEEE _ m (o *2 l 0171 4 15637 i 02356 57827 - F 1 1111 R ^m 33344 00000 00000 mr 81522 W 33333 ah 56564 )e/ 00000 e/ bu *C - - - - - tg 15925 2 EEEEE WsK 43221 (t^ 56666 00000 Rm 11111 - 00000 dr 29588 )W 33333 _ nh 98980 n/C 00000 o/ i - - - - - - c Wg 73964 (R^ *2 EEEEE 59605 K 1123 m 01466 11111 00000

  • 66666 r 72040 q2
                        ^

00000 o 88674

                             + + * +
  • t 34334 m EEEEE c

- / 1 5813 a 11111 W 87665 f C 11111 D 00000 D6 05 p*C X 06681 44444

     -    =0       dm       1 6034           x .      00000
                                                       +++++
                   //       35890            e2 t
              -     wC                      H^        EEEEE it              c*      1 0988                 m  33345 fn             T        22111                 /   54820 i D       d                              W   98666 cot TP S                                              00000 l        10987            r *C     44444

- cC o. 00000 T* 22111 e2 + + + + + 55555 EEEEE - 11111 ht "m 79240 H/ 86052 W 65544

    *CC
  • 00000 t 77777 ) 55554 a x 00000 48 s *C 22222 i + + + * +

5 28 T 55555 m EEEEE 3 _ - 11111 ( 19708 2-2 35 e 28521 1 R 21118 C

      - -                                              00000 n                                                2               r u  1
        , o,        l        70194           )         44444       a    17566 R

cc w x ^m 00000 e 55463 - T *C 32867 i - - - - - h 34334 TT 33222 (m/ g EEEEE s . 11111 p K 00000 i 11111 44444 f 11111 / f 00000 w 08490 s Pa 00000 r 77163 T *C a K a 21100 aC 86324 g 00000 e 00000 P* 11111 h K 11 111 P s 11111 i f 12 12 oC 65291 m Pa 11111

  • m43333 15 w . a x 00000 T*

51 43091 eK t 11111 d - - - - - 11101 s 11111 - EEEEE 11111 55555 m 72456

       -=                                                         l     91111 P                   i tt                                                           F    00000 ee ll                                       s%

tC 24539 00000 xm33333 _ nn ii i* a Gel 00000 d 00000 f 52962 00000 - - - - - - PT - 55444 1 o m EEEEE c 1 m 00000 l 02456 T i 11111 F 00000 wC 52095 s% 00000

  • 00001 e* a 00000 r 00000 rrr f 53052 55544 Gss 00000 a e
                                                                         + + + + -

EEEEE hhh

      ///

Xam 00000 h s 35814 32115 ggg KKK 00000 aC 72057 f 23333 r211112 T* , 00000 a^ 00000 504 97495 e + + + + + EEEEE em-0 44433 R h/EEEEE sN87661 9 0. 09 4 96277 73952 43218 00 71123 1 00000 00000

        ==

sgw hm 04658 hm 04658 hm04658 tc t c t c WWe W g n 70419 13467 g n 70419 13467 g n 7G419 13467 e e e L L L

      .               !               . :
  • l [ I r t i m

. xm 4333333 W 3333333 d 0000000 )t/ 0000000

                          -       - - - - - - -        uC         - - - - - - -

m l m EEEEEEE 43824S5 (o *2 EEEEEEE 0174990 mO i F mr 31245i7 91111 0000000. 0208434 l. 1 R ^m W 4671374 4445556 0000C00 3333333 _ ah e/ 8990070 )e/ 0000000 t g 2727148 bu *C EEEEEEE . 433221 2 5566666 WsK t^ ( Rm 0000000 1111111 0000000 dr 0802676 W 3333333 ~_ n oh c/ Wg K 4231141 6162841 112234

                                                      )n/

i *C (2 R* 0000000 EEEEEEE 0333862 _ m 3467912 1111122 0000000 m 6666666 r 5824826 "q 2* 0000000

                                 + + + + + *
  • t
                                                       <         4449214 0111111

_ / m EEEEEEE 7405161 c a 1111111 W 4443322 f - C 1111111 D 0000000

.           D8 0   7                                   pC X        5492171                         4444444
.            =
                =0      dm
                        //

4042799 4050482 x*. 0000000

                                                                 * + + + + + +

. t wC fe2 l ^ EEEEEEE it = c* 7766544 m 0940440 ~. f n cot i D T d 1111111 / W 7918065 7665544

._.          TP S                                                0000000 l        7665552               r *C      4444444                                               -

cC o. m T* 2222222 5555555 e2 h* 0000000

                                                                 ++ + + + + 4 EEEEE2E 111111 1             t i     m    7975773                                               _

_. l/ W 3038419 7654443 _

            *C"C 0000000 5555544

_ t 8888888 ) _ 1 aC x 0000000 _

.       R    04          s*      1111111              i          + + + + + +  4                                        -

- 5 29 T 5555555 ( m EEEEEEE 4

.         -                      1111111                         8254238                                          2-2    35                                        e         2074182 R          2211174                                          C
    )   1
              ==                                                 0000000 n                                                  2                          r u   1, o,      i        7315970              )          4444444               a   4474395 R                wC                            x ^m      0000000               e   1228204

_ cc TT T* 2198545 i - - - - - - - h 0111111 3322222 (m/ g EEEEEEE s 0000000 p K 1111111 i 1111111 4444444 1111111 f

                                                                                      /

f 0000000 _ w 9897575 s Pa a K 0000000 r 1149531 a T *C a 3210000 _- P *C 9866434 1 111 111 g 0000000 h e 0000000 . K 1111111 P s 1111111 i . f 92 . 92 oC 2132032 ma 9999999

  • m4333333 95 w aP x 0000000 T* eK 41 7644212 9999999 d - - - - - - -

1111111 t 9999999 - EEEEEEE 111111 1 s 4444444 m 1134568 . == l 9111111 P i tt F 0000000 _- ee ll s% - tC 6291221 0000000 xm4333333 nn i* a 0000000 d 0000000 ii f 6419630 Gel 0000000 - - - - - - - - PT - 5554444 l o m EEEEEEE c 0000000 .- T i m l i F 3134578 9111111 0000000 _ wC 2609807 s% 0000000

  • 0000111 c* a 0000000 r 0000000

.. rrr T 7429520 5554444 Gss 0000000 a + + + + - - - e EEEEEEE hhh

             ///

Xam 0000000 h s 5825617 3221951 ggg KKK 0000000 _ aC 2585215 f 2333333 r21111122 T* , 0000000 a^ 0000000 . 05

2. 0 1853953 5444333 R o + * + + + + +

EEEEEEE em h/EEEEEEE 5 4072769 sN2223566

.            9 0.8 4                                                    2151628                  5432172 00                                                6112233 1                                                                      0000000 0000000

~ ==- hm 0465863 hm 0465863 hm0 _.- sgw WWe t c g 7041991 tc g 7041991 tc.465863 g 7041991 _ W n 1346792 n 1346792 n 1346792 . e 1 e 1 e 1

.O l                             L                               L m

m

    '                                                               ]-                                       ' !I

Run 1.3-1 Ws = 39.4 Kg/hr Pinlet - 113.3 KPa Tc,1 - 27.4 *C Tc-fit - D Wg = 0.000 Kg/hr Tinlet - 133.0 *C Tc,o - 49.6 *C Point -11 Wcw = 949.7 Kg/hr STD = 0.19 *C Tcw Two Tw Twi Tsat Tcl dTcw/dX q* Wcond Wsteam Film-dx Length Ta Tc-fit Kg/hr Kg/hr m

                                                                              *C        *C      *C        *C       *C         *C          *C           *C          *C/m        W/m^2 cm 48.5      91.3     92.4       97.6      103.2        130.2           7.749 0.573E*05          2.28     37.12 0.735E-04 17.0       44.8      48.8 35.36 0.891E-04 30.4       43.5      47.6     47.4      90.5     91.6       96.7      103.2        120.2           7.609 0.562E+05          4.04 44.6       42.4      46.5     46.4      89.6     90.7       95.7       103.2       129.8           7.463 0.551E*05          5.87     33.53 0.101E-03 61.5       41.1      45.3     45.1      89.6     90.6       95.5      103.2        129.3           7.293 0.539E+05          7.99     31.41 0.112E-03 79.8       39.7      44.0     43.8      89.2     90.2       94.9      103.2        128.6           7.113 0.526E+05         10.24     29.16 0.122E-03 99.6       38.1      42.4     42.4      88.1     89.1       93.7      103.2        128.0           6.924 0.512E+05         12.61     26. 79 0.131E-03 121.3       36.5      40.9     40.9      87.3     88.3       92.8      103.2        127.3           6.722 0.491E+05         15.12     24.28 0.139E-03 145.1       34.9      39.4     39.3      86.8     87.7       92.1      103.2        127.2           6.507 0.481E+05         17.80     21.60 0.147E-03 Length       Re,f     X Gas    D Gas P steam      P gas     p(mix)    Re(mix)      Htheor              Hoxp     Dfactor      R(in)   R (tube)     R(out) cm               mass %   mole %        KPa      KPa     Kg/m^2               W/ m ^ 2 . *C   W/ m ^ 2 . *C            m^2*C/W   m ^ 2*C/ W  m* 2*C /W 17.0 0.151E+02      0.000    0.000     113.3      0.0 0.122E-04 0.227E* 05 0.926E+ 04 0.102E*05                 1.105 0.917E-04 0.109E-03 0.800E-03 30.4 0.266E+02      0.000    0.000     113.3      0.0 0.122E-04 0.216E+05 0.764E+04 0.868E+04                   1.135 0.115E-03 0.110E-03 0.820E-03 44.6 0.384E+02      0.000    0.000     113.3      0.0 0.122E-04 0.205E+05 0.674E+04 0.738E+04                   1.095 0.135E-03 0.110E-03 0.839E-03 61.5 0.523E+02      0.000    0.000     113.3      0.0 0.122E-04 0.192E+05 0.608E+04 0.701E+04                   1.154 0.143E-03 0.110E-03 0.882E-03 79.8 0.668E+02      0.000    0.000     113.3      0.0 0.122E-04 0.178E+05 0.559E+04 0.641E+04                   1.147 0.156E-03 0.110E-03 0. 924E-03 99.6 0.817E+02      0.000    0.000     113.3      0.0 0.122E-04 0.164E+05 0.520E+04 0.543E+04                   1.044 0.184E-03 0.110E-03 0.956E-03 121.3 0.975E+02      0.000    0.000     113.3      0.0 0.122E-04 0.148E+05 0.489E+04 0.480E+04                   0.982 0.208E-03 0.110E-03 0.100E-02 145.1 0.114 +03      0.000    0.000     113.3      0.0 0.122E-04 0.132E+05 0.462E+04 0.433E+04                   0.938 0.231E-03 0.110E-03 0.105E-02 Length      shear    shear
  • Film-dx Film-dx* fishear f/fishear cm N/m^2 m m 17.0 0.16E+00 0.81E+00 0.74E-04 0.66E-04 1.114 0.992 30.4 0.14E+00 0.74E*00 0.89E-04 0.82E-04 1.086 1.045 44.6 0.13E+00 0.67E+00 0.10E-03 0.95E-04 1.069 1.024 61.5 0.12E+00 0.60E+00 0.11E-03 0.11E-03 1.055 1.094 79.8 0.10E+00 0.52E+00 0.12E-03 0.12E-03 1.045 1.098 99.6 0.88E-01 0.45E400 0.13E-03 0.13E-03 1.036 1.008 121.3 0.74E-01 0.37E+00 0.14E-03 0.14E-03 1.028 0.955 145.1 0.60E-01 0.30E+00 0.15E-03 0.14E-03 1.022 0.918 O 9" O

l l a s l l Run 1.3-1R1 Ws = 41.2 Kg/hr Pinlet = 115.2 KPa Tc,1 - 28.0 *C Tc-fit - D Wg = 0.000 Kg/hr Tinlet = 134.1 9 Tc,o - 51.5 9C Point -11 Wew = 936.9 Kg/hr STD = 0.28 *C Length Ta Tew Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx l cm *C 'C *C *C 'C *C 'C 'C 'C/m W/m*2 Kg/hr Kg/hr m 17.0 46.9 50.7 50.3 90.9 92.1 97.5 103.6 130.9 8.176 0.596E+05 2.37 38.83 0.744E-04 30.4 45.6 49.5 49.2 90.1 91.2 96.5 103.6 130.6 8.043 0.586E+05 4.20 37.00 0.902E-04 44.6 44.4 48.3 48.0 88.8 89.9 95.1 103.6 130.2 7.905 0.576E+05 6.10 35.10 0.102E-03 61.5 42.9 46.9 46.7 89.3 90.4 95.5 103.6 129.8 7.745 0.565E+05 8.33 32.87 0.114E-03 79.8 41.4 45.5 45.3 88.6 89.7 94.7 103.6 129.1 7.574 0.552E+05 10.69 30.51 0.124E-03 99.6 39.8 44.0 43.8 88.0 89.0 93.9 103.6 128.4 7.394 0.539E+05 13.18 28.02 0.133E-03 121.3 37.9 42.2 42.3 87.3 88.3 93.1 103.6 127.9 7.201 0.525E+05 15.83 25.37 0.141E-03 145.1 36.1 40.6 40.6 88.0 89.0 93.6 103.6 127.1 6.995 0.510E+05 18.68 22.52 0.149E-03 Length Re,f X Gas il Gas P steam P gas p(mix) Re (mix) Htheor Hexp- Dfactor R(In) R (tube) R(out) cm mass % mole % KPa KPa Kg/m*2 W/m^ 2. 9C W/m*2.90 m^29C/W m'29C/W m^29C/W 17.0 0.157E+02 0.000 0.000 115.2 0.0 0.122E-04 0.237E+05 0.915E+04 0.968E+04 1.058 0.103E-03 0.109E-03 0. 730E-03 j 30.4 0.277E+02 0.000 0.000 115.2 0.0 0.122E-04 0.226E+05 0.755E+04 0.822E604 1.088 0.122E-03 0.110E-03 0. 746E-03 44.6 0.400E+02 0.000 0.000 115.2 0.0 0.122E-04 0.214E+05 0.665E+04 0.676E+04 1.017 0.148E-03 0.110E-03 0.756E-03 61.5 0.547E+02 0.000 0.000 115.2 0.0 0.122E-04 0.201E+05 0.600E+04 0.694E+04 1.158 0.144E-03 0.110E-03 0.807E-03 79.8 0.698E+02 0.000 0.000 115.2 0.0 0.122E-04 0.186E+05 0.551E+04 0.618E*04 1.121 0.162E-03 0.110E-03 0.839E-03 99.6 0.857E+02 0.000 0.000 115.2 0.0 0.122E-04 0.171E+05 0.513E+04 0.553E+04 1.077 0.181E-03 0.110E-03 0.875E-03 121.3 0.103E+03 0.000 0.000 115.2 0.0 0.122E-04 0.155E+05 0.482E+04 0.4 96E+04 1.030 0.201E-03 0.110E-03 0.917E-03 145.1 0.121E+03 -0.000 0.000 115.2 0.0 0.122E-04 0.137E+05 0.457E*04 0.509E+04 1.115 0.196E-03 0.110E-03 0.995E-03 length shear shear

  • Film-dx Film-dx* fishear f/fishear em N/m"2 m m 17.0 0.17E+00 0.87E+00 0.74E-04 0.67E-04 1.120 0.944 30.4 0.15E+00 0.80E+00 0.90E-04 0.83E-04 1.091 0.997 44.6 0.14E+00 0.72E+00 0.10E-03 0.95E-04 1.073 0.948 61.5 0.12E+00 0.64E+00 0.11E-03 0.11E-03 1.058 1.094 79.8 0.11E*00 0.56E+00 0.12E-03 0.12E-03 1.047 1.071 99.6 0.94E-01 0.48E+00 0.13E-03 0.13E-03 1.038 1.038 121.3 0.78E-01 0.40E+00 0.14E-03 0.14E-03 1.029 1.000 145.1 0.63E-01 0.32E+00 0.15E-03 0.15E-03 1.023 1.090 i

C-26 i

xm 44433333 00000000

                                                   )

t/ W 33333222 00000000 d

                   -        - - - - - - - -         uC        - - - - - - - -

m EEEEEEEE o9 (2 EEEEEEEE l 21777642 92197150 i 05601234 81258001 O_ F 78911111 R *m 89999111 00000000 00000000 _ mr 3991 1915 W 33333333 ah 60466427 )e/ bC 00000000 e/ 54208641 u92 EEEEEEEE t g 33332222 t* 99000000 WsE ( Rm 00111111 11111111 00000000 _ dr 711 99195 ) W 43333333 nh 95199138 n/C 00000000 o i 9 - - - - - - - - c/ Wg 13568135 111 ( R* 2 EEEEEEEE 90510874 _ K 91346802 m 91111122 00000000 55555555 r 34996430 "q 2 00000000 o 33417853

                        *   + + + + * * +
  • t 01010999 m EEEEEEEE c
                        /  93691 344                a        11111000 W  99877654                f D

C 44444444 00000000 D10 1 4 X 7351 pC 54444444 0 dm 46776418 1 483 x*. 00000000

                                                             * + + + + * + +
                  //        98765431                e2       EEEEEEEE t
             -      wC                             H^

it c* 66666666 m 07996246 fn T / 00302384

      - i D        d                                     W   19776544 co T TP S                                               0 00000000 l        93959361                r9       44444444 cC                               o       00000000 T"       22110099 h^

e2 ++ + + + + + + EEEEEEEE 33333322 11111111 t m 90442180 H/ 60038408 W 98765554

     *C*C                                                    00000000 t        11111111                )        55555555 2                   a C.                            x       00000000 R    22             s"     22222222               i          *+++ + + + +

1 T 00000000 m EEEEEEEE 91 (

   -                        111 1 1111                       89985283 3    25                                             e       10987643 R        22111111 1
       =-

O 00000000 n 2 r u 1, o, i: 16536471 ) 44444444 a 62088868 R cc Tw9 76554322 i x ^m 00000000

                                                               - - - - - - - -    h e    24852420 90900999 TT                    99999999                (m/    g  EEEEEEEE             s p    K   11111111            i     01011000 22222222            f 11111111            /

f 00000000 w 62103261 s Pa 00000000 r 57177803 T *C a a 187 54332 a 22110988 g K 00000000 e 10000000 P *C 99999808 h . K P s 11111111 i f 13 94 oC 62214372 ma 11111111

  • m44433333 03 w aP x 00000000 11 T* 11009877 eK 99999999 d - - - - - - - -

99998888 t s 00000000 - EEEEEEEE 11111111 m 38001234

       =-                                            P l     67911111 i

tt F 00000000 ee ll 22319638 s% 00000000 xm44433333 nn tC a i f' Gel 00000000 d 00000000 ii 09875431 00000000 - - - - - - - - - PT - 54444444 m EEEEEEEE T c Oom 00000000 l i 05712334 78911111 F 00000000 wC 87663936 s% 00000000

  • 00000000 a 00000000 r 00000000 rrr R9 09R76431 54444444 Gss 00000000 a + + + * + + + +

e EEEEEEEE hhh

       ///

Xam 00000000 h s 82692581 77655433 ggg KKK 00000000 aC 97652702 f 22222223 r200000111 T* 00000000 0 608 0 65432097 44444433 R e

                                                               + + + + + + + +

EEEEEEEE a"m+0000000 e + + + + - - - h/EEEEEEEE 2 00242581 sN54320962 7 0.2 3 09 33358150 12345781 11111876 00000000 00000000

        ===

hm hm _ 04658631 04658631 hm04658631 sgw tc t e tc WWc W g n 7041 9915 13467924 g n 70419915 13467924 g n 70419915 13467924 e 1 1 e 11 e 11 L L L O

_ _ _ _ _ . _ -._.,m ._..m_-_m . O c o Run 1.3-2 Ws = 40.4 Kg/hr Pinlet = 199.2 KPa Tc,1 = 28.8 *C Tc-fit = D Wg - 0.000 Kg/hr Tinlet - 136.7 *C Tc,o - 53.8 *C Point -10 Wcw - 932.5 Kg/hr STD - 0.42 *C Ta Tcw Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx Length Tc-fit Kg/hr m cm *C *C *C *C 'C *C 9 'C *C/m W/m^2 Kg/hr 17.0 47.9 52.9 52.1 102.4 103.9 111.1 120.1 134.3 11.165 0.810E+05 3.31 37.09 0.798E-04 30.4 46.1 51.1 50.6 101.4 102.9 110.0 120.1 134.1 11.006 0.799E+05 5.08 34.52 0.967E-04 44.6 44.2 49.3 49.0 99.8 101.3 108.3 120.1 134.0 10.840 0.787E+05 8.55 31.85 0.110E-03 61.5 42.2 47.5 47.2 100.3 101.8 108.7 120.1 133.9 10.646 0.772E+05 11.69 28.71 0.122E-03 79.8 40.1 45.5 45.3 99.6 101.0 107.7 120.1 133.7 10.440 0.757E+05 15.01 25.39 0.133E-03 99.6 37.7 43.3 43.3 98.8 100.2 106.8 120.1 133.4 10.221 0.742E+05 18.53 21.87 0.142E-03 121.3 35.1 40.9 41.1 98.3 99.7 106.2 120.1 133.2 9.986 0.724E*05 22.30 18.10 0.152E-03 145.1 32.2 38.2 38.7 97.2 98.6 104.9 120.1 132.9 9.736 0.706E+05 26.32 14.08 0.160E-03 171.5 30.3 36.2 36.2 94.4 95.7 101.9 120.1 132.4 9.465 0.687E+05 30.62 9.78 0.169E-03 Length Re,f X Gas O Gas P steam P gas p(mix) Re (mix) litheor llexp Dfactor R(in) Ritube) R(out) cm mass % mole % KPa KPa Kg/m^2 W/ m

  • 2 . *C W/m* 2.*C m*2*C/W m^29C/W m^29C/W 17.0 0.256E+02 0.000 0.000 199.2 0.0 0.128E-04 0.215E+05 0.860E+04 0.899E+04 1.044 0.111E-03 0.108E-03 0.664E-03 30.4 0.452E+02 0.000 0.000 199.2 0.0 0.128E-04 0.200E+05 0.710E+04 0.790E+04 1.113 0.127E-03 0.108E-03 0.680E-03 44.6 0.651E+02 0.000 0.000 199.2 0.0 0.128E-04 0.185E+05 0.625E+04 0.666E+04 1.067 0.150E-03 0.108E-03 0.690E-03 61.5 0.892E+02 0.000 0.000 199.2 0.0 0.128E-04 0.167E+05 0.563E+04 0.676E+04 1.199 0.148E-03 0.108E-03 0.735E-03 79.8 0.114E+03 0.000 0.000 199.2 0.0 0.128E-04 0.147E+05 0.517E+04 0.613E+04 1.184 0.163E-03 0.108E-03 0.766E-03 99.6 0.140E+03 0.000 0.000 199.2 0.0 0.128E-04 0.127E+05 0.482E+04 0.558E+04 1.150 0.179E-03 0.100E-03 0.801E-03 121.3 0.168E+03 0.000 0.000 199.2 0.0 0.128E-04 0.105E405 0.452E+04 0.520E+04 1.149 0.192E-03 0.108E-03 0.845E-03 145.1 0.197E+03 0.000 0.000 199.2 0.0 0.128E-04 0.817E+04 0.427E+04 0.465E+04 1.088 0.215E-03 0.108E-03 0.886E-03 171.5 0.226E+03 0.000 0.000 199.2 0.0 0.128E-04 0.567E+04 0.404E+04 0.376E+04 0.931 0.266E-03 0.109E-03 0.906E-03 Length shear shear
  • Film-dx Film-dx* fishear f/fishear em N/m^2 .

m m

  • 17.0 0.94E-01 0.54E+00 0.80E-04 0.75E-Of 1.063 0.982 '

30.4 0.83E-01 0.47E+00 0.97E-04 0.93E-04 1.046 1.064 44.6 0.71E-01 0.41E+00 0.11E-03 0.11E-03 1.035 1.030 61.5 0,59E-01 0.34E+00 0.12E-03 0.12E-03 1.026 1.169 79.8 0.48E-01 0.27E+00 0.13E-03 0.13E-03 1.019 1.162 99.6 0.36E-01 0.21E+00 0.14E-03 0.14E-03 1.014 1.142 121.3 0.26E-01 0.15E+00 0.15E-03 0.15E-03 1.009 1.138 145.1 0.16E-01 0.92E-01 0.16E-03 0.16E-03 1.006 1.082 171.5 0.85E-02 0.47E-01 0.17E-03 0.17E-03 1.003 0.928 C.28

d xm 433333333 000000000 )t/ W 333333333 000000000 - - - - - - - - - - - uC - - - - - - - - - m EEEEEEEEE (o92 EEEEEEEEE l 804677754 390776780 i 201234567 780372618 F 811111111 R "m 556667788 000000000 000000000 - mr 815951 655 ) W 333333333 ah 022713293 e/ 000000000 e/ bC9 - - - - - - - - - - t g 741740617 u EEEEEEEEE WsK 33322211 t ^2 ( 888888899 000000000 - - Rm 111111111 000000000 dr 2951 59455 W 333333333 n 755064584 )n/ C 000000000 oh c/ 369360483 i (92 - - - - - - - - - EEEEEEEEE Wg K 1 12223 R* 427787913 m 024567924 111111122 000000000 _ r 168614605 , 555555555 - "q 2* 000000000 o 692791494 - ++ + + + + + + + t 111112100 m EEEEEEEEE c n / 680963813 a 111111111 W 087420752 f D C 988888777 000000000 D01 83 p9C X 666586289 444444444

     -         dm       405653923                x       000000000
        =0     //       429630639                 e2     + +++ +++ + +

t w0 - H^ ELEEEEEEE it = c9 221111009 m 280956221 f n T 11111111 / 618396051 i D d W 986655544 cot TP S C 000000000 l 364296328 r9 444444444 cC o 000000000 T* 433322221 e2 + +++ ++ +++ 333333333 h^ EEEEEEEEE 111111111 t m 942306844 H/ 280406319 W 866554443 0 9 *C 000000000 t 777777777 ) 555555444 1 as *C x 000000000 - R 90 000000000 i + +++ ++ + + + - 2 T 222222222 m EEEEEEEEE 9

  - 85                   111111111               (

581108226 2-3 25 e 198641492 - R 211111964 C 1

     ==                                                  000000000 n                                                   2                       r u 1, o,       i        39959621 2                      444444444            a    573920763 R

cc T' wC 197766543

                                                 )x "m i

000000000

                                                           - - - - - - - - - h e    949470384 010112100 TT                   100000000               (m/   g EEEEEEEEE            s 999999999                 111111111 p K 111111111                                           i

- 222222222 f - 111111111 / f 000000000 w 302954347 s Pa 000000000 r 032371742 T 'C a K a 643211000 a 320999876 g 000000000 e 000000000 P *C 000999999 h K 111 P s 111111111 i f 32 36 oC 635399803 m Pa 333333333

  • m443333333 03 w a x 000000000 21 T' 108877 665 eK 333333333 d- - - - - - - - - -

009999999 t 000000000 EEEEEEEEE 11 s 222222222 m 861245667

      ==                                                                     l     791111111 P                          i tt                                                                       F    000000000 ee                                           s%

ll tC 147764058 000000000 xm433333333 nn ii i* a Gel 000000000 d 000000000 f 319753185 000000000 PT - 554444433 m EEEEEEEEE c T Qom 000000000 l i 301345677 811111111 F 000000000 wC 679885872 s% 000000000

  • 000000011 c* a 000000000 r 000000000 rrr T 319753076 554444433 Gss 000000000 a e
                                                                                    + + + + + + + - -

EEEEEEEEE hhh Xam 000000000 h s 369148288 543321162

     ///

ggg KKK 000000000 aC 880860293 f, 222233333 r2111111112 T* 000000000 a 000000000 00 865208510 e + ++ +++ + + + e "m - - - - - - - - -

8. 0 44 4443333 R EEEEEEEEE h/EEEEEEEEE 5 979065569 sN208531120 04 0.3 802925814 257911122 986543215 09 000000000 000000000
       ===        hm       046586315               hm     046596315           hm046586315 sgw        t c                              t c                         te WWc          g       704199151                g n

704199151 g n 704199151. W n 134679247 134679247 e 134679247 L e 111 l e 111 L 111

i1ji1ll1' d xm 443333333 000000000

                                           )W t/

333333333 000000000

               -     - - - - - - - - -      uC       - - - - - - - - -

m EEEEEEEEE (o9 EEEEEEEEE l 674666432 2 461356024 i 510123456 013580489 F 791111 111 R *m 888889999 000000000 000000000 mr 890138065 ) W 333333333 ah 197010024 e/ 000000000 e/ bC - - - - - - - - - t g 631963962 u92 EEEEEEEEE 333222111 788888889 WsK t^ ( Rm 000000000 1 11111111 000009000 dr 210972045 W 333333333 n 803989275 )n/ C 000000000 oh i (92 - - - - - - - - - c/ Wg 257925926 EEEEEEEEE 642805414 K 11 122 R* m 024579138 111111222 000000000 555555555 r 531632341 "q 2^ 000000000 o 377681863

                    + * + 4 + * + + +     t        000000998 m EEEEEEEEE               c
                 /  035665429              a       111111000 W  987654320             f C         666666666             D 000000000 D04 7 1     X      202607143               p*C    444444444
        =0   dm     665294924              x . 000000000
             //     543209764              e2      * * + 4 + + + +       +

t wC H^ EEEEEEEEE

           =  c     999998888                      036202722 it f n i D T"

d

                                              /

m 400391635 cot W 987655443 TP S 000000000 l 731863189 r9C 444444444 c . o. 000000000 T 'C 444333321 e2 + + 4 + + + + + + 333333333 h^ EEEEEEEEE 111111111 t m 899356584 H/ 045940742 0 W 976555444 9 *C 000000000 t: 333333333 ) 555555544 2 a9 x 000000000 R 62 s 999999999 i 4 + + 4 + + + + + 2 94 T 111111 111 ( m EEEEEEEEE e 3 25 111111111 o 084924564 198653142 1 R 211111197 c

     ==                                            000000000 n                                            2                                           r u  1, o,    i      088827001                      444444444                              a   142606278 R            wC                          )x "m    000000000                              e   723369752 cc TT T   9 209886552             i         - - - - - - - - -                    h    900009998 110000000 111111 111            (m/ K g   EEEEEEEEE 888888888                             i s

011110000 p 222222222 f 111111111 / f 000000000 m w 988940146 s a 000000000 r 687926284 T 'C a PK a 643221100 a 543221096 g 000000000 e 000000000 P *C 000000099 h K 1 111111 P s 111111111 i f 55 45 oC 65561 8924 ma 555555555

  • m443333333 a P m

93 w , x 000000000 11 T' 432119885 eK 444444444 d - - - - - - - - - 000009999 t 999999999 - EEEEEEEEE 11111 s 111111111 m 180123456

     ==                                                                                  l    781111111 P                                              i tt                                                                                   F    000000000 ee ll                                     s%

tC 741591118 000000000 xm443333333 nn i' a 000000000 d 000000000 ii f 210865318 Ge 000000000 - - - - - - - - - - PT - 555444443 1 l m EEEEEEEEE c [ o 000000000 l 620234456 T m i 791111111 F 000000000 w: cN 947243060 s% 000000000

  • r 000000001 a 000000000 000000000 rrr T 320975308 555444443 Gss 000000000 a + + + + + + + + -

e EEEEEEEEE hhh Xam 000000000 h 371593725

    ///

ggg s 544322117 KKK 000000000 aC 825998382 f, 222223333 r2111111111 T' 000000000 a^000000000 003 0 875319742 444443333 R e + + + + + + + + + EEEEEEEEE em h/EEEEEEEEE 907 858060405 sN222211123 3 2 185672479 987654321 09 235791111 000000000 000000000

     ===

sgw hm 046586315 hm 046586315 hm046586315 t c t c tc WWc g 704199151 g n 704199151 g 704199151 W r 134679247 134679247 n 134679247 e 111 e 111 e 111 L L L x 7 llll! l

Run 1.3-3 Ws - 40.5 kg/hr Pinlet = 313.2 KPa Tc,1 = 29.1 *C Tc-fit - D Tinlet = 138.7 *C Tc,o - 54.8 *C Point -7 W9 - 0.000 Ky/hr STD = 0. 40 *C Wew - 933.1 Kg/hr Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx Length Ta Tcw Tc-fit m

                                           *C       *C                  *C          'C                                                                   *C                                                              *C/m                       W/m^2       Kg/hr     Kg/hr cm          *C       'C        *C 51.6    106.7    109.1      120.5                135.0                                                138.0                                                                    17.816 0.129E+06                                   5.50     35.00 0.916E-04 17.0       46.6      52.1                                                                                                                                                                                                                                                 30.82 0.111E-03 30.4       44.0      49.7      49.5    105.8    108.2      119.3                135.0                                               137.9                                                                     17.295 0.126E+06                                   9.68 47.6      47.1    105.4    107.7      118.4                135.0                                                137.8                                                                    16,760 0.122E+06                                  13.97     26.53 0.125E-03 44.6       41.7                                                                                                                                                                                                                                                 18.90     21.60 0.139E-03 61.5       38.5      A4.7      44.3    105.4    107.6      117.9                135.0                                                137.7                                                                    16.144 0.117E+06 34.7      41.1      41.4    104.2    106.3      116.2                135.0                                               137.6                                                                     15.503 0.113E+06                                  24.02     16.48 0.151E-03 79.8                                                                                                                                                                                                                                                            29.34     11.16 0.161E-03 90.6       31.1      37.9      38.4    104.2    106.2      115.7                135.0                                                137.5                                                                    14.838 0.108E+06 Length       Re,f     X Gas     f) Gas P steam    P gas     p(mix)              Re(mix)                                        Htheor                                                                                            Hexp               Dfactor       R(in)  R (tube)     R(out) mass %    molo %       KPa      KPa     Kg/ma 2                                                 W/ m
  • 2 . *C W/m* 2.*C m^ 2*C/W m
  • 2*C/W m*2*C/W cm 17.0 0.475E+02 0.000 0.000 313.2 0.0 0.134E-04 0.195E+05 0.751E* 04 0.890E+04 1.185 0.112E-03 0.107E-03 0.453E-03 30.4 0.831E+02 0.000 0.000 31 3.2 0.0 0.134E-04 0.171E+05 0.621E+04 0.797E+04 1.283 0.125E-03 0.107E-03 0.48CE-03 44.6 0.120E+03 0.000 0.000 313.2 0.0 0.134E-04 0.148E+05 0.549E+04 0.733E+04 1. 336 0.136E-03 0.107E-03 0.513E-03 61.5 0.161E+03 0.000 0.000 313.2 0.0 0.134E-04 0.120E+05 0.496E+04 0.686E+04 1.383 0.146E-03 0.107E-03 0. 557E-03 79.8 0.204E+03 0.000 0.000 313.2 0.0 0.134E-04 0.917E+04 0.457E+04 0.599E404 1.311 0.167E-03 0.107E-03 0.596E-03 99.6 0.248E403 0.000 0.000 313.2 0.0 0.134E-04 0.621E+04 0.427E+04 0.558E+04 1.306 0.179E-03 0.107E-03 0.653E-03 Length shear shear
  • Film-dx Film-dx* fishear f/fishear cm N/m*2 m m 17.0 0.56E-01 0.35E+00 0.92E-04 0.89E-04 1.033 1.147 30.4 0.44E-01 0.27E+00 0.11E-03 0.11E-03 1.022 1.255 44.6 0.34E-01 0.21E+00 0.13E-03 0.12E-03 1.015 1.316 61.5 0.23E-01 0.14E+00 0.14E-03 0.14E-03 1.009 1.370 79.8 0.14E-01 0.88E-01 0.15E-03 0.15E-03 1.005 1.304 99.6 0.71E-02 0.44E-01 0.16E-03 0.16E-03 1.002 1.303 C-31

xm 4333333 ) W 3333333 d 0000000 t/ 0000000

                 -        - - - - - - -    uC        - - - - - - -

EEEEEEE EEEEEEE 1 m o *2 l 7725777 ( 3983058 i 8023456 Ram 0137263 _ F 8111111 5555667 _ 0000000 0000000 _ mr 3315174 ) W 3333333 _ ah 6893552 e/ 0000000 _ e/ t g 4062727 b* u2 EEEEEEE 332211 (t* 7777777 _ WsK Rm 0000000 _ 1111111 - 0000000 dr 7795336 ) W 3333333 n h 9762003 n/C 0000000 o/ . i - - - - - - - c Wg 4827272 11223 ( *2 R^ EEEEEEE 5548629 K 2467809 m 1111121 0000000 6666665 r 0961608 "q 2 0000000 o 3770431 .

                      ^  + + + + * + +    t         0001112 m EEEEEEE           c
                      /  7529522           a        1111111 W  1110008          f                                                    .

C 1111119 D 0000000 - D8 6 5 p C x 4801087 x*. 4444444

      -= 0       dm      9251565                    0000000
                                                    +++++ ++
                 //      1840505           e2 t            wC                                EEEEEEE it =

fn i D T' d c 6555443 111111 1 H 'm

                                               /

W 9181853 9906390 7665545 cot TP S 0 0000000 - l 9752929 r9 4444444 c: o 0000000 T* 6666553 e2 + ++++ ++ 3333333 ha EEEEEEE 1111111 tm 6150083 _ H/ 7461731 _ W 7655444 C

     * *C                                           0000000                                    .

t 7777777 ) 5555444 1 a x 0000000 R 19 s 'C 4444444 i * ++++++ 3 T 3333333 m EEEEEEE 2

   - 94                  111111 1         (

3204893 3 3 25 e 9752790 - R 1111964 C 1

      =-                                            0000000                                    -

n 2 r u 1, o, i 0133112 ) 4444444 a 6590076 R wC x *m 0000000 e 9559421 cc T' 0865545 i - - - - - - - h 9000112 TT 211111 1 (m/ g EEEEEEE s 1111111 K 4444444 1 0111111 p 3333333 f 1111111 / f 0000000 - w 7047815 s Pa 0000000 r 4360631 T *C aK a 3211000 a 9865556 g 0000000 e 0000000 P *C 0000000 h K 1111111 P s 1111111 i f 46 07 oC 5836826 m Pa 4444444

  • m4333333 13 w a x 0000000 31 T' 7543334 eK 0000000 d - - - - - - - -

0000000 t s 1111111 - EEEEEEE . 111 1 11 1 3333333 m 6123567

          =                                                          l     8111111 P                        i tt                                                             F     0000000 ee ll nn          tC i'

3193688 s% a 0000000 0000000 xm4333333 d- 0000000 ii f 2075296 Gel 0000000 - - - - - - - PT - 5544433 m EEEEEEE c T Oom 0000000 l i 9123567 8111111 F 0000000 wC 9426862 s% 0000000

  • 0000111 c r rrr T' 2085287 5544433 a

G s s 0000000 0000000 e 0000000 a ++ + + - - - EEEEEEE - hhh Xam 0000000 h s 4815940 -

      ///                                                                  3221952 ggg                                                                                     .

KKK 0000000 aC 3757503 f 2233333 r21111122 T9 0000000 a^ 0000000

6. 0 05 7429620 e, +*+++++

EEEEEEE em - - - - - - 4443333 R h/EEEEEEE 8875673 sN5555693 9 3 0.3 09 1 2404827 4711122 5432183 - 0000000 _ 0000000

       ===         hm      0465863          hm        0465863         hm0465863 sgw         tc                        tc                       te WWc          g n

7041 991. g 7041991 g n 7041991 W e 1346792 1 n e 1346792 1 e 1346792 1 L L L

Run 1.3-3R2 Ws = 39.4 Kg/hr Pinlet = 298.7 KPa Tc,1 = 29.5 *C Tc-fit - D Ng = 0.000 Kg/hr Tinlet - 137.7 *C Tc,o - 54.6 *C Point -9 Wcw = 927.6 Kg/hr STD - 0.70 *C Length Ta Tcw Tc-fit Two TW Twi Tsat Tcl dTcw/dX q" Ncond Wsteam Film-dx

               'C        'C       'C       'C        'C                   'C          'C                  'C                                'C/m      W/m^2        Kg/hr                                                Kg/hr            m cm 17.0       47.6      53.6      52.5    111.6    113.4                 121.6       133.4               136.8                               13.044 0.942E405                  3.97                                        35.43 0.822E-04 30.4       45.5      51.5      50.8    109.0    111.5                 119.6       133.4               136.2                               12.806 0.925E+05                  7.02                                        32.38 0.997E-08 44.6       43.2      49.3      49.0    108.1    109.8                 117.8       133.4               136.1                               12.559 0.907E+05            10.19                                             29.21 0.113E-03 61.5       40.9      47.2      46.9    108.0    109.7                 117.5       133.4               135.9                               12.271 0.886E405            13.89                                             25.51 0.125E-03 79.8       38.1      44.6      44.7    101.7    109.3                 116.9       133.4               135.8                               11.967 0.864E+05            17.79                                             21.61 0.136E-03 99.6       35.0      41 8      42.3    106.9    108.5                 115.9       133.4               135.7                               11.646 0.840E+05           21.89                                              17.51 0.146E-03 121.3       31.8      38.9      39.8    107.5    109.0                 116.2       133.4               135.4                               11.304 0.816E+05           26.28                                              13.12 0.155E-03 145.1       30.6      37.9      37.2    107.8    109.3                 116.3       133.4               133.7                               10.941 0.790E+05            30.94                                               8.46 0.164E-03 Length       Re,f     X Gas     O Gas P steam     P gas           p(mix)         Re(mix)               Iltheor                                llexp   Dfactor           R(in)                                           R (tubc)     R(out) cm               mass %    mole %       KPa       KPa             Kg/m*2                          W/m^2.'C                           W/ m* 2 . *C            m"29C/W                                                m ^2*C/W    m"29C/W 17.0 0.342E+02      0.000     0.000    298.7       0.0 0.133E-04 0.198E+05 0.837E*04 0.802E* 04                                                       0.958 0.125E-03 0.106E-03 0. 671E-03 30.4 0.600E+02      0.000     0.000    298.7       0.0 0.133E-04 0.181E+05 0.690E*04 0.671E+04                                                        0.972 0.149E-03 0.107E-03 0.682E-03 44.6 0.863E+02      0.000     0.000    298.7       0.0 0.133E-04 0.163E+05 0.600E+04 0.500E*04                                                        0.954 0.172E-03 0.107E-03 0.697E-03 61.5 0.117E+03      0.000     0.000    298.7       0.0 0.133E-04 0.143E+05 0.548E+04 0.557E*04                                                        1.016 0.180E-03 0.107E-03 0.738E-03 79.8 0.150E+03      0.000     0.000    298.7       0.0 0.133E-04 0.121E+05 0.505E+04 0.524E+04                                                        1.038 0.191E-03 0.107E-03 0.780E-03 99.6 0.184E+03      0.000     0.000    298.7       0.0 0.133E-04 0.978E+04 0.470E+04 0.481E*04                                                        1.022 0.208E-03 0.107E-03 0.822E-03 121.3 0.221E+03      0.000     0.000    298.7       0.0 0.133E-04 0.733E+04 0.443E+04 0.474E+04                                                        1.071 0.211E-03 0.107E-03 0.886E-03 145.1 0.260E+03      0.000     0.000    298.7       0.0 0.133E-04 0.472E+04 0.419E+04 0.461E*04                                                        1.099 0.217E-03 0.107E-03 0.956E-03 Length      shear    shear
  • Film-dx Film-dx* fishear f/fishear em N/m^2 m m 17.0 0.60E-01 0.37E+00 0.82E-04 0.79E-04 1.040 0.922 30.4 0.51E-01 0.31E+00 0.10E-03 0.97E-04 1.028 0.946 44.6 0.42E-01 0.26E*00 0.11E-03 0.11E-03 1.020 0.935 61.5 0.33E-01 0.20E+00 0.13E-03 0.12E-03 1.014 1.001 79.8 0.25E-01 0.15E+00 0.14E-03 0.14E-03 1.010 1.028 99.6 0.17E-01 0.10E+00 0.15E-03 0.15E-03 1.006 1.016 121.3 0.10E-01 0.61E-01 0.16E-03 0.15E-03 1.003 1.067 145.1 0. 4 5E-02 0.28E-01 0.16E-03 0.16E-03 1.002 1.097 C-33

a i. xm 43333 ) W 33333 00000 d- 00000 t/ uC - - - - - m EEEEE o9 (2 EEEEE l 60591 81984 i 92346 60495 F 91111 R ^m 34445 00000 00000 _ mr 05773 l W 33333 ah 26086 e/ 00000 e/ bC9 - - - - - t g 37259 u 2 EEEEE 3221 t^ 66667 WsK ( Rm 00000 11111 00000 dr 05337 W 33333 _ n h 50680 )n/ C 00000 _ o/ i (92 - - - - - _ c g 73841 EEEEE _ W k 1123 R^ 31153 02358 m 11111 _ 00000 _ 66666 r 66618 -

                "q 2*   00000         o        04907
                        + + + + +    t         44442 m EEEEE         c
                     /  12333          a       11111 W  76543        f C           11111        D S              .

1 00000 D6 5 x 64860 p9C 44444 -

     -          dm      53035         x        00000
        =0      //      64284         e2        * + +++

t wC H^ EEEEE it = c' 32198 m 191 66 72644 f n T 22211 / i D d W 98765 cot TP S 00000 0 l 20988 r9 44444 o Tct 00000 55444 e2 +* + + + 44444 h* EEEEE 1 1111 t m 13927 i/ 97062 lW 65544 "C 9; 00000 t 55555 ) 55544 a x 00000 30 s *C 55555 i ++ ++ + 4 T 44444 m EEEEE 4

  -  95                  11111        (

99980 3-3 25 e 74152 C R 11185 1

      -=                                        00000 r

n 2 u 1, o, i 90441 ) 44444 a 68556 R wC . x ^m 00000 e 72897 cc T* 76531 i - - - - - h s 34432 T T 22222 1 1111 (m/ K g EEEEE 80888 i 11111 p 33333 f 11111 / f 00000 w 08084 s Pa 00000 r 13841 a T 'C 31209 aK g 00000 a e 21000 00000 P *C 11110 h K 1 1111 P s 11111 i f 86 . 14 oC 88119 m Pa 8888,8

  • m43333 24 w a x 00000 41 T' 98986 eK 11111 d - - - - -

00000 t 22222 - EEEEE 11111 s 44444 m 82356

       -=                              P l

i 91111 tt F 00000 ee ll 09838 st 00000 xm33333 nn tC i' a 00000 d 00000 ii f 17417 Gel 00000 - - - - - - PT - 54443 m EEEEE c f Oom 00000 l i 02456 11111 F 00000 wC 23842 s% 00000

  • 00011 cS a 00000 r 00000 rrr T 1 8408 54443 Gss 00000 a e
                                                                  + + + - -

EEEEE hhh Xam 00000 h s S8267 21162

      ///

ggg - KKK 00000 aC 21241 f 23333 r211112 - T' 00000 a^ 00000 -

7. 00 0 52831 e, + + *+ +

EEEEE em-h/EEEEE _ 44333 R - _ 009 01272 sN98902 - 4 2 02728 32114 - 09 71122 00000 - 00000

       ===

s gw hm 04658 hm te 04658 hm04658 tc tc WWe g n 70419 g n 70419 g n 70419 W e 13467 13467 e 13467 L l e L ~

xm 433333 ) W 333333 d 000000 t/ 000000

                   -       - - - - - -   uC     - - - - - -

m EEEiEE (o *2 EEEEEE l 805?12 312495 i 012356 901462 F 911111 R ^m 455556 000000 000000 mr 388449 ) W 333333 ah 950834 e/ 000000 e/ bu *C - - - - - - t g 406059 2 EEEEEE WsK 33221 (t^ 666777 000000 Rm 111111 000000 dr 722661 ) W 333333 n h 605721 n/ 000000 o c/ 504951 i( *C - - - - - - EEEEEE Wg K 11123 R^ 2 1 60266 m 247800 1 11122 000000 666666 r 988650 "q 2^ 000000

                           + + + + + +  t o     896064 000101 m EEEEEE         c
                       /  207417         a     111111 W 332221       f C

111111 D 000000 D7 78 p *C X 906378 444444

     =

0 dm 514270 x . 000000

                 //       184051         e2    + + + + +
  • t wC H^ EEEEEE it -

f n T c* 877766. 111111 / m 668966 288488 i D d W 865544 cot TP S 000000 r *C l T' cC 000111. 444444 o e2. 444444 000000

                                               + t + + + +

444444 h^ EEEEEE 111 111 t m 851666 H/ 525952 W 765444 CC

    *
  • 000000 t 222222 ) 555544 1 aC x 000000 R 93 T

s* 444444 i m

                                                + + + + +
  • 4 96 444444 (

EEEEEE 5

  -                       111 111              961325                           3 3  25                                   e     864131                            -

1 R 111185 C

          -                                    000000 n                                          2               r R

u 1 o, i wC 236741 )^ xm 444444 000000 a e 196929 675963 cc TT T' 852190 i m/g - - - - - - h 000001 222212 EEEEEE s 111 111 (p K 777 777 1 111111 333333 f 111111 / f 000000 w 705888 s a 000000 r T 'C aP a 771741 211000 a 641089 g K 000000 e 000000 P *C 111100 h K 111111 P s 111111 i f 43 63 oC 261556 ma 444444

  • m433333 04 w aP x 000000 41 T' 419867 t

eK 666666 d - - - - - - 110000 s 000000 - EEEEEE

           =

111111 444444 m 812456 l 811111 P i tt F 000000 ll ee s% tC 394542 000000 xm433333 nn i a 000000 d 000000 ii PT f' 308529 Gel 000000 - - - - - - -

                     -     554443                             m    EEEEEE T

c Dom 000000 l i 113456 911111 F 000000 w 372238 s% 000000

  • 000011 c a 000000 r 000000 rrr T 'C 419618 Gss 000000 a e
                                                                    + + + + - -

554443 EEEEEE hhh

     ///

Xam 000000 h s 927137 ggg 221162 KKK 000000 aC 150856 f 223333 r211 1122 - T' e, 000000 a^000000 _ 605 853941 + + + + + + em- - - - - - 0 444333 R EEEEEE h/EEEEEE _ 0 0.3 4 4 792969 213727 sN446792 432194 _ 09 591122 000000 000000

            ==

sgw hm 046586 hm 046586 hm046586 t c t e t c WHc g 704199 g 704199 g 704199 W n 134679 n 134679 n 134679 L e e L e L

                 . _ _ _ -                           - . m                , _ _ . _ =    -o            4              -    , __

i ! XE vmmmmm ~3 mmmmmm l r D 000000 9% C00000 ! T E e i 1 1 I i WWWWWW op O i i t 4 6 0 - WWWWWW ' l

                         -        mmm&mo                 wN        No@v00 W        mONmv@                 %#        mcwmNN 6                                     E W. M. m me e. m.                 C. 0 4. A. @. @.

000000 000000

                       'EW        Ommmmo                      3 mmmmmm mg                             @N       000000
                           @%     O. &* v. m. O. D.      4a ,0      6 i t t 0 6 ue                                       WWWWWW mg .meone MNNNM                  M N w     g   @@@&&&                                                       'y 3                                        C00000 E6        e. M. M. e. m. M.

000000  ; tw ONhM-O I mmmmmm C g C N 000000 k O N A. N. O. W. e. o. WP WWWWWW e t i e i e U Amvevo ~N gg 3[ -mNm E mNemen eMemOM

e. M. e. n. N. L M. t O00000 s @@@@@@ W mommNm CN 8 000000
                                  + + ++**               M O        emW@@m N

E WWWWWW U O. M. M. O. O. O. m0Ne@N 4 memMMM ' 3 NNNMMm W O v Q

m. M. m. e. M. m.

O 000000 O&m X m@mome weveww 5 8 O* tE &momm,e EM. x g 0, 0 0, 0, ++ 00 ss M Wu3 30 UC

                                  @ N. e g m.

a

                                  & & @'@@A
                                               .   .     =N    g   WWWWWW m&me-m E

wC b MMM-Me N TANmm@ j l W D $ m. &. @. d. T. T* OO H bLe COOOOO M OU N* M* . -. - N. m. W O h. - 000000 wwweev b# wwweev QN + +++++ evvvve &c WWWWWW MwMemm WE @mmNNM CN @m40WM 3 &. @. e. d. v. e. - Up W9 000000 y - @ADDww N M

m. m. m. m. m. e - M 000000 g

m* m. e 'O wwwwee * ++++++ v me b wwwwww - E WWWWWW C e memMen vNmMm@ M Nm @ m@m-MM

  • m.

E f1 -

   = M                                                             M. M. M. M. m. W.

w i I E 000000 C N W g a MO M -< eeveww m O&&mme

m. c @. m. c. N*

b2M E *

  • ME C00000 $ &&M4Am 00 C&vMoo Ms i l e i l l 4 '

bb NNNNNN Em WWWWWW m O. m. M. O. O. O.  !

                                  -memem                  ~Q 1
                                                                   &&m&&&

Mmmmmm' M W MMMMMM M. M. . w. w. M. M 000000 2 by &. @. m. me m. m. m[ m g 00000.O. w m

                                                                                                  @pgh,M NMMOOO J

10 &@mMOO 7 000000 @ 000000 Ao memMMm 4 e M Mmmmen L m MMMMMM j M ,

m. h. l
        'v-".

O O 5p m. m. @. a. M. N. o,-mme E[ m

                                                           $m
m. m.m.m. m.m.

nnneen o Egmmmmm 0, 0, 0, 0, 0, 0 s MemOOO M 000000 evevvv WWWWWW Memmem E mMNwn@ f 8 H L M m. M. M. M. M. M. 90  % C00000 MM 4g # # 000000 MEemmmmm CC Wo @. N. m. O. O* m. M V 000000 MW W e@@ ewe 0 0 000000 000000 I 4 8 8 4 1 6 Ab e cwwwwm E WWWWWW p U Q "O E C00000 g H OsN,cw j W m. M. M. M. M. M. t C00000 3Q A. N. T* O. N. E. m# 000000

  • OOOOMM ]

06 4 M 000000 W 000000 - b NONTO& Q 000000 m +++ l i j uWW AWwevM M @ WWWWWW  ; 444 NNN X ME 000000 4 NMWMNN

                                                                                             #9
         &&&                                                                                       N. N. M. M. W. N.

MMM 000000 m bp w NNmmmM kNMMmMNN j O* M. &. N. M. w. . 000000 4( dpO0000 000 @mO&mo @ + ++++ @ E: 1 I t i 1 O wwvmmm E WWWWWW ENWWWWWW p MOM Nommmm MZNmoNNN i M om MON &M@ om e. m. e. . N. N.

v. m. N. ed. m. v.

000000 000000

  • R 8 8 4E 4E 4sQ E O. v. W. o. m. e.

m&3 90 O. w. @. m. m. @. su O. w. @. m. m. @. 330 Q NowMmm W &OwMm@ & NowMme 3 C env@&m C Mmv@Nm C MMe@mm l

xm 33333

                                     )t/

W 33333 d- 00000 00000

                           - - - - -  uC       - - - - -

e m EEEEE EEEEE l 88344 (o *2 91187 i 02456 08705 F 1 1111 R ^m 33467 00000 00000 mr 40305 ) W 33333 ah 61243 e/ 00000

e. / bu *C - - - - -

t g 15938 2 EEEEE 66667 WsK 3211 t^ ( 00000 Rm 11111 00000 - dr 60705 ) W 43333 n 95322 n/C 00000 oh c/ 96283 i ( * - - - - - EEEEE Wg K 1223 R^ 2 82455 m 72611 81123 00000 66666 r 09315 "q 2^ 00000

                          + + * + +

o 92645 t 75207 m EEEEE c

                      /  1 0362       a       11110 W  18520       f C

21111 ' f 00000 D6 76 pC X 54444

     -   =0      dm 00286 54340         x*. 00000
                 //       20241        e2     4 + + + +

t

             -    wC                 H^       EEEEE it            c*      95174             m 49047 f n          T        22211           /   11161 i D      d                         W  18643 cot TP S                                      00000 l        00971        r *C   44444 cC                   o . 00000 T"       22111        e2 + + + * +

55555 h^ EEEEE 11111 t m 66360 H/ 33842 W 65444 CC

    *
  • 00000 t 00000 ) 55544 as *C x 00000 38 22?22 i 4 + + + +

5 T 55555 m EEEEE 3

  - 95 25 11111       (

e 83224 63014 1 R 11 174 "

      -=

R n u 1, o, cc TT l wC T* 50900 30650 33222 1111 1

                                      )^

i xm (m/ p 2 g E 00000 44444 00000 EEEEE 00000 h i r a e s 36795 61535 75207 11110 9 44444 f 11111 / f 00000 w 23601 s Pa 00000 r 59521 aK a T *C g a 1 0000 P *C 54341 00000 e 00000 11111 h K 111 1 1 P s 11111 i f 23 21 oC 39762 m Pa 22222

  • m33333 05 w a x 00000 51 T' 10019 eK 22222 d- - - - - -

_ 1111 0 t 00000 EEEEE 11111 s 55555 m 13456 tt P' l i 11111 F 00000 ll ee s% tC 48523 00000 xm33333 nn i a 00000 d 00000 - ii f' 06307 Gel 00000 - - - - - - PT - 54443 m EEEEE _ T c Oom 00000 l i 13456 11111 F 00000 _ wC 931,20 s% 00000

  • 00111

_ c* a 00000 r 00000 rrr T 07398 54433 Gss 00000 a e

                                                                 + + - - -

EEEEE hhh Xam 00000 h 03238

      ///

ggg s 21841 KKK 00000 aC 77176 f 23333 r211122 T* e, 00000 a* 00000

6. 002 4061 0 ++ + +
  • em- - - - -

44333 R EEEEE h/EEEEE 5 69378 sN00247 1 0. 2 4 75160 32162 09 91223 00000 00000

          =-

hm 04658 hm 04658 hm04658 sgw t e tc t c WWe g n 70419 g 7041 9 g 70419 W e 13467 n 13467 n 13467 e e L L L O

I I r xE emmmm -3 mmmmm t O0000 MN 00000 , E I t e i l l WWWWW op O i i l l e WWWWW $

    *\               m          c&m~O                   wN        --mem M          @wme@                   %d6       -NNCm 6
 .%                             m. e. e. W. M.                    9 9 9 9. T.                                                 -

00000 00000  ! Eu mmmv0 3 mmmmm m @% C0000

                      @r        D. M. D. e. w.          Dp
                           %                                       t i l l t                                                 [

sy mmNWm O g WWWWW . mg RNNe W

                                                        *4        0@@&&

00000 3 1

                                                        %G        n. e. m. m. M.
  • 00000
                                                        ~3N       mmmmm                                                      '

Ty &&N@O C # C 00000 C N O. v. o. v N.

                                                        "wP        l i l l e                                                 -

O D NNevM WWWWW 3g m-Nm %m g Ce@dm t E N  ! m.e' . m.hM. mN.* 00000 t @@@@@ 6 WNe@M 7N8 00000

                                + ++++                  4 O        Nemmm E    WWWWW                    v          . . O. O. O.                                             <
                           %    med-@                    4        eeMMM 3    @dddv                   %

u e ~.~.~.M.e. O o 00000

                #               NmOOm                             wwwww
                     $v     E   NO&cm                    Eh.

X 5 E O' %s c. o. g g , o

                                                        =g        0,0, 0 0 0, 4            30               . . .                 <   WWWWW
          +4 3         O        NN-CO                          G  N&&Nm h C IM O b'         NNNNN                        N    ON@m@

V 3 W G. e. d. e. UO b . 6 bb M 00000 M A* N. O &* v. wh eveev bp U nmmNN 44004 O. N 44 C.0000 WWWWW

                                                                                  +

M--ee W E mem&O ZN mem@m 3 &. m. m. e. w. yp C0000 , u a medve M Th m m.* m m. e

                                        =
  • X C0000
       %  WW           m        NNNNN                   =         +++++

0

            *
  • b 4W000 w E WWWWW 2 B wwwww mmO@m n* ,

NO C mwNmm

m.  %
                                                                  ~.~.~.m.e.                                           U     [

M E4 00000 C N u 3 MO M wmen@ , wwwww g em&NO , 5 ** 00 b 3h .

  • Nmemw ME 00000 1 8 4 1 4 I

Ommme  ! bb MNNNN E & WWWWW m M. M. O. O. O. mmmmm wg 00000 M MMAMe 1 e v v er w - se

w. e. M. M. M. m 00000 90 b3 ,g m. v. m. e. m.

mm-Om M

                                                          &g      C.0000 00000 6

g m eM&mM eMOOO 00000 i i As ---eO 4 1 M MMe** A m MMMMM M '

          , e.

NN O O 2 m. e. m. m. o. E2 9 wwwww

                                                                                        . symmmm x    00000 Od          9.u        ANmWC                    Gg      NNNNN                 t      I l l t e eMOOO                   M M

ee-MM T WWWWW MMene DDDDD E DNRD@ I I M A M m. M. M. M. M. MM k 00000 G@ M*

                      #U                                  ##       00000                 xEvmmmm CC                    &=&. @. O. m.

L Mo w Nm@mm 5 v0 00000 00000 t T C0000 l i l l s I Ab I mvvem * * * * *

  • E WWWWW b

o doE 00000 M M

                                                                                              @Nmn@

w e. M. M. . . 00000 30 e. @. @. @. c. m# C0000

  • OOOMM 08 5 00000 W C0000 b MO&NW Q # C.0000 9 +++ 6 I bb4 omvem m g wwwwW CCC NNN M9 E 00000 2 e

N@MmN

           &&&                                                                                N. M. M. A. N.

MMM 00000 j bp 9 W NmmMM kNMMMNN O. N. N. e. w-

  • C0000 44 00000
          @ch                    NwMme                    C        ** + + +              OE l l l e l
            *C m
  • vvemm E WWWWW ANWWWWW NeeMN mZmv@ mm vO O. N mN&mm Om m. N. M. m. m*
                                                                   @* w * *m N. N.            00000                             1 00000                                                         i 8 5 5                                                                                                                j 4E        O. w. @. o. m.

4E O. e. @. m. e. C pyE Oe w. .w o. m. mQp aQ p Q . 33v & &Owem @ NowMm & &OwMm 3 C Mmw@& C Mmv@& C eMv@& 3 k

                                                          -                              a W

f I

Run 1.3-5R2 Ws = 40.7 Kg/hr Pinlet = 496.7 KPa Tc,1 - 28.5 *C Tc-fit = D Tinlet - 151.1 *C Tc.o - 55.1 *C Point -6 Wg - 0.000 Kg/hr Wcw - 927.8 Kg/hr STD = 0.7 3 *C Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx Length Ta Tcw Tc-fit W/m^2 Kg/hr Kg/hr m cm 'C 'C 'C 'C 'C 'C *C *C 'C/m 51.6 116.3 119.1 132.1 151.6 152.0 20.776 0.150E406 6.56 34.14 0.942E-04 17.0 46.1 52.7 11.50 29.20 0.114E-03 30.4 42.7 49.5 48.9 114.8 117.5 130.1 151.6 152.0 20.028 0.145E+06 46.4 46.1 114.3 116.9 129.0 151.6 152.0 19.265 0.139E*06 16.54 24.16 0.129E-03 44.6 39.3 22.26 18.44 0.142E-03 61.5 35.4 42.8 42.9 113.0 115.5 127.1 151.6 152.0 18.394 0.133E+06 31.3 39.1 39.7 113.6 116.0 127.0 151.6 151.9 17.496 0.126E+06 28.19 12.51 0.154E-03 79.8 Length Re,f X Gas il Gas P steam P gas p(mix) Po(mix) litheor llexp Ofactor R(in) R (tube n R(out) rnass % mole % KPa KPa Kg/m*2 W / m^ 2 . *C W/m ^ 2. *C m'2*C/W m^2* m ^ 2*C/W cm 0.000 0.000 496.7 0.0 0.140E-04 0.182E+05 0.730E+04 0.770E404 1.055 0.130E-03 0.1C 3 0.4 61E-03 17.0 0.638E+02 30.4 0.111E+03 0.000 0.000 496.7 0.0 0.140E-04 0.155E+05 0.604E+04 0.672E+04 1.112 0.149E-03 0.1066-03 0.487E-03 44.6 0.159E+03 0.000 0.000 496.7 0.0 0.140E-04 0.129E+05 0.535E404 0.616E+04 1.151 0.162E-03 0.106E-03 0.524E-03 61.5 0.212E+03 0.000 0.000 496.7 0.0 0.140E-04 0.981E404 0.48 3E*04 0.542E+04 1.120 0.185E-03 0.106E-03 0.564E-03 79.8 0.269E+03 0.000 0.000 496.7 0.0 0.140E-04 0.665E+04 0.447E+04 0.514E+04 1.150 0.195E-03 0.106E-03 0.627E-03 Length shear shear

  • Film-dx Film-dx* fishear f/fishear cm N/ma 2 m m 17.0 0.35E-01 0.24E+00 0.94E-04 0.92E-04 1.021 1.034 30.4 0.26E-01 0.18E+00 0.11E-03 0.11E-03 1.013 1.098 44.6 0.19E-01 0.13E+00 0.13E-03 0.13E-03 1.008 1.142 61.5 0.12E-01 0.77E-01 0.14E-03 0.14E-03 1.004 1.115 79.8 0.57E-02 0.38E-01 0.15E-03 0.15E-03 1.002 1.147 C-39

f\ [v] V Run 1.4-1 Ws = 30.0 Kg/hr Pinlet = 110.6 KPa Tc,1 - 27.7 *C Tc-fit = D Wg = 0.000 Kg/hr Tinlet = 126.2 9: Tc,o = 49.0 *C Point -11 Wcw = 828.7 Kg/hr STD = 0.28 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm 'C 'C 'C *C *C 9: *C *C 9C/m W/m*2 Kg/hr Kg/hr m 17.0 43.8 48.0 47.7 89.9 91.0 96.0 102.5 122.7 8.656 0.558E+05 2.23 27.77 0.733E-04 30.4 42.6 46.8 46.5 89.5 90.6 95.6 102.5 122.4 8.503 0.548E+05 3.96 26.04 0.887E-04 44.6 41.3 45.6 45.3 88.6 89.6 94.5 102.5 122.1 8.344 0.538E+05 5.74 24.26 0.101E-03 61.5 39.8 44.2 43.9 88.9 89.9 94.7 102.5 121.8 8.159 0.526E+05 7.83 22.17 0.112E-03 79.8 38.4 42.9 42.5 87.7 88.7 93.3 102.5 121.7 7.963 0.513E+05 10.04 19.96 0.121E-03

  • 99.6 36.5 41.1 40.9 86.9 87.9 92.4 102.5 121.5 7.756 0.500E+05 12.36 17.64 0.130E-03 121.3 34.6 39.3 39.2 86.2 87.1 91.5 102.5 121.3 7.536 0.486E+05 14.83 15.17 0.139E-03 145.1 32.6 37.4 37.5 86.0 86.9 91.2 102.5 121.1 7.302 0.471E+05 17.47 12.53 0.147E-03 Length Re,f X Gas [1 Gas P steam P gas p(mix) Re (mix) Htheor Hexp Dfactor R(in) R (tube) R(out) em mass % mole 4 KPa KPa Kg/m*2 W/ m^ 2 . *C W/m^ 2. 9C m^2*C/W m^2*C/W n*29C/W 17.0 0.146E+02 0.000 0.000 110.6 0.0 0.122E-04 0.170E+05 0.929E+04 0.867E404 0.933 0.115E-03 0.110E-03 0.809E-03 30.4 0.258E+02 0.000 0.000 110.6 0.0 0.122E-04 0.160E+05 0.767E+04 0.792E+04 1.032 0.126E-03 0.110E-03 0.839E-03 44.6 0.372E+02 0.000 0.000 110.6 0.0 0.122E-04 0.149E+05 0.676E+04 0.672E404 0.994 0.149E-03 0.110E-03 0.859E-03 61.5 0.509E+02 0.000 0.000 110.6 0.0 0.122E-04 0.136E+05 0.610E+04 0.673E+04 1.103 0.149E-03 0.110E-03 0.914E-03 79.8 0.647E+02 0.000 0.000 110.6 0.0 0.122E-04 0.122E+05 0.360E404 0.563E+04 1.004 0.178E-03 0.110E-03 0.942E-03 99.6 0.792E+02 0.000 0.000 110.6 0.0 0.122E-04 0.108E+05 0.522E4 04 0.498E+04 0.955 0.201E-03 0.110E-03 0.984E-03 121.3 0.946E+02 0.000 0.000 110.6 0.0 0.122E-04 0.929EiO4 0.490E+04 0.443E+04 0.904 0.226E-03 0.110E-03 0.103E-02 145.1 0.111E+03 0.000 0.000 110.6 0.0 0.122E-04 0.768E+04 0.464E+04 0.417E+04 0.898 0.240E-03 0.110E-03 0.110E-02 ,

Length shear shear

  • Film-dx Film-dx* fishear f/fishear em N/m^2 m m 17.0 0.96E-01 0.49E+00 0.73E-04 0.69E-04 1.069 0.873 30.4 0.85E-01 0.44E+00 0.89E-04 0.84E-04 1.051 0.982 44.6 0.75E-01 0.38E+00 0.10E-03 0.97E-04 1.040 0.956 61.5 0.64E-01 0.32E+00 0.11E-03 0.11E-03 1.030 1.071
  • 79.8 0.53E-01 0.27E+00 0.12E-03 0.12E-03 1.023 0.982 '

99.6 0.42E-01 0.21E400 0.13E-03 0.13E-03 1.017 0.938 121.3 0.32E-01 0.16E+00 0.14E-03 0.14E-03 1.012 0.893 145.1 0.23E-01 0.11E+00 0.15E-03 0.15E-03 1.008 0.891 C-40

_ xm 4433333 )W 3333332 _ d 0000000 t/ 0000000 e

                -         - - - - - - -           uC       - - - - - - -

m EEEEEEE o9 (2 EEEEEEE l 2102221 4108340 i 0712345 2582610 F 8911 111 R ^m 7778891 0000000 0000000 mr 3592160 W 3333333 ah e/ 0477516 )e/ 0000000 _ t g 7418528 bu *C EEEEEEE 2 8888888 222111 t^ WsK _ ( 0000000 Rm 1111111 0000000 dr 7518940 W 3333333 n 3966828 )n/ C 0000000 oh i9 - - - - - - - c/ Wg 3581481 ( 2 EEEEEEE K 1 1 1 2 R^ 6447945 m 1356922 - 1111122 0000000 .

  • 5555555 r 5603824 q2* 0000000 o 0546627
                          + + * + + * +           t       0000999

_ m EEEEEEE c _ / 7773936 a 1111000 _ W 0864196 f C 8777766 D 9 8 0000000 D8 3 x 394091 1 pC 4444444 - - =0 dm 6548908 x . 0000000

                                                           ++ + + + + +

- // 418401

                                           .2     o2

- t wC EEEEEEE

            =

_ i t T c9 2211100 R /'m 0798264 6449044 f n 111111 1 i D d W 8765544 _ cotS 0000000 TP - C l 9998747 r9 4444444 _ cC . o. 0000000 T* 11111 1 0 e2 + + + + + + + 2222222 h* EEEEEEE _ 1111111 t n 6743836 H/ 5026185 W 8765544 "C:i 0000000 t 4444444 ) 5555444 a x 0000000 87 s *C 0000000 i * + + + + + + 2 T 2222222 m EEEEEEE 79 (

  -                       111111 1                        7269959 24                                            e      5420909 e

4 R 1111874 1

      ==                                                   0000000 n                                                    2                       r u  1, o.       i        1960194                 )*       4444444              a    1120182 R

cc T w9C 1980645 i xm 0000000

                                                            - - - - - - -      h e    7325617 9000999 TT                   1000000                  m/g     EEEEEEE 8888888             i s

0111000 111111 1 (p K 2222222 f 1111111 / f 0000000 w 9984775 s Pa 0000000 r 5482052 T *C aK g a 3211000 a: 321 1989 0000000 e 0000000 P9 0000999 h K 111 1 P s 1111111 i f 34 12 oC 4430342 m Pa 3333333

  • m4433333 02 w a x 0000000 21 T* 210087 8 eK 1111111 d - - - - - - -

0000999 t 0000000 - EEEEEEE 1111 s 2222222 m 7512345

       ==                                                                      l      7911111 P                           i tt                                                                       F      0000000 ee ll                    7144429                  s%     0000000               xm4433333 nn         tC                                a i*                                       0000000             d      0000000 ii           f        7642085                 Gel     0000000               -     - - - - - - -

PT - 4444433 l m EEEEEEE c f o m 0000000 l 0712345 T i 8911111 F 0000000 wC 2668595 s% 0000000

  • r 00O0011 e a s 0000000 00O0000 rrr T" 8642075 4444433 G s 0000000 a e
                                                                                       + + i + + - -

EEEEEEE hhh

      ///

Xam 0000000 h s 0505108 3221173 ggg KKK 0000000 a0 6988479 f 2222333 r21111112 T9 , 0000000 a* 0000000 401 208641 8 e +6 + + + + + em- - - - - - - 0 4433332 P EEEEEEE h/EEEEEEE 002 1780274 sN3467937 3 3 6559136 5432116 08 2468111 0000000 0000000

       ===         hm       0465863                 hm      0465863              hm0465863 sgw         t e                         . t c                          t c                   .

WWc g 7041991 g n 7041991 g n 7041991 e W n 1346792 1346792 e 1346792 e 1 e 1 L 1 L L

i i Run 1.4-3 Ws = 28.3 Kg/hr Pinlet - 310.5 KPa Tc,1 - 27.5 *C Tc-fit = D ' Wg = 0.000 Kg/hr Tinlet = 133.1 *C Tc,o - 48.1 *C Point =5 Wcw = 829.2 Kg/hr STD = 0.53 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tel dTcw/dX q" Wcond Wsteam Film-dx cm *C *C 'C *C *C *C *C *C *C/m W/m*2 Kg/hr Kg/hr m 17.0 39.2 45.5 45.0 105.4 107.7 118.3 134.7 133.4 18.619 0.120E*06 5.16 23.14 0.899E-04 30.4 36.7 43.2 42.6 105.2 107.4 117.6 134.7 133.4 17.888 0.115E*06 9.03 19.27 0.109E-03 44.6 33.2 40.0 40.1 104.5 106.6 116.4 134.7 133.4 17.144 0.111E*06 12.97 15.33 0.123E-03 61.5 29.6 36.8 37.3 104.9 106.9 116.2 134.7 133.3 16.299 0.105E+06 17.44 10.86 0.135E-03 Length Re,f X Gas O Gas P steam P gas p (mix) Re (mix) Htheor Hex Dfactor R(in) R (tube) R (out ) mole % MPa Kg/m*2 W / m

  • 2 . *C W/m*2.pC m'2*C/W m^2*C/W m
  • 2*C/W cm mass % MPa i

17.0 0.440E+02 0.000 0.000 310.5 0.0 0.134E-04 0.129E+05 0.765E+04 0.731E+04 0.955 0.137E-03 0.107E-03 0.538E-03 30.4 0.769E+02 0.000 0.000 310.5 0.0 0.134E-04 0.107E+05 0.634E+04 0.673E+04 1.061 0.149E-03 0.107E-03 0.580E-03 44.6 0.110E*03 0.000 0.000 310.5- 0.0 0.134E-04 0.853E+04 0.561E+04 0.602E+04 1.073 0.166E-03 0.107E-03 0.623E-03  ; 1.116 0.176E-03 0.107E-03 0. 688E-0 3 61.5 0.148E+03 0.000 0.000 310.5 0.0 0.134E-04 0.604E+04 0.508E+04 0.567E+04 Length shear shear

  • Film-dx Film-dx* fishear f/fishear em N/m^2 m m 17.0 0.27E-01 0.16E+00 0.90E-04 0.89E-04 1.016 0.940 30.4 0.19E-01 0.12E+00 0.11E-03 0.11E-03 1.010 1.051 44.6 0.13E-01 0.78E-01 0.12E-03 0.12E-03 1.006 1.067 61.5 0.68E-02 0.42E-01 0.14E-03 0.14E-03 1.003 1.113 t

C-42 _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ . _ . _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ . __ _. ._ ._ . - . ~ _. _ ____ _

Run 1.4-4 Ws - 29.5 Kg/hr Pinlet - 403.2 KPa Tc,1 = 27.7 *C Tc-fit = D Wg = 0.000 Kg/hr Tinlet = 142.2 *C Tc,o - 48.9 *C Point -4 Wcw = 833.8 Kg/hr STD = 0. 8 5 *C Tcw Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx Length Ta Tc-fit W/m*2 Kg/hr m cm *C 'C *C 'C *C *C *C 'C *C/m Kg/hr 45.6 44.7 108.6 111.6 125.8 143.9 143.1 24.983 0.162E+06 7.06 22.44 0.980E-04 17.0 39.9 12.33 17.17 0.118E-03 30.4 35.1 41.9 41.4 106.5 109.4 123.0 143.9 143.2 23.863 0.155E+06 37.3 38.1 107.4 110.2 123.1 143.9 143.2 22.731 0.147E+06 17.66 11.84 0.133E-03 44.6 29.9 1.ength Re,f X Gas 11 Gas P steam P gas p(mix) Re(mix) litheor Hexp Dfactor R(in) R(tube) R(out) KPa Kg/m^2 W/ m^ 2 . *C W/m*2.*C m*2*C/W m^ 2*C/W m* 2*C/W cm mass % mole % KPa 17.0 0.649E+02 0.000 0.000 403.2 0.0 0.137E-04 0.122E+05 0.702E+04 0.894E+04 1.273 0.112E-03 0.106E-03 0.421E-03 30.4 0.112E+03 0.000 0.000 403.2 0.0 0.137E-04 0.932E+04 0.582E+04 0.740E+ 04 1.272 0.135E-03 0.107E-03 0.450E-03 44.6 0.160E+03 0.000 0.000 403.2 0.0 0.137E-04 0.643E+04 0.516E*04 0.710E+04 1.375 0.141E-03 0.107E-03 0.503E-03 Length shear shear

  • Film-dx Flim-dx* fishear f/fishear em N/m*2 m m 17.0 0.20E-01 0.13E+00 0.9AE-04 0.97E-04 1.011 1.259 30.4 0.12E-01 0.79E-01 0.12E-03 0.12E-03 1.006 1.265 44.6 0.63E-02 0.40E-01 0.13E-03 0.13E-03 1.003 1.372 9 e"' e

C \ Run 1.4-4R1 Ws = 30.3 Kg/hr Pinlet = 405.8 KPa Tc,i - 28.9 *C Tc-fit = D Wg = 0.000 Kg/hr Tinlet = 144.5 *C Tc,o = 49.4 *C Point -5 Wcw = 856.8 Kg/hr STD - 0. 75 *C inngth Ta Tcw Tc-fit Two Tw Twl Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm *C 'C *C *C 'C 'C "C *C *C/m W/m^2 Kg/hr Kg/hr m 17.0 40.3 47.3 46.3 113.4 115.8 126.7 144.1 144.3 18.827 0.126E*06 5.45 24.85 0.898E-04 30.4 36.8 44.0 43.8 112.1 114.4 124.9 144.1 144.2 18.077 J.121E+06 9.53 20.77 0.108E-03 44.6 33.1 40.6 41.3 111.4 113.6 123.7 144.1 144.1 17.315 0.115E+06 13.68 16.62 0.122E-03 61.5 30.5 38.5 38.5 113.8 115.9 125.5 144.1 144.0 16.450 0.110E+06 18.42 11.88 0.135E-03 length Re,f X Gas il Gas P steam P qas p(mix) Re (mix) Ht heor Hexp Dfactor R(in) R (tube) R(out) em mass % mole % KPa KPa Kg/m^2 W/m^2.*C W/m^2.*C m^2*C/W m ^ 2*C/W m^2*C/W 17.0 0.503E402 0.000 0.000 405.8 0.0 0.137E-04 0.135E405 0.767EiO4 0.721E*04 0.940 0.139E-03 0.106E-03 0.572E-03 30.4 0.873E+02 0.000 0.000 405.8 0.0 0.137E-04 C.113E+05 0.635E+04 0.621E+04 0.987 0.159E-03 0.106E-03 0.606E-03 44.6 0.125E+03 0.000 0.000 405.8 0.0 0.137E-04 0.902E+04 0.562E+04 0.564E+04 1.004 0.177E-03 0.106E-03 0.650E-03 61.5 0.169E+03 0.000 0.000 405.8 0.0 0.137E-04 0.644EiO4 0.510E+04 0.587E+04 1.150 0.170E-03 0.106E-03 0.735E-03 I Length shear shear

  • Film-dx Film-dx* fishear f/fishear em N/m^2 m m 17.0 0.24E-01 0.15E+00 0.90E-04 0.88E-04 1.015 0.927 30.4 0.17E-01 0.11E+00 0.11E-03 0.11E-03 1.009 0.979 44.6 0.12E-01 0.74E-01 0.12E-03 0.12E-03 1.005 0.998 61.5 0.63E-02 0.41E-01 0.13E-03 0.13E-03 1.003 .1.148 r

I C-44 . - - - . - _ - - - - - _ _ _ _ _ _ . - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ , , . ~ , - .. .. . _ ____

Run 1.4-5 Ws = 29.5 Kg/hr Pinlet = 501.5 KPa Tc,1 = 27.3 *C Tc-fit - D Wg = 0.000 Kg/hr Tinlet - 150.7 *C Tc,o = 49.5 *C Point =4 Wew - 838.4 Kg/hr STD - 0. 68 *C Two Tw Twi Tsat Tel dTcw/dX q" Wcond Wsteam Film-dx Length Ta Tcw Tc-fit Kg/hr Kg/hr m cm "C 'C *C *C *C *C *C *C *C/m W/m^2 17.0 37.6 44.5 43.7 109.4 113.3 131.4 152.0 151.3 31.866 0.208E+06 9.52 19.98 0.107E-03 30.4 31.5 38.9 35.7 108.1 111.6 127.8 152.0 150.9 28.347 0.185E+06 16.09 13.41 0.128E-03 44.6 28.4 36.2 35.9 109.2 112.2 126.3 152.0 150.3 24.722 0.161E+06 22.23 7.27 0.142E-03 Length No,f X Gas O Gas P st.eam P gas p(mix) Re (mi x) Htheor Hexp Df act or R(in) R (t ube) R (out ) mass % molo % KPa KPa Kg/m a 2 W/ m" 2 . *C W/ m^ 2 . *C m* 2*C/W m *2*C /W m"2*C/W cm 17.0 0.925E402 0.000 0.000 501.5 0.0 0.140E-04 0.106E+05 0.644E+04 0.101E+05 1.570 0.988E-04 0.106E-03 0.338E-03 30.4 0.154E+03 0.000 0.000 501.5 0.0 0.14GE-04 0.713E+04 0.539E404 0.764E*04 1.417 0.131E-03 0.106E-03 0.396E-03 44.6 0.212E+03 0.000 0.000 501.5 0.0 0.140E-04 0.387E+04 0.483E*04 0.629E404 1. 300 0.159E-03 0.106E-03 0.486E-03 Length shear shear

  • Film-dx Film-dx* fishear f/f1 shear cm N/m*2 m m 17.0 0.13E-01 0.89E-01 0.11E-03 0.11E-03 1.007 1.559 30.4 0.64E-02 0.43E-01 0.13E-03 0.13E-03 1.003 1.413 44.6 0.21E-02 0.14E-01 0.14E-03 0.14E-03 1.001 1.299 1

l l 9 9" g

 )                  ;i                                             .                    '                         .

xm 43333333 00000000 )t/ W 33333333 00000000 d

                           -       - - - - - - - -       uC       - - - - - - - -

m EEEEEEEE E8EEEEEE l 91589986 (o *2 68056069

     /                   i        1 1234567 R *m 80283115 F        91111111                       45556788
     %                            00000000                       00000000 mr      14959751                    W  33333333 ah      28455545              )e/      00000000 e/                            bu *C     -     - - - - - -

t g 49505050 2 EEEEEEEE 43332211 t^ 66777777 WsK ( Rm 00000000 11111111 00000000 _ dr 96151359 W 33333333 n 82655565 )n/ 00000000 o/h c 50494949 i( *C - - - - - - - - EEEEEEEE Wg K 1 112.233 R^ 2 08191440 m 35004676 - 11222223 00000000 66666555 r 03880491 "q 2 00000000 o 32050781

                               *  * * + + +6     + +    t        00999887

_ m EEEEEEEE c

                               /  58247035               a       11000000 W  32210913              f C             11111998              D 00000000 D97 4                                         pC X                                      44444444
             -   =0       dm 82296883 15826913               x*. 00000000
                         //       69257924               e2 ++++* + + +

t wC H^ EEEEEEEE it = c9 32210998 m 15875868 73971767 f n T 11111 / i D d W 76444332 cot TP S 00000000 l 5543197 0 r *C 44444444 c o. 00000000 T 'C 77777665 e2 *+++++++ h* 44444444 EEEEEEEE 11111111 t m 90981310 H/ 42496319 W 76544443 "C"C 00000000 t 21100974 ) 55555544 2 32278826 a x 00000000 f 53136226 s 'C 03 55555444 i *++++++ + 99887775 - 1 T 44444444 m EEEEEEEE 6 -

         -  14                    11111111               (

17470325 00000000 4-1 35 e 41964158 R 22111185 C 2

             ==                                                  00000000 n                                                     2 r
   -    u   1
               , o,       i:      79713773               )       44444444 e

09791384 R cc Tw9 7401 9894 i x ^m 00000000

                                                                   - - - - - - - -        h 46926925 00011122 TT                    22221111               (m/   g EEEEEEEE                 t 11111111 p    K  88899990                  o    11111111 33333334                 l 11111111                 f 00000000 w      97019079               s Pa   93620331                  r    97049632 T "C                           a K                              a    32210000

_ a 5301901 6 g 23345682 e 00000000 _ P "C 11110110 1 h K 11111111 P s 11111111 , i f 38 06 oC 43799103 ma 40713002

  • m43333333 24 w a P x 00000000 41 T* 31787805 11000010 eK t

77665428 11111110 d EEEEEEEE 11111111 s 44444444 m 91245678

              ==                                                                                81111111 l

P i tt F 00000000 ee ll 13555432 s% 78902509 xm43333333 nn tC a 00011122 ii i' Gel d 00000000 _ f 20864208 00000000 - - - - - - - - - PT - 55444443 m EEEEEEEE T c Dom 00000000 l i 21345678 91111111 F 00000000 wC 99782996 s% 12469415

  • r 00000011 c

rrr T' 20864198 55444433 a Gss 11111234 00000000 00000000 a + +

  • 4 + + - -

e EEEEEEEE hhh

            ///

Xam 00000000 h s 36926153 43221163 ggg KKK 00000000 a: 22292633 f 22333333 r211111112 Ti 75308532. e

                                                            ,     00000000                 a^00000000 em
1. 02
                                                                   * * + + + + + 4                              -

0 44443333 R EEEEEEEE h/EEEEEEEE 3 83270417 sN65545702 0 02 5 5.7 44372614 59112233 65432115 1 00000000 00000000

               - = -

hm hm _ 04658631 04658631 hm04658631 - sgw t c tc te WWe g 70419915 g n 70419915 g n 70419915 W n e 13467924 11 e 13467924 11 e 13467924 11 L L L

Run 2.1-2 Ws = 50.6 Kg/hr Pinlet = 417.5 KPa Tc,1 = 31.3 *C Tc-fit = D Wg = 1.030 Kg/hr Tinlet = 146.3 9C Tc,o = 54.7 *C Point =9 Wcw = 1267.5 Kg/hr STD = 0. 2 5 *C Length Ta Tcw Tc-fit Two Tw Twl Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm 9 90 *C *C *C 9C *C 90 *C/m W/ma 2 Kg/hr Kg/hr m 17.0 47.6 53.2 52.6 112.0 114.4 125.4 144.7 147.7 12.804 0.126E+06 5.51 45.09 0.902E-04 30.4 45.7 51.0 50.9 107.3 109.6 120.1 144.6 147.5 12.148 n.120E+06 9.57 41.03 0.109E-03 44.6 43.8 49.2 49.3 106.7 108.8 118.8 144.6 146.8 11.490 0.113E+06 13.64 36.96 0.123E-03 61.5 41.8 47.5 47.4 107.9 109.9 119.2 144.5 145.9 10.753 0.106E+06 18.22 32.38 0.135E-03 79.8 39.7 45.5 45.5 106.8 108.7 117.4 144.3 145.2 10.008 0.987E+05 22.82 27.78 0.146E-03 99.6 37.7 43.5 43.6 105.1 106.8 114.9 144.2 144.7 9.261 0.913E+05 27.40 23.20 0.156E-03 121.3 35.2 41.3 41.7 105.6 107.2 114.6 143.9 144.3 8.505 0.839E+05 32.05 18.65 0.164E-03 145.1 33.8 40.0 39.7 105.3 106.8 113.5 143.5 143.6 7.747 0.764E+05 36.68 13.92 0.172E-03 Length Re,f X Gas il Gas P steam P gas p(mix) Retmix) litheor llexp Dfactor R(in) R (tube) R(out) em mass % mole % KPa KPa Kg/m^2 W/m*2.9C W/m*2.90 m^ 2*C/W m^29C/W m^29C/W 17.0 0.507E+02 0.022 0.014 411.7 5.8 0.139E-04 0.247E*05 0.763E* 04 0.657E+ 04 0.861 0.152E-03 0.106E-03 0.50 3E-03 30.4 0.860E+02 0.024 0.015 411.1 6.4 0.139E-04 0.225E+05 0.631E*04 0.490E+04 0.775 0.204E-03 0.107E-03 0.503E-03 44.6 0.122E+03 0.027 0.017 410.4 7.1 0.139E-04 0.203E+05 0.560E+04 0.440E+04 0.785 0.227E-03 0.107E-03 0.542E-03 61.5 0.163E+03 0.031 0.019 409.4 8.1 0.139E-04 0.179E+05 0.509E+04 0.420E+04 0.826 0.238E-03 0.107E-03 0.610E-03 79.8 0.203E+03 0.036 0.023 408.1 9.4 0.140E-04 0.154E+05 0.471E+04 0.366E+04 0.778 0.273E-03 0.107E-03 0.665E-03 99.6 0.240E403 0.043 0.027 406.3 11.2 0.140E-04 0.129E+05 0.442E+04 0.311E+04 0.705 0.321E-03 0.107E-03 0.720E-03 121.3 0.281E+03 0.053 0.033 403.6 13.9 0.140E-04 0.104E+05 0.419E+04 0.286E+04 0.682 0.350E-03 0.107E-03 0.815E-03 145.1 0.319E+03 0.069 0.044 399.1 18.4 0.141E-04 0.787E+04 0.400E+04 0.255E404 0.637 0.393E-03 0.107E-03 0.919E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/ma 2 m m 17.0 0.70E-01 0.45E+00 0.90E-04 0.87E-04 1.043 1.037 0.796 30.4 0.59E-01 0.38E+00 0.11E-03 0.11E-03 1.030 1.063 0.708 44.6 0.49E-01 0.31E+00 0.12E-03 0.12E-03 1.022 1.089 0.705 61.5 0.39E-01 0.25E+00 0.14E-03 0.13E-03 1.016 1.119 0.726 79.8 0.30E-01 0.19E+00 0.15E-03 0.14E-03 1.011 1.148 0.670 99.6 0.22E-01 0.14E600 0.16E-03 0.15E-03 1.008 1.176 0.595 121.3 0.15E-01 0.93E-01 0.16E-03 0.16E-03 1.005 1.205 0.563 145.1 0.91E-02 0.57E-01 0.17E-03 0.17E-03 1.003 1.234 0.515 9 9" e

d xm 43333333 00000000

                                               )

t/ W 33333333 00000000

                  -       - - - - - - - -       uC        - - - - - - - -
 )               m       EEEEEEEE                        EEEEEEEE l        16023219              (o *2     29348594 i        80234566                        24639501 F        8111 111          1   R *m      55566789 00000000                        00000000 mr     59352703                    W   33333333 ah     46963961              )o/       00000000 e/                            bu *C      - - - - - - - -

t g 51739406 2 EEEEEEEE 44332221 WsK t a 67777788 ( 00000000 Rm 11111111 00000000 dr 51758307 ) W 33333333 nh o 08581593 i n/C 00000000 c/ 58261594 (92 EEEEEEEE . Wg K 112223 R^ 17179001 m 80557281 12222334 00000000 6' a55555 r 55694389 "q 2 00600000 o 04944919

                      ^  + * + + * + *
  • t 77677665 m EEEEEEEE c
                      /  71653950               a        00000000 W  11093604              f C            111 99887             D 00000000 D9 2  2                                   pC X
       ==0       dm 87023671 04849369               x*.      44444444 00000000
                                                         + + + + + ++ +

_ // 15936036 e2 t

             =

wC H* EEEEEEEE it c9 21009987 m 12908333 fn D T 1111 / 58995164 i cot d W 54333322 TP S 00000000 _ l 21107409 r *C 44444444 c2 o. 00000000 - T 9 55554442 e2 + + +* + + +

  • 44444444 h^ EEEEEEEE 11111111 t m 20302167 H/ 84728520 W 76554444 C
      *9                                                 00000000 t       32109749              )         55555554          2     21836171 aC                            x        00000000          f     58264919 18          s'     33332221              i         + + ++ + ++ +           66666554 3             T       44444444               m        EEEEEEEE                                   8
    - 14                 11111111              (

21184177 00000000 4-1 3$ e 53186412 R 22211119 C 2

       ==                                                00000000 n                                          )2 u 1, o,      l       12658986                        44444444           r    38196385

. R cc wC T' x *m 00000000 e 35803681 - 20676411 i - - - - - - - - h 00011112 TT 22111111 m/g EEEEEEEE t 11111111 (p K 99900012 33344444 o 11111111 l 11111111 f 00000000 w 94376270 s Pa 41039018 r 63583964 a T *C 10788745 aK g 89012582 a e 43211000 00000000 P *C 1 1000000 111112 h K 1111 1111 P s 11111111 i f 41 45 oC 73388626 m Pa 03415436

  • m43333333 04 w a x 00000000 41 T* 90566533 t

eK 65431961 d- - - - - - - - - 00000000 s 99999888 EEEEEEEE 1111 1111 33333333 m 40234567

       ==                                                                  l     81111111 P                          i

_ tt F 00000000 ee ll s% tC 82680133 13582756 xm43333333 nn ii i f" a Gel 22223345 o- 00000000 21976420 00000000 - - - - - - - - PT - 55444444 l o m EEEEEEEE c im 00000000 l 81234567 T i 81111111 F 00000000 wC 24400205 s% 36940808

  • 00000001

_ c a 33345578 r 00000000 rrr T' 31986420 55444444 Gss 00000000 a + + + + + + + - e EEEEEEEE hhh Xam 00000000 h 81482628

       ///

ggg s 44322117 KKK 00000000 T9 a: 90142425 f 22333333 r211111111

                                                   ,      00000000           a*00000000 05
5. 5 76420864 e + * *+ + + + + em - - - - - -

44444333 R EEEEEEEE h/EEEEEEEE 6 57196274 sN44445693 0 5.3 5 58148259 76543211 12 47111222 1 00000000 00000000

        =-

hm 04658631 hm 04658631 hm04658631 sgw te t c tc WWe g n 70419915 g n 70419915 g n 70419915 W 13467924 13467924 13467924 e 11 e 11 e 11 L L L f

Run 2.1-3R Ws - 51.6 Kg/hr Pinlet = 403.7 KPa Tc,1 = 29.8 9: Tc-fit - D Wg = 1.620 Kg/hr Tinlet = 147.3 9: Tc,o = 54.9 9C Point =9 STD = 0. 2 6 *C New = 1212.7 Kg/hr Tcw Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx Length Ta Tc-fit

                                                                                                                                                                   *C/m       W/m^2      Kg/hr      Kg/hr             m
                                                                              *C        *C        *C      *C       *C         *C         *C            9C em 53.6     52.9    112.1    114.3      124.5      143.2        147.1         12.358 0.117E+06          5.06     46.54 0.879E-04 17.0       48.0 8.81     42.79 0.106E-03 30.4       46.0                 51.5     51.3    109.7    111.8      121.5      143.1        147.0         11.753 0.111E+06 49.5     49.7    105.9    107.9      117.2      143.0        146.9         11.143 0.105E+06         12.55     39.05 0.120E-03 44.6       44.1                                                                                                                     16.78     34.82 0.132E-03 61.5       42.1                 47.7     47.9    106.9    108.8      117.5      142.9        146.7         10.459 0.987E+05 40.2                 46.0     46.0    106.4    108.1      116.2      142.8        146.5          9.765 0.921E+05         21.05      30.55 0.143E-03 79.8                                                                                                                                25.33     26.27 0.152E-03 99.6       38.3                 44.1     44.2    105.5    107.1      114.7      142.6        146.2          9.066 0.855E*05 121.3       36.5                 42.3     42.3    103.0    104.5      111.5      142.3        145.8          8.357 0.788E+05         29.61     21.99 0.161E-03 145.1       34.1                 40.3     40.4    105.4    106.8      113.2      142.0        144.5          7.643 0.721E+05         34.02      17.58 0 168E-03 Length       Re,f               X Gas     D Gas P steam     P gas     p(mix)    Re (mix)     Htheor             Hexp Dractor          R(in)   R(tube)      R(out) cm                         mass %    nole 4       KPa      MPa     Kg/m*2               W/ m
  • 2 . *C W/m " 2 . *C m*2*C/W m 2*C/W m
  • 2*C/W 17.0 0.461E+02 0.034 0.021 395.2 8.5 0.139E-04 0.258E +05 0.783E+04 0. 624E+ 04 0.797 0.160E-03 0.106E-03 0.543E-03 30.4 0.792E+02 0.036 0.023 394.4 9.3 0.139E-04 0.238E+05 0.649E+04 0.514E+04 0.792 0.195E-03 0.107E-03 0.563E-03 44.6 0.111E+03 0.040 0.025 393.6 10.1 0.139E-04 0.217E+05 0.574E+04 0.406E+04 0.700 0.246E-03 0.107E-03 0.572E-03 61.5 0.148E+03 0.044 0.028 392.4 11.3 0.140E-04 0.194E+05 0.521E+04 0.388E+04 0.745 0.258E-03 0.107E-03 0.640E-03 79.8 0.185E+03 0.050 0.032 390.8 12.9 0.140E-04 0.171E+05 0.482E+04 0.347E+04 0.719 0.288E-03 0.107E-03 0. 700E-03 99.6 0.221E+03 0.058 0.037 388.8 14.9 0.140E-04 0.148E+05 0.452E+04 0.306E+04 0.676 0.327E-03 0.107E-03 0.767E-03 121.3 0.254E+03 0.069 0.044 386.0 17.7 0.141E-04 0.125E*05 0.428E+04 0.255E+04 0.597 0.391E-03 0.108E-03 0.824E-03 145.1 0.293E+03 0.084 0.054 381.8 21.9 0.142E-04 0.101E+05 0.409E404 0.251E+04 0.613 0.399E-03 0.107E-03 0.965E-03 Length shear shear
  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.78E-01 0.50E+00 0.88E-04 0.84E-04 1.049 1.034 0.735 30.4 0.67E-01 0.43E+00 0.11E-03 0.10E-03 1.035 1.058 0.723 44.6 0.57E-01 0.36E+00 0.12E-03 0.12E-03 1.026 1.001 0.639 61.5 0.47E-01 0.30E+00 0.13E-03 0.13E-03 1.019 1.108 0.659 79.8 0.37E-01 0.23E+00 0.14E-03 0.14E-03 1.014 1.135 0.625 99.6 0.29E-01 0.18E+00 0.15E-03 0.15E-03 1.010 1.161 0.576 121.3 0.21E-01 0.13E*00 0.16E-03 0.16E-03 1.007 1.186 0.500 145.1 0.15E-01 0.91E-01 0.17E-03 0.17E-03 1.005 1.215 0.502 O 0" e -

W , f -[ ,!' [ [ 7-

  • l 5 xm 43333333 )W 33333333 00000000 d 00000000 t/
                         -      - - - - - - - -             uC       - - - - - - - -

m EEEEEEEE (o *2 EEEEEEEE l 73799986 1 0404098 i 50123456 69073810 R ^m

 'l.                   F       81111111 00000000 55667789 00000000 mr     18309788                         W   33333333

_ ah 94010097 )e/ 00000000 e/ bu *C - - - - - - - - t g 52951728 2 EEEEEEEE 44333221 t" 77777888 WsK ( Rm 00000000 11111111 00000000 - dr 92701322 ) W 33333333 n 50444457 n/ 00000000 oh i *C - - - - - - - - Wgc/ 48159371 (2 EEEEEEEE - K 111223 R^ 71534208 - m 03780525 22223344 u 00000000 66555555 r 19816566 "q 2 00000000 o 04166142

                            ^  + * + + + + *
  • t 66666655 -

m EEEEEEEE c

                            /  72307393                     a       00000000 W  00726150                    f D

C 11998877 00000000 D01 9 1 p*C X 09373225 44444444 dm 23505924 x . 00000000 0 // 161 60493 e2 + + * + + + + 4 t wC H^ EEEEEEEE i t = c* 10099877 m 32439488 f n D T 111 / 83652831 i d W 44333222 cot TP S 00000000 l 431 86124 r*C 44444444 cC . o. 00000000 T* 44433321 e2 + + * + + + + + 44444444 h^ EEEEEEEE - 1111111 1 tm 46944265 H/ 06839631 W 86554444 C:

           *9                                                       00000000                                            a, t;     98764295                    )        55555555           2     66093030 a9             .      .            x       00000000           f     59688363 04            s     1111 11 00                 l         * + + + + + + +          55555544 4               T       44444444                     m       EEEEEEEE                                       0
        -  14                  11111111                    (

78087520 00000000 5- , 1 35 e 53297531 e R 22211111 C 2

            ==                                                      00000000 n                                                       2 r

u 1, o, i 2 93051 603 44444444 02383705

                                                           )x    "m 00000000             e Tw9 R                                                                                     35792479 cc                 98555298                    i         - - - - - - - -   h     00001111 TT                  111111 00                    m/g     EEEEEEEE 99000123 t

o 1111 1111 (p K 33444444 l 11111111 11111111 f 00000000 n w 53444430 s Pa 32275805 r 17816286 - T *C a K a 532211 00 a 09677522 g 12346826 e 00000000 P *C 10000000 11111122 h K 1111111 1 P s 11111111 - i s f v 78 24 oC 54678997 m Pa 45502972

  • m43333333 94 w a x 00000000 eK 31 T* 87455300 10986306 d - - - - - - - -

00000000 t s 88777776 - EEEEEEEE 1111 1111 33333333 m 20134566

            ==                                              P l

i 81111111 tt F 00000000 ee ll 61703589 s1 91472868 xm43333333 nn i* tC a 23334456 d 00000000 ii f 21986420 Gel 00000000 - - - - - - - - - PT - 55444444 m EEEEEEEE T c Oom 00000000 l i 60234567 81111111 F 00000000 - wC 91393771 s% 69396574

  • r 00000000 -

e* . a 44556780 00000000 rrr T 21976421 55444444 Gss 00000001 a e

                                                                                            +++++++ +

EEEEEEEE - hhh Xam 00000000 h s 04715051 .

           ///                                                                                54332211 ggg KKK                                                                                00000000                    -

aC 78147124 f 22233333 r211111111 T9 , 00000000 a*00000000

5. 009 75420975 e + + + + + + + + em -

44444333 R EEEEEEEE h/EEEEEEEE - 1 87648126 sN99001247 0 22 5 1.3 00936036 47911222 76654321 1 00000000 00000000

            ===

hm 04658631 hm 04658631 hm04658631 sgw t c . tc tc WWc W g n 70419915 13467924 g n 70419915 13467924 g n 70419915 13467924 e 11 e 11 e 1 1 L L L I

Run 2.1-5 Ws - 50.5 Kg/hr Pinlet = 396.8 KPa Tc,1 = 30.6 *C Tc-fit = D Wg = 3.160 Kg/hr Tinlet = 143.5 *C Tc,o = 52.9 *C Point =11 Wcw = 1234.8 Kg/hr STD = 0.20 *C Length Ta Tew Tc-fit Two Tw twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx

                  *C        *C      'C       *C       *C                                                *C                                                                              *C                                            *C       *C/m      W/m*2      Kg/hr      Kg/hr             m cm 17.0       46.2      51.4     51.1    107.0   108.9                            117.7                                                                            141.8                                                          143.7      10.449 0.100E+06        4.33     4 6.17 0.842E-04 30.4       44.4      49.6     49.7    105.2   107.0                            115.5                                                                             141.7                                                         143.6       9.998 0.961E+05        7.56     42.94 0.102E-03 44.6       42.7      47.9     48.3    103.5    105.2                           113.3                                                                             141.6                                                         143.4       9.545 0.917E+05       10.81      39.69 0.115E-03 61.5       41.3      46.8     46.8    104.9   106.5                            114.2                                                                            141.4                                                          143.2       9.037 0.868E+05       14.52      35.98 0.127E-03 79.8       39.7      45.2     45.2    103.3   104.9                            112.2                                                                            141.2                                                          142.9       8.522 0.819E+05       18.27     32.2 3 0.137E-03 99.6       38.3      43.7     43.5    100.2   101.7                            108.5                                                                            140.9                                                          142.5       8.004 0.769E*05       22.06     28.44 0.147E-03 121.3       36.6      41.7     41.9     96.1     97.5                           103.9                                                                            140.6                                                          142.1       7.479 0.719E+05       25.90     24.60 0.156E-03 145.1       35.3      40.4     40.1     94.2     95.5                           101.5                                                                             140.1                                                         141.3       6.951 0.668E+05       29.83     20.67 0.164E-03 Length       Re,f     X Gas    O Gas P steam     P gas                  p (mix)                                                                   Ro(mix)                                                                       Htheor        Hexp    Dfactor      R(in)   R(tubo)      R(out) em               mass %   mole 4       KPa      KPa                       fig /m^2                                                                                                                                         W/ma 2.*C   W/ma 2.*C             m* 2*C/W  m^2*C/W     m ^ 2*C/W 17.0 0.38CE+02      0.064    0.041    380.6     16.2 0.140E-04 0.262E*05 0.818E*04 0.417E+04                                                                                                                                                          0.509 0.240E-03 0.107E-03 0.595E-03 30.4 0.658E+02      0.069    0.044    379.5     17.3 0.141E-04 0.244E+05 0.677E+04 0.366E+04                                                                                                                                                          0.540 0.273E-03 0.107E-03 0.617E-03 44.6 0.932E+02      0.074    0.047    378.1     18.7 0.141E-04 0.226E+05 0.599E+04 0.324E+04                                                                                                                                                          0.541 0.308E-03 0.107E-03 0.643E-03 61.5 0.125E*03      0.081    0.052    376.3     20.5 0.141E-04 0.206E*05 0.543E+04 0.319E+04                                                                                                                                                          0.586 0.314E-03 0.107E-03 0.715E-03 79.8 0.156E+03      0.089    0.057    374.0     22.8 0.142E-04 0.186E+05 0.502E+04 0.282E+04                                                                                                                                                          0.561 0.355E-03 0.108E-03 0.760E-03 99.6 0.185E+03      0.100    0.065    371.2     25.6 0.142E-04 0.165E+05 0.469E+04 0.237E+04                                                                                                                                                          0.506 0.421E-03 0.10Er-03 0.789E-03 121.3 0.213E+03      0.114    0.074    367.5     29.3 0.143E-04 0.144E+05 0.442E+04 0.196E+04                                                                                                                                                          0.444 0.510E-03 0.109E-03 0.808E-03 145.1 0.242E*03      0.133    0.087    362.4     34.4 0.144E-04 0.123E+05 0.420E+04 0.173E+04                                                                                                                                                          0.412 0.578E-03 0.109E-03 0.866E-03 Length      shear    shear
  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.82E-01 0.51E+00 0.84E-04 0.80E-04 1.053 1.028 0.471 30.4 0.72E-01 0.45E+00 0.10E-03 0.98E-04 1.039 1.048 0.496 44.6 0.63E-01 0.39E+00 0.11E-03 0.11E-03 1.030 1.068 0.492 61.5 0.54E-01 0.33E+00 0.13E-03 0.12E-03 1.023 1.092 0.525 79.8 0.45E-01 0.27E+00 0.14E-03 0.13E-03 1.018 1.114 0.495 99.6 0.36E-01 0.22E+00 0.15E-03 0.14E-03 1.013 1.136 0.439 121.3 0.29E-01 0.17E+00 0.16E-03 0.15E-03 1.010 1.156 0.380 145.1 0.22E-01 0.13E+00 0.16E-03 0.16E-03 1.007 1.177 0.347 l

l e e" e

[< , ' l xm 43333333 ) W 33333333 00000000 d- 00000000 t/ uC - - - - - - - - m EEEEEEEE (o *2 EEEEEEEE _ l 42578775 46393215 i 40123456 1 341 6904 R 'm -f F 81111111 00000000 66677788 00000000 mr 36707946 W 33333333 ah 29690121 )e/ 00000000 e/ bC - - - - - - - - - t g 73063951 u92 EEEEEEEE WsK 44433222 (t* 77777899 00000000 _ Rm 11111111 00000000 W _ dr 74303164 ) 33333333 _ n h 36975434 n/ 00000000 _ o/ c 47048260 I( *C - - - - - - - - EEEEEEEE Wg K 111223 R^ 2 66640974 _ m 14993874 22223345 00000000 - 65555555 r 71687171 "q2* 00000000 o 60620574

                       + * * + + + *
  • t 56566544 m EEEEEEEE c
                    /  25370358                   a        00000000                                       .

W 07384949 f 19988776 D 9 0C000000 D11 0 2 pC X 26168087 44444444 - 0 dm

               //

62901334 51627272 x*. 00000000

                                                            * + + + + + + +

t w0

                                                  !e2
                                                 !^        EEEEEEEE                                       -

it = c9 00998877 m 36803704 . f n T 11 / 60340518 i D d W 44333221 cot TP S 00000000 l 53197380 r *C 44444444 c: o. 00000000 T* 55544433 e2 ++ + + + + + + b^ 44444444 EEEEEEEE 1 1111111 t m 66710797 f/ 17940631 I W 86555444 C3 "9 00000000 - t 21086405 ) 55555555 2 20303781 aC x 00000000 f 25163707 s" R 17 11100009 i + + + 4 + + + + 55555443 5 T 44444443 m EEEEEEEE 2 _ - 91 11111111 ( 80221086 00000000 5-25 e 65319742 1 R 22221111 c 2

      -=                                                   00000000 n                                                   2 u 1
       , o,     l      21479556                   )^       44444444            r   89936890 R

cc w T* 97342941 i xm 00000000

                                                             - - - - - - - -  h e   24691358 00001111 TT                11111000                    m/g     EEEEEEEE           t 11111111 (p K     0011 2234           o   11111111 44444444           l 11111111           f 00000000 w      35195583                   s Pa    80312067            r    61249410

_ T *C aF a 54321110 - a0 08565275 g 57802583 e 00000000 P9 10000099 11122223 h K 1111 11 P s 11111111 i - f 00 - 06 oC 47329040 m Pa 20798043

  • m44333333 -

94 w a x 00000000 31 T' 86353164 eK 43197516 d - - - - - - - - 00000099 t s 77766665 - EEEEEEEE 111111 33333333 m 08124556 _

      -=                                          P l     89111111

. i tt F 00000000 - ee ll 06260368 s% 14717436 nn tC a 44455678 xm43333333 00000000 i' d _ ii PT f 08754208 54444443 Gel 00000000 m EEEEEEEE T c Oom 00000000 l i 40234566 81111111 F 00000000 wC 45960351 s% 48309932

  • 00000000 c* a 66788913 r 00000000 rrr T 08654209 54444443 Gss 00000011 a + + ++ ++ + +

e EEEEEEEE hhh

     ///

Xam 00000000 h s 58259484 54432211 - ggg KKK 00000000 a 01604829 f 22233333 r211111111 T9 00000000 0 0000000 08

6. 2 53108653 e, + + + + + + + + a"m e - - - - - - -

_ 44443333 R EEEEEEEE h/EEEEEEEE 1 2.3 7 67979976 sN67777903 5 86325814 87654332 32 36911122 1 00000000 00000000

          =-                                                                                               -

sgw hm 04658631 hm 04658631 hm04658631 tc t c tc WWc W g n 7041 9915 13467924 g n 70419915 13467924 g n 70419915 13467924 _ e 1 1 e 11 e 11 L L L _ 1

Run 2.1-6 Pinlet = 393.4 KPa Tc,1 - 30.0 *C Tc-fit - D Ws - 50.5 Kg/hr Tc,o - 54.2 *C Poir.t =11 Wg = 4.260 Kg/hr Tinlet = 142.5 *C STD = 0.16 *C Wcw - 1082.7 Kg/hr Two Tw Twi Isat Tcl dTcw/dX q" Wcond Wsteam Film-dx Length Ta Tew Tc-fit

                                                                                                      *C/m      W/ma 2       Kg/h r    Kg/hr            m cm          *:        'C       'C        'C        *C          'C          *C          9C 106.2     118.0       116.5      141.0        142.4      11.481 0.968E*05           4.17    46.33 0.833E-04 17.0       47.2      52.5      52.3                                                                                         7.27    43.23 0.101E-03 45.4      50.7      50.8     104.5     106.3       114.5      140.9        142.2      10.966 0.924E+05 30.4                                                                     140.7        141.9      10.445 0.880E+05          10.39     40.11 0.114E-03 44.6       43.7      48.9      49.2     102.1     103.8       111.6 47.5     103.4     105.0       112.4      140.5        141.6        9.857 0.830E*05         13.94     36.56 0.125E-03 61.5       42.0      47.5                                                                                                  17.51     32.99 0.136E-03 40.3                45.8     101.8     103.3       110.2      140.3        141.0        9.258 0.780E+05 79.8                 45.8 140.4        8.651 0.729E+05        21.11     29.39 0.145E-03 99.6       38.7      44.2      44.0      99.6     101.0       107.5      140.0 42.2      95.4      96.7       102.8      139.5        139.7        8.031 0.676E*05        24.13     25.77 0.154E-03 121.3       36.8      42.1                                                                                                           22.11 0.162E-03 40.5      40.4      92.7      93.9        99.5      139.0        139.5        7.402 0.623E+05        28.39 145.1       35.3 X Gas    il Gas P steam       P gas      p(mix)    Re(mix)       Htheor         Hexp    Dfactor        R(in)  R (tube)     R(out)

Length Re,f m"2*C /W m' 2*C/W em mass % mole % KPa KPa Kg/ma 2 W/ma 2.*C W/m^ 2. *C m^ 2*C/W 17.0 0.363E*02 0.084 0.054 372.1 21. 3 0.141E-04 0.266E* 05 0. 826E*04 0. 395E+04 0.478 0.253E-03 0.107E-03 0.596E-03 30.4 0.628E+02 0.090 0.058 370.7 22.7 C.142E-04 0.249E*05 0.684E+04 0.349E+04 0.511 0.286E-03 0.107E-03 0.623E-03 44.6 0.885E+02 0.096 n.062 369.0 24.4 0.142E-04 0.232E+05 0.605E+04 0.302E+04 0.4 99 0. 331E-03 0.108E-03 0.64 3E-03 61.5 0.119E+03 0.104 0.068 366.8 26.6 0.143E-04 0.213E*05 0. 549E+ 04 0.295E* 04 0. 537 0. 339E-03 0.108E-03 0.720E-03 79.8 0.148E+03 0.114 0.074 364.2 29.2 0.143E-04 0.194E+05 0.507E+04 0.260E* 04 0.511 0.385E-03 0.108E-03 0.76BE-03 99.6 0.176E+03 0.127 0.083 360.9 32.5 0.144E-04 0.174E+05 0.475E+04 0.224E+04 0.473 0.446E-03 0.108E-03 0.816E-03 121.3 0.201E+03 0.142 0.093 356.8 36.6 0.145E-04 0.155E+05 0.447E+04 0.184E+04 0.411 0.544E-03 0.109E-03 0.841E-03 145.1 0.227E+03 0.162 0.107 351.3 42.1 0.146E-04 0.135E+05 0.425E+04 0.158E+04 0.371 0.634E-03 0.109E-03 0.898E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m"2 m m 17.0 0.86E-01 0.54E+00 0.03E-04 0.79E-04 1.056 1.027 0.441 30.4 0.76E-01 0.47E+00 0.10E-03 0.97E-04 1.041 1.046 0.469 44.6 0.67E-01 0.41E+00 0.11E-03 0.11E-03 1.032 1.065 0.454 61.5 0.58E-01 0.36E+00 0.13E-03 0.12E-03 1.025 1.087 0.482 79.8 0.49E-01 0.30E+00 0.14E-03 0.13E-03 1.020 1.108 0.453 l 99.6 0.41E-01 0.25E+00 0.14E-03 0.14E-03 1.015 1.129 0.412 121.3 0.33E-01 0.20E+00 0.15E-03 0.15E-03 1.012 1.147 0.354 145.1 0.26E-01 0.15E+00 0.16E-03 0.16E-03 1.009 1.166 0.316 i

l C-53

                                                                                                                                                                                                                    \

Run 2.1-6R j Ws = 51.8 Kg/hr Pinlet = 397.6 KPa Tc,1 = 28.6 *C Tc-fit = D Wg = 4.170 Kg/hr Tinlet = 145.8 9 Tc,o = 55.5 9C Point -11 Wew - 1004.1 Kg/hr STD = 0.18 *C Length Ta Tcw Tc-fit Two Tw Twl Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx em 'C 9; "C 'C 'C 'C 9 'C *C/m W/m^2 Kg/hr Kg/hr m 17.0 48.3 53.7 53.4 107.7 109.6 118.4 141.5 145.0 12.805 0.100E+06 4.30 47.50 0.840E-04 30.4 46.3 51.8 51.7 106.2 108.0 116.4 141.4 144.8 12.242 0.957E+05 7.51 44.29 0.101E-03 7 44.6 44.3 49.6 50.0 102.9 104.6 112.7 141.2 144.5 11.676 0.912E405 10.74 41.06 0.115E-03 61.5 42.4 48.0 48.1 -103.8 105.4 113.0 141.0 144.2 11.038 0.862E+05 14.40 37.40 0.127E-03 79.8 40.5 46.2 46.1 102.4 103.9 111.1 140.8 143.9 10.391 0.812E+05 18.11 33.69 0.137E-03 99.6 38.7 44.3 44.1 100.0 ~101.5 108.3 140.4 143.5 9.737 0.761E*05 21.85 29.95 0.146E-03 121.3 36.6 42.1 42.1 96.6 98.0 104.3 140.0 143.1 9.071 0.709E405 25.64 26.16 0.155E-03 145.1 34.7 40.1 40.0 93.9 95.2 101.1 139.5 142.3 8.398 0.656E+05 29.49 22.31 0.163E-03 Icogth Re,f X Gas O Gas P steam P gas p(mix) Re (mix) Htheor Hexp Dfactor R(in) R(tubel R(out) em mass % mole % KPa KPa Kg/m^2 W/m*2 "C W/m ^ 2 . *C m^2*C/W m^ 2*C/W rn'2*C/W 17.0 0.379E+02 0.081 0.052 377.0 20.6 0.141E-04 0.272E405 0.019E+04 0.433E404 0.529 0.231E-03 0.107E-03 0.580E-03 30.4 0.656E+02 0.086 0.055 375.6 22.0 0.142E-04 0.255E+05 0.679E+04 0.384E+04 0.565 0.261E-03 0.107E-03 0.609E-03 44.6 0.921E+02 0.092 0.059 374.0 23.6 0.142E-04 0.237E+05 0.600E+04 0.320E404 0.533 0.313E-03 0.108E-03 0.620E-03 61.5 0.124E+03 0.100 0.065 371.8 25.8 0.142E-04 0.217E+05 0.54 4E+04 0.308E+04 0.567 0.324E-03 0.107E-03 0.690E-03 79.8 0.154E+03 0.110 0.071 369.2 28.4 0.143E-04 0.197E+05 0.503E+04 0.274E+04 0.545 0.365E-03 0.108E-03 0.741E-03 ' 99.6 0.183E403 0.122 0.080 365.9 31.7 0.144E-04 0.177E+05 0.470E+04 0.236E+04 0.503 0.423E-03 0.108E-03 0.786E-03 121.3 0.211E+03 0.138 0.090 361.8 35.8 0.1455-04 0.156E405 0.443E+04 0.198E+04 0.448 0.504E-03 0.109E-03 0.823E-03 145.1 0.238E+03 0.157 0.104 356.2 41.4 0.146E-04 0.135E+05 0.421E+04 0.171E+04 0.406 0.585E-03 0.109E-03 0.879E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.88E-01 0.56E+00 0.84E-04 0.79E-04 1.057 1.028 0.486 "

30.4 0.78E-01 0.49E+00 0.10E-03 0.97E-04 1.042 1.048 0.517 44.6 0.69E-01 0.43E+00 0.11E-03 0.11E-03 1.033 1.067 0.483 61.5 0.59E-01 0.37E+00 0.13E-03 0.12E-03 1.026 1.090 0.507 79.8 0.50E-01 0.31E+00 0.14E-03 0.13E-03 1.020 1.113 0.480 99.6 0.41E-01 0.2SE+00 0.15E-03 0.14E-03 1.015 1.134 0.437 121.3 0.33E-01 0.20E+00 0.16E-03 0.15E-03 1.012 1.154 0.384 145.1 0.26E-01 0.15E+00 0.16E-03 0.16E-03 1.009 1.174 0.343 C-54 _ . _ . _ _ , _ _ _ . ._ _ __a ___._x._ ____ _ _ _ _ _ _ _ _ _ _m _ _ _ _ _ _ _ _ _ _ . _ _ . _ m- ,a __.m.: __ - - = - - -_ _ __ .m._ _ _ _ _ _ _ - _ __.___m.___ _ _ _ _ _ _ _ _ . _ . - _ . ~

i i i l i [ Run 2.1-7 Ws = 50.5 Kg/hr Pinlet = 400.3 KPa Tc,1 - 29.3 *C Tc-fit - D Wg = 5.600 Kg/hr Tinlet = 141.9 *C Tc,o = 52.8 "C Point =11 Wcw - 1032.2 Kc/hr STD = 0.14 9: length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dx q" wcond Wsteam Film-dx cm 'C "C *C 'C 'C "C 90 9: "C/m W/m*2 Kg/hr Kg/hr m 17.0 45.8 51.1 50.9 105.0 106.8 115.1 141.1 142.3 11.755 0.944E+05 4.08 46.42 0.829E-04 30.4 43.9 49.3 49.3 103.8 105.5 113.4 140.9 142.0 11.187 0.899E+05 7.10 43.40 0.999E-04 44.6 42.2 47.5 47.8 101.4 103.0 110.6 140.7 142.0 10.615 0.853E+05 10.13 40.37 0.113E-03 61.5 40.5 46.1 46.0 102.0 103.5 110.6 140.4 141.9 9.972 0.801E+05 13.54 36.96 0.124E-03 79.8 38.8 44.4 44.3 100.2 101.6 108.3 140.1 141.7 9.320 0.749E+05 16.98 33.52 0.135E-03 99.6 37.3 42.7 42.5 96.9 98.2 104.4 139.8 141.2 8.663 0.696E+05 20.40 30.10 0.144E-03 121.3 35.5 40.6 40.7 92.2 93.4 99.2 139.3 140.5 7.996 0.642E+05 23.82 26.68 0.153E-03 145.1 14.0 38.9 38.9 88.3 89.4 94.7 138.7 139.3 7.323 0.588E+05 27.26 23.24 0.161E-03 Length Re,f X Gas il Gas P steam P gas p(mix) Re (mix) lit heor Hexp Dfactor R(in) R (tube) Riout) cm mass % mole % KPa KPa Kg/m^2 W/ m^ 2. *C W/m ^ 2 . *C m^29C/W m^29C/W m ^ 2'C/W 17.0 0.353E*02 0.108 0.070 372.4 27.9 0.143E-04 0.271E+05 0.831E+04 0.364E404 0.4 38 0.275E-03 0.107E-03 0.613E-03 30.4 0.610E+02 0.114 0.074 370.6 29,7 0.141E-04 0.254E+05 0.689E+04 0.327E+04 0.475 0.305E-03 0.107E-03 0.648E-03 44.6 0.859E+02 0.122 0.079 368.5 31.8 0.144E-04 0.238E+05 0.610E+04 0.283E+04 0.464 0.353E-03 0.108E-03 0.672E-03 61.5 0.115E+03 0.132 0.086 365.9 34.4 0.144E-04 0.220E+05 0.553E+04 0.268E+04 0.485 0.372E-03 0.10SE-03 0.747E-03 79.8 0.142E+03 0.143 0.094 362.7 37.6 0.145E-04 0.201E+05 0.511E+04 0.235E+04 0.459 0.426E-03 0.108E-03 0.799E-03 99.6 0.167E+03 0.157 0.104 358.8 41.5 0.146E-04 0.162E+05 0.478E+04 0.197E+04 0.412 0.508E-03 0.109E-03 0.836E-03 121.3 0.190E+03 0.173 0.115 354.1 46.2 0.147E-04 0.164E+05 0.451E+04 0.160E+04 0.355 0.625E-03 0.109E-03 0.857E-03 145.1 0.213E+03 0.194 0.130 348.2 52.1 0.148E-04 0.145E+05 0.420E404 0.134E+04 0.313 0.748E-03 0.110E-03 0.898E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 a

cm N/m 2 m m 17.0 0.88E-01 0.55E+00 0.83E-04 0.78E-04 1.058 1.026 0.404 30.4 0.79E-01 0.49E+00 0.10E-03 0.96E-04 1.043 1.045 0.436 44.6 0.70E-01 0.43E+00 0.11E-03 0.11E-03 1.034 1.063 0.423 61.5 0.61E-01 0.37E+00 0.12E-03 0.12E-03 1.027 1.084 0.436 79.8 0.52E-01 0.32E+00 0.13E-03 0.13E-03 1.021 1.104 0.408 99.6 0.44E-01 0.26E+00 0.14E-03 0.14E-03 1.017 1.123 0.361 121.3 0.36E-01 0.21E+00 0.15E-03 0.15E-03 1.013 1.139 0.308 145.1 0.30E-01 0.17E+00 0.16E-03 0.16E-03 1.010 1.156 0.268 C-55

O O i Run 2.1-8 L Ws = 49.8 Kg/hr Pinlet - 420.3 KPa Tc,1 = 28.4 *C Tc-fit = D Wg = 8.600 Kg/hr Tinlet = 140.7 *C Tc,o = 52.3 9C Point all t Wew = 925.4 Kg/hr STD = 0.12 "C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx ! cm 9C 9 *C C 'C 9C *C 'C 9Cha W/m^2 Kg/hr Kg/hr m 17.0 45.2 50.6 50.3 103.5 105.2 113.0 141.5 141.4 12.201 0.879E+05 3.79 46.01 0.811E-04 30.4 43.3 48.8 48.7 102.1 103.7 111.1 141.2 141.4 11.610 0.836E+05 6.61 43.19 0.978E-04 44.6 41.7 47.0 47.1 99.3 100.8 107.9 140.9 141.2 11.015 0.793E+05 9.42 40.38 0.111E-03 61.5 39.8 45.3 45.3 99.3 .100.7 107.3 140.6 140.9 10.346 0.745E+05 12.59 37.21 0.122E-03 79.8 38.1 43.6 43.5 96.8 98.1 104.3 140.2 140.5 9.668 0.696E+05 15.77 34.03 0.132E-03 99.6 36.4 41.7 41.6 93.1 94.3 100.1 139.7 140.1 8.934 0.647E+05 18.94 30.86 0.141E-03 121.3 34.6 39.7 39.7 88.9 90.1 95.5 139.1 139.7 8.289 0.597E+05 22.12 27.68 0.150E-03 145.1 33.0 37.7 37.8 83.5 84.6 89.6 138.4 138.9 7.589 0.546E*05 25.27 24.53 0.158E-03 Length Re,f X Gas fl Gas P steam P gas p(mix) Re (mlx) Htheor Hexp Dfactor R(in) R(tube) R(out) cm mass % mole % KPa KPa Kg/m^2 W/m^ 2. *C W/ m^ 2. *C m* 2*C/W m^29C/W m*29C/W 17.0 0.326E+02 0.157 0.104 376.6 43.7 0.147E-04 0.278E+05 0.849E+04 0.309E+04 0.363 0.324E-03 0.108E-03 0.648E-03 30.4 0.563E+02 0.166 0.110 374.0 46.3 0.147E-04 0.262E+05 0.704E+04 0.278E+04 0.395 0.360E-03 0.108E-03 0.683E-03 44.6 0.790E+02 0.176 0.117 371.2 49.1 0.148E-04 0.247E+05 0.622E+04 0.240E+04 0.385 0.417E-03 0.108E-03 0.704E-03 61.5 0.105E+03 .0.188 0.126 367.5 52.8 0.148E-04 0.230E+05 0.564E+04 0.224E+04 0.397 0.447E-03 0.108E-03 0.775E-03 79.8 0.130E+03 0.202 0.136 363.3 57.0 0.149E-04 0.213E+05 0.521E+04 0.194E+04 0.372 0.515E-03 0.109E-03 0.819E-03 99.6 0.152E+03 0.218 0.148 358.3 62.0 0.150E-04 0.196E+05 0.487E+04 0.163E+04 0.335 0.612E-03 0.109E-03 0.851E-03  ! 121.3 0.174E+03 0.237 0.162 352.3 68.0 0.151E-04 C.179E+05 0.459E+04 0.137E404 0.298 0.731E-03 0.110E-03 0.882E-03 i 145.1 0.192E+03 0.260 0.179 345.1 75.2 0.153E-04 0.162E+05 0.435E+04 0.112E+04 0.257 0.893E-03 0.111E-03 0.894E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.90E-01 0.56E+00 0.81E-04 0.76E-04 1.061 1.024 0.335 l 30.4 0.82E-01 0.50E+00 0.98E-04 0.94E-04 1.046 1.041 0.362 44.6 0.74E-01 0.45E+00 0.11E-03 0.11E-03 1.036 1.058 0.351 61.5 0.65E-01 0.40E+00 0.12E-03 0.12E-03 1.029 1.077 0.358 '

79.8 0.57E-01 0.34E+00 0.13E-03 0.13E-03 1.023 1.095 0.332 99.6 0.49E-01 0.29E+00 0.14E-03 0.14E-03 1.019 1.111 0.296 121.3 0.42E-01 0.24E+00 0.15E-03 0.15E-03 1.015 1.127 0.260 i 145.1 0.35E-01 0.20E+00 0.162-03 0.16E-03 1.012 1.141 0.223 C-56

Run 2.1-BR Pinlet = 415.3 KPa Tc,1 - 27.5 *C Tc-fit - D Ws = 51.2 Kg/hr

                                                                                                                                                             *C                                                       Point =11 Kg/hr                           *C            Tc,o - 52.5 Wg - 8.870                    Tinlet = 145.3 STD = 0.15 *C Wew - 925.1      Kg/hr Tc-fit       Two        Tw               Twi                                                     Tsat                                                                 Tcl                  dTcw/dX            q"     Wcond    Wsteam     Film-dx Length          Ta       Tcw
                                                                                                                                                                                                      'C                    'C/m       W/m^2      Kg/hr     Kg/hr           m cm          *C        *C       *C       'C       *C                    'C                                                           *C 104.0    105.8      114.1                                                        141.0                                                         144.8                             13.035 0.939E+05           4.04     47.16 0.827E-04 17.0       45.2      50.7      50.3 7.02     44.18 0.998E-04 48.5      48.6    102.0    103.7      111.6                                                       140.8                                                          144.6                             12.371 0.891E+05 30.4       43.0                                                                                                                                                                                                         11.704 0.842E+05          10.00     41.20 0.113E-03 41.4      46.7      46.9     98.6    100.2      107.7                                                        140.5                                                          144.4 44.6                                                                                                                    140.1                                                          144.2                            10.957 0.789E+05          13.34     37.86 0.124E-03 61.5       39.3      44.8      45.0     98.9    100.4      107.4 97.4     98.8      105.4                                                        139.7                                                         143.7                             10.202 0.734E+05          16.69     34.51 0.134E-03 79.8       37.6      43.2      43.1                                                                                                                                                                                                                         31.18 0.144E-03 41.1     94.0     95.3      101.4                                                        139.2                                                          143.1                               9.443 0.680E+05        20.02 99.6       35.8      41.2                                                                                                                                                                                                                         23.34     27.86 0.152E-03 33.9      39.1      39.2     90.0     91.2           96.8                                                    138.5                                                          142.4                              8.6 76 0.624E+05 121.3                                                                                                                                                                                   141.7                               7.907 0.569E+05        26.64     24.56 0.160E-03 145.1       32.2      37.2      37.2     86.2     87.3            92.5                                                   137.8 P gas     p(mix)                                            Re (m tx)                                                            Htheor                                      Hexp    Dfactor      R(in)   R(tube)     R(out)

Length Re,f X Gas il Gas P steam m"2*C/W m^2*C/W mole % KPa KPa Kg/m"2 W/m

  • 2. *C W / m" 2 . *C m^2*C/W cm mass %

0.158 0.105 371.8 43.5 0.146E-04 0.285E* 05 0.832E e 04 0.349E+ 04 0.419 0.287E-03 0.107E-03 0.612E-03 17.0 0.348E+02 0.443 0.328E-03 0.108E-03 0.641E-03 30.4 0.598E+02 0.167 0.111 369.2 46.1 0.147E-04 0.269E*05 0.690E*04 0. 305E+04 0.177 0.118 366.3 49.0 0.148E-04 0.253E+05 0.610E+04 0.257E+04 0.422 0.389E-03 0.108E-03 0.656E-03 44.6 0.836E*02 0.436 0.414E-03 0.108E-t3 0.731E-03 61.5 0.111E+03 0.190 0.127 362.5 52.8 0.148E-04 0.235E*05 0.553E+04 0.241E+04 79.8 0.138E+03 0.204 0.138 358.1 57.2 0.149E-04 0.217E+05 0.512E+04 0.214E+04 0.418 0.467E-03 0.108E-03 0.791E-03 99.6 0.162E+03 0.221 0.150 352.9 62.4 0.150E-04 0.199E+05 0.479E+04 0.180E+04 0.376 0.556E-03 0.109E-03 0.832E-03 0.241 0.165 346.7 68.6 0.151E-04 0.181E+05 0.4 52E+04 0.150E+04 0.331 0.668E-03 0.110E-03 0.871E-03 121.3 0.184E*03 0.293 0.796E-03 0.110E-03 0.921E-03 145.1 0.205E+03 0.265 0.183 339.2 76.1 0.153E-04 0.163E+05 0.429E+04 0.126E+04 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m"2 m m 17.0 0.96E-01 0.59E+00 0.83E-04 0.78E-04 1.063 1.026 0.384 30.4 0.86E-01 0.53E+00 0.10E-03 0.95E-04 1.047 1.044 0.405 44.6 0.7BE-01 0.47E+00 0.11E-03 0.11E-03 1.037 1.061 0.383 61.5 0.68E-01 0.41E+00 0.12E-03 0.12E-03 1.030 1.081 0.391 79.8 0.59E-01 0.36E+00 0.13E-03 0.13E-03 1.024 1.101 0.371 99.6 0.51E-01 0.30E+00 0.14E-03 0.14E-03 1.019 1.118 0.330 121.3 0.43E-01 0.25E+00 0.15E-03 0.15E-03 1.015 1.135 0.288 145.1 0.36E-01 0.21E*00 0.16E-03 0.16E-03 1.012 1.150 0.252 C-57

O Run 2.1-9 Ws = 49.9 Kg/hr Pinlet = 405.1 KPa Tc,1 = 28.1 *C Tc-fit - D Wg = 12.400 Kg/hr Tinlet = 138.0 90 Tc, o - 51.1 *C Point -11 Wew - 802.5 Kg/hr STD = 0.14 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dx q" Ncond Wsteam Film-dx em 9C *C *C 'C *C 9C *C 9C "C/m W/m^2 Kg/hr Kg/hr m 17.0 44.2 49.6 49.3 101.7 103.2 110.2 138.6 138.5 11.488 0.789E+05 3.38 46.52 0.7o6E-04 1 30.4 42.5 47.9 47.8 100.3 101.7 108.4 138.3 138.5 10.979 0.754E+05 5.90 44.00 0.948E-04 44.6 41.0 46.3 46.2 97.3 98.7 105.1 138.0 138.5 10.463 0.718E+05 8.44 41.46 0.107E-03 61.5 39.2 44.5 44.5 95.9 97.2 103.3 137.6 138.4 9.881 0.678E+05 11.29 38.61 0.119E-03 79.8 37.6 42.9 42.8 93.7 94.9 100.6 137.2 137.9 9.287 0.638E*05 14.18 35.72 0.128E-03 99.6 35.9 41.0 41.0 89.9 91.1 96.5 136.6 137.4 8.685 0.596E+05 17.08 32.82 0.137E-03 121.3 34.1 39.0 39.2 86.0 87.1 92.1 136.0 136.8 8.069 0.554E+05 20.02. 29.88 0.146E-03 145.1 32.5 37.2 37.3 82.5 83.5 88.2 135.2 136.3 7.444 0.511E+05 22.97 26.93 0.154E-03 Length Re,f X Gas fl Gas P steam P qas p(mix)' Re(mix) litheor Hexp Dfactor R(in) R (tube) R(out) em mass 4 mole 4 KPa KPa Kg/m^2 W/ m^ 2. 9C W/ma 2.9C m^29C/W m^29C/W m^ 29C/W 17.0 0.284E*02 0.210 0.142 347.5 57.6 0.149E-04 0.294E605 0.876E604 0.278E604 0.317 0.360E-03 0.108E-03 0.711E-03 30.4 0.490E+02 0.220 0.149 344.7 60.4 0.150E-04 0.280E+05 0.725E+04 0.252E+04 0.347 0.397E-03 0.108E-03 0.745E-03 44.6 0.689E+02 0.230 0.157 341.6 63.5 0.150E-04 0.267E+05 0.641E+04 0.218E+04 0.341 0.458E-03 0.108E-03 0.760E-03 61.5 0.913EiO2 0.243 0.166 337.7 67.4 0.151E-04 0.251E+05 0.580E+04 0.198E+04 0.341 0.506E-03 0.109E-03 0.810E-03 79.8 0.113E+03 0.258 0.177 333.2 71.9 0.152E-04 0.236E+05 0.535E+04 0.175E+04 0.326 0.573E-03 0.109E-03 0.854E-03 99.6 0.133E+03 0.274 0.190 328.1 77.0 0.153E-04 0.220E+05 0.500E+04 0.149E+04 0.297 0.673E-03 0.110E-03 0.878E-03 121.3 0.152E+03 0.293 0.205 322.1 83.0 0.154E-04 0.204E+05 0.470E+04 0.126E+04 0.269 0.791E-03 0.110E-03 0.904E-03 145.1 0.171E+03 0.315 0.222 315.0 90.1 0.156E-04 0.188E+05 0.446E+04 0.109E+04 0.244 0.920E-03 0.111E-03 0.945E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.11E+00 0.64E+00 0.79E-04 0.73E-04 1.073 1.021 0.289 30.4 0.97E-01 0.59E+00 0.95E-04 0.90E-04 1.055 1.036 0.317 44.6 0.89E-01 0.53E+00 0.11E-03 0.10E-03 1.045 1.050 0.310 61.5 0.80E-01 0.48E+00 0.12E-03 0.11E-03 1.037 1.067 0.308 79.8 0.72E-01 0.42E400 0.13E-03 0.12E-03 1.030 1.083 0.292 99.6 0.64E-01 0.37E+00 0.14E-03 0.13E-03 1.025 1.097 0.264 121.3 0.56E-01 0.32E+00 0.15E-03 0.14E-03 1.021 1.111 0.237 145.1 0.49E-01 0.27E+00 0.15E-03 0.15E-03 1.017 1.125 0.213 C-58

Run 2.1-10 Ws = 49.9 Kg/hr Pinlet - 416.8 KPa Tc,1 - 27.9 "C Tc-fit - D Wg = 16.300 Kg/hr Tinlet - 137.3 *C Tc,o - 50.1 "C Point -11 Wew = 883.6 kg/hr STD = 0.22 *C Isngth Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm "C "C "C "C "C 'C *C "C *C/m W/m^2 Kg/hr Kg/hr m 43.5 48.8 48.3 101.0 102.4 109.1 138.1 138.5 10.934 0.752E+05 3.22 46.68 0.774E-04 17.0 44.28 0.935E-04 30.4 41.8 47.1 46.9 98.7 100.1 106.5 137.8 138.4 10.463 0.719E+05 5.62 44.6 40.4 45.6 45.4 96.2 97.5 103.6 1 37.4 137.8 9.987 0.687E+05 0.03 41.87 0.106E-03 61.5 38.6 43.8 43.8 94.8 96.1 101.9 136.9 137.2 9.448 0.650E+05 10.76 39.14 0.117E-03 79.8 37.0 42.2 42.1 92.2 93.4 98.9 136.4 137.0 8.898 0.612E+05 13.52 36.38 0.127E-03 99.6 35.4 40.4 40.4 88.8 89.9 95.1 135.8 136.7 8.338 0.573E+05 16.30 33.60 0.136E-03 121.3 33.7 38.4 38.7 84.4 85.4 90.3 135.1 136.3 7.765 0.534E+05 19.11 30.79 0.144E-03 145.1 32.2 36.8 36.9 81.1 82.1 86.6 134.2 135.5 7.182 0.494E+05 21.96 27.94 0.152E-03 length Re,f X Gas il Gas P steam P gas p(mix) Re(mix) Iltheor flexp Dfactor R(in) R(tubel R(out) cm mass % nole 1 KPa KPa Kg/ma 2 W/m*2.*C W/m*2.*C m^2*C/W m^2*C/W m ^ 2*C/W 17.0 0.268E402 0.259 0.178 342.5 74.3 0.153E-04 0.307E+05 0.889E+04 0.259E+04 0.291 0.386E-03 0.108E-03 0.719E-03 30.4 0.46]E+02 0.269 0.186 339.2 77.6 0.153E-04 0.295E+05 0.735E+04 0.230E404 0.313 0.435E-03 0.108E-03 0.771E-03 44.6 0.650E+02 0.200 0.195 335.6 81.2 0.154E-04 0.282E+05 0.650E+ 04 0.203E+04 0.313 0.492E-03 0.109E-03 0.790E-03 61.5 0.861E+02 0.294 0.206 331.1 85.7 0.155E-04 0.267E+05 0.588E+04 0.186E+04 0.316 0.539E-03 0.109E-03 0.841E-03 79.8 0.106E+03 0.309 0.218 326.0 90.8 0.156E-04 0.252E+05 0.542E+04 0.163E+04 0.301 0.613E-03 0.109E-03 0.876E-03 99.6 0.126E+03 0.327 0.232 320.3 96.5 0.157E-04 0.237E+05 0.506E+04 0.141E+04 0.278 0.710E-03 0.110E-03 0.903E-03 121.3 0.143E+03 0.346 0.248 313.6 103.2 0.158E-04 0.222E*05 0.476E+04 0.119E+04 0.251 0.839E-03 0.110E-03 0.915E-03 145.1 0.161E403 0.368 0.266 305.9 110.9 0.160E-04 0.206E+05 0.451E+04 0.104E404 0.230 0.964E-03 0.111E-03 0.958E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.11E+00 0.69E+00 0.77E-04 0.72E-04 1.080 1.020 0.265 30.4 0.11E+00 0.63E+00 0.94E-04 0.88E-04 1.061 1.034 0.205 44.6 0.98E-01 0.58E+00 0.11E-03 0.10E-03 1.050 1.048 0.285 61.5 0.89E-01 0.52E+00 0.12E-03 0.11E-03 1.041 1.063 0.285 79.8 0.81E-01 0.47E+00 0.13E-03 0.12E-03 1.034 1.078 0.270 99.6 0. 73E-01 0.42E+00 0.14E-03 0.13E-03 1.029 1.092 0.248 121.3 0.65E-01 0.37E+00 0.14E-03 0.14E-03 1.024 1.105 0.221 145.1 0.58E-01 0.32E+00 0.15E-03 0.15E -03 1.020 1.118 0.202 C-59

Run 2.1-10R Ws - 51.3 Kg/hr Finlet - 408.8 KPa Tc,1 = '26.5 *C Tc-fit = D i Wg - 15.850 Kg/hr Tinlet - 140.4 *C Tc,o - 50.1 "C Point -11 Wew = 871.3 Kg/hr STD = 0.16 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm *C *C *C *C *C *C *C *C 'C/m W/m^2 Kg/hr Kg/hr m 17.0 43.2 48.6 48.2 100.8 102.3 109.5 137.8 140.6 11.883 0.806E*05 3.44 47.86 0.792E-04 30.4 41.4 46.7 46.6 97.8 99.3 106.2 137.4 140.4 11.338 0.769E+05 6.00 45.30 0.957E-04 44.6 39.8 45.0 45.0 95.2 96.6 103.1 137.1 140.1 10.789 0.731E+05 8.56 42.74 0.108E-03 61.5 37.9 43.2 43.3 94.7 96.0 102.2 136.6 139.7 10.169 0.689E*05 11.46 39.84 0.119E-03 79.8 36.2 41.4 41.5 92.2 93.4 99.2 136.0 139.1 9.538 0.647E+05 14.37 36.93 0.129E-03 99.6 34.5 39.6 39.6 89.2' 90.4 95.8 135.4 138.4 8.900 0.603E+05 17.30 34.00 0.138E-03 121.3 32.8 37.7 37.8 85.1 86.2 91.3 134.7 137.4 8.249 0.559E+05 20.25 31.05 0.147E-03 145.1 31.1 35.9 35.9 82.3 83.3 88.0 133.8 136.2 7.590 0.514EiOS 23.22 28.08 0.155E-03 Length -Re,f X Gas O Gas P steam P gas p(mix) Re (mix) Htheor llexp Dfactor R{ln) R(tube) R(out) em mass % mole % KPa KPa Kg/m*2 W/m^ 2. *C W/ma 2.*C m^2*C/W m^2*C/W m *2*C/W 17.0 0.287E+02 0.249 0.171 339.0 69.8 0.152E-04 0.313E+05 0.869E+04 0.285E+04 0.328 0.35]E-03 0.108E-03 0.698E-03 30.4 0.491E+02 0.259 0.179 335.8 73.0 0.152E-04 0.299E+05 0.719E+04 0.246E+04 0.342 0.407E-03 0.108E-03 0.712E-03 44.6 0.690E+02 0.271 0.187 332.2- 76.6 0.153E-04 0.285EiO5 0.635E*04 0.216E404 0.340 0.464E-03 0.109E-03 0.733E-03 61.5 0.917E+02 0.285 0.198 327.8 81.0 0.154E-04 0.270E+05 0.575E+04 0.200E+04 0.348 0.499E-03 0.109E-03 0.197E-03 79.8 0.113E+03 0.300 0.211 322.7 86.1 0.155E-04 0.254E+05 0.531E+04 0.176E+04 0.331 0.570E-03 0.109E-03 0.838E-03 99.6 0.134E+03 0.318 0.225 317.0 91.8 0.156E-04 0.238E+05 0.496E+04 0.152E+04 0.307 0.656E-03 0.110E-03 0.8 79E-03 121.3 0.152E+03 0.338 0.241 310.4 98.4 0.157E-04 0.222E+05 0.467E+04 0.129E*04 0.276 0.777E-03 0.110E-03 0.905E-03 145.1 0.171E+03 0.361 0.260 302.7 106.1 0.159E-04 0.206E+05 0.443E+04 0.112E404 0.253 0.891E-03 0.111E-03 0.964E-03 i Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.12E+00 0.72E+00 0.79E-04 0.73E-04 1.081 1.021 0.297 30.4 0.11E+00 0.66E+00 0.96E-04 0.90E-04 1.062 1.036 0.311 44.6 0.10E*00 0.60E+00 0.11E-03 0.10E-03 1.051 1.051 0.308 61.5 0.92E-01 0.54E+00 0.12E-03 0.11E-03 1.042 1.067 0.313 79.8 0.83E-01 0.48E+00 0.13E-03 0.13E-03 1.035 1.083 0.295 99.6 0.74E-01 0.43E+00 0.14E-03 0.13E-03 1.029 1.098 0.272 121.3 0.66E-01 0.37E+00 0.15E-03 0.14E-03 1.024 1.112 0.242 145.1 0.58E-01 0.32E+00 0.15E-03 0.15E-03 1.020 1.125 0.220 C-60 ,

5 _ . _ _ - - . _ _ _ ._ __ ___..______m______.s_____.____....__.___.m______ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ . _ _ _ _ _ _ -s , . _.-.+-a-

                                                                                                                                                                                                                                                         *-er-vy     v  a wv  -          _    _   _ _ - _ _ ._-

Run 2.1-11 Ws = 50.0 Kg/hr Pinlet = 407.9 KPa Tc,1 = 27.4 *C Tc-fit = D Wg = 21.500 Kg/hr Tinlet = 135.1 9C Tc,o = 49.6 *C Point =11 Wcw = 841.6 Kg/hr STD = 0. 25 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm 'C *C *C *C 'C *C *C 9: 'C/m W/ma 2 Kg/hr Kg/hr m 17.0 43.2 48.4 47.9 99.0 100.3 106.5 135.5 135.2 10.666 0.699E+05 2.97 47.03 0.759E-04 30.4 41.6 46.8 46.5 96.6 97.9 103.9 135.1 135.1 10.245 0.671E+05 5.19 44.81 0.917E-04 44.6 40.1 45.1 45.1 93.6 94.8 100.6 134.7 135.0 9.817 0.643E+05 7.44 42.56 0.104E-03 61.5 38.5 43.6 43.5 92.2 93.4 98.9 134.2 134.9 9. 331 0. 611E+ 05 9.99 40.01 0.115E-03 79.8 36.8 41.8 41.8 89.9 91.0 96.2 133.6 134.5 8.831 0.578E+05 12.58 37.42 0.125E-03 99.6 35.3 40.1 40.1 86.5 87.6 92.5 132.9 134.0 8.321 0.545E*05 15.21 34.79 0.134E-03 121.3 33.5 38.1 38.3 02.2 83.2 87.9 132.2 133.2 7.795 0.510E+05 17.88 32.12 0.142E-03 145.1 31.9 36.4 36.6 79.8 80.7 85.0 131.3 132.7 7.257 0.475E+05 20.61 29.39 0.150E-03 Length Re,f X Gas O Gas P steam P gas p(mix) Re(mix) Htheor Hexp Dractor R(in) R(tube) R(out) em mass % mole % KPa KPa Kg/m*2 W/ma 2.9C W/m* 2. *C m* 2 *C/W m*2%C/W m

  • 2 *C/W 17.0 0.241E*02 0.314 0.221 317.7 90.2 0.156E-04 0.328E+05 0.906E*04 0.241E+04 0.266 0.415E-03 0.108E-03 0. 782E-03 30.4 0.416E+02 0.324 0.230 314.2 93.7 0.156E-04 0.316E+05 0.749E+04 0.215E+04 0.287 0.465E-03 0.109E-03 0.799E-03 44.6 0.586E+02 0.336 0.239 310.5 97.4 0.157E-04 0.304E+05 0.661E*04 0.188E+04 C.285 0.531E-03 0.109E-03 0.807E-03 61.5 0.778E+02 0.350 0.250 305.8 102.1 0.158E-04 0.290E*05 0.597E+04 0.173E+04 0.290 0.578E-03 0.109E-03 0.854E-03 79.8 0.965E+02 0.365 0.263 300.6 107.3 0.159E-04 0.276E+05 0.550E+04 0.155E+04 0.281 0.647E-03 0.110E-03 0.289E-03 99.6 0.114E+03 0.382 0.277 294.7 113.2 0.160E-04 0.262E+05 0.513E+04 0.135E+04 0.263 0.742E-03 0.110E-03 0.912E-03 121.3 0.131E+03 0.401 0.294 288.1 119.8 0.161E-04 0.247E*05 0.482E+04 0.115E+04 0.239 0.868E-03 0.111E-03 0.919E-03 145.1 0.148E+03 0.423 0.313 280.4 12 7. 5 0.163E-04 0.233E *05 0. 4 57E+ 04 0.103E+ 04 0.225 0.972E-03 0.111E-03 0.973E-03 Length shear shear
  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.13E+00 0.79E+00 0.76E-04 0.69E-04 1.094 1.018 0.239 30.4 0.12E+00 0.73E+00 0.92E-04 0.85E-04 1.073 1.030 0.259 44.6 0.12E+00 0.68E+00 0.10E-03 0.98E-04 1.060 1.043 0.258 61.5 0.11E+00 0.62E+00 0.11E-03 0.11E-03 1.050 1.057 0.261 79.8 0.99E-01 0.56E+00 0.12E-03 0.12E-03 1.043 1.071 0.252 99.6 0.90E-01 0.51E+00 0.13E-03 0.13E-01 1.036 1.084 0.234 121.3 0.82E-01 0.45E+00 0.14E-03 0.14E-03 1.031 1.096 0.211 145.1 0.74E-01 0.40E+00 0.15E-03 0.15E-03 1.027 1.108 0.198 O

l_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ - . O" O

O O r Run 2.1-12 Ws - 50.0 Kg/hr Pinlet = 410.6 KPa Tc,1 = 26.9 *C Tc-fit - D Wg = 26.100 Kg/hr Tinlet = 133.4 *C Tc,o = 49.6 *C Point =11 Wcw = 790.2 Kg/hr STD = 0.27 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm 'C 'C 'C *C *C *C "C *C *C/m W/m*2 Kg/hr Kg/hr m 17.0 43.3 48.5 47.9 97.5 98.0 104.8 134.2 133.9 10.986 0.676E+05 2.87 47.13 0.753E-04 30.4 41.6 46.7 46.4 95.1 96.3 102.1 133.7 133.8 10.537 0.648E*05 5.02 44.98 0.910E-04 44.6 40.2 45.2 44.9 92.3 93.5 99.1 133.3 133.4 10.000 0.620E+05 7.18 42.82 0.103E-03 61.5 38.3 43.3 43.3 90.7 91.8 97.1 132.7 133.0 9.563 0.588E+05 9.63 40.37 0.114E-03 79.8 36.7 41.6 41.6 87.9 89.0 94.0 132.1 132.7 9.032 0.555E+05 12.11 37.89 0.124E-03 99.6 35.1 39.9 39.9 85.0 86.0 90.7 131.4 132.2 8.492 0.522E+05 14.63 35.37 0.132E-03 121.3 33.3 37.9 38.1 81.0 82.0 86.5 130.6 131.5 7.936 0.488E+05 17.18 32.82 0.141E-03 145.1 31.6 36.0 36.3 78.0 78.9 83.1 129.6 130.6 7.368 0.453E*05 19.78 30.22 0.148E-03 Length Re, f X Gas O Gas P steam P gas p(mix) Re (mix) litheor flexp Dfactor R(in) R (tubel R(out) em mass % mole t KPa KPa Kg/m^2 W / m ^ 2 . *C W/ m

  • 2 .*C m^2*C/W m*2*C/W m*2*C/W 17.0 0.230E402 0.356 0.256 305.5 105.1 0.159E-04 0.344E+05 0.913E*04 0.230E+04 0.252 0.434E-03 0.108E-03 0.786E-03 30.4 0.396E+02 0.367 0.265 301.8 108.8 0.159E-04 0.332E+05 0.755E+04 0.205E+04 0.271 0.488E-03 0.109E-03 0.803E-03 ,

44.6 0.557E+02 0.379 0.275 297.8 112.8 0.160E-04 0.321E+05 0.666E*04 0.181E+04 0.272 0.552E-03 0.109E-03 0.817E-03 61.5 0.738E*02 0.393 0.287 292.9 117.7 0.161E-04 0.307E+05 0.602E*04 0.165E+04 0.274 0.606E-03 0.109E-03 0.862E-03 79.8 0.912E+02 0.408 0.300 287.5 123.1 0.162E-04 0.294E+05 0.554E+04 0.146E+04 0.263 0.686E-03 0.110E-03 0.892E-03 99.6 0.108E+03 0.425 0.314 281.5 129.1 0.163E-04 0.281E+05 0.517E+04 0.128E+04 0.248 0.779E-03 0.110E-03 0.925E-03 121.3 0.124E+03 0.443 0.331 274.8 135.8 0.164E-04 0.267E*05 0.486E+04 0.111E*04 0.227 0.904E-03 0.111E-03 0.942E-03 145.1 0.139E+03 0.463 0.349 267.2 143.4 0.166E-04 0.253E+05 0.461E+04 0.972E+03 0.211 0.103E-02 0.111E-03 0.986E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.15E+00 0.86E+00 0.75E-04 0.68E-04 1.104 1.017 0.225 30.4 0.14E+00 0.80E+00 0.91E-04 0.84E-04 1.081 1.029 0.244 44.6 0.13E+00 0.75E+00 0.10E-03 0.97E-04 1.068 1.041 0.245 61.5 0.12E+00 0.69E*00 0.11E-03 0.11E-03 1.057 1.054 0.246 79.8 0.11E+00 0.63E+00 0.12E-03 0.12E-03 1.049 1.067 0.235 99.6 0.10E+00 0.57E+00 0.13E-03 0.13E-03 1.042 1.079 0.221 121.3 0.95E-01 0.52E+00 0.14E-03 0.14E-03 1.036 1.091 0.201 145.1 0.87E-01 0.47E+00 0.15E-03 0.14E-03 1.031 1.102 0.186 i

C-62

Run 2.1-12R Ws - 51.8 Kg/hr Pinlet - 412.3 KPa Tc,1 - 25.1 *C Tc-fit - D Wg - 26.160 Kg/hr Tinlet = 134.8 *C Tc,o - 49.8 *C Point =11 Wcw = 766.0 Kg/hr STD - 0.18 *C Two Tw Twl Tsat Tcl dTcw/dx q' Wcond Wsteam Filmsix Length Ta Tcw Tc-fit m

                                                                                                      'C       'C        *C        'C          "C           *C         *C/m     W/m^2      Kg/hr     Kg/hr cm          *C        9:

17.0 43.2 48.3 47.9 96.1 97.5 103.9 134.6 135.5 12.002 0.715E+05 3.04 48.76 0.768E-04 30.4 41.4 46.4 46.3 93.4 94.7 100.9 134.2 135.4 11.506 0.680E+05 5.30 46.50 0.928E-04 44.6 39.9 44.8 44.7 90.5 91.8 97.7 133.7 135.1 11.003 0.656E+05 7.59 44.21 0.105E-03 61.5 37.9 42.9 42.9 89.8 91.0 96.6 133.1 134.7 10.432 0.622E+05 10.18 41.62 0.116E-03 79.8 36.2 41.2 41.1 87.7 88.8 94.1 132.5 134.1 9.848 0.587E+05 12.81 38.99 0.126E-03 99.6 34.3 39.2 39.2 84.9 86.0 91.0 131.3 133.4 9.253 0.551E+05 15.47 36.33 0.135E-03 121.3 32.4 37.1 37.2 81.5 82.5 87.2 131.0 132.5 8.641 0.515E+05 18.17 33.63 0.143E-03 145.1 30.4 35.0 35.2 78.4 79.3 83.7 130.0 131.6 8.017 0.478E+05 20.91 30.89 0.151E-03 Length Re,f X Gas O Gas P steam P gas p(mix) Re (mix) litheor HexP Ofactor R(in) R (tube) R(out) em mass % mole % KPa KPa Kg/m^2 W/ m^ 2. *C W/m^ 2. *C m^29C/W ma 29C/W m^29C/W 17.0 0.243E*02 0.349 0.250 309.2 103.1 0.158E-04 0.353E* 05 0.895E+ 04 0.233Ee04 0.260 0.429E-03 0.109E-03 0.721E ' 30.4 0.417E+02 0.360 0.259 305.5 106.8 0.159E-04 0.341E+05 0.740E+04 0.206E+04 0.278 0.486E-03 0.109E-03 0.737 44.6 0.587E+02 0.372 0.269 301.5 110.8 0.160E-04 0.328E+05 0.653E+04 0.182E+04 0.279 0.549E-03 0.109E-03 0 3 61.5 0.780E+02 0.386 0.281 296.5 115.8 0.161E-04 0.314E+05 0. 591E+04 0.170E+04 0.288 0.588E-03 0.110E-03 e s- -03 79.8 0.967E*02 0.402 0.294 291.0 121.3 0.162E-04 0.300E+05 0.545E+04 0.153E+04 0.281 0.654E-03 0.110E-03 C 3* ;-03 99.6 0.115E+03 0.419 0.309 284.9 127.4 0.163E-04 0.286E+05 0.508E+04 0.135E+04 0.266 0.730E-03 0.110E-03 0.e88E-03 121.3 0.132E+03 0.438 0.326 278.0 134.3 0.164E-04 0.271E605 0.47BE+04 0.118E+04 0.246 0.850E-03 0.111E-03 0.919E-03 145.1 0.148E+03 0.459 0.345 270.2 142.1 0.166E-04 0.257E+05 0.153E404 0.103E+04 0.228 0.970E-03 0.111E-03 0.965E-03 Lengt h shear shea r* Film-dx Film-dx* fi shear flother f2 cm N/m^2 m m 17.0 0.15E+00 0.89E+00 0.77E-04 0.69E-04 1.107 1.018 0.231 30.4 0.14E+00 0.83E+00 0.93E-04 0.86E-04 1.083 1.031 0.249 44.6 0.13E+00 0.77E+00 0.11E-03 0.98E-04 1.069 1.043 0.250 61.5 0.12E+00 0.71E+00 0.12E-03 0.11E-03 1.058 1.057 0.258 79.8 0.12E+00 0.65E+00 0.13E-03 0.12E-03 1.049 1.071 0.250 99.6 0.11E+00 0.59E+00 0.13E-03 0.13E-03 1.042 1.084 0.235 121.3 0.97E-01 0.53E+00 0.14E-03 0.14E-03 1.037 1.096 0.217 145.1 0.89E-01 0.48E+00 0.15E-03 0.15E-03 1.031 1.108 0.199 9 9" e

Run 2.1-13 Ws = 50.1 Kg/hr Pinlet - 414.8 KPa Tc,1 - 26.4 *C Tc-fit = D Wg = 32.800 Kg/hr Tinlet = 131.8 90 Tc,o = 49.3 9C Point =11 Wew = 758.3 Kg/hr STD = 0.24 *C Length Ta Tcw Tc-fit Two Tw Twl Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm 'C 'C 'C 'C 'C 'C 'C 9C 9C/m W/m^2 Kg/hr Kg/hr m 17.0 42.9 48.0 47.5 95.8 97.0 102.0 132.4 132.0 10.952 0.646E+05 2.74 47.36 0.744E-04 30.4 41.4 46.4 46.1 93.5 94.7 100.3 131.9 132.0 10.522 0.621E405 4.78 45.32 0.900E-04 44.6 39.9 44.8 44.6 90.9 92.1 97.5 131.4 132.0 10.085 0.595E405 6.85 43.25 0.102E-03 61.5 38.1 43.0 43.0 88.5 89.6 94.7 130.8 131.9 9.589 0.566E+05 9.19 40.91 0.113E-03 79.8 36.5 41.3 41.3 86.3 87.3 92.2 130.1 131.5 9.079 0.536E*05 11.59 38.51 0.123E-03 99.6 34.9 39.6 39.5 83.2 84.2 88.8 129.4 131.1 8.558 0.505E+05 14.01 36.09 0.131E-03 121.3 33.1 37.6 17.7 79.4 80.3 84.6 128.5 130.8 R 021 0.473E*05 16.41 33.63 0.140E-03 145.1 31.2 35.6 35.9 76.9 17.8 R1.8 127.5 129.6 7.471 0.441E+05 19.00 31.10 0.147E-03 Length Re,f X Gas [1 Gas P steam P gas p(mix) Rn (mix) Htheer Hexp Dfactor R(in) R(tube) R(out) em mass % mole % MPa KPa Kg/m*2 W/m^ 2. 'C W/m^ 2. *C m*2*C/W m

  • 2*C / W m* 29C/W 17.0 0.215E+02 0.409 0.301 290.0 124.8 0.162E-04 0.368E*05 0.923E+04 0.218E*04 0.237 0.458E-03 0.109E-03 0.798E-03 30.4 0.371E402 0.420 0.310 286.1 128.7 0.163E-04 0.357E+05 0.763E+04 0.196E+04 0.257 0.510E-03 0.109E-03 0.816E-03 44.6 0.523E+02 0.431 0.320 281.9 132.9 0.164E-04 0.346E+05 0.673E+04 0.175E+04 0.260 0.571E-03 0.109E-03 0.832E-03 61.5 0.691E+02 0.445 0.333 276.9 137.9 0.165E-04 0.333E+05 0.607E+04 0.157E+04 0.258 0.638E-03 0.110E-03 0.861E-03 79.8 0.857E+02 0.460 0.346 271.3 143.5 0.166E-04 0.320E+05 0.559E+04 0.141E+04 0.252 0.709E-03 0.110E-03 0.898E-03 99.6 0.101E+03 0.476 0.361 265.1 149.7 0.167E-04 0.307E+05 0.522E+04 0.124E+04 0.239 0.804E-03 0.111E-03 0.925E-03 121.3 0.116E+03 0.494 0.377 258.3 156.5 0.168E-04 0.294E405 0.490E+04 0.108E+04 0.220 0.927E-03 0.111E-03 0.941E-03 145.1 0.132E+03 0.513 0.396 250.6 164.2 0.170E-04 0.281E+05 0.464E+04 0.965E+03 0.208 0.104E-02 0.112E-03 0.996E-03 Length shear shear
  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.17E+00 0.97E+00 0.74E-04 0.67E-04 1.120 1.016 0.208 30.4 0.16E+00 0.91E+00 0.90E-04 0.82E-04 1.094 1.027 0.229 44.6 0.15E+00 0.85E+00 0.10E-03 0.95E-04 1.079 1.038 0.232 61.5 0.14E+00 0.79E+00 0.11E-03 0.11E-03 1.067 1.051 0.230 79.8 0.13E+00 0.73E+00 0.12E-03 0.12E-03 1.058 1.063 0.224 99.6 0.12E+00 0.67E+00 0.13E-03 0.13E-03 1.050 1.074 0.211 121.3 0.11E+00 0.62E+00 0.14E-03 0.13E-03 1.044 1.085 0.194 145.1 0.11E+00 0.56E+00 0.15E-03 0.14E-03 1.038 1.096 0.183 C-64

Run 2.1-13R Ws = 52.1 Kg/hr Pinlet - 422.3 KPa Tc,1 = 24.5 *C Tc-fit = D Wg = 31.420 Kg/hr Tinlet - 132.8 *C Tc,o - 48.8 *C Point -11 Wcw = 750.8 Kg/hr STD = 0.19 *C Length Ta Tcw Tc-fit to Tw Twl Tsat Tcl dTcw/dX qa Wcond Wsteam Film-dx

                *C        *C      *C        *L       *C          *C                  *C                                     *C     *C/m                                          W/m^2       Kg/hr     Kg/hr                                        m cm 17.0       42.4      47.3     46.9      93.7     95.0      101.2                133.8                                  133.5    11.805 0.690E+05                                             2.92     49.18 0.761E-04 30.4       40.7      45.6     45.4      91.2     92.5        98.4               133.4                                  133.2    11.313 0.661E+05                                             5.11     46.99 0.921E-04 44.6       39.1      43.8     43.8      88.4     89.6        95.3               132.9                                  133.1    10.814 0.632E605                                             7.31     44.79 0.104E-03 61.5       37.2      42.1     42.0      87.6     88.8        94.2               132.3                                  132.9    10.249 0.599E*05                                             9.80     42.30 0.115E-03 79.8       35.4      40.2     40.2      85.6     86.7        91.8               131.6                                  132.3     9.670 0.565E+05                                            12.33     39.77 0.125E-03 99.6       33.7      38.5     38.4      83.2     84.2        89.0               130.8                                  131.7     9.081 0.530E+05                                            14.89     37.21 0.134E-03 121.3       31.7      36.4     36.5      79.9     80.9        85.4               130.0                                  131.0     8.476 0.49SE*05                                            17.48     34.62 0.142E-03 145.1       29.8      34.3     34.5      76.9     77.8        82.0               129.0                                  130.2     7.859 0.459E+05                                            20.11     31.99 0.150E-03 Length       Re,f     X Gas    11 Gas P steam     P qas     p (mix)             Re(mix)                              Htheor         Hexp                                        Ofactor       R(in)  R(tube)                                  k(out) cm               mass %   mole %        KPa      KPa     Kg/m^2                                        W/ m^ 2. *C           W/m* 2.*C                                                  m*2*C/W   m ^ 2*C/W                         m^2*C/W 17.0 0.230E+02      0.390    0.284    302.3     120.0 0.161E-04 0.372E*05 0.902Ee04 0.211E+04                                                                                   0.23- 0. 473E-03 0.109E-03 0.72SE-03 30.4 0.395E+02      0.401    0.293    298.4     123.9 0.162E-04 0.361E+05 0.746E+04 0.189E+04                                                                                   0.25 0.528E-03 0.109E-03 0.742E-03 44.6 0.556E*02      0.412    0.304    294.1     128.2 0.163E-04 0.349E+05 0.658E+04 0.168E+04                                                                                   0.255 0.595E-03 0.110E-03 0.754E-03 61.5 0.739E+02      0.426    0.316    289.0     133.3 0.164E-04 0.335E+05 0.595E+04 0.157E+04                                                                                   0.264 0.636E-03 0.110E-03 0.815E-03 79.8 0.917E+02      0.441    0.329    283.3     139.0 0.165E-04 0.322E+05 0.549E+04 0.142E+04                                                                                   0.259 0.704E-03 0.110E-03 0.859E-03 99.6 0.109E+03      0.458    0.344    277.0     145.3 0.166E-04 0.308E+05 0.512E+04 0.127E+04                                                                                   0.248 0.788E-03 0.111E-03 0.903E-03 121.3 0.125E+03      0.476    0.361    270.0     152.3 0.167E-04 0.294E+05 0.482E+04 0.111E+04                                                                                   0.230 0.900E-03 0.111E-03 0.939E-03 145.1 0.140E+03      0.496    0.379    262.3     160.0 0.168E-04 0.280E+05 0.457E+04 0.977E+03                                                                                   0.214 0.102E-02 0.112E-03 0.987L-03 Length      shear    shear
  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.17E+00 0.97E+00 0.76E-04 0.68E-04 1.118 1.017 0.206 30.4 0.16E+00 0.91E+00 0.92E-04 0.84E-04 1.092 1.029 0.226 44.6 0.15E*00 0.85E+00 0.10E-03 0.97E-04 1.077 1.041 0.228 61.5 0.14E+00 0.79E+00 0.12E-03 0.11E-03 1.065 1.054 0.235 79.8 0.13E+00 0.73E+00 0.12E-03 0.12E-03 1.056 1.067 0.230 99.6 0.12E+00 0.67E+00 0.13E-03 0.13E-03 1.049 1.080 0.219 121.3 0.11E+00 0.61E+00 0.14E-03 0.14E-03 1.042 1.091 0.203 145.1 0.10E+00 0.55E+00 0.15E-03 0.14E-03 1.037 1.103 0.187 O O* O

O O J Run 2.2-1 Ws = 48.9 Kg/h r Pinlet = 135.0 KPa Tc,1 = 27.9 *C Tc-fit - D Wg - 0.500 Kg/hr Tinlet = 136.2 9C Tc,o - 51.2 *C Point =11 Wew = 970.9 Kg/hr STD = 0.28 *C Length Ta Tew Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q Wcond Wsteam 5.!.m-dx cm 9C *C *C "C *C 'C 'C 9C SC/m W/m*2 Kg/hr Kg/hr m 17.0 46.3 50.4 49.9 93.8 95.0 100.8 108.0 134.6 8.559 0.647E+05 2.59 46.31 0.758E-04 30.4 44.9 49.1 48.8 92.8 94.0 99.7' 108.0 134.2 8.419 0.636E+05 4.59 44.31 0.919E-04 44.6 43.6 47.8 47.6 91.3 92.5 98.1 108.0 133.8 8.273 0.625E+05 6.66 42.24 0.104E-03 61.5 41.8 46.2 46.2 91.9 93.1 98.6 108.0 133.3 8.102 0.612E405 9.09 39.81 0.116E-03  ! 79.8 40.5 44.9 44.7 91.2 92.4 97.8 108.0 132.9 7.921 0.598E+05 11.66 37.24 0.126E-03 91.2 96.5 100.0 132.5 7.730 0.584E*05 14.37 ' 99.6 39.1 43.5 43.2 90.1 34.53 0.135E-03 , 121.3 37.1 41.6 41.5 89.0 90.1 95.2 107.9 132.0 7.526 0.56HE+05 17.26 31.64 0.144E-03 145.1 35.1 39.7 39.8 88.0 89.1 94.1 107.9 131.4 7.308 0.552E*05 20.33 28.57 0.152E-03 Length Re,f X Gas O Gas P steam P gas p(mix) Re (mix) litheor llexp Dfactor R(in) R(tube) R(out) ' cm mass % mole % KPa KPa Kg/m*2 W/m* 2 . *C W/m^ 2.9C m^29C/W m^29C/W m^2*C/W 17.0 0.179E+02 0.011 0.007 134.1 0.9 0.124E-04 0.280E+05 0.901E*04 0.894E+04 0.992 0.112E-03 0.109E-03 0.72SE-03 30.4 0.315E+02 0.011 0.007 134.1 0.9 0.124E-04 0.268E+05 0.743E+04 0.165E+04 1.030 ' i"31E-03 0.109E-03 0.740E-03 44.6 0.454E+02 0.012 0.007 134.0 1.0 0.124E-04 0.256E+05 0.655E+04 0.632E+04 0.966 158E-03 0.109E-03 0.748E-03 61.5 0.621E+02 0.012 0.008 134.0 1.0 0.124E-04 0.241E+05 0.591E+04 0.651E+04 1.103 v.154E-03 0.109E-03 0.799E-03 79.8 0.793E+02 0.013 0.008 133.9 1.1 0.124E-04 0.226E+05 0.543E+04 0.587E+04 1.081 0.170E-03 0.109E-03 0.831E-03 99.6 0.970E+02 0.014 0.009 133.8 1.2 0.125E-04 0.209E+05 0.505E+04 0.508E+04 1.005 0.197E-03 0.110E-03 0.859E-03 121.3 0.116E+03 0.016 0.010 133.7 1.3 0.125E-04 0.192E+05 0.474E+04 0.447E404 0.944 0.224E-03 0.110E-03 0.893E-03 145.1 0.135E+03 0.017 0.011 133.5 1.5 0.125E-04 0.174E+05 0.4 48E+04 0.399E+04 0.892 0.250E-03 0.110E-03 0.935E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.20E+00 0.11E+01 0.76E-04 0.66E-04 1.143 1.013 0.8 57 30.4- 0.19E*00 0.10E+01 0.92E-04 0.83E-04 1.109 1.023 0.908 44.6 0.17E+00 0.91E+00 0.10E-03 0.96E-04 1.088 1.033 0.859 61.5 0.16E+00 0.82E+00 0.12E-03 0.11E-03 1.072 1.045 0.985 79.8 0.14E+00 0.73E+00 0.13E-03 0.12E-03 1.058 1.058 0.965 i 99.6 0.12E+00 0.63E+00 0.14E-03 0.13E-03 1.048 1.071 0.896 121.3 0.10E*00 0.54E+00 0.14E-03 0.14E-03 1.038 1.085 0.838 145.1 0.86E-01 0.45E+00 0.15E-03 0.15E-03 1.030 1.099 0.788 C-66

l Run 2.2-2 Finlet = 119.9 KPa Tc,1 = 27.6 *C Tc-fit = D Ws = 50.3 Kg/hr

                                                                                                                                                                                                                                      *C              Point =11 Tinlet                                      -                   134.6                                            *C         Tc,o =   48.5 W9 = 1.180      Kg/hr STD = 0. 2 9 *C Wcw = 967.9      Kg/hr Two                                                     Tw       Twi       Tsat           Tcl      dTcw/dX           q"     Wcond     Wsteam         Film-dx l  Length         Ta                   Tcw                                  Tc-fit                                                                                                                                                                                                                                      m
                                                                                                                                                           *C                                               *C         *C         *C           *C          *C/m       W/m^2      Kg/hr      Kg/hr cm          *C                          *C                                                    *C l

47.9 47.4 91.0 92.1 97.2 104.3 133.4 7.482 0.564E*05 2.24 48.06 0.730E-04 17.0 43.8 3.97 46.33 0.885E-04 30.4 42.7 46.8 46.4 90.2 91.3 96.3 104.3 133.1 7.367 0.555E+05 l 45.4 89.0 90.1 95.0 104.3 132.7 7.247 0.546E+05 5.78 44.52 0.100E-03 44.6 41.5 45.6 61.5 40.3 44.5 44.2 89.2 90.2 95.0 104.3 132.3 7.106 0.535E+05 7.89 42.41 0.111E-03 88.0 89.0 93.7 104.3 131.7 6.958 0.524E+05 10.12 40.18 0.121E-03 79.8 38.7 42.9 42.9 12.48 37.82 0.130E-03 99.6 37.4 41.7 41.5 87.0 88.0 92.6 104.2 1 31 .2 G.800 0.512E+05 35.7 40.0 40.0 85.9 86.9 91.4 104.2 130.5 6.631 0.499E+05 15.00 35.30 0.139E-03 121.3 17.69 32.61 0.147E-03 145.1 34.0 38.4 38.5 85.2 86.1 90.5 104.1 129.8 6.451 0.486E*05 l Length Re,f X Gas O Gas P steam P gas p(mix) Re (mix) Htheor Hexp Dfactor R(in) R (tube) P{out) mass % mole % MPa KPa Kg/m^2 W/ m^ 2 . *C W /m* 2.*C m^ 2*C /W m* 2*C/ W m" 2*C /W l cm l t 17.0 0.149E+02 0.024 0.015 118.1 1.8 0.124E-04 0.296E*05 0.933E+04 0.78CEe04 0.842 0.127E-03 0.109E-03 0.828E-03 30.4 0.263E+02 0.025 0.016 118.0 1.9 0.124E-04 0.286E+05 0.770E+04 0.691E+04 0.898 0.145E-03 0.110E-03 0.845E-03 44.6 0.379E+02 0.026 0.016 118.0 1.9 0.124E-04 0.275E+05 0.678E*04 0.588E+04 0.867 0.170E-03 0.110E-03 0.856E-03 61.5 0.518E+02 0.027 0.017 117.9 2.0 0.124E-04 0.262E+05 0.611E+04 0.578E+04 0.946 0.173E-03 0.110E-03 0.899E-03 79.8 0.660E+02 0.029 0.018 117.8 2.1 0.124E-04 0.248E+05 0.561E+04 0.498E+04 0.888 0.201E-03 0.110E-03 0.921E-03 99.6 0.809E+02 0.030 0.019 117.6 2.3 0.124E-04 0.234E+05 0.522E+04 0.442E+04 0.846 0.226E-03 0.110E-03 0.950E-03 121.3 0.965E+02 0.032 0.020 117.5 2.4 0.124E-04 0.219E+05 0.490E*04 0.391E+04 0.799 0.256E-03 0.110E-03 0.983E-03 145.1 0.113E+03 0.035 0.022 117.3 2.6 0.124E-04 0.202E+05 0.463E+04 0.356E+04 0.770 0.281E-03 0.110E-03 0.103E-02 l l Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.25E+00 0.13E+01 0.73E-04 0.62E-04 1.179 1.011 0.707 30.4 0.23E+00 0.12E+01 0.88E-04 0.78E-04 1.139 1.019 0.774 44.6 0.22E+00 0.11E+01 0.10E-03 0.90E-04 1.114 1.028 0.757 61.5 0.20E+00 0.10E+01 0.11E-03 0.10E-03 1.094 1.038 0.833 79.8 0.18E+00 0.92E+00 0.12E-03 0.11E-03 1.079 1.048 0.785 99.6 0.16E+00 0.83E+00 0.13E-03 0.12E-03 1.066 1.059 0.749 121.3 0.14E+00 0.73E+00 0.14E-03 0.13E-03 1.055 1.071 0.707 145.1 0.13E+00 0.63E+00 0.15E-03 0.14E-03 1.045 1.083 0.680 0 O~ e --
                                                                      -- -       -                         m - . -                ..m_ m_-_         _ . _   .m__  ,,m<..

O O ' Run 2.2-3 Ws = 49.8 Kg/hr Pinlet = 117.8 KPa Tc,1 = 27.6 9: Tc-fit = D Wg = 1.590 Kg/hr Tinlet = 134.1 'C Tc,o = 47.9 "C Point -11 Wcw = 965.6 Kg/hr STD = 0.20 'C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm 'C 'C 'C 'C 'C *1C 9: N: *C/m W/m*2 Kg/hr Kg/hr m 17.0 43.1 47.1 46.8 90.2 91.3 96.4 103.7 133.0 7.548 0.567E+05 2.26 47.54 0.734E-04 30.4 42.0 46.1 45.8 89.4 90.5 95.5 103.7 132.6 7.400 0.556E+05 4.00 45.80 0.889E-04 44.6 40.8 44.9 44.7 88.1 89.2 94.1 103.6 132.1 7.246 0.544E+05 5.80 44.00 0.101E-03 61.5 39.5 43.7 43.5 88.5 89.5 94.3 103.6 131.5 7.067 0.531E+05 7.90 41.90 0.112E-03 79.8 38.1 42.3 42.3 87.3 88.3 93.0 103.6 130.9 6.878 0.517E+05 10.10 39.70 0.122E-03 99.6 36.8 41.1 40.9 86.6 87.6 92.1 103.5 130.4 6.679 0.502E+C5 12.42 37.38 0.130E-03 121.3 35.1 39.4 39.5 85.0 85.9 90.3 103.5 129.9 6.467 0.486E405 14.87 34.93 0.139E-03 145.1 33.6 37.9 38.0 84.1 85.0 89.3 103.4 129.0 6.243'O.469E+05 17.47 32.33 0.147E-03 Length Re,f X Gas Q Gas P steam P gas p(mix) Re(mix) Htheor llexp Dfactor R(in) R(tube) R(out) cm mass % mole % KPa KPa Kg/m*2 W/m^2.9C W/m*2.90 ma 29C/W m ^ 2*C/W m* 29C/W 17.0 0.149E+02 0.032 0.020 115.4 2.4 0.124E-04 0.295E+05 0.928E+04 0.781E+04 0.841 0.128E-03 0.110E-03 0.819E-03 30.4 0.262E+02 0.034 0.021 115.3 2.5 0.124E-04 0.285E+05 0.766E+04 0.683E+04 0.892 0.146E-03 0.110E-03 0.839E-03 44.6 0.378E+02 0.035 0.022 115.2 2.6 0.124E-04 0.274E+05 0.675E+04 0.573E+04 0.848 0.175E-03 0.110E-03 0.853E-03 61.5 0.515E+02 0.037 0.023 115.1 2.7 0.124E-04 0.261E+05 0.609E+04 0.571E+04 0.937 0.175E-03 0.110E-03 0.905E-03 79.8 0.653E+02 0.039 0.024 114.9 2.9 0.124E-04 0.247E+05 0.560E+04 0.488E+04 0.872 0.205E-03 0.110E-03 0.932E-03 99.6 0.800E+02 0.041 0.026 114.8 3.0 0.124E-04 0.233E+05 0.522E+04 0.441E+04 0.846 0.227E-03 0.110E-03 0.974E-03 121.3 0.948E+02 0.044 0.028 114.6 3.2 0.125E-04 0.218E+05 0.489E+04 0.369E+04 0.755 0.271E-03 0.110E-03 0.100E-02 145.1 0.111E+03 0.047 0.030 114.3 3.5 0.125E-04 0.203E+05 0.463E+04 0.332E+04 0.717 0.301E-03 0.111E-03 0.105E-02 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.25E+00 0.13E+01 0.73E-04 0.62E-04 1.180 1.011 0.705 30.4 0.23E+00 0.12E+01 0.89E-04 0.78E-04 1.139 1.019 0.768 44.6 0.22E+00 0.11E+01 0.10E-03 0.90E-04 1.115 1.028 0.740 61.5 0.20E+00 0.10E+01 0.11E-03 0.10E-03 1.095 1.038 0.825
79.8 0.18E+00 0.93E+00 0.12E-03 0.11E-03 1.080 1.048 0.771

~ 99.6 0.16E+00 0.83E+00 0.13E-03 0.12E-03 1.067 1.059 0.749 121.3 0.15E+00 0.73E+00 0.14E-03 0.13E-03 1.056 1.069 0.668 145.1 0.13E+00 0.64E+00 0.15E-03 0.14E-03 1.046 1.081 0.634 C-68

Run 2.2-4 Pinlet = 118.5 KPa Tc,1 = 27.4 *C Tc-fit - D Ws - 50.1 Kg/hr

                                                                                                                                                                                                                          *C             Point -11 Wg = 2.100      Kg/hr        Tinlet = 133.8    *C                       Tc,o = 49.3 Kg/hr                                                                                                     STD = 0.23 *C Wcw = 867.9 Two        Tw                       Ni        Tsat                          Tcl      dTcw/dX          q"      Wcond    Wsteam     Film-dx Length          Ta       Tcw Tc-fit
                                                                                                                                                                                                                                              *C/m      W/m*2      Kg/hr      Kg/hr             m cm          *C        *C      *C       *C       *C                         'C               'C                    *C 48.1     90.3     91.3                     96.2        103.7                        132.9        8.011 0.541E405         2.15      47.95 0.722E-04 17.0       44.4      48.5                                                                                                                              3.81      46.29 0.875E-04 30.4       43.2      47.3     47.0     89.4     90.4                     95.2        103.6                        132.5        7.897 0.533E*05 45.9     88.5     89.5                     94.2        103.6                        132.0        7.778 0.525E+05         5.54      44.56 0.993E-04 44.6       42.0      46.1                                                                                                                                        42.53 0.110E-03 61.5       40.5      44.8     44.6     88.3     89.3                     94.0        103.6                        131.4        7.638 0.516E+05         7.57 43.2              88.3                     92.9        103.5                        130.8        7.490 0.506E+05         9.13      40.37 0.120E-03 79.8       39.0      43.3              87.3 12.00      38.10 0.129E-03 37.5      41.9     41.7     86.2     87.2                      91.7       103.5                        130.3        7.333 0.495E+05 99.6                                                                                                              129.8        7.164 0.484E+05        14.43      35.67 0.138E-03 121.3       35.8      40.2     40.2     84.9     85.8                     90.2        103.4 33.9      38.4     38.5     84.0     84.9                     89.2        103.3                        128.9        6.984 0.472E+05        17.04      33.06 0.146E-03 145.1 Length       Re,f     X Gas   D Gas P steam      P gas     pimix)                    Re (mix)                     litheor          Hexp    Dfactor      R(in)   R (tube)     P (out) mole %       KPa      KPa          Kg/m^2                                          W/ m"2 . *C   W/m^ 2 . *C             m^2*C/W   m ^2*C/W   m ^ 2*C/W cm               mass %

17.0 0.141E*02 0.042 0.026 115.4 3.1 0.125E-04 0.299E+05 0.944E+04 0.723E+04 0.766 0.138E-03 0.110E-03 0.834E-03 30.4 0.250E*02 0.043 0.027 115.3 3.2 0.125E-04 0.289E+05 0.778E*04 0.633E*04 0.814 0.158E-03 0.110E-03 0.84 9E-03 44.6 0.361E*02 0.045 0.028 115.1 3.4 0.125E-04 0.279E+05 0.685E+04 0.561E+04 0 819 0.178E-03 0.110E-03 0.867E-03 61.5 0.493E+02 0.047 0.030 115.0 3.5 0.125E-04 0.266E+05 0.617E+04 0.537E*04 0.870 0.186E-03 0.110E-03 0.906E-03 79.8 0.629E+02 0.049 0.031 114.8 3.7 0.125E-04 0.253E+05 0.567E+04 0.475E+04 0.838 0.210E-03 0.110E-03 0.933E-03 99.6 0.771E+02 0.052 0.033 114.6 3.9 0.125E-04 0.239E+05 0.527E+04 0.420E404 0.797 0.238E-03 0.110E-03 0.961E-03 121.3 0.919E+02 0.056 0.035 114.3 4.2 0.125E-04 0.225E+05 0.494E+04 0.366E+04 0.741 0.273E-03 0.110E-03 0.988E-03 145.1 0.108E+03 0.060 0.038 114.0 4.5 0.125E-04 0.209E+05 0.467E+04 0.334E+04 0.715 0. 300E-03 0.111E-03 0.103E-02 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m rn 17.0 0.26E+00 0.13E+01 0.72E-04 0.61E-04 1.187 1.010 0.638 30.4 0.24E+00 0.12E+01 0.88E-04 0.76E-04 1.146 1.018 0.697 44.6 0.23E+00 0.12E*01 0.99E-04 0.89E-04 1.120 1.026 0.712 61.5 0.21E+00 0.11E+01 0.11E-03 0.10E-03 1.100 1.036 0.763 79.8 0.19E+00 0.97E+00 0.12E-03 0.11E-03 1.084 1.046 0.739 99.6 0.17E+00 0.87E+00 0.13E-03 0.12E-03 1.071 1.056 0.705 121.3 0.15E+00 0.77E+00 0.14E-03 0.13E-03 1.059 1.067 0.655 145.1 0.13E+00 0.67E+00 0.15E-03 0.14E-03 1.049 1.079 0.632 C-69
 - . . . , _ - -                                          . .                                               _-               . - -        . - ~ _         - _ _ . ~ ~ - . .                             _~ _ _ - . . _ - .                    - . - - - _ _ ~ ~ .                                                               - - . . ~
                                          +                                                                                                                                                                                                                                                                        %
                                                                                                                                                                                                                                                                                                                          \

w s Run 2.2-5 Ws - 50.0 Kg/hr Pinlet = 120.5 KPa Tc,1 - 27.2 *C Tc-fit - D Wg = 3.270 Kg/hr Tinlet = 132.6 *C Tc,o = 48.4 *C Point -11 Wew - 872.5 Kg/hr STD = 0.21 *C Length Ta Tew Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm *C *C *C *C *C *C "C 'C *C/m W/m^2 Kg/hr Kg/hr m 17.0 43.5 47.6 47.2 89.8 90.9 95.8 103.7 131.7 8.004 0.543E+05 2.16 47.84 0.724E-04 l 30.4 42.3 46.4 46.2 89.0 90.0 94.8 103.7 131.4 7.866 0.534E+05 3.83 46.17 0.877E-04 l 44.6 41.1 45.2 45.1 87.7 88.7 93.4 103.6 130.8 7.723 0.524E405 5.56 44.44 0.996E-04 61.5 39.7 44.0 43.8 87.5 88.5 93.1 103.6 130.1 7.556 0.513E+05 7.59 42.41 0.110E-03 79.8 38.1 42.4 42.4 86.4 87.4 91.9 103.5 129.5 7.380 0.501E+05 9.72 40.28 0.120E-03 99,6 36.8 41.1 41.0 85.1 86.1 90.5 103.4 129.0 7.193 0.488E+05 11.97 38.03 0.129E-03 121.3 35.0 39.3 39.4 83.6 84.5 88.8 103.3 128.4 6.994 0.475E+05 14.36 35.64 0.138E-03 145.1 33.3 37.7 37.8 82.3 83.2 87.4 103.2 127.5 6.783 0.460E*05 16.91 33.09 0.146E-03 langth Re, f X Gas 11 Gas P steam P gas p(mix) Re (mix)  !!theor 11exp D! actor R(in) R (tube) Ittout) cm mass % mole % KPa KPa Kg/m^2 W/m^2.*C W/ m ^ 2.*C m*2*C/W m *2*C/W m ^ 2*C/W 17.0 0.142E+02 0.064 0.041 115.6 4.9 0.126E-04 0.302E+05 0.941E+04 0.686Ee04 0.729 0.146E-03 0.110E-03 0.839E-03 30.4 0.251E+02 0.066 0.042 115.4 5.1 0.126E-04 0.292E+05 0.776E+04 0.603E*04 0.777 0.166E-03 0.110E-03 0.857E-03 44.6 0.361E+02 0.069 0.044 115.2 5.3 0.126E-04 0.282E+05 0.684E*04 0.515E+04 0.753 0.194E-03 0.110E-03 0.870E-03 61.5 0.491E+02 0.072 0.046 115.0 5.5 0.126E-04 0.269E+05 0.616E+04 0.492E+04 0.798 0.203E-03 0.110E-03 0.912E-03 79.8 0.625E+02 0.075 0.048 114.7 5.8 0.126E-04 0.256E+05 0.566E+04 0.433E+04 0.766 0.231E-03 0.110E-03 0.940E-03 99.6 0.764E+02 0.079 0.051 114.4 6.1 0.127E-04 0.243E+05 0.526E+04 0.379E+04 0.720 0.264E-03 0.110E-03 0.968E-03 121.3 0.907E+02 0.084 0.054 114.0 6.5 0.127E-04 0.228E405 0.494E+04 0.327E+04 0.663 0.306E-03 0.111E-03 0.995E-03 145.1 0.106E+03 0.090 0.058 113.5 7.0 0.127E-04 0.213E+05 0.466E+04 0.291E+04 0.625 0.343E-03 0.111E-03 0.103E-02 Iangth shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.26E+00 0.13E+01 0.72E-04 0.61E-04 1.189 1.010 0.607 30.4 0.24E+00 0.13E+01 0.88E-04 0.77E-04 1.147 1.018 0.665 44.6 0.23E+00 0.12E+01 0.10E-03 0.89E-04 1.122 1.026 0.654 61.5 0.21E+00 0.11E+01 0.11E-03 0.10E-03 1.102 1.036 0.700 79.8 0.19E+00 0.98E+00 0.12E-03 0.11E-03 1.086 1.046 0.675 99.6 0.18E+00 0.89E+00 0.13E-03 0.12E-03 1.072 1.056 0.636 121.3 0.16E+00 0.79E+00 0.14E-03 0.13E-03 1.061 1.066 0.586 145.1 0.14E+00 0.69E*00 0.15E-03 0.14E-03 1.051 1.078 0.552
                                                                                                                                                                                                                                                                                                                                          ]

v C-70 _ _ _ _ _ _ _ . _ _ _ _ m.__ _ _ _. _ _ _ _ _ . _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ .~ w - ,r _ _ _ . . _ __ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _

Run 2.2-6 Ws = 49.8 Kg/hr Pinlet = 121.9 KPa Tc,1 = 26.9 *C Tc-fit - D Wg = 4.430 Kg/hr Tinlet = 131.4 *C Tc,o = 48.8 *C Point all Wcw = 816.0 Kg/hr STD = 0.23 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx

                                                                                                 *C                                            *C                                                            *C                                                *C       *C/m      W/m^2      Kg/hr      Kg/hr             m cm          *C                                                   *C     *C       *C 43.8                                    47.9                 47.6     89.4       90.4                                   95.2                                                     103.6                                                         130.9      8.385 0.532E405          2.12    47.68 0.720E-04 17.0                                                                                                                                                                                                                                                                                          3.76    46.04 0.872E-04 30.4       42.6                                   46.8                  46.4     88.4       89.4                                   94.1                                                     103.6                                                         130.5      8.243 0.523E+05 44.6       41.3                                   45.4                  45.3     86.9       87.9                                   92.6                                                     103.5                                                         130.0      8.097 0.514E+05          5.46    44.34 0.991E-04 39.9                                   44.2                  43.9     86.7       87.7                                   92.3                                                     103.4                                                         129.4      7.925 0.503E+05          7.44    42.36 0.110E-03 61.5                                                                                                                                                                                                                                                                                          9.54    40.26 0.120E-03 79.8       38.2                                   42.5                  42.5     85.5       86.5                                   91.0                                                     103.4                                                         128.7      7.744 0.492E+05 99.6       36.8                                   41.1                  41.0     84.2       85.1                                   89.5                                                     103.2                                                         127.9      7.552 0.419E405        11.74     38.06 0.129E-03 121.3       34.9                                    39.2                 39.4     82.3       83.2                                  87.5                                                      103.1                                                         121.2       1.347 0.466E405       14.09     3') . 71 0.131E-0 3 145.1       33.1                                    37.5                 37.6     81.6       82.5                                   86.6                                                     103.0                                                         126.5      7.129 0.453E+05        16.60      33.20 0.145E-03 length       Re,f                         X Gas                          il Gas P steam      P gas                      p(mix)                                                   Re(mix)                                                              litheor            Hexp    Ofactor      R(in)   R (tubel       P(out) cm                               mass %                             mole %       KPa         KPa                         Kg/m*2                                                                                                           W/ m^ 2. *C            W/m^ 2. *C             m^ 2*C/W  m"2*C/W       m^2*C/W 17.0 0.139E402                           0.085                         0.055    115.2         6.7 0.127E-04 0.305E4 05 0.946E+ 04 0.631E+04                                                                                                                                      0.667 0.158E-03 0.110E-03 0.840E-03 30.4 0.245E+02                           0.088                         0.056    115.0         6. 9 0.127E-04 0.295E+05 0. 780E+04 0. 554E+ 04                                                                                                                                    0.710 0.181E-03 0.110E-03 0.857E-03 44.6 0.352E+02                           0.091                         0.058    114.8         7.1 0.127E-04 0.285E+05 0.687E+04 0.469E+04                                                                                                                                        0.683 0.213E-03 0.110E-03 0.866E-0 3 61.5 0.479E*02                           0.095                         0.061    114.5         7.4 0.128E-04 0.273E+05 0.619E+04 0.45CE*04                                                                                                                                        0.727 0.222E-03 0.110E-03 0.910E-03 79.8 0.610E*02                           0.099                         0.064    114.1         7.8 0.128E-04 0.260E+05 0.568E+04 0.397E*04                                                                                                                                        0.698 0.252E-03 0.110E-03 0. 937E-03 99.6 0.744E+02                           0.104                         0.067    113.7         8.2 0.128E-04 0.247E+05 0.528E+04 0.348E+04                                                                                                                                        0.658 0.288E-03 0.111E-03 0.963E-03 121.3 0.882E+02                           0.110                         0.072    113.2         8.7 0.129E-04 0.233E+05 0.495E+04 0.298E+04                                                                                                                                        0.601 0.336E-03 0.111E-03 0.984E-03 145.1 0.103E+03                           0.118                         0.077    112.6         9.3 0.129E-04 0.217E*05 0.468E+04 0.277E+04                                                                                                                                        0.592 0.361E-03 0.111E-03 0.104E-02 Length      shear                  shear
  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.26E+00 0.14E+01 0.72E-04 0.60E-04 1.194 1.010 0.554 30.4 0.25E+00 0.13E401 0.87E-04 0.76E-04 1.151 1.018 0.606 41.6 0.23E+00 0.12E+01 0.99E-04 0.88E-04 1.125 1.026 0.592 61.5 0.22E+00 0.11E+01 0.11E-03 0.10E-03 1.105 1.035 0.636 79.8 0.20E+00 0.10E+01 0.12E-03 0.11E-03 1.088 1.045 0.614 99.6 0.18E+00 0.91E+00 0.13E-03 0.12E-03 1.075 1.054 0.581 121.3 0.16E+00 0.81E+00 0.14E-03 0.13E-03 1.063 1.065 0.531 145.1 0.15E+00 0.72E+00 0.15E-03 0.14E-03 1.053 1.076 0.523 e e" _

e

                                                                                                                                                                         -.. m m                   ____m          . _ . _... . _ . _ _ _ _ . _ . _ _ ,

Run 2.2-7 i Ws - 50.0 Kg/hr Pinlet - 124.0 KPa Tc,1 - 26.8 *C Tc-fit = D Wg - 5.650 Kg/hr Tinlet - 130.0 *C Tc,o - 48.1 *C Pol'it -11 Wew - 815.8 Kg/hr STD - 0.27 *C tength Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm 'C *C *C 'C *C *C *C *C *C/m W/m^2 Kg/hr Kg/hr m 17.0 43.2 47.3 46.8 89.0 90.0 94.7 103.7 128.8 8.203 0.521E+05 2.08 47.92 0.715E-04 30.4 41.9 46.1 45.7 87.9 88.9 93.5 103.6 128.3 8.063 0.512E+05 3.68 46.32 0.867E-04 44.6 40.7 44.9 44.6 86-6 87.6 92.2 103.6 127.8 7.916 0.502E*05 5.34 44.66 0.984E-04 61.5 39.3 43.6 43.3 86.2 87.2 91.7 103.5 127.2 7.745 0.492E*05 7.28 42.72 0.109E-03 , 79.8 .37.7 42.0 41.9 84.9 85.8 90.2 103.4 126.5 7.564 0.480E*05 9.33 40.67 0.119E-03 99.6 36.2 40.5 40.4 83.3 84.2 88.5 103.2 125.9 7.373 0.468E+05 11.48 38.52 0.128E-03 121.3 34.4 38.7 38.8 81.9 82.8 87.0 103.1 125.2 7.169 0.455E+05 - 13.78 36.22 0.136E-03 145.1 32.7 37.0 37.2 80.2 81.1 85.1 102.9 124.4 6.952 0.441E405 16.22 33.78 0.144E-03 Length Re,f X Gas il Gas P steam P gas p(mix) Ro(mix) litheor flexp Dfactor R(In) R (tube) R(out) cm mass % mole t KPa KPa Kg/m*2 W/m^2.*C W/m^2.*C m ^2*C/W m*2*C/W m'2*C/W 17.0 0.136E+02 0.105 0.068 115.5 8.5 0.128E-04 0.311E+05 0.952E+04 0.578E*04 0.607 0.173E-03 0.110E-03 0.806E-03 30.4 0.239E+02 0.109 0.070 115.3 8.7 0.129E-04 0.301E+05 0.785E+04 0.506E+04 0.645 0.198E-03 0.110E-03 0.881E-03 44.6 0.344E+02 0.112 0.073 115.0 9.0 0.129E-04 0.291E405 0.691E+04 0.440E+04 0.637 0.227E-03 0.110E-03 0.894E-03 61.5 0.468E*02 0.117 0.076 114.6 9.4 0.129E-04 0.279E*05 0.623E+04 0.416E+04 0.668 0.240E-03 0.110E-03 0.934E-03 79.8 0.594E+02 0.122 0.079 114.1 9.9 0.129E-04 0.267E+05 0.571E+04 0.364E+04 0.636 0.275E-03 0.110E-03 0.957E-03 99.6 0.724E+02 r.128 0.084 113.6 10.4 0.130E-04 0.254E+05 0.531E+04 0.317E+04 0.596 0.316E-03 0.111E-03 0.980E-03 121.3 0.860E+02 0.135 0.088 113.0 11.0 0.1'9E-04 0.240E*05 0.438E+04 0.282E*04 0 566 0.355E-03 0.111E-03 0.101E-02 145.1 0.100E*03 0.143 0.094 112.3 11. 7 0 4 Yt joA 0.225E*05 0.470E+04 0.248E+04 0.528 0.403E-03 0.111E-03 0.104E-02 Length shear shear

  • Film-dx Film-dx* fishear fictMr f2 cm N/m*2 m m 17.0 0.27E+00 0.14E+01 0.72E-04 0.60E-04 1.200 1.010 0.501 30.4 0.26E+00 0.13E+01 0.87E-04 0.75E-04 1.157 1. Pit '.548 44.6 0.24E+00 0.12E+01 0.90E-04 0.87E-04 1.130  !.92- %50 61.5 0.23E+00 0.11E+01 0.11E-03 0.98E-04 1.109 'P'. s. 83 79.8 0.21E+00 0.10E+01 0.12E-03 0.11E-03 1.093 ... L 0.558 99.6 0.19E+00 0.95E+00 0.13E-03 0.12E-03 1.079 1.C'. ; 0.525 121.3 0.17E+00 0.86E+00 0.14E-03 0.13E-03 1.067 1.063 0.499 145.1 0.15E+00 0.76E400 0.14E-03 0.14E-03 1.057 1.073 0.466 C-72

_- . _ . _ _ _ . ____.._._._..m_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___ _._ , _. _ , _

Run 2.2-8 Ws - 50.3 Kg/hr Pinlet - 117.9 KPa Tc,1 - 25.6 *C Tc-fit = D Wg = 8.600 Kg/hr Tinlet = 129.1 *C Tc,o - 48.3 *C Point =11 Wcw = 706.6 Kg/hr STD - 0.20 9: Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dx q" Wcond Wsteam Film-dx cm 90 *C *C 'C *C 'C 9C 9: 9C/m W/m^2 Kg/hr Kg/hr m 17.0 43.2 47.3 46.9 86.0 87.0 91.4 101.3 128.3 8.884 0.488E+05 1.94 48.36 0.705E-04 30.4 41.9 45.9 45.7 84.6 85.5 89.9 101.2 128.0 8.733 0.480E+05 3.43 46.87 0.856E-04 44.6 40.6 44.7 44.5 83.5 84.4 88.7 101.1 127.4 8.576 0.411E+05 4.99 45.31 0.971E-04 61.5 39.1 43.2 43.1 82.8 83.7 87.9 101.0 126.7 8.392 0.461E+05 6.80 43.50 0.108E-03 79.8 37.4 41.6 41.6 81.6 82.5 86.6 100.9 125.8 8.198 0.451E+05 8.71 41.59 0.117E-03 99.6 35.8 40.0 40.0 80.3 81.2 85.2 100.7 125.0 7.993 0.439E+05 10.73 39.57 0.126E-03 121.3 34.0 38.2 38.2 78.7 79.5 83.4 100.5 124.0 7.774 0.427E+05 12.87 37.43 0.134E-03 145.1 32.0 36.3 36.4 76.9 77.7 81.5 100.3 123.0 7.541 0.415E+05 15.14 35.16 0.147E-03 Lengt h Re,f X Gas fl Gas P steam P qas p(mix) Re(mix) Htheor Hexp Dfactor R(in) R(tube) H(out) cm mass % mole 4 KPa KPa Kg/m"2 W/ m

  • 2. *C W/m* 2.*C m* 2*C /W m " 2*C/ W m ^ 2*C/W 17.0 0.123E+02 0.151 0.099 106.2 11. 7 0.130E-04 0. 325E+05 0.963E+ 04 0.495E+04 0.514 0.202E-03 0.110E-03 0.857E-03 30.4 0.216E+02 0.155 0.102 105.8 12.1 0.131E-04 0.316E+05 0.794E+04 0.423E+04 0.533 0.236E-03 0.110E-03 0.865E-03 44.6 0.311E+02 0.160 0.105 105.5 12.4 0.131E-04 0.307E+05 0.699E+04 0.380E+04 0.543 0.263E-03 0.111E-03 0.88 4E-03 61.5 0.422E+02 0.165 0.109 105.0 12.9 0.131E-04 0.296E+05 0.629E*04 0.353E+04 0.560 0.284E-03 0.111E-03 0.921E-03 79.8 0.536E+02 0.171 0.114 104.5 13.4 0.132E-04 0.284E*05 0.578E+04 0.317E+04 0.548 0.316E-03 0.111E-03 0.950E-03 99.6 0.654E+02 0.179 0.119 103.9 14.0 0.132E-04 0.272E+05 0.537E+04 0.284E+04 0.528 0.352E-03 0.111E-03 0.983E-03 121.3 0.776E+02 0.187 0.125 103.2 14.7 0.132E-04 0.259E+05 0.504E+04 0.250E+04 0.497 0.400E-03 0.111E-03 0.101E-02 145.1 0.902E+02 0.197 0.132 102.3 15.6 0.133E-04 0.245E+05 0.475E+04 0.221E+04 0.465 0.453E-03 0.112E-03 0.104E-02 Length shear shear
  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m t 17.0 0.31E+00 0.16E+01 0.71E-04 0.57E-04 1.232 1.009 0.413 30.4 0.30E+00 0.15E+01 0.86E-04 0.72E-04 1.183 1.016 0.444 44.6 0.28E+00 0.14E+01 0.97E-04 0.84E-04 1.153 1.023 0.460 61.5 0.27E+00 0.13E+01 0.11E-03 0.95E-04 1.130 1.031 0.481 l 79.8 0.25E+00 0.12E+01 0.12E-03 0.11E-03 1.111 1.039 0.474

( 99.6 0.23E+00 0.11E+01 0.13E-03 0.12E-03 1.096 1.040 0.460 l 121.3 0.21E+00 0.10E+01 0.13E-03 0.12E-03 1.083 1.057 0.434 145.1 0.19E+00 0.92E+00 0.14E-03 0.13E-03 1.071 1.066 0.4n7 i I l C-73

~ xm 44433333 W 33333222 d 00000000 )t/ 00000000

                      -       - - - - - - - -     uC       - - - - - - - -

m EEEEEEEE (o *2 EEEEEEEE

-                    l       29365420                     66201026 n.
 .O                  i F

mr 93501234 689111 11 00000000 01789195 R *m W 80157000 89999111 00000000 33333333 ah 40580210 )e/ 00000000 e/ bu *C - - - - - - - - t g 87532086 2 EEEEEEEE 44444433 t^ 11111122 - WsK ( Rm 11111111 11111111 ~ 00000000 dr 09321915 W 33333333 .

.-                    n      81631901
                                                 )

n/C 00000000 u oh . i9 - - - - - - - - , c/ Wg 13468924 ( 2 EEEEEEEE K 1 1 Ra 92188551 36015949 m 22333344 ~ 00000000 55555555 r 63816493 - "q 2 00000000 o 27697632 . + * + + + + +

  • t 44444444
.                          m EEEEEEEE             c
                          /  47023332             a       00000000

. W 544321 09 f C 44444443 D 00000000 D1 82 p9C 1 X 52421 957 44444444 dm 96269010 x 00000000 0 // 65420975 e2 * + + + ++ + + t wC H* EEEEEEEE it = cS 88888777 m 82349344

-          fn         T                              ./   18317520 i D    d                                W  43332222
.          cot TP S                                           00000000

- l cC T* 39243451 76654321 r *C o. e2 44444444 00000000

                                                          *+++++++

22222222 EEEEEEEE ~ h t "m _ 111 11111 18107612 H/ 80148418 a W 98765554 ~ *C*C 00000000 ~ t 98753196 ) 55555555 2 559569'07 . aC x 00000000 f 38810986 47 s' 99999988 i + * + + * + + + 33344333 - 9 T 99999999 m EEEEEEEE 4

        -  57                                     (

13443296 00000000 7- _ 2 24 e 43210976 R 33333222 C . 1 2 n u 1

            -=
             , o,     i      01472893             )2*

00000000 44444444 r 84186420 R wC xm 00000000 e 01223456 cc TT T' 98654209 88888887 i (m/ p K g EEEEEEEE 44555667 33333333 h t l o 00000000 11111111 _ 11111111 f ~ . 00000000 _

-                                                       a                     r w     90483027              sP a

93830766 a 40711496 T *C g K 61753198 K aC P9 4421 0975 88888777 P 67789901 11111122 h e s 22111100 11111111 i f - 98 77 oC 01505249 m Pa 06169233 m44443333 12 w . a 'x 00000000 11 T* 43119864 eK 10098876 d - - - - - - - - - 8888777 7 t s 00099999 111 m

                                                                               -   EEEEEEEE 59120123
            ==                                                               l     56891111 P                          i tt                                                                F     00000000 ee ll                                      s%

tC 42061580 371 51753 xm44433333 nn ii PT i" f 65421976 a Ge l 44556678 11111111 d 00000000

                        -     44444333                                         m   EEEEEEEE T

c Qom 00000000 l i 94512234 68911111 . F 00000000 w 86372688 s% 27296445

  • 11111111 c *C a 11223456 r 00000000 rrr T 65421975 44444333 Gss 22222222 a + ++ +++* +

e EEEEEEEE - hhh

           ///

Xam 00000000 h s 77654321 11111111 ggg KKK 00000000 - aC 96471577 f 22222222 r200000000

2. 0 07 T*

21087531 44433333 R e

                                                     ,     00000000
                                                           ++ ++ + + + +

EEEEEEEE a"m+0000000 e 0

                                                                                      ++++++ +

h/EEEEEEEE 001 27348675 sN54209753 5 7 19888902 33332222 36 11234578

.               1                                                                  00000000 00000000
             ===

sgw hm 04658631 hm 04658631 hm04658631 t c t e t c WWc W g n 7041 9915 13467924 g n 70419915 13467924 g 70419915 n 13467924 e 11 e 11 e 11 L L L ~ ~

Run 2.2-10 Ws - 49.7 Kg/hr Pinlet - 119.3 KPa Tc,1 = 25.3 *C Tc-fit - D Wg = 16.700 Kg/hr Tinlet - 126.3 *C Tc,o - 47.6 *C Point -11 Wcw - 647.2 Kg/hr STD - 0.24 *C length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q Ncond Wsteam Film-dx

                                       'C               'C      'C         'C                                    *C                                                            'C                                           'C      'C/m         W/m*2         Kg/hr         Kg/hr              m cm                       *C 17.0           42.7               46.6              46.3    83.1    84.0                             88.1                                                           99.1                                               125.1      8.862 0.446E405              1.77        47.93 0.690E-04 30.4           41.5               45.4              45.1    81.8    82.7                             86.7                                                          98.9                                                124.7      8.720 0.439E+05              3.13        46.57 0.837E-04 44.6           40.2               44.1              43.9    80.8    81.6                             85.5                                                          98.8                                                124.2      8. 571 0. 4 32E + 05         4.55        45.15 0.950E-04 61.5           38.6               42.6              42.4    79.5    80.3                             84.2                                                           98.6                                               123.7      8.398 0.423E*05              6.20        43.50 0.106E-03 79.8           37.0               41.0              40.9    78.4    79.2                             83.0                                                           98.4                                               122.7      8.215 0.414E+05              7.95        41.75 0.115E-03 99.6           35.4               39.4              39.3    77.1    77.9                             81.6                                                          98.1                                                121.7      8.021 0.404E+05              9.19        39.91 0.124E-03 121 3           33.5               37.5              37.6    75.2    76.0                             79.6                                                          97.8                                                120.7      7.814 0.393E+05             11.75        37.95 0.132E-03 145.1           31.5               35.6              35.8    73.4    74.2                             77.7                                                           97.5                                               119.5      7.592 0.382E*05             13.84        35.86 0.140E-03 Length          Re,f               X Gas            O Gas P steam    P gas                p(mix)                                                   Re(mix)                                                              !!theor      llexp      Dfactor         R(in)      R(tube)       P(out) cm                            mass %       mole %           KPa        KPa                 Kg/m'2                                                                                                            W/ m ^ 2 . *C    W/m'2.*C                    m^2*C/W      m ^2*C/ W    m^2*C/W 17.0 0.108E+02                   0.258             0.178    98.1    21.2 0.137E-04 0.352E+05 0.983E+04 0.405E*04                                                                                                                                0. 412 0. 2 4 7 E-0 3 0.111 E-0 3 0. 8 8 3E-0 3 30.4 0.191E+02                   0.264             0.182    97.6    21.7 0.137E-04 0.343E+05 0.810E*04 0.359E+04                                                                                                                                0.443 0.278E-03 0.111E-03 0.895E-03 44.6 0.275E*02                   0.270             0.187    97.0    22.3 0.138E-04 0.335E+05 0.713E+ 04 0.326E+04                                                                                                                               0.457 0.301E-03 0.111E-03 0.914E-03 61.5 0.372E+02                   0.277             0.193    96.3    23.0 0.138E-04 0.325E+05 0.641E+C4 0.k93E+04                                                                                                                                0.458    0.341E-03    0.111E-03    0.937E-03 79.8 0.472E+02                   0.286             0.199    95.6    23.7 0.139E-04 0.314E+05 0.588E+04 0.269E+04                                                                                                                                0.458    0.371E-03    0.111E-03    0.969E-03 99.6 0.576E+02                   0.295            0.206     94.7    24.6 0.139E-04 0.303E+05 0.547E+04 0.245E+04                                                                                                                                0.448    0.408E-03    0.112E-03    0.100E-02 121.3 0.683E+02                   0.306             0.215    93.7    25.6 0.140E-04 0.291E* 05 0.512E*04 0.216E+04                                                                                                                               0.423    0.462E-03    0.112E-03    0.102E-02 145.1 0.794E402                   0.318             0.224    92.5    26.8 0.141E-04 0.278E+05 0.483E+04 0.194E*04                                                                                                                                0.402    0.516E-03    0.112E-03    0.105E-02 Length      shear                 shear
  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.37E+00 0.18E+01 0.69E-04 0.54E-04 1.281 1.000 0.319 30.4 0.3GE+00 0.17E+01 0.84E-04 0.68E-04 1.224 1.014 0.357 44.6 0.34E+00 0.17E+01 0.95E-04 0.80E-04 1.190 1.020 0.377 61.5 0.33E+00 0.16E+01 0.11E-03 0.91E-04 1.162 1.027 0.383 79.8 0.31E+00 0.15E+01 0.11E-03 0.10E-03 1.141 1.035 0.388 99.6 0.29E*00 0.14E+01 0.12E-03 0.11E-03 1.124 1.042 0.382 121.3 0.27E+00 0.13E+01 0.13E-03 0.12E-03 1.108 1.050 0.363 145.1 0.25E+00 0.12E+01 0.14E-03 0.13E-03 1.095 1.058 0.347 e e"" e

G J Run 2.2-11 Ws = 49.6 Kg/hr Pinlet = 119.9 KPa Tc,1 = 24.9 93 Tc-fit = D Wg = 21.600 Kg/hr Tinlet = 125.8 *C Tc,o = 47.7 *C Point all Wcw = 605.8 Kg/hr STD = 0.25 9C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dx q" Wcond Wsteam Film-dx cm 90 *C 'C *C *C 'C "C *C 9C/m W/m'2 Kg/hr Kg/hr m 17.0 42.9 46.7 46.4 81.8 82.6 86.5 97.8 124.9 8.980 0.423E+05 1.67 47.93 0.680E-04 30.4 41.6 45.4 45.2 80.6 81.4 85.2 97.6 124.5 8.847 0.417E+05 2.96 46.64 0.825E-04 44.6 40.3 44.1 43.9 79.3 80.1 83.9 97.4 124.0 8.709 0.410E+05 4.30 4'5.30 0.937E-04 61.5 38.8 42.7 42.5 78.5 79.3 83.0 97.2 123.4 8.547 0.403E+05 5.87 43.73 0.104E-03 79.8 37.1 41.0 40.9 76.8 77.6 81.2 97.0 122.4 8.375 0.395E+05 7.53 42.07 0.114E-03 99.6 35.4 39.4 39.3 75.9 76.7 80.3 96.7 121.3 8.194 0.386E*05 9.29 40.31 0.122E-03 121.3 33.6 37.6 37.5 73.9 74.6 78.1 96.4 120.1 7.999 0.377E+05 11.16 38.44 0.130E-03 145.1 31.5 35.4 35.6 71.6 72.3 75.7 96.0 118.7 7.790 0.367E+05 13.15 36.45 0.138E-03 Inngth Re,f X Gas O Gas P steam P gas p(mix) Re (mix) Htheor Hexp Dfactor R (in) R (tube) R(out) cm mass % mole % KPa KPa Kg/m*2 W/ m"2. *C W/m'2.*C m"2*C/W m*29C/W m^2'C/W 17.0 0.101E+02 0.311 0.219 93.7 26.2 0.140E-04 0.369E+05 0.996E*04 0.373E+04 0.375 0.268E-03 0.111E-03 0.895E-03 30.4 0.177E+02 0.317 0.223 93.1 26.0 0.141E-04 0.3612603 0.820E+04 0.336E+04 0.409 0.298E-03 0.111E-03 0.900E-03 - 44.6 0.256E*02 0.323 0.229 92.5 27.4 0.141E-04 0.353E+05 0.722E+04 0.302E+04 0.419 0.331E-03 0.111E-03 0.922E-03 61.5 0.347E+02 0.331 0.235 91.7 28.2 0.141E-04 0 344E+05 0.649E+04 0.283E+04 0.436 0.353E-03 0.111E-03 0.957E-03 79.8 0.440E+02 0.339 0.242 90.9 29.0 0.142E-04 0.334E+05 0.595E+04 0.251E+04 0.421 0.399E-03 0.112E-03 0.973E-03 99.6 0.539E+02 0.349 0.250 90.0 29.9 0.143E-04 0.323E+05 0.553E*04 0.235E+04 0.425 0.426E-03 0.112E-03 0.102E-02 121.3 0.638E+02 0.360 0.259 88.9 31.0 0.143E-04 0.312E+05 0.518E+04 0.206E+04 0.398 0.485E-03 0.112E-03 0.103E-02 145.1 0.739E+02 0.372 0.269 87.6 32.3 0.144E-04 0.300E+05 0.487E+04 0.181E+04 0.372 0.552E-03 0.112E-03 0.105E-02 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.42E+00 0.20E+01 0.68E-04 0.52E-04 1.316 1.007 0.283 30.4 0.40E+00 0.19E+01 0.83E-04 0.66E-04 1.253 1.013 0.323 44.6 0.39E+00 0.19E+01 0.94E-04 0.77E-04 1.215 1.019 0.338 61.5 0.37E+00 0.18E+01 0.10E-03 0.88E-04 1.185 1.025 0.359 79.8 0.35E+00 0.17E+01 0.11E-03 0.98E-04 1.162 1.032 0.351 99.6 0.33E+00 0.16E+01 0.12E-03 0.11E-03 1.143 1.039 0.357 121.3 0.31E+00 0.15E+01 0.13E-03 0.12E-03 1.126 1.047 0.338 145.1 0.29E+00 0.14E+01 0.14E-03 0.12E-03 1.111 1.054 0.318 C-76

Run 2.2-12 Ws = 49.6 Kg/hr Pinlet = 120.6 KPa Tc,1 = 24.7 9C Tc-fit - D Wg - 26.900 Kg/hr Tinlet = 123.8 *C Tc,o = 48.2 *C Point -11 Wcw = 556.9 Kg/hr STD = 0. 33 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm "C 9C *C *C 'C "C 'C *C

                                                                                                          *C/m      W/m^2       Kg/hr     Kg/hr             m 17.0       43.4      47.2     46.8     80.8     81.6       85.4            96.5        123.2          9.493 0.411E*05          1.62     47.98 0.677E-04 I   30.4       42.0      45.8     45.5     79.4     80.2       83.9            96.3        122.8          9.325 0.404E+05          2.88     46.72 0.821E-04 1

44.6 40.7 44.5 44.2 78.2 79.0 82.6 96.1 122.3 9.150 0.396E+05 4.17 45.43 0.932E-04 61.5 39.3 43.1 42.6 77.5 78.3 81.S 95.9 121.7 8.945 0.388E*05 5.69 43.91 0.103E-03 79.8 37.4 41.2 41.0 75.7 76.4 79.9 95.6 120.6 8.729 0.378E+05 7.28 42.32 0.113E-03 , 99.6 35.1 39.6 39.3 74.6 75.3 78.7 95.3 119.6 8.502 0.368E+05 8.96 40.64 0.121E-03 121.3 33.7 37.6 37.5 72.7 73.4 76.7 94.9 118.4 8.259 0.358E+05 10.74 38.86 0.129E-03 145.1 31.6 35.5 35.6 70.4 71.1 74.3 94.5 117.3 8.000 0.347E605 12.62 36.98 0.137E-03 Length Re,f X Gas il Gas P steam P gas p(mix) Re (mix) Htheor Hexp Dfactor R(in) R (tube) P(out) cm mass % mole % KPa KPa Kg/m^2 W/ m

  • 2 . *C W/m* 2 .*C m^2*C /W m ^ 2*C/ W m^ 2*C/W 17.0 0.969E+01 0.359 0.258 89.4 31.2 0.143E-04 0.389E e 05 0.100E*05 0.368Ee 04 0. 368 0.272E-03 0.111E-0 3 0.88 5E-03 30.4 0.170E+02 0.365 0.263 88.8 31.8 0.144E-04 0.381E+05 0.824E+04 0.325E+04 0.394 0.308E-03 0.111E-03 0.898E-03

( 44.6 0.244E+02 0.372 0.269 88.2 32.4 0.144E-04 0.373E+05 0.725E+04 0.294E+04 0.405 0.341E-03 0.111E-03 0.918E-03 61.5 0.331E+02 0.380 0.276 87.4 33.2 0.145E-04 0.364E+05 0.653E+04 0.276E*04 0.424 0.362E-03 0.112E-03 0.963E-03 79.8 0.418E+02 0.389 0.283 86.5 34.1 0.145E-04 0.355E+05 0.598E+04 0.241E+04 0.402 0.416E-03 0.112E-03 0.979E-03 99.6 0.510E+02 0.398 0.291 85.5 35.1 0.146E-04 0.344E+05 0.556E+04 0.222E+04 0.399 0.450E-03 0.112E-03 0.102E-02 l 121.3 0.603E+02 0.409 0.301 84.3 36.3 0.147E-04 0.334E+05 0.521E+04 0.196E+04 0.377 0.509E-03 0.112E-03 0.105E-02 l 145.1 0.697E+02 0.421 0.311 83.1 37.5 0.148E-04 0.322E+05 0.491E+04 0.172E+04 0.350 0.583E-03 0.113E-03 0.107E-02 l Length shear shear

  • Film-dx Film-dx* fishear flother f2 j cm N/m*2 m m l 17.0 0.46E+00 0.22E+01 0.68E-04 0.50E-04 1.351 1.007 0.270 30.4 0.45E+00 0.21E+01 0.82E-04 0.64E-04 1.283 1.012 0.303 44.6 0.43E+00 0.21E+01 0.93E-04 0.75E-04 1.242 1.018 0.320 61.5 0.42E+00 0.20E+01 0.10E-03 3.86E-04 1.210 1.024 0.342 79.8 0.40E+00 0.19E+01 0.11E-03 0.95E-04 1.184 1.031 0.330 99.6 0.38E+00 0.18E+01 0.12E-03 0.10E-03 1.164 1.037 0.321 121.3 0.36E+00 0.17E+01 0.13E-03 0.11E-03 1.146 1.044 0.315 145.1 0.34E+00 0.15E*01 0.14E-03 0.12E-03 1.130 1.051 0.294 C-77

O O Run 2.2-13 Ws = 49.5 Kg/hr Pinlet = 122.7 KPa Tc,1 = 24.4 *C Tc-fit = D Wg = 33.400 Kg/hr Tinlet = 121.3 *C Tc,o = 48.6 *C Point =11 Wcw = 520.3 Kg/hr STD = 0.20 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tel dTew/dX q" Wcond Wsteam Film-dx cm 'C 'C 'C 'C *C 'C 'C *C 'C/m W/m^2 Kg/hr Kg/hr m 17.0 43.6 47.3 47.1 79.6 80.4 84.1 95.3 121.0 9.853 0.399E+05 1.57 47.93 0.672E-04 30.4 42.3 46.0 45.8 78.4 79.2 82.8 95.1 120.6 9.699 0.393E+05 2.79 4 6.71 0. 816E-04 44.6 40.8 44.5 44.4 77.0 77.8 81.3 94.9 120.1 9.538 0.386E+05 4.05 45.45 0.927E-04 61.5 39.2 42.9 42.8 76.0 76.7 80.2 94.6 119.5 9.349 0.378E+05 5.52 43.98 0.103E-03 79.8 37.5 41.3 41.1 74.5 75.2 78.6 94.3 118.3 9.150 0.370E+05 7.08 42.42 0.112E-03 99.6 35.7 39.5 39.4 73.2 73.9 77.2 93.9 117.3 8.939 0.362E+05 8.72 40.78 0.121E-03 121.3 33.7 37.5 37.4 71.5 72.2 75.5 93.5 116.4 8. 713 0. 353E+05 10.47 39.03 0.129E-03 145.1 31.4 35.2 35.4 69.0 69.7 72.9 93.1 114.7 8.471 0.343E+05 12.33 37.17 0.137E-03 Length Re,f X Gas il Gas P steam P gas p(mix) Re (mix) Htheor Hexp Ofactor R(in) R(tube) a R(out) cm mass % mole % KPa KPa Kg/m*2 W/m^2.*C W/ma 2.*C m^2*C/W m 2*C/W m^ 2*C/W 17.0 0.925E+01 0.411 0.302 .85.6 37.1 0.147E-04 0.412E405 0.101E*05 0.354E+04 0.352 0.283S-03 0.111E-03 0.872E-03 30.4 0.162E+02 0.417 0.308 85.0 37.7 0.147E-04 0.404E+05 0.828E+04 0.319E+04 0.385 0.314E-03 0.111E-03 0.889E-03 44.6 0.234E+02 0.424 0.313 84.2 38.5 0.148E-04 0.397E+05 0.728E+04 0.285E+04 0.391 0.351E-03 0.112E-03 0.903E-03 61.5 0.316E*02 0.432 n.321 83.4 39.3 0.148E-04 0.388E+05 0.655E+04 0.262E+04 0.400 0.381E-03 0.112E-03 0.936E-03 79.8 0.401E+02 0.441 0.329 82.4 40.3 0.149E-04 0.379E+05 0.600E+04 0.236E+04 0.393 0.424E-03 0.112E-03 0.962E-03 99.6 0.489E+02 0.450 0.337 81.3 41.4 0.150E-04 0.369E+05 0.558E+04 0.217E+04 0.388 0.462E-03 0.112E-03 0.100E-02 121.3 0.579E+02 0.461 0.347- 80.1 42.6 0.151E-04 0.358E+05 0.522E+04 0.195E+04 0.374 0.512E-03 0.1125-03 0.103E-02 145.1 0.669E+02 0.473 0.358 78.7 44.0 0.151E-04 0.347E+05 0.491E+04 0.170E+04 0.346 0.589E-03 0.113E-03 0.105E-02 Length shear shear

  • Film-<1x Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.52E+00 0.25E+01 0.67E-04 0.48E-04 1.393 1.007 0.251 30.4 0.50E+00 0.24E+01 0.82E-04 0.62E-04 1.318 1.012 0.289 44.6 0.49E+00 0.23E+01 0.93E-04 0.73E-04 1.272 1.017 0.302 61.5 0.47E+00 0.22E+01 0.10E-03 0.83E-04 1.237 1.023 0.316 79.8 0.45E+00 0.21E+01 0.11E-03 0.93E-04 1.209 1.029 0.316 99.6 0.43E+00 0.20E+01 0.12E-03 0.10E 1.187 1.036 0.316 121.3 0.41E+00 0.19E+01 0.13E-03 0.11E-03 1.167 1.042 0.307 145.1 0.39E+00 0.18E+01 0.14E-03 0.12E-03 1.149 1.049 0.287 C-78

_ - _ _ _ .~ _ _

Run 3.1-2 Ws - 59.3 Kg/hr Pinlet - 200.1 KPa Tc,1 - 29.9 *C Tc-fit - D Wg = 0.650 Kg/hr Tinlet - 140.3 *C Tc,o - 57.6 *C Point -11 Wcw - 966.0 Kg/hr STD = 0. 32 "C Two Tw Twi Tsat Tcl dTcw/dX q' Wcond Wsteam Film-dx Length Ta Tcw Tc-fit Kg/hr m cm *C 'C 'C 'C *C *C "C *C *C/m W/m^2 Kg/hr 17.0 52.0 56.7 56.1 103.9 105.3 111.8 121.3 139.5 9.810 0.730E+05 3.01 56.29 0.771E-04 30.4 50.5 55.3 54.8 103.1 104.5 111.0 121.3 139.3 9.681 0.728E+05 5.35 53.95 0.934E-04 44.6 48.8 53.6 53.4 101.7 103.1 109.5 121.2 139.0 9.546 0.718E*05 7.78 51.52 0.106E-03 61.5 47.2 52.2 51.8 102.3 103.6 109.9 121.2 138.7 9.388 0.706E+05 10.64 48.66 0.118E-03 79.8 45.2 50.3 50.1 101.4 102.7 108.9 121.2 138.4 9.219 0.693E+05 13.68 45.62 0.128E-03 99.6 43.3 48.5 48.3 99.9 101.2 107.2 121.2 138.1 9.041 0.680E+05 16.89 42.41 0.138E-03 121.3 41.1 46.4 46.4 98.9 100.2 106.1 121.2 137.9 8.849 0.665E*05 20.33 38.97 0.147E-03 145.1 38.8 44.2 44.3 98.3 99.5 105.3 121.1 137.5 8.641 0.650E+05 24.03 35.27 0.155E-03 Length Re,f X Gas il Gas P steam P gas p (mix) Re(mix) litheor llexp Dfactor R(in) R (tube) R(out) cm mass % mole ) KPa KPa Kg/m^2 W / m ^ 2 . *C W/m ^ 2. *C m ^2*C/W m

  • 2*C/W m '2*C/W 17.0 0.235E+02 0.011 0.007 206.6 1.5 0.129E-04 0.328E+05 0.891E*04 6.782E+04 0.878 0.128E-03 0.108E-03 0.691E-03 30.4 0.415E+02 0.012 0.007 206.6 1.5 0.129E-04 0.314E+05 0.735E+04 0.707E+04 0.962 0.142E-03 0.108E-03 0.710E-03 44.6 0.599E+02 0.012 0.008 206.5 1.6 0.129E-04 0,300E+05 0.647E*04 0.610E>04 0.943 0.164E-03 0.108E-03 0.719E-03 61.5 0.821E+02 0.013 0.008 206.4 1.7 0.130E-04 0.283E+05 0.583E+04 0.621E+04 1.065 0.161E-03 0.108E-03 0.764E-03 79.e 0.105E+03 0.014 0.009 206.3 1.8 0.13CE-04 0.266E+05 0.536E+04 0.561E+04 1.047 0.178E-03 0.108E-03 0.791E-03 99.6 0.129E+03 0.015 0.009 206.1 2.0 0.130E-04 0.247E+05 0.498E+04 0.487E+04 0.979 0.205E-03 0.108E-03 0.811E-03 121.3 0.154E+03 0.016 0.010 206.0 2.1 0.130E-04 0.227E+05 0.467E+04 0.442E+04 0.947 0.226E-03 0.108E-03 0.845E-03 145.1 0.181E+03 0.018 0.011 205.7 2.4 0.130E-04 0.206E+05 0.441E+04 0.410E+04 0.929 0.244E-03 0.108E-03 0.888E-03 Length shear shear
  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.19E+00 0.11E+01 0.77E-04 0.68E-04 1.136 1.017 0.760 30.4 0.18E+00 0.10E+01 0.93E-04 0.85E-04 1.104 1.030 0.845 44.6 0.17E+00 0.95E+00 0.11E-03 0.98E-04 1.084 1.044 0.833 61.5 0.15E+00 0.86E+00 0.12E-03 0.11E-03 1.069 1.060 0.940 79.8 0.13E+00 0.77E+00 0.13E-03 0.12E-03 1 056 1.077 0.921 99.6 0.12E*00 0.67E+00 0.14E-03 0.13E-03 1.046 1.094 0.855 121.3 0.10E+00 0.57E+00 0.15E-03 0.14E-03 1.037 1.113 0.820 145.1 0.85E-01 0.48E+00 0.16E-03 0.15E-03 1.029 1.133 0.797 e e" e
                                                    '                                                                                                                                                                                                                                                                                                'm v

Run 3.1-3 Ws = 59.4 Kg/hr Pinlet = 292.8 KPa Tc,1 = 31.0 9C Tc-fit = D Wg = 0.640 Kg/hr Tinlet = 144.3 *C Tc,o = 60.1 *C Point =11 Wew - 1120.1 Kg/hr STD = 0.19 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dicw/dX q" Wcond Wsteam Film-dx ' cm *C *C 'C 'C 'C 'C 9C i: "C/m W/m^2 Kg/hr Kg/hr m 17.0 53.8 58.7 58.3 108.8 110.7 119.3 132.5 143.7 11.273 0.983E*05 4.11 55.29 0.835E-04 30.4 52.2 57.1 56.8 108.1 109.9 118.4 132.5 143.6 11.025 0.962E+05 7.27 52.13 0.101E-03 44.6 50.2 55.1 55.3 105.7 107.5 115.8 132.4 143.4 10.767 0.939E+05 10.52 48.88 0.115E-03 61.5 48.4 53.5 53.5 106.5 108.2 116.2 132.4 143.2 10.469 0.913E+05 14.31 45.09 0.127E-03 79.8 46.2 51.5 51.6 106.1 107.8 115.6 132.4 143.1 10.155 0.885E+05 18.28 41.12 0.138E-03 99.6 44.3 49.8 49.6 106.3 107.9 115.5 132.4 142.9 9.826 0.857E+05 22.45 36.95 0.148E-03 121.3 42.0 47.6 47.5 104.6 106.2 113.5 132.3 142.7 9.478 0.826E+05 26.83 32.57 0.157E-03 145.1 39.6 45.4 45.3 104.4 105.9 112.9 1 32.2 142.4 9.110 0.794EiO5 31.47 27.93 0.166E-03 Length Re,f X Gas O Gas P steam P gas p(mix) Re (mix) Htheor flexp Dfactor R(in) R(tube) R(out) cm mass % mole 1 KPa KPa Kg/m*2 W/m^2.9C W/m

  • 2. *C m^29C/W m^29C/W m
  • 2*C/W 17.0 0.349E+02 0.011 0.007 290.7 2.1 0.134E-04 0.312E*05 0.824E404 0.749E404 0.909 0.134E-03 0.107E-03 0.549E-03 30.4 0.615E+02 0.012 0.008 290.6 2.2 0.134E-04 0.294E*05 0.680E+04 0.682E+04 1.002 0.147E-03 0.107E-03 0.570E-03 44.6 0.879E+02 0.013 0.008 290.4 2.4 0.134E-04 0.276E+05 0.600E+04 0.564E+04 0.940 0.177E-03 0.107E-03 0.574E-03 61.5 0.120E+03 0.014 0.009 290.2 2.6 0.134E-04 0.255E+05 0.541E+04 0.564E+04 1.043 0.177E-03 0.107E-03 0.621E-03 79.8 0.153E+03 0.015 0.010 290.0 2.8 0.134E-04 0.232E+05 0.499E*04 0.528E+04 1.058 0.190E-03 0.107E-03 0.658E-03 99.6 0.187E+03 0.017 0.011 289.7 3.1 0.134E-04 0.209E+05 0.465E+04 0.507E*04 1.089 0.197E-03 0.107E-03 0.707E-03 121.3 0.222E+03 0.019 0.012 289.3 3.5 0.134E-04 0.184E+05 0.437E+04 0.439E*04 1.004 0.228E-03 0.107E-03 0.739E-03 145.1 0.259E+03 0.022 0.014 288.7 4.1 0.134E-04 0.159E+05 0.414E+04 0.411E+04 0.992 0.243E-03 0.107E-03 0.796E-03 Length shear shear
  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.14E+00 0.85E+00 0.04E-04 0.77E-04 1.090 1.026 0.813 30.4 0.12E+00 0.76E*00 0.10E-03 0.95E-04 1.067 1.045 0.899 44.6 0.11E+00 0.67E+00 0.11E-03 0.11E-03 1.052 1.064 0.839-61.5 0.96E-01 0.58E+00 0.13E-03 0.12E-03 1.041 1.088 0.921 l 79.8 0.81E-01 0.49E+00 0.14E-03 0.13E-03 1.032 1.112 0.922 99.6 0.67E-01 0.41E+00 0.15E-03 0.14E-03 1.025 1.137 0.935 121.3 0.54E-01 0.32E+00 0.16E-03 0.15E-03 1.019 1.162 0.848 145.1 0.41E-01 0.25E+00 0.17E-03 0.16E-03 1.013 1.190 0.823 C-80  ;

Run 3.1-4 Pinlet - 408.5 KPa Tc,1 - 31.5 *C Tc-fit - D Ws - 59.9 Kg/hr

                                                                                                                                                                                    *C                          Point -10 Wg - 0.650              Kg/hr                                Tinlet - 148.3    *C              Tc,o - 62.2 Wcw - 1160.6                    Kg/hr                                                                                                                           STD - 0.23 *C Tcl       dTcw/dX            qa     Wcond     Wsteam     Film-dx tength                                     Ta       few                          Tc-fit      Two        Tw            Twl          Tsat
                                                                                                                                                                                                         *C         *C/m         W/m^2      Kg/hr      Kg/hr               m
                                                                             *C         *C                             *C       'C       *C              *C            *C cm 116.6         127.8           144.1                            148.6         14.179 0.12BE+06           5.49     54.41 0.899E-04 17.0                    55.1      60.3                             59.9   114.2                                                                                                                      50.23 0.109E-03 112.3     114.6         125.5           144.1                            148.5         13.838 0.125E+06           9.67 30.4                    53.0      58.2                             58.0                                                                                                                    13.98      45.92 0.124E-03 51.0      56.1                             56.1   IP4.0     111.3          122.0          144.1                            148.4         13.487 0.122E*06 44.6                                                                                                              144.0                            148.3         13.080 0.118E+06          18.98     40.92 0.137E-03 61.5                    48.6      54.0                             53.8   Iv).1     111.3         121.7 108.9     111.1          121,1          144.0                            148.2         12.653 0.114E*06          24.21      35.69 0.149E-03 79.8                    45.9      51.5                             51.5                                                                                                                    29.67      30.23 0.159E-03 49.1                             49.0   108.2     110.3           120.0         143.9                            147.8         12.207 0.110E*06 99.6                    43.3                                                                                                                       147.1         11.736 0.106E+06          35.43      24.4 7 0.169E-03 40.2      46.2                             46.4    108.3    110.3           119.6         143.8 121.3                                                                                                                    143.6                            146.0         11.240 0.101E+06          41.47      18.43 0.178E-03 145.1                          37.2      43.4                             43.7   107.4     109.3           118.2 O Gas P steam     P qas     p(mix)            Ro(mix)                          Htheor            Hexp       Dfactor      R(in)   R (tube)      R(out) length                                 Ro,f     X Gas                                                                                                                                                   m*2*C/W   m ^ 2*C/W    m ^ 2*C /W KPa      KPa      Kg/m*2                                          W / m
  • 2. *C W/m^ 2 . *C cm mass % mole t 0.012 0.007 405.5 3.0 0.138E-04 0.297E
  • 05 0.766E* 04 0.784E+ 0 4 1.023 0.128E-03 0.106E-03 0.453E-03 17.0 0.508E+02 1.065 0.149E-03 0.106E-03 0.464E-03 30.4 0.888E+02 0.013 0.008 405.2 3.3 0.138E-04 0.274E+05 0.632E+04 0.673E+04 0.014 0.009 404.9 3.6 0.138E-04 0.251E+05 0.557E+04 0.552E+04 0.990 0.181E-03 0.107E-03 0.464E-03 44.6 0.126E+03 1.050 0.189E-03 0.107E-03 0.500E-03 61.5 0.171E+03 0.016 0.010 404.5 4.0 0.138E-04 0.224E+05 0.503E*04 0.528E+04 0.018 0.011 403.9 4.6 0.138E-04 0.196E+05 0.463E+04 0.500E+04 1.079 0.200E-03 0.107E-03 0.538E-03 79.8 0.218E+03 1.066 0.217E-03 0.107E-03 0.574E-03 99.6 0.266E+03 0.021 0.013 403.1 5.4 0.138E-04 0.166E+05 0.433E+04 0.461E+04 0.026 0.016 401.9 6.6 0.139E-04 0.135E+05 0.407E+04 0.438E+04 1.076 0.228E-03 0.107E-03 0.624E-03 121.3 0.317E+03 1.037 0.250E-03 0.107E-03 0.671E-03 145.1 0.368E+03 0.034 0.021 399.7 8.8 0.139E-04 0.102E+05 0.386E+04 0.400E+04 Length shear shear
  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.99E-01 0.64E+00 0.90E-04 0.85E-04 1.060 1.037 0.931 30.4 0.85E-01 0.55E+00 0.11E-03 0.10E-03 1.043 1.065 0.959 44.6 0.73E-01 0.47E+00 0.12E-03 0.12E-03 P 032 1.093 0.878 61.5 0.59E-01 0.38E+00 0.14E-03 0.13E-03 1.024 1.125 0.912 79.8 0.47E-01 0.30E+00 0.15E-03 0.15E-03 1.017 1.160 0.915 99.6 0.35E-01 0.22E+00 0.16E-03 0.16E-03 1.012 1.195 0.082 121.3 0.24E-01 0.15E+00 0.17E-03 0.17E-03 1.008 1.232 0.867 145.1 0.15E-01 0.92E-01 0.18E-03 0.18E-03 1.004 1.270 0.813 l e e- e

("~% r

                                                                                                                               %s                                                                                       !

[ Run 3.1-5 Ws - 59.1 Kg/hr P1ntet = 517.4 KPa Tc,1 = 31.2 9C Tc-fit - D Wg = 0.650 Kg/hr Tinlet = 153.0 9: Tc o - 62.2 *C Point =8 Wcw = 1163.9 Kg/hr STD = 0.30 *C Length Ta Tcw Tc-fit Two TW Twi Tsat Tc1 dTcw/dX q" Wcond Wsteam Film-dx cm 9 9: 'C *C *C 'C *C 9: 'C/m W/m^2 Kg/hr Kg/hr m 17.0 53.8 59.3 59.4 115.6 118.5 132.1 152.8 156.6 17.345 0.157E+06 6.80 52.30 0.952E-04 30.4 51.6 57.2 57.1 114.5 117.4 130.8 152.8 156.5 16.997 0.154E+06 12.03 47.07 0.115E-03 44.6 49.3 54.9 54.7 112.0 114.8 127.9 152.8 155.3 16.636 0.151E+06 17.42 41.68 0.131E-03 61.5 46.5 52.2 51.9 111.0 113.8 126.6 152.7 153.9 16.216 0.147E+06 23.69 35.41 0.145E-03 79.8 43.1 49.1 49.0 110.9 113.6 126.1 152.6 153.8 15.774 0.14 3E+06 30.31 28.79 0.158E-03 99.6 39.3 45.7 45.9 111.0 113.6 125.7 152.4 153.6 15.308 0.139E+06 37.26 21.84 0.169E-03 121.3 35.5 42.3 42.6 111.9 114.4 126.1 152.1 153.4 14.814 0.134E+06 44.63 14.47 0.180E-03 Length Re,f X Gas 11 Gas P steam P gas p(mix) Re(mix) 11theor Hexp Dfactor R(in) R (tutm) R (out ) ' cm mass % mole % KPa KPa Kg/m^2 W/ m* 2. *C W/m^2.9C m^2*C/W m*29C/W m^2*C/W 17.0 0.665E+02 0.012 0.008 513.4 4.0 0.141E-04 0.279E+05 0.722E+04 0.759E+04 1.052 0.132E-03 0.105E-03 0.382E-03 30.4 0.117E+03 0.014 0.009 513.0 4.4 0.141E-04 0.252E+05 0.596E+04 0.699E+04 1.173 0.143E-03 0.106E-03 0.399E-03 44.6 0.167E+03 0.015 0.010 512.4 5.0 0.141E-04 0.223E+05 0.526E+04 0.607E+04 1.155 0.165E-03 0.106E-03 0.407E-03 61.5 0.226E+03 0.018 0.011 511.6 5.8 0.142E-04 0.190E+05 0.474E+04 0.563E+04 1.189 0.178E-03 0.106E-03 0.431E-03 79.8 0.289E+03 0.022 0.014 510.2 7.2 0.142E-04 0.155E+05 0.436E+04 0.539E404 1.235 0.186E-03 0.106E-03 0.464E-03 99.6 0.354E+03 0.029 0.018 508.0 9.4 0.142E-04 0.118E+05 0.407E+04 0.519E+04 1.275 0.193E-03 0.106E-03 0.502E-03 121.3 0.42SE+03 0.043 0.027 503.3 14.1 0.143E-04 0.788E+04 0.383E+04 0.516E+04 1.347 0.194E-03 0.106E-03 0.552E-03 Length shear shea r* Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.74F-01 0.50E+00 0.95E-04 0.91E-04 1.043 1.049 0.962 30.4 0.61E-01 0.41E+00 0.12E-03 0.11E-03 1.029 1.086 1.050 44.6 0.49E-01 0.33E+00 0.13E-03 0.13E-03 1.021 1.123 1.008 61.5 0.37E-01 0.25E+00 0.15E-03 0.14E-03 1.014 1.166 1.006 79.8 0.26E-01 0.17E+00 0.16E-03 0.16E-03 1.009 1.212 1.010 99.6 0.16E-01 0.10E+00 0.17E-03 0.17E-03 1.005 1.259 1.007 121.3 0.77E-02 0.51E-01 0.18E-03 0.18E-03 1.002 1.311 1.025 C-82

Run 3.2-1 Ws = 59.7 Kg/hr Pinlet - 114.3 KPa Tc,1 - 25.7 *C Tc-fit - D Wg - 3.170 Kg/hr Tinlet - 135.0 *C Tc,o - 55.9 *C Point =11 Wcw - C08.0 Kg/hr STD = 0.68 *C Tcw Two Tw Twi Tsat Tcl dTcw/dX q' Wcond Wsteam Film-dx Length Ta Tc-fit Kg/hr m cm *C *C 'C *C *C *C 'C 'C *C /m W/ma 2 Kg/hr 17.0 51.0 55.1 54.2 90.9 91.9 96.5 102.5 134.7 10.669 0.505E+05 1.99 57.71 0.705E-04 30.4 49.5 53.6 52.8 89.8 90.8 95.3 102.4 134.3 10.558 0.500E605 3.54 56.16 0.856E-04 44.6 47.9 52.1 51.3 89.1 90.1 94.6 102.4 133.9 10.441 0.494E+05 5.17 54.53 0.972E-04 61.5 46.1 50.4 49.6 88.4 89.3 93.7 102.4 133.4 10.304 0.488E+05 7.08 52.62 0.108E-03 79.8 43.8 48.2 47.7 87.2 88.1 92.5 102.3 132.5 10.158 0.481E+05 9.11 50.59 0.118E-03 99.6 41.7 46.2 45.7 86.1 87.0 91.3 102.3 131.7 10.002 0.473E*05 11.27 48.43 0.127E-03 121.3 39.2 43.9 43.6 85.3 86.2 90.4 102.2 130.7 9.833 0.465E*05 13.60 46.10 0.135E-03 145.1 36.2 41.0 41.2 83.6 84.5 88.7 102.1 129.9 9.652 0.457E+05 16.10 43.60 0.143E-03 Length Re,f X Gas O Gas P steam P gas p(mix) Re (mix) Htheor Hexp Dfactor R(in) R (tube) R(out) cm mass % mole % KPa KPa Kg/m*2 W/ m *2. *C W/m^2.*C m"2*C/W m"2*C/W m

  • 2 *C/W 17.0 0.131E+02 0.052 0.033 110.5 3.8 0.125E-04 0.364E405 0.966E+04 0.842E604 0.872 0.119E-03 0.110E-03 0.777E-03 30.4 0.231E+02 0.053 0.034 110.4 3.9 0.125E-04 0.354E+05 0.795E+04 0.702E*04 0.883 0.142E-03 0.110E-03 0.792E-03 44.6 0.335E+02 0.055 0.035 110.3 4.0 0.125E-04 0.344E+05 0.700E+04 0.631E+04 0.900 0.159E-03 0.110E-03 0.818E-03 61.5 0.457E+02 0.057 0.036 110.2 4.1 v.125E-04 U.333E+05 0.630E+04 0.563E+04 0.895 0.177E-03 0.110E-03 0.850E-03 79.8 0.584E+02 0.059 0.037 110.0 4.3 0.125E-04 0.320E+05 0.577E+04 0.487E*04 0.843 0.205E-03 0.110E-03 0.878E-03 99.6 0.717E+02 0.061 0.039 109.8 4.5 0.125E-04 0.307E+05 0.537E+04 0.431E+04 0.803 0.232E-03 0.110E-03 0.912E-03 121.3 0.862E*02 0.064 0.041 109.6 4.7 0.125E-04 0.293E+05 0.503E+04 0.395E+04 0.784 0.253E-03 0.110E-03 0.959E-03 145.1 0.101E+03 0.068 0.043 109.4 4.9 0.125E-04 0.278E+05 0.474E+04 0.338E+04 0.714 0.295E-03 0.111E-03 0.992E-03 Length shear shear
  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.38E+00 0.19E+01 0.71E-04 0.55E-04 1.277 1.010 0.676 30.4 0.36E+00 0.18E+01 0.86E-04 0.70E-04 1.220 1.011 0.712 44.6 0.34E+00 0.17E+01 0.97E-04 0.82E-04 1.185 1.025 0.742 61.5 0.32E+00 0.16E+01 0.11E-03 0.93E-04 1.156 1.033 0.749 79.8 0.30E+00 0.15E+01 0.12E-03 0.10E-03 1.134 1.043 0.713 99.6 0.28E+00 0.14E+01 0.13E-03 0.11E-03 1.116 1.053 0.684 121.3 0.26E+00 0.13E+01 0.14E-03 0.12E-03 1.100 1.063 0.671 145.1 0.23E+00 0.12E+01 0.14E-03 0.13E-03 1.086 1.074 0.612

llllll d xm 44333333 00000000 )t/ W 33333333 00000000

                -      - - - - - - - -       uC     - - - - - - - -
.              m      EEEEEEEE              (o92   EEEEEEEE l      76345431                      8     i45062 i       40012345 R *m 5'          3781 F      79111111 00000000 7.'.    .

8889 00000000 mr 12498157 W 33333333 ah 2193687 4 le/ 00000000 e/ bC - - - - - - - - t g 7520741 8 u92 EEEEEEEE 55554443 88889999 WsK t" ( Rm 00000000 11111111 00000000 dr 98612953 W 33333333 n oh 67952014 )n/ 00000000 c/ 24692581. i *C - - - - - - - - EEEEEEEE Wg K 111 2 (2 R^ 14744602 m 46803504 11122233 00000000 55555555 r 07466466 "q 2* 00000000

                      + + + + + + +
  • t o 70017694 78887766 m EEEEEEEE c
                  /  23432073               a     00000000 W  654321 98             r C

66666655 D 00000000 D11 25 p*C X 30058079 44444444 dm x .

       - =0   //

51689085 98642186 le2 00000000

                                                   + + + + + + * +

t

            =

wC f ^ EEEEEEEE it c9 00000099 m 71697142 f n T 111111 / 01382939 i D d W 76544332 cot TP S 00000000 l 96427282 r *C 44444444 c3 o. 00000000 T* 77776655 e2 + + + + + + ++ 33333333 h^ EEEEEEEE 111111 11 itm 97700292 l/ 15605175 W 97665544

     *C*C                                         00000000 t      11009876              )      55555555                   2    40350858 aC                           x     00000000                   f    50018605 64       s*    99998888              i 2
   - 77 T      11111111 111111 11             (

m

  • t + + + + ++

EEEEEEEE 31838134 G.7776665 00000000 4 8 2 25 e 43108753 - R 33332222, C J3 n u R

       ==

1, o, cc i T wC 9 84004396 98764308 1a i xm 2 00000000 44444444 00000000

                                                   - - - - - - - -           h r

e 57826273 12356891 00000001 TT 00000009 m/g EEEEEEEE t 111111 1 ( p K 11112222 33333333 o 11111111 l 11111111 f 00000000 w 96348854 s Pa 79259407 r 93140990 T *C a a 52087544 a 32108753 g K 66777899 e 11100000 P *C 00009999 h K 1111 P s 11111111 i f 83 98 oC 64126633 m Pa 19639481

  • m44433333 93 w a x 00000000 11 T* 21097 64? eK 32221100 d - - - - - - - -

0009999? t 99999999 - EEEEEEEE 111 s 11111111 m 41312345

      ==                                                                     l    68911111 P                                 i tt                                                                     F    00000000 ee ll                                     s%

tC 73790095 35680259 xm44333333 nn i* a 33334444 d 00000000 ii f 54209742 Gel 00000000 - - - - - - - - - PT - 55554444 l o m EEEEEEEE c im 00000000 l 51012345 T i 79111111 F 00000000 wC 50353292 s% 34692616

  • 11110000 c* a 55556677 r 00000000 rrr T 65319742 55554444 Gss 00000000 a + ++ + + + + +

e EEEEEEEE hhh

     ///

Xam 00000000 h 32101112 ggg s 11119876 KKK 00000000 aC 50331968 f 22222333 r200000000 T* , 00000000 a^ 00000000

9. 702 10864196 R

e + + + + + + ++ EEEEEEEE em++++++++ 6 55444433 h/EEEEEEEE 63438125 sN21986531 9 37 5 1.7 06210135 22111111 23579111 00000000 00000000

      ===

hm 04658631 hm 04658631 sgw tc te h tcm 0 4. G. 5 8 6 31 WWe W g n 70419915 13467924 g n 70419915 g n 70419915 13467924 13467924 e 11 e 11 e 11 O L L L

                                                                    '  t t(j         i        l'

Run 3.2-3 Ws = 60.3 Kg/hr Pinlet = 311.4 KPa Tc,1 - 28.8 *C Tc-fit = D Wg - 3.200 Kg/hr Tinlet = 141.8 *C Tc,o = 58.3 *C Point -11 Wew = 931.5 Kg/hr STD = 0.21 *C Two Tw Twl Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx Length Ta Tew Tc-fit Kg/hr m cm 'C *C 'C 'C 'C *C 'C 'C 'C/m W/m*2 Kg/hr 56.9 56.4 109.0 110.6 118.1 133.6 141.5 11.798 0.856E+05 3.59 56.71 0.798E-04 17.0 51.5 6.34 53.96 0.967E-04 30.4 49.7 55.1 54.9 107.8 109.4 116.8 133.6 141.4 11.572 0.839E+05 44.6 47.8 53.3 53.2 106.3 107.9 115.2 133.5 141.2 11.337 0,822Es05 9.20 51.10 0.110E-03 61.5 45.9 51.6 51.4 106.6 108.1 115.2 133.4 141.0 11.063 0.802E+05 12.53 47.77 0.122E-03 79.8 43.6 49.3 49.4 104.5 106.0 112.9 133.3 140.9 10.775 0.781E+05 16.02 44.28 0.132E-03 99.6 41.6 47.3 47.3 102.4 103.8 110.5 133.2 140.8 10.471 0.759E+05 19.68 40.62 0.142E-03 121.1 39.3 45.0 45.0 100.1 101.5 100.0 133.0 140.4 10.147 0.735E*05 23.56 36.74 0.151E-03 145.1 36.8 42.5 42.6 97.7 99.1 105.4 132.8 140.0 9.804 0.711E*05 27.65 32.65 0.160E-03 Length Re,f X Gas fl Gas P steam P gas p (mix) Re (mix) litheor llexp Dfactor R(in) R(tube) R(out) cm mass % mole t KPa KPa Kg/m*2 W / m

  • 2 . *C W/m^ 2. *C m^ 2*C/W m^ 2*C/ W m*2*C/W 17.0 0.305E+02 0.053 0.034 300.9 10.5 0.137E-04 0.326E* 05 0.862E4 04 0.552E+ 04 0.640 0.181E-03 0.107E-03 0.657E-03 30.4 0.535E+02 0.056 0.036 300.3 11.1 0.137E-04 0.311E+05 0.712E+04 0.500E+04 0.702 0.200E-03 0.107E-03 0.675E-03 44.6 0.771E+02 0.059 0.037 299.7 11.7 0.137E-04 0.295E+05 0.627E+04 0.448E+04 0.714 0.223E-03 0.107E-03 0.691E-03 61.5 0.105E+03 0.063 0.040 299.0 12.4 0.137E-04 0.277E+05 0.566E+04 0.440E+04 0.777 0.228E-03 0.107E-03 0.736E-03 79.8 0.133E*03 0.067 0.043 298.0 13.4 0.137E-04 0.257E+05 0.520E+04 0.383E+04 0.736 0.261E-03 0.107E-03 0.755E-03 99.6 0.161E*03 0.073 0.047 296.9 14.5 0.138E-04 0.237E+05 0.484E+04 0.335E+04 0.693 0.298E-03 0.108E-03 0.77 7E-03 121.3 0.191E+03 0.080 0.051 295.4 16.0 0.138E-04 0.215E+05 0.454E+04 0.294E+04 0.649 0.340E-03 0.108E-03 0.801E-03 14 5.1 0. 221E+ 03 0.089 0.057 293.5 17.9 0.139E-04 0.193E+05 0.429E+04 0.260E+04 0.606 0.385E-03 0.108E-03 0.829E-03 Length shear shear
  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.15E+00 0.89E+00 0.80E-04 0.73E-04 1.099 1.022 0.569 30.4 0.13E+00 0.82E+00 0.97E-04 0.90E-04 1.075 1.039 0.629 44.6 0.12E+00 0.74E+00 0.11E-03 0.10E-03 1.060 1.056 0.637 61.5 0.11E+00 0.66E+00 0.12E-03 0.12E-03 1.048 1.077 0.688 79.8 0.95E-01 0.57E+00 0.13E-03 0.13E-03 1.039 1.097 0.646 99.6 0.82E-01 0.49E+00 0.14E-03 0.14E-03 1.031 1.118 0.601 121.3 0.69E-01 0.41E+00 0.15E-03 0.15E-03 1.025 1.140 0.556 145.1 0.57E-01 0.34E+00 0.16E-03 0.16E-03 1.019 1.162 0.512 C-85

O O Run 3.2-4 Ws - 60.6 Kg/hr Pinlet = 411.3 KPa Tc,1 - 30.1 "C Tc-fit = D Wg - 3.200 Kg/hr Tinlet - 145.6 *C Tc,o - 60.6 Point =11 Wcw - 1015.9 Kg/hr STD = 0.22 9C Length Ta Tcw Tc-fit Two Tw Twl Tsat Tcl dTcw/dX q* Wcond Wsteam Film-dx cm *C 9C *C *C *C *C *C *C *C/m W/m^2 Kg/hr Kg/hr m 17.0 53.5 59.0 58.5 113.0 114.9 123.9 143.4 146,0 13.080 0.103E+06 4.45 56.15 0.842E-04  ! 30.4 51.7 57.1 56.7 110.9 112.8 121.6 143.3 145.6 12.658 0.100E+06 7.81 52.79 0.102E-03 44.6 49.5 54.9 55.0 108.2 110.0 118.5 143.2 145.3 12.225 0.967E+05 11.24 49.36 0.115E-03 61.5 47.3 52.9 53.0 108.2 110.0 118.2 143.1 144.9 11.730 0.928E+05 15.18 45.42 0.128E-03 79.8 45.0 50.8 50.9 107.8 109.5 117.3 142.9 144.6 11.216 0.887E+05 19.25 41.35 0.138E-03 99.6 42.8 48.7 48.7 107.3 108.9 116.3 142.8 144.3 10.685 0.845E+05 23.45 37.15 0.148E-03 121.3 40.5 46.4 46.4 104.4 105.9 113.0 142.5 143.9 10.132 0.801E*05 27.75 32.85 0.157E-03 145.1 38.3 44.2 44.1 102.7 104.1 110.0 142.2 143.7 9.558 0.756E605 32.22 28.38 0.166E-03 Iength Re,f X Gas il Gas P steam P gas p(mix) Re (mix) Ht heor Hexp Ofactor R(in) R(tube) R(out) em mass 1 mole % KPa KPa Kg/m^2 W / m'2 . *C W/m^2.'C m*2*C/W m ^2*C/W m^2'C/W 17.0 0.404s+02 0.054 0.034 397.2 14.1 0.140E-04 0.315E405 0.817E+04 0.533E+04 0.652 0.188E-03 0.106E-03 0.56 3E-03 30.4 0.703E+02 0.057 0.036 396.4 14.9 0.141E-04 0.297E+05 0.676E+04 0.461E+04 0.682 0.217E-03 0.106E-03 0.579E-03 44.6 0.997E*02 0.061 0.039 395.4 15.9 0.141E-04 0.278E*05 0.596E+04 0.391E+04 0.656 0.255E-03 0.107E-03 0.588E-03 61.5 0.134E+03 0.066 0.042 394.1 17.2 0.141E-04 0.257E405 0.539E*04 0.372E+04 0.690 0.269E-03 0.107E-03 0.638E-03 79.8 0.170E+03 0.072 0.046 392.4 18.9 0.141E-04 0.235E+05 0.498E+04 0.346E+04 0.695 0.289E-03 0.107E-03 0.687E-03 99.6 0.206E+03 0.079 0.051 390.4 20.9 0.142E-04 0.212E+05 0.465E+04 0.320E+04 0.687 0.313E-03 0.107E-03 0.742E-03 121.3 0.240E*03 0.089 0.057 387.8 23.5 0.142E-04 0.189E+05 0.438E+04 0.271E*04 0.619 0.369E-03 0.107E-03 0.774E-03 145.1 0.275E+03 0.101 0.065 384.4 26.9 0.143E-04 0.164E*05 0.415E+04 0.241E+04 0.579 0.416E-03 0.108E-03 0.829E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/ma 2 m m 17.0 0.11E+00 0.71E+00 0.84E-04 0.79E-04 1.072 1.030 0.590 30.4 0.10E+00 0.64E+00 0.10E-03 0.97E-04 1.053 1.051 0.616 44.6 0.89E-01 0.56E+00 0.12E-03 0.11E-03 1.042 1.073 0.587 61.5 0.77E-01 0.49E+00 0.13E-03 0.12E-03 1.033 1.098 0.608 79.8 0.66E-01 0.41E+00 0.14E-03 0.13E-03 1.026 1.124 0.603 99.6 0.55E-01 0.34E+00 0.15E-03 0.15E-03 1.020 1.151 0.586 121.3 0.45E-01 0.28E+00 0.16E-03 0.15E-03 1.015 1.175 0.519 145.1 0.35E-01 0.22E+00 0.17E-03 0.16E-03 1.012 1.201 0.477 C-86

Run 3.2-5 Ws - 59.8 Kg/hr Pinlet = 500.2 KPa Tc,1 = 31.1 *C Tc-fit - D Wg - 3.200 Kg/hr Tinlet = 150.3 *C Tc,o = 60.6 *C Point =11 Wcw - 1157.7 Kg/hr STD - 0.19 *C No Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx Length Ta Tcw Tc-fit Kg/hr Kg/hr m em *C *C *C *C *C *C *C *C *C/m W/m*2 58.0 57.9 114.3 116.8 128.2 150.5 151.8 14.585 0.131E+06 5.79 54.01 0.908E-04 17.0 52.5 10.06 49.74 0.110E-03 30.4 50.5 56.0 56.0 112.4 114.7 125.6 150.4 152.0 13.831 0.12SE+06 53.9 54.1 109.1 111.3 121.6 150.3 151.8 13.074 0.118E+06 14.31 45.49 0.124E-03 44.6 48.5 19.09 40.71 0.136E-03 61.5 46.3 51.9 52.0 109.0 111.1 120.8 150.1 151.6 12.227 0.110E+06 44.0 49.8 49.8 108.9 110.8 119.8 149.8 151.3 11.372 0.102E+06 23.89 35.91 0.147E-03 79.8 151.0 10.514 0.947E+05 28.69 31.11 0.157E-03 99.6 41.9 47.8 47.7 108.3 110.1 118.4 149.5 121.3 39.6 45.5 45.5 105.7 107.3 115.0 149.1 150.9 9.641 0.869E+05 33.47 26.33 0.166E-03 145.1 37.5 43.5 43.3 104.6 106.1 113.1 148.6 150.0 8.779 0.791E*05 38.26 21.54 0.174E-03 Length Re,f X Gas O Gas P steam P qas p(mix) Re (mix) Htheor Hexp Dfactor R(in) R(tubo) R(out) KPa Kra Kg/m^2 W / m

  • 2 . *C W/m^ 2 . *C m* 2*C/W m
  • 2*C/W m ^ 2*C/W cm mass % mole t 17.0 0.552E*02 0.056 0.036 482.4 17.8 0.143E-04 0.298E+05 0.758E+04 0.591E+04 0. 780 0.169E-03 0.106E-03 0.459E-03 30.4 0.948E+02 0.060 0.038 481.0 19.2 0.143E-04 0.275E+05 0.628E+04 0.503E+04 0.800 0.199E-03 0.106E-03 0.483E-03 44.6 0.133E+03 0.066 0.042 479.3 20.9 0.144E-04 0.252E+05 0.556E+04 0.412E+04 0.740 0.243E-03 0.107E-03 0.499E-03 61.5 0.176E+03 0.073 0.047 476.9 23.3 0.144E-04 0.227E+05 0.505E* 04 0.376E* 04 0.745 0.266E-03 0.107E-03 0.554E-03 79.8 0.219E*03 0.082 0.052 474.0 26.2 0.145E-04 0.201E+05 0.468E+04 0.341E+04 0.729 0.293E-03 0.107E-03 0.616E-03 99.6 0.262E+03 0.093 0.060 470.1 30.1 0.145E-04 0.176E+05 0.439E+04 0.304E+04 0.694 0.329E-03 0.107E-03 0.685E-03 121.3 0.300E+03 0.108 0.070 465.1 35.1 0.146E-04 0.151E+05 0.416E*04 0.254E+04 0.612 0.393E-03 0.107E-03 0.741E-03 145.1 0.339E+03 0.129 0.084 457.9 42.3 0.147E-04 0.125E+05 0.396E404 0.223E+04 0.562 0.449E-03 0.107E-03 0.829E-03 Length shear shear
  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.86E-01 0.58E+00 0.91E-04 0.86E-04 1.052 1.040 0.712 30.4 0.75E-01 0.50E+00 0.11E-03 0.11E-03 1.038 1.069 0.721 44.6 0.64E-01 0.42E400 0.12E-03 0.12E-03 1.029 1.097 0.656 61.5 0.53E-01 0.35E+00 0.14E-03 0.13E-03 1.022 1.129 0.646 79.8 0.43E-01 0.28E+00 0.15E-03 0.14E-03 1.016 1.161 0.618 99.6 0.34E-01 0.22E+00 0.16E-03 0.15E-03 1.012 1.191 0.575 121.3 0.26E-01 0.16E+00 0.17E-03 0.16E-03 1.009 1.220 0.498 145.1 0.19E-01 0.12E+00 0.17E-03 0.17E-03 1.006 1.248 0.448 C-87
                                                                                    ,           1 xm       44433333               )   W  33333333 00000000 d         00000000               t/
                          -        - - - - - - - -        uC     - - - - - - - -

m EEEEEEEE (o '2 EEEEEEEE l i 66288753 05701234 H ^n 4S864993 80259169 F 78911111 r 78888999 00000000 00000000 mr 30023254 W 33333333 ah 5045541 7 )e/ C 00000000 e/ - - - - - - - - - t g 76420863 bu '2 EEEEEEEE WsK 55555444 (t* 00000111 11111111 Rm 11111111 00000000 dr 70087856 W 33333333 n 95199037 )n/ 00000000 oh c/ 1 35681 35 i( *C - - - - - - - - EEEEEEEE Wg K 1 1 1 R^ 2 55612038 m 46813794 11122227 0000000 55555555 r 63027036 "q2* 00000000 o 16754970

                                  + + * * + * + +        t      77777666 m EEEEEEEE                c
                               /  93690222                a     00000000 W  99877654               f C            44444444               D 8            00000000                                                                      -

D1 5 pC 1 X 32432933 44444444 dm 073701 21 x'. 00000000

                  =0    //        53209753                o2    + + + + + + *
  • t wC EEEEEEEE it = c* 00009999 H 'm 06931017 fn D T 1111 / 90373748 i

cot d W 66544332 TP S 00000000 l 40502473 r *C 44444444 cC o . 00000000 T' 2211 0987 e2 * + + + + + + + 33333222 h^ EEEEEEEE 111111 11 t m 45097634 H/ 69027307 W 97765554 CC

              *
  • 00000000 t 77665431 ) 55555555 2 77736367 a x 00000000 f 40222871 s 'C 41 1 11111 1 1 i * + + + + + + + 56666555 1 T 00000000 m EEEEEEEE 8
            - 54                  111111 11              (

56642961 00000000 8-3 25 e 76543109 R 33333332 C - 3

               ==                                               00000000 b         R n

u 1, o, cc TT i wC T' 56646907 43210885 99999888

                                                         )

i 2 x *m m/g 44444444 00000000 EEEEEEEE r h t e 96421111 01234567 00000000 ( p K 88888999 o 11111111 22222222 l 1 1111111 f 00000000 w 01213797 s Pa 91359261 r 65896705 T *C a K a 93964219 aC 09876431 g 78888990 e 22111110 P* 98888888 1 h K P s 11111111 i - f 79 52 oC 01324808 ma 86428516

  • m44443333 13 w aP x 00000000 11 T* 98765330 88888888 t eK 77776665 00000000 d

EEEEEEEE - _ s 11111111 m 49120123 _ == P l 56891111 i t t F 00000000 ee _ ll nn tC i' 40690108 s% a 80147037 67777888 d xm44433333 00000000 ii f 21976429 Gel 00000000 - - - - - - - - - PT EEEEEEEE - T c

                            -      55444443 Qom    00000000              l i

F m 16712334 78911111 00000000 wC 17356435 s% 57048274

  • r 11111111 e 00000000 rrr T' 31086429 55544443 a

Gss 00111223 11111111 a ++*+++++ e EEEEEEEE hhh

              ///

Xam 00000000 h 09876543 s 21111111 ggg KKK 00000000 aC 16132079 f, 22222222 r200000000 T' 00000000 a^00000000 - 06

5. 4 97642074 44444433 e

R

                                                                 + + + + + + + +

EEEEEEEE em++++++++ h/EEEEEEEE 75636307 sN08753086 9 5 7. 01 22246936 43333322 66 12345689 - 00000000 _ 00000000 .

                ==-       hm       04658631                hm    04658631              hm04658631 sgw         t c                             t c                         tc WWe    W g

n 7041 9915 13467924 g n 70419915 13467924 g n 70419915 13467924

e. 11 e 11 e 11 1 L L llll',I!l

Run 3.3-2 Pinlet = 201.2 KPa Tc,1 - 26.6 *C Tc-fit - D Ws - 59.5 Kg/hr

                                                                                                                                                                                              *C              Point -11 Wg = 6.750      Kg/hr          Tinlet =   136.0  *C                          Tc,o - 56.2 STD = 0. 60 *C Wcw - 734.1      Kg/hr Two       Tw                               Twi                      Tsat          Tcl             dTcw/dX         q"     Wcond     Wsteam     Film-dx Length          Ta       Tcw Tc-fit W/m"2      Kg/hr      Kg/hr             m
                                                                                                           *C        *C      *C                                     *C                    *C           *C               *C/m cm          'C        *C 100.3   101 ~                107.1                                   118.2       135.5               11.099 0.634E+05        2.58     56.92 0.739E-04 17.0       50.5      55.4       54.5                                                                                                                                  4.58      54.92 0.897E-04 53.8       53.0      99.3   109.                 106.1                                   118.1       135.2               10.975 0.627E+05 30.4       48.8                                                                                                           135.0               10.844 0.620E+05        6.67      52.83 0.102E-03 44.6       47.0      52.0       51.4      97.7    98.9                104,4                                   118.0 49.6      96.3    97.5                103.0                                   117.9       134.8               10.691 0.611E+05        9.12      50.38 0.113E-03 61.5       45.2      50.3                                                                                                                                            11.73      47.77 0.124E-03 48.0       47.7      94.7    95.9                 101.3                                  117.8       134.4               10.527 0.601E+05 79.8       42.8                                                                                                           133.9               10.353 0.591E+05       14.49      45.01 0.133E-03 99.6       40.6      45.8       45.6      92.9    94.0                        99.3                            117.6 43.4      90.8    91.9                        97.1                            117.4       133.2               10.166 0.581E+05       17.46      42.04 0.142E-03 121.3       38.1      43.3                                                                                                                                                       38.86 0.151E-03 35.4      40.7       41.0      88.9    90.0                        95.1                            117.2       132.6                9.964 0.569E*0S       20.64 145.1 P gas        p(mid                                         E6! mix)     Htheor                 llex    Dfactor      R(in)   R (t ube)    R (out )

Length Re,f X Gas O Gas P steam W/m"2.pC m"2*C/W KPa KPa Kg/m*2 W/m " 2 . *C m"2*C/W m"2*C/W cm mass % mole 1 0.106 0.069 187.4 13.8 0.134E-04 0.353E+05 0.927E+0 4 0.575E* 04 0.620 0.174E-03 0.108E-03 0.77 3E-03 17.0 0.193E+02 0.683 0.192E-03 0.108E-03 0.790E-03 30.4 0.342E+02 0.109 0.071 186.9 14.3 0.134E-04 0.342E+05 0.764E+04 0.522E+04 44.6 0.493E+02 0.113 0.074 186.4 14.8 0.135E-04 0.330E+05 0.673E+04 0.456E+04 0.678 0.219E-03 0.108E-03 0.799E-03 61.5 0.670E+02 0.118 0.077 185.7 15.5 0.135E-04 0.316E+05 0.604E+04 0.409E+04 0.676 0.245E-03 0.109E-03 0.818E-03 79.8 0.853E+02 0.124 0.081 185.0 16.2 0.135E-04 0.300E+05 0.554E+04 0.365E+04 0.658 0.274E-03 0.109E-03 0.837E-03 99.6 0.104E+03 0.130 0.085 184.0 17.2 0.135E-04 0.284E+05 0.515E+04 0.323E+04 0.628 0.310E-03 0.109E-03 0.855E-03 121.3 0.124E*03 0.138 0.091 182.9 18.3 0.136E-04 0.267E+05 0.482E+04 0.286E+04 0.594 0.350E-03 0.109E-03 0.873E-03 145.1 0.145E+03 0.148 0.097 181.6 19.6 0.136E-04 0.249E+05 0.454E+04 0.258E+04 0.568 0.388E-03 0.110E-03 0.901E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2

! cm N/m^2 m m 17.0 0.24E+00 0.13E+01 0.74E-04 0.63E-04 1.172 1.014 0.521 j 1 30.4 0.22E+00 0.13E+01 0.90E-04 0.79E-04 1.134 1.025 0.587 44.6 0.21E+00 0.12E+01 0.10E-03 0.92E-04 1.111 1.036 0.589 l 61.5 0.20E+00 0.11E+01 0.11E-03 0.10E-03 1.092 1.049 0.590 l 79.8 0.18E+00 0.99E+00 0.12E-03 0.11E-03 1.078 1.062 0.575 l 1.076 0.547 l 99.6 0.16E+00 0.89E+00 0.13E-03 0.12E-03 1.065 121.3 0.15E+00 0.79E+00 0.14E-03 0.13E-03 1.055 1.091 0.516 145.1 0.13E+00 0.69E+00 0.15E-03 0.14E-03 1.046 1.106 0.491 l l l t

                                                                               .. .           m .                  _            .__..m        ._.______m--__..._~                                   _ __ m e m .

Run 3.3-3 Ws = 60.1 Kg/hr Pinlet - 305.2 KPa Tc,1 = 27.7 *C Tc-fit - D Ng = 6.450 Kg/hr Tinlet = 139.0 90 Tc,o = 59.0 *C Point -11 Wew = 792.4 Kg/hr STD = 0. 33 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm *C 9C *C *C *C 93 *C *C *C/m W/m^2 Kg/hr Kg/hr m 17.0 52.1 57.6 57.0 107.9 109.4 116.3 131.8 138.8 12.619 0.779E+05 3.25 56.85 0.776E-04 I 30.4 50.3 55.8 55.3 106.3 107.8 114.6 131.7 138.5 12.401 0.765E+05 5.76 54.34 0.941E-04 44.6 48.4 53.9 53.6 105.0 106.4 113.0 131.6 138.4 12.175 0.751E+05 8.36 51.74 0.107E-03 i 61.5 46.2 51.8 51.6 103.4 104.8 111.3 131.4 138.2 11.911 0.735E+05 11.39 48.71 0.119E-03 79.8 43.9 49.5 49.4 101.1 102.5 108.9 131.3 131.9 11.631 0.717E+05 14.58 45.52 0.129E-03 99.6 41.5 47.1 47.1 99.0 100.3 106.5 131.0 137.6 11.336 0.699E*05 17.92 42.18 0.139E-03 121.3 39.0 44.7 44.7 96.6 97.9 104.0 130.8 137.2 11.021 0.679E605 21.48 38.62 0.148E-03 145.1 36.2 41.8 42.1 93.3 94.6 100.5 130.4 136.5 10.685 0.659E+05 25.24 34.86 0.157E-03 Length Re, f X Cas O Gas P steam P gas p(mix) Re(mix) litheor llexp Dfactor R(in) R(tubo) R(out) cm mass % mole % KPa KPa Kg/m*2 W/ m^ 2. *C W/ m ^ 2 . *C m^29C/W m*29C/W m" 2*C/W 17.0 0.272E+02 0.102 0.066 285.1 20.1 0.139E-04 0.339E+05 0.886E*04 0.501E+04 0.565 0.200E-03 0.107E-03 0.693E-03 30.4 0.477E+02 0.106 0.069 284.2' 21.0 0.139E-04 0.325E+05 0.731E+04 0.446E+04 0.610 0.224E-03 0.107E-03 0.713E-03 44.6 0.688E402 0.111 0.072 283.3 21.9 0.140E-04 0.310E+05 0.644E+04 0.405E+04 0.628 0.247E-03 0.107E-03 0.732E-03 61.5 0.929E+02 0.117 0.076 282.0 23.2 0.140E-04 0.293E+05 0.580E+04 0.365E+04 0.629 0.274E-03 0.108E-03 0.755E-03 79.8 0.117E+03 0.124 0.081 280.5 24.7 0.140E-04 0.276E+05 0.532E+04 0.320E+04 0.602 0.312E-03 0.108E-03 0.771E-03 99.6 0.143E+03 0.133' O.087 278.7 26.5 0.141E-04 0.257E+05 0.495E+04 0.285E+04 0.576 0.351E-03 0.108E-03 0.793E-03 121.3 0.169E+03 0.143 0.094 276.5 28.7 0.141E-04 0.237E+05 0.464E+04 0.253E404 0.546 0.395E-03 0.109E-03 0.817E-03 145.1 0.195E+03 0.156 0.103 273.7 31.5 0.142E-04 0.216E+05 0.437E+04 0.220E+04 0.503 0.454E-03 0.109E-03 0.831E-03 Length shear shear *' Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.16E+00 0.98E+00 0.78E-04 0.70E-04 1.112 1.020 0.498 30.4 0.15E+00 0.90E+00 0.94E-04 0.87E-04 1.086 1.035 0.543 44.6 0.14E+00 0.83E+00 0.11E-03 0.10E-03 1.070 1.050 0.559 61.5 0.13E+00 0.75E+00 0.12E-03 0.11E-03 1.057 1.068 0.558 79.8 0.11E+00 0.66E+00 0.13E-03 0.12E-03 1.047 1.086 0.530 99.6 0.99E-01 0.58E+00 0.14E-03 0.13E-03 1.039 1.104 0.502 , 121.3 0.86E-01 0.50E+00 0.15E-03 0.14E-03 1.031 1.124 0.471 145.1 0.73E-01 0.42E+00 0.16E-03 0.15E-03 1.025 1.142 0.430 i 't i C-90 i

Run 3.3-4 Ws - 60.4 Kg/hr Pinlet = 420.3 KPa Tc,1 = 28.8 *C Tc-fit = D Wg = 6.710 Kg/hr Tinlet = 144.0 *C Tc,o = 59.8 *C Point -11 Wcw = 877.9 Kg/hr STD = 0.20 *C 1.ength Ta Tew Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx

                             *C      *C       *C       'C         *C         'C                                                                *C                             *C/m       W/m^2      Kg/hr        Kg/hr                                                       m cm          *C 17.0       52.3      58.0     57.6    112.0    113.8      122.0      142.8                                             184.3                                           13.754 0.940E*05          4.03       56.37 0.818E-04 30.4       50.3      56.0     55.7    109.5    111.2      119.2      142.7                                             144.4                                           13.335 0.911E+05          7.09       53.31 0.990E-04 44.6       48.2       53.9    53.9    107.4    109.1      116.9      142.5                                             144.2                                           12.906 0.882E+05         10.21       50.19 0.112E-03 61.5       46.0      51.9     51.7    107.0    108.6      116.1      142.3                                             144.0                                           12.413 0.848E+05         13.80       46.60 0.124E-03 79.8       43.6      49.6     49.5    105.8    107.3      114.5      142.1                                             143.9                                           11.900 0.813E+05         17.51       42.89 0.135E-03 99.6       41.4      47.3     47.2    102.9    104.4      111.3      141.8                                             143.8                                           11.369 0.777E+05         21.31       39.09 0.144E-03 121.3        38.9      44.7     44.8     99.2    100.6      107.2      141.4                                             143.6                                           10.814 0.739E+05         25.25        35.15 0.154E-03 145.1        36.4      42.1     42.3     96.2     97.5      103.8      140.9                                             143.0                                           10.236 0.699E+05         29.33        31.07 0.162E-03 Length        Re,f     X Gas    O Gas P steam     P gas     p(mix)    Re(mix)                                     Htheor                                                     Hexp     Dfactor      R(in)   R (t ube)                                                  R(out) cm               rnass %  mole %       KPa      KPa     Kg/m*2                                     W / m
  • 2. *C W/m
  • 2 . *C m*2*C/W m^2*C/W m" 2 *C/W 17.0 0.363E+02 0.106 0.069 391.4 28.9 0.144E-04 0.327Ee05 0.S42E+04 0.452E*04 0.537 0.221E-03 0.106E-03 0.620E-03 30.4 0.630E+02 0.112 0.073 389.8 30.5 0.144E-04 0.311E+05 0.695E+04 0.388E+04 0.558 0.25BE-03 0.107E-03 0.631E-03 44.6 0.897E+02 0.118 0.077 388.1 32.2 0.144E-04 0.294E+05 0.614E+04 0.344E+04 0.560 0.291E-03 0.107E-03 0.64 9E-03 61.5 0.121E603 0.126 0.082 385.8 34.5 0.145E-04 0.274E+05 0.555E+04 0.323E+04 0.582 0.310E-03 0.107E-03 0.697E-03 79.8 0.152E+03 0.135 0.089 383.1 37.2 0.145E-04 0.254E+05 0.511E+04 0.295E+04 0.576 0.339E-03 0.107E-03 0.740E-03 99.6 0.182E+03 0.147 0.096 379.8 40.5 0.146E-04 0.234E+05 0.477E+04 0.255E+04 0.534 0.393E-03 0.108E-03 0.767E-03 121.3 0.211E+03 0.160 0.106 375.7 44.6 0.147E-04 0.213E+05 0.448E+04 0.216E+04 0.482 0.463E-03 0.108E-03 0.787E-03 145.1 0.241E+03 0.178 0.118 370.6 49.7 0.148E-04 0.190E+05 0.424E+04 0.188E*04 0.444 0.531E-03 0.109E-03 0.824E-03 Length shear shear
  • Film-dx Film-dx* fishear flother f2 c:n N/m'2 m m 17.0 0.12E+00 0.76E+00 0.82E-04 0.76E-04 1.080 1.027 0.484 30.4 0.11E+00 0.69E+00 0.99E-04 0.93E-04 1.060 1.046 0.503 44.6 0.98E-01 0.62E+00 0.11E-03 0.11E-03 1.048 1.066 0.501 61.5 0.87E-01 0.55E+00 0.12E-03 0.12E-03 1.038 1.088 0.515 79.8 0.77E-01 0.48E+00 0.13E-03 0.13E-03 1.031 1.111 0.503 99.6 0.66E-01 0.41E+00 0.14E-03 0.14E-03 1.025 1.133 0.460 121.3 0.56E-01 0.34E+00 0.15E-03 0.15E-03 1.020 1.155 0.409 145.1 0.46E-01 0.28E+00 0.16E-03 0.16E-03 1.015 1.177 0.372 l

O O" -- - - O

O C Run 3.3-5 Ws = 59.4 Kg/hr Pinlet - 504.3 KPa Tc,1 = 29.5 *C Tc-fit = D Wg = 6.800 Kg/hr Tinlet = 148.? 'C Tc,o = 59.3 *C Point =11 Wcw = 970.5 Kg/hr STD = 0.17 *C Length Ta Tew Tc-fit Two Tw Twi Tsat Tcl dicw/dx q" Wcond Wsteam Film-dx  ; em *C 'C 'C 'C 'C 'C 'C *C 'C/m W/m"2 Kg/hr Kg/hr m e 17.0 51.7 57.5 57.1 114.0 115.9 124.8 149.4 151.6 13.529 0.102E+06 4.44 54.m. 0.836E-04 t 30.4 49.7 55.5 55.3 11).9 113.8 122.4 149.2 151.8 13.040 0.985E*05 7.78 51.62 0.101E-03 44.6 47.7 53.4 53.5 108.4 110.2 118.5 149.0 151.6 12.541 0.947E+05 11.16 48.24 0.114E-03 61.5 45.5 51.4 51.4 109.0 110.7 118.6 148.8 151.3 11.972 0.904E+05 15.04 44.36 0.126E-03 , 79.8 43.4 49.4 49.3 107.2 108.8 116.4 148.4 150.9 11.385 0.860E+05 19.00 40.40 0.137E-03 l 99.6 41.2 47.2 47.1 105.3 106.8 114.0 148.1 150.6 10.783 0.814E+05 23.04 36.36 0.147E-03 121.3 38.9 44.8 44.8 101.5 103.0 109.8 147.6 150.5 10.159 0.767E+05 27 18 32.22 0.156E-03 145.1 36.7 42.5 42.5 98.7 100.1 106.5 146.9 150.3 9.516 0.719E605 31.41 27.99 0.164E-03 Length Re,f X Gas il Cas P steam P gas - ((mix) Re (mix) Htheor Hexp Dfactor Rtin) R(tube) R (out) f' cm mass % mole 1 KPa KPa .tg/m^2 W/m*2 *C W/m

  • 2. *C m*2*C/W m
  • 2*C/ W m^2*C/W 17.0 0.416E+C2 0.110 0.071 468.3 36.0 0.146E-04 0.314E+05 0.824E+04 0.416E*04 0.505 0.240E-03 0.106E-03 0.595E-03 30.4 0.720E+02 0.116 0.076 466.1 38.2 0.147E-04 0.297E*05 0.681E+04 0.368E*04 0.539 0.272E-03 0.106E-03 0.615E-03 44.6 0.102E+03 0.124 0.081 463.7 40.6 0.147E-04 0.279E*05 0.602Ee04 0.311E*04 0.516 0.322E-03 0.107E-03 0.620E-03 61.5 0.137E+03 0.133 0.087 460.4 43.9 0.148E-C4 0.258E+05 0.545E+04 0.300E+04 0.551 0.333E-03 0.107E-03 0.681E-03 79.8 0.171E+03 0.144 0.095 456.6 47.7 0.148E-04 0.237E+05 0.502E604 0.268E+04 0.534 0.373E-13 0.107E-03 0.720E-03 99.6 0.205E+03 0.158 0.104 451.8 52.5 0.149E-04 0.216E+05 0.470E+04 0.239E+04 0.509 0.418E-03 0.107E-03 0.764E-03 121.3 0.237E+03 0.174 0.116 445.8 $8.5 0.150E-04 0.194E+05 0.442E+04 0.203E+04 0.460 0.492E-03 0.108E-03 0.790E-03 145.1 0.269E+03 0.195 0.131 438.2 66.1 0.151E-04 0.171E+05 0.419E+04 0.178E+04 0.424 0.563E-03 0.108E-03 0.837E-03 tength shear shear
  • Film-dx Film-dx* fishear flother f2 cm N/m"2 m m 17.0 0.97E-01 0.64E+00 0.84E-04 0.79E-04 1.064 1.030 0.461 30.4 0.87E-01 0.57E+00 0.10E-03 0.96E-04 1.048 1.053 0.489 44.6 0.78E-01 0.50E+00 0.11E-03 0.11E-03 1.038 1.074 0.463 61.5 0.68E-01 0.44E+00 0.13E-03 0.12E-03 1.030 1.100 0.487 79.8 0.59E-01 0.38E+00 0.14E-03 0.13E-03 1.024 1.125 0.463 99.6 0.50E-01 0.32E+00 0.15E-03 0.14E-03 1.019 1.150 0.435 121.3 0.41E-01 0.26E+00 0.16E-03 0.15E-03 1.015 1.173 0.386 145.1 0.33E-01 0.21E+00 0.16E-03 0.16E-03 1.011 1.197 0.350 b

C-92 [ _______.m______.__m.--.__ __._-__m_._______m.wm. .+. m .me_ ..,.w-.- . m- >mm w <- w _ -.we. +r<e,-- ---._.,,...r- - * = ~ . - - . _ _ _ _ .____________m_._._-.m_.m..__.__m

Run 3.4-2 Ws = 59.9 Kg/hr Pinlet = 212.0 KPa Tc,1 = 27.3 *C Tc-fit - D Wg = 14.600 Kg/hr Tinlet = 131.5 *C Tc,o = 52.2 "C Point =11 Wcw = 839.8 Kg/hr STD = 0.4 4 *C langth Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm 90 9C *C *C *C *C *C *C *C/m W/m'2 Kg/hr Kg/hr m 17.0 46.8 51.2 50.5 94.5 95.8 102.1 117.4 130.9 10.728 0.700E+05 2.87 57.03 0.773E-04 30.4 45.4 49.8 49.1 92.8 94.1 100.2 117.3 130.6 10.436 0.681E+05 5.06 54.84 0.936E-04 44.6 43.6 48.0 47.7 91.0 92.3 98.3 117.1 130.2 10.135 0.661E*05 7.31 52.59 0.106E-03 61.5 42.0 46.5 46.0 90.6 91.8 97.6 b 6. 8 129.8 9.787 0.639E*05 9.90 50.00 0.118E-03 79.8 40.0 44.5 44.2 89.2 90.4 96.0 116.6 129.1 9.425 0.615E*05 12.59 47.31 0.128E-03 99.6 37.5 42.2 42.4 88.5 89.6 94.9 116.3 128.4 9.048 0.590E*05 15.39 44.51 0.137E-03 121.3 35.1 39.8 40.5 86.2 87.3 92.4 115.9 127.9 8.652 0.565E+05 18.30 41.60 0.146E-03 145.1 33.6 38.4 38.5 85.3 86.3 91.2 115.5 127.1 8.238 0.538E+05 21.35 38.55 0.154E-03 Length Re,f X Gas O Gas P steam P gas p(mix) Re (mix) Htheor Hexp Dfactor R(in) R(tube) R(out) em mass % mole 1 KPa KPa Kg/m*2 W / m

  • 2 . *C W/m*2.9C m"29C/W m ^29C/W m ^29C/W 17.0 0.210E+02 0.204 0.137 182.9 29.1 0.140E-04 0.380E*05 0.886E404 0.456E+04 0.515 0.219E-03 0.109E-03 0.071E-03 30.4 0.365E+02 0.210 0.142 181.9 30.1 0.141E-04 0.367E+05 0.731E+04 0.400E+04 0.547 0.250E-03 0.109E-03 0.086E-03 44.6 0.522E402 0.217 0.147 180.0 31.2 0.141E-04 0.354E*05 0.645E+04 0.352E*04 0.545 0.284E-03 0.109E-03 0.701E-03 61.5 0.703E+02 0.226 0.154 179.4 32.6 0.142E-04 0.339E+05 0.582E*04 0.331E+04 0.569 0.302E-03 0.109E-03 0.747E-03 79.8 0.886E+02 0.236 0.161 177.9 34.1 0.142E-04 0.324E+05 0.535E*04 0.298E+04 0.557 0.335E-03 0.110E-03 0.782E-03 99.6 0.108E+03 0.247 0.169 176.1 35.9 0.143E-04 0.308E+05 0.500E+04 0.277E+04 0.555 0.361E-03 0.110E-03 0.834E-03 121.3 0.126E+03 0.260 0.179 174.0 38.0 0.144E-04 0.291E+05 0.469E+04 0.241E*04 0.513 0.41(E-03 0.110E-03 0.866E-03 145.1 0.146E+03 0.275 0.190 171.6 40.4 0.145E-04 0.274E+05 0.444E+04 0.221E+04 0.408 0.452E-03 0.110E-03 0.931E-03 Length shear shear
  • Film-dx Film-dx* fishear flot her f2 cm N/m^2 m m 17.0 0.27E+00 0.15E+01 0.77E-04 0.65E-04 1.187 1.015 0.427 30.4 0.26E+00 0.14E+01 0.94E-04 0.82E-04 1.146 1.027 0.465 44.6 0.24E+00 0.13E+01 0.11E-03 0.95E-04 1.121 1.038 0.469 61.5 0.22E+00 0.12E+01 0.12E-03 0.11E-03 1.102 1.051 0.492 79.8 0.21E+00 0.11E+01 0.13E-03 0.12E-03 1.086 1.065 0.482 99.6 0.19E+00 0.10E+01 0.14E-03 0.13E-03 1.074 1.079 0.479 121.3 0.17E+00 0.91E+00 0.15E-03 0.14E-03 1.063 1.092 0.442 145.1 0.15E+00 0.81E400 0.15E-03 0.15E-03 1.054 1.107 0.427 C-93

i  ; 1* ,;ll' l lll l;llll xm 44333333 00000000

                                               )

m/ W 33333332 00000000 d

                   -        - - - - - - - -      uC      - - - - - - - -

m EEEEEEEE EEEEEEEE l 72011 1 08 (o *2 40378940 i 28012344 01245770 F 781 1111 1 R ^m 99999991 00000000. 00000000 mr 05257346 ) W 33333333 ah 90184923 e/ 00000000 e/ bu *C - - - - - - - - t g 76419641 2 EEEEEEEE WsK 55554444 (t* 99990000 00001111 Rm 11111111 00000000 dr 05853764 W 33333333 n 42148309 )n/ 00000000 oh I( *C - - - - - - - - c/ Ng 24680368 2 EEEEEEEE K 11 11 R^ 09476057 35804848 m 22233344 00000000 55555555 r 27513296

                 'q 2*    00000000               o      69131054
                          + + + + * * + +       t       44555544 m EEEEEEEE               c
                       /  1 3443207              a      00000000 W  98765431             f D

C 53555555 000007J0 D14 5 pC 1 x 1540731 8 x*. 44444444

           =0    dm       85270344                      00000000
                                                        ++++ + + + +
                 //       09865319               e2 t           wC                       .

H* EEEEEEEE it = c' 98888887 m 56269346 f n i D d T / W 38528620 43332222 _ cot TP S 00000000 l 53071467 r *C 44444444 cC o. 00000000 T9 55544321 h* e2

  • 4 +* + + + +

22222222 EEEEEEEE 1 11111 11 t m 26343391 H/ 47816286 W 97665544

C
       %9                                               00000000 t       76531852              )       55555555          2    89962463 1               a                             x      00000000          f    71354398 R   82          s *C   66666555             i        ++++ + 4 + +           34444433 2              T       11111111               m      EECEEEEE                                              4
     - 38                 11111111              (

54306169 00000000 9- _ 4 24 e 976532C8 R C 3

        ==

33333332 00000000 n _ u 1, o, i C 29209290 )2* 44444444 r 33346814 e Tw9 R cc 3109651 0 i xm 00030000

                                                          - - - - - - - - h 12345689 00000000 TT                 00099999              (m/  g  EEEEEEEE          t 111 p  K   00011223           o   11111111 44444444          l 11111111          f 00000000 w      93099,313              s Pa   41013744           r   62658532 T 'C                           a K                       a   06319876 a                 76531 075              g      78901246           e   21110000 P *C               99999988                      22233333          h K                                         P                         s   11111111 i

f 30 64 oC 82988213 ma 92320699

  • m44433333 03 w aP x 00000000 21 T* 65320964 99999888 eK t

88765319 77777776 d EEEEEEEE s 11111111 m 06801234

        ==                                       P l    67811111 i

tt F 00000000 ee ll s% 36162976 tC 86393689 xm44333333 nn i* a Gel 33445567 d 00000000 ii f 65421975 11111111 - - - - - - - - - PT - 44444333 m EEEEEEEE T c ~ Oom 00000000 l i 38012345 78111111 F 00000000 w0 62855755 s% 73864346

  • 11111110 c9 a 90012345 r 00000000 rrr T 76431975 G s s 12222222 a ++++ + + + +

44444333 e EEEEEEEE hhh

       ///

Xam 00000000 h s 65432101 11111119 ggg KKK 00000000 a2 62744655 22222233 r200000000 T9 21986420 f, e 00000000

                                                         *+*+++*+

a* 00000000 em++++++++

3. 500 44333333 R EEEEEEEE h/EEEEEEEE 6 58434308 sN87642197 0 48 6 2.3 70406312 1 3467911 22222211 1 00000000 00000000
        ==-                                      hm hm      04658631                      04658631         hm04658631 sgw        te                            tc                        tc WWe     W g

n 70419915 13467924 g n 70419915 13467924 g n 70419915 13467924 e 11 e 11 e 11 / L L L

Run 3.4-3 Ws = 60.1 Kg/hr Pinlet = 300.4 KPa Tc,1 = 27.7 *C Tc-fit - D Wg - 14.500 Kg/hr Tinlet - 135.3 *C Tc,o - 54.9 *C Point -11 Wew - 835.0 Kg/hr STD - 0. 38 *C 1.ength Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q' Ncond Wstnam Film-dx "C 'C *C 'C 'C 'C/m W/m^2 Kg/hr Kg/hr m cm 'C *C *C 17.0 48.8 53.6 52.9 99.5 101.0 108.1 128.6 135.0 12.258 0.797E+05 3.34 56.76 0.794E-04 30.4 47.0 51.8 51.3 97.9 99.4 106.3 128.4 134.7 11.846 0.770E+05 5.86 54.24 0.960E-04 44.6 45.1 49.9 49.6 95.9 97.3 103.9 128.2 134.4 11.424 0.742E+05 8.43 51.67 0.109E-03 61.5 43.2 48.1 47.8 95.3 96.7 103.1 127,9 134.0 10.942 0.711E+05 11.37 48.73 0.120E-03 79.8 41.1 46.1 45.8 94.0 95.3 101.4 127.6 133.4 10.443 0.678E+05 14.40 45.70 0.131E-03 99.6 38.1 43.3 43.8 92.8 94.0 99.8 127.2 132.9 9.929 0.645E+05 17.51 42.59 0.140E-03 121.3 36.5 41.6 41.7 90.0 91.2 96.7 126.7 132.3 9.394 0.610E+05 20.11 39.39 0.148E-03 145.1 34.4 39.5 39.5 88.2 89.3 94.5 126.1 131.5 8.840 0.574E*05 24.02 36.08 0.157E-03 Length Re,f X Gas il Gas P steam P gas p(mix) Re (mix) Htheor llexp Dfactor R(in) R(tube) R(out) cm mass % mole % KPa KPa Ky/ma 2 W / m ^ 2 . *C W/ma 2.*C m^ 2*C/W m'2*C/W r 2*C/W a 0.137 259.2 41.2 0.145E-04 0.366E+05 0.865E+04 0.388E404 0.448 0.258E-03 0.108E-03 0.f,25E-03 17.0 0.265E+02 0.203 30.4 0.460E+02 0.211 0.142 257.6 42.8 0.145E-04 0.352E+05 0.715E+04 0.347E+04 0.486 0.288E-03 0.108E-03 0.648E-03 44.6 0.654E*02 0.219 0.148 255.8 44.6 0.146E-04 0.338E+05 0.631E+04 0.306E+04 0.485 0.327E-03 0.109E-03 0.666E-03 61.5 0.877E+02 0.229 0.156 253.5 46.9 0.146E-04 0.322E+05 0.570E+04 0.286E*04 0.502 0.349E-03 0.109E-03 0.716E-03 79.8 0.110E+03 0.241 0.165 250.9 49.5 0.147E-04 0.305E+05 0.526E+04 0.259E+04 0.493 0.386E-03 0.109E-03 0.760E-03 99.6 0.132E+03 0.254 0.175 247.9 52.5 0.148E-04 0.287E+05 0.491E+04 0.236E+04 0.480 0.424E-03 0.109E-03 0.812E-03 121.3 0.154E+03 0.269 0.186 244.5 55.9 0.149E-04 0.270E+05 0.462E+04 0.203E+04 0.441 0.491E-03 0.110E-03 0.847E-03 145.1 0.176E+03 0.287 0.200 240.4 60.0 0.150E-04 0.251E+05 0.437E+04 0.181E+04 0.415 0.551E-03 0.110E-03 0.906E-03 Length shear shear

  • Film-dx Film dx* fishear flother f2 cm N/ma 2 m m 17.0 0.20E+00 0.11E+01 0.79E-04 0.70E-04 1.132 1.019 0.388 30.4 0.18E+00 0.11E+01 0.96E-04 0.87E-04 1.102 1.034 0.426 44.6 0.17E+00 0.98E+00 0.11E-03 0.10E-03 1.084 1.048 0.427 61.5 0.16E+00 0.90E+00 0.12E-03 0.11E-03 1.070 1.064 0.441 79.8 0.14E+00 0.81E400 0.13E-03 0.12E-03 1.059 1.081 0.431 99.6 0.13E+00 0.73E+00 0.14E-03 0.13E-03 1.050 1.097 0.417 121.3 0.12E+00 0.64E+00 0.15E-03 0.14E-03 1.042 1.113 0.380 145.1 0.10E+00 0.57E+00 0.16E-03 0.15E-03 1.035 1.129 0.355 O 9" e

I' . xm 44333333 W 33333333 d- 00000000 )t/ 00000000 . - - - - - - - - uC - - - - - - - - m EEEEEEEE o92 EEEEEEEE ~ l i 99355543 40012345 92323908 (R ^m 44478990 ~ F 791 1 111 1 8.H.8 8 8 8 8 9 00000000 00000000 mr 68032480 W 33333333 - ah 08691196 )o/ 00000000 e/ bC - - - - - - - - tg 8530851 8 u92 EEEEEEEE . 55554443 t^ 88889900 WsE ( Rm 00000011 11111111 , 00000000 dr 4207 8620 ) W 33333333 n h 80397793 n/C 00000000 - o i (92 - - - - - - - - c/ Wg 25792582 EEEEEEEF K 111 2 R^ 99531964 59359294 . m 22333445 . 00000000 55555555 r 12946840 "q 2 00000000 o 24476521

                           *  + ++ +     *+4      + t       44444444                                     x m EEEEEEEE               c
                           /  5553184 8              a      00000000

- W 876542+ 9 f D C 66666665 . 00000000 . D17 1 5 X 46220796 p *C 44444444 dm 49467641 x . 00000000

            =0        //      53208642               e2     * + ++ + +++

t Ha EEEEEEEE . it - w c *C 00009999 m 74846324 fn T 1111 / 83985308 iD d W 33222221 cot TP S 00000000 l 29743923 r *C 44444444 cC o. 00000000 T' 87777665 33333333 e2 + + ++++++ h^ EEEEEEEE 1111111 1 tm 86589069 , H/ 15694174

                                                        .W  97655544 9C 'C                                             00000000 t      08641738              )       55555555         2     26468972 1                  aC9                          x      00000000         f     68910965 R     02           s     98888776              i       * ++++ ++
  • 33344333 3 T 22222222 (

m EEEEEEEE 6

       -    41                11111111                      31838135               00000000         9-4     2$                                        e      76431086 R       33333322                                C O3 R n

u 1

            ==

cc TT

              , o,    i Tw9 2  36330893 18653064 1 0000099 111111
                                                    )

i (m/ p 2 x ^m K g 00000000 44444444 00000000 EEEEEEEE 55566789 44444444 h t l r e o 79272830 12457802 00000011 11111111 4 11111111 f 00000000 w 26453249 sa 26102897 r 42385579 T 'C a PK a 41976543 aC 52097518 g 01357926 e 11000000 P K' 00099998 111 P 44444455 h i s 11111111 f 21 28 oC 93121027 ma 06120435

  • m44433333 03 w a P x 00000000 31 T' 31986407 eK 20975295 d- - - - - - - - -

00999998 t s 66555544 EEEEEEEE 22222222 m 52512345

             --               11 P

l i 68911111 tt F 00000000 ee ll 62701219 s% 38396558 xm44333333 nn tC i' a 33445678 d 00000000 ii f 98653196 Gel 11111111 - - - - - - - - - PT - 44444433 l m EEEEEEEE c i om 00000000 l 51013345 T i 79111111 F - 00000000 wC 58064385 s% 84100151

  • 11100000 c9 a 90123457 r 00000000 rrr T 08753186 54444433 Gss 12222222 a ++++++++

e EEEEEEEE hhh

            ///

Xam 00000000 h s 21057902 11198776 ggg - KKK 00000000 aC 92508731 f, 22222333 r200000000 - T" 00000000 a^00000000

9. 4 06 43107531 44443333 R o * + +++++ +

EEEEEEEE em++++++++ h/EEEEEEEE 4 90497014 sN09865421 0 3.3 6 20778246 21111111 48 24579111 1 000O0000 00000000 sgw hm 04658631 hm t c 04658631 hm04658631 t c tc WWe g 70419915 g n 70419915 g 70419915 n W n e 13467924 11 e 13467924 11 e 13467924 11 L L L

Run 3.4-5 Ws - 59.3 Kg/hr Pinlet - 497.4 KPa Tc,1 = 28.1 9C Tc-fit = 0 Wg = 14.600 Kg/hr Tinlet = 145.7 9: Tc,o = 59.0 9C Point -11 Wew = 818.0 Kg/hr STD = 0.19 *C Length Ta Tew Tc-fit Two Tw Twi T 3at Tcl dTcw/dX q" Wcond Wsteam Film-dx cm SC N: 'C *C *C 9C *C *C 9C/m W/m*2 Kg/hr Kg/hr m 17.0 51.6 56.7 56.5 104.4 106.2 114.6 146.0 146.9 14.862 0.947E*05 4.07 55.23 0.824E-04 30.4 49.4 54.6 54.5 103.1 104.8 112.9 145.7 146.9 14.294 0.910E+05 7.13 52.17 0.996E-04 44.6 47.2 52.4 52.5 101.1 102.8 110.5 145.4 146.6 13.117 0.873E+05 10.23 49.07 0.113E-03 61.5 44.8 50.1 50.3 100.2 101.8 109.2 144.9 146.2 13.060 0.831E*05 13.75 45.55 0.125E-03 79.8 42.4 47.9 48.0 99.1 100.6 107.6 144.4 146.1 12.384 0.788E+05 17.35 41.95 0.135E-03 99.6 40.4 45.9 45.6 97.1 98.5 105.1 143.8 145.8 11.692 0.744E*05 21.01 38.29 0.144E-01 121.3 37.9 43.4 43.1 94.4 95.7 102.0 143.1 145.0 10.918 0.699E+05 24.75 34.55 0.153E-03 145.1 35.0 40.4 40.6 90.8 92.1 98.0 142.2 144.6 10.245 0.652E*05 28.53 30.77 0.162E-03 Length Re,f X Gas D Gas P steam P gas p (mix) Re (mix) Ht heor Hexp Dfactor R(in) R(tube) R(out) cm mass % mole % KPa KPa Kg/m^2 W/m^2.*C W/m*2.9: m^29C/W m^29C/W m^29C/W 17.0 0.360E*02 0.209 0.141 427.2 70.2 0.152E-04 0.342E*05 0.835E+04 0.301E604 0.360 0.332E-03 0.107E-03 0.541E-03 30.4 0.624E+02 0.219 0.148 423.7 73.7 0.152E-04 0.326E+05 0.691E+04 0.277E+04 0.401 0.361E-03 0.108E-03 0.570E-03 44.6 0.885E+02 0.229 0.156 419.8 77.6 0.153E-04 0.310E+05 0.611E+04 0.251E+04 0.410 0.399E-03 0.108E-03 0.595E-03 61.5 0.118E+03 0.243 0.166 414.8 82.6 0.154E-04 0.291E+05 0.552E*04 0.233E+04 0.421 0.430E-03 0.108E-03 0.642E-03 79.8 0.148E+03 0.258 0.178 409.0 88.4 0.155E-04 0.272E+05 0.510E+04 0.214E+04 0.420 0.467E-03 0.108E-03 0.694E-03 99.6 0.176E+03 0.276 0.192 402.1 95.3 0.156E-04 0.252E+05 0.477E+04 0.192E+04 0.404 0.520E-03 0.108E-03 0.740E-03 121.3 0.204E+03 0.297 0.208 394.0 101.4 0.157E-04 0.233E+05 0.449E+04 0.170E*04 0.379 0.588E-03 0.109E-03 0.784E-03 145.1 0.230E+03 0.322 0.228 384.1 113.3 0.159E-04 0.212E+05 0.425E+04 0.148EiO4 0.347 0.678E-03 0.109E-03 0.024E-03 length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.12E+00 0.75E+00 0.82E-04 0.76E-04 1.078 1.026 0.326 30.4 0.11E*00 0.68E+00 0.10E-03 0.94E-04 1.060 1.046 0.362 44.6 0.10E*00 0. 62E+00 0.11E-03 0.11E-03 1.048 1.065 0.368 61.5 0.89E-01 0.55E+00 0.12E-03 0.12E-03 1.039 1.086 0.373 79.8 0.80E-01 0.49E+00 0.13E-03 0.13E-03 1.032 1.108 0.367 99.6 0.70E-01 0.43E+00 0.14E-03 0.14E-03 1.026 1.129 0.349 121.3 0.61E-01 0.37E+00 0.15E-03 0.15E-03 1.022 1.149 0.322 145.1 0.52E-01 0.31E+00 0.16E-03 0.16E-03 1.018 1.168 0.292 C-97

l e

                                                                                                                   .e xm     44333333 00000000
                                                     )

t/ W 33333333 00000300 d- - - - - - - - - uC - - - - - - - - - m EEEEEEEE o9 EEEEEEEE O l 9802221 0 (2 59180311 i 96123456 90269124 F 7911111 1 R ^m 67777888 00000000. 00000000 mr 9932071 1 W 33333333 e ah 12394701 )e/ 00000000 e/ bC9 - - - - - - - - t g 74174073 u 2 EEEEEEEE 55544433 E7778099 WsK (t* Rm C0000000 11111111 00000000 dr 11780399 ) W 33333333 . nh 87606298 r/C 00000000 o i (92 - - - - - - - - c/ 36936037 EEEEEEEE . W Kg 11222 R* 73455459 93794086 m 23334556 00000000 .- 55555555 r 13671958 "q 2 00000000 o 92243074

                           *  + * + + + * *
  • t 34444433 m EEEEEEEE c
                           /  7277641 6               a       00000000 W  86307417               f C           88887776               D 9                                                                                                .-

e 3 00000000 D1 1 4 X 90976502 p90 44444444 -

          - - 0        dm     91046649                 x      O0000000
                       //     85161615                 e2     e +++++++                                             -

t wC . H* EEEEEEEE - it = c9 33322110 m 71735810 30652975 fn T 11111111 / , i D d W 33222111 cot TP S 00000000. C l 966641 86 r9 44444444 cC o. 00000000 T 9 77777766 e2 *4 ++++++ 44444444 h* EEEEEEEE 1111 1111 t m 11761550 H/ 61262853 W 87655444 CC

         *9                                                   00000000 t      20739379               )        55555555            2     21167303 1                  aC                             x      00000000            f     58897529 R   40             s*    77665543               i         *+ ++ ++++               33333332 8

4 5 T 44444444 m EEEEEEEE

       - 46                    1111111 1              (

05913333 00000000 9-25 o 53108642 4 R 33332222 C - 3

                =                                             00000000 n                                                   2 r    54356776 u  1
           , o,        i       9344381 7              )       44444444 R                  wC                            ix *m   00000000             e    24680246 cc TT T*      08541738                         - - - - - - - -   h     00001111 21111009 111111 1 (m/ K g  EEEEEEEE 22334568 t

o 11111111 p 55555555 l 11111111 f m 00000000 - w 17034276 s Pa 89480267 r 33124839 w T *C a K a 86543221 , a 30874162 g 70484076 e 00000000 P *C 11000099 67778990 h K 111111 P 1 s 11111111 a i f 42 97 oC 41489833 m Pa 65064287

  • m44333333 04 w .

a x 00000000 51 T* 19652951. eK 18505912 d- - - - - - - - - 10000999 t s 43332110 EEEEEEEE - 1111 1 44444444 m 41023456 e

           -=                                          P l     79111111

- i tt F 00000000 ee ll 89096282 s% 39655729 xm44333333 nn tC a _ i* Gel 33456790 d 00000000 _ ii f 31075308 11111112 - - - - - - - - - _ PT - 55544443 1 o m EEEEEEEE - c [ m 00000000 l 07123456 _ T i 89111111 F 00000000 _ wC 52239257 s% 86681769

  • 00000000 e9 a 90124579 r 00000000 rrr T 42085307 Gss 12222222 a + ++ + 4 + + +

e EEEEEEEE 55544443 hhh Xam 00000000 h s 81592593

          ///                                                                            77655433 ggg KKK                                                                            00000000 aC     311171 69              f,      22233333             r200011111 T9                                     00000000             a^ 00000000
0. 2 00 86429741 e *++++*++ em+++ -

44443333 R EEEEEEEE h/EEEEEEEE 0 84964307 sN21033455 112 6 48 40514702 36811122 11198765 1 00000000 00000000

                 ==

hm 04658631 hm 04658631 hm04658631 sgw t c t c t c WNc g 7041 9915 g 70419915 g 70419915 W n 13467924 n 13467924 n 13467924 e 11 e 11 e 11 L L L

Run 3.5-2 Ws = 59.8 Kg/hr Pinlet = 205.9 KPa Tc,1 - 26.0 *C Tc-fit - D Kg/hr Tinlet - 124.3 *C Tc,o - 47.1 *C Point -11 Wg = 39.200 Wcw - 819.2 Kg/hr STD - 0. 55 *C Length Ta Tew Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q' Wcond Wsteam Film-dx em *C *C *C *C 'C *C *C 'c 'C/m W/m^2 Kg/hr Kg/hr m 91.0 92.0 96.5 110.3 123.9 7.877 0.502E+05 2.03 57.77 0.701E-04 17.0 42.5 46.9 45.9 3.60 56.20 0.851E-04 30.4 41.1 45.5 44.9 89.3 90.3 94.8 110.1 123.5 7.778 0.496E+05 88.5 92.9 109.8 123.1 7.675 0.489E+05 5.23 54.57 0.967E-04 44.6 39.8 44.2 43.8 87.5 7.15 52.65 0.107E-03 61.5 38.4 42.9 42.5 87.2 88.1 92.5 109.5 122.7 7.554 0.481E+05 41.3 41.1 84.8 85.7 90.0 109.1 122.1 7.(25 0.473E+05 9.18 50.62 0.117E-03 79.8 36.9 11.34 48.46 0.126E-03 99.6 35.6 40.0 39.7 83.2 84.1 88.3 108.7 121.5 1.288 0.464E*05 33.9 38.2 38.1 80.6 81.5 85.7 108.2 120.8 7.140 0.455E*05 13.63 46.17 0.135E-03 121.3 6.982 0.445E*05 16.11 43.69 0.143E-03 145.1 31.6 36.0 36.4 79.7 80.6 84.7 107.6 120.0 Re,f X Gas H Gas P steam P gas p (mix) Re (mix) Htheor Hexp Dfactor R(in) R (t ute) R(out) Length m^2*C/W m ^ 2*C/ W m*2*C/W cm mass % mole % KPa KPa Kg/m^2 W/m'2 *C W/m^ 2. *C 17.0 0.139E+02 0.404 0.297 144.8 61.1 0.153E-04 0.473E*05 0.974E+04 0.364E+04 0.373 0.275E-03 0.110E-03 0.961E-03 30.4 0.243E*02 0.411 0.302 143.6 62.3 0.153E-04 0.464E+05 0.802E+04 0.324E+04 0.404 0.309E-03 0.110E-03 0.959E-03 44.6 0.350E+02 0.418 0.309 142.4 63.5 0.154E-04 0.454E+05 0.705E+04 0.290E+04 0. 411 0.345E-03 0.110E-03 0.957E-03 61.5 0.476E+02 0.427 0.316 140.8 65.1 0.154E-04 0.443E+05 0.634E+04 0.283E*04 0.446 0.353E-03 0.110E-03 0.992E-03 79.8 0.602E+02 0.436 0.325 139.0 66.9 0.155E-04 0.432E*05 0.581E+04 0.248E+04 0.427 0.404E-03 0.110E-03 0.987E-03 99.6 0.735E+02 0.447 0.334 137.0 68.9 0.156E-04 0.419E+05 0.539E+04 0.228E+04 0.423 0.438E-03 0.111E-03 0.100E-02 121.3 0.869E*02 0.459 0.345 134.8 71.1 0.157E-04 0.406E+05 0.504E+04 0.202E+04 0.401 0.495E-03 0.111E-03 0.999E-03 145.1 0.102E+03 0.473 0.358 132.2 73.7 0.157E-04 0.392E+05 0.475E+04 0.194E+04 0.408 0.516E-03 0.111E-03 0.104E-02 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.44E+00 0.23E+01 0.70E-04 0.53E-04 1.330 1.010 0.278 30.4 0.43E+00 0.23E+01 0.85E-04 0.67E-04 1.265 1.018 0.314 44.6 0.42E+00 0.22E+01 0.97E-04 0.79E-04 1.226 1.026 0.327 61.5 0.40E+00 0.21E+01 0.11E-03 0.90E-04 1.196 1.035 0.360 79.8 0.38E+00 0.20E+01 0.12E-03 0.10E-03 1.172 1.044 0.349 99.6 0.36E+00 0.19E+01 0.13E-03 0.11E-03 1.152 1.054 0.349 121.3 0.34E+00 0.17E+01 0.13E-03 0.12E-03 1.135 1.064 0.332 145.1 0.33E+00 0.16E+01 0.14E-03 0.13E-03 1.120 1.075 0.339

D  % a m Rur. 3.5-2R1 Ws = 60.1 Kg/hr Pinlet = 208.9 KPa Tc,1 = 22.0- "C Tc-fit = D Wg = 34.350 Kg/hr Tinlet = 124.3 9: Tc,o = 43.1 *C Point =11 Wcw = 820.5 Kg/hr STD = 0.41 9C Length Ta Tew Tc-fit Two Tw Twl Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm 9C 9C *C *C *C 'C 92 9C *C/m W/m^2 Kg/hr Kg/hr m 17.0 38.0 42.6 41.9 89.1 90.1 94.9 111.9 125.5 8.297 0.530E+05 2.15 57.95 0.715E-04 30.4 36.5 41.1 40.8 87.1 88.1 92.8 111.7 125.3 8.129 0.519E+05 3.80 56.30 0.867E-04 44.6 35.3 39.8 39.6 85.0 86.0 90.6 111.4 125.0 7.956 0.508E+05 5.51 54.59 0.985E-04 61.5 34.1 38.7 38.3 84.8 85.8 90.3 111.1 124.7 7.754 0.495E+05 7.49 52.61 0.109E-03 79.3 32.6 37.2 36.9 82.9 83.8 88.2 110.7 124.1 7.542 0.481E+05 9.57 50.53 0.119E-03 99.6 30.9 35.4 35.4 81.0 81.9 86.2 110.3 123.4 7.318 0.467E+05 11.75 48.35 0.128E-03 i 121.3 29.2 33.6 33.9 78.0 78.9 83.0 109.9 122.6 7.081 0.452E+05 14.04 4 6.06 0.136E-0 3 145.1 27.4 31.9 32.2 77.0 77.9 81.9 109.4 121.7 6.829 0.436E+05 16.48 4 3.62 0.144E-03 i Length Re,f X Gas il Gas P steam P gas p(mix) Retmix) Htheor Hexp Dractor R(in) R(tube) R(out) cm mass % mole % KPa KPa Kg/m^2 W/ m ^ 2 . *C W/m*2.*C m^2*C/W m'2*C/ W m ^2*C/W 17.0 0.147E*02 0.372 0.269 152.7 56.2 0.151E-04 0.456E+05 0.955E+04 0.311E+04 0.326 0.321E-03 0.110E-03 0.953E-03 30.4 0.257E+02 0.379 0.275 151.5 57.4 0.151E-04 0.446E+05 0.787E+04 0.275E+04 0.350 0.363E-03 0.110E-03 0.955E-03 44.6 0.367E+02 0.386 0.281 150.2 58.7 0.152E-04 0.437E+05 0.692E+04 0.244E+04 0.353 0.409E-03 0.110E-03 0.956E-03 61.5 0.498E+02 0.395 0.289 148.6 60.3 0.152E-04 0.425E+05 0.624E+04 0.238E+04 0.382 0.420E-03 0.110E-03 0.101E-02 70.8 0.627E+02 0.405 0.297 14<.9 62.0 0.153E-04 0.413E405 0.572E+04 0.213E+04 0.373 0.468E-03 0.111E-03 0.102E-02 99.6 0.760E+02 0.415 0.306 1~.4.9 64.0 0.154E-04 0.401E+05 0.532E+04 0.193E+04 0.363 0.518E-03 0.111E-03 0.104E-02 121.3 0.891E+02 0.427 0.317 142.7 66.2 0.154E-04 0.388E*05 0.498E+ 04 0.168E+04 0.338 0.594E-03 0.111E-03 0.104E-02 145.1 0.104E+03 0.441 0.329 140.3 68.6 0.155E-04 0.374E+05 0.471E+04 0.159E+04 0.337 0.630E-03 0.112E-03 0.110E-02 Length shear shear

  • Film-dx Film-dx* fishear flother. f2 cm N/m^2 m m 17.0 0.41E+00 0.21E+01 0.71E-04 0.55E-04 1.297 1.011 0.249  :

30.4 0.39E+00 0.21E+01 0.07E-04 0.70E-04 1.238 1.019 0.277 44.6 0.38E+00 0.20E+01 0.98E-04 0.82E-04 1.202 1.027 0.286 61.5 0.36E+00 0.19E401 0.11E-03 0.93E-04 1.175 1.036 0.313 79.8 0.34E+00 0.18E+01 0.12E-03 0.10E-03 1.153 1.046 0.309 99.6 0.33E+00 0.17E+01 0.13E-03 0.11E-03 1.136 1.056 0.303 121 3 0.31E+00 0.16E+01 0.14E-03 0.12E-03 1.120 -1.065 0.283 145.1 0.29E+00 0.15E+01 0.14E-03 0.13E-03 1.107 1.076 0.283 C-100 - -_m __ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -y . . wi-P wmv +e -r-'- may-a w w w o-- - A er w m w - w r. -* a __ r. _ :#

Run 3.5-3 { WS = 59.7 Kg/hr Pinlet = 303.9 KPa Tc,1 - 26.4 'C Tc-fit = D Kg/hr Tinlet = 126.1 'C Tc,o = 49.5 *C Point =11 wg = 39.090 Wew - 829.1 Kg/hr STD = 0. 4 8 *C Tw Twi Tsat Tcl dTcw/dX qa Wcond Wsteam Film-dx Length Ta Tew Tc-fit Two

                 'C       *C       'C                            'C                                                                     'C                                      'C          *C            *C          *C/m       W/m*2      Kg/hr     Kg/hr                       m en 48.1             96.2                                                                     97.3                                              102.5       122.3        126.2           8.992 0.580E*05        2.39      57.31 0.722E-04 17.0       44.1      49.0 4.24      55.46 0.876E-04 42.7      47.5     46.9             94.1                                                                     95.2                                              100.3       122.0        126.0           8.865 0.572E+05 30.4                                                                                                                                                                                               125.7           8.732 0.563E+05        6.16      53.54 0.996E-04 44.6       41.2      45.9     45.7             92.1                                                                     93.2                                               98.3       121.6 44.6     44.2             91.8                                                                     92.9                                               97.9       121.2        125.4           8.577 0.553E+05        8.41      51.29 0.111E-03 61.5       39.7 37.9      42.8     42.6             89.8                                                                     90.9                                               95.8       120.7        124.9           8.412 0.543E+05       10.78      48.92 0.12]E-03 79.8                                                                                                                                                                                                                                     13.28      46.42 0.130E-03 99.6       36.6      41.3     41.0             87.1                                                                     88.1                                               92.9       120.2        124.4           8.238 0.531E*05 34.6      39.3     39.2             84.6                                                                     85.6                                               90.3       119.5        123.8           8.050 0.519E*05       15.95      43.75 0.139E-03 121.3                                                                                                                                                                                                               7.850 0.506E*05       18.80      40.90 0.147E-03 145.1       32.2      37.0     37.3             83.1                                                                     84.1                                               88.7       118.7        123.1 Length       Re,f     X Gas    il Gas P steam                                                                      P gas                                                   p(mix)    Re (mix)      Htheor             Hexp    Dfactor      R (in)   R(tube)                 R(out) mass %   mole %                          KPa                                                                       KPa                                 Kg/m"2                W/ m ' 2 . *C   W /m* 2.*C              m^2T/W    m *2*C/W               m^2*C/W em 17.0 0.179E*02      0.406    0.298     213.4                                                                            90.5 0.15BE-04 0.455E+05 0.950E+ 04 0.293E+ 04                                                         0.308 0.341E-03 0.109E-03 0.886E-03 30.4 0.313E*02      0.413    0.305     211.3                                                                            92.6 0.158E-04 0.445E+05 0.782E+04 0.264E+04                                                           0.338 0.379E-03 0.109E-03 0.882E-03 44.6 0.450E+02      0.422    0.312     209.1                                                                            94.8 0.159E-04 0.434E+05 0.688E+04 0.241E+04                                                           0.350 0.415E-03 0.109E-03 0.882E-03 61.5 0.612E+02      0.432    0.321     206.2                                                                            97.7 0.160E-04 0.422E+05 0.619E+04 0.237E+04                                                           0.383 0.422E-03 0.109E-03 0.921E-03 79.8 0.774E+02      0.444    0.332     203.1                                                                    100.8 0.160E-04 0.408E+05 0.568E+04 0.218E+04                                                                  0.384 0.459E-03 0.110E-03 0.930E-03 99.6 0.937E+02      0.457    0.343      199.5                                                                    104.4 0.161E-04 0.395E+05 0.526E+04 0.195E+04                                                                 0.371 0.513E-03 0.110E-03 0.927E-03 121.3 0.111E+03      0.472    0.357      195.4                                                                   108.5 0.162E-04 0.380E+05 0.492E+04 0.178E+04                                                                  0.361 0.562E-03 0.110E-03 0.934E-03 145.1 0.129E+03      0.489    0.373      190.7                                                                    113.2 0.164E-04 0.364E+05 0.464E+04 0.169E+04                                                                 0.363 0.593E-03 0.111E-03 0.967E-03 Length      shear    shear
  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.31E+00 0.17E+01 0.72E-04 0.59E-04 1.227 1.013 0.248 30.4 0.30E+00 0.17E+01 0.88E-04 0.74E-04 1.180 1.023 0.280 44.6 0.28E*00 0.16E*01 0.10E-03 0.06E-04 1.153 1.033 0.294 61.5 0.27E+00 0.15E+01 0.11E-03 0.98E-04 1.131 1.045 0.324 79.8 0.26E+00 0.14E+01 0.12E-03 0.11E-03 1.114 1.057 0.326 99.6 0.24E+00 0.13E+01 0.13E-03 0.12E-03 1.100 1.069 0.315 121.3 0.23E+00 0.12E+01 0.14E-03 0.13E-03 1.088 1.081 0.307 145.1 0.21E+00 0.11E+01 0.15E-03 0.14E-03 1.077 1.094 0.308
                                                                                                                                                                                       -101

f D

                                                                                                                       \

Run 3.5-3R1 Ws = 60.8 Kg/hr Pinlet = 315.8 KPa Tc,1 = 22.5 *C Tc-fit - D Wg = 34.350 Kg/hr Tinlet = 126.5 5: Tc,o = 45.8 *C Point =11 Wcw = 818.6 Kg/hr STD = 0.48 9: Isngth Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm 9C "C *C *C *C 9: 9C 9: *C/m W/m*2 Kg/hr Kg/hr m 17.0 40.1 45.3 44.4 95.8 97.0 102.4 124.9 126.4 9.404 0.599E+05 2.49 58.31 0.729E-04 30.4 38.4 43.5 43.1 93.3 94.4 99.7 124.6 126.4 9.215 0.587E+05 4.39 56.41 0.884E-04 44.6 37.0 42.1 41.8 91.6 92.7 97.9 124.3 126.2 9.020 0.574E+05 6.36 54.44 0.100E-03 61.5 35.6 40.7 40.3 90.4 91.5 96.5 123.9 126.0 8.792 0.560E+05 8.65 52.15 0.111E-03 79.8 33.9 39.0 38.7 87.8 88.9 93.8 123.4 125.6 8.552 0.545E+05 11.04 49.76 0.121E-03 99.6 32.0 37.0 37.1 85.7 86.7 91.5 122.9 s25.1 8.300 0.529E*05 13.55 47.25 0.131E-03 121.3 30.1 35.0 35.3 81.9 82.9 87.6 122.3 124.3 8.032 0.512E*05 16.18 44.62 0.139E-03 145.1 28.2 33.1 33.4 80.2 81.2 85.7 121.6 123.6 7.748 0.493E+05 18.98 41.82 0.148E-03 Length Re,f X Gas il Gas P steam P gas p(mix) Re (mix) Ht heor Hexp Dfactor R(in) R(tube) R(out) cm mass % mole % KPa KPa Kg/m*7 W/ m*2. 9C W/m*2.9C m*29C/W m"29C/W m^29C/W 17.0 0.188E*02 0.371 0.268 231.2 84.6 0.156E-04 0.442E*05 0.941E*04 0.266E+04 0.283 0.376E-03 0.109E-03 0.919E-03 30.4 0.328E+02 0.378 0.274 229.1 86.7 0.156E-04 0.432E+05 0.775E+04 0.236E+04 0.304 0.424E-03 0.109E-03 0.914E-03 44.6 0.470E*02 0.387 0.282 226.9 88.9 0.157E-04 0.421E+05 0.683E+04 0.218E+04 0.319 0.459E-03 0.109E-03 0.926E-03 61.5 0.634E+02 0.397 0.290 224.1 91.7 0.158E-04 0.408E+05 0.615E+04 0.20SE+04 0. 334 0.488E-03 0.110E-03 0.957E-03 79.8 0.796E+02 0.408 0.300 221.0 94.8 0.159E-04 0.395E+05 0.564E+04 0.184E+04 0.327 0.543E-03 0.110E-03 0.964E-03 99.6 0.963E+02 0.421 0.311 217.5 98.3 0.159E-04 0.381E+05 0.524E+04 0.168E+04 0.321 0.594E-03 0.110E-03 0.983E-03 121.3 0.112E+03 0.435 0.324 213.6 102.2 0.160E-04 0.367E+05 0.490E+04 0.147E+04 0.300 0.680E-03 0.111E-03 0.974E-03 145.1 0.130E+03 0.451 0.338 209.1 106.7 0.161E-04 0.351E+05 0.463E+04 0.137E+04 0.297 0.728E-03 0.111E-03 0.101E-02 Length shear shear

  • Film-dx Film-dx* fishea r flother f2 cm N/m*2 m m 17.0 0.28E+00 0.16E+01 0.73E-04 0.61E-04 1.205 1.014 0.2 31 30.4 0.27E*00 0.15E+01 0.88E-04 0.76E-04 1.163 1.024 0.255 44.6 0.26E+00 0.14E*01 0.10E-03 0.88E-04 1.138 1.034 0.271 61.5 0.25E+00 0.14E+01 0.11E-03 0.10E-03 1.118 1.046 0.285 79.8 0.23E+00 0.13E+01 0.12E-03 0.11E-03 1.102 1.058 0.280 99.6 0.22E+00 0.12E+01 0.13E-03 0.12E-03 1.090 1.070 0.275 121.3 0.21E+00 0.11E+01 0.14E-03 0.13E-03 1.079 1.082 0.257 145.1 0.19E+00 0.10E+01 0.15E-03 0.14E-03 1.069 1.095 0.254 C-102

Run 3.5-4 Pinlet - 402.7 KPa Tc,1 = 22.7 *C Tc-fit - D Ws - 61.1 Kg/hr

                                                                                                                                     *C             Point -11 Wg = 32.530      Kg/hr        Tinlet - 132.0    *C         Tc, o = 47.7 STD = 0. 49 *C Wew - 815.1       Kg/hr Tcw               Two       Tw       Twl       Tsat          Tcl      dTcw/dX            q"      Wcond     Wsteam      Film-dx Length          Ta             Tc-fit W/m^2       Kg/hr     Kg/hr               m cm          *C         'C      *C        *C      'C         'C         'C           *C         *C/m 101.3      107.1      133.4        133.5       10.276 0.652E+05            2.74     58. 36 0.740E-04 17.0       41.4       47.0     46.1     100.1                                                                                       56.27 0.897E-04 97.5    98.7      104.4      133.1        133.4       10.051 0.637E+05            4.83 30.4       39.8       45.3     44.8                                                                                        6.99     54.11 0.102E-03 38.2       43.6     43.4      94.6    95.8      101.4      132.8        133.3         9.818 0.623E*05 44.6                                                                               133.2         9.548 0.60$E*05           9.49     51.61 0.113E-03 61.5       36.7       42.1     41.7      93.5    94.7      100.1      132.3 90.9               97.3      111.8        133.0         9.264 0.d87E+05          12.10     49.00 0.123E-03 79.8       34.8       40.2     40.0              92.0 8.966 0.569E+05          14.82     46.28 0.132E-03 99.6       32.9       38.2     38.2      88.4    89.5       94.6      131.2        132.5 36.3      84.5    85.6       90.6      130.6        131.6         0.651 0.549E+05          17.67     4 3. 4 3 0.141 E-0 3 121.3       30.8       35.9 131 1         8.318 0.527E*05         20.68      40.42 0.150E-03 145.1       28.8       33.9     34.3      82.1    83.1       87.9      129.8 X Gas    Il Gas P steam    P gas     p(mix)    Re (mix)     Ittheor           llexp    Ofactor       R(in)   R(tube)        R(out)

Length Re,f m*2*C/W m ^2*C/ W n*2*C/W cm mass % mole % KPa KPa Kg/m*2 W/ m^ 2. *C W/ m ^ 2 . *C 0.358 0.257 299.1 103.6 0.158E-04 0.427E+05 0.929E*04 0.247E+04 0.266 0.404E-03 0.108E-03 0.885E-03 17.0 0.221E+02 0.290 0.451E-03 0.109E-03 0.884E-03 30.4 0.385E+02 0.366 0.264 296.3 106.4 0.159E-04 0.416E+05 0.766E+04 0.222E+04 44.6 0.547E+02 0.375 0.272 293.2 109.5 0.160E-04 0.404E+05 0.674E+04 0.198E+04 0.294 0.504E-03 0.109E-03 0.880E-03 61.5 0.737E+02 0.387 0.281 289.4 113.3 0.160E-04 0.391E+05 0.607E+04 0.188E+04 0. 310 0. 531E-03 0.109E-03 0.915E-03 79.8 0.925E+02 0.399 0.292 285.1 117.6 0.161E-04 0.377E+05 0.557E+04 0.170E+04 0.306 0.588E-03 0.109E-03 0.926E-03 99.6 0.112E+03 0.413 0.304 280.3 122.4 0.162E-04 0.362E+05 0.518E+04 0.155E+04 0.300 0.644E-03 0.110E-03 0.944E-03 121.3 0.130E+03 0.428 0.318 274.8 127.9 0.163E-04 0.347E+05 0.485E404 0.137E+04 0.283 0.729E-03 0.110E-03 0.941E-03 145.1 0.149E+03 0.446 0.333 268.5 134.2 0.164E-04 0.330E*05 0.458E404 0.126E+04 0.275 0.794E-03 0.111E-03 0.969E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m i

17.0 0.22E+00 0.13E+01 0.74E-04 0.64E-04 1.159 1.016 0.226 l i 30.4 0.21E+00 0.12E+01 0.90E-04 0.80E-04 1.125 1.028 0.250 l 44.6 0.20E+00 0.12E+01 0.10E-03 0.92E-04 1.105 1.040 0.256 61.5 0.19E+00 0.11E+01 0.11E-03 0.10E-03 1.090 1.054 0.270 79.8 0.18E+00 0.10E+01 0.12E-03 0.11E-03 1.077 1.068 0.266 99.6 0.17E+00 0.93E+C0 0.13E-03 0.12E-03 1.067 1.082 0.260 121.3 0.15E+00 0.85E+00 0.14E-03 0.13E-03 1.058 1.095 0.244 145.1 0.14E+00 0.78E400 0.15E-03 0.14E-03 1.051 1.109 0.236 I l l { l g gim g

O O . Run 3.5-5 Ws - 59.6 Kg/hr Pinlet - 494.8 KPa Tc,1 = 26.9 *C Tc-fit - D Hg = 35.340 Kg/hr Tinlet = 140.8 *C Tc, o = 53.0 *C Point =11 Wew = 830.3 Kg/hr STD = 0.32 "C Iangth Ta Tew Tc-fit Two Tw Twl Tsat Tcl dTew/dX q' Wcond Wsteam Film-dx cm *C 9C *C *C *C "C 92 "C *C/m W/m^2 Kg/hr Kg/hr m 17.0 46.6 51.8 51.2 101.3 102.7 109.3 139.5 141.2 11.488 0.742E+05 3.14 56.46 0.766E-04 30.4 44.8 50.0 49.7 99.9 101.3 107.7 139.1 141.2 11.187 0.723E+05 5.53 54.07 0.928E-04 44.6 42.9 48.1 48.1 97.5 98.8 105.1 138.6 141.1 10.877 0.703E+05 7.98 51.62 0.105E-03 61.5 41.2 46.5 46.3 96.7 98.0 104.1 138.0 141.0 10.518 0.680E+05 10.80 48.80 0.117E-03 79.8 39.2 44.4 44.4 94.2 95.5 101.4 137.3 140.7 10.144 0.655E+05 13.73 45.87 0.127E-03 99.6 37.5 4?.7 42.5 91.9 93.1 98.8 136.5 140.4 9.753 0.630E+05 16.76 42.84 0.136E-03 121.3 35.4 40.4 40.4 88.2 89.4 94.9 135.6 140.0 9.34 3 0.603E+05 19.90 39.70 0.145E-03 145.1 32.8 37.8 38.2 85.6 86.7 91.9 134.5 139.2 8.912 0.575E+05 23.19 36. 41 0.154 E-03 Length Re,f X Gas il Gas P steam -P qas p(mix) Re (mix) Htheor Hexp Ofactor R(in) R (tube) R(out) cm mass % mole % KPa KPa Kg/m*2 W/ m" 2. *C W/m^2.90 m^29C/W m*29C/W n"29C/W 17.0 0.263E+02 0.385 0.280 356.3 138.5 0.163E-04 0.419E405 0.898E404 0.246E404 0.274 0.407E-03 0.108E-03 0.721E-03 30.4 0.459E+02 0.395 0.289 351.9 142.9 0.164E-04 0.407E+05 0.742E+04 0.231E+04 0.311 0.433E-03 0.108E-03 0.743E-03 44.6 0.653E+02 0.406 0.298 347.1 147.7 0.165E-04 0.394E+05 0.654E+04 0.210E404 0.321 0.477E-03 0.108E-03 0.751E-03 61.5 0.878E+02 0.420 0.310 341.2 153.6 0.165E-04 0.379E+05 0.589E+04 0.200E+04 0. 340 0.4 99E-03 0.109E-03 0.793E-03 79.8 0.110E+03 0.435 0.324 334.6 160.2 0.166E-04 0.363L+05 0.542E+04 0.182E+04 0.337 0.548E-03 0.109E-03 0.813E-03 99.6 0.132E+03 0.452 0.339 327.1 167.7 0.168E-04 0.347E+05 0.504E+04 0.167E+04 0.331 0.599E-03 0.109E-03 0.839E-03 121.3 0.153E+03 0.471 0.356 318.6 176.2 0.169E-04 0.331E*05 0.473E+04 0.148E+04 0.313 0.675E-03 0.110E-03 0.848E-03 145.1 0.175E+03 0.493 0.376 308.7 186.1 0.170E-04 0.313E+05 0.447E+04 0.135E+04 0.303 0.740E-03 0.110E-03 0.880E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.18E+00 0.11E+01 0.77E-04 0.68E-04 1.129 1.019 0.238 +

30.4 0.17E+00 0.10E+01 0.93E-04 0.84E-04 1.101 1.034 0.273 44.6 0.16E+00 0.98E+00 0.11E-03 0.97E-04 1.084 1.048 0.282 61.5 0.15E+00 0.91E+00 0.12E-03 0.11E-03 1.071 1.064 0.298  ! 79.8 0.14E+00 0.84E+00 0.13E-03 0.12E-03 1.061 1.080 0.294 99.6 0.13E+00 0.77E+00 0.14E-03 0.13E-03 1.053 1.097- 0.287 121.3 0.12E+00 0.70E+00 0.15E-03 0.14E-03 1.045 1.112 0.269 145.1 0.11E+00 0.63E+00 0.15E-03 0.15E-03 1.039 1.128 0.258 l L C-104

Run 4.1-2 Ws - 29.9 Kg/hr Pinlet = 205.0 KPa Tc,1 - 25.5 *C Tc-fit - D Wg = 0.314 Kg/hr Tinlet - 132.9 *C Tc,o - 49.7 9: Point =9 Wcw - 768.6 Kg/hr STD - 0.65 9C Length Ta Tcw Tc-fit Two Tw Twl Tsat Tcl dTcw/dX q" Wnend Wsteam Film-dx cm *C *C *C *C *C *C 'C *C 'C/m W/m^2 Kg/hr Kg/hr m 17.0 42.8 48.7 47.7 102.8 104.2 110.9 120.8 131.6 12.588 0.753E+05 3.10 26.80 0.779E-04 30.4 40.9 46.8 46.1 101.2 102.6 109.2 120.8 131.3 12.388 0.741E+05 5.49 24.41 0.945E-04 44.6 38.8 44.8 44.3 99.9 101.3 107.8 120.7 131.0 12.180 0.728E+05 7.97 21.93 0.107E-33 61.5 36.5 42.6 42.3 98.6 100.0 106.4 120.7 130,7 11.936 0.714E+05 10.88 19.02 0.119E-03 79.8 34.5 40.6 40.1 96.7 98.0 104.2 120.6 130.4 11.678 0.698E+05 13.94 15.96 0.130E-03 99.6 31.6 37.7 37.8 94.0 95.3 101.4 120.5 130.0 11.405 0.682E405 17.16 12.74 0.140E-03 121.3 28.2 34.4 35.4 91.8 93.1 99.1 120.4 129.4 11.114 0.665E+05 20.60 9.30 0.149E-03 145.1 26.3 32.7 32.8 91.7 92.9 98.7 119.9 124.3 10.802 0.646E+05 24.28 5.62 0.158E-03 Length Pe,f X Gas O Gas P steam P qas p(mix) Re(mix) Htheor llexp Dfactor R(in) R (tube) R(out) em mass % mole t KPa MPa Kg/m^2 W/m*2. *C W/m ^ 2. *C m^2*C/W m*2*C/W m^2*C/W 17.0 0.240E+02 0.012 0.007 203.5 1.5 0.129E-04 0.156E+05 0.881E+04 0.760E*04 0.863 0.132E-03 0.108E-03 0.782E-03 30.4 0.421EiO2 0.013 0.008 203.4 1.6 0.129E-04 0.142E+05 0.726E+04 0.640E+0* 0.881 0.156E-03 0.108E-03 0.796E-03 44.6 0.608E+02 0.014 0.009 203.2 1.8 0.129E-04 0.128E+05 0.640E*04 0.563E+04 0.879 0.178E-03 0.108E-03 0.016E-03 61.5 0.823E+02 0.016 0.010 202.9 2.1 0.129E-04 0.111E+05 0.575E*04 0.498E+04 0.866 0.201E-03 0.108E-03 0.844E-03 79.8 0.104E*03 0.019 0.012 202.5 2.5 0.130E-04 0.935E+04 0.528E+04 0.426E+04 0.807 0.235E-03 0.109E-03 0.866E-03 99.6 0.127E+03 0.024 0.015 201.9 3.1 0.130E-04 0.748E+04 0.490E+04 0.357E404 0.728 0.280E-03 0.109E-03 0.881E-03 121.3 0.150E+03 0.033 0.021 200.8 4.2 0.130E-04 0.549E+04 0.460E+04 0.312E+04 0.680 0.320E-03 0.109E-03 0.908E-03 145.1 0.176E+03 0.053 0.034 198.1 6.9 0.131E-04 0.336E+04 0.435E+04 0.304E*04 0.701 0.328E-03 0.109E-03 0.975E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m"2 m m 17.0 0.52E-01 0.30E400 0.7BE-04 0.75E-04 1.036 1.018 0.819 30.4 0.44E-01 0.25E+00 0.95E-04 0.92E-04 1.025 1.031 0.834 44.6 0.36E-01 0.21E+00 0.11E-03 0.11E-03 1.018 1.044 0.827 61.5 0.28E-01 0.16E+00 0.12E-03 0.12E-03 1.013 1.060 0.006 79.8 0.21E-01 0.12E+00 0.13E-03 0.13E-03 1.009 1.076 0.744 99.6 0.14E-01 0.77E-01 0.14E-03 0.14E-03 1.005 1.093 0.662 121.3 0.80E-02 0.44E-01 0.15E-03 0.15E-03 1.003 1.110 0.611 145.1 0.33E-02 0.18E-01 0.1EE-03 0.16E-03 1.001 1.129 0.620 0 6" e --

xm 433333 000000 )t/ W 333333 000000 d - - - - - -

                 -       - - - - - -  uC m      EEEEEE                EEEEEE l       325898       (o *2    810140 i       401234                481590 F       811111       R ^m     667779

( 000000 000000 mr 768236 W 333333 ah 196909 )e/ 000000 e/ bu *C EEEEEE t g 629527 2 777787 WsK 22111 (t^ 000000 Rm 11111

                                                          .1 000000 dr      342874       )    W   333333 n h    247434        n/      000000 o                   I *C      - - - - - -

c/ Wg 470482 (2 EEEEEE 985370 K 1112 R* 469254 m 111222 000000 555555 r 142575 "q 2 000000 o 286389 a + ++ + +* t 888878 m EEEEEE c

                     /  876023        a       000000 W  963062       f C           999988       D 6           000000 D7     4                         p       444444 X       083034 dm                    x *C 000000
      -   =0    //

753305 616047 le2

                                              + + + +   + +

t w0 l a EEEEEE i t - c9 665543 m 174906 f n D T 111111 / 791491 i d W 655434 cot TP S 000000 l 753183 r *C 444444 eC o. 000000 T* 777766 e2 + + + + * + 333333 ha EEEEEE 111111 t m 756855 H/ 179396 W 865544

     $; *C                                    000000 t      655430       )        555444           2     331267 aC                  x       000000           f     830608             -

73 s' 333333 i + +4 + * + 788777 3 T 333333 m EEEEEE  %

   - 50                 111111       (

791925 000000 1 25 e 421985 1 R 111864 4 C

      - -                                     000000

- n 2 u 1, o, l 733412 444444 r 666806

, R               wC                 )x    *m 000000            e    246813 cc         T"     875313       i m/g       - - - - - -

EEEEEE h 000011 TT 111111 t 111111 (p K 444455 o 111111 333333 l 111111 f 000000 w 980459 s Pa 360793 r 350632 T 'C a K a 211000 a: 987535 g 223347 e 000000 P* 000000 h K 1111 11 P s 111111 i f 46 28 oC 002793 m Pa 184751 *x m433333 03 w a 000000 31 T' 875314 eK 099875 d - - - - - - 000000 t 099999 - EEEEEE 111111 s 322222 m 201345

          -                                                    l     811111 P                        i tt                                                       F     000000 ee ll                  641580        s1      790264           xm433333 nn         tC i'                    a       001112          d     000000 ii          f       753075       Gel      000000            -     - - - - - -

PT - 444433 m EEEEEE T c Dom 000000 l i 402345 811111 F 000000 wC 284767 s% 246068

  • 000111 c* a 111223 r 000000 rrr T 853074 444433 Gss 000000 a +++ - - -

e EEEEEE hhh

      ///

Xam 000000 h s 173736 211852 ggg KKK 000000 a0 716850 f 222333 r2111122 83 T9 196307 e

                                        ,      000000
                                                + * + + + +

aa 000000 em - 4.1 433332 R EEEEEE h/EEEEEE 9 098016 sN581483 0 3 3. 6 629258 322184 07 368111 000000 000000

       ===        hm     046586        hm      046586           hm046586 sgw         t c                 tc                        t c WWc     W g

n 704199 134679 g n 704199 134679 g n 704199 134679 e e L e L L

Run 4.2-2 Ws - 29.8 Kg/hr Pinlet - 205.8 KPa Tc,1 = 27.1 *C Tc-fit - D Kg/hr Tinlet - 123.8 *C Tc,o - 50.4 *C Point -10 Wg - 1.510 STD = 0. 4 7 *C Wew - 757.1 Kg/hr Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx Iength Kg/hr Kg/hr m

                                                           'C        'C         'C         'C       'C                  *C               'C                                                               *C                                  *C/m        W/m*2 cm 48.6       99.5    100.8      106.8                  120.1                                               124.3                                                11.379 0.670E+05           2.80     27.00 0.758E-04 17.0                         44.0      49.4 11.028 0.650E+05           4.92     24.88 0.919E-04 30.4                         42.2      47.6        47.1       97.2     98.4      104.2                  120.0                                               124.2 45.9        45.5       94.7     95.9      101.5                  119.9                                               124.0                                                10.666 0.628E+05           7.08     22.72 0.104E-03 44.6                         40.6                                                                                                                                                                                                           9.57     20.23 0.115E-03 38.7      44.1        43.8       93.8     95.0      100.4                  119.7                                               123.8                                                10.252 0.604E+05 61.5                                                                                                                                                         123.6                                                9.822 0.579E+05          12.12     17.68 0.126E-03 79.8                         36.8      41.9        41.9       89.1     90.2       95.4                  119.5 39.8                   86.1     87.2       92.2                  119.2                                                123.5                                                9.376 0.552E*05          14.74      15.06 0.135E-03 99.6                         34.8                  40.0 123.4                                                8.911 0.525E*05          17.45      12.35 0.144E-03 121.3                         32.9      37.6        38.1       81.3     82.3       87.1                  118.8 31.1      35.7        36.0       78.3     79.3       83.8                  118.2                                                122.7                                                8.428 0.496E+05          20.27         9.53 0.152E-03 145.1 Length                         Re, f    X Gas       il Gas P steam      P gas     p(mix)                Re(mix)                                        litheor                                                        llexp    Dfactor       R(in)   R (t ube)                                            R(out)

KPa Kg/m^2 W/m* 2. *C W/m* 2.*C m*2*C/W m *2*C/ W m"2*C/W cm mass % mole % KPa 0.053 0.034 198.9 6.9 0.131E-04 0.161E+05 0.904E+04 0.505Ee04 0.558 0.198E-03 0.108E-03 0.812E-03 17.0 0.212E#02 0.552 0.243E-03 0.109E-03 0.824E-03 30.4 0.367E+02 0.057 0.036 198.3 7.5 0.132E-04 0.149E+05 0.746E+04 0.412E+04 44.6 0.521E+02 0.062 0.040 197.6 8.2 0.132E-04 0.137E+05 0.658E+04 0.343E+04 0.521 0.292E-03 0.109E-03 0.836E-03 61.5 0.700E+02 0.069 0.044 196.7 9.1 0.132E-04 0.122E+05 0.594E+04 0.313E*04 0.527 0.319E-03 0.109E-03 0.887E-03 79.8 0.863E+02 0.079 0.050 195.4 10.4 0.133E-04 0.108E+05 0.544E+04 0.240E+04 0.441 0.416E-03 0.110E-03 0.871E-03 99.6 0.103E+03 0.091 0.059 193.7 12.1 0.134E-04 0.923E+04 0.507E+04 0.204E+04 0.403 0.489E-03 0.110E-03 0.892E-03 121.3 0.119E+03 0.109 0.071 191.3 14.5 0.135E-04 0.767E+04 0.475E+04 0.165E+04 0.349 0.605E-03 0.111E-03 0.881E-03 14 5.1 0.135E+ 03 0.137 0.090 187.4 18.4 0.136E-04 0.604E+04 0.448E+04 0.145E+04 0.323 0.692E-03 0.111E-03 0.912E-03 tength shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.56E-01 0.32E+00 0.76E-04 0.73E-04 1.040 1.015 0.529 30.4 0.49E-01 0.27E+00 0.92E-04 0.89E-04 1.028 1.027 0.523 44.6 0.42E-01 0.23E+00 0.10E-03 0.10E-03 1.021 1.038 0.492 61.5 0.34E-01 0.19E+00 0.12E-03 0.11E-03 1.016 1.051 0.494 79.8 0.27E-01 0.15E*00 0.13E-03 0.12E-03 1.012 1.063 0.410 99.6 0.21E-01 0.11E+00 0.13E-03 0.13E-03 1.008 1.076 0.372 121.3 0.15E-01 0.79E-01 0.14E-03 0.14E-03 1.006 1.087 0.319 145.1 0.99E-02 0.51E-01 0.15E-03 0.15E-03 1.003 1.099 0.292 C-107

[ >

                                                                                              \

Run 4.2-3 , Ws = 31.0 Kg/hr Pinlet - 306.2 KPa Tc,1 = 27.3 9C Tc-fit - D Wg - 1.610 Kg/hr Tinlet = 133.3 *C Tc,o - 52.2 *C Point -10 Wew - 758.0 Kg/hr STD = 0.29 "C Length Ta Tew Tc-fit Two Tw Twl Tsat Tcl dTcw/dx q' Wcond Wsteam Film-dx cm 90 9: *C 'C *C 9C 9C *C "C/m W/m*2 Kg/hr Kg/hr m 17.0 44.5 50.4 49.8 104.2 105.0 113.4 133.0 133.0 14.585 0.860E+05 3.68 27.32 0.810E-04 30.4 42.3 48.2 47.9 101.8 103.4 110.7 132.9 132.8 13.937 0.822E+05 6.42 24.58 0.979E-04 "4.6 40.2 46.0 45.9 99.1 100.6 107.6. 132.7 132.6 13.282 0.783E+05 9.18 21.82 0.111E-03 61.5 38.0 43.9 43.8 97.6 99.0 105.6 132.5 132.3 12.543 0.740E+05 12.29 18.71 0.122E-03 79.8 35.7 41.5 41.5 94.2 95.5 101.7 132.1 131.9 11.789 0.695E+05 15.42 15.58 0.133E-03 99.6 33.4 39.1 39.3 91.1 92.4 98.3 131.6 1 31.6 11.024 0.650E+05 18.59 12.41 0.142E-03 121 3 31.0 36.7 37.0 88.7 89.9 95.4 130.7 131.2 10.242 0.604E+05 21.79 9.21 0.150E-03 145.1 29.0 34.7 34.6 85.9 87.0 92.1 129.0 129.6 9.449 0.557E+05 24.99 6.01 0.159E-03 Length Re,f X Gas il Gas P steam P gas p(mix) Re(mix) .!Itbeor llexp Dfactor R(in) R(tubel R(out) em mass % mole % KPa KPa Kg/m"2 W/m^2.*C W/m* 2.*C m*2*C/W m^2*C/W m ^2*C/W 17.0 0.305E+02 0.056 0.035 295.4 10.8 0.137E-04 0.158E+05 0.849E+04 0.4 39E+04 0.517 0.228E-03 0.107E-03 0.676E-03 30.4 0.526E+02 0.061 0.039 294.2 12.0 0.137E-04 0.142E+05 0.702E+04 0.371E+04 0.528 0.270E-03 0.108E-03 0.702E-03 44.6 0.740E+02 0.069 0.044 292.8 13.4 0.137E-04 0.127E+05 0.621E+04 0.312E+04 0.502 0.321E-03 0.108E-03 0.726E-03 61.5 0.980E+02 0.079 0.051 290.7 15.5 0.138E-04 0.110E+05 0.562E+04 0.275E+04 0.490 0.363E-03 0.108E-03 0.778E-03 79.8 0.121E+03 0.094 0.060 287.7 18.5 0.139E-04 0.923E+04 0.517E+04 0.229E+04 0.442 0.437E-03 0.109E-03 0.809E-03 99.6 0.143E+03 0.115 0.075 283.4 22.8 0.140E-04 0.747E+04 0.483E+04 0.195E+04 0.403 0.513E-03 0.109E-03 0.853E-03 121.3 0.164E*03 0.149 0.098 276.2 30.0 0.142E-04 0.568E+04 0.456E+04 0.171E+04 0.374 0.586E-03 0.110E-03 0.916E-03 145.1 0.184E*03 0.211 0.143 262.5 43.7 0.145E-04 0.390E+04 0.432E+04 0.151E+04 0.349 0.664E-03 0.110E-03 0.984E-03

  • Length shear shear
  • Film-dx Film-dx* f1 shear flother f2 6

cm N/m*2 m m 17.0 0.40E-01 0.24E+00 0.81E-04 0.79E-04 1.027 1.022 0.493 30.4 0.33E-01 0.20E+00 0.98E-04 0.96E-04 1.018 1.038 0.499 44.6 0.27E-01 0.16E+00 0.11E-03 0.11E-03 1.013 1.054 0.470 61.5 0.21E-01 0.12E+00 0.12E-03 0.12E-03 1.009 1.072 0.453 79.8 0.15E-01 0.89E-01 0.13E-03 0.13E-03 1.006 1.088 0.404 99.6 0.11E-01 0. 61E-01 0.14E-03 0.14E-03 1.004 1.104 0.364 121.3 0.66E-02 0.37E-01 0.15E-03 0.15E-03 1.002 1.120 0.334 145.1 0.34E-02 0.19E-01 0.16E-03 0.16E-03 1.001 1.134 0.307 i C-108

                       .___________.._____.__________.m_                          _ . _       . . , . ,        _             - _ . _ - _ _ _..              , , - . -    _- _ ~        , , _ . .         _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ .

t i l Run 4.2-5 l 31.5 Pinlet - 507.7 KPa Tc,i = 27.4 'C Tc-fit - D Ws = Kg/hr

                                                                                 *C          Point =7 Wg = 1.580      Kg/hr         Tinlet = 150.9    *C         Tc,o = 52.7 Kg/hr                                                                   STD = 0.53 'C Wcw - 761.7 Tw       Twi       Tsat         Tcl    dTcw/dX          q"     Wcond      Wsteam    Film-dx Length          Ta       Tcw  Tc-fit       Two                                                                                                  m
                                                                  'C         'C         'C        'C/m      W/m^2      Kg/hr       Kg/hr cm          'C        *C       'C       'C       'C 108.6    110.9      121.?      151.0       152.1     20.856 0.124E406         5.46      26.04 0.897E-04 17.0       43.5      49.9      49.1                                                                                            22.07 0.108E-03 46.4    106.3    108.5      118.'      150.8       152.1     19.512 0.116E+06         9.43 30.4       40.2      46.8                                                                                           13.33      18.17 0.122E-03 36.4      43.6      43.7    104.1    106.1      115.6      150.4       151.9     18.183 0.108E+06 44.6                                                                  149.9       151.6     16.718 0.991E+05        17.61      13.89 0.134E-03 61.5       33.5      40.4      40.8    103.0    104.9      113.7 37.9    102.1    103.8      111.8      148.8       150.5     15.265 0.905E+05        21.82       9.68 0.144E-03 79.8       30.4      37.6                                                                   13.835 0.820E*05        25.79       5.71 0.154E-03 28.4      35.2      35.0     95.9     97.5      104.8      146.5       146.8 99.6 X Gas     il Gas P steam    P gas     p(mix)    Re (mix)     Htheor        Hexp    Dfactor      R(In)    R(tube)     R(out)

Length Re,f m^2*C/W m"2^C/W cm mass % mole % KPa KPa Kg/m^2 W/m*2.'C W/m ^ 2. *C m ^2*C/ W 0.057 0.036 489.3 18.4 0.143E-04 0.143E*05 0.768E+04 0.422E+04 0.550 0.237E-03 0.107E-03 0.514E-03 17.0 0.508E*02 0.565 0.278E-03 0.107E-03 0.554E-03 30.4 0.865E+02 0.067 0.043 486.1 21.6 0.14 4E-04 0.122E *05 0.638E+04 0.36CE*04 0.080 0.051 481.7 26.0 0.145E-04 0.102E*05 0.566E+04 0.309E* 04 0.547 0.323E-03 0.107E-03 0.599E-03 44.6 0.121E+03 0.532 0.365E-03 0.107E-03 0.672E-03 61.5 0.158E+03 0.102 0.066 4i4.2 33.5 0.146E-04 0.789E+04 0.514E+04 0.214E+04 79.8 0.193E+03 0.140 0.092 460.9 46.8 0.148E-04 0.566E*04 0.477E+04 0.245E+04 0.512 0.409E-03 0.108E-03 0. 7 59E-03 99.6 0.219E+03 0.217 0.147 433.2 74.5 0.153E-04 0.356E*04 0.446E*04 0.197E+04 0.440 0.509E-03 0.109E-03 0.795E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.23E-01 0.15E+00 0.90E-04 0.89E-04 1.014 1.037 0.523 30.4 0.17E-01 0.11E+00 0.11E-03 0.11E-03 1.009 1.063 0.527 44.6 0.12E-01 0.80E-01 0.12E-03 0.12E-03 1.006 1.088 0.499 61.5 0.80E-02 0.51E-01 0.13E-03 0.13E-03 1.003 1.115 0.476 79.8 0.44E-02 0.28E-01 0.14E-03 0.14E-03 1.002 1.141 0.448 99.6 0.20E-02 0.12E-01 0.15E-03 0.15E-03 1.001 1.160 0.379 e er -

e

0 V v V) Run 4.3-2 Ws = 31.5 Kg/hr Pinlet = 212.8 KPa Tc,1 - 26.1 'C Tc-fit = D Wg = 3.250 Kg/hr Tinlet = 128.0 *C Tc,o = 47.3 *C Point -11 STD = 0.22 *C Wew = 758.2 Kg/hr Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx em 'C 'C 'C 'C *C "C 'C 'C 'C/m W/m^2 Kg/hr Kg/hr m 17.0 40.7 45.8 45.3 93.6 95.0 101.4 120.0 126.7 12.067 0.712E+05 3.00 28.50 0.782E-04 30.4 38.9 43.9 43.8 90.8 92.1 98.2 119.9 126.4 11.389 0.672E+05 5.20 26.30 0.944E-04 44.6 37.3 42.1 42.2 87.4 88.6 94.3 119.6 126.0 10.712 0.632E*05 7.38 24.12 0.107E-03 61.5 35.6 40.5 40.4 86.3 87.4 92.7 119.4 125.6 9.959 0.587E*05 9.81 21.69 0.118E-03 79.8 33.9 38.6 38.7 83.1 84.2 89.1 119.0 125.4 9.203 0.543E+05 12.23 19.27 0.127E-03 1 99.6 32.6 37.1 36.9 79.7 80.7 85.3 118.6 124.9 8.450 0.498E+05 14.61 16.89 0.136E-03 121.3 30.6 34.9 35.2 75.1 76.0 80.2 118.1 123.9 7.695 0.454E+05 16.97 14.53 0.144E-03 145.1 29.3 33.4 33.5 71.6 72.4 76.2 117.4 122.6 6.944 0.410E+05 19.31 12.19 0.152E-03 1.ength Re,f X Gas O Gas P steam P gas p(mix) Re (mix) Htheor Hexp Dfactor R(in) R(tube) R(out) cm mass % mole t KPa KPa Kg/m^2 W / m ^2. "C W/m^2.*C m"2*C/W m^2*C/W m* 2*C/W 17.0 0.221E402 0.102 0.066 198.7 14.1 0.135E-04 0.176E+05 0.876E+ 04 0. 382E*04 0.436 0.262E-03 0.109E-03 0.726E-03 30.4 0.376E+02 0.110 0.071 197.6 15.2 0.135E-04 0.163E+05 0.725E+04 0.310E+04 0.427 0.323E-03 0.109E-03 0.749E-03 44.6 0.523E+02 0.119 0.077 196.4 16.4 0.136E-04 0.150E+05 0.641E+04 0.249E+04 0.389 0.401E-03 0.110E-03 0.765E-03  ! 61.5 0.689E+02 0.130 0.085 194.7 18.1 0.136E-04 0.136E+05 0.581E*04 0.220E+04 0.379 0.454E-03 0.110E-03 0.834E-03 79.8 0.842E+02 0.144 0.095 192.6 20.2 0.137E-04 0.122E405 0.537E+04 0.182E+04 0.338 0.551E-03 0.111E-03 0.876E-03 99.6 0.983E+02 0.161 0.107 190.1 22.7 0.138E-04 0.109E+05 0.502E+04 0.149E+04 0.298 0.669E-03 0.111E-03 0.918E-03 , 121.3 0.111E+03 0.183 0.122 186.8 26.0 0.139E-04 0.951E+04 0.472E+04 0.120E+04 0.253 0.835E-03 0.112E-03 0.940E-03 14 5.1 0.123E+ 03 0.211 0.142 182.6 30.2 0.141E-04 0.816E404 0.440E+04 0.995E+03 0.222 0.101E-02 0.112E-03 0.996E-03

  • Length shear shear
  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m .m 17.0 0.65E-01 0.36E+00 0.78E-04 0.75E-04 '1.044 1.016 0.411 30.4 0.57E-01 0.31E400 0.94E-04 0.91E-04 1.032 1.028 0.402 44.6 0.49E-01 0.27E+00 0.11E-03 0.10E-03 1.025 1.038 0.366 61.5 0.42E-01 0.22E+00 0.12E-03 0.12E-03 1.019 1.050- 0.354 79.8 0.34E-01 0.18E+00 0.13E-03 0.13E-03 1.014 1.062 0.314-99.6 0.28E-01 0.15E+00 0.14E-03 0.13E-03 1.011 1.072 0.275 121.3 0.22E-01 0.11E+00 0.14E-03 0.14E-03 ~ 1. 008 1.081 0.233 145.1 0.17E-01 0.86E-01 0.15E-03 0.15E-03 1.006 1.090 0.202 C-110 i

Run 4.3-3 Ws - 31.3 Kg/hr Pinlet - 282.0 KPa Tc,1 - 27.0 *C Tc-fit - D Wg - 3.220 Kg/hr Tinlet - 131.5 *C Tc,o - 50.6 *C Point -11 Ncw = 761.1 Kg/hr STD - 0. 2 7 *C tangth Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx

                                                                                                   *C      *C         *C         *C            *C         *C/m        W/m^2      Kg/hr      Kg/hr           m cm          *C        *C             *C 43.6                              98.5   100.0      106.9      129,1        130.9         13.102 0.776E+05          3.32     27.98 0.793E-04 17.0                 48.9            48.4 5.75     25.55 0.956E-04 30.4       41.7      47.0            46.7    96.0    97.4      103.9      128.9        130.6         12.361 0.732E+05 44.6       39.9      45.0            45.0    92.7    94.0      100.2      128.7        130.4         11.621 0.688E+05          8.16     23.14 0.108E-03 61.5       38.0      43.2            43.1    91.0    92.2       98.0      128.3        130.1         10.798 0.639E*05         10.84     20.46 0.119E-03 79.8       36.2      41.2            41.2    87.3    88.4       93.7      127.9        129.9          9.972 0.590E+05         13.49     17.81 0.129E-03 99.6       34.4      39.2            39.3    83.9    85.0       89.9      127.3        129.2          9.149 0.542E+05         16.12      15.18 0.138E-03 121.3       32. 1     37.2            37.4    79.1    80.1       84.6      126.5        127.4          8.326 0.493E+05         18.70     12.60 0.146E-03 145.1       31.0      35.3            35.5    74.9    75.8       79.9      125.4        125.1          7.507 0.445E*05         21.25      10.05 0.154E-03 tongth       Re,f     X Gas    11 Gas P steam         P gas     p(mix)    Re (mix)     Htheor            llexp    Dfactor       R(in)   R (tube)     R(out) cm               mass %   mole %             KPa     KPa     Kg/m*2               W/ m ^ 2 . *C   W/m^ 2. *C              ma 2*C/W  m^2*C/W     m^2*C/W 17.0 0.262E+02      0.103     0.067         263.2    18.8 0.138E-04 0.168E+05 0.866E+04 0.349E+04                  0.403 0.286E-03 0.108E-03 0.691E-03 30.4 0.448E+02      0.112     0.073         261.5    20.5 0.139E-04 0.155E+05 0.718E*04 0.293E+04                  0.408 0.341E-03 0.109E-03 0.720E-03 44.6 0.623E+02      0.122     0.080         259.6    22.4 0.139E-04 0.141E+05 0.635E+04 0.242E+04                  0.380 0.414E-03 0.109E-03 0.741E-03 61.5 0.817E+02      0.136     0.089         256.9    25.1 0.140E-04 0.126E+05 0.575E+04 0.211E+04                  0.366 0.475E-03 0.109E-03 0.801E-03 79.8 0.994E+02      0.153     0.101         253.5    28.5 0.141E-04 0.111E+05 0.331E+04 0.173E+04                  0.326 0.578E-03 0.110E-03 0.834E-03 99.6 0.116E+03      0.175     0.116         249.2    32.8 0.142E-04 0.963E+04 0.497E+04 0.145E404                  0.292 0.690E-03 0.110E-03 3.881E-03 121.3 0.131E+03      0.204     0.137         243.3    38.7 0.144E-04 0.818E+04 0.468E+04 0.118E+04                  0.251 0.851E-03 0.111E-03 0.905E-03 145.1 0.144E*03      0.243    0.166          235.2    46.8 0.146E-04 0.675E+04 0.444E+04 0.976E+03                  0.220 0.102E-02 0.112E-03 0.94BE-03 tength      shear    shear
  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.48E-01 0.28E+00 0.79E-04 0.77E-04 1.033 1.019 0.383 30.4 0.42E-01 0.24E+00 0.96E-04 0.93E-04 1.024 1.033 0.386 44.6 0.36E-01 0.20E+00 0.11E-03 0.11E-03 1.018 1.046 0.357 61.5 0.29E-01 0.16E+00 0.12E-03 0.12E-03 1.013 1.060 0.341 79.8 0.23E-01 0.13E+00 0.13E-03 0.13E-03 1.010 1.073 0.301 99.6 0.18E-01 0.10E+00 0.14E-03 0.14E-03 1.007 1.085 0.267 121.3 0.14 E-01 0. 74E-01 0.15E-03 0.15E-0 3 1.005 1.096 0.228 145.1 0.99E-02 0.52E-01 0.15E-03 0.15E-03 1.003 1.105 0.198
                                                                                                                            -111
                                                       -      !      i d

xm 43333333 00000000

                                          )

t/ W 33333333 00000000

               -       - - - - - - - -     uC       - - - - - - - -

m EEEEEEEE (o *2 EEEEEEEE O l 31566431 43155139 i 40123456 72398857 - F 8111111 1 R *m 56667899 - 00000000 00000000 mr 88523385 W 33333333 ah 42173089 )e/ 00000000 _ e/ bC9 - - - - - - - - t g 85285285 u 2 EEEEEEEE 78899901 WsK 222111 (t" . 00000011 Rm 11111111 00000000 dr 22587725 ) W 33333332 n h 46715809 n/C 00000000 o i (92 - - - - - - - - c/ Wg 47047046 EEEEEEEE _ K 11 1222 R* 58182201 48841920 m 33456681 00000000. 65555555 r 59653312 "q 2^ 00000000 o 57432073 -

                      + * + + + **
  • t 33333322 m EEEEEEEE c .
                   /  09421135             a       00000000 W  037036)2            f D

C

  • 1 9 8 8 7 6.L. 5 00000000 D97 1 p9C 44444443 X 43560338 dm x
      =
        =0   //

54434606 98753108 e2 00000000

                                                   * +++++++

t wC H* EEEEEEEE it = c9 65432108 m 07833420 f n T 111 1111 / 95086429 i D d W 22211119 - cot TP S 00000000 l 09754705 r *C 44444444 cC o. 00000000

                                                   + ++*++++

T' 98888769 e2 44444443 h^ EEEEEEEE 1111111 1 t m 69166607 i / 17040752 lW 86655444 9C *C 00000000 t 52824242 ) 55554444 2 97150871 - a9 x 00000000 f 35209630 31 s 99887641 i + +++++++ 33332222 - 5 T 44444444 m EEEEEEEE 2 73 00000000 1

  -                   1111111 1           t 25915138 3   25                                    e       6421 2582                                  1 R        11119754

) 4 C

      =-                                           00000000 n                                            2 u 1, o,    i        97836481            )*       44444444             r   90888721 R

cc wC xm 00000000 e 25680245 T" 42642058 i - - - - - - - - h 00001111 _ TT 11000098 (m/ g EEEEEEEE t 1111 11 p K 67790362 o 11111111 44445556 l 11111111 f 00000000 w 04011543 s Pa 33343375 r 93964321 T 'C aK a 11000000 a 64976403 g 48300450 e 00000000 P *C 00999998 33456793 h K 11 P 1 s 11111111 1 f 93 39 oC 16367223 m Pa 66656624

  • m43333333 04 w a x 00000000 51 T' 42754392 eK 95033983 d - - - - - - - -

00999988 t 66654207 - EEEEEEEE 11 s 44444443 m 30134456

      ==                                                               l    81111111 P                           i tt                                                                F    00000000 ee ll                                     s%     86600709             xm43333333 t:       20840742 nn      i9                            a      67802495            d    00000000 ii       f        06531864            Gol     00011112              -   - - - - - - - -

PT - 54444333 m EEEEEEEE T c Oom 00000000 l i 40134456 81111111 F 00000000 wC 30632922 s% 57129840

  • r 00011111 c9 a s 01357176 00000000 a +++ - - - - -

T 08531864 t s 11111223 rrr 54444333 e EEEEEEEE hhh Xam 00000000 h s 95227697 11196421

     ///

ggg - KKK 00000000 . a2 40963949 f 22233333 r211111222 - 05 T9 42975208 e, 00000000

                                                    *+++++*+

a^00000000 em - - - -

9. 5 44333332 R EEEEEEEE h/EEEEEEEE 231 77818336 sN94051709 3 6 97224790 22211752 37 36911112 00000000 00000000
      ===      hm      04658631            hm       04658631            hm04658631 sgw      t c                          t c                         tc WWc   W g

n 70419915 13467924 g n 70419915 13467924 g n 70419915 13467924 e 11 e 11 L e 11 L L c

Run 4.4-2 Ws = 35.9 Kg/hr Pinlet = 204.2 KPa Tc,1 = 23.4 *C Tc-fit = D 7.510 Tinlet = 130.1 *C Tc,o = 48.4 *C Point -11 W9- Kg/hr STD = 0.56 *C Wcw = 656.1 Kg/hr Tcw Two Tw Twl Tsat Tcl dicw/dX q" Wcond Wsteam Film-dx Length Ta Tc-fit Kg/hr Kg/hr m cm 'C 'C 'C 'C 'C 'C 'C *C 'C/m W/m^2 41.4 46.6 92.9 94.0 99.3 116.8 127.4 11.609 0.593E*05 2.43 33.47 0.734E-04 17.0 42.3 31.62 0.890E-04 40.6 45.7 45.0 90.8 91.9 97.1 116.6 127.0 11.310 0.577E+05 4.28 30.4 6.17 29.73 0.101E-03 44.6 38.9 43.9 43.4 88.5 89.6 94.7 116.3 126.7 11.002 0.562E+05 37.0 42.0 41.6 86.4 87.5 92.4 116.0 126.4 10.645 0.543E+05 8.36 27.54 0.112E-03 61.5 25.27 0.122E-03 34.9 39.8 39.7 83.4 84.4 89.2 115.6 125.8 10.273 0.524E+05 10.63 79.8 99.6 32.6 37.5 37.7 80.5 81.5 86.1 115.1 125.1 9.884 0.505E+05 12.99 22.9) 0.131E-03 30.5 35.2 35.6 71.1 18.1 82.5 114.5 124.4 9.475 0.484E+05 15.15 20.4 5 0.140E-03 121.3 9.046 0.462E+05 18.00 17.90 0.148E-03 145.1 28.3 32.9 33.4 73.4 74.3 78.6 113.7 123.4 Length Re,f X Gas D Gas P steam P gas p(mix) Re(mix) Htheor Hexp Dfactor R(in) B(tube) R(out) cm mass % mole % KPa KPa Kg/m*2 W/m^2 *C W/m^ 2 . *C m^ 2*C/U m ^ 2*C/W m ^ 2*C /W 17.0 0.174E*02 0.183 0.122 179.2 25.0 0.139E-04 0.220E+05 0.932E+04 0.339E604 0.364 0.295E-03 0.109E-03 0.835E-03 30.4 0.303E+02 0.192 0.129 177.9 26.3 0.139E-04 0.209E+05 0.769E+04 0.297E+04 0.386 0.337E-03 0.109E-03 0.848E-03 44.6 0.431E+02 0.202 0.136 176.5 27.7 0.140E-04 0.198E+05 0.677E+04 0.259E+04 0.383 0.385E-03 0.110E-03 0.858E-03 61.5 0.576E+02 0.214 0.145 174.6 29.6 0.141E-04 0.186E+05 0.609E+04 0.231E+04 0.379 0.434E-03 0.110E-03 0.882E-03 79.8 0.719E+02 0.229 0.156 172.4 31.8 0.141E-04 0.173E+05 0.559E+04 0.198E+04 0.355 0.504E-03 0.111E-03 0.891E-03 99.6 0.862E+02 0.247 0.169 169.7 34.5 0.143E-04 0.159E+05 0.519E+04 0.174E+04 0.335 0.575E-03 0.111E-03 0.907E-03 121.3 0.100E+03 0.269 0.186 166.3 37.9 0.144E-04 0.145E+05 0.486E+04 0.151E+04 0.311 0.661E-03 0.112E-03 0.919E-03 145.1 0.114E+03 0.296 0.207 162.0 42.2 0.146E-04 0.130E+05 0.458E+04 0.131E+04 0.287 0.761E-03 0.112E-03 0.926E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.10E+00 0.56E+00 0.73E-04 0.68E-04 1.075 1.013 0.334 30.4 0.95E-01 0.51E+00 0.89E-04 0.84E-04 1.057 1.022 0.357 44.6 0.87E-01 0.46E+00 0.10E-03 0.97E-04 1.046 1.032 0.355 61.5 0.77E-01 0.41E+00 0.11E-03 0.11E-03 1.037 1.042 0.350 79.8 0.68E-01 0.36E+00 0.12E-03 0.12E-03 1.030 1.053 0.328 99.6 0.59E-01 0.31E+00 0.13E-03 0.13E-03 1.024 1.063 0.308 121.3 0.50E-01 0.26E+00 0.14E-03 0.14E-03 1.019 1.073 0.285 145.1 0.42E-01 0.21E+00 0.15E-03 0.15E-03 1.015 1.083 0.261
                                                                           -113

Run 4.4-3 I l Ws = 29.5 Kg/hr Pinlet = 306.9 KPa Tc,1 = 23.5 *C Tc-fit - D Ng = 7.490 Kg/hr Tinlet = 128.9 "C Tc o = 45.1 N: Point -11 Wew = 655.3 Kg/hr STD = 0.57 *C  ! Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm 9; 9C 'C 'C *C 90 9: 'C *C/m W/m*2 Kg/hr Kg/hr m 17.0 38.5 44.1 43.1 93.4 94.6 100.2 128.9 129.6 12.182 0.621E+05 2.64 26.86 0.741E-04 30.4 36.7 42.1 41.6 89.6 90.7 96.0 128.5 129.2 11.573 0.590E405 4.58 24.92 0.896E-04 . 44.6 35.1 40.2 40.0 85.0 86.1 91.2 128.1 128.8 10.962 0.559E+05 6.52 22.98 0.102E-03 I 61.5 33.4 38.4 38.2 82.1 83.1 87.9 127.5 128.4 10.276 0.524E+05 8.68 20.82 0.112E-03 79.8 31.6 36.4 36.3 78.9 79.9 84.4 126.8 128.3 9.581 0.488E+05 10.86 18.64 0.122E-03 99.6 29.6 34.2 34.5 74.8 75.7 79.9 126.0 128.0 8.882 0.453E*05 13.02 16.48 0.130E-03 121.3 27.8 32.1 32.7 69.9 10. 7 74.6 124.9 127.3 8.175 0.417E+05 15.17 14.33 0.139E-03 145.1 26.3 30.3 30.8 65.6 66.4 69.9 123.6 126.8 7.464 0.3RIE+05 17.32 12.18 0.146E-03 Length Re,f X Gas Q Gas P steam P gas p(mix) Re (mix) Ht heor Hexp Dfactor R(in) R(tube) R(out) cm mass % mole t KPa KPa Kg/m*2 W/ m-2. *C W/m* 2. *C m*29C/W m^29C/W m*2 *C/W 17.0 0.201E+02 0.218 0.148 261.6 45.3 0.146E-04 0.175E*05 0.926E404 0.216E+04 0.233 0.463E-03 0.109E-03 0.865E-03 30.4 0.342E+02 0.231 0.157 258.6 48.3 0.147E-04 0.164E+05 0.765E*04 0.181E+04 0.237 0.551E-03 0.110E-03 0.87CE-03 44.6 0.475E+02 0.246 0.168 255.2 51.7 0.148E-04 0.154E+05 0.674E+04 0.151E+04 0.224 0.661E-03 0.110E-03 0.862E-03 61.5 0.620E+02 0.265 0.183 250.8 56.1 0.149E-04 0.142E+05 0.609E+04 0.132E+04 0.217 0.757E-03 0.111E-03 0.896E-03 79.8 0.759E+02 0.287 0.200 245.6 61.3 0.150E-04 0.130E405 0.561E+04 0.115E+04 0.205 0.870E-03 0.111E-03 0.932E-03 99.6 0.885E*02 0.312 0.220 239.3 67.6 0.152E-04 0.118E*05 0.523E+04 0.982E+03 0.188 0.102E-02 0.112E-03 0.951E-03 121.3 0.997E+02 0.343 0.245 231.7 75.2 0.154E-04 0.106E+05 0.491E+04 0.828E+03 0.168 0.121E-02 0.113E-03 0.954E-03 145.1 0.110E+03 0.381 0.276 222.1 84.8 0.156E-04 0.937E+04 0.465E+04 0.710E+03 0.153 0.141E-02 0.113E-03 0.979E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.51E-01 0.29E+00 0.74E-04 0.71E-04 1.037 1.015 0.222 30.4 0.46E-01 0.26E+00 0.90E-04 0.87E-04 1.028 1.025 0.225 44.6 0.41E-01 0.23E+00 0.10E-03 0.99E-04 1.022 1.035 0.212 61.5 0.36E-01 0.19E+00 0.11E-03 0.11E-03 1.G17 1.045 0.204 79.8 0.31E-01 0.16E+00 0.12E-03 0.12E-03 1.013 1.056 0.192 99.6 0.26E-01 0.14E+00 0.13E-03 0.13E-03 1.011 1.065 0.174 121.3 0.22E-01 0.11E+00 0.14E-03 0.14E-03 1.008 1.073 0.156 145.1 0.18E-01 0.89E-01 0.15E-03 0.15E-03 1.006 1.081 0.140

[ i i C-114

Pun 4.4-5 Tc,1 - 24.5 *C Tc-fit - D Ws = 30.8 Kg/hr Pinlet = 492.8 KPa Point -11 Wg = 7.520 Kg/hr Tinlet = 145.5 *C Tc,o - 51.6 *C Kg/hr STD = 0. 34 *C Wew - 656.3 Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx Length Ta Tcw Tc-fit

                                                                                                                                                                   'C          *C                   W/m^2        Kg/hr       Kg/hr              m cm          *C        *C       *C       "C       *C         'C                                 *C /m 100.5    102.0      108.9      145.5        144.9       15.219 0.777E*05            3.37      27.43 0.779E-04 17.0       43.6      49.5      49.0                                                                                        5.84      24.96 0.940E-04 47.4      47.1     97.9     99.3      105.8      145.0        144.9       14.347 0.733E+05 30.4       41.5 144.4                    13.476 0.688E+05            8.27      22.53 0.106E-03 39.7      45.3      45.1     93.7     95.0      101.2                   144.8 44.6 89.1     90.3       96.1      143.5        144.6       12.509 0.639E+05          10.95       19.85 0.118E-03 61.5       37.7      43.0      42.9                                                                                      13.61       17.19 0.127E-03 40.8      40.7     85.6     86.7       92.0      142.5        144.4       11.540 0.589E+05 79.E       35.6                                                                    143.9       10.576 0.540E+05          16.23       14.57 0.136E-03 99.6       33.3      38.4      38.5     82.1     83.2       88.1      141.1 36.3     76.1     77.1       81.6      139.4        143.0        9.611 0.491E+05          18.77       12.03 0.144E-03 121.3       31.4      36.1                                                                                                              9.55 0.152E-03 33.8      34.1     71.2     72.1       76.2      136.9        142.0        8.654 0.442E+05          21.25 145.1       29.4 X Gas     O Gas P steam     P gas     p(mix)    Re(mix)       Htheor          llexp   Dfactor        R(in)     R (tute)      R(out)

Length Re,f W/m* 2.*C m* 2*C/W m ^ 2*C /W m*2*C /W mass % mole t KPa KPa Kg/m^2 W/ m'2. *C em 0.215 0.146 421.1 71.7 0.152E-04 0.171E* 05 0.88 3E* 04 0.213E+ 04 0.241 0.471E-03 0.108E-03 0. 708E-03 17.0 0.290E402 0.256 0.534E-03 0.108E-03 0.742E-03 30.4 0.494E+02 0.232 0.158 415.1 77.7 0.153E-04 0.158E+05 0.732E+04 0.187E+04 0.250 0.172 408.1 84.7 0.154E-04 0.145E+05 0.647E+04 0.159E+04 0. 24 6 0. 627E-0 3 0.109E-0 3 0. 7 55E-0 3 44.6 0.683E*02 0.230 0.743E-03 0.110E-03 0.773E-03 61.5 0.880E+02 0.275 0.191 398.9 93.9 0.156E-04 0.131E+05 0.585E+04 0.135E+04 0.304 0.214 387.5 105.3 0.158E-04 0.117E+05 0.540E+04 0.117E+04 0.216 0.856E-03 0.110E-03 0.614E-03 79.8 0.107E+03 0.202 0.982E-03 0.111E-03 0.864E-03 99.6 0.124E+03 0.340 0.243 373.1 119.7 0.160E-04 0.103E+05 0.505E+04 0.102E+04 0.385 0.280 354.9 137.9 0.163E-04 0.893E+04 0.475E+04 0.850E*03 0.179 0.118E-02 0.112E-03 0.868E-03 121.3 0.138E+03 0.162 0.137E-02 0.112E-03 0.897E-03 145.1 0.150E+03 0.441 0.329 330.9 161.9 0.167E-04 0.762E+04 0.450E404 0.728E+03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.34E-01 0.21E+00 0.78E-04 0.76E-04 1.024 1.021 0.230 30.4 0.30E-01 0.18E+00 0.94E-04 0.92E-04 1.017 1.036 0.243 44.6 0.26E-01 0.16E+00 0.11E-03 0.10E-03 1.013 1.050 0.231 61.5 0.22E-01 0.13E+00 0.12E-03 0.12E-03 1.010 1.064 0.214 79.8 0.18E-01 0.10E+00 0.13E-03 0.13E-03 1.008 1.078 0.199 99.6 0.14E-01 0.82E-01 0,14E-03 0.14E-03 1.006 1.091 0.184 121.3 0.11E-01 0.63E-01 0.14E-03 0.14E-03 1.004 1.101 0.162 145.1 0.86E-02 0.47E-01 0.15E-03 0.15E-03 1.003 1.110 0.145 i

C 3 O Run 4.5-2 Ws = 30.0 Kg/hr Pinlet = 204.6 KPa Tc,1 = 23.2 *C Tc-fit = D Wg - 20.190 Kg/hr Tinlet = 119.2 *C Tc,o = 41.7 *C Point =11 Wew = 653.9 Kg/hr STD = 0.4 3 *C Length Ta Tew Tc-fit Two Tw Twi Tsat Tcl dTcw/dx q" Wcond Wsteam Film-dx cm *C *C *C *C *C *C *C *C *C/m W/m^2 Kg/hr Kg/hr m 17.0 36.7 41.0 40.4 81.5 82.3 86.2 109.7 119.1 8.424 0.429E+05 1.74 28.26 0.677E-04 30.4 35.6 39.8 39.3 79.1 79.9 R3.7 109.2 118.4 8.189 0.417E+05 3.06 26.94 0.821E-04 44.6 34.2 38.3 38.1 76.4 77.2 80.9 108.7 117.8 7.948 0.404E*05 4.42 25.58 0.933E-04 61.5 33.1 37.1 36.8 74.8 75.6 79.2 108.1 117.0 7.669 0.390E*05 5.97 24.03 0.104E-03 79.8 31.4 35.4 35.4 72.6 73.3 76.8 107.4 115.9 7.379 0.375E+05 7.59 22.41 0.113E-03 99.6 30.5 34.4 14.0 70.5 71.2 74.5 106.6 114.7 7.077 0.360E*05 9.26 20.74 0.121E-03 121.3 28.7 32.4 32.5 66.8 61.5 70.7 105.6 113.2 6.760 0.344E+05 10.99 19.01 0.129E-03 145.1 26.8 30.5 30.9 65.0 65.7 68.8 104.4 111.8 6.429 0.327E+05 12.79 17.21 0.137E-03 i Length Re,f X Gas il Gas P steam P gas p(mix) Re (mix) Htheor Hexp Dfactor R(in) R(tube) R(cut) cm mass % mole t KPa KPa Kg/m*2 W/m^2 *C W/m^2 *C m* 2*C/W m^2*C/W m^2*C/W 17.0 0.112E+02 0.417 0.307 141.7 62.9 0.154E-04 0.235E+05 0.100E+05 0.183E+04 0.182 0.547E-03 0.111E-03 0.102E-02 30.4 0.194E+02 0.428 0.318 139.6 65.0 0.154E-04 0.227E+05 0.827E+04 0.163E+04 0.197 0.612E-03 0.111E-01 0.102E-02 44.6 0.275E+02 0.441 0.329 137.3 67.3 0.155E-04 0.220E+05 0.728E+04 0.145E+04 0.200 0.688E-03 0.112E-03 0.101E-02 61.5 0.367E*02 0.457 0.343 134.4 70.2 0.156E-04 0.211E+05 0.655E+04 0.135E*04 0.206 0.741E-03 0.112E-03 0.104E-02 79.8 0.458E*02 0.474 0.359 131.2 73.4 0.157E-04 0.201E+05 0.601E+04 0.123E+04 0.204 0.816E-03 0.112E-03 0.106E-02 99.6 0.550E+02 0.493 0.377 127.5 77.1 0.159E-04 0.192E+05 0.559E+04 0.112E+04 0.201 0.889E-03 0.113E-03 0.100E-02 121.3 0.634E+02 0.515 0.397 123.3 81.3 0.160E-04 0.182E+05 0.522E+04 0.986E+03 0.189 0.101E-02 0.113E-03 0.107E-02 145.1 0.725E+02 0.540 0.422 118.3 86.3 0.162E-04 0.172E*05 0.493E+04 0.918E+03 0.186 0.109E-02 0.113E-03 0.112E-02 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.13E+00 0.65E+00 0.68E-04 0.62E-04 1.100 1.008 0.164 30.4 0.12E400 0.60E+00 0.82E-04 0.76E-04 1.078 1.014 0.181 44.6 0.11E400 0.56E+00 0.93E-04 0.08E-04 1.065 1.020 0.184 61.5 0.11E+00 0.52E+00 0.10E-03 0.90E-04 1.054 1.027 0.190 79.8 0.99E-01 0.48E+00 0.11E-03 0.11E-03 1.046 1.034 0.189 99.6 0.91E-01 0.44E+00 0.12E-03 0.12E-03 1.040 1.040 0.186 121.3 0.83E-01 0.39E+00 0.13E-03 0.12E-03 1.034 1.046 0.174 145.1 0.76E-01 0.35E+00 0.14E-03 0.13E-03 1.029 1.053 0.172 C-116

Run 4.5-3 Ws = 30.2 Kg/hr Pinlet - 308.4 KPa Tc,1 - 23.0 "C Tc-fit - D kg/hr *C Tc,o = 42.4 *C Point -11 Wg - 19.920 Tinlet - 123.0 Wew - 654.1 Kg/hr STD - 0. 40 *C Length Ta Tcw Tc-fit Two Tw N1 Tsat Tcl dTcw/dX q' Wcond Wsteam Film-dx

                                             'C       'C                  *C                                    *C                                     *C                             *C/m                              W/m"2          Kg/hr      Kg/hr            m cm          *C        *C       *C 36.7      41.5      40.9     85.7     86.7             91.3                              122.4                                  123.6                                  9.962 0.507E+05                                     2.12     28.00 0.704E-04 17.0                                                                                                                                                                                                                                  3.69     26.51 0.852E-04 30.4       35.3      40.0      39.5     82.6     83.6            80.0                               121.8                                  123.6                                  9.555 0.486E+05 44.6       33.9      38.4      38.2     79.5     80.4            84.7                               121.2                                  123.4                                  9.142 0.465E+05                                     5.29     24.91 0.966E-04 61.5       32.4      36.8      36.7     76.8     77.7            81.8                               120.4                                  123.2                                  8.674 0.441E+05                                     7.08     23.12 0.107E-03 79.8       30.9      35.2      35.2     74.2     75.0             78.8                              119.4                                  122.3                                  8.194 0.417E*05                                     8.91     21.29 0.116E-03 99.6       29.7      33.8      33.6     70.8     71.6             75.2                              118.4                                  121.6                                  7.705 0.392E+05                                    10.76      19.44 0.125E-03 121.3       28.1      31.9      32.0     67.0     67.7             71.1                              117.1                                  120.9                                  7.202 0.367E*05                                    12.63     17.57 0.133E-03 145.1       26.0      29.8      30.3     64.2     64.9             68.1                              115.6                                  120.1                                  6.688 0.340E+05                                    14.54      15.66 0.140E-03 Length       Re,f     X Gas     il Gas P steam    P gas     p(mix)                            Re (mix)                                   Htheor                                         flexp                      Dfactor             R (in)  R(tute)      R(out) cm               mass %    mole 1       KPa      KPa       Kg/m"2                                                               W/ m* 2 . *C                           W / m " 2 . *C                                            m'2*C/W   m ^ 2*C / W ma 2*C/W 17.0 0.150E+02      0.415     0.306    214.1     94.3 0.159E-04 0.225E*05 0.972EiO4 0.163E+ 04                                                                                                                           0.168 0.613E-03 0.110E-03 0.946E-03 30.4 0.256E+02      0.429     0.318    210.2     98.2 0.160E-04 0.217E+05 0.002E+04 0.144E*04                                                                                                                            0.180 0.695E-03 0.111E-03 0.948E-03 44.6 0.359E+02      0.444     0.332    206.0    102.4 0.161E-04 0.208E+05 0.707E+04 0.127E+04                                                                                                                            0.180 0.785E-03 0.111E-03 0.949E-03 61.5 0.472E+02      0.463     0.349    200.9    107.5 0.162E-04 0.198E+05 0.637E+04 0.114E+04                                                                                                                            0.180 0.875E-03 0.112E-03 0.972E-03 79.8 0.582E+02      0.483     0.368    195.0    113.4 0.163E-04 0.18BE+05 0.586E+04 0.103E+04                                                                                                                            0.175 0.973E-03 0.112E-03 0.100E-02 99.6 0.685E+02      0.506     0.389    188.4    120.0 0.165E-04 0.178E+05 0.545E*04 0.909E+03                                                                                                                             0.167 0.110E-02 0.113E-03 0.102E-02 121.3 0.781E+02      0.531     0.413    180.9    127.5 0.167E-04 0.167E+05 0.511E+04 0.797E+03                                                                                                                            0.156 0.125E-02 0.113E-03 0.102E-02 145.1 0.876E+02      0.560     0.441    172.3    136.1 0.169E-04 0.157E+05 0.483E+04 0.717E+03                                                                                                                             0.148 0.140E-02 0.114E-03 0.106E-02 Length      shear    shear
  • Film-dx Film-dx* fishear flother f2 cm N/m"2 m m 17.0 0.86E-01 0.47E+00 0.70E-04 0.66E-04 1.066 1.011 0.156 30.4 0.81E-01 0.43E+00 0.85E-04 0.81E-04 1.051 1.019 0.168 44.6 0.75E-01 0.40E+00 0.97E-04 0.93E-04 1.042 1.026 0.169 l 61.5 0.69E-01 0.36E+00 0.11E-03 0.10E-03 1.035 1.035 0.168 t

79.8 0.64E-01 0.33E+00 0.12E-03 0.11E-03 1.029 1.043 0.164 i 99.6 0.58E-01 0.29E+00 0.12E-03 0.12E-03 1.025 1.050 0.155 , 121.3 0.52E-01 0.26E+00 0.13E-03 0.13E-03 1.021 1.057 0.145 l 145.1 0.47E-01 0.23E+00 0.14E-03 0.14E-03 1.018 1.064 0.137 l l l C-117

Run 4.5-5 i Ws = 30.9 Kg/hr Pinlet - 505.6 KPa Tc,1 = 22.7 *C Tc-fit - D Wg = 19.100 Kg/hr Tinlet = 140.3 *C Tc.o = 42.9 9C Point -11 Wcw = 640.5 Kg/hr STD - 0. 4 9 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx em 'C *C *C 'C *C 92 9: *C 9C/m W/m^2 Kg/hr Kg/hr m 17.0 36.2 41.7 40.9 90.4 91.6 97.1 139.5 141.5 12.150 0.605E+05 2.60 28.30 0.731E-04 30.4 34.6 39.8 39.3 86.0 87.1 92.3 138.8 141.3 11.398 0.568E+05 4.48 26.42 0.883E-04 44.6 33.0 37.9 37.8 81.7 82.7 87.5 137.9 141.1 10.653 0.531E+05 6.34 24.56 0.998E-04 61.5 31.5 36.2 36.0 77.4 78.4 82.9 136.9 140.9- 9.829 0.490E+05 8.37 22.53 0.11CE-03 79.8 29.8 34.4 34.3 75.0 75.9 80.0 135.8 140.5 9.008 0.449E*05 10.38 20.52 0.119E-03 99.6 28.0 32.3 32.6 70.3 71.1 74.9 134.5 1 39.8 8.197 0.409E+05 12.33 18.57 0.127E-03 121.3 26.4 30.4 30.9 65.8 66.5 69.9 133.0 138.8 7.392 0.368E+05 14.24 16.66 0.135E-03 145.1 25.1 28.8 29.3 61.5 62.2 65.3 131.3 137.3 6.600 0.329E+05 16.10 14.80 0.142E-03 Longth Ro,f X Gas O Gas P steam P gas p(mix) Retmix) HLheor Hexp Ofactor R(in) R(tube) R (out) em mass % mole % KPa KPa Kg/m^2 W/ m ^ 2 . *C W/m^ 2. *C m^29C/W ma 29C/W m"29C/W 17.0 0.206E+02 0.403 0.295 356.2 149.4 0.165E-04 0.214E+05 0.940E+04 0.143E+04 0.152 0.701E-03 0.110E-03 0.875E-03 30.4 0.346E+02 0.420 0.310 348.9 156.7 0.166E-04 0.20$E+05 0.778E+04 0.122E+04 0.157 0.819E-03 0.110E-03 0.879E-03 44.6 0.476E+02 0.437 0.326 340.9 164.7 0.167E-04 0.195E+05 0.687E+04 0.105E+04 0.153 0.950E-03 0.111E-03 0.884E-03 61.5 0.611E+02 0.459 0.345 331.2 174.4 0.168E-04 0.184E405 0.621E+04 0.906E+03 0.146 0.110E-02 0.11]E-03 0.904E-03 79.8 0.743E+02 0.482 0.366 320.3 185.3 0.170E-04 0.173E+05 0.574E+04 0.805E+03 0.140 0.124E-02 0.112E-03 0.970E-03 99.6 0.854E+02 0.507 0.390 308.5 197.1 0.172E-04 0.163E+05 0.536E+04 0.685E+03 0.128 0.146E-02 0.113E-03 0.986E-03 121.3 0.953E+02 0.534 0.416 295.3 210.3 0.174E-04 0.153E+05 0.505E+04 0.584E+03 0.116 0.171E-02 0.113E-03 0.101E-02 145.1 0.104E+03 0.563 0.445 280.6 225.0 0.176E-04 0.144E*05 0.479E+04 0.498E+03 0.104 0.201E-02 0.114E-03 0.105E-02 Length shear shear

  • Film-dx Film-dx* fishoar flother f2 cm N/m*2 m m 17.0 0.54E-01 0.32E+00 0.73E-04 0.70E-04 1.040 1.015 0.144 30.4 0.50E-01 0.29E+00 0.88E-04 0.86E-04 1.030 1.025 0.149 44.6 0.46E-01 0.26E+00 0.10E-03 0.97E-04 1.025 1.035 0.144 61.5 0.42E-01 0.23E+00 0.11E-03 0.11E-03 1.020 1.045 0.137 79.8 0.38E-01 0.21E+00 0.12E-03 0.12E-03 1.017 1.054 0.131 99.6 0.34E-01 0.18E+00 0.13E-03 0.13E-03 1.014 1.062 0.119 121.3 0.31E-01 0.16E+00 0.13E-03 0.13E-03 1.012 1.070 0.107 145.1 0.27E-01 0.14E+00 0.14E-03 0.14E-03 1.010 1.076 0.096 C-118

Run 5.1-1 Ws - 29.8 Kg/hr Pinlet - 407.9 KPa Tc,1 = 28.9 *C Tc-fit - D Wg - 0.091 Kg/hr Tinlet - 143.7 *C Tc,o - 52.8 *C Point =6 Wcw = 777.2 Kg/hr STD - 0. 7 5 *C Length Ta Tew Tc-fit Two TW Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm *C *C 'C "C *C 'C *C *C "C/m W/m*2 Kg/hr Kg/hr m 17.0 43.6 50.6 49.7 114.6 116.7 126.6 143.7 144.4 18.795 0.114E+06 4.92 24.88 0.868E-04 30.4 40.7 48.0 47.2 113.8 115.9 125.5 143.6 144.4 18.129 0.110E*06 8.63 21.17 0.105E-03 44.6 37.6 45.0 44.7 111.7 113.7 122.9 143.5 144.2 17.449 0.106E+06 12.40 17.40 0.119E-03 61.5 33.7 41.3 41.8 110.0 111.9 120.7 143.2 143.9 16.672 0.101E+06 16.69 13.11 0.131 E-03 79.8 30.5 38.5 38.8 110.7 112.5 120.9 142.7 142.R 15.871 0.960E+05 21.12 8.68 0.14?E-03 Length Re,f X Gas D Gas P steam P gas p(mix) Re (mi x) Htheor Hexp Dfactor R(in) R (t ube) R(out) cm mass % mole % KPa KPa Kg/m^2 W/m* 2. *C W/m^2.*C m^2*C/W m^ 2*C/W m'2*C/W 17.0 0.453E402 0.004 0.016 401.3 6.6 0.138E-04 0.135E+05 0.793E404 0.663E*04 0.837 0.151E-03 0.106E-03 0.010E-03 30.4 0.791E+02 0.004 0.019 400.2 7.7 0.138E-04 0.115E+05 0.656E+04 0.603E+04 0.919 0.166E-03 0.106E-03 0.650E-03 44.6 0.112E+C1 0.005 0.023 398.5 9.4 0.138E-04 0.944E+04 0.580E+04 0.513E+04 0.885 0.155E-03 0.106E-03 0.6 79E-03 61.5 0.150E+03 0.007 0.030 395.5 12.4 0.138E-04 0.711E*04 0.524E+04 0.448E+04 0.856 0.223E-03 0.107E-03 0.723E-03 79.8 0.189E+03 0.010 0.045 389.5 18.4 0.139E-04 0.471E+04 0.484E+04 0.441E+04 0.911 0.227E-03 0.106E-03 0.801E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.24E-01 0.16E+00 0.87E-04 0.86E-04 1.015 1.033 0.798 30.4 0.18E-01 0.12E+00 0.10E-03 0.10E-03 1.009 1.058 0.861 44.6 0.13E-01 0.82E-01 0.12E-03 0.12E-03 1.006 1.082 0.813 61.5 0.78E-02 0.49E-01 0.13E-03 0.13E-03 1.003 1.109 0.769 79.8 0.38E-02 0.24E-01 0.14E-03 0.14E-03 1.001 1.138 0.799
                                                                        -119
  • s Run 5.1-2 Ws = 29.9 Kg/hr Pinlet - 399.4 KPa Tc,1 - 28.8 90 Tc-fit - D Wg - 0.152 Kg/hr Tinlet - 142.9 9C Tc,o - 53.0' 9C Point -6 Wcw - 773.7 Kg/hr STD - 0. 63 *C Length Ta Tew Tc-fit Two Tw Twl Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm 9; 9C *C *C 'C 92 9; 'C *C/m W/m*2 Kg/hr Kg/hr m 17.0 43.9 50.8 50.0 113.7 115.7 125.1 142.6 143.7 17.811 0.107E+06 4.63 25.27 0.853E-04 30.4 41.1 48.2 47.7 112.7 114.6 123.6 142.5 143.7 17.185 0.103E+06 8.12 21.78 0.103E-03 44.6 38.4 45.6 45.3 110.2 112.1 120.8 142.2 143.6 16.546 0.996E+05 11.66 18.24 0.117E-03 61.5 35.2 42.5 42.6 108.6 110.4 118.8 141.9 143.5 15.815 0.952E+05 15.70 14.20 0.129E-03 79.8 31.7 39.2 39.7 106.6 108.3 116.3 141.2 143.0 15.061 0.907E+05 19.84 10.06 0.140E-03 Length Re, f X Gas fl Gas P steam P gas p(mix) Re (mix) Ht heo t Hexp Dfactor R(in) R(tube) R(out) em mass % mole % KPa KPa Kg/ma 2 W/m*2 *C W /m
  • 2 . *C m"2*C/W m*2*C/W m
  • 2*C/W 17.0 0.421E+02 0.006 0.026 388.9 10.5 0.138E-04 0.137E+05 0.807E+04 t.611E904 0.757 0.164E-03 0.106E-03 0.635E-03 30.4 0.735L+02 0.007 0.030 387.2 12.2 0.138E-04 0.118E+05 0.668E*04 0.550E+04 0.823 0.182E-03 0.106E-03 0.672E-03 44.6 0.104E*03 0.008 0.036 385.0 14.4 0.138E-04 0.991E+04 0.590E+04 0.465E+04 0.789 0.215E-03 0.107E-03 0.697E-03 61.5 0.139E+03 0.011 0.046 381.0 18.4 0.138E-04 0.772E+04 0.533E*04 0.412E*04 0.773 0.24 3E-03 0.107E-03 0. 742E-03 79.8 0.173E+03 0.015 0.064 374.0 25.4 0.139E-04 0.547E*04 0.491E+04 0.364E+04 0.741 0.275E-03 0.107E-03 0. 789E-03 l

1 Length shear shear

  • Film-dx Film-dx* fishear .flother f2 cm N/m*2 m m 17.0 0.26E-01 0.17E+00 0.85E-04 0.84E-04 1.016 1.031 0.723 30.4 0.20E-01 0.13E+00 0.10E-03 0.10E-03 1.010 1.054 0.773 44.6 0.14E-01 0.92E-01 0.12E-03 0.12E-03 1.007 1.076 0.728 61.5 0.93E-02 0.59E-01 0.13E-03 0.13E-03 1.004 1.102 0.699 79.8 0.51E-02 0.32E-01 0.14E-03 0.14E-03 1.002 1.127 0.656 l

C-120

l l ! Run 5.1-3 Ws = 29.6 Kg/hr Pinlet - 410.7 KPa Tc,1 = 29.5 *C Tc-fit = D Ng = 0.314 Kg/hr Tinlet = 142.7 *C Tc,o - 55.1 *C Point =7 Wcw = 718.0 Kg/hr STD = 0. 57 *C Length Ta Tcw Tc-fit. Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx

                                                                                                              'C        'C         *C         *C          "C      'C/m       W/m*2      Fg/hr      Kg/hr            m cm          'C       'C        *C 17.0       46.2      53.0      52.2     112.7     114.6      123.3      142.6       143.3     17.893 0.100E*06         4.31     25.29 0.835E-04 30.4       43.4      50.3      49.8     111.0     112.8      121.3      142.3       143.3     17.286 0.966E*05         7.56     22.04 0.101E-03 44.6       40.9      47.8      47.4     107.9     109.7      117.9      142.0       143.2     16.665 0.931E+05        10.85      18.75 0.114E-03
61. 5 37.8 44.8 44.7 105.5 107.2 115.1 141.3 143.0 15.955 0.891E+05 14.61 14.99 0.127E-03 79.8 34.7 41.6 41.8 102.0 103.6 111.1 140.3 141.8 15.221 0.850E+05 18.44 11.16 0.138E-03 99.6 31.7 38.3 38.9 95.7 97.3 104.5 138.3 139.8 14.4(4 0.808E+05 22.27 7.33 0.148E-03 Length Re,f X Gas O Gas P steam P gas p(mix) Re(mix) litheor Hexp Dfactor R(in) R (t ube) R(out) cm mass % mole % KPa KPa Kg/m^2 W/m'2.*C W/m'2.*C m^2*C/W m
  • 2*C/W m'2*C/W 17.0 0.389E+02 0.012 0.053 389.0 21.7 0.139E-04 0.137E+05 0.825E* 04 0.519E+04 0.629 0.193E-03 0.106E-03 0.647E-03 30.4 0.676E+02 0.014 0.060 386.0 24.7 0.139E-04 0.120E*05 0.682E+04 0.458E*04 0.672 0.218E-03 0.106E-03 0.677E-03 44.6 0.956E+02 0.016 0.070 381.9 28.8 0.140E-04 0.102E+05 0.602E*04 0.387E*04 0.643 0.259E-03 0.107E-03 0.695E-03 61.5 0.127E+03 0.021 0.086 375.3 35.4 0.140E-04 0.814E+04 0.543E+04 0.339E+04 0.625 0.295E-03 0.107E-03 0.130E-03 79.8 0.156E+03 0.027 0.112 364.6 46.1 0.141E-04 0.607E+04 0.499E+04 0.291E+04 0.584 0.343E-03 0.108E-03 0.757E-03 99.6 0.182E+03 0.041 0.162 344.3 66.4 0.143E-04 0.399E+04 0.464E+04 0.239E+04 0.516 0.418E-03 0.109E-03 0. 753E-03 Length shear shear
  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.26E-01 0.17E+00 0.83E-04 0.82E-04 1.017 1.029 0.601 30.4 0.20E-01 0.13E+00 0.10E-03 0.10E-03 1.011 1.049 0.633 44.6 0.15E-01 0.97E-01 0.11E-03 0.11E-03 1.007 1.070 0.596 61.5 0.11E-01 0.66E-01 0.13E-03 0.13E-03 1.005 1.093 0.569 79.8 0.64E-02 0.39E-01 0.14E-03 0.14E-03 1.003 1.114 0.522 99.6 0.32E-02 0.19E-01 0.15E-03 0.15E-03 1.001 1.133 0.455 e 6" e

Run 5.1-4 Ws = 29.6 Kg/hr Pinlet = 412.6 KPa Tc,1 - 28.7 *C Tc-fit = D Wg - 1.010 Kg/hr Tinlet = 139.4 *C Tc, o = $6.0 *C Point =9 Wew - 654.2 Kg/hr STD = 0. 56 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm *C *C *C *C *C *C *C *C *C/m W/m*2 Kg/hr Kg/hr m 17.0 48.0 54.4 53.5 108.5 110.0 116.9 139.0 140.4 15.401 0.784E*05 3.33 26.27 0.775E-04 30.4 45.7 52.0 51.4 105.2 106.7 113.5 138.5 140.3 15.010 0.764E+05 5.87 23.73 0.940E-04 44.6 43.5 49.6 49.3 101.3 102.7 109.3 137.8 140.0 14.607 0.744E+05 8.46 21.14 0.107E-03 61.5 41.1 47.0 46.9 97.1 98.5 104.9 136.8 139.6 14.141 0.720E+05 11.42 18.18 0.119E-03 79.8 38.5 44.3 44.4 93.2 94.5 100.7 135.4 133.7 13.653 0.695E*05 14.49 15.11 0.130E-03 99.6 35.8 41.5 41.7 89.4 90.7 96.7 133.4 136.2 13.144 0.669E*05 17.64 11.96 0.139E-03 121.3 33.1 38.6 38.9 85.0 86.3 92.1 1 30.1 126.0 12.608 0.642E*05 20.88 8.72 0.149E-03 145.1 31.0 36.0 36.0 78.3 79.5 85.1 124.1 118.4 12.046 0.613E+05 24.10 5.50 0.159E-03 Longth Re.f X Gas O Gas P steam P gas p(mix) Ro(mix) Htheor I!cxp Dfactor R(in) R(tube) It tout) cm mass % mole % KPa KPa Kg/m*2 W/m" 2 . *C W/m* 2. *C m'2*C/W m

  • 2*C/W ma 2*C/W 17.0 0.289E+02 0.037 0.148 351.7 60.9 0.142E-04 0.143E*05 0.888E*04 0.354E*04 0.399 0.282E-03 0.107E-03 0.750E-03 30.4 0.499E+02 0.041 0.161 346.3 66.3 0.143E-04 0.129E+05 0.732E+04 0.305E+04 0.417 0.328E-03 0.107E-03 0.753E-03 44.6 0.703E*02 0.046 0.177 339.6 73.0 0.143E-04 0.115E*05 0.644E+04 0.261E+04 0.405 0.383E-03 0.108E-03 0. 747E-03 61.5 0.927E*02 0.053 0.200 330.1 82.5 0.144E-04 0.992E*04 0.578E+04 0.226E+04 0.390 0.443E-03 0.108E-03 0.746E-03 79.8 0.115E403 0.063 0.231 317.2 95.4 0.145E-04 0.826E+04 0.530E+04 0.200E+04 0.378 0.499E-03 0.109E-03 0.751E-03 i 99.6 0.136E+03 0.078 0.275 299.0 113.6 0.147E-04 0.656E+04 0.492E+04 0.182E+04 0.371 0.548E-03 0.110E-03 0.762E-03 121.3 0.154E+03 0.104 0.343 271.2 141.4 0.150E-04 0.483E+04 0.460E+04 0.169E+04 0.367 0.592E-03 0.110E-03 0.769E-03 145.1 0.167E+03 0.155 0.453 225.8 186.8 0.156E-04 0.311E+04 0.429E+04 0.157E+04 0.367 0.636E-03 0.111E-03 0.738E-03 1ength shear shear
  • Film-dx Film-dx* f1 shear flother f2 cm N/m*2 m m 17.0 0'31E-01 0.19E+00 0.78E-04 0.76E-04
                                        .                                                                                                                             1.022                                        1.021                 0.382 30.4 0.26E-01 0.16E+00 0.94E-04 0.93E-04                                                                                              1.015                                        1.037                 0.396 44.6 0.22E-01 0.13E+00 0.11E-03 0.11E-03                                                                                              1.011                                        1.051                 0.381 61.5 0.17E-01 0.10E400 0.12E-03 0.12E-03                                                                                              1.008                                        1.068                 0.363 79.8 0.13E-01 0.76E-01 0.13E-03 0.13E-03                                                                                              1.005                                        1 084                 0.347 99.6 0.92E-02 0.53E-01 0.14E-03 0.14E-03                                                                                              1.004                                        1.099                 0.336 121.3 0.59E-02 0.33E-01 0.15E-03 0.15E-03                                                                                              1.002                                        1.113                 0.329 145.1 0.32E-02 0.17E-01 0.16E-03 0.16E-03                                                                                              1.001                                        1.122                 0.326

- C-122

Run 5.1-5 Ws = 29.5 Kg/hr Pinlet - 421.7 KPa Tc,1 - 28.3 90 Tc-fit - D Wg = 1.710 Kg/hr Tinlet = 137.0 *C Tc,o - 54.5 *C Point =11 Wcw - 646.2 Kg/hr STD = 0.55 *C Tcw Two Tw Twi Tsat Tel dTcw/dX q" Wcond Wsteam Film-dx Length Ta Tc-fit cm *C *C *C *C *C 90 90 *: 9C/m W/m^2 Kg/hr Kg/hr m 52.1 104.0 105.4 111.8 136.4 137.4 14.449 0.727E+05 3.11 26.39 0.765E-04 17.0 47.1 53.1 24.08 0.926E-04 50.6 50.2 99.4 100.7 106.9 135.7 137.3 13.795 0.694E+05 5.42 30.4 44.9 7.72 21.78 0.105E-03 44.6 43.0 48.6 48.3 95.8 97.1 103.0 134.8 137.1 13.133 0.660E+05 46.3 46.1 92.0 93.2 98.8 133.7 136.9 12.387 0.623E+05 10.30 19.20 0.116E-03 61.5 40.9 12.90 16.60 0.126E-03 79.8 38.8 44.0 44.0 88.5 89.6 94.9 132.2 136.3 11.627 0.585E+05 36.5 41.6 41.7 85.0 86.1 91.1 130.2 134.8 10.856 0.546E+05 15.49 14.01 0.135E-03 99.6 10.071 0.506E+05 18.09 11.41 0.144E-03 121.3 34.3 39.2 39.5 80.9 81.9 86.5 127.7 132.0 32.0 36.7 37.2 76.2 77.1 81.4 124.1 127.6 9.275 0.466E+05 20.64 8.86 0.152E-03 145.1 tength Pe, f X Gas il Gas P steam P gas p(mix) Re(mix) Htheor Hexp Dfactor R(in) R (tube) R (out) mole % KPa KPa Kg/m^2 W/m"2. *C W / m ^ 2. *C m^29C/W m*29C/W m*29C/W em mass % 17.0 0.260E+02 0.061 0.226 326.5 95.2 0.145E-04 0.144E605 0.900E*04 0.295E+04 0.328 0. 339E-03.0.108E-03 0. 764E-03 30.4 0.441E+02 0.066 0.242 319.6 102.1 0.146E-04 0.132E+05 0.743E+04 0.241E+04 0.324 0.416E-03 0.108E-03 0. 758E-03 44.6 0.615E+02 0.073 0.261 311.6 110.1 0.147E-04 0.119E+05 0.655E+04 0.208E*04 0.317 0.482E-03 0.109E-03 0.770E-03 61.5 0.800E+02 0.082 0.286 301.0 120.7 0.148E-04 0.105E*05 0.591E+04 0.179E+04 0.302 0.560E-03 0.109E-03 0.787E-03 79.8 0.976E+02 0.093 0.317 288.1 133.6 0.149E-04 0.914E+04 0.544E+04 0.157E+04 0.288 0.638E-03 0.110E-03 0.814E-03 99.6 0.114E+03 0.109 0.355 272.2 149.5 0.151E-04 0.775E+04 0.507E+04 0.139E+04 0.275 0.718E-03 0.110E-03 0.849E-03 121.3 0.128E+03 0.130 0.403 251.9 169.8 0.153E-04 0.637E+04 0.476E+04 0.123E+04 0.259 0.813E-03 0.111E-03 0.876E-03 145.1 0.140E*03 0.162 0.465 225.6 196.1 0.157E-04 0.502E+04 0.448E+04 0.109E+04 0.244 0.916E-03 0.112E-03 0.895E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.35E-01 0.21E+00 0.76E-04 0.75E-04 1.025 1.019 0.314 30.4 0.30E-01 0.18E+00 0.93E-04 0.91E-04 1.018 1.032 0.309 l 44.6 0.26E-01 0.15E+00 0.10E-03 0.10E-03 1.013 1.045 0.299 i 61.5 0.22E-01 0.12E+00 0.12E-03 0.12E-03 1.010 1.059 0.283 79.8 0.17E-01 0.99E-01 0.13E-03 0.13E-03 1.007 1.071 0.267 99.6 0.14E-01 0.77E-01 0.14E-03 0.13E-03 1.005 1.083 0.252 121.3 0.11E-01 0.57E-01 0.14E-03 0.14E-03 1.004 1.094 0.235 l 145.1 0.76E-02 0.40E-01 0.15E-03 0.15E-03 1.003 1.103 0.220 9 t* - -

e

F Run 5.1-6 Ws - 29.7 Kg/hr Pinlet - 405.1 KPa Tc,1 - 27.5 *C Tc-fit - D Wg - 3.430 Kg/hr Tinlet - 128.5 *C Tc,o - 47.5 9 Point =11 Wcw - 684.7 Kg/hr STD = 0.41 90 Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm 92 9: *C 'C 'C 'C 'C 9C 'C/m W/m"2 Kg/hr Kg/hr m I 17.0 41.3 46.5 45.8 93.3 94.4 99.5 128.6 129.1 10.737 0.572E+05 2.43 27.27 0.722E-04 30.4 39.8 44.8 44.4 89.3 90.4 95.3 127.7 128.9 10.207 0.544E+05 4.21 25.49 0.874E-04 44.6 38.4 43.2 43.0 85.9 86.9 91.6 126.9 128.8 9.67 3 0.515E+05 5.99 23.71 0.989E-04. 61.5 36.9 41.5 41.4 82.6 83.5 87.9 125.7 128.7 9.074 0.483E+05 7.98 21.72 0.110E-03 79.8 35.3 39.7 39.8 79.1 80.0 84.1 124.3 128.0 8.468 0.451E+05 9.97 19.73 0.119E-03 99.6 33.8 38.1 38.2 76.1 76.9 80.7 122.8 126.9 7.857 0.419E+05 11.96 17.74 0.127E-03 121.3 32.1 36.1 36.5 72.1 72.9 16.5 121.C 125.1 7.238 0.386E*05 13.94 15.76 0.135E-03 . 145.1 30.8 34.7 34.9 69.8 70.5 73.8 118.8 122.5 6.615 0.352E+05 15.92 13.78 0,142E-0 3 i length Re,f X Gas il Gas P steam P gas p (mix) Re(mix) Htheor llexp Dfactor R (in) R(tube) R(out) cm mass % mole % KPa KPa Kg/m^2 W/m"2. *C W/m ^ 2 . *C m ^ 2 *C/W m^29C/W m* 2*C/W 17.0 0.184E+02 0.112 0.361 258.7 146.4 0.151E-04 0.152E+05 0.950E+04 0.197E+04 0.207 0.507E-03 0.109E-03 0.888E-03 30.4 0.313E+02 0.119 0.377. 252.3 152.8 0.151E-04 0.142E+05 0.785E+04 0.168E+04 0.214 0.596E-03 0.110E-03 0.884E-03 44.6 0.435E+02 0.126 0.394 245.3 159.8 0.152E-04 0.133E+05 0.692E+04 0.146E+04 0.211 0.684E-03 0.110E-03 0.891E-03 61.5 0.565E+02 0.136 0.415 236.8 168.3 0.153E-04 0.122E+05 0.624E+04 0.128"+04 0.205 0.781E-03 0.111E-03 0.911E-03 79.8 0.687E+02 0.148 0.439 227.3 177.8 0.155E-04 0.111E+05 0.575E+04 0.112E+04 0.195 0.891E-03 0.111E-03 0.932E-03 99.6 0.803E+02 0.162 0.465 216.6 188.5 0.156E-04 0.101E+05 0.536E+04 0.996E+03 0.186 0.100E-02 0.112E-03 0.969E-03 121.3 0.906E+02 0.179 0.495 204.7 200.4 0.158E-04 0.905E+04 0.504E+04 0.867E+03 0.172 0.115E-02 0.112E-03 0.987E-03 145.1 0.101E+03 0.199 0.528 191.1 214.0 0.160E-04 0.800E+04 0.477E+04 0.783E+03 0.154 0.128E-02 0.113E-03 0.106E-02 Length shear shea r* Film-dx Film-dx* fishear flother f2 cm N/m*2 m m-17.0 0.48E-01 0.27E+00 0.72E-04 0.70E-04 1.036 1.014 0.198 30.4 0.44E-01 0.25E+00 0.87E-04 0.85E-04 1.027 1.023 0.203 44.6 0.40E-01 0.22E+00 0.99E-04 0.97E-04 1.022 1.032 0.200 61.5 0.36E-01 0.19E+00 0.11E-03 0.11E-03 1.017 1.041 0.194 79.8 0.32E-01 0.17E+00 0.12E-03 0.12E-03 1.014 1.050 0.183 99.6 0.28E-01 0.14E+00 0.13E-03 0,13E-03 1.012 1.059 0.173 121.3 0.24E-01 0.12E+00 0.14E-03 0.13E-03 1.009 1.066 0.160 145.1 0.21E-01 0.10E+00 0.14E-03 0.14E-03 1.008 1.074 0.152 i C-124

Run 5.1-7 Ws = 29.7 Kg/hr Pinlet = 406.8 KPa Tc,1 - 27.4 *C Tc-f i t == 0 Wg - 5.780 Kg/hr Tinlet - 127.0 *C Tc,o = 46.1 *C Point -11 Wew - 643.3 Kg/hr STD = 0. 4 4 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q' Weond Wsteam Film-dx cm *C *C *C *C *C *C *C *C *C/m W/m^2 Kg/hr Kg/hr m 17.0 40.8 45.4 44.6 86.7 87.6 91.9 121.7 125.5 9.579 0.479E+05 2.00 27.70 0.690E-04 30.4 39.3 43.7 43.4 83.7 84.6 88.8 120.9 125.3 9.155 0.4 58E+ 05 3.48 26.22 0.835E-04 44.6 38.0 42.2 42.1 80.0 80.9 84.9 120.0 124.7 8.726 0.437E*05 4.97 24.73 0.947E-04 61.5 36.6 40.7 40.7 77.9 78.7 82.5 118.8 124.1 8.242 0.412E+05 6.64 23.06 0.105E-03 79.8 35.3 39.3 39.2 75.1 75.9 79.5 117.5 122.3 7.748 0.388E+05 8.33 21. 3 7 0.114E-03 99.6 33.7 37.5 37.7 72.0 72.7 76.1 116.1 120.4 7.246 0.363E*05 10.03 19.67 0.122E-0 3 121.3 32.3 36.0 36.2 69.0 69.7 72.8 114.5 118.5 6. 7 34 0.331E+05 11.75 11.95 0.130E-03 145.1 30.8 34.4 34.6 67.0 67.6 10.5 112.6 116.7 6.214 0.311E+05 13.48 16,22 0.137E-03 length Re,f X Gas D Ge3 P steam P gas p (mi x) Re (mix) litheor Hexp Dfactor R(In) R (tube) R(out) em mass % mole % KPa KPa Kg/ma 2 W / m ^ 2. *C W/m* 2. *C m* 2*C/W m

  • 2*C/W m"2*C/W 17.0 0.141E+02 0.173 0.484 209.8 197.0 0.157E-04 0.158E+05 0.991E+04 0.161E+04 0.162 0.622E-03 0.110E-03 0. 938E-03 30.4 0.241E+02 0.181 0.498 204.2 202.6 0.158E-04 0.151E+05 0.818E+04 0.143E4 04 0.174 0.701E-03 0.111E-03 0. 942E-03 44.6 0.336E+02 0.189 0.513 198.3 208.5 0.159E-04 0.143E+05 0.720E404 0.125E+04 0.173 0.803E-03 0.111E-03 0.930E-03 61.5 0.441E+02 0.200 0.530 191.2 215.6 0.160E-04 0.134E+05 0.650E+04 0.114E+04 0.175 0.881E-03 0.111E-03 0.965E-03 79.8 0.540E+02 0.213 0.549 183.5 223.3 0.162E-04 0.125E+05 0.597E+04 0.102E+04 0.171 0.981E-03 0.112E-03 0.991E-03 99.6 0.633E*02 0.227 0.569 175.2 231.6 0.163E-04 0.116E+05 0.556E+04 0.906E+03 0.163 0.110E-02 0.112E-03 0.101E-02 121.3 0.722E*02 0.244 0.592 166.1 240.7 0.165E-04 0.107E+05 0.523E404 0.810E+03 0.155 0.124E-02 0.113E-03 0.104E-02 145.1 0.810E*02 0.263 0.616 156.2 250.6 0.166E-04 0.985E*04 0.495E+04 0.739E+03 0.14 9 0.135E-02 0.113E-03 0.111E-02 Length shear shear
  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.64E-01 0.35E+00 0.69E-04 0.66E-04 1.050 1.010 0.153 30.4 0.60E-01 0.32E+00 0.84E-04 0.80E-04 1.039 1.018 0.165 44.6 0.56E-01 0.30E+00 0.95E-04 0.92E-04 1.032 1.025 0.164 61.5 0.52E-01 0.27E+00 0.10E-03 0.10E-03 1.027 1.032 0.165 79.8 0.48E-01 0.24E+00 0.11E-03 0.11E-03 1.022 1.040 0.160 99.6 0.44E-01 0.22E+00 0.12E-03 0.12E-03 1.019 1.046 0.153 121.3 0.40E-01 0.20E+00 0.13E-03 0.13E-03 1.016 1.053 0.145 145.1 0.36E-01 0.17E+00 0.14E-03 0.13E-03 1.014 1.059 0.139 e eF e

i d xm 43333333 00000000 )t/ W 33333333 00000000

                    -       - - - - - - - -      uC       - - - - - - - -                                    _

m EEEEEEEE (o9 2 EEEEEEEE _ l 64802221 87539743 i 501 34567 Ra m 36813726 _ F 811111 11 55566677 _ 00000000 00000000 mr 85811857 ) W 33333333 _ ah 37960106 e/ 00000000 e/ bu *C - - - - - - - - _ tg 06284948 2 EEEEEEEE WsK 4332211 (t^ 66666777 00000000 Rm 11111111 00000000 dr 25299253 ) W 33333333 nh 731 40904 n/C 00000000 o - - - - - - - - c/ Wg 48261516 11 2233 iR^'2 ( EEEEEEEE 39735035 K 44680235 m 11112222 00000000 66666555 r 24486507 "q 2 00000O00 o 71230017 a * + + + + i + + t 80000009 m EEEEEEEE c

                        /  18641231              a       01111110 W  10000852            f C           11111999             D                                                          -

00000000 D9 2 3 p*C 44444444 X 59383907 dm x .

            =0    //

12382339 18518405 00000000 e2 * ++ + + ++ + t wC H^ EEEEEEEE it = c9 54443332 m 130B8492 fn T 1111111 1 / 07048529 i D d W 76654443 cot TP S 00000000 l 21976524 r *C 44444444 cC o. 00000000 T* 66555554 h^ e2 6 ++ + + ++ + 44444444 EEEEEEEE 1111111 1 t m 44685252 H/ 06828520 W 86554444

        *C*C                                             00000000 t       00987412             )        55555544             2     45046471 aC                           x       00000000             f     13327539 63         s'     33222221             i        + + + * + +++              89990887 6

1 T 44444444 m EEEEEEEE 2

      -  22                11111111             t 90961442                   00000000 2   36                                      o       10753067                                      1 R        22111174 5                                                                                                 C
          =-                                             00000000 n                                              2 u  1, o,    i:       28299897                      44444444              r    26199024 R

cc Tw9 76531097

                                                )x ^m i

00000000

                                                          - - - - - - - -     h e    35803703 00011122               .

TT 22222211 m/g EEFEEEEE t 1111111 1 (p K 7 7888889 o 11111111 33333333 l 11111111 f 00000000 w 64981256 s Pa 73016914 r 86939631 T 'C a K a 32110000 . aC 77543219 g 56789165 e 00000000 _ P 1111111 0 K" 111111 11 P 112 h s 11111111 i f 02 96 oC 54992319 m Pa 37094196

  • m43333333 94 w a x 00000000 31 T' 55321097 eK 32209723 d - - - - - - - -

111 111 00 t s 99998887 - EEEEEEEE 111111 11 33333333 m 30234567

             =                                                                l     81111111 P                            i tt                                                                   F     00000000 ee ll                                       s%     46804004 tC     998481 22                                           xm43333333 nn       i'                             a Go      11122346             d     00000000 ii        f       97530852                      00000000               -    - - - - - - - -

PT - 55555444 l l o m EEEEEEEE c i m 00000000 l 60234567 T i 81111111 F 00000000 wC 42168092 s1 34455795

  • 00000011 _

c r rrr T' 08630842 65555444 a Gss 00000001 00000000 a e 00000000 4 + + + + + - - EEEEEEEE hhh Xam 00000000 h 82605075

         ///                                                                   s    33221152                 _

ggg _ KKK 00000000 _ a 73145514 f 22333333 r211111122 _ T *C , 00000000 a^ 00000000 15

1. 3 42074185 e + + + + + ++ + em- - - - - - - - _

55544433 R EEEEEEEE h/EEEEEEEE _ 9 47100269 sN90123619 5 09 4 1.3 36159371 55432193 47111223 00000000 00000000

          ==-

sgw hm 04658631 hm 04658631 hm04658631 t c t c tc WWe g n 7041991 5 g n 70415915 g n 70419915 W e 13467924 11 e 13467924 1 1 e 13467924 11 _ l L L L _ D _

Run 5.2-1R1 Ws = 46.2 Kg/hr Pinlet - 402.3 KPa Tc,1 = 33.0 *C Tc-fit - D Wg = 0.131 Kg/hr Tinlet = 146.8 *C Tc,o = 64.1 *C Point =9 Wcw = 921.2 Kg/hr STD = 0.4 3 *C Length Ta Tcw Tc-tit Two Tw Twi Tsat Tcl dTcw/dX q' Wcond Wsteam Film-dx cm *C 'C *C *C *C *C *C *C *C /m W/m*2 Kg/hr Kg/hr m 17.0 56.3 61.9 61.4 115.6 117.8 128.0 143.3 146.6 16.355 0.117E+06 5.01 41.19 0.872E-04 30.4 54.1 59.8 59.3 114.4 116.6 126.6 143.3 146.5 16.055 0.115E+06 8.86 37.34 0.106E-03 44.6 51.7 57.4 57.0 111.9 114.0 123.9 143.2 146.5 15.744 0.113E+06 12.84 33.36 0.120E-03 61.5 48.9 54.7 54.4 110.5 112.6 122.3 143.1 146.4 15.381 0.110E+06 17.48 28.72 0,133E-03 79.8 45.8 51.8 51.6 109.1 111.1 120.5 143.0 146.3 14.997 0.108E+06 22.37 2 3.83 0.145E-03 99.6 42.0 48.4 48.7 109.2 111.2 120.4 142.7 146.1 14.593 0.105E+06 27.53 18.67 0.155E-03 121.3 38.2 44.9 45.5 108.4 110.3 119.2 142.3 145.0 14.162 0.102E+06 32.99 13.21 0.165E-03 145.1 35.5 42.4 42.2 107.7 109.6 118.? 141.1 144.4 13.705 0.982Ee05 38.73 7.47 0.175E-03 Length Ro,f X Gas O Gas P steam P gas p(mix) Re(mix) Ittheor flexp Dractor R(in) R(tube) R(out) em mass % mole % KPa KPa Kg/m*2 W/ m ^ 2 . *C W/ m ^ 2 .*C rna 2*C/W m

  • 2*C/ W m^2*C/W 17.0 0.463E+02 0.003 0.014 396.6 5.7 0.138E-04 0.224E+05 0.789E604 0.767E+04 0.972 0.130E-03 0.106E-03 0.494E-03 30.4 0.814E+02 0.003 0.016 396.0 6.3 0.138E-04 0.203E+05 0.651E+04 0.693E+04 1.064 0.144E-03 0.106E-03 0.512E-03 44.6 0.117E+03 0.004 0.017 395.3 7.0 0.138E-04 0.181E+05 0.574E+04 0.584E*04 1.018 0.171E-03 0.106E-03 0.520E-03 61.5 0.158E+03 0.005 0.020 394.2 8.1 0.138E-04 0.156E+05 0.517E+04 0.529E+04 1.024 0.189E-03 0.106E-03 0.544E-03 79.8 0.200E+03 0.005 0.024 392.6 9.7 0.138E-04 0.129E+05 0.475E+04 0.480E*04 1.010 0.208E-03 0.107E-03 0.572E-03 99.6 0.246E+03 0.007 0.031 390.0 12.3 0.138E-04 0.101E+05 0.4 43E+04 0.468E+04 1.057 0.213E-03 0.107E-03 0.619E-03 121.3 0.292E+03 0.010 0.043 385.1 17.2 0.138E-04 0.718E+04 0.416E+04 0.440E+04 1.058 0.227E-03 0.107E-03 0.662E-03 145.1 0.340E+03 0.017 0.073 372.9 29.4 0.139E-04 0.406E+04 0.394E+04 0.429E+04 1.091 0.233E-03 0.107E-03 0.713E-03 Length shear shear
  • Film-dx Film-dx* fishear flother f2 cm N/m"2 m m 17.0 0.60E-01 0.39E+00 0.87E-04 0.84E-04 1.038 1.034 0.905 30.4 0.51E-01 0.33E+00 0.11E-03 0.10E-03 1.026 1.060 0.978 44.6 0.42E-01 0.27E+00 0.12E-03 0.12E-03 1.019 1.085 0.921 61.5 0.32E-01 0.20E+00 0.13E-03 0.13E-03 1.013 1.115 0.907 79.8 0.23E-01 0.15E+00 0.14E-03 0.14E-03 1.009 1.146 0.873 99.6 0.15E-01 0.94E-01 0.16E-03 0.15E-03 1.005 1.180 0.891 121.3 0.81E-02 0.51E-01 0.17E-03 0.16E-03 1.003 1.214 0.869 145.1 0.30E-02 0.19E-01 0.17E-03 0.17E-03 1.001 1.249 0.873
                                                                     -127

xm 43333333

                                             )t/

W 33333333 d 00000000 00000000 uC EEEEEEEE m EEEEEEEE _ l 45923443 to *2 01020524 - i 60134567 24570492 F 811111 11 R ^m 55556667 - 00000000 00000000 - mr 4921 6650 ) W 33333333 ah 80279961 e/ 00000000 - e/ bu *C - - - - - - - - t g 07383838 2 EEEEEEEE 4332211 t^ 66667777 WsK ( Rm 00000000 11111111 00000000 dr 61894450 W 33333333 nh 86497706 )n/ 00000000 o i *C - - - - - - - - c/ Wg 48261627 (2 EEEEEEEE 13998661 K 11 2233 R "m 45791236 1 1112222 00000000 66666655 r 82424085 "q 2* 00000000 o 89665906

                         * * + + + + * +     t        89999909 m EEEEEEEE              c a

- / 4207 41 53 00000010 - W 11100085 f _ C 111111 99 D 00000000 D9 25 p*C X 19531 053 44444444 x

       -  =0      dm     1 2393541                    00000000
                 //      41841 739           !e2.      + + * + + ++
  • t it =

f n wC c9 T 55444332 11111111

                                             !^
                                                   /

m EEEEEEEE 73928343 05505428 i D d W 76554443 cot TP S 00000000 . _ l 09987406 r *C 44444444 cC o. 00000000 T' 65555553 h* e2 + + 6 + + ++

  • 44444444 EEEEEEEE 1 111 11 11 itl/ m 78020717 95828429 W 76554443 CC*
       "                                              00000000 t      77653177            )        55555544            2    84348817 2               a9                          x      00000000            f    21752337 R   07          s     33333321            i         * * + + + + + +         89888887 1              T      44444444               m     EEEEEEEE                                       8
     - 32                11111 1 1 1          t 21060310                 00000000              2 2   36                                       e     20853044                                       1 R        22111174                                         -

5 C

        ==                                            00000000 n                                              2 u  1, o,      l      65026248            )        44444444             r   38323591

_ R cc wC x *m 00000000 e 35814704 _ T* 76420096 i m/g - - - - - - - - h 00011122 TT 22222211 EEEEEEEE t 1111 1 111 (p K 88888899 o 11111111 33333333 11111111 l f 00000000 W 78484384 s Pa 95340522 r 76939531 _ T *C . a K a 32110000 _ a 764211 08 g 56780278 e 00000000 P *C 1111 1 11 0 1112 h _ K 1 11111 11 P s 11111111 i , f 91 _ - 66 oC 67384496 m Pa 04659477

  • n43333333 04 w a x 00000000 41 T' 54209986 eK 10986498 d - - - - - - - -

- 11 110000 t s 00999987 - EEEEEEEE 111 1 1111 44333333 m 30234567

        -=                                                                l     81111111 P                           i tt                                                                 F     00000000 ee ll                                       s%

tC 22069221 56815129 xm43333333 nn ii i* a Gel 11122346 d 00000000 f 08630852 00000000 - - - - - - - - - PT - 65555444 m EEEEEEEE T c Dom 00000000 l i 60234567 81111111 F 00000000 - wC 06673501 s% 34456706

  • 00000111 c* a 00000011 r 00000000 rrr T 18631752 65555444 Gss 00000000 a +*+++ - -

e EEEEEEEE hhh

       ///

Xam 00000000 h s 82605641 ggg 33221952 KKK 00000000 _ aC 48883134 f, 22333333 r211111122 _ T9 00000000 a*00000000 46

7. 3 52075185 e ++ + * + ++ + em -

- 8 55544433 R EEEEEEEE 02435959 h/EEEEEEEE sN90113554 5 09 4 1.4 59159382 55432183 - 47111223 00000000 00000000

         ===       hm                           hm sgw 04658631                     04658631           hm04658631 t c                         t c                        tc WWc     W g

n 70419915 13467924 g n 70419915 13467924 g n 70419915 13467924 e 1 1 e 11 e 11 L L L 4

Run 5.2-2 Ws = 44.0 Kg/hr Finlet - 406.7 KPa Tc,1 = 32.4 *C Tc-fit - D Wg = 0.238 Kg/hr Tinlet = 145.8 *C Tc,o - 61.4 *C Point -10 Ncw = 934.5 Kg/hr STD = 0. 2 6 *C Two Tw Twi Tsat Tcl dTcw/dX q' Wcond Wsteam Film-dx Length Ta Tcw Tc-fit Kg/hr Kg/hr m cm *C *C *C *C 'C *C 'C 'C *C/m W/m*2 17.0 53.7 59.5 59.0 115.7 117.7 127.1 143.3 145.1 14.822 0.108E+06 4.63 39.37 0.851E-04 30.4 51.3 57.3 57.0 115.1 117.1 126.2 143.2 145.0 14.434 0.105E+06 8.16 35.84 0.103E-03 44.6 49.1 55.1 55.0 113.2 115.1 124.0 143.0 144.9 14.033 0.102E+06 11.78 32.22 0.117E-03 61.5 46.6 52.8 52.7 111.8 113.7 122.3 142.9 144.8 13.570 0.987E+05 15.96 28.04 0.129E-03 79.8 43.9 50.2 50.2 110.2 112.0 120.3 142.6 143.8 13.086 0.952E4AS 20.30 23.70 0.140E-03 99.6 41.2 47.6 47.7 109.1 110.8 118.8 142.3 143.0 12.582 0.915L+.5 24.81 19.19 0.150E-03 121.3 38.3 44.9 45.0 107.5 109.2 116.9 141.7 142.4 12.052 0.816E+05 29.52 14.48 0.160E-03 145.1 35.8 42.3 42.2 104.1 105.7 113.1 140.5 141.5 11.497 0.836E+05 34.36 9.64 0.169E-03 Length Re, f X Gas O Gas P steam P gas p(mix) Re (mix) Htheor Hexp Dfactor R(in) R (tutml R(out) cm mass % mole % KPa KPa Kg/m'2 W/ m ^ 2. *C W/m^ 2. *C m^ 2*C/W m *2*C/W m*2*C/W 17.0 0.426E+02 0.006 0.026 395.9 10.8 0.138E-04 0.214E*05 0.809E+04 0.667i+04 0.825 0.150E-03 0.106E-03 0.562E-03 30.4 0.748E+02 0.007 0.029 394.9 11.8 0.138E-04 0.194E+05 0.669E+04 0.621E+04 0.928 0.161 E-03 0.106E-03 0. 592E-03 44.6 0.107E+03 0.007 0.032 393.6 13.1 0.138E-04 0.175E+05 0.590E+04 0.537E+04 0.909 0.186E-03 0.106E-03 0. 609E-03 61.5 0.144E+03 0.008 0.037 391.7 15.0 0.138E-04 0.152E+05 0.533E+04 0.481E+04 0.902 0.208E-03 0.106E-03 0.641E-03 79.8 0.181E+03 0.010 0.043 389.1 17.6 0.139E-04 0.129E405 0.490E+04 0.427E+04 0.871 0.234E-03 0.107E-03 0.674E-03 99.6 0.220E+03 0.012 0.053 385.2 21.5 0.139E-04 0.104E+05 0.458E+04 0.390E+04 0.853 0.256E-03 0.107E-03 0.717E-03 121.3 0.258E+03 0.016 0.069 378.7 28.0 0.139E-04 0.786E+04 0.431E+04 0.354E+04 0.822 0.282E-03 0.107E-03 0.763E-03 145.1 0.294E+03 0.024 0.100 366.0 40.7 0.140E-04 0.524E+04 0.407E+04 0.30$E+04 0.751 0.327E-03 0.107E-03 0.792E-03 Length shear shear

  • Film-dx Film-dx* fishear ficther f2 cm N/m*2 m m 17.0 0.56E-01 0.36E+00 0.85E-04 0.82E-04 1.036 1.V31 0.772 30.4 0.47E-01 0.31E+00 0.10E-03 0.10E-03 1.025 1.055 0.858 44.6 0.39E-01 0.25E+00 0.12E-03 0.11E-03 1.019 1.078 0.827 61.5 0.31E-01 0.20E+00 0.13E-03 0.13E-03 1.013 1.105 0.806 79.8 0.23E-01 0.15E+00 0.14E-03 0.14E-03 1.009 1.133 0.762 99.6 0.16E-01 0.10E+00 0.15E-03 0.15E-03 1.006 1.161 0.731 121.3 0.98E-02 0.61E-01 0.16E-03 0.16E-03 1.003 1.189 0.689 145.1 0.49E-02 0.30E-01 0.17E-03 0.17E-03 1.002 1.215 0.617 i

Run 5.2-2R1 Ws - 44.7 Kg/hr Pinlet - 420.9 KPa Tc,1 = 32.1 *C Tc-fit - D Wg = 0.244 Kg/hr Tinlet - 146.0 *C Tc,o - 62.0 *C' Point -10 Wr w = 923.1 Kg/hr STD - 0. 4 5 *C e

 ' mgth            Ta                                  Tcw      Tc-tit     Two         Tw      Twi        Tsat            Tcl   dTcw/dX              q"    Wcond    Wsteam     Film-dx cm             *C                                      'C      'C      *C        *C        *C          *C             "C     *C/m         W/m^2       Kg/hr     Kg/hr             m 17.0       54.4                                 60.1           59.3   115.1    117.3      127.7       144.5       145.6       16.648 0.120E+06            5.17    39.53 0.881E-04 30.4       51.9                                 57.7           57.1   112.9    115.1      125.2       144.4       145.6       16.081 0.116E+06            9.07    35.63 0.107E-03 44.6       49.6                                 55.3           54.8   109.7    111.8      121.6       144.2       145.4       15.501 0.111E*06           13.03    31.67 0.121E-03 61.5       46.7                                 52.6           52.3   108.8    110.8      120.2       144.0       145.2       14.838 0.107E+06           17.56    27.14 0.134E-03 79.8       43.5                                 49.6           49.6   107.8    109.7      118.6       143.7       145.0       14.153 0.102E+06           22.24    22.46 0.145E-03 99.6       40.0                                 46.4           46.9   107.9    109.7      118.2       143.3       144.5       13.446 0.966E*05           27,05    17.65 0.1558-03 121.3       37.0                                 43.7           44.1   107.7    109.4      117.4       142.5      -143.5       12.712 0.913E+05           32.01    12.69 0.164E-03 145.1       34.6                                41.0            41.1   102.1    103.7      111.3       140.7       141.9       11.954 0.858E+05           36.91      7.79 0.174E-03 Length       Re,f                           X Gas               D Gas P steam    P gas     p(mix)    Re(mix)       Htheor         Hexp     Dfactor         R(in)  R(tube)        R(out) cm                                   mass %                mole %      KPa       KPa    Kg/m*2               W/m^2.*C      W/m^ 2.*C                 m*2*C/W   m*2*C/W     m*2*C/W 17.0 0.480E+02                             0.006              0.027   409.5     11.4 0.139E-04 0.214E+05 0.781E*04 0.714E+04                 0.914 0.140E-03 0.106E-03 0. 498E-03          !

30.4 0.833E+02 0.007 0.030 408.3 12.6 0.139E-04 0.193E+05 0.646E+04 0.603E+04 0.933 0.166E-03 0.106E-03 0.517E-03 i 44.6 0.118E*03 0.008 0.034 406.8 14.1 0.139E-04 0.171E+05 0.570E+04 0.491E+04 0.862 0.203E-03 0.107E-03 0.527E-03 61.5 0.158E+03 0.009 0.039 404.5 16.4 0.139E-04 0.147E+05 0.515E+04 0.447E+04 0.867 0.224E-03 0.107E-03 0.567E-03 79.8 0.198E+03 0.011 0.047 401.3 19.6 0.139E-04 0.122E+05 0.475E404 0.405E+04 0.852 0.247E-03 0.107E-03 0.612E-03 99.6 0.240E+03 0.014 0.059 396.3 24.6 0.139E-04 0.955E+04 0.445E+04 0.385E+04 0.865 0.260E-03 0.107E-03 0.675E-03 1 121.3 0.282E+03 0.019 0.080 387.4 33.5 0.140E-04 0.687E+04 0.420E+04 0.365E*04 0.869 0.274E-03 0.107E-03 0.745E-03 145.1 0.314E+03 0.030 0.124 368.9 52.0 0.142E-04 0.422E+04 0.396E+04 0.292E+04 0.736 0.343E-03 0.108E-03 0.759E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m .

17.0 0.55E-01 0.36E+00 0.88E-04 0.85E-04 1.034 1.035 0.854 30.4 0.46E-01 0.29E+00 0.11E-03 0.10E-03 '1.023 1.061 0.859 44.6 0.37E-01 0.24E+00 0.12E-03 0.12E-03 1.017 1.006 0.780 61.5 0.28E-01 0.18E+00 0.13E-03 0.13E-03 1.012 1.115 0.768 79.8 0.20E-01 0.13E+00 0.14E-03 0.14E-03 1.008 1.145 0.739 99.6 0.13E-01 0.84E-01 0.15E-03 0.15E-03 1.005 1.176 0.733 121.3 0.76E-02 0.48E-01 0.16E-03 0.16E-03 1.003 1.206 0.718 145.1 0.33E-02 0.20E-01 0.17E-03 0.17E-03 1.001 1.230 0.598 k C-130

Run 5.2-2R2 Ws - 46.1 Kg/hr Pinlet - 414.5 KPa Tc,1 - 32.9 *C Tc-fit - D Kg/hr Tinlet - 146.2 *C Tc,o - 62.3 *C Point -10 Wg - 0.254 Wcw = 964.3 Kg/hr STD = 0. 39 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcend Wsteam Film-dx

                                                                                         'C                                *C                                          'C                                           *C                          *C/m      W/m^2      Kg/hr     Kg/hr            m cm                      *C                      *C       *C                *C 60.5                      115.0    117.2                      127.2                                        143.9                                        146.0                                 15.302 0.115E+06        4.35     41.15 0.869E-04 17.0                   54.9                              59.0 37.40 0.105E-03 30.4                   52.6                     58.3     57.8             114.0    116.1                      125.8                                        143.8                                        145.9                                 14.844 0.111E+06        8.70 50.4                     56.0     55.7             110.7    112.7                      122.2                                        143.7                                        145.9                                 14.375 0.108E+0G       12.53     33.57 0.119E-03 44.6                                                                                                                                                                                                                                                                           29.17 0.132E-03 61.5                   47.8                     53.6     53.3             109.8    111.8                      120.9                                        143.5                                        145.8                                 13.835 0.104E+06       16.93 79.8                   44.9                     50.9     50.8             108.6    110.5                      119.3                                        143.3                                        145.7                                 13.274 0.996E+05       21.49     24.61 0.143E-03 99.6                   41.6                     47.9     48.3             108.5    110.3                      118.7                                        142.9                                         145.4                                12.692 0.952E+05       26.21     19.89 0.153E-03 121.3                   38.8                     45.3     45.6             108.3    110.0                      118.0                                        142.3                                        145.0                                 12.083 0.907E+05       31.1 3    14.97 0.162E-03 145.1                   36.2                     42.7     42.8             105.7    107.3                      114.9                                        141.0                                         143.6                                11.449 0.859E+05       36.14       9.96 0.172E-03 Length                   Re,f                    X Gas    il Gas P steam             P gas                  p(mix)                                  Re(mix)                                           Iltheor                                     flexp   Dractor      R(in)   R(tubel      R(out) mass %   mole %                KPa        KPa                  Kg/m^2                                                                            W/m^2 *C                                    W/ m
  • 2. *C m *2*c/W m^ 2*C/ W m*2*C/W cm 17.0 0.457E+02 0.006 0.027 403.3 11.2 0.138E-04 0.223E* 05 0.792E+ 04 0.688E* 04 0.868 0.145E-03 0.106E-03 0.514E-03 30.4 0.799E+02 0.007 0.030 402.2 12.3 0.138E-04 0.203E+05 0.655E+04 0.619E+04 0.945 0.161E-03 0.106E-03 0.539E-03 44.6 0.113E+03 0.008 0.033 400.9 13.6 0.139E-04 0.182E+05 0.578E*04 0.501E*04 0.867 0.200E-03 0.106E-03 0.545E-03 61.5 0.152E+03 0.009 0.038 398.9 15.6 0.139E-04 0.158E+05 0.522E+04 0.459E+04 0.880 0.218E-03 0.107E-03 0. 582E-03 79.8 0.191E+03 0.010 0.044 396.1 18.4 0.139E-04 0.133E+05 0.481E+04 0.415E+04 0.863 0.241E-03 0.107E-03 0.620E-03 99.6 0.233E+03 0.013 0.054 392.0 22.5 0.139E-04 0.108E*05 0.450E+04 0.393E+04 0.875 0.254E-03 0.107E-03 0.676E-03 121.3 0.275E+03 0.017 0.071 385.1 29.4 0.140E-04 0.812E+04 0.424E+04 0.373E+04 0.881 0.268E-03 0.107E-03 0.740E-03 145.1 0.313E+03 0.025 0.103 371.8 42.7 0.141E-04 0.541E+04 0.401E+04 0.329E+04 0.819 0.304E-03 0.107E-03 0.783E-03 Length shear shear
  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.60E-01 0.39E+00 0.87E-04 0.84E-04 1.038 1.033 0.810 30.4 0.50E-01 0.33E+00 0.11E-03 0.10E-03 1.026 1.058 0.870 44.6 0.42E-01 0.27E+00 0.12E-03 0.12E-03 1.019 1.083 0.786 61.5 0.33E-01 0.21E+00 0.13E-03 0.13E-03 1.014 1.111 0.782 79.8 0.24E-01 0.15E+00 0.14E-03 0.14E-03 1.009 1.140 0.750 99.6 0.17E-01 0.11E+00 0.15E-03 0.15E-03 1.006 1.170 0.743 121.3 0.10E-01 0.64E-01 0.16E-03 0.16E-03 1.003 1.201 0.731 145.1 0.51E-02 0.32E-01 0.172-03 0.17E-03 1.002 1.229 0.666
                                                                                                                                                     -131

g /) 6 Run 5.2-3 Ws = 45.9 Kg/hr Pinlet = 430.5 KPa Tc,1 = 31.7 90 Tc-fit - D Wg = 0.432 Kg/hr Tinlet = 146.2 *C Tc,o = 57.7 9C Point =10 Wcw - 1082.7 Kg/hr STD = 0.27 *C Length Ta Tew ic-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm 9C 9C *C 'C 'C 'C 9C 'C 'C/m W/m^2 Kg/hr Kg/hr m 17.0 50.3 56.2 55.6 115.1 117.2 126.8 144.6 145.9 13.113 0.111E*06 4.77 41.13 0.858E-04 30.4 48.4 54.3 53.9 114.0 116.0 125.3 144.5 145.9 12.696 0.107E+06 8.38 37.52 0.104E-03 44.6 46.3 52.1 52.1 110.3 112.2 121.3 144.3 145.8 12.269 0.103E*06 12.04 33.86 0.118E-03 61.5 44.0 50.0 50.1 110.3 112.2 120.9 144.0 145.6 11.780 0.993E+05 16.26 29.64 0.130E-03 79.8 41.7 47.8 47.9 109.1 110.9 119.2 143.6 145.1 11.272 0.950E+05 20.61 25.29 0.141E-03 99.6 39.5 45.7 45.8 108.0 109.7 117.7 143.1 144.2 10.747 0.905E+05 25.09 20.81 0.151E-03 121.3 37.0 43.4 43.5 107.0 108.6 116.2 142.2 142.7 10.200 0.859E*05 29.73 16.17 0.160E-03 145.1 34.9 41.3 41.1 105.4 106.9 114.1 140.6 140.9 9.631 0.811E+05 34.46 11.44 0.169E-03 Length Re,f X Gas il Gas P steam P gas p(mix) Re (mix) Htheor Hexp Dfactor R(in) R (tube) R(out) em mass % mole % KPa KPa Kg/m^2 W/m*2.*C W/m*2 *C m^2*C/W m^2*C/ W m^2*C/W 17.0 0.441E*02 0.010 0.045 411.1 19.4 0.139E-04 0.222E*05 0.802E+04 0.622E+04 0.775 0.161E-03 0.106E-03 0.576E-03 30.4 0.770E+02 0.011 0.049 409.3 21.2 0.140E-04 0.203E+05 0.664E+04 0.560E+04 0.843 0.179E-03 0.106E-03 0.601E-03 44.6 0.109E+03 0.013 0.054 407.1 23.4 0.140E-04 0.183E+05 0.585E+04 0.450E+04 0.768 0.222E-03 0.106E-03 0.602E-03 61.5 0.146E+03 0.014 0.062 404.0 26.5 0.140E-04 0.160E+05 0.529E+04 0.430E404 0.813 0.233E-03 0.107E-03 0.649E-03 79.8 0.184E+03 0.017 0.071 399.8 30,7 0.140E-04 0.137E405 0.488E+04 0.390E+04 0.799 0.257E-03 0.107E-03 0.689E-03 99.6 0.222E+03 0.020 0.085 393.7 36.8 0.141E-04 0.112E+05 0.456E+04 0.357E+04 0.783 0.280E-03 0.107E-03 0.735E-03 121.3 0.260E+03 0.026 0.107 384.3 46.2 0.141E-04 0.875E+04 0.429E+04 0.330E+04 0.769 0.303E-03 0.107E-03 0.790E-03 145.1 0.297E+03 0.036 0.145 368.0 62.5 0.143E-04 0.620E+04 0.407E+04 0.305E+04 0.750 0.328E-03 0.107E-03 0.847E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.59E-01 0.3BE+00 0.86E-04 0.83E-04 1.038 1.032 0.723 30.4 0.50E-01 0.32E+00 0.10E-03 0.10E-03 1.027 1.056 0.778 44.6 0.42E-01 0.27E+00 0.12E-03 0.12E-03 1.020 1.000 0.698 61.5 0.33E-01 0.21E+00 0.13E-03 0.13E-03 1.014 1.107 0.724 79.8 0.25E-01 0.16E+00 0.14E-03 0.14E-03 1.010 1.135 0.698 99.6 0.18E-01 0.11E+00 0.15E-03 0.15E-03 1.007 1.162 0.669 121.3 0.12E-01 0.74E-01 0.16E-03 0.16E-03 1.004 1.190 0.643 145.1 0.67E-02 0.42E-01 0.17E-03 0.17E-03 1.002 1.217 0.615 C:-132

i Run 5.2-4 Pinlet = 423.2 KPa Tc,1 - 31.2 *C Tc-fit - D Ws = 45.9 Kg/hr Tc, o - 53.5 *C Point =11 Wg - 1.650 Kg/hr Tinlet = 140.4 *C l STD = 0. 31 *C Wcw - 1086.5 Kg/h r l Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx Ta Tcw Tc-fit Two Tw Length 'C *C 'C 'C/m W/m^2 Kg/hr Kg/hr m cm 'C *C *C *C *C 112.9 120.1 139.9 140.9 9.754 0.825E+05 3.52 42.38 0.785E-04 17.0 46.9 52.7 52.0 111.3 6.19 39.71 0.952E-04 51.0 50.7 108.4 109.9 117.0 139.5 140.9 9.505 0.804E+05 30.4 45.3 139.1 140.8 9.248 0.782E+05 8.93 36.97 0.108E-03 44.6 43.9 49.4 49.3 105.4 106.9 113.8 106.9 113.6 138.6 140.7 8.951 0.757E+05 12.11 33.79 0.120E-03 61.5 42.4 48.1 47.8 105.5 30.52 0.130E-03 101.5 102.9 109.4 137.9 140.2 8.640 0.730E+05 15.38 79.8 40.8 46.3 46.2 8.316 0.703E*05 18.77 27.13 0.140E-03 44.5 44.5 98.6 99.9 106.2 137.1 139.7 99.6 39.1 139.3 7.975 0.614E+05 22.28 23.62 0.149E-03 37.4 42.5 42.7 93.8 95.1 101.1 136.0 121.3 134.5 138.3 7.617 0.644E*05 25.97 19.93 0.158E-03 145.1 35.8 40.9 40.9 92.2 93.4 99.2 l P gas pimix) Re(mix) Htheor Hexp Diactor R(in) R (tutae) R(out) Length Re,f X Gas O Gas P steam m'2*C/W m^2*C/W m'2*C/W mole % KPa KPa Kg/m*2 W/ m ' 2 . *C W/m^ 2 . *C cm mass % l 0.037 0.149 360.1 63.1 0.143E-04 0.230E+ 05 0.876E*04 0. 418E4 04 0. 477 0.239E-0 3 0.106E-0 3 0. 770E-03 17.0 0.310E*02 0.493 0.281E-03 0.107E-03 0.768E-03 30.4 0.537E402 0.040 0.158 356.5 66.7 0.143E-04 0.216E+05 0.723E4 04 0.356E+04 1 0.043 0.167 352.4 70.8 0.143E-04 0.201E+05 0.637E+04 0.309E+04 0.485 0.324E-03 0.107E-03 0.767E-03 l 44.6 0.763E+02 0.527 0.330E-03 0.107E-03 0.815E-03 61.5 0.103E+03 0.047 0.180 347.0 76.2 0.144E-04 0.184E+05 0.575E+04 0.303E+04 0.051 0.196 340.4 82.8 0.144E-04 0.166E+05 0.528E+04 0.256E+04 0.486 0.390E-03 0.108E-03 0.810E-03 79.8 0.128E+03 0.464 0.439E-03 0.108E-03 0.822E-03 99.6 0.153E+03 0.057 0.215 332.3 90.9 0.145E-04 0.148E+05 0.491E+04 0.228E+04 0.065 0.239 322.0 101.2 0.146E-04 0.129E+05 0.460E+04 0.194E+04 0.421 0.516E-03 0.109E-03 0.810E-03 l 121.3 0.177E403 0.420 0.548E-03 0.109E-03 0.852E-03 i 145.1 0.203E+03 0.076 0.271 308.3 114.9 0.147E-04 0.109E*05 0.435E+04 0.182E+04 Length shear shear

  • Film-dx Filra-dx* fishear flother f2 cm N/m'2 m m 17.0 0.72E-01 0.46E+00 0.79E-04 0.75E-04 1.050 1.023 0.444 30.4 0.65E-01 0.41E+00 0.95E-04 0.92E-04 1.037 1.039 0.457 i
44.6 0.58E-01 0.36E+00 0.11E-03 0.11E-03 1.029 1.056 0.446 i 61.5 0.50E-01 0.31E+00 0.12E-03 0.12E-03 1.023 1.075 0.479 79.8 0.43E-01 0.26E+00 0.13E-03 0.13E-03 1.018 1.094 0.436 99.6 0.36E-01 0.21E+00 0.14E-03 0.14E-03 1.014 1.112 0.411 i

' 121.3 0.29E-01 0.17E+00 0.15E-03 0.15E-03 1.010 1.130 0.369 145.1 0.22E-01 0.13E+00 0.16E-03 0.16E-03 1.008 1.149 0.363 i l C-133 t

O > Run 5.2-4R Ws = 45.6 Kg/hr Pinlet - 403.9 KPa Tc,1 = 32.3 *C Tc-fit = D Wg = 1.670 Kg/hr Tinlet = 139.5 *C Tc,o = $4.6 *C Point all Wew = 1054.1 Kg/hr STD = 0. 35 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q' Wcond Wsteam Film-dx

                                                                                       'C                  *C                                                  *C                "C       *C                     *C                   *C                            *C      *C/m             W/m*2      Kg/hr            Kg/hr                      m cm 17.0       48.3                  53.8                                        53.1                        109.7    111.2               118.2            138.2                         139.1             9.681 0.794E+05               3.37           42.23 0.778E-04 30.4       46.7                  52.2                                         51.8                       107.5    109.0               115.8            137.8                         139.0             9.444 0.775E+05               5.94           39.66 0.942E-04                                i 44.6       45.2                  50.6                                         50.5                       104.9    106.3                113.0           137.4                          138.0            9.198 0.755E*05               8.58           37.02 0.107E-03 61.5       43.7                  49.3                                         49.0                       105.2    106.6               113.1            136.9                         138.6.            8.915 0.731E+05              11.65           33.95 0.118E-03                               .

79.8 42.1 47.5 47.3 101.6 102.9 109.2 136.3 138.2 8.617 0.707E+05 14.80 30.80 0.129E-03 99.6 40.4 45.7 45.7 98.3 99.6 105.7 135.5 137.8 8.307 0.681E+05 18.08 27.52 0.139E-03 121.3 38.6 43.6 43.9 93.5 94.8 100.7 134.4 137.3 7.979 0.654E+05 21.48 24.12 0.148E-03 145.1 37.1 42.0 42.0 91.3 92.5 98.1 133.1 136.5 7.635 0.626E+05 25.06 20.54 0.157E-03 ' Length Re,f X Gas O Gas P steam P gas p(mix) Re (mix) Htheor llexp Dfactor R(in) R(tube) R(out) cm mass % mole % KPa KPa Kg/m*2 W/m^2.*C ' W/m* 2.*C m* 2*C/W m*2*C/ W m^2*C/W 17.0 0.293E+02 0.038 0.151 342.9 61.0 0.142E-04 0.230E+05 0.885E*04 0.398E+04 0.449 0.251E-03 0.107E-03 0.762E-03 30.4 0.509E+02 0.040 0.159 339.6 64.3 0.142E-04 0.216E+05 0.730E+04 0.352E+04 0.483 0.284E-03 0.107E-03 0.769E-03 44.6 0.725E+02 0.043 0.169 335.7 68.2 0.143E-04 0.202E+05 0.643E+04 0.309E+04 0.480 0.324E-03 0.107E-03 0.771E-03 61.5 0.981E+02 0.047 0.181 330.7 73.2 0.143E-04 0.185E+05 0.581E+04 0.307E+04 0.528 0.326E-03 0.107E-03 0.823E-03 79.8 0.122E+03 0.051 0.196 324.7 79.2 0.144E-04 0.168E+05 0.533E+04 0.261E+04 0.490 0.383E-03 0.108E-03 0.820E-03 99.6 0.146E+03 0.057 0.215 317.3 86.6 0.144E-04 0.151E+05 0.496E+04 0.229E+04- 0.461 0.437E-03 0.108E-03 0.826E-03 121.3 0.169E+03 0.065 0.238 307.9 96.0 0.145E-04 0.132E+05 0.464E+04 0.194E+04 0.418 0.516E-03 0.109E-03 0.811E-03 145.1 0.193E+03 0.075 0.268 295.7 108.2 0.146E-04 0.113E+05 0.438E+04 0.179E+04 0.409 0.558E-03 0.109E-03 0.841E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.75E-01 0.47E+00 0.78E-04 0.74E-04 1.053 1.021 0.418 30.4 0.68E-01 0.42E+00 0.94E-04 0.91E-04 1.039 1.037 0.448 44.6 0.61E-01 0.37E+00 0.11E-03 0.10E-03 1.031 1.053 0.442 61.5 0.53E-01 0.32E+00 0.12E-03 0.12E-03 1.024 1.072 0.481 79.8 0.45E-01 0.27E+00 0.13E-03 0.13E-03 1.019 1.089 0.441 99.6 0.38E-01 0.23E+00 0.14E-03 0.14E-03 1.015 1.107 0.411 121.3 0.31E-01 0.18E400 0.15E-03 0.15E-03 1.011 1.124 0.367 145.1 0.25E-01 0.14E+00 0.16E-03 0.16E-03 1.008 1.142 0.355 C-134

_ m .._n._

                                                                                    -       ____.__.m____                -.m_ _ . . _ _ _ _ _ _ _ . _ - - _ _ _ _ _ _ -__                   _m_           m  --     -_s-    _ _ _ _ _     _ _ _ - _ - __                             _ - _ .                    -_e--u    _ _ _ _ _ _ - _ - -         -_____m______.-_

l l l Run 5.2-5 Ws - 45.5 Kg/hr Pinlet = 401.8 KPa Tc,1 - 30.6 *C Tc-fit - D Wg - 2.430 Kg/hr Tinlet = 136.5 *C Tc,o - 57.0 *C Point -11 New = 806.7 Kg/hr STD - 0. 41 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx 9 *C 'C 'C *C *C 93 90 9C/m W/m^2 Kg/hr Kg/hr m em 17.0 50.3 55.9 55.1 108.2 109.6 116.2 135.7 136.5 12.002 0.754E*05 3.20 42.30 0.769E-04 30.4 48.4 54.0 53.5 105.5 106.9 113.4 135.2 136.4 11.645 0.731E+05 5.63 39.87 0.931E-04 44.6 46.7 52.2 51.9 103.2 104.5 110.8 134.8 136.3 11.279 0.708E+05 8.11 37.39 0.106E-03 61.5 44.8 50.2 50.0 100.6 101.9 108.0 134.1 136.2 10.858 0.682E+05 10.94 34.56 0.117E-03 79.8 42.8 48.1 48.1 97.3 98.6 104.4 133.4 135.9 10.421 0.654E*05 13.86 31.64 0.127E-03 99.6 40.8 46.0 46.0 94.5 95.7 101.3 132.5 135.2 9.967 0.626E+05 16.06 28.64 0.137E-03 121.3 38.6 43.7 43.9 90.4 91.6 97.0 131.4 133.8 9.492 0.596E+05 19.96 25. 54 0.14 6E-0 3 145.1 36.5 41.5 41.7 87.7 88.8 93.9 129.9 132.4 8.997 0.565E*05 23.18 22.32 0.154E-03 I,e ng t h Ro,f X Gas D Gas P steam P qas p(mix) Re(mix) Htheot Hexp Dfactor R(in) R(tube) R(out) cm mass % mole % KPa KPa Kg/m^2 W/ m* 2. *C W/ma 2.*C m* 2*C/W m

  • 2*C/ W m^ 2*C/W 17.0 0.272E+02 0.054 0.205 319.3 82.5 0.144E-04 0.231E+05 0.895E+04 0.388E+04 0.433 0.258E-03 0.107E-03 0.753E-03 30.4 0.471E+02 0.057 0.215 315.3 86.5 0.144E-04 0.218E+05 0.739E+04 0.334E+04 0.452 0.299E-03 0.107E-03 0.760E-03 44.6 0.669E+02 0.061 0.226 310.9 90.9 0.145E-04 0.205E+05 0.652E* 04 0.295E+04 0.453 0.339E-03 0.108E-03 0.774E-03 61.5 0.889E+02 0.066 0.240 305.2 96.6 0.145E-04 0.190E+05 0.587E+04 0.261E+04 0.444 0.384E-03 0.108E-03 0.794E-03 79.8 0.110E+03 0.071 0.257 298.6 103.2 0.146E-04 0.174E+05 0.539E+04 0.226E+04 0.419 0.442E-03 0.109E-03 0.806E-03 99.6 0.132E+03 0.078 0.276 290.8 111.0 0.147E-04 0.158E+05 0.502E+04 0.201E+04 0.400 0.498E-03 0.109E-03 0.828E-03 121.3 0.152E+03 0.087 0.300 281.3 120.5 0.148E-04 0.141E+05 0.471E*04 0.173E+04 0.368 0.577E-03 0.110E-03 0.835E-03 145.1 0.173E+03 0.098 0.329 269.7 132.1 0.149E-04 0.124E+05 0.445E+04 0.157E+04 0.352 0.638E-03 0.110E-03 0.871E-03 Length shear shear
  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.82E-01 0.50E400 0.77E-04 0.73E-04 1.058 1.020 0.401 30.4 0.75E-01 0.45E+00 0.93E-04 0.89E-04 1.044 1.034 0.419 44.6 0.68E-01 0.41E+00 0.11E-03 0.10E-03 1.035 1.049 0.417 61.5 0.60E-01 0.36E+00 0.12E-03 0.11E-03 1.028 1.065 0.405 79.8 0.53E-01 0.31E+00 0.13E-03 0.12E-03 1.022 1.081 0.379 99.6 0.46E-01 0.26E+00 0.14E-03 0.13E-03 1.018 1.096 0.358 121.3 0.39E-01 0.22E+00 0.15E-03 0.14E-03 1.014 1.111 0.326 145.1 0.32E-01 0.18E+00 0.15E-03 0.15E-03 1.011 1.126 0.309 C-135
                                                                   \

Run 5.2-5R Ws = 47.5 Kg/hr Pinlet - 400.4 KPa Tc,1 = 31.5 9C Tc-fit - D Wg - 2.350 Kg/hr Tinlet = 138.9 'C Tc,o = 59.3 93 Point -11 Wcw = 802.6 Kg/hr STD = 0.36 9C , Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm *C S 'C *C 'C 'C 'C 'C/m W/m*2 Kg/hr Kg/hr m 17.0 52.5 58.0 57.3 108.4 109.9 116.7 136.1 138.7 12.312 0.769E+05 3.26 44.24 0.772E-04 30.4 50.6 56.1 55.7 106.9 108.3 114.9 135.7 138.6 11.988 0.749E+05 5.74 41.76 0.935E-04 44.6 48.9 54.3 54.0 104.6 106.0 112.4 135.2 138.3 11.654 0.728E+05 8.28 39.22 0.106E-03 61.5 47.0 52.4 52.1 102.7 104.0 110.2 134.7 137.9 11.269 0.704E+05 11.20 36.30 0.118E-03 79.8 44.8 50.1 50.1 99.4 100.7 106.7 134.0 137.5 10.866 0.679E+05 14.23 33.27 0.128E-03 99.6 42.6 47.9 48.0 96.9 98.2 104.0 133.1 136.9 10.446 0.652E+05 17.36 30.14 0.137E-03 121.3 40.4 45.5 45.7 92.7 93.9 99.5 132.1 135.9 10.005 0.625E+05 20.61 26.89 0.147E-03 145.1 38.1 43.2 43.4 89.7 90.9 96.3 130.7 134.6 9.542 0.596E+05 23.99 23.51 0.155E-03 Length Re,f X Gas il Gas P steam P gas p(mix) Pe (mix) Ht heor Hexp Dfactor R(in) 4(tube) R(out) cm mass % molo % KPa KPa Kg/m*2 W/m"2. 'C W/m^ 2. *C ma 29C/W m 29C/W m^2*C/W i 17.0 0.278E+02 0.050 0.193 323.2 77.2 0.143E-04 0.242E+05 0.891E+04 0.396E+04 0.445 0.252E-03 0.107E-03 0.710E-03 30.4 0.485E+02 0.053 0.202 319.5 80.9 0.144E-04 0.229E+05 0.736E+04 0.360E+04 0.490 0.278E-03 0.107E-03 0.731E-03 44.6 0.691E+02 0.057 0.212 315.4 85.0 0.144E-04 0.215E+05 0.649E+04 0.319E+04 0.492 0.313E-03 0.107E-03 0. 74 3E-03 61.5 0.923E+02 0.061 0.226 310.1 90.3 0.145E-04 0.199E+05 0.585E+04 0.288E+04 0.493 0.341E-03 0.108E-03 0.768E-03 79.8 0.115E+03 0.066 0.241 303.8 96.6 0.145E-04 0.183E+05 0.537E+04 0.249E+04 0.464 0.401E-03 0.108E-03 0.777E-03 99.6 0.138E+03 0.072 0.260 296.4 104.0 0.146E-04 0.166E+05 0.500E+04 0.224E+04 0.449 0.446E-03 0.109E-03 0.803E-03 121.3 0.159E+03 0.080 0.282 287.4 113.0 0.147E-04 0.148E+05 0.468E+04 0.192E+04 0.410 0.521E-03 0.109E-03 0.804E-03 145.1 0.182E+03 0.091 0.310 276.2 124.2 0.148E-04 0.130E+05 0.442E+04 0.173E+04 0.391 0.578E-03 0.110E-03 0.832E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.88E-01 0.54E+00 0.77E-04 0.73E-04 1.062 1.020 0.410 30.4 0.80E-01 0.49E+00 0.93E-04 0.89E-04 1.047 1.035 0.452 44.6 0.73E-01 0.44E+00 0.11E-03 0.10E-03 1.037 1.051 0.452 61.5 0.64E-01 0.39E+00 0.12E-03 0.11E-03 1.030 1.068 0.449 79.8 0.56E-01 0.33E+00 0.13E-03 0.13E-03 1.024 1.084 0.418 99.6 0.49E-01 0.29E+00 0.14E-03 0.14E-03 1.019 1.101 0.400 121.3 0.41E-01 0.24E400 0.15E-03 0.14E-03 1.015 1.117 0.361 145.1 0.34E-01 0.19E+00 0.16E-03 0.15E-03 1.012 1.133 0.341 C-136

m . . m . -_. .. .__ . . m - _ . Run 5.2-6 Ws - 45.1 Kg/hr Pinlet - 433.0 KPa Tc,1 - 28.8 'C Tc-fit - D Wg - 5.540 Kg/hr Tinlet - 136.1 *C Tc,o - 56.2 *C Point -11 Wcw - 641.1 Kg/h r STD - 0. 4 8 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tel dTcw/dX q* Wcond Wsteam Film-dx cm 'C 'C 'C 'C 'C 'C 'O 'C *C/m W/m^2 Kg/hr Eg/hr m 49.8 55.1 54.2 100.9 102.1 107.7 130.3 134.4 12.698 0.634E+05 2.66 42.44 0.735E-04 17.0 4.66 40.44 0.891E-04 30.4 47.7 52.9 52.5 97.6 98.8 104.3 129.7 134.0 12.304 0.614E+05 44.6 46.0 51.1 50.8 94.7 95.8 101.1 129.1 133.5 11.898 0.594E+05 6.71 38.39 0.101E-03 44.1 49.1 48.8 91.8 92.9 98.0 128.2 132.9 11.434 0.570E+05 9.04 36.06 0.112E-03 61.5 11.44 33.66 0.122E-03 79.8 41.9 46.8 46.8 88.9 90.0 94.9 127.3 131.7 10.951 0.546E*05 99.6 39.8 44.7 44.7 86.5 87.5 92.2 126.2 130.3 10. 4 51 0. 521 E

  • 05 1 3.91 31.19 0.131E-03 121.3 37.5 42.3 42.4 82.9 83.9 88.4 124.9 128.4 9.930 0.495E+05 16.45 28.65 0.139E-03 145.1 35.2 39.8 40.1 79.2 80.1 84.4 123.4 126.9 9.388 0.408E*05 19.07 26.03 0.148E-03 Inngth Re, f X Gas D Gas P steam P gas p(mix) Re (mix) fltheor  !!exp Dfactor R(in) R(tube) R(out) cm mass % mole t KPa KPa Kg/m'2 W/ m^ 2. *C W/m'2.*C m'2*C/W m^2*C/W m^2*C/W 17.0 0.212E+02 0.115 0.370 272.8 160.2 0.152E-04 0.235E+05 0.936E+04 0.281E*04 0.300 0.356E-03 0.108E-03 0.788E-03 30.4 0.365E+02 0.120 0.381 267.9 165.1 0.153E-04 0.224E+05 0.771E+04 0.241E+04 0. 313 0.414E-03 0.109E-03 0.786E-03 44.6 0.515E+02 0.126 0.394 262.5 170.5 0.153E-04 0.214E+05 0.679E+04 0.213E*04 0.313 0.470E-03 0.109E-03 0.790E-03 61.5 0.681E+02 0.133 0.409 256.0 177.0 0.154E-04 0.201E+05 0.611E+04 0.189E*04 0.309 0.529E-03 0.109E-03 0.806E-03 79.8 0.845E+02 0.141 0.425 248.8 184.2 0.155E-04 0.188E+05 0.562E+04 0.169E*04 0.301 0.592E-03 0.110E-03 0.826E-03 99.6 0.101E+03 0.151 0.444 240.7 192.3 0.156E-04 0.175E+05 0.523E+04 0.154E+04 0.294 0.651E-03 0.110E-03 0.858E-03 121.3 0.116E+03 0.162 0.465 231.5 201.5 0.157E-04 0.162E+05 0.490E+04 0.136E*04 0.277 0.737E-03 0.111E-03 0.874E-03 145.1 0.131E+03 0.175 0.489 221.2 211.8 0.159E-04 0.148E+05 0.462E+04 0.120E+04 0.259 0.834E-03 0.111E-03 0.892E-03 Length shear shear
  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.10E+00 0.60E400 0.73E-04 0.68E-04 1.075 1.016 0.275 30.4 0.96E-01 0.56E+00 0.89E-04 0.84E-04 1.058 1.027 0.288 44.6 0.89E-01 0.51E+00 0.10E-03 0.96E-04 1.048 1.038 0.288 61.5 0.82E-01 0.47E+00 0.11E-03 0.11E-03 1.040 1.050 0.283 79.8 0.76E-01 0.42E+00 0.12E-03 0.12E-03 1.033 1.062 0.274 99.6 0.69E-01 0.38E+00 0.13E-03 0.13E-03 1.028 1.074 0.266 121.3 0.62E-01 0.33E+00 0.14E-03 0.14E-03 1.024 1.085 0.249 145.1 0.55E-01 0.29E+00 0.15E-03 0.14E-03 1.020 1.096 0.232 C-137

O ' Run 5.2-6R Ws = 47.1 Kg/hr Pinlet - 388.0 KPa Tc,1 - 29.4 *C Tc-fit - D Wg = 5.600 Kg/hr Tinlet = 129.4 *C Tc, o - 57.3 *C Point all Wew - 634.3 Kg/hr STD = 0. 54 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl -dTcw/dx qa Wcond Wsteam Film-dx cm *C 'C *G *C 'C *C *C *C *C/m W/m^2 Kg/hr Kg/hr m 17.0 51.3 56.4 55.4 100.3 101.4 106.6 127.2 127.9 11.911 0.588E+05 2.44 44.66 0.718E-04 30.4 49.3 54.4 53.9 97.7 98.8 104.0 126.7 127.7 11.718 0.579E+05 4.32 42.78 0.872E-04 44.6 47.6 52.5 52.2 94.7 95.8 100.9 126.1 127.5 11.517 0.569E+05 6.27 40.83 0.992E-04 61.5 45.7 50.6 50.3 92.1 93.2 98.2 125.4 127.2 11.282 0.557E405 8.53 38.57 0.110E-03 79.8 43.5 48.3 48.2 89.2 90.3 95.2 124.5 126.5 11.033 0.545E+05 10.91 36.19 0.121E-03 99.6 41.0 45.9 46.1 87.5 88.5 93.3 123.5 125.8 10.769 0.531E+05 13.42 33.68 0.130E-03 121.3 38.8 43.5 43.8 83.9 84.9 89.6 122.4 125.0 10.488 0.518E*05 16.07 31.03 0.139E-03 145.1 36.3 40.9 41.3 80.3 81.3 85.9 121.0 124.0 10.187 0.503E+05 18.86 28.24 0.147E-03 Length Re,f X Gas il Gas P steam P gas p (mix) Re (mix) litheor llexp Dfactor R (in) R(tube) R(out) cm mass % rnole % KPa KPa Kg/m*2 W/ m

  • 2 . *C W/m'2.*C m^2*C/W m'2*C/W m^2*C/W 17.0 0.191E+02 0.111 0.361 248.0 140.0 0.150E-04 0.249E*05 0.956E*04 0.286E+04 0. 300 0. 349E-03 0.108E-03 0.815E-03 ,

30.4 0.333E+02 0.116 0.371 244.2 143.8 0.151E-04 0.239E+05 0.787E+04 0.255E+04 0.324 0.392E-03 0.109E-03 0.810E-03 I 44.6 0.474E+02 0.121 0.382 239.9 148.1 0.151E-04 0.229E+05 0.691E*04 0.226E+04 0.327 0.4 43E-03 0.109E-03 0.799E-03 61.5 0.635E+02 0.127 0.395 234.7 153.3 0.152E-04 0.217E+05 0.621E+04 0.205E+04 0.331 0.487E-03 0.109E-03 0.804E-03 79.8 0.797E+02 0.134 0.411 228.7 159.3 0.153E-04 0.204E+05 0.568E+04 0.186E+04 0.327 0.538E-03 0.110E-03 0.805E-03 , 99.6 0.966E+02 0.143 0.428 221.9 166.1 0.154E-04 0.190E+05 0.528E+04 0.176E+04 0.333 0.569E-03 0.110E-03 0.833E-03 121.3 0.113E+03 0.153 0.448- 214.1 173.9 0.155E-04 0.176E*05 0.493E+04 0.158E4 04 0.320 0.634E-03 0.111E-03 0.829E-03 145.1 0.129E*03 0.165 0.472 205.0 183.0 0.156E-04 0.161E+05 0.463E+04 0.14 3E+04 0.309 0.699E-03 0.111E-03 0.830E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m*2 m m 17.0 0.12E+00 0.70E+00 0.72E-04 0.66E-04 1.091 1.014 0.271 30.4 0.11E+00 0.66E+00 0.87E-04 0.81E-04 1.071 1.024 0.296 44.6 0.11E+00 0.61E+00 0.99E-04 0.94E-04 1.058 1.035 0.298 61.5 0.10E+00 0.56E400 0.11E-03 0.11E-03 1.049 1.046 0.301 79.8 0.92E-01 0.51E+00 0.12E-03 0.12E-03 1.041 1.058 0.297 99.6 0.84E-01 0.46E*00 0.13E-03 0.13E-03 1.035 1.071 0.301 i 121.3 .0.76E-01 0.41E+00 0.14E-03 0.13E-03 1.029 1.083 0.287 i 145.1 0.68E-01 0.36E+00 0.15E-03 0.14E-03 1.025 1.094 0.276 t

t C-138

Run 5.3-1 Pinlet = 405.5 KPa Tc,1 - 34.2 SC Tc-fit - D Ws = 60.4 Kg/hr Point -11 Wg - 0.174 Kg/hr Tinlet = 148.8 *C Tc,o - 70.9 9C Kg/hr STD = 0.21 *C Wcw = 938.8 Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx length Ta Tcw Tc-fit Two m

                                                      'C         "C          *C          "C       9C/m       W/m^2      Kg/hr     Kg/hr cm          'C        'C       'C       'C 116.3    118.4       128.1       143.6       148.4     15.247 0.112E*06          4.76     55.64 0.857E-04 17.0        63.9      68.8      68.4                                                                                     8.42     51.98 0.104E-03 61.4      66.5      66.4    116.1    118.1       127.6       143.6       148.3     14.958 0.109E+06 30.4                                                                                 148.2     14.659 0.107E+06         12.22     48.18 0.118E-03 44.6        59.1      64.4      64.3    115.7    117.7       127.0       143.5 115.1    117.1       126.2       143.5       148.1     14.310 0.105E+06         16,64     43.76 0.130E-03 61.5        56.5      62.0      61.9                                                                                              39.11 0.142E-03 53.7      59.4      59.3    114.5    116.4       125.3       143.4       148.0     13.941 0.102E+06         21.29 79.8 56.6    113.2     115.1      123.8       143.3       147.8     13.553 0.991E+05         26.18     34.22 0.152E-03 99.6        50.7      56.6 31.37     29.03 0.162E-03 47.4      53.6      53.7    112.5     114.3      122.1       143.2       147.5     13.140 0.960E*05 121.3                                                                                 147.3     12.702 0.928E+05         36.84     23.56 0.171E-03 145.1        44.0      50.3      50.6    111.1    112.8       120.9       142.9 X Gas     O Gas P steam      P gas     p(mix)    Ro(mix)       Htheor        Hexp     Dfactor      R(in)   R(tube)     R(out) tength        Re,f KPa    Kg/m*2                W/m*2.*C   W/ m^ 2 . *C            m^29C/W   m*29C/W    m^29C/W cm               mass %    mole %       KPa 0.003     0.014    399.9       5.6 0.138E-04 0. 302E+05 0.803E4 04 0.720E+04            0.896 0.139E-03 0.106E-03 0.459E-03 17.0 0.440E+02                                                                                              1.034 0.146E-03 0.106E-03 0.485E-03 30.4 0.778E+02      0.003     0.015    399.5       6.0 0.138E-04 0.282E+05 0.663E+04 0.686E404 0.004     0.016    399.0       6.5 0.138E-04 0.261E+05 0.586E+04 0.650E+04              1.110 0.154E-03 0.106E-03 0.512E-03 44.6 0.113E*03                                                                                              1.149 0.165E-03 0.106E-03 0.544E-03 61.5 0.153E+03      0.004     0.018    398.4       7.1 0.138E-04 0.237E+05 0.528E+04 0.606E+04 79.8 0.195E+03      0.004     0,020    397.5       8.0 0.138E-04 0.212E+05 0.486E+04 0.563E+04              1.159 0.178E-03 0.106E-03 0.579E-03 99.6 0.238E+03      0.005     0.022    396.4       9.1 0.138E-04 0.186E+05 0.453E+04 0.507E+04              1.120 0.197E-03 0.106E-03 0.612E-03 121.3 0.283E+03       0.006     0.026    394.9      10.6 0.138E-04 0.158E+05 0.425E+04 0.469E+04              1.103 0.213E-03 0.106E-03 0.655E-03 145.1 0.330E+03       0.007     0.032    392.5      13.0 0.138E-04 0.128E+05 0.402E+04 0.422E+04              1.048 0.237E-03 0.106E-03 0.697E-03 Length       shear    shear
  • Film-dx Film-dx* f1 shear flother f2 cm N/m^2 m m 17.0 0.10E+00 0.67E+00 0.86E-04 0.80E-04 1.066 1.032 0.815 30.4 0.91E-01 0.59E+00 0.10E-03 0.99E-04 1.048 1.057 0.933 44.6 0.80E-01 0.52E+00 0.12E-03 0.11E-03 1.037 1.082 0.989 61.5 0.67E-01 0.44E+00 0.13E-03 0.13E-03 1.028 1.112 1.005 79.8 0.55E-01 0.36E+00 0.14E-03 0.14E-03 1.021 1.143 0.993 99.6 0.43E-01 0.28E+00 0.15E-03 0.15E-03 1.016 1.174 0.939 121.3 0.32E-01 0.21E+00 0.16E-03 0.16E-03 1.011 1.207 0.904 145.1 0.22E-01 0.14E+00 0.17E-03 0.17E-03 1.007 1.242 0.838
                                                                        -139
  )

J v v Run 5.3-2 Ws = 60.5 Kg/hr Pinlet = 401.3 KPa Tc,1 = 33.8 *C Tc-fit - D Wg = 0.313 Kg/hr Tinlet = 148.2 *C Tc,o - 70.8 *C Point =11 Wcw = 900.6 Kg/hr STD = 0.17 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx

                                                          *C          *C                       *C      90/m     W/m^2      Kg/hr      Kg/hr                m em          'C       *C        'C       *C                                 9C 63.5      68.5      68.2    115.8       117.9       127.5      142.8         147.0    15.668 0.110E+06        4.70     55.80 0.855E-04 17.0                                                                                                                     8.30     52.20 0.103E-03 30.4       61.0      66.2      66.2    115.7       117.7       127.0      142.8         146.8    15.283 0.107E+06 58.8      64.2      64.0    114.9       116.9       126.0      142.7         146.7    14.886 0.104E*06       12.00     48.50 0.117E-03 44.6                                                                                                                    16.28     44.22 0.130E-03 61.5       56.2      61.7      61.5    114.1       116.0       124.8      142.6         146.5    14.427 0.101E+06 53.5      59.1      58.9    112.6       114.4       123.0      142.5         146.2    13.945 0.978E+05       20.74     39.76 0.141E-03 79.8                                                                                                                    25.39      35.11 0.151E-03 99.6       50.5      56.3      56.2    111.3       113.1       121.4      142.3         145.9    13.442 0.943E+05 121.3        47.3      53.4      53.4    110.6       112.3       120.2      142.1         145.7    12.912 0.905E+05       30.28     30.22 0.161E-03 145.1        43.9      50.2      50.4    109.4       111.0       118.6      141.8         145.2    12.354 0.866E+05       35.40     25.10 0.169E-03 Lengt h       Ro,I     X Gas     O Gas P steam        P gas      p(mix)    Re(mix)      Htheor         Heep   Dfactor      R(in)   R (tubel          R(out) mole %       KPa         KPa      Kg/m'2               W/m^2.9C W/m* 2. 9C               m*29C/W   m*29C/W          m*29C/W cm               mass %

17.0 0.433E+02 0.006 0.025 391.4 9.9 0.138E-04 0.303E4 05 0.80SE*04 0.716E+04 0.889 0.140E-03 0.106E-03 0.463E-03 30.4 0.762E+02 0.006 0.026 390.8 10.5 0.138E-04 0.284E+0' O.666E+04 0.681E+04 1.024 0.147E-03 0.106E-03 0. 494E-03 44.6 0.110E+03 0.006 0.028 390.0 11.3 0.138E-04 0.263E+05 0.588E+04 0.625E+04 1.063 0.160E-03 0.106E-03 0.521E-03 61.5 0.148E+03 0.007 0.031 388.9 12.4 0.138E-04 0.240E+05 0.530E+04 0.569E+04 1.073 0.176E-03 0.106E-03 0.555E-03 79.8 0.187E+03 0.008 0.034 387.6 13.7 0.138E-04 0.216E+05 0.488E+04 0.501E+04 1.025 0.200E-03 0.106E-03 0.586E-03 99.6 0.227E+03 0.009 0.039 385.8 15.5 0.138E-04 0.191E605 0.455E+04 0.449E+04 0.987 0.223E-03 0.106E-03 0.625E-03 121.3 0.269E+03 0.010 0.045 383.4 17.9 0.138E-04 0.164E+05 0.429E+04 0.414E+04 0.965 0.242E-03 0.107E-03 0.676E-03 145.1 0.312E+03 0.012 0.053 380.0 21.3 0.139E-04 0.136E+05 0.406E+04 0.374E+04 0.920 0.268E-03 0.107E-03 0.729E-03 Length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/m^2 m m 17.0 0.11E+00 0.69E+00 0.86E-04 0.80E-04 1.068 1.032 0.807 30.4 0.94E-01 0.61E+00 0.10E-03 0.99E-04 1.050 1.056 0.923 44.6 0.83E-01 0.53E+00 0.12E-03 0.11E-03 1.039 1.080 0.948 61.5 0.70E-01 0.45E+00 0.13E-03 0.13E-03 1.030 1.108 0.940 79.8 0.58E-01 0.37E+00 0.14E-03 0.14E-03 1.023 1.137 0.882 99.6 0.47E-01 0.30E+00 0.15E-03 0.15E-03 1.017 1.166 0.832 121.3 0.36E-01 0.23E+00 0.16E-03 0.16E-03 1.012 1.197 0.796 145.1 0.26E-01 0.16E+00 0.17E-03 0.17E-03 1.008 1.229 0.742 C-140

Run 5.3-3 Ws - 61.9 Kg/hr Pinlet - 404.7 KPa Tc,1 - 33.6 *C Tc-fit = D Wg - 0.602 Kg/hr Tinlet - 146.6 *C Tc,o - 63.6 *C Point -11 Wcw - 1085.7 Kg/hr STD = 0.20 *C Length Ta Tcw Tc-fit Two Tw Twi Tsat Tcl dTcw/dX q" Wcond Wsteam Film-dx cm *C *C 'C *C 'C *C 'C *C "C/m W/m^2 Kg/hr Kg/hr m 17.0 56.7 62.0 61.6 115.4 117.4 126.6 142.4 146.0 12.448 0.105E*06 4.50 57.40 0.844E-04 30.4 54.9 60.3 60.0 114.9 116.8 125.7 142.3 145.8 12.133 0.103E+06 7.94 53.96 0.102E-03 44.6 53.0 58.4 58.3 112.3 114.2 122.9 142.2 145.7 11.007 0.998E*05 11.47 50.43 0.116E-03 61.5 50.9 56.4 36.3 111.5 113.3 121.8 142.0 145.5 11.431 0.966E*05 15.54 46.36 0.128E-03 79.8 48.6 54.1 54.2 109.7 111.5 119.7 141.8 145.3 11.038 0.933E*05 19.79 42.11 0.139E-03 99.6 46.3 52.1 52.1 109.8 111.5 119.4 141.6 145.0 10.627 0.898E*05 24.22 37.68 0.149E-03 121.3 43.9 49.8 49.8 108.5 110.1 117.7 141.2 144.6 10.194 0.861E+05 28,86 33.04 0.159E-03 145.1 41.6 47.6 47.5 107.4 109.0 116.2 140.8 144.2 9.740 0.823E+05 33.72 28.18 0.167E-03 Length Re,f X Gas O Gas P steam P gas p(mix) Re (mix) Htheor Hexp Dfactor R(in) R (tube) R(out) cm mass % mole % Kra KPa Kg/m*2 W/m*2.*C W/m^ 2. *C m^2*C/W m ^2*C/ W m* 2*C/W 17.0 0.412E+02 0.010 0.045 386.5 18.2 0.139E-04 0.312E+05 0.816E+04 0.665E+04 0.816 0.150E-03 0.106E-03 0.547E-03 30.4 0.724E+02 0.011 0.048 385.4 19.3 0.139E-04 0.293E+05 0.674E+04 0.620E+04 0.920 0.161E-03 0.106E-03 0. 572E-03 44.6 0.103E+03 0.012 0.051 384.1 20.6 0.139E-04 0.274E+05 0.595E+04 0.519E+04 0.873 0.193E-03 0.106E-03 0.579E-03 61.5 0.139E+03 0.013 0.055 382.4 22.3 0.139E-04 0.252E+05 0.536E+04 0.477E+ 04 0.890 0.210E-03 0.106E-03 0.611E-03 79.8 0.175E+03 0.014 0.060 380.2 24.5 0.139E-04 0.229E+05 0.494E+04 0.422E+04 0.854 0.237E-03 0.107E-03 0.636E-03 99.6 0.214E+03 0.016 0.067 377.6 27.1 0.139E-04 0.205E+05 0.461E+04 0.405E+04 0.878 0.247E-03 0.107E-03 0.687E-03 121.3 0.253E+03 0.018 0.076 374.0 30.7 0.140E-04 0.180E+05 0.434E+04 0.366E+04 0.843 0.273E-03 0.107E-03 0.728E-03 14 5.1 0.293E+ 03 0.021 0.088 369.2 35.5 0.140E-04 0.153E+05 0.411E+04 0.336E+04 0.817 0.298E-03 0.107E-03 0.779E-03 length shear shear

  • Film-dx Film-dx* fishear flother f2 cm N/ma 2 m m 17.0 0.11E+00 0.73E+00 0.84E-04 0.79E-04 1.074 1.030 0.738 30.4 0.10E+00 0.66E+00 0.10E-03 0.97E-04 1.055 1.053 0.828 44.6 0.91E-01 0.58E+00 0.12E-03 0.11E-03 1.043 1.076 0.778 61.5 0.78E-01 0.50E*00 0.13E-03 0.12E-03 1.033 1.102 0.781 79.8 0.66E-01 0.42E+00 0.14E-03 0.14E-03 1.026 1.128 0.738 99.6 0.55E-01 0.35E+00 0.15E-03 0.15E-03 1.020 1.157 0.744 121.3 0.44E-01 0.27E+00 0.16E-03 0.16E-03 1.015 1.185 0.701 145.1 0}}