ML20071D704
| ML20071D704 | |
| Person / Time | |
|---|---|
| Site: | Turkey Point |
| Issue date: | 09/16/1981 |
| From: | Zo R HENRY PRATT CO. |
| To: | |
| Shared Package | |
| ML17345A980 | List: |
| References | |
| NUDOCS 8303110303 | |
| Download: ML20071D704 (99) | |
Text
m( a 2 3,n,..a. ay3:ffynm.fIm p w w.p{nm.m.y.< m a ma a;9.; w[.s f
'gi ff
[
-I i
3 G%
p ' ((w.
- -w.
>,m, 2,w:r.e. r.1m..
. e. u. q.
-. r..e..*w~e.4,oqz.%..ye.,.~..
.wm. a%w?pp y.n_~ a :
2..<....
.,s, s w.
+. y.
,:, ;e:;.v.e.
~
.,~;.,.
, m-
,.; m.. ;<a 4,.
. w.. m a
,..an
~ c y.u..e: : wQ:m qvym 4, v;<na,4
,c.
-:.w.n;... p 1
+
y
.N, %y+w.W.p.;,.. w.hr.m
~
X ?a > c
.+
f.,.wv.f.
- AU T,
%. L., ' ~y.. h;r.,- M
. s u..x.,g.y,.!M wr.p&a.&n.W.M. ' !,? ' ['m.bM~.EW,. s W. 9
. z.
- w.:
4 5.:
.7
. %9WG (
L. M,^_ _V.
., N:, V~ ~.NM%. M h29
. ~.,2 DD.2
- e un w
- _
s s
.- z.. n v
i M M M'c.W *
- t. 4.,% '- 3 0 F
'*'.'[ gr.C ". [Nj My, '...'al*"~-'.*'*',
15
.i.**
f*.,;' #
.,l
- 5. Nf #f
- l af y % W. $ 74?r.k" '*h[' N -;M' @G.W.mK Zi'.S.W.':c K~
' ' ' ef~~d- ?. *
{L
.~ \\
c,% **'L1 ?~':1 Y UVE"
- ^ * ' '
~\\,
*1 M*&
I ' ?i c' Ee"R.: %#P' W D=. : 5 * *** '
N W'
+
(L. m'*...
a M
', ", s.p.q:Q.M.,Rg:A,,e: KG.M p
.g; m;; c t. g..,'.
- 3<.x..a;a,p %.
L
.""'.,.n dq e' f..(.
..~.... ?n.,.c :.....
. :,:;,. &..'.'.,W. :s f-y } '.'.:~~. w l:^,*
- ,,~ &w* a,5~.+. Q.v. ;u
- ,y,._b,:,
_G n.
z.
m.
l
- [ 4 ypQ *' h..
. ;-L.,2
,'<,-Q.*.*
~#.
m~f.
f
- 4
- {.g',Q:},
Q,,. ; 7.
[*d.
y W,gn m%j:;' 3 V s ^^
~
.?
i L,' ; *
- I w.
.,, ; f ^: <s,
Qs
^-
.[j h *$
- A
,k ly,
- e p' m,.
<e;,~.e v.
x.
c'"w tc
- a :,. 7.g, u g,
.w s.
- s 1..
J
- .. t,y
.u.n. m, v% i W+ NZM, a.,5
- y.,.z. m.c
- tc.y, y.'}
- s
,.c ag g.y
.w n. 3.:x, c.
um:; g u
..,,. m.~n n. x.EM:
w.,.
-i. n n 4+i2-.4.,; e.- n
. g. A. w.
. m..n.
e' 215E iscMnWM,T-2A,kV: P.;w.W:y},J f
.. +/
..-W w v -y e<
s.,-r
.rs 4
- %y.- J ~
W L y b h 2 & &:
e&
y 4
w, i:
v.,
pp. ', 4 c., -
f...: 4 pt.
m..-
~ :y, t v' w g
p :.
, m.. %.
l
._...s+
s m,
. w=.s.
x,,.,ac
,.rw
,xc
~
n-n..
l
. ~,.,w
~
9v)
- M, 'd,. -
i I I N I n I 'I t \\'l"I' ( 1 )\\ 1 1 '. \\ N Y
. %5S. l
> ::t ;.;<Y.
n s. ~ 4.,
.a.
,;,I k-
- { Q' p'.,/.,6*)
1, p, rag. i
+*
,,f i
. 3 I I J
,?>
ev,
% 2*0
, [*.
4 *,"
j
+
.'.'t'o,,."...
.r
'f I *%
- ', -+ z ' [y b' '.A,rt,
A
~.~'?.-t s
.v a'
h^K
- O D'.M 4
1 }
4
- h.., f**,[ ' a*+
O -
O
, l*
k 1.
y p&
'.. o)4..,,.e
.~ J
.'v-m w
. - ! 5,...
1 y
4 "-
.a b
- * ",S (a* C, a n[o w.'w'. -Q& h' f'.
[..,,a.',.
- Is.
- d.
u,." ?
a 4
^^. w
.5/ ** : '
t'q. -}
e,CD
- < ; '*. y' *,.lQ:?:
w
't L l',k..
a
'y if,-
M n p a;. e 4-*jd*0,L^' h._.f t
'W e; y.
.; 'f %.$ :~g!$
- p. 3.
4..
-Me r
- n'WN.'2; MMWU Wn.
- i'?,bj&+y&,y- )n w..~ o w~ n,<ql y..;h
%:o v ~ w:.
x.,,s..c... -
-is.. 1;W
- g.. ~h ~W 'n ;g, p.3 ; e w
g:'.'v. w %.
OJ t
[
L's $.. yr
- W
's.':l T,..,sM. S*.. -
W.
gy%
+ s. - n, -.
4
' e '%g g** ?*: p.f.
We<3, r
., Q
', - *l
- . 'm(..f., f/p$p%,7,as,* 4 K
4 s,,.,
.,o-4
.,N.?",y.%. 63 e.'W.n -.,Y,.4 m.
d
" a6 H
.m l.p,% ;i
+
' "p '^ :s 4 M 4., #.
i (
.. ; 2 ) "s. g-
- 4" LC'
^. & z. vhw f Rfs.
'..s N g]...' 21Qj.:' g m 4 %.w.- e w a w ~ w$ 'SW T-W M. p.M'(<ht[ w.j$s{g[h
- 2
'* %W7WfghTJWQQ@pfgf,2~M~'T' t
i
.mxm.v
. m.
.,.v.: : (.y.:-w. p. w.
.r=.
n[f n.y' p-+
& &- Q,, W W-k h_gkf$ &m _& e$~
mm -
m ews c
m aa n
1*
IW M@m m e
^ ' '
-,J ~
+? &
4
~+ p.n w% g n
~
Y + n(5$ n; h ~e#f g% & Q.;g aax 1W9=bp W
ut m wep 1
- g 4
d%F u; NWsf~Nb.?;.$$'5.:A..g$$A i.
a-.. Qti 3 2&,p&M..Qx vl Y
l E y m y ' M,k ~' 4 WM.f.;yc%.y@& J._ ;W ^
vEu. A 6 yn h.n ; p dY W i M
QU:
. W " V,D.. sv s 4 z
=-
. p s,,,
k y m
i kY." 5'W~ Qu.
+N
" d'
+**p#~;.- g.ht WL /..
- ;5 v 4 4
- .' Q
- Qt4 **'
v a w,E. ? w m.gmaw.w.<g_ ~ Ch.'
%1Rurr-J*u O
wg. my qw'n gu L
/
.'eme*4 W g h 3 W Ay-
O ^
4.*** *
.h.I 5
g m.
Vq a#.
w-t m
q a
n @amm.am^e.
ap.a s
wworakg.mp
%%mSyST
+
3.m_ _
Mfh':t4NQQ ~'
.-p"2.-
l i M.f )>?%
s Q439p%p.:,
Yc r. y um M.* wm e
i wr%%
4WK - g
- A'$.'**
&&,p --MG
\\Q g&j V g : k N } W Mq =,q p a.5 5, fy D
se p)!W 4
Cs t.3 i262
' - r fN.%
G mw%6.
m t
-"A
+
sk$e TN. hF "M$$%
N.
n N
a k,C w
w.?%+ L e, ws w%lQQh
... t a
ng W QWW.
W iM o
d'". D ~ - '
f
,;g7 yhA.
{Qyl 7
p;y t
y SLEEhE E N h. b M kE E N M M d d 1 3 3551 8,
=..-
P.cVision i STRC3G PCPORT FOR.
1 54" RIA tlITH PP1sTT T;10 PLATE CYLINDER OPERATOR 1
Project Site Turkey Point Units 3 & 4 Cus tomer Florida Power & Licht Co.
Engineer Bechtel Power Corporation Original Specification 5610-M-83 Original Purchase Order 5610-M-83 l
Original Pratt Job No.
7-3071-3 & 7-3071-4 Valve Tag Nos.
POV-3-2602 POV-3-2603 POV-4-2602 POV-4-2603 i
4 4
General Arrangement Drawing E-585 Rev.
3 Prepared h.:
b2 N. M a c-
,saustnsurro,,
Date;
@ FILL) RI
....?."]f %
f.O Reviewed by:
j-f M/7,ncL.
! j pg
\\
Datc:
[-/5-8/
Certified by:
~
3$.
EtiCit;GER
,gg N L.........INO\\g-l Datc:
cs - s co -e. l
'riria,,a,0 *
I
I I
i I
I i
4 i
f CONTENTS l
i l
l Page 1
i I.
Introduction 1
II. Connidorations 2
III. Method of Analysis 4
i A.
Torque Calculation 6
i j
B.
Valve Stress Analysis 8
r C.
Operator Evaluation 9
IV. Conclusion 10
- v. Additional Information 11 j
Attachments f
(1)
Input Documents (A)
Pressure vs. time graph j
(B)
Pratt letter regarding additional information 4
j (C)
Customer / engineer response to request
~
for information l
(2)
Valve Assembly Stress Report l
j (3)
Supplemental Torque Calculations (4)
General Arrangement and Cross-Section Drawings 1
l l
\\
l l
l l
f i
l e
, )
j I.
Introduction This investigation has been made in response to a request by the customer / engineer for evaluation of containment isolation / purge i
valves during a faulted condition arising from a loss of coolant accident (LOCA),
The analysis of the structural and operational adequacy of the valve assembly under such conditions is based principally upon t
containment pressure vs. time data, system response (delay) time, 3
piping geometry upstream of the valve, back pressure due to ventilation i
components downstream of the valve, valve orientation and direction of valve closure.
The above data as furnished by the customer / engineer for'ms the basis fcr the~ analysis.
Worst case conditions have been applied in the absence of definitive input.
i 4
S
.----_,,,.,--__,,..m..__,7
-. _.. ~, _. _.. _. _.,,. _ _ -. _ _..
_ _., _.,, _ _ _..,, - _, _, _, - -,.. ~ _ - -
II.
Considerations The NRC guidelines for demonstration of operability of purge and vent valves, dated 9/27/79, have been incorporated in this evaluation as follows:
A.1.
Valve closure time during a LOCA will be less than or equal to the no-flow time demonstrated during shop tests, since 7s fluid dynamic effects tend to close a butterfly valve.
Valve A-closure rate vs. time is based on a sinusoidal function.
~ 2.
Flow direction through valve contributing to highest torque; namely, flow toward the hub side of disc if asymmetric, is used in this analysis.
Pressure on upstream side of valve a
as furnished by customer / engineer is utilized in calculations.
Downstream pressure vs. loca time is furnished by customer /
engineer or assumed to be worst case.
3.
Worst case is determined as a single valve closure of the inside containment valve, with the outside containment valve fixed at the fully open position.
4.
Containment back pressure will have no effect on cylinder oper-ation since the same back pressure will also be present at the inlet side of the cylinder and differential pressure will be the
(
same during operation.
5.
Purge valves supplied by Henry Pratt Company do not normally include accumulators.
Accumulators, when used, are for opening the valve rather than closing.
6.
Torque limiting devices apply only to electric motor operators which were not furnished with purge valves evaluated in this
,~s
~
report.
7&8.
Drawings or written description of valve orientation with respect to piping immediately upstream, as well as direction of valve closure, are furnished by customer / engineer.
In lieu i
of input, worst case conditions have been applied to the analysis; namely, 900 elbow (upstream) oriented 900 out-of-plane with respect to valve shaft, and leading edge of disc closing toward
(S outer wall of elbow.
Effects of downstream piping on system V
back pressure have been covered in paragraph A.2. (above).
B.
This analysis consists of a static analysis of the valve components indicating if the stress levels under combined seismic and LOCA conditions are less than 90% of yield strength of the materials used.
A valve operator evaluation is presented based on the operators gm
()
ability to resist the reaction of LOCA induced fluid dynamic torques.
C.
Sealing integrity can be evaluated as follows:
Decontamination chemicals have very little effect on EPT and stainless steel seats.
Molded EPT seats are generically known to have a cumulative radiation re'sistance of 1 x 108 rads at a maximum incidence temperature of 350 F.
It is recommended that seats be visually inspected every 18 months and be replaced periodically as required.
N Valves at outside ambient temperatures below 0 F, if not properly 0
l adjusted, may have leakage due to thermal contraction of the s_j elastomer, however, durin_ a LOCA, the valve internal temperature would be expected to be higher than ambient which tends to increase sealing capability after valve closure.
The presence of debris or damage to the seats would obviously impair sealing.
l l
i ('
l
\\
l 1
L
... 1 III.
Method of Analysis Determination of the structural and operational adequacy of the valve assembly is based on the calculation of LOCA-induced
)
torque, valve stress analysis and operator evaluation.
A.
Torque calculation The torque of any open butterfly valve is the summation of fluid dynamic torque and bearing friction torque at any given disc O( ) angle.
Bearing friction torque is calculated from the following
{
equation:
TB=PxAxUxd 7
where l
P = pressure differential, psia f['
A = projected disc area normal to flow, in U = bearing coefficient of friction d = shaft diameter, in.
Fluid dynamic torque is calculated from the following equations:
For subsonic flow
~
i p
R
- EE# **
CR P 2
,/
3 T
D T1
- 2*
- ' RE 1.4 For sonic flow P 1 -
R P-CR
_2 3
T
=
x
,, x
,x xF RE (F
5 1)
D
{'J
'T 1.4 RE
'~
~
~
Where fluid dynamic torque, in-lbs.
T
=
D
- FRE = Reynold number factor y_
Reg = cMcal pressure rado, U
)
P
= upstream static pressure at flow condition, psia y
P
= downstream static pressure at flow cond n, psia 2
D
= disc diameter, in.
CTl = subsonic torque coefficient CT2 = sonic torque coefficient
[
K
= isentropic gas expone.
I
.or air / steam mix)
- 4
= disc angle, such that rully open; O
= fully closed Note that C and C are a function of disc angle, an Tl T2 exponential function of pressure ratio, and are adjusted to a 5" test model using a function of Reynolds number.
Torque coefficients and exponential factors are derived from
) analysis of ' experimental test data and correlated with analytically predicted behavior of airfoils in compressible media.
Empirical and analytical findings confirm that subsonic and sonic flow conditions across the valve disc have an unequal and opposite effect on dynamic torque.
Specifically, increases in up-stream pressure in the subsonic range result in higher torque values, while increasing P in the sonic range results in lower torques.
-s 1
\\/ Therefore, the point of greatest concern is the condition of initial sonic flow, which occurs at a critical pressure ratio.
The effect of valve closure during the transition from subsonic to sonic flow is to greatly amplify the resulting torques.
In fact, the maximum dynamic torque occurs when initial sonic flow occurs
~~g coincident with a disc angle of 72 (symme tric) or 68 (asymmetric)
-(b from the fully closed position.
__.y.
l 1 '
I t
i The following computer output summarizes calculation data 0
I and torque results for valve opening angles of 90 to 0 4
l i
i l
i l
t i
l@
i i
O 9
I l
i
['~'}
D-27256-1 TOROUE TAELE 1
9 / 11 / 81
\\
/
U JOB: FLOP. Pup TUPFEY PT P2-VAPI ABLE OICE AD JU TED
- FEYNLDO ric.FriCTri!)
IAT.0 TEAM AIP MIXTUPE u!TH 1.4 LE! STEAM FEP 1-LE! AIP OPEC.GP.=.738255 MOL.WT.= 21.3872 VPPA < I CEtiT. EXP. ) = 1.19775 R= 72.1972 GAO Curt: TANT-CALC.
Curi!C : PEED <MOVIriG MIXTP. ) = 1371.29 FEET /SEC AT 283 DEG.
CRIT.CA!E IfiLET VELOCITY 10 1.49311 TIMES HIGHER AI AIR CRIT.CAIE ItiLET V1-OF 5 ItiCH MODEL MAX. TOPOUE IS AT THE CRITTCAL PFE00. PATIO (.585-(5 Itt)MODEL CP APPX.696352
( 53.25 IrDulTH OTMIX.)FIPOT :OrtIC'S 72 DEG.V.A.)
ABOCL. MAX. TOPOUE (FIP!T 00ri!C) AT 72-68 DG. VLV. AtiG. = 751527 Iff-LES S 72 DEG.
MAX.TOPOUE IriCLUDES OIZE EFFECT(FEYh0LDO NO.ETC)APPX. X 1.32454 FDP 53.25 INCH BA;IC lit'E I.D.
ALL PRESIUPEO UIED:3TATIC(TAPiFFESO.-ABIOLUTEiP2 ItiCL.FECOVEPY PRE 00.
g (TOROUE) C ALC' O VALIDITY:P1/P2> 1. 07:
VALVE TYPE:
54"-R1Ai3/7.5 CLAOO 75 DISC SIZE:
53.062 INCHES OYMMETRICAL DIOC OHAFT DIA.:
4.375 INCHE2 BRG. COEF. OF FPCTrt. :
5.00000E-03 SEATING FACTOP:
15 IriLET PRE;0.VAP. MAX.: 60.2 PSIA OUTLET PPE000PE(P6):
34.13 PSIA (72 DEG. ACTUAL PFECO.ONLY(VAP.))
NAX.ArfG. FLOW PATE:
695628.
CFM: 1380813 SCFM: 75907.1 LE/MIri a
CRIT.!ONIC FL0u-90DG: 85975.5 LB M!t! AT 37.2315 ItiLET PSIA VALVE IriLET DEri?ITY:
.10912 LB/FT'3-MIri.
157531 LE/ F T ^3-t1 AX.
FULL DPEtt DELTA P 9.48389 PSI SYSTEM CuriDITIuriS:
PIPE Iri-PIPE-0UT -Ar4D-AIP/ STEAM MIXTUPE OERVICE S 283 DEG.F s
MINIMUM 0.75 LIAM. PIPE DOWrtSTPEAM MOM CENT.LINE ! HAFT.
P1 ABO. FPESOUPE(ADJ.)FDLLOWO TIME /PPE!O.TPANSIENT CURVE.
AE!0 LUTE MAX.TOPOUE IO DEFEfiDEf1T Ott DELAY TIME AND 3.43 TC 2.15-TH POUER OF (PleP2)Iti WOPST PAriGE X LINEAR CCri! TANT X Duti TP.PPE00.
P6-AEO. (75-6 0DEG. ?
IN SUEOCtlIC PAriGE LIMITO-OrlLY;0EE FDFMULATIONS.-FEP TECTO H.PF ATT THIO TQ. AT 72 DEG.SYMM. DISC (68=0FFCET SHAFT) CT=T/D^3/R2 ( ABO)
--5 ?N.MODEL EOUIV.VALUE0------ACTUAL SIZE VALUES-----
ANGLE P1 P2 DELP PRE 00.
FLOW FLOW TD TB+TH TIME LCCA>'
APPPX.POIA PSIA PSI PATIO
<!CFM)
(LB MItD =
IriCHLES---- TD-TE-TH
~EC.
[
90 41.70 29.38 12.32
.704 CP1380813 75907 0
1610
-1610 3.00!
85 44.29 30.92 13.36
.698 1456702 80078 18?449 1640 185809 3.19 80 46.31 31.38 14.93
.678 1463337 80443 275664 1706 273958 3.77 75 48.07 30.60 17.47
.637 1446726 79530 447458 1835 445623 4.13.
72 49.01 28.67 20.35
.585 CP1330633 73148 712696 2034 710662 4.32 eN 70 49.59 27.99 21.61
.564 CP1300953 71516 691837 2018 689818 4.45
)
65 50.86 25.10 25.77 493 CP1172749 64469 645?69 198?
d43386 4.72 1
3 60 51.87 22.47 29.40 433 CP1004642 55227 540019 1904 538115 4.95 55 52.61 19.97 32.64
.380 CP 844278 46412 527993 1909 5260$?
5.11-50 53.05 18.37 34.68
.346 CR 690066 37934 405970 1981 403988 5.22 45 53.20 17.21 35.99
.323 674335 37070 358290 2042 356238 5.25' 40 53.33 16.45 36.88
.308 466700 25655 261477 2101 259375 5.28 35 53.72 15.67 38.04
.292 361955 19897 199745 2145 196600 5.39 30 54.34 15.22 39.12
.280 269438 14811 107525 2189 105336 5.55-25 55.16 14.97 40.19
.271 186718 10264 68689 2225 66464
" 78.
~20 56.15 14.82 41.32
.264 115503 6349 48297 2297 45999 6.05 15 57.23 14.72 42.50
.257 65662 3609 17838 2408 15430 6.38 10 58.34 14.71 43.63
.252 32?10 1803 11262 2542 3720 6.73 5 59.40 14.70 44.69
.248 10936 601 5831 2695 3135 7.11 0 60.20 14.70 45.50
.244 0
0 45133 2600 42533 7.50 s s L
IEATIrfG + EEAPING + HUB IEAL TCPOUE < M ' M4 =
47734 Iri-LBC 4 0 DEG.
71269s IN-LEI & 72.DEG.
MAX. DYti. - IEAE!NG - HUB :EAL TOPGUE < rd M s --
.... ("
B.
Valve Stress Analysis
\\
The Pratt butterfly valve furnished was specifically designed for the requirements of the original order which did not include specific LOCA conditions.
The valve stress analysis consists of two major sections:
- 1) the body analysis, and 2) all other components.
3 The body is analyzed per rules and equations given in paragraph NB 3545 of Section III of the ASME Boiler and Pressure Vessel Code.
The other components are analyzed per a basic strength of materials type of approach.
For each component of interest, tensile and shear stress levels are calculated.
They are then combined using the formula:
S
= 1(T +T2) +1, (T +T )
+ 4(S +S2) max 1
1 2
l 2
2 p
\\--
where S
= maximum combined stress, psi max T
= direct tensile stress, psi 1
T2
= tensile stress due to bending, psi S1
= direct shear stress, psi S2
= shear stress due to torsion, psi
/
The calculated maximum valve torque resulting from LOCA conditions i
is used in the seismic stress analysis, attachment #2, along with "G" loads per design specification.
The calculated stress values are I
compared to code allowables if possible, or LOCA allowables of 90%
of the yield strength of the material used.
-,._,,-,c, n.
9 C.
Operator Evaluation i
Model:
2 Plate Cyl. Operator 14 x 18 w/ spring to close.
Rating:
75000 in-lbs Max. valve torque:
712696 in-lbs The two plate cylinder operator furnished was specifically designed for the requirements of the original order which did N
not include specific LOCA conditions.
The maximum torque generated during a LOCA induces reactive forces in the load carrying components of the actuator.
The operator model furnished has an appr0ximate rating which exceeds the calculated valve torque for the following valve angles:
30 degrees open to O degrees (fully closed)
Listed in the attachments section of this report are the i
following documents used in evaluating the structural and operational adequacy of the actuators.
- Supplemental Torque Calculations (attachment #3) 1 4
~.. _ -..
- -. =.
10 IV.
Conclusion It is concluded that neither the valve structure (with present materials) nor the valve actuator are adequate to t
withstand the defined LOCA-induced loads based on the calculated torques developed in this analysis except for restricted valve opening as described below:
Specifically, the valve top shaft, disc pins, thrus t bearing adjusting screw, trunnion bolts, operator bolts, and bonnet are shown to be overstressed except at valve disc angles of 40 or less.
(See attachments # 2 and #4. )
In addition, the calculated torques exceed the rating for the actuator except at valve disc angles of 30 or less.
i e
5
. =.
11 4
i j
V.
Additional Information 4
The following items are presented to describe how system f
1 c
factors aff~ect torques developed in this analysis for your consideration and are informational only.
Further analysis by the customer / engineer is recommended I
prior to implementation.
1.
An important factor governing the magnitude of the dynamic i
torque is delay time from the start of a LOCA incident to j
activation of the pressure sensing mechanism, which in turn
]
initiates valve closure.
Careful re-evaluation by the customer / engineer of the pressure sensing / timing sequence 1
may render the present valve assembly functional through a significantly greater range of angles.
2.
Installation of a convergent-divergent section downstream of the outside containment valve with a throat area i
sufficient to allow unrestricted ventilation during normal operation, but which will choke LOCA-induced flow while 3
the valve is closing, through the critical range of 80 -60 1
open, could resultantly reduce the flow through the valve to subsonic levels.
%_sl t
I 3.
An orifice plate installed similar to #2 above can also choke the system downstream.and reduce flow through the valve to subsonic levels.
4.
Mechanically restrict or block the valve disc to a maximum l
disc opening angle.
(See attachment #3 for further 1
illus tra tion. )
l l
l i
'l l
l f
l 1
i t
i i
i i
i E
f I
4 t
i i
ATTACHMENT 1A PRESSURE vs. TIME GRAPHS 4
l i
V e
I 4
r i
1 l
i @
~
1 e
l I
i i
I r
I i
1 4
I l\\6 4
d.
~
10 -
i i
i.
8 l
.t.. _.
l s
.__.___I
__._s'..
i. _e-t t
6 t
4
.t i
8 I
+
...s
.:l
-F;
. -l 7
.t i
- - }
(
l 6
.----2
,o :
t.
t I
- p t
- i i ::
g
. :_ 2
. :_._ b.. i..... ;. _ =. - !.... : : - l n..h....r:.i t
9
. :_.-..... ; __ : r
.r 4
l I..
I
(
) _ Q' 7.--_-_ & - --_ k,. - l.
__ L
- l.._ -.Y
!L_ ___...._
t t
. 3 v
i.
[
.t _.. ; - -
r-
-\\......
r
.- J,
. r
. : :. :. 9
'c!.
FM. --i :H % ?"_H
" 1 F ! * : = - 2 W :
- i :" x- !,j ) ---. e e zh _i-h__$.*n. :__ =_::.:.h _.:~...~._ _....b_ _u_= =.i - __--._- "_ _=.._~__ U = ~ ; ~ '.' a _-.1
_ _" _'_ 7 - ". _~ ;. "_ _ _ _ -- //_'_... __ i...
8
_. _. t.._
_ _. _... _. _ _ _ _ _, _ __ s_ __
..e
._ L
...,..a o..
.._ M.,._ _ _ _-.._ _ -. _. _ _ _..
y s__
y.
e p e_
m es
,_c.m g --.
_ - _ _ _4 e.
,. o w
E i
M 4e'*[
i l
/
e g
i_[4 8
i I
e I
i i
-.i 9
i I
3
/
4 l
. v g
r.L.
a //
A : - -.;-
c.:.=. ;
,N
-[i.....
.-t2
- _ _ ;..e:
...-L E
. a.
e - - - -
..:. :: I c r
- _ _.c _L
.. _ !_. _ i +; - i. :_ _c r - L _ : ; bi ::. - rc:.,Q. a
- 'I.. :::. ___
- J [..' !. _.: 1.:@ h.: :-= b I
_... - n ;% 2. _ _. _ _ -. __.... _.. _..
t 7
7
- /. -
e-N _. g
..-...._w.._.-__._g-_..___..__
.e_._... _. _.... _..__ _. - _ _ _ --_.______.$.._.e.=_.._
g m._
- i.2_~ -
-- - - - - _ =; :- r -== =.
_:pr-
- ___ _.=
-__ --- -__.;==_;=---__;
.u__.a
.c C *-._
s.
_2.
a
= :-- y a_--.;-.-.
- 75; Jy s
1 s...~i..
1 a_..
r
(,
- -il ': F _ :. - l 1. --. - - -
,L "---M l : m J.F_ i.~.M/ [. =:.r =J. - - f.. - -..
_1.' i=.= v : J =_
.r.-
_:'_--- F. - ?_.. i; 1.....:J* _:
g b+ _S -1
- = = =-E : -_ic :2. r. --A f i i =. ti=r r = = :-- e e = =- 1 = =+-@ =_ ;- - ' = -= =_- = t+r-f: = ' -i -.- - r ~
= = - '
% _ w : - --
_ := =._: :_ :.: =_=. 9 : -_._. _ :. : _-=----==:_- - = : _ _, = _ - u - - : :._.....: :
_._2***--__r==:.:----..:-_
fiD. _.._
_..--==.;------!
- _r*-"--..
_ +
se W'..
.i.
_t-u_e
.~
m a-==w-t*
NG -
p-r 4
8 m
t
- Tr*
I e
l 1
1 r
1 u n. gb #
s4 i
i l
i v
-Q
- -_. n...
- ..- _.__.._ __=.
a..
....y;g..._c-an a... w s:
r.
__, N u
~ -i :- N -.
. - N.8 7 '- *.m
- w =~* --- r t_ - % E -*- - L - = n F r.
.-1
--W Q
e j
="
a. u _ = i =.i_----M f._ ;- :d.: ; - ; ::p;_- --- i=
- -- - - = --.=f.2=_ ~_ @ h _: :.i= =j=.r. = -- =. :_ _
qa _,. _._ _. j
--- # - -- = -- = r - - __ r _ _ =- r -
2.; s _ : = x- - - -- - M ' ~- 2lM =: _=- -; u_==. ;_ _ _ - - - - - - - - - -
---___====.___w-:_:_._
q
' c __.___c g
-'=~:--'_:
- - ---=:">
== g,. _: __ __. _ __'-- =. = : __~'_- - - : :=.. ;:-_ __ w_N 6
- - --_ = _.. =_=:-
.Y 3
' _s._
-- - _p _ m g- ; =-,
3 - _
4 5
.. _.. J.
.y
-; = ;_. L. =. g.__ j u.. %. ;
- 2. _ - j.
g
_.= u - s :_ - - =_,.__- p..._. _ _ _.. _.. _ v :. _.. : : _ u =.. _ = =- _ r m.. :
2-4
-.--=u.---=_:-..
:-n.-_---
1 1.
- -... -. - 1.
s f-Ii-Q $ ' 2%;3 7i : -: = 3- - 'E *
.7-' F e
- f_5 i"'=_ :;- i= ' ; I :-i== N_
t.g y_:._
.; -- w _ :
._z_=.--.
=_._ =.:.-
m. -_. _ _ r=== = = = =-. :_ ;;.. ; _ : = _ = -- - -:-=-=-._.-__--=_.--=y.__.-_..___------._-_==._=_=.=:._
.=._ _.._
r-....--
y a_ _ -
- - _= = --
..___=._= g.=. _r _= _r. ; - - - - -
- .,-=-------..__.=====._-.____=__:.:
y m
N.
.u.__._
i l
' _..e_ _.%__ v y
=4 6
1l
%s; q
q m
1 I..,
N a.
.v.
t x
i i
e i
i k
wsN I %.
1
_ _.- - s 'N, -
N~...
'...a:..
-:5N=
\\
9
}.
a O L '_" n-
-'s t
J...
\\ '.
~
a g F r
--r..
_u-r e
- 7 [ -;_ !
- N _ _..- - N_
. 9 ; _. _ N-. -,. -
.j t. u.... _N - r
- ' r.c i
-m
,j=. rs
=i -
'.=':n W : = k=h.M i='W E i Nt in %-== = t = M-M-;=, s -: =
- >=.- :. ;, a__ _ :_. ;_.==..s 2..u = = :a ;_.: = u _g r _. a q-- = r. :_ :_ =._. - =- : _ -- =c.= = : r
.v
. =
g_
.- - M..== _ :.== _= u. __=_a I x =... tr r_. -
r. - = r :-- - -:
L~_ = -*. r.
r:.t n L.: t_ q - -
g _ p._ _.
,__v-
- - I'-
- 1. _ -
__L
_)._.:_ M __i_.. Kf __; - N --
t
)_ -
A !
t_
[' _:
_1_._._._
i J
.. r ;i - h~ s. %-.\\i :. _ -. is...t
.i
\\
,y ci;;.
. _p.
F
._. r
._..i 1
.[:
F
_. - I~.
. g.
. - r --
_ p :. _. :... p_--. - : ;-.
L.
- c._
- u. U..u. i._i.1. t. p.., N.. - -. !
- 4. Ny _..;
1:
j s._
r.
c s
}
rt
.. ;._- - r.. = r u t_=.
r:.N._._. ; _ k.
- - =.: -
- b..
._......-_._....\\.
._._.__..i-
-.t r-
- r :_,
s....__.
.N.,,.t..._.
. n, u -._4
.i w.
s _.._.
,i.
s _._.
.s.-
z
... g _..
s
.i (s.,._..s g
s\\
.s w
6-
.s si
,- w w.v._.
.6
.t s.
p.
.,,_. _ p..., 3 w..
_g g
{
.y m... n..... _.s.. n
__r..
r -__. !
,._.,...__ r.__ _ r._, g
. _,..__. 7.
xvm < w.vvv aon.n n rum ~vw.~~e.e
i f
f i
l@
~
i 1
31 1
i i
l 1
1 4
l 1
4 I
i 1
l i
ATTACHMENT 1B 1
PRATT LETTER REGARDING r
ADDITIONAL INFORMATION l
b t
I l
i k
P I
i I
[
_--s-me,,-w-,..-.__,,
- - -,, --~w.m.,.
,m.-
en-r_,o y,.-
- -., -n,gn.y
.,m.
o a.,,T.
1 2.m
'l IENIl'i ! M iTT O ni I nNY ll )) *.t h Ti l 11!(.l.1.\\ \\! s.\\\\ t '\\ t E
.\\l l(4 s. i \\, ll.1 J \\( )l.=
' h 1.*.s C bv
.T e w."'d 9 -9 P 1' $,
.I O, 9 I s.* %s...... '
.O
..C,. G u. g.J.
r>
.s e.
f' ; 4.
- ..s.e..y %.,
e
.} o....,
n f. 4
.a.4C m.
A. -.....
.s. e.
1 :'
- q **.-
a 43.,. b s.f U. e...s..J 7.0 %a.
w
- n<
r'.14 b.%:
.b;J e.D 7 (J' *J c (.".
v o
n s.o..
4..
.r' 4 a'.$
m 4.
5
.s w.1 / s. 4..
- 2 =
..w...
w W.
c L., w.s. 3 C..
- A n a., a.
3 n.9 3..=gg 173.i ef,.s
...m.
.i, r
- e. s-
.6 a..
......., p o.4.,,..
2.
o.;ec.
..w ;.
u
.?lorida Power & Ticht Co.
o-,t*
v.o..
n, o77.,c-
- 3. L,a..... -.. '..4.
.s..
Conf'r.T.in~ our recent tele.chene uonversation the Henry Pratt r
C o., r 3,;,
,..1
.....w 3
g. 4 2. 2 -.
y3...g
.,.a.' V a a.". a ' V S.4S u y o.".
,., C.4. p. C. - - -.4. ; o.,. a.*
ea..
4
,1 u..2, 3.
.uw
-2a
.A O m' - s. c... e. a '. -.. -. v. a' u o#
~
2'.
3 =. v....' v e s s- ' ' j u-a d " c.' '.~"n u c.. 4_4 - 4 c.. s
'. ~
.i,. 4 e.
.. n,
. w : a.
- ;:.1 u - -.., ; c, c l
,.4.,. a,, e.,
i..
s.4g,,. 4.:.i s. 3 4,.,,
..y~
tha.a:n cm : rque and resultant stresses in the 'ralve assemb1'.'.
..,.v,.:...,
cw a s.,;..,.
4 e
.4 n.. :. o..,. 4 o.. e cs. 4 u. a. - o u;
.e.
ac.u
=-e-
.. s
, e. o..".'..
fYe W '.'.'
..% -**'.#.- O -
a
.;a 7
- %.. u C.:4.nb3A,
3 c 4 -.
m.2 m,e n : A. 4.e.4 en 4..oa c.i.*
4" v
w.s...--
w s 4.
- 3..
%... 4..'., 4. 0 44 1m 0.. q.,
- m..
C.
a v.., e.. 4 uvWns wO 3,.. v m,
.,s V.. L.
3., ',,u..
(v
.. s..i.,/ a s.4Ze),
s
......u s u..-
.. w.
o e...
v-
's c,.. %... c.'
'w-a v..-
M
". s. _~,,".;
- 4..L-
, '..=
. m,s ".- a.
C o.
,, "4 w S.g 1
L
- 7
....=.g-...
'A.9.
s. 4. %..--.,.
4 1, c, 3.... 4.
.v
....v
.. v -. o v
- b. 4
.e.. e.
e w
..... C..,. 4..
.,3 y.
s.
- 4...;. 4.4;p 7.
.o.. 7".
-.u 4
O s.4s 4.. '.
.'e
.c. b.p 4.
.S.n.',..
os
.. s. 3 -
.u.
e. u
,... v.
I l
I I
i 1
- / <.. m.
\\
r.
%..., 5
- n. (,,
- r..,.
-v.
sv,..
~ ~.
.?, :.,-
i 3
j 7.m. c,.
>.o,.,
.a t
.o..
n e.,,..e r..-..4.r..,,.
.h.,..
i
.w.
- 3.. ~... gy. d g.*.s.y
...g
" C."..
"sC.?s
...n O:
t<.,
,, _ C e. a.. : O n
.4.,,
...4.
. v-4, SOCC,ca.
- u. o.v..
m.sm o
.o a.. _. 4. =
....i.. 4... um c'.'.' a v, 4... u-a s w a..'.'.
n This data '.111 be used
.-ith previously submitted information to Per:cra a
- 0.. torqu2 analysis, valve 3 rass analysis, and Operator c'/alcation as rcquired.
Verv. trulv.vours o
i i
' J. O
- T p v.
3.h* Tm L v..n. dis f a me m...
- .s
- 1 i
sf L AY A
t
..r O.". a, Y.a n a c. c r a.
l Contract and Proposal Engineering
/kk CO:
G.
L.
Esane i
i 9
d i
e I
l lL 1
l l
,-----..r,-,_,-,--
_ -_ =____...- __-.-__-
4 1
J; l
,1 l,
ATTACHMENT 1C CUSTOMER / ENGINEER ggspo;;gg l
TO REQUEST FOR INFOPJ1ATION l
e j
e T
e i
o Y
f a
4 i
t-w-w--vvm*ey.r
-.e----
m-
= - - -
Bechtel Power Corporation Engineers-Constructors
/
15740 Shady Grove Road h
Gaithersburg, Maryland 20760
[,.
301-258 3000
~~ -
March 26, 1981 Mr. T. J. Wrona Henry Pratt Co=pany 401 South Highland Avenue Aurora, Illinois 60507
Dear Mr. Wrona:
o Turkey Point Units 3 & 4 Bechtel Job 5177-152 REA-TPN-31 Purge Valve Analysis Bechtel Files:
A-21, S-77.1 V-241 In response to the engineering data requirements listed in your letter dated February 16, 1981, we feel certain assumptions and considerations must accompany the numerical values and thus we answer as follows:
lO 1) Regarding "The combined resistance coefficient of all ventilation components downs tream of the valves (one for each valve size)...."
We consider the conservative approach to be that condition which would pass the most Post Accident Flow. For that condition, all ductwork, except the seismically qualified and Q listed portions, would be removed in such a way as to not impede the accident flow path. The only qualified duct is the ten-foot penetration pipe between the two valves of any pair, which is the same diameter as the valve. Furthermore one of the two valves could be con-sidered to fail in its blocked open position due to signal malfunction.
Flow resistance coefficients vary considerably with valve angle. The entrance and exit coefficient for the penetration pipe also contributes to the total system resistance although the ten feet of pipe is essentially insignificant.
The flow medium is a mixture of air (k = 1.4) and steam (k = 1.3) with the steam portion increasing as the accident progresses. The conservative approach would then be to use the lower friction of steam.
Using 1979 Crane Technical Paper No. 410 - Flow of Fluids through Valves Fittings and Pipe, and 1977 ASHRAE Handbook of Foundamentalsywe compile the following flow resistance coefficients:
PIPE ITEM COEF.
REF.
Entry 0.78 Crane A-29 Length 0.03 Crane 3-4 & A-22 p
Exit 1.00 Crane A-29
BeChtel Power Corporation Mr. T. J. Wrona.
i Page 2 m
VALVE OPEN VALVE ANGLE ANGLE COEF.
REF.
0 90 0.17
'79 ASIIRAE 31.35 10 80 0.52 20 70 1.6 30 60 3.9 40 50 10.8 50 40 33.
60 30 118.
70 20 751.
NOTE: Take one valve at blocking angle selected during closure time and the other valve to vary from that angle to fully closed.
For example assuming a 30 degree blocking angle and the failure of the outboard valve to close, the inboard valve would have the following down.
stream flow resistance coefficients:
at 30 degrees 0.03 + 118 + 1.00 = 119.03 say 119 at 20 degrees 0.03 + 118 + 1.00 = 119.03 say 119
~_
\\,-
total system resistance coefficient, restricting the flow is:
at 30 degrees 0.78 + 118 + 0.03 + 118 + 1.00 = 237.81 say 238 at 20 degrees 0.78 + 751 + 0.03 + 118 + 1.00 = 870.81 say 871 the downstream resistance coefficient of the outboard valve is 1.00.
If both the valves were to operate and the recommended blocking angle were to be 50 degrees, the downstream resistance coefficient of the inboard valve would be tables as follows:
at 50 degrees 0.03 + 10.8 + 1.00 = 11.83 say 12 at 40 degrees 0.03 + 33
+ 1.00 = 34.03 say 34 O-at 30 degrees 0.03 + 118
- 1.00 = 110.03 say 119 at 20 degrees 0.03 + 751
+ 1.00 = 752.03 say 752 total system resistance coefficient would then be:
at 50 degrees 24 at 40 degrees 67 at 30 degrees 238 at 20 degrees 1,504 Assuming the generic k coefficients of butterfly valves are applicable to the specific Pratt valves supplied to Turkey Point, we have developed O
Post LOCA flow.
a family of curves to indicate minimum valve back pressure with maximum (See Enclosure 1) 1
- + -
,--e_
Bechtel Power Corporation 3,,
7,,, y,,,,
Page 2 V-241 i
I 2)
Regarding the " Confirmation that ruimum delay time from LOCA to initiation of valve rotation is 4.2 seconds. Provide a minimum delay time as well."
Minimum delay times would certainly be more realistic. However, we must conservatively consider only one time for each accident containment pres-sure curve. Three of the four curves can be grouped togener and the l
worst case envelope considered. The delay time for the envelope curve which is the double ended break is 2.7 seconds. The delay time for the 1
0.3 ft2 pressure curve is approximately 5.3 seconds. Delay time is found by adding 1.5 seconds to the point on the graph when 6 psi is reached.
Time of full closure will vary with blocking angle, however, we would expect an approximate linear relationship in regards to the maximum 90 d23ree closure interval of 5 seconds. The figure of 4.2 seconds mentioned in your letter is not a starting time for the Turkey Point curves and thus cannot be confirmed.
If thsre are any further questions, please contact us.
Yours very truly, ba A. W. Wilk Project Engineer AW/RVB:mfa
Enclosure:
Curves I
cc:
W. H. Rogers, Jr., w/o H. D. Mantz, w/o l
S. G. Brain, w/3
)
G. R. Gram, w/1 F. A. Panzani, w/1 O
R. J. Acosta/R. Li, w/l l
\\j M. Crisler, w/1 D. W. Haase, w/1 D. T. Hughes, w/1 D. E. Douthit, w/1 I
LEMIME E V-24L J 03 m-!se Cn c.
sur- ! 7
= : - r - ;.--
n
- n = r.. :: =. :r.=. _::+r.=:- a : = :x:. :.:.
. q_ a: --
n
- -._ b. q..4 u.-- :1 r-
-- o
-- n-.:l-- :- : f -- r 7!
.n
.. _ _=__.: : e r - -.
. _ _ - _ _ -_gp
, m...
. _.... g.,_
1
., ) W, mu"3 2.a m.
-t m...;...n...
u ; z ~ ~ g _ r.. - 4.
M.gQ.
.a (s s
- u it --
m --:
. l.,
-p
--=-
-:p.
.-m-
. 3..e ~.9,
_v y
- - 1... - _=.: :. ; : ;.1.,
,y..~~.
1,
)
=__-;. [. - : - M_ _*.e, g. p... '
.g
.,.: - - - y. 9._
__,..- +
~
e --
...~
%e
.: M 4. _
s, tw
-.. % j. e
.,-m,
= - -.
3 ;)
f.,
- r. t. : :- l;..... _. ;
a rr.
.'~
- ,,., u
+
.,.,.; (
w
- a,.:.
r
' - 1r --
)
. 3 -: =.::
.:=__.2::.n
- g r.-- :--,
., -, w. g
- u. m
--. r: -- r -- :..
v, /
- -... j :=.: Q. '. f. -. ' '
u. - -.
...__. = (.n.* g =g':*.r._:. n.2.J
- . a.... ;. _ _._ a-
- n.. -. y, - ::=. : -.' t-~~( 'u
- * -. - T- *l _
r
..=... : T.
.j-
- 3.. -
~;p_-- :::..__ _ :. _. _ - T.
3
i 2 ta :- %; 2
.-.: : u..
_n:n_:
i
-....~..a..r_.; : *.-.:. _ -. ?..-
- w. r p r :-_= - : ;,-
--rn,-,
--,:u..=..
e.__._._.:_
.i*.*p_-..
. q.;,
. - -.. + +.-1++..,.
,, g.
i p-e 4 - * -4 1
l,. _.. k =.;_ = :_.:. w g --~ ~ j y,_..
.-g.
+ !: w;,.!
,. -- -- --.. ;ma - c :.....-._.-,, _:-:..
u.
,p
'---~~:..~. _s m
e 3. g: 4.
- ..._ _,.....:.j
- =:= :2 g-:i eu.g -
T. g)
. c.,
- v. t -- --
c
- m.u. m u-22: =..
.t i
.. " _ _ c=-f _ _ * :."-*.. g.
.. r; g--~
- :-- --- a = - _ u :
j
-... }
-: --~ *-* --, - ; rc n
=.= :... A.rr; v
.~. t =.t.* r.8__.._...__g_._....
i---.
1-,
, _a [-.
~ i
.~..... p n r.-. - -.=:_:=:
.4::.g_;; --+ - t-* :
g-- :..e. : r --- ---..
- 7.- r. J._
_D w-.
-t
.g
_q.
i-- U-*.c1*rt; __.
- m. g
>., __c:..f, I. __- _
_.:.4==_:. :..
. _,,.nd-'_.h-
- 1) w g
_s-
- _. _ 5 N D--- -G.-]- IO[t 2:.
g.
^' F:E * : ----- _"
,d
].
. ={ r:&== {=--g== L_=.-. :=-t- _g:r,f. t.c r-- r. N : _-:=- N= t ---.=
m- --- ', ;
- q....... - _n - _._-
T - --
- = :--- -
3 3.,.
"---q_..--
., - w.s
-..: ?
+
.. : u--. " ::m __ _ I r m w ) p._ g.q-1 e.g _,m.3..g;, r. y=. :. !t_::::.=.r...N. g:.J N. 4 g
- - - -. ~.. _.. _ _ _
- ~
.s
. u m :a - ~ c L
T"
m
( _
- .------ @.;-- 4-A. p --. ;
c 1 ' =r Qq 9'er WW-a.L*)
em.r:
e
/
od 4
se.. _ * -_.
__5.m:":=t::
-N c
Y,
- NNa NL N u - --- - --- - + - -
'%w _; '
g -
.g. g'4.
L c
N Q
/7b I
~,
. 4.J I
p Q eq 4-r'
.F I
. __. _?, n_.
- .I.
'. -JL -
g
--.<.1 W
_-X-I
(
.*4 x* _~~
- Y ^
1 p
n -._
/
. ___; g
._9.7 ar -
4 a
g N1 g,
..._ w 3
=# m -. u-...y
'=
,_,,s-
~r x
4 a.
U
~ ' ~ * * ^
~ ff f-.^
j Q
c a
z y
8 L
m rM 7~ ^ -,
G
,- [
?.,9= -
- -]- _ -' __ /
- M
._~
,% [a s
_,,.=%.
p m
~
5 y>
- y = - 3 r-= g y
__g t- - -
_.M.n b
_ t..w
.. r.:q Q
2 V""P d._-,,,. - 9 "' ~ ~-- YC
-- _.
T*+
-=t"--~-----""--*
-wJjA)". -*6ag U
- _ _.,.=~ -
-p
,.A**
.-m fm;;.f
(,y 7 - - p,d:..
Q ea,
.. /_-
C 7
v,] r w
p :%
___y p
>j
_x p
n _. _.,... _ _
- C 7.:". _ - _:....-~ _2.
J *Lr r*p#
.2 -
- .7"*' -- ; 34- "* '
4
~h"*';;'
u
>s
_-.._..-__'Y=.
O
~J'~
-~.i 4
,r
--M
='
O ='
4.'-.,_,,#-'
_ - _. ~ -. ~.
3.I
. = - - -
r "'
a**'
^-------*---I----1---------
4 p
~ - '
-$------ 34
- ..T-
.~..L.Q f,'
2-
- - -- t.-- -- r__ __ _ _ _.. : n-n...._ :2 c :- -.-._.._-_ n --- a - -
-m y
m_._
~.2.......
e
~- -~'
- : = :.: =_: ----
_.4
-r-----
__.._.I m - -- -.2 2 =u.==.- ; - - - -- - -
- - - ___; = :. J _..
3
'~-~C
~~*
....;........: I
- -** :. g
^^N;
- - J -
P. * - - 1... _ M : ! c:_ :. :: =. - : - - -...... e.-----I-............,.__!:I-w
^
...2
.m-
= r =1u--
C*---***U
- h '
__ =..
n-r--- _._.2-_._.=:.._..=:.
- = _.
_2.= : - %
' y., O".&-
g y
_ _ j.=. _ _.._ _._........_. _. y _.. -.. {.. ~. ~~..: *Cj.. =_. -":..:_". *. :. -_.::.n...:. !.
. -l.. _.... t _..-'w..$'..*._'..'*..
- -*'_-._=.~.~.'N,_,Mp.,
_----t-----*~--*------------r----2:------------*--
i-----*-----*
W
..M =r W %'Il*
U L.4 a ' (D 4
- ---!r ;..
_r._...__..__._.... _.. _ _. _. c tt.
_.t=:=: : n ::.u c --. ---..x : _ _.: 22. : r=_..=_=.=:nn
- ~
<n C
e% **,,
C _n g q,g _;_
q
.a d u.:= :!.... _..... _.. _....
.a----'-"-"" - - - - - 3
_ : r---
=..:m::......:.: un. n....... : c... _ :
x i
. yu:
['-'
x_:
t
=
. L.,; 3
~
n_
x,
- 9 p-
.4
_._. =. u n -- :
j o
g 9
s so n
a a
a t-e o-n.
m N
~
w x
-i
~
V/Sd
.MnS Snd "> WS D M
[. wl 3
JCS _w-m Cu c, Sm- ! ~
. c a, i
,7
- {'***"**;..
?
..._..-. _.......5. -.
. r'.
p '_( '.j.,agl'
,,..P,g' s,,4
_... -.. e%.,.
_,,___e.
,.t
. a
)
6 ff
'!***?*"""**.'****
I gg --._...
r M 4
_s e.
g*..
=. ? ; g.*; m. l
.,e
- c. e * -
- g s
f, g,3 3 gJ t** U?
y
.4
- 1
- 9 *r 1*
... rare,-
--. u :-- r.
v.
.-s
- a--. a r.
., a r.:
- :,.m e. -.. _:r....:..
N., I.
c0 g { -._ e.-
. i
- g*
A
-,f
- e. ; --..
-. r -- - r - - -- - --- -- -
e.e.
... a,*;
L m'g.;
.,.~ -..*.-.. ;..
,..t.
- . g -
N.-
O
- 4
';...-.'t
. ~
-. 4r.-
_~.w.1.
. i __, t_..
l F.- (;.
I
- ?. ;, ! -.
..;*;*.. n - :- n.-- ;. ;. ;- c-".--. ~ n...;= '.
.-m w
t.
,3
__.,.3..._a w L., _......_.
r._._..
.:--- := ~ w: :- e : :: n -- -- -- -
~..
4.n..._.....
.a... -.... -...
..=,,,,.!...
.t w
,., g
.. ~..=. ;_ :. :=. u-.. T.J. t. i, -._T.,sc,%,
g
.,. 3 7
c,.
. m _*
. _:... *6...J L. _..
., g.,. ! __ :. u.,. :.
_ = _.. _. _... _.... _..
- .a.r w._2.r
= =:
e._......,.7...%.
.~.~..L....,,,,,.l"*=,_...
r'*
...s
....* ? ' :-- * ~
O -
,6
- " ~ - - - * * * -
..,L.
l.^.
.% a....
=.
M'---..----*-*.*
- m
..'.a.
'I
- 1..
e..f...,._...
A.
.... F. e..ps.__,,._.,.e-.
..lo
... s w w% gQ
_..-.m-..
g.
-gs
.m
.m.
.e..e...._.m.s._e g
I.
.._5 m._
.l.
j.
- e. e..-...-
.i.M.....m.e..e. +..-.Im I....N.
_,... =
o....._.
.- e. 6 gm
.. _ = _. _ _
ear *. _-.
_ - =.. - - -.. _ -. -a....-
. i.
?,_. s e,,..
e.-....=_
-t I.,
m.. _,
g *. _. %.
i
-.. _- 1.__
... _. -_: 3 - ~;; ; _ ____. _ _ _...
.. r
.i w
.Le1
. = = =..
e.
- -. __g ); *s
.. _,,i : 5.._._...
a.
a.
..._._. !. = r.
- . _.. _m_
a,.; m_
.-y.
._ g 3-:
. t =:: :. - - : -... z: =:: - -
.. ~'**^_-- - - K i ~; :.: i.:=
-~~.... -- -----
..=. ;. - - -_... _ _ _... _.
e.
_g__.m._._..._-.._.-._..~.s....v,~...... _ _ _.,. _
i-~ E
.--. '. -. =..,n _r- =,i-.u. u -
7---
_=_g..d'E..._.5,.'-" '. T. :.. -
N.N.N....
M
- N' s
.*em
%dG4 9
an. [**".*'**v**:v-.-*!'
""~'..g,,,,,E
--~: a? =^%y.
.... J' a-
- M ::--
_7
.***J.*_._..**.- - - " ' "..
g 4%
g g-
, i.:. _ _w
~O 8
m-wF*..
a.
. _v... _. _..
w.
t
._.m.
m
.-w es
_..y'.
- ..-.'.-'aJ".
~-*..
' e en..
(
p n
.e W
m.
.g.,
.e O
. a g
_w
.e p-.**
m-- e. - -me
~.*
4
..e m
_-em.-
.6_w-q-.--
J
--._w
],s
,.4
_=*d.w6
,)
_e-.-
w.
e m.m_y-..e
- s.. __
.----.,_.-.r.-_
V z.--
ann}
._r n
p
-G.
e g J./
-...s/
O
~
s _..
',C
..-**._/.
~
.?
R*
^.';-***
w --.
_.w,
._,..p-
=d._.
w@
'un$
_p m
e
,,,,.r--,.
gE
-Jar **M.. --.....
--.egm.m.
.e
-. ps e.
gg
-' [ ~ ".u*'"^_
- ~-
.'8 M, 9p
. - " * ' - - "~..,,
_.-.-_-_.*6
..=
M
- -. e
=es.
.---.g,p*
mS
>5
,,,,.. - -, ' j.
M g.
,,-...e
- ~ ~ ~ '
~^
=
^
g.o.P
....--..a.e
_,r
,h****
- * * * ~ * " "
_,,,,,'s,sp...
j m
a
.. _-.__p --
f
_.-JM~~-*#..*.~.-.
h* (
...__,.s.,,./,
N /: _"
.,s T~.#
_=
- " " _ - - - - _.L"".,,
. ~ _.
- ;n q---- :
- i, p a
_._.:.~m.=-__.<=__-----
,M A.J
.g
- _.ie.d-e.w. m.e w
c.M
.M=
4 g um g-w
%.I
, /.,.,
ss e
g g*
e.
D.'e*,.- -. -.
--ow.-
.ee---.---
-.. )"I k 84 P..._-
- 6
,M
..-q.-I.
. - -. -. _ - -..=.. -....
,,4
.* 3 e
e s
j 4.#
r.*.m-p
..-..m..ew-
..e.--
.-e
.m
..e.--w e
e-
--.w Q,,
gh
. s k
p-
=
-.-....--e._ -. - + - -. -. - - _
.---e.... _. _ -. - - _. _
k w
y
...e_..
II=7'
- _. _.. _ _.. -.. -. '. ~ *.
5 **
....CI
__"__--h' 4
em.e.-..m..
m,.-.
.i.e
-..m-w.mm._..h..
. m_
.em m
e mtm g
.e.--_.-.
.e w.
4.
_..~... _ -
.... c. y4,.
e--
t_..=.=.".=..=..==-=-:====.=.._:..===-m..i======.=.=...=r....
a
.s t
_.. _..: _ - = : ;.:
=_=.-.2_.~. _~_. : =.._.* ; a-..-
- ~~. : -' '. :== =_. _ -.:_
c.. :.. __. _.-. =.. - =... t - - D.s., =.
4 *9"' W
... 4 w
~*
?...,,,,.1A * ** -:
y.. ~ :..
~,.-... M. g,, 9.
L..
' C >**,
............_._..._~._.._.._.._.___.._L q 4,,,
e 6
.q.
p
+
E w _-e
- g..
n
.s..__;..
....1..
^
g
/./g(
=,J--
}
j 7
' ~ - -
- 7
---*n..-
n;
' t y &j
,. ~
-=.
m..
.i4 e.
. e4+..
o g
a.
e-v.
m e.
m r-o
.n n
~
i-i m
m r-8't M
=
!..L. M W 1 k "al Jos w - m Cn c.
sm-17 n
31
,l
.........:-* r...... -
r-.t.._....,*1..
d.
-t-y
.._.n.:...... _...
p,.
N.,.,g e,i.i _,
- u..i
. t -
g=
.mu
. 4
..,. t.~e.
..a :. :.. i t -..--.m L..j.
...,... w ll 7..
g :t.~
1 1:
P.
.4,6 0 3 u.
l.
Q.
- C, -
m_.i,4 a
t- _.. p! -......42***"_'--
2.'.
? 1 _*
_'..v !_,:'.4.%...::. w : j ; i
.. N., -
- =..
._*a- :
'..sg 14 ;-
b::.
- s' g. ~
s 3
.N
- l n-I
)
H.;
.)
- .2 4..---
- r. -.'.= : : - ~ ~. - i7.D '. :
7I c.
.. ;-.:.=u
.. : a.. - ; :
', v/-
E.:..
.n. !..: :-
--- - =-
~- - :_-
us :. _-
-~
- ..: _,.._%,,, i. - : t _. : -
..,..i(,_~._..
,.t
..._. t._...)..
_..1......
., g
...... ~ _ _ -.. !
g ;.
j g
g.,,,...,
- , =_= =..... a =._._
- . :_.. u. : ~. =_... = -. :
=n.:_t,. _ 2.:
....... _................._r...._u:._:.
- c. %. :,,
- _..g-
...?.. -. ~ ~ - - -_-%?
.:-*7
- ~ ~ -...
...... -. -.... -. -... _... _.... - _ ~ _.. _ -
- _, _.
.....,.s s..
- .....-----~!---.
.. s
_--"-**g 8
..h.
-..**: _*. * * " ! ". r_ '*% ! _i.N, 1
, %.;. ;..~., t - - *
.1
.P"..%_...
......T*.
3
___..........._...._A..
.-..(.'....._.._...[t....[._..
..a.
.f.
4
.,t__..
og.,
.f..,_._..
.i..,..._
__1.
.._,,,.N.._.,.__.,.i_.____....._.........,
..._._.._._...._._.._.%.N.,,1
.._...._.____._..,.1..._._..___._.-
_..p
.s.4
_ ~
... Vr
,1.__._...._....__...._.___..,....--a.=Q;"'.*-.S._____.,.._
r~2.,n_.._..._.___..__.._...__
w
...,...st a.*_'.L.._..
m..
.->--..-...._..__.,*r.... ', ',
v s. __,Q..._.......-
.L _g ? - _-.; -m.-=t :. : = = : =.= ---- r - = :- =. - _. : T.
.--r 5:
1._.4.._.n--- * : =_. - 2 2- :. _-....b.:
=.:.._
,.:-2
. m.4... -..:, J. _%.. - :
w
,,...::..: - 4. : ::. - -- - -- n. ! u. = x -- __.;
a 3
.,_._s
.__.=%_.,..N...._.._._.
g g _.,
... _._..._a. _ 6 ____ _
~c...-.,___,-----q-g-_
-+r ----"..:::: n.4 **p:
j
_._ 4:. = i
". ;~ :-* *n
. ___ _ _ _.. _"t., - m :t -
_ s TM :
- :. - _ *%.% : _s ::....
._.t
.. ~
. m
- ~ __ y..
- to T*,
. _. i.;_.. _ _ _...
.~,,.
v
..-e d
_=.
lLi V)
=.-
9 F
W tr).g-
~q m-
-'s a:.
- G.e.
h
. _ +. -. -
1
- .m l
\\g
~#
. /*
<_e.
b w
VI g4-
~A... _._
g.
-- =:
C J
t.)
_ _.x :.. -
w
_ --._,,, _.-_.. / ___J _....
/".
.mp w
, --- a
_. r
+
2
.-.a
,, V_. _ v:_f
.o
-1"*
" " ^
-_._F*.~.7-'?
E
..=
2, u__-.
.-[._
,...,ar**-
_._J*.-'.
y,a Q
.a e. ]
= :' _
. _..,,,f._,. j --
+
- _,,,,r_._---,_/.
y,,.f a:- :
_.,,&=---
_._ s &* s.. w r,,* _
g{
_.xs__._____e.r_._-..._ ;;,;,; ~ -
.s,,__,.,,,,".'.---
p.,,,:" -
n.,
p.
. _ _., * =
a,--
~.
r=../...**._..._.=~*.=_-;-.. _..,
t--
_- - _, : w -
~_7_',,_-y.
_. --- Q3 _ r d
m-. - -.;,;._______-.
1=-
Oe t___ s.,#.N.
.3 k... w._--
c.s
. ;;,,, _ ~.: _._.
_m e
e 3_
i i
6
_. 0.
- : g.! M._..;==-
y.
__ _.CL.w,e y
s 1
_. _...._..._.__....m.
s t.).
r--...-_.__._
W
_ _ _ _.._.._._.:.:_.u....::=::--.._..-=_~_=..-.!_==_:-
. _. = -. _ _ _- - - *
~~~
.. _-._:.. u. : : :._.. _
4,p
'-~=.'.=._..=._;.
i ai I
. _....... g....
1 t
.._6
_ _. _.... V
- """1. 1
.' *- d - U
'--'-*-=~~~..""--."-:_.-*~~~!=::.*:=:.._.----_..._..-------~~~-
- 4
_.Z
[
_ _ +. =_.: ;
- _;;u... Q.._: n
-:.--=.:.=:.=;__=----=. --:_=.==.
..y =:,
==_:=.:_---ru--_---
- --- - r -- - = = : u- ; -. _ _ ; _ :. = u. u... :.._ u. _ ;.
f.i.
.,,../I
,s,k *. _.
Le 1
i y %*..
s.
i m
p._.__._...._..~_n.__
. _. _.. -.. _ _.. _ _.____..___.E., _.;.
e..
y qQgi p
.. : = M.~.
- f
. l 3
7N p
_. ~
e.=
g i
s._.
-~ = ~ _ - = _. _ -.. - _..
q
. ";-..~ '
'/
~
t.
_.. ~
..._.2 L.
-)
- - - - - -. - --_* l
... i
'1.__.
~
_.'.._'-.e
_mI 3
e o
m g
w
~
N r-y' 0
e.
w u
7 M
M 6
l ' s' t
- r. m m,,
s m a
, n ed b#
.)Mdj e/6 89/6
.a> 8 9 e.
,y I'
b& W~O
{A[O.
M* U
j...-
... ;. : = P " ::.. : ::-- - 9== n n,,,
y d' b..,,
r '. :- - ]:,m _ ::c =::i. =.S n
- "- 4 g.:
r:-
e?..' v s!
__ ?'t.M....
- _b.,
M
._.7 J
-_7 r
-2 O,a t "- t a
- 2. t
- h,
- y,1 q.
.6 c 3e. r n r -~.,t.,..
b
[j
.1:
W.,,l
. %., d s. t
.a c, T -, -
....n,.
. z_., ; _..
p-
.h6y a :-, '
.,D Q -. :., Q.r..
'----~o.x.,--
_2 w
~
n
...l..
.... f,.4 3
,m
- t.,,) N. _-
,...~@
__or
- w. e.,. :
1;.. - '7.- a,y._. j...
%t
- - - ~
.a 4 -
- . g.
~
g g
..............-...;....... -.1..........
~ '. '.
/%
- A :grt:.
..3-
.- -- Y 2
- r.-[,. $ n,--,
. n. :.... ::;n;.
c.
w,-mu
\\
_:. c.-
un 3 e.
g i
.w
- =.- : -
---.!:....=._.1
, L
'*r _.. ::..... :. a. J.. T.:.;-
., ; j.. _.....1..;., r. 4 r
- . p ---..-......-
--- : =. p y.., c r.__...,.. :-... -
w/
. s
~--.: c :..... =.-
g............-
.,.... - ~ - - -.....
n---
__ _ p 22 _% 2s::n ::; w-}.
... v_.;; ~_~...._.r..- M _ (.e t -..:: s; : :---. t==:..__= = =..,.=:..._ _.. _.. _ _ _
- -* g* :.J,,;
- it a: Q 4...:. ara.
--- -, _;.._.:_:.at : ;
- e. -ly1_ =_ r n.4.. ::.Nj l _=; -
-- " p
- n.,u
?
. - ; - ".rr -
---"-" -~ - _T -t u
_a 2.=
___.t
- - H_,1
- ..L,. 3
.3.:. :- -* :-*
t J
. _. -. -. ". -... =.. " -.. =.
- =
- 4.. _....,%m '. ; ; ;%:.:.. ; =. :.
"t...
p';m... M.,--".
_ - - +
u."
L I.
-~~-
-~
- .-..e.z.: ; :'. : t-. -.:---
--...6.4__.N'**--
M...._' w -.'__ _ -- - -
- W 3 I1 =- n-r..;N:
S.1 :.
. ; *,. : 2: *,
-.. -'---" -==: n= :.; t - --- - n : :.- _. t*
i.r
- - - * -N;
_._c-
.. _.. - - - - - - - - - - - - - - - - + _ _ - - - - -
L.
. _. _. k. : A.. r.. x %. :t..::.... -.. _ :=. _..: _::. ~_.-... =... =. :..~I :n...;.- :. ;_r.
. _. _._.. n 6
. -.....[ :.;!L' *-""*%,
- 'U-* W t
.=:.~..w-+--~=...-. _. - --._. 2.;. _..._,rw 1:0. -.j, ".:,I __.:.
4 N.
-;i.__._.__.______..
tn
-.:r w~~.: % _........
-.;;.:...:J.
3,;. :_ q q ~s w
=.2.
- r p = n..
-- i--.-
[ s,.:d,: ___ _: : -. --
,, N s..._
. r.
-.._..m.
~-- - N. ~. A_.-,,,5k. h 5(-
_ _ _.5$5^bE * ---
$.. 7 T ---5 o -
Q, _.t
~
- y. -
_g:: -
R-1 w x=r,..._._.___..._. :
. : : _.-- s :
=L.
~~
- s. ~ n.
_=_. r --
n __r o:-(:: %. - W ;:.=r:=w-_
u -_ _._
-e. : :.%.,
... c.
22: c.m:. ::
- _..__:=..
~.
.. _... _=__ q %._ :._
.rn:..=: :.- --*.--..r :r
__..m_.__..__
r ::.. : =N g
J:: ::: __. :w:O
-i Nie:2_, C.A_,..
g m_
~
z.
+. : a -
r. ---- ~ s :.:
ti.!
q
-h l
la.J.
q,-
q n==.
c.__._..nzw.
4
._.,_=v.
g;,P'
..s
=.
W i
g
~ m.
._._.,s.._._...u.
.y l
r i g.
-_,,.c 3 m.-wJ f...__-..
.~
3
- - ; =_=._-.: _:.. -
-.-_s-w
.,,1
-/
e- -'
- =_
^
3
., -_ ?., ?.. _-. =- i '
ens
=
.,$_.' 5?--f g
e y
-- 2
_. r.
+
- ^
-..,- n.;.r___
4 p
U.
a s
_--u..__.. f
- T- -.. r%__ - -
t >
.s._ ;: f._=.:--. ~ - -
- = - - -w
. c w..2;T 1g u_
.= :
-~'
~. _
e.
n.7. :.e-
- - - -. = _
n 14 s-
_s.
.s
+,,# w: r.._
/'
,.,,6-
.__,,.,.,s
_t.
.?,.:. -
y L_ _ _.
---c.
._xn :--- - - _=.,,; --i 7
- . ;;;.r=_".=;
i;
_l-_
=_s#A,--=a.---..{.---.__
= --
-r--
n
- s.
_ ~~_ _ _ -
.._._..M:-*
w*
t.__,
a
- %.. d _--. th
-~
~~
...e..=,-._--. _ _ _ _ _.
.J
=_.
=.
_ _ _ _ _.. _ _ _ __. r-3.._..
a,e. u e
w,, n,.-_ y
=
e _. __
p v
l
'{
---::----=.__.
.... 5W.-
1
~~
L
/
_ _ _ =.. =. =. _ _ _ _ _. _.
=m*---.____-__
r--.
,_,-;;-_-----c=_
._...-..g z.= -- - -- r - -- - --
- ; =. 4. c. :._ =. a. _ _.--d
- - - - - -x.
h,_._.. _u.:. _._.. : _ : _=_= - - -c..L.~ -..Ei.b_ _a__._ : :_ i __r-'22_E._I.'_. ~-- _' : _ : _.-._.u i_C".. __ _____. u._=__:.-- 3. '~~i. :.Ti. s' ;.'_~ ~ ~ !... >Z..
~
~~
~ _ _
{
- .2 3-".._: _ :. _ _.s a._= ". _ g'. q :
k:-----i ' --_ n =__.:=- : =.. _-- h- = r --- : -
Uri ; :-
. r. _ _ _ _ _
_6:
.- r -_
. 93 y
.._r._.=.._-_.._,__.
-.._c.___.
c -- = -
r: -
c --- : - ;-,
,m
- . y, H:., -
= _. _.., _.e _
- _
- 2._;;=_=..._..___...._...a__....__:
..._._._....___...._......a._...-_....:___._......__._..._._....
.g c.._.,.
., *q p
_=.
- .. n=.=
- ..
.-r..
": _::: E =r...,
u.
- 7
'...a
. ---. =.;:::: =. : r =- -. :-. :. _...... : :::.. :g
- r
_:. = _.. = - - -- m : n = : n = =:
- - - - - =
- ur= =:-
i r - : --
e
- l...... __.. *.
_....._2
[
j p :--
72.:...,
pc.
p h_ -..
D
- A_. ! C.:.
l I
,..... : j. _ __.~.. _.. _ _
- _ ~.
m------
.a t.
7.
o R
Q M
M Q
M_
_ _ _fl P
1-D
-- o 1 C
9
".2 '
r-
[
m n
pCs
.';13.m c= - %,o.us.::, mag pa% g a' A 7... i.p J
~
c
o l
w 45 o
,p A_l___ A C, k. _,n,__
2 d
1 a u w w u w w.a :)
(' )
o I) 4' C U
,* L a
WJ~<
w U
w o
o (b
4:
4r U
QuuGca n
Ik a
4) o o
o kk o
o I
o Nh I
(
b II o
at I
l
$?
l
?
l 0
i l
.j t
l
,1 I
1 l
l l
l l
=l 1
1 I
SEIStiIC ANALYSIS FCR 54 INCII ti i
NUCLEAR PURGE VALVE i
l l
I l
2 1
i t
}
l l
1, i
e w--
,w-w m_
e-,--o--_--- - - - - - - - - - - - -~
l TABLE OP COI; TENTS 4
PAGE LIST OF FIGURES 1
j NOMENCLATURE 2
SUMMARY
TABLES STRESS LEVEL
SUMMARY
20 FREQUENCY ANALYSIS
SUMMARY
26 VALVE DIMENSIONAL DATA 27 STRESS ANALYSIS i
INTRODUCTION 30 END CONNECTION ANALYSIS 34 l
BODY ANALYSIS 35 DISC ANALYSIS 40 1
i SHAFT ANALYSIS 41 & 42 DISC PIN ANALYSIS 43 & 44 l
SHAFT BEARING ANALYSIS-45
" ~ '
THRUST BEARING ANALYSIS 46 i
BOTTOM COVER ANALYSIS 49 i
OPERATOR MOUNTING ANALYSIS 51 1
i TOP TRUNNION ANALYSIS 60 i
FREQUENCY ANALYSIS 63 i
t 1
i Y
i
- - - -... _. -. - _ -..... ~.. _ _.,
.._----,.,--_---,___,n-..-,--
i_ _. _ _ -. - - - - - - - - - - - - - - - - - - - - - - -
I i
l LIST OF FIGURES i
i PIG. NO.
TITLE PAGE i
1 VALVE BODY SPATIAL ORIENTATION 32 2
BANJO ASSEMBLY 33 0
3 PRESSURE AREA ANALYSIS CROSS-SECTION IN 37 BODY 4
DISC HUB BLOCK 44 i
5 THRUST BEARING ASSEMBLY 47 i
6 TOP TRUNNION MOUNTING 52 7
TRUNNION BOLT PATTERN 54 8
OPERATOR BOLT PATTERN
' 56 9
TOP TRUNNION ASSEMBLY 61 i
l
!O 10
^
1
g l
i i
Y
!O 1
NCNENCLt1TUPE i
i The nomenclature for this analysis is based upon the nomenclature es.tablished in Paragraph NB-3534 of I
Section III of the ASMS Boiler and Pressure Vessel Code.
i l
Where the nomencla ture comes directly from the code, the i
reference paragraph or figure for that symbol is given I
with the definition.
For symbols not defined in the code, the definition is that assigned by Henry Pratt Company for use in this analysis.
i f
i i
d i
i l
t e
i i
$ 6 4
I i
I 4
l i
i 1
k l
I i 9 i
i,
i ANALYSIS NOf tENCLATU P.E 1
i A,
Effective fluid pressure arca based on fully I
corroded interior contour for calculating grotch primary membrane stress (NB-354 5. l (a) ), in A
Metal area based on fully corroded interior contour ef fective ig resisting fluid force on Ag 4
(NB-3545.1 (a)), in l
A l A
Tensile area of thrust bearing adjusting screw.
2 2
Tensile area of bottom cover bolt, in j
A 3 9
A Shear area of bottom cover bolt, in' 4
A Tensile area of $runnion bolt, in S
^6 Shear area of trunnion bolt, in 2
A Tensile area of operator bolt, in i
7 2
A Shear area of operator bolt, in 8
g A
Tensile area of hub retainer bolts, in g
2 A
Shear area of hub bolts, in 10 i
2 j
A Tensile area of hub bolts, in yy 2
A Shear area of thrust bearing retainer bolts, in 12 A
Tensile area of thrus t bearing retainer bolts, in 13 B
Unsupportad shaft length, in.
y l
B Bearing bore diameter, in.
2 B nne ensile area, in.
3 l
B Bonnet bolt shear area, in 4
2 B,
Bonnet body cross-nectional area, in a
6 t
B Botton bonnet wcld size, in.
7 B
Distance to out:or fiber of honnet f rom ~,h3 E t on 3
y axis, in.
i l
k I
ANALYSIS NOMEMCLATURE l
B Dis tance to outer fiber of bonnet from shaf t on 9
x axis, in.
~
i j
C A f actor depending - upon. the me thod of a ttachment of head, shell diminsions, and other items as listed in NC-3225.2, dimensionless.(Fig. NC-3225.1 j
thru Fig. NC-3225.3)'
C Stress index for body bending secondary stress b
resulting from moment in connected pipe.
(NB-3545.2 (b))
I C
Stress index for body primary plus secondary stress, P
inside surface, resulting from internal pressure (NB-3545.2(a))
J C
Stress index for thermal secondary membrane stress 2
resulting from structural discontinuity.
C Stress index for maximum secondary membrane plus 3
l bending strest resulting from structural discontinuity i
)
C 6 Product of. Young's modulus and cgefficient of
}
linear thermal expansion, at 500 F, psi /"F (NB-3350)
C Distance to outer fiber of disc for bending along 7
)
the shaft, in.
C Distance to outer fiber of disc for bending about 8
the shaft, in.
d Inside diameter of body neck at' crotch region r
(NB-3 54 5. l(a) ), in.
D Valve nominal diameter, in.
y D
Shaft diameter, in.
2
{
D Hub retainer bore diameter, i n.
3 D
Thrust collar outside diameter, in.
4 D
Thrust bea ring bolt diameter, in.
5 J
j ~
D Cover cap holt diameter, in.
6 4
l D
Trunnion bolt diameter, in.
7 j
D Opera tor holt diameter, in.
g j
D Bonne t bolt diame ter, in.
9 1
4
..g--ww.-
-.,-m,r,,--,,.e,
_.,-..,,vr -,
.,,-.,,pww,,ww,,wwy,,w.,,,,.,,-m,._,m._..
'-m-
ANALYSIS NCMENCLATt!RE D
g 10 eter of thrust bearing adjusting s tud, in.
y D
Outer. diameter of trunnion, in t1 E
Modulus of elasticity, psi F
Bending modulus of standard connected pipe, b
as l
given by Figs. NB-3545.2-4 and NB-3545.2-5, in.3
- l F
1/2 x cross-sectional area of standard connected d
pipg, as given by Figs. NB-3545.2-2 and NB-3545.2-3, in.'
F Natural frequency of respective assembly, hertz 3
F W g --Seismic force along x axis due to seismic a$celeration acting on operator extended mass, pounds.
F W g --Seismic force along y axis due to seismic ahcEleration acting on operator extended mass, pounds.
Y F
W 9 --Seismic force along z axis due to scismic g
3z 3
acceleration acting on operator extended mass, pound.;.
inch per secon O g
Gravitational acceleration constant, t
D)
\\
G Valve body section bending modulus at crotch region b
3 (NB-3545.2(b)), in d
gy section area at crotch region (NB-3515.2 G
a ve (b)), in G
Valve body section torsiogal modulus at crotch t
region (NB-3 54 5. 2 (b) ),, in g
Seismic acceleration cons tant along x axis x
g Seismic acceleration constant along y axis
[
g Seismic acceleration cons tant along z axic 1
h Gasket moment arm, equal to the radial distance 9
from the center line of the bolts to the line of the gasket reaction (NC-3225), in.
H Disc hub key height, in.
+
y H
Top trunnion bolt square, in.
2 H
B ttom trunnion bolt square, in.
3 Q
t 4
,-,e--
e-.-
-..~r
-,,--,e-
-,,. - - -,, ~,,
ANALYSIS NOjlEt!CLATURE 1
H Bonnet bolt squarc, in.
4 H
Opera tor bolt square, in.
5 1
H B nnet bolt circle, in.
6 H
Opera tor bolt circle, in.
7 H
Bonnet height, in.
g H
Actual body Qall thickness, in.
g I
I Bonnet body moment of inertia about x axis, in' y
4 1
Bonnet body moment of inertia about y axis, in 2
I Disc area moment of inerti'a for bending about the 3
4 shaft, in I
Disc area moment of inertia for bending along the 4
4 shaft, in 4
I M ment f inertia f valve body, in S
4 I
M ment of inertia of shaft, in 6
I 7 Disc area moment of inertig for bending of unsupported flat plate, in 1
1 M ment of inertia of top trunnion plate.
8 J
Distance to neutral bending axis for top trunnion 7
bolt pattern along x axis, in.
i J
Distance to neutral bending axis for top trunnion 9
bolt pattern along y axis, in.
J Distance to neutral bending axis for bonnet bolt 3
i pattern along x axis, in.
J Distance to not-trel bending axis for bonnet bolt 4
pattern along y axis, in.
J Distance to neutral bending axis for opera tor bo L t 5
pattern along x axis, in.
1 J
Distance to neutral bending axis for opera tor bolt 6
pa ttern along y axis, in.
K Spring Constan t M
Di s ta nce o f 1:onne t lec from shaft centerline, in.
y i
.,,nr,-n.---
-,e
,ve-,--vs.
-w-
-m---
-,-,-,.-,v,,----
m
,,m,
-,,---w
.=.
1 AMALYSIG Mf:MlWCLATURE K
Thickness of disc above shaf t, in.
2 K
Length along : axis to c.g. of bonnet plus adapter 3
pla te assembly, in.
i j
K Top trunnion width, in.
4 1
i K.
Top trunnion depth, in.
a K
"* 9 E
- U""
6 L
Valve body f ace-to-face dimension, in.
y L
Thickness of operator housing under trunnion bolt, t'.
2 L
Length of engagement of cover cap bolts in bottom 3
i trunnion, in.
j L
Length of engagement of trunnion bolts in top 4
trunnion, in.
4 L
ear ng ength, in.
5 L
Length of shaft after retainer groove, in.
6 L
Length of engagement of bonnet bolts in adapter 7
plate, in.
i L
Length of engagement of bonnet bolts in bonnet, in.
8 L
Length of engagement of stub shaf t in disc, in.
g L
sc hub key length, in.
10 L
Top trunnion weld height, in.
yy m
Reciprocal of Poisson's ratio l
M Mass of component W3(% Z +g Y operator extended mass seismic bendink r_to8e) n, t about M
the x axis, acting at the i
bas <t of the opera tor, in-lbs.
f.
W ht_Z
+g,X operator extended mass sei n'.c bendi'n@ mdm3n) t about M
3 Y
the y axis, acting a t the base of the opera tor, in-lbs.
l M
(M Ic Y +g X
), operator extended mass s e i smi.c bc2diUg moEcht about the axis, in-lbs.
fE M:p FfT 5, operator e:< tended marn sci smic 1: niiin<r mem. :t at.w the a :: i ::, ac ting a t
- nc ba t t : t or the atID :<'r
- l?.t', in-116.
1 P
! e se
- =~-~.-.
,.. -, - - ~
->.-n__-,-,,,.-,_,._a-,,,n-,
-.,_,g.m--,m
.,..,,,,,,.,y_,.,..,-.r.n
,_,,y,,
,,--,my,.m-,-,
i ANALYSIS NC]1ENCLATURE RF My+FxT5, operator extended mass seismic bending b
moment about the y axis, acting at the bottom of
/
the adapter, in-lbs.
Rx Mx+Fy(T +H 5
g)+gyW K operator extended mass seismic bending moment abou,,t the x axis, acting at the base of the bonnet, in-lbs.
Ey My+Fx(T +H )+glW KSo$e,nt about the y axis, acting operator extended mass seismic be$ din 5
at the base of the bonnet, in-lbs.
l M
Bending moment at joint of flat plate to disc hub, 8
in-lbs.
N Permissible numbgr of complete start-up/ shut-down cycles at hr/100 F/hr/hr fluid temperature change j
rate (NB-354 5. 3)
NA Not applicable to the analysis of the system.
N Number of top disc pins y
N Number of operator bolts 2
N Number of trunnion bolts 3
(~~/
)
x_
Pd Design pressure, psi Pr Primary pressure rating, pound Ps Standard calculation pressure psi i
Pe Larges t value among Pe.b, Ped, Pet, psi Peb Secondary stress in crotch region of valve body caused by bending of connection standard pipe, i
calculated according to NB-3 54 5. 2 (b), psi
(
Ped Secondary stresc in crotch region of valve body caused by direct or axial load imposed by connected l
standard piping, calculated according to NB-3545.2(b,
psi
~
1 Pet Secondary s tress in crotch region of valve body caused by twisting of connec ted s tandard pipe, calculated according to NB-3545.2(b), psi P
General primary membrane s tress intensity at m
crotch region, calculated according to NB-3 5 4 5. l (a ).
psi e
P Primary membrann s tress i n tens i ty in body wall, r c. i m
a
ANALYSIS NOMENCLATURE Q
Sum of primary plus secondary stresses at crotch 9
resulting from internal pressure, (NB.3545.2(a)),
psi Q
Thogmal s tross in crotch region resulting from T
100 F/hr fluid temperature change rate, psi Q
Maximum thermal s tress component caused by thgough T1 wall temperature gradient associated with 100 F/hr fluid temperature change rate (NB-3545.2(c)), psi Q
Maximum ghermal secondary membrane stress resulting g
from 100 F/hr fluid temperature change rate, psi Q
Maximum thermal secondary membrane plus bending T3 strgss resulting f rom s tructural discontinuity and 100 F/hr fluid temperature change rate, psi O
Distance to bolts in bolt pattern on hub block, in.
y Q
Distance to bolts in bolt pattern on hub block, in.
2 Q
Distance to bolts in bolt pattern on hub block, in.
3 Q
Distance to bolts in bolt pattern on hub block, in.
4 Q
Distance to bolts in bolt pattern on hub block, in.
S 0
Distance to bolts in bolt pattern on hub block, in.
6 l
{
Q.j Distance from shaf t centerline to disc plate, in.
Mean radius of body wall at crotch region (Fig.
r NB-3 54 5. 2 (c) -1), in.
4 Inside radius of body at crotch region for cal-r.
1 culating Op (NE-3515.2(a)), in.
r Fillet radius of external surf ace at crotch 2
(NB-3545.2(a)), in, b
R Disc radius, in.
4 I
R.
Shaft radius, in.
3 l
R Mean radius of body wall, in.
R Radius to gasket in cover cap, in.
6 R
Dis tance from shaf t centerline to retaining bolt 7
of thrus t hearing.
S Assumed maximum stress in connected pipe fo r ca l-culating P (NR-3 34 5. 2 (h) ), 30,000 psi g
9 e
ANALYSIS NOMENCLATURE S
Design stress intensity, (NB-3533), psi Sum of primary plus secondary stresg /hr S
intensities at crotch region resulting from 100 F temperature change rate (NB-3545.3), psi Sl Fatigue s tress intensity at inside surf ace in crotch p
region resulting from 100 F/hr fluid tempera ture change rate (NB-3 5 4 5. 3), psi S
Fatigue stress intensity at outsgde surface in P2 crotch region resulting from 100 F/hr fluid temp-erature change rate (MB-3545.3), psi S (l) through S (83) are listed af ter the alphabetical section.
t Minimum body wall thickness adjacent to crotch for calculating thermal stresses (Fig. NB-4545.2(c))-1),
in.
t, Minimum body wall thickness as determined by C.C.
1678, in.
T Maximum ef fective metal thickness in cro tch region for calculating thermal stresses, (Fig. NB-354 5. 2 f,
(c)-1), in, O
T2 Maximum magnitude of the difference in average wall temperatures for walls of thicknesses t T
resulting from 100 F/hr fluid temperatu$e, cfla, nge
- rate, F.
T Thickness of cover cap behind bolt h'ead, in.
y T
Thickness of adjus ting, screw head, in.
2 T
Thrus t collar retaining plate thickness, in.
3 T
Cover cap thickness, in.
4 T
Adapter plate thickness, in.
5 T
Thickness of bottom bonnet plate, in.
6 T
Thickness of top honnet plate, in.
7 T
Maximum required opera ting torque for valve, in-lbs.
8 T
Shaft retainer thickness on hub, in.
g T
Bottom cover plate thickness, in.
10 T
Top trunnion wall thickness, in.
g Thickness of top trunnion plate, in.
T.,1' in
i ANALYSIS NOMENCLATURE 2
U Area of bottom bonnet wold, in y
U Area f top bottom weld, in 2
U Thrust bearing coefficient of friction 3
U Bearing friction torque due to pressure loading 4
(shaft journal bearing)
U Bearing friction torque due to pressure loading S
j plus seismic loading (shaf t journal bearings)
U "9
- 9"*
6
[
V Distances to bolts in bolt pattern on adapter y
plate, in.
V Distances to bolts in bolt pattern on adapter 2
plate, in.
5 V
Distances to bolts in bolt pattern on adapter 3
plate, in.
Dis ta nces to bolts in bolt pattern on adapter 4
plate, in.
V Dis tance to bolts in bolt pattern on bonnet, in.
5 V
Distance to bolts in bolt pattern on bonnet, in.
6 V
Distance to bolts in bolt pattern on bonnet, in.
7 V
Distance to bolts in bolt pattern on bonnet, in.
8 W
Total bolt load, pounds W
Valve weight, pounds y
W Banjo weight, pounds 2
W operator weight, pounds 3
W Bonnet and adapter plate assembly weight, pounds.
4 W
Weld size of disc structural wc1ds, inches g
W Weight of disc, pounds 7
W Length of weld around perimeter of bonnet, in.
g X
Eccentricity of center of gravity of operator O
extended nass along :: axis, i nches.
Y 2ccentricity of conter of gravity of opera tor extended mar,s along y axis, i. nche s.
I J
11 l
1 ANALYSIS NOt1CMCLATU.RE Z
Eccentricity of center of gravity of operator extended l
mass along z axis, inches s.
Z Begding section modulus of bonnet welds in x direction, y
l in j
l l
Z Degding section modulus of bonnet welds in y direction, 2
j in 1
Z
? 5si n 1. secti n m dulus of bottom bonnet welds, 3
i in j
Z T 5Si n 1 Se ti n m dulus ftP bonnet welds, 4
in i
Ay Maximum static deflection of component, inches 4
i Z
Distance to edge of disc hub, inches.
7 t
Z Thrus t bearing stud diameter, in.
g 1
I 1
)
a
?
i i
i @
I i
1 i
1 i
4 12 C.
1
..c.n.n,-_
ANALYSIS IRLSCr:CLATU RE
\\
S (1) = Combined bending stress in disc, psi O-S (2) = Bending stress in disc due to bending along the shaft, psi
' S (3) = Bending stress in disc due to bending about the shaft, psi S (4) = Combined stress in shaft, psi S (5) = Combined bending stress in shaf t, psi S (6) = Combined shear stress in shaft, psi
()S,(7)
= Bending stress in shaft due to seismic and pressure load along x-axis, psi S (8) = Bending stress in shaft due to seismic load along y-axis, psi S (9) = Torsional shear stress in top shaft due to operating torque, psi S(10) = Direct sher.r stress in shaf t due to seismic and pressure loads, psi S(ll) = Shear tear out of retainer in. shaft groove, psi
(
) S(12) = Shear tear out of shaft groove, psi S(13) = Bearing stress on retainer and groove, psi S(14) = Tensile stress in retainer bolts, psi S(15) = Bearing stress on hub keyway, psi S(16) = Shear stress on key, psi S(17) = Combined stress on hub block bolts, psi S(18) = Combined tensile stre.ss on hub blgck. bolts, psi S(19) = Shear stress in hub block bolts, psi S(20) = Shear tea r out of sha f t through hub block, psi S(21) = Compressive load on shaft bearings, lbs.
S(22)
Bearing stress en thrus t collar, psi
=
S(23) = Shear stress in adjusting screw head, psi 14 O
nr(EYtns no:mnCLATURi S(24) = Combined stress in adjun ting screw, psi S(25) = Direct tensile stress on adjusting screw, psi
()S(26) = Torsional shear stress on adjusting screw, psi S(27) = Shear stress in adjusting screw threads, psi S(28) = Combined stress in retainer bolts, psi S(29) = Tensile stress in retainer bolts, psi S(30) = Shear stress in retainer bolts, psi S(31) = Shear tear outof thrust bearing bolts, psi
[
S(32) = Shear stress in cover plate, psi
(
S(33) = Shear tear out of bolts through tapped holes in trunnion, ps1 S(34) = Shear tear out of cover cap bolt head through bottom cover cap, psi S(35) = Combined stress in cover cap bolts, psi F*%
S(36) = Shear stress in cover cap bolts due to torsional lodds, psi S(37) = Direct tensile stress in cover cap bolts, psi S(38) = Combined stress in cover cap, psi S(39) = Radial stress in cover cap, psi S(40) = Tangential stress in cover cap, psi S(41) = She'ar stress in cover cap, psi S(42) = Shear tear out of trunnion bolt through tapped hole in trunnicn, psi S(43)
Bearing stress of trunnion bolt on tapped hole in
=
trunnion, psi S(44)
Bearing stress of trunnion bolt on through hole in bonnet
=
f plate, psi S(45) = Shear tear out of trunnion bolt head through bonnet plato, psi 13 l
l C>
_ -. - +, -. -. -.. -. -. -
- _ ~ _ -
ANALYSIS NOf4ENCLATURC S(46) = Combined stress in trunnion bolt, psi
( 's S(47) = Direct tensile stress in trunnion bolt, psi
~
\\/
S(48) = Tensile stress in trunnion bolt due to bending mcment, psi S(49) = Direct shear stress in trunnion bolt, psi S(50) = Shear stress in trunnion bolt due to torsional load, psi S(51) = Shear tear out of operator bolt head through bonnet, psi S(52)
Bearing stress of op'rator bolt on through ho?e in bonnet,
=
e f-~s psi
(
)
S(53) = Combined stress in operator bolts, psi S(54) = Direct tensile stress in operator bolts, psi S(55) = Tensile stress in operator bolt due to bending moment, psi S(56)
Direct shear stress in operator bolts, psi
=
p=g S(57) = Shear stress in operator bolt due to bending nement, psi S(58) = Combined stress in bonnet body, psi
)S(59) = Direct tensile stress in bonnet body, psi S(60) = Tensile stress in bonnet body due to bending moment, psi S(61) = Direct shear s tress in bonnet body, psi S(62) = Shear stress in bonnet body due to torsional lead, psi S(63) = Combined shear stress in bottom bonnet weld, psi S(64) = Total tensile stress in bottom bonnet weld, psi S(65)
,~m,
= Total shear stress in bottom bonnet weld, psi
\\
\\m / S$66)
Direct tensile stress in bottom bonnet weld, psi
=
S(67) = Tensile stress in bottom bonnet weld due to bendinc moment, psi S(68)
Direct shear stress in bottom bonnet weld, psi
=
[#'\\
16 t
)
L,'
~
I ANALYSIS I:W1ENCI,ATURE i
S(69) = Shear stress in bottom bonnot weld due to torsional load, psi S(70) = Combined shea.* stress in top bonnet weld, psi I
S(71) = Total tensile stress in top bonne t weld, psi S(72) = Total shear s tress in top bonnet weld, psi S(73) = Direct tensile stress in top bonnet weld, psi S(74) = Tensile stress in top bonnet weld due to bending moment, psi
(
)S(75) = Direct shear stress in top bonnet weld, psi S(76) = Shear stress in top bonnet weld due to torsional load, psi S(77) = Combined stress in the trunnion body, psi S(78) = Direct tensile stress, psi S(79) = Bending tensile stress, p' S(80) = Direct shear stress, psi S(81) = Torsional shear stress, psi 4
17 w,--em- - -, - ---- - - - - - - - _ - - - _ _ _ _ - - -
SUMf1ARY TABLE INTRODUCTION i
In the following pages, the pertinent data for the butterfly valve. stress analysis is tabulated in three 1
i categories:
l.
S tress Levels for Valve Components 2.
Natural Frequencies of Components 3.
Valve Dimensional Data In Table 1, Stress Levels for Valve Components, the following data is tabulated:
Component Name j
Code Reference (when applicable)
Stress Level Name and Symbol Analysis Reference Page
/
Material Specification i
Actual S tress Level i
Allowable Stress Level The material specifications are taken from Section II of the code when applicable.
Allowable stress levels are Sm for tensile stresses and
.6 Sm for shear s tresses.
The allowabite 1
levels are the same whether the calculated stress is a combined stress or results from a single load condition.
Sm is the design s tress intensity value as defined in Appendix I, l
Tables I-7.1 of Section III of the code.
1 In Table 2, Natural Frequencies of Valve Components, the j
following data is tabula ted :
Ob d
18 i
l t
... - - - =. -. -
~
t Summary Ta b le I _n__t_r.o d_u_ c ti o n I
Component Namn
{
Natural Frequency Symbol I
j Analysis Reference Page i
l Component Material i
Natural Frequency
[
t
>i j
k In Table 3, Valve Dimensional Data, the values for the l
pertinent valve dimensions and parameters are given.
O l
1 c
1 l
l t
l l O i
l l
1 i
I j
l
[
O l
i G
19 I.
i I
~
i Pages 21 - 29 stress level summary,,f requency analysis
~
summary and valve dimensional data sheets have been assembled at the beginning of the report submittal.
They are located directly behind the design review record for the corresponding production order.
1 9
i l
l O
e O
20 l
l l
l l
I.
c r\\
p)
(
I
(
)
I'
'l i
i (J
Ll
\\ _,)
' _,)
'\\,)
STRESS LEVELS FOR VALVE COMPOt1ENTS TABLE 1
A L LOi.' A B L E CODE REr.
REF.
STRESS STHESS LEV El CO.'1Poill:t1T PARAGRAPli SYt1BOL & t1AME PAGE MATERIAL LEVEL, PSI PSI dol > Y 11B-3 5 4 5.1 Primary tiembrane P
36 ASTM A-36 Sra f b C' 3 12600 Stress in Crotch Region Sn Primary tiembrane Py 36 ASTM A-36 g 3c7 12600 t1B-3 5 4 2. 2 Primary Plus Secon-0 38 ASTM A-36 Sm P
2 ( '/ O 12600 dary Stross Due to Internal Pressure 11B-3545.2 Pipe Peaction Stress 38 ASTM A-36 1.5En 18000 Axial S tress P
All8 ed Bending Peb 4Ed Torsion P
4 5 #N et Sm t1B-3 54 5. 2 Thermal Secondary Q
38 ASTM A-36
)g gg 12600 Stress NB-3545.2 Primary Plus Secon-S 3R ASTM A-36 3Sm S_.,bO3 37800 dary Stress 118-3545.3 tiormal naty Patigue S
39 ASTit A-36 1.5Sm P
C '/ 5 'l 18900 Stress tia > 2000 h
hisc t1B-3546.2 Combined Bending S (l) 40 ASTit A-36 1.SSm C I b'c) 18900 Stress in Disc l
c, tJ l
(~l.hait t18-3 5 4 6. 3 Combined Stress in S (4) 41 ASTf4 A-276
~/ 3 j p j 'y; 1.SEm
';ha f~ t Type 316 30000
-l e ma m em A i
ra
's TABL i
's STRESS LEVELL_.JR VALVE COMPONENT v,
x A LLOilADLl CODE REF.
REP.
STRESS STRESS LEV 1 COf1 POI 1Et1T PARAGRAPII SYttBOL & NAME PAGE MATERIAL LEVEL, PSI PSI
(.9) (.C ) Sy DISC Shear Stress in S(20A) 43A ASTtt A-276 4, *3 "f7 '2; 16200 PII!S Top Pin Type 316 Bearing Stress on S (20B) 43A ASTM A-276
- 98Y I
33 27000 Top Pins in Shaft Type 316 Shaft Compressive S tress S(21) 45 (SKP-#23222C) g7 gg 125,000 11 Bearings on Shaft Roller Bearings Thrust Bearing S tress on S(22) 46 ASTil B-164 Sm b 4-Bearing Thrust Collar Condition A 13600 Shear Stress in S(24) 46 ASTli B-164
(.9) (.6)S-Adjusting Screw Condition A bSC40 16 20 f' Threads Combined S tress in S(28) 48 ASTf1 B-164
.9Sy Retainer Bolts Condition A
.2 4 4 47 27000 i
(. 9 ) (. 6) S-Shear Tear out of S(31) 48 ASTri B-164 jg Thrust Bearing Condition A 16200 Retainer Bolts m
t 0
l l
tu l
i
(
U U
Ow
-m m
TABLif 1 STRESS LEVELSN R VALVE CO!1PONENTS a
ALLO.JABLE CODE REP.
REP.
STRESS STRESS LEVE COMPOtlENT PARAGRAPII SYMBOL & NAME PAGE MATERIAL LEVEL, PSI PSI Bottom Shear Tear Out of S(33) 49 ASTM A-36
.6Sm Cover Bolts in Bottom 7560 Trunnion Shear Tear Out of S(34) 49 ASTM A-36
.6Sm Cover Bolt IIead l907 7560 Through Bottom Cover Combined S tress in S(35) 49 ASTM A-193 Sm III O
25000 Cover' Bolts GR.B7 Combined S tress in S(38) 49 ASTM A*36 Sm Abb1 12600 Cover Operator Shear Tear Out of S(42) 51 ASTM A-36
.6Sm Mounting Trunnion Bolts Thru
$ 67 '3 7560 Tapped 1101e 'in Trunnion Bearing Stress on S(43) 51 ASTit A-36
.9Sy Tapped lioles in M I M'1 63000 Trunnion Bearing Stress of S(44) 51 ASTM A-36
.9sy Trunnion Bolt on
/4.0 ) 4 0.
63000 Through ilole in Bonnet Shear Tear Out of S(45) 53 ASTM A-36 Sm Trunnion Bolt Ileads 5 776 126cc Through Bonnet Combined Stress in S(46) 53 SAC GR.2
.9sy 3
Trunnion Bolt 67913 25200 too t
Shear Tear out of S(51) 53 ASTit A-36
(. 6 ) (. 9 ) Sy j
Opera tor Bol t Ilead 37800 Thru Bonnet e
fs t
t
)
STRESS LEVELb-<DR VALVE COf1PONENTfi TABDe 1 v
ALLOWABL1 CODE REF.
REF.
STRESS STRESS LEVE C O M P O tl Eti T PARAGRAPli SYMBOL & NAME PAGE MATERIAL LEVEL, PSI PSI Operator Bearing Stress.on S(52) 53 ASTM A-36 Mounting Through IIoles in I1 D % I
.9Sy 63000 (Cont'd)
Bonnet A
Combined Stress in S(53) 53 SAE GR.2 Operator Bolts c/1 b4
.9Sy 25200 i
Combined Stress in' S(58) 55 ASTit A-36 9S Bonnet Body I!14 3o3 63000 Combined Shear S(63) 57
.6Sm Stresses in Bottom l *l.b 6 b 7200 4
Welds I
1 Combined Shear S(70) 57
.6Sn Stress in Top Bonnet 20SG7 7200 i
Weld l
Combined Stress in S(77) 58 ASTM A-36 2*3 40 Sm Trunnion Body 12600 c
O ta t
J 4
1 1
4 l
i j
TABLE 2 N1.UURAL FREQUENCIES OF VALVE COMPONENTS 1
]
l HATURAL NATURAL j
COMPONENT FREQUENCY REP.
FREQUENCY NAt1E SYMBOL PAGE MATERIAL (IIERTZ) l BODY P
63 AST'1 A-36
[-/7d.
N
].
1 l
I i
l 1
BANJO F" 2 '
b.1 64 ASTM A-276 j
Type 316 Condition A l
I I
t COVER CAP PN
'b 3
?
I l
l BONNET F
65 ASTM A-36 1 4 Q_
f N
4 4
1 i
I Na U
rd i
l r>
r.
i
DIMEMSIONT1,, DATA 1
Job Number: pg].g_q4.- Jjp Va1*/c Size:,,,j4" m f, g h
Operator flounting:,,DJ.,g g_q,7 Ope ra tor : fp p/gg ; 4 p igy f_3 m,
A C n.'7 F-4,_.
Bg,_,,51) *Lf F
33 g
d A
I "L ' A 8
'I15 b M'O m
9 x
A
. ; 73 C
e, 2,
F
,6 ccc y
y A
, A;3 Cf l, o F
,dece 2
A
,yg C
3,n G
hb 1 b 3
p b
A
, %n _
C
'50 G
4N ' A9-4 2
d A
SoE- --
3 t
11531 -
5 A
, qql C
149 9
-3 6
6 x
A
. A z a.
C A,ol g
,, _3 7
7 y
A
, %es_
C 5'OI 9
-4 g
8 z
A
.h D
g y
,y H
_.)_
y,_
O A
'S I
- d. ' -
d1' Q
10 A
,4cd D
I'CA N
b OI 75 --
yy 3
3-A
, 6 A 7g D
3,1f H
,p) A 12 4
4, A
.mc D
'W "9
-b t 3_
5
=-
B 3.3 8 d.C D
y 6
"6
^
B A,x7C D
o '75._ _
H
_ _ _ ]M'15___
y y
3 B
' So b-D
.M H
_,_8 3
g g,,
B
,qsl 9
N]p H
_% '. 5.f w D
4 n
B
" *11-10 -
I -
A'Y
'M-5 B
M--
11 II 6
2 0> 1b -
B N)A P
4<O 7
b 3
! OOI' 4 -
O
Dimensional Data (Cont. )
I 10 9 /, A L
,375.
R if.13l 4
ty 4
I iM Mf m
3, &
R 2,IA h~
5 3
I I7'Y##
"x
'2 71 Koo R
6 6
I 2 9 4., M M
hl %CC R
j,5 y
y I
I,13e M
D Sf-Go c P,
29, cig _
g g
J 1,1g fi-A 2 ) A a.o S
Acceo y
J 1, 2 l *b ) A Ao t
l'555 2
e J
I' 1 #
b
- EI#dO -
, 69 3
t J
1,25
{
13! M c AT A'O 4
2 J
NIA "a
l oo o T
l, o S
y J
A "1
6 1
'1 2
K NJA N
A T
'#37 y
2 3
K 2, ) A g N
A T
J.O 2
3 4
K 3 ' 4E E
75 T
NA 3
d-5 K
1 A.M P
'O 4
r 6
K IA' E
Ng T
1, a 5
s 7
K C 5 3 O
6 70 T
NMC6 /N435 6
Tl g
L 1o 0
1.50 T
,43g i
1 g
L I
O 6 So T
.l.c 2
2 io L
I'I b 0
l1, So T
1'N 3
3 i l-L l FF 0
), 9 3*/ 7 T
d' O 4
4 12 L
4*
5 b
1
' 8 S
L
- 1. 0 0
- 11. c o U
N 6
6 2
L Mle 0
3, WI U
C. M 7
7 3
L N/A r
g
- 4. 716.
U NI A 4
L
- 13. A A r
g i _2.W A A U
d S.
L 2 -
- b-6 30#
O 10
'i ?]
Dimensional Data ( Co n t. )
1 i
j V
if!!)
y l
V, NiA i
V D
3 V
0 #,
I' #
5 i
d'4 1 6
V 9 ~26A 3
7 i
V I 9 I I' 8
1 W
AM 1
4 W
I700 2
W 1000 3
1 W
19 C 1
4 i
i i
W 75 g
l 7
IW W
s-W M.<_
g i
X
1 0
1 Y
O Z
'l 0
Z l A D.
y Z
7 2.
9
~
l
{
2 C' 5 3
f Z,
e c. g_
. i Z
.~15,~][L y
1 Z
.M g
4 l
l
__.________,_____..-_...,.__.____,.,_..,..m.._,
. 1
t ANALYSIS INTRODUCTION Described in the following pages is the analysis used k
in verifying the structural adequacy of the main elements of the air purge butterfly valve.
The analysis is s tructured to comply with Paragraph NB-3550 of Section III of the ASttE Boiler and Pressure Vessel Code (hereafter referred to as the code).
In the analysis, the design rules for Class 1 valves are used.
Since the requirements for this class of O
(
j valve is much more explicit than for either Class 2 or 3 design rules.
The design rules for Class 2 and 3 are exceeded by the rules for Class 1 valves.
The air purge valve is designed in accordance with Code Case 1678 of the code.
Valve components are analyzed under the assumption that l
the valve is either at maximum fluid dynamic torque or seating against the maximum design pressure.
Analynis temperature is 300 F.
Seismic accelera tions are sinultaneous t-applied in each of three mutually perpendicular directions.
Seismic loads are made an integral part of the analysis by the inclusion of the acceleration constants g, g g.
x y,
g The symbols g x, g,
g represent accelerations in the x, y g
(
and z directions respectively.
These directions are defined with respect to the valve body centered coordinate sys tem as illustrated in Figure 1.
Speci fi ca lly, the x axis is along the pipe axis, the z axis is alnng the shaf t axis, and the y axis is mutually perpendicular to the x and : axes, forming a right hand triad wi th them.
3a I
-_7-
,-.r-r-
.~,
- ~
I Analysis Introduction 4
Valve orientation with respegt to gravity is taken s
j into account by adding the appropria te quantity to the i
\\
seismic loads.
The justification for doing this is that a gravitational load is completly equivalent to a lg seismic f
i j
load.
The analysis of each main element or sub-assembly of l
the butterfly valve is described sepa'ately in an r
i j
appropriately titled section.
In addition to containing sketches where appropriate, _each section contains an j
j explanation of the basis for each calculation.
Where i
l applicable, it also contains an interpretation of code requirements as they apply to the analysis.
)
a j
Figure 2 is a cross-section view of the butterfly valve, f
and its associated components.
Detailed sketches are l
i provided throughout the report to clearly define the i
geometry.
'{
1 l
l 4
a e
(
1 l
1 4
4
+
3L 1
- -. _ _ _., _ _ _,. _.., _ - _.. - _ _., ~ _ _ _ _ _ _ _,,. _ _ _ _, _ _ _ _,, _
VAnyg DODY E
D COGFDItame g,,
d O'
2 G23 4",. -
.k,ll
/
../
y ' C O
y
/
p i
s-
\\
O
'x h
O x
O
e
)
FIGURE 2 ESSENTIAL FEATURES l
OF BANJO ASSEMBLY 4;
O-I f'
i i
SHAFT RETAINER SLIPS INTO GROOVE AND IS BOLTED TO HUB BLOCK
?
i Il O
TOP STUB SHAFT 6
OPERATOR KEYWAY HUB BLOCK KEYWAY IS J
ON BCRE OF TOP HUB Q
Q BLOCK ONLY DETAIL OF SHAFT
~
GROOVE O
O 0
C o
LJl I
SHAFT RCTA!!!ER HUB
('
00LTS h SHAFT BLOCKS RETAINER 5 mI Im O
O
^
g DISC O
O
\\
O O
w y
BOTTOM STUB SHAFT x
33
~ - _ _ _ -. _. _ - __
FLANGE ANALYSIS l
The flange analysis is in accordance with appendix II, para. VA-56 of section VIII, division I of the ASME codes i
for pressure vessels and AWWA C-207 l
i 1
i i
4 i
i l
l I
1
\\
1 i
i
)
i O 4
i J
l i
i 1
l l
1
...-.--.----------n.~..
BODY At!ALYSIS i
The body analysis consists of ca1culations as detailed in Paragraph NB-3540 of Section III of the code.
Paragraph NB-3540 is not highly oriented to butterfly valves as related to various design and shape rules.
Therefore, certain of the design equations cannot be directly applied for butterfly valves.
Where interpretation unique to the calculation is necessary, it is explaihed in the sub-section contai. ting that i
calculation description.
Figure 3 illustrates the essential features of the body geometry through the trunnion area of the valve.
The symbols used to define specific dimensions are consistent with those used in the analysis and with the nomenclature used in the code.
1.
Minimum Body Wall Thickness Paragraph NB-3542 gives minimum body wall thickness requirements for standard pressure rated valves.
The actual minimum wall thickness in the purge valve occurs behind the seat retaining screws.
2.
Body Shane Rules The air purge valve meets the requirements of Paragraph NB-3544 of the code for body shape rules.
The external fillet at trunnion to body intersection must be greater than thirty percent of the minimum body wall thickness.
'O V
n
- - _. ~
3.
Prima ry ".cmh rane S tress Due to Internal Pressure 4
i Paragraph NB-354 5.1 defines the maximum allowable stress i n the neck to flow passage junction.
In a J
4 1
butterfly valve, this corresponds with the trunnion to body shell junction.
Figure 3 shows the geometry through this section.
1 The code defines the stresses in the crotch area i
using the pressure' area method.
The equation presented is found in paragraph NB-3545.1.
Pm = (Af/Am +.5) Ps 3
i Applying the code rules to the crotch region 4
i results in a membrane stress considerable less than if 4
applied to the region not containing the trunnion.
The trunnion increases the metal area (Am) which decreases the Af/Am ra tio and reduces the result.
For a section not containing the trunnion, the fluid area to metal l
area ratio (Af/Am) reduces to the body inside radius to the shell thickness (Rm/Hg) since the depths are the same.
The resulting membrane stress equation is then:
Pm = (Rm/Hg +.5) Ps 3
i This equa tior. results in the highest stressed area and complits with the intent of the code.
t l
4.
Secondary S tresses A.
Dody Prinary plus secondary stress due to internal pressure.
. $)
1
~
. _ =
PRESSURE AREA A::ALYSIS BODY CROSS-SECTION 2
FIGURE 3 l
q f
k 7L; M. M
\\
w
.~
N
\\ \\~--
- s.,
w ' -[k
\\
.g Rm s
N kNNx S.,
O
't S
fO 37
Body Analysis (Cont 1 Paragraph UB-3545.2 (a) of Section III of the code defines the formulas useil in > calculating this s tress.
4
'O
=C U+.5 P
p p
t s
e B.
Secondary stress due to pipe reaction - Para.
NB-3545.2 (b) gives the formulas for finding stress due to pipe reaction:
Ped = F S
= Direct or axial load effect d
Cd eb = C F S = Bending load effect P
3b Gb i
P
= 2F S = Torsional load effect et b
G t C.
Thermal secondary stress - Para. NB-354 5. 2 (c) of Section III of the code gives formulas for
$O
(,)
determining the thermal secondary stresses in the pipe.
OT*OT1 + 9T2 whera OT2 = C C AT2 62 D.
Primary plus secondary stresses - This calculation is per Para. NB-3545.2 and is the sum of the three previous secondary stresses:
S
=O
+ Ped + 20t2 '- 35, n
p 5.
Valve fatigue recuirements - Para. NB-3545. 3 of Section III of the code defines requirements for normal duty valve fatigue.
The allowable stress level is found from Figure I-9.0.
Since the number of cycles is unknown, a maximum value of 2000 is assumed.
The 18
Body Analysis (Cont.)
allowable stress can then be found from Figurc I-9.1 for carbon s teel.
This then gives an allowable s tress j
of 65000 psi.
S y = 2,'30
+P
- OT3 + 1.30T1 p
p eb I
S.2 =.40
+Peb + 20T3 p
where:
QT3 = C6 3.T2 e
I e
4 l
l 39 l
DISC ANALYSIS Section NB-3546.2 defines the design requirements of the valve disc.
Both primary bending and primary membrane stress are mentioned in this section.
For a flat plate such as the butterfly valve disc, membrane stress is not defined until the deflection of the disc reaches one-half the disc
~
thickness.
Since total deflection of the disc is much less than one-half the thickness, membrane stresses are not
)
appl' cable to the analysis.
i Figure 5 shows the disc for the air purge butterfly valve.
The disc is designed to provide a structurally sound pressure retaining component while providing the least inter-ference to the flow.
Primary Bending Stress Due to the manner in which the disc is supported, the disc experiences bending both along the shaf t axis and about the shaft axis.
The combined bending stress is maximized at the disc center where the maximum moment occurs.
The moment is a result of a uniform pressure load.
Combined bending stress in disc:
S (3) 2)
S (l)
(S (2)
A
=
O where S (2)
.90413 P R C
s 4 7
= Bending s tress due to icoment
=
along shaft avis, psi 7 4 3
S(3) =.6666 P R C
= Bending s tress due to moment 3 4 g
about shaf t axi s, psi 7 3 1
10
i
)
S!! AFT AMAI.YS IS
)
The shaf t is analyzed in accordance wi th para. N P-3 ~> 4 6. 3 of section III of the code.
The shaft loading is a combination of scicmic, pressure, and opera ting loads.
I J
Maximum torsional loading is either a combination of i
seating and bearing torque or bearing and dynamic torque.
Columnar stress is not considered in the shaft loading due i
to its negligible effe,ct on the stress levels.
Figure 2 shows the banjo assembly with the stub shaf ts.
Shaft stresses due to pressure, seismic, and operating loads:
(S (5) 2 + 4 S (6)') h S(4) = S (5) +
2 2
7 Where:
(S (7) 2 + S (8) 2) 33= combined bending i
S (5)
=
stress, PSI t
2 (n R P
+ w
- 9).25 B R
=
en ng e si k S(7)
=
4 s
2 x
y 5
stress due v 4
n.25 R Fressure & Mm 5
loads along x - axis, Pb!
Bending tensile s' tress due S(8)
.25 W2 9 B
R
=
=
y y
5 to seismic loads along
.25 x R4 y - a is, PSI 5
.~
2 (S (9) 2 + S (10)') 5 = combined shear s tress, DS1
~
S (6)
=
T rsional shear stress, PSI S (9)
=T E
=
8 5
.5n R 5 A
2-7 i
1.333
.5a R~P
+
.5 W.
(g
+a 1
= t i rce '
l S (10)
=
4 s
2 x
'v S t r o s.=
. R2 M!
t 3
I i
- 1. r i
DISC PIM ANALYSIS The valve assembly or cross-section drawing shows the two stub shaf ts and the disc pins.
The top disc pins are subjected to torsional load as they transmit the operating torque.
Combined Shear Stress in Top Disc Pin:
T
.5 U g
S S (20Al =
2 2N R
y 5*
12 Bearing Stress on Top Pins in Shaf t:
T
.5 U g
S S (20B1 = gg +.5 K ) 2K D U
5 2
2 12 1 Where D
= Disc Pin Diameter, in 12 P
= Actual Shut Off Pressure, psi.
g 785 (2R )
PUR U
=
4 4
g 35 E
U
=U4+W9*
35 S
2 m -
M $8W Gh m
ed 6
=
4 3 /.
F
'" ~
\\
J i
'l S'fAFT DEARIt;G AtlALYSI'S i
i t
The roller bearings in the trunnion are subjected to both i
seismic and pressure loads.
b
- P E 2+w (9 <"+9/
I 2
s 4
2
= Compressive load S(21)
=
2 l
on shaft bearing, I
lbs.
1 1
e O
i 2
[
14 i
e
1 THRUST BEARIMG AMALYSIS
^
As shown in figure 5, the thrust bearing assembly is located 4
in the bottom trunnion.
It provides restraint for the banjo in the z direction, assuring that the, disc edge 1
remains correctly posi tioned to maintain optimum sealing.
Formulas used to analize the assembly are given below.
]
1.
Bearing stress on thrust collar due to seismic load.
W 9
2 z
l S(22)
=
.785 (D
-D 4
10 2.
Shear stress in adjusting screw head due to seismic load.
2 9
~
z S (23)
=
7 D T
10 2
i a
3.
Combined stress in adjusting screw.
S(25)
(S (25) 2 + 4 S (26) 2) h S(24)
=
Where:
W2g z S(25)
= Direct tensile stress due to seismic
=
l load.
16 U 6 S(26)
= Torsional shear stress due to thrust
=
3 10 bearing seismic friction tor ~ue, j
U6 2 9 D
z 3
10 4
10' '
~
i 4.
Shear stress in adjusting screw threads due to seismic loads.
W 9
2 z
S(27)
=
,g
, D T
10 10 4r
FIGURE 5 ESSENTIAL FEATURES OF THRUST BEARING ASSEMBLY Valve Body Shaft i
Thrust *.'asher O
n
/
a j
v-A A
w
=
Z Z
"A Z
/~
A
$j;Z,' l '
- Z-f e
i e
A b
hh W
s
.l
$_i
,m 3,*'
i
', l'f 1
~
m
~
m Il Retainine Screw O-Bottom 1
1 b_
[]
Cover Botton Cover Bolts sh Smw l
Cover Cap as 47
,I l
1 5.
Combined stresc in retainer bolts due to seismic loads.
S (3d) 2) U S(29)
(S(29)2 + 4 S(28)
=
Where:
% 9.,
S(29)
' = Tensile stress due to seismic load.
=
6 A,3 A
U 6 S(30)
-6R A
= Shear stress due to seismic load.
=
7 12 6.
Shear tear out of thrust bearing retainer bolts.
2 Z
S(31)
=
6 n D 5
i i
1 i
r l
t l
1 O
i 9
i i
l l
t
1-BOTTOM COVilR ANALYSIS Figure 5 shows the bottom trunnion assembly, including the bottom cover and bottom cover bolts.
l.
Bottom Cover Bolt Stresses The bottom cover experiences loading from the weight l
of the banjo and from pressure loads.
In determining j
stress levels, the, bolts are assumed to share torsional j
and tensile loading equally.
j Shear tear out of bolts through tapped holes in trunnion:
W2g
+iP R
z s
6 l
S(33)
=
4L
( 2. 8 3) D 3
6 I
Shear tear out of bolt heads through bottom co /br, PSI.
W 9'+'P R
2 s
6 S(34)
=
4T (5.2) D y
6 Combined stress in bolts, PSI 3
8 (S (37) 2 + 4 S (36)')
S(35)
=
+
2 2
Where:
U S(36)
= Shear stress 3 4 ^4 in bolts due to
=
.707 torsional load.
2 I
Wo9
+ 3 P 2
s 6
S(37)
~
= Tensile stress in bolts
=
4A due to scismic and pressurc loads, PSI.
i 2.
Bottom Cover Stresses The combined stress in the bottom cover is calculated
.using the following formulas:
2 S(39)
S(40)
( (S (59) + S(40
+ 4 S ( 41) ')
S(38)
=
t
4 i
Where:
I 3 ( 785) (D4+.25)2 p
, g 9
8 2
S(39)
= Radial stress
=
4s T"4 h
4 +.25) 2 3 (. 785) (D "2 9 p
+
8 S(40)
= Tangential s tress
=
4n T m
4
{
4 +.25) 2
.785 (D p
,g 9
8 2
z 3(41) -
= Shear stress n (D4 +. 25) T 4 i
i l
l l
i l
l t
[
t l
I i
I i
. _ = = _ -
OPERATOR MOU;!TIf1C AtlALYSTS The operator mounting consists of the top trunnion, the bonnet, the operator housing and the bolt connections as shown in Fig.
1.
Bolt Stresses and Localized Stress Due to Bolt Loads.
The following as;.?mptions are used in the development of the equations:
A.
Torsional, direct shear, and direct tensile loads are shared equally by all bolts in the pattern.
i B.
Moments across the bolt pattern,are opposed in such a way tha t the load in each bolt is proportional to its distance from the neutral bending axis.
Shear tear out of trunnion bolt through tapped hole in top a.
trunnion.
F +W g
4g 2g 2
2 U IJ +II )
Il 3
4 y
y g
x 2
2 y(Jy + 112)
S(42)
=
-+
+
4 2J2 +2 (J +H )
2J7 + 2 (J 'H )
2 2
t 2
.9nL D
)
4 7 l
b.
Bearing stress on tapped holes in trunnien.
(M +T )
(F
+F
)
M4 (g
+g
)
g 8
x y
y 4(.70711 I 4
4 2
Db74 c.
Bearing stress on through hole in bonnet.
M +T (F
+F
)
W4 (g
+gy) g x
y x
" 4(.70711 I 4
4 2
DT76 0
1 3
I-
O ADAPTER FL ATE p
{
(L.A7
-(}
c)
Nx' s '9C di
~Nh v'
s x
'N N
'f
'Ts b l-R's
't
%"s,%
w
/
}%
g,\\
f ' - ( T<o,
'wG y
N
~ '
BONNE7~
(
{)
M TOP TRufiNION
~ '
VALVESCDY TRUNNION BOL T3 b
w
- - o, avu m a c'
'v ncess y
d.
Shear tear out of trunnion bolt heads through bonnet.
c-=
n P +W g My (J 2 2}
"v IU l+U2}
z 4 3 S(45)
=
+
+
4
+ 2 ( J.3 + 1!., ) 2 2J.'+2(J *l1,)"
~)
7
(
T 2J 2 1
t v)
~
5.2 0T76 e.
Combi.ned stress in trunnion bolts (Fig. 8) 7
')
1 4 ( S ( 4 9 )
- S ( 5 0 ) ) " )
- 4
- 8 0
( (S (4 7) +S (4 8) ) ' +
S(46)
=
+
2 2
- Where, F
W g*
S(47)
Direct tensile stress, psi
=
=
4 J
5 II (J +113)
T (J +H
)
Y Tensile stress due to S(48)
=
+
=
2J2 +2(J +H.3) 2J 42(J +H3)2 enended mass benMng 2
1 1
moment, psi (F* +F 2)h g,gg 2g 2)h Y
= Direct shear stress, psi S(49)
=
4A 6 M +T g
8 5(50)
=
(.707H2)406
\\,_./
f.
Shear tearout of operator bolt head through bonnet.
(M**My)V.
F
- j S(51)
=
2(V '+V2 +~#3 4
}
1 5.2 D T 87 g.
Bearing stress on through holes in bonnet.
(
)
ed M.,+T g S(52)
~
=
.5H 8T D 7
7 g h.
Combined stress in operator bolts (Fig. 10) b S(53)
=
- ~
2
/
\\
[
I 53
+
.s j
', > )*
E a
h
?
i 4.
)
j 112 f
i a'
e' a
3'.S J
(
l
,2 b
il.,
3.
v ~
4 u
^
a I
a J 1 97 I
h,,;
w
,s v
/
f.
TOP TRUNNION BOLT 1NG l
Figure 7 l
l I.*
I I.
p O
I 54 i
\\
c l'
l.
l i
- Where, F,
S(54) 4j Direct tencile s tress, psi.
=
=
Y Tensile stress due to bending i
S(55)
=
=
2 i
2(V1y2 +Y3 +Y4
^7
~
)
(
l (F* +F
)b Y
4
'S (5 6) 4A Direct shear stress, psi
=
=
I O
1 ti +T z
g S(57)
=
.5H 8A 7
8 BONNET STRESSES The bonnet stresses are calculated with the assumption that loading is through the bolt connections as previously defined.
i a.
The maximum combined stress in the bonnet was calculated 1
using the following formulas:
i S
- 9) f(60)
( (S (59 ) +S (6 0) )
+4'
+
S(58) 4
=
2
= Combined stress in bonnet legs.
- Where, I
F*+W g 4
S(59)
= Direct tensile stress, psi
=
B 5 I
==
==
MBx8+MB v9 S(60) 7 g
Tensile stress due to bending mcment, pst
=
=
1 2
y )b (F
+F
)
+W
=
4(g
+g x
y S(61)
Direct shear stress, psi
=
B 5 1
1 TC gO S(62)
Shear stress in bonnet body due to torsional i
=
=
g 0
load, psi 1
. O l
55 l
D
-, ~ - --
.-~.... - -., -
e -,,
n
,x Y
1
. o
\\
b H.
\\_
y k
)-
O aj v7 i
s
/
Af V6 y,
V V
V V
O cemexzes eat: eirreas Figure 8 O
2e
- Where, T
= Operating torque, in-lbs.
8 CO = Torsional cons tant for non-circular cross-section 4
KO = Function of cross-section, in b.
The maximum combined shear stress in the bonnet mounting plate to body welds was calculated using the following 9
formulas:
((S(641 2 + 4(S(65)) 2)h
(
S(63)
=
2
= Combined shear stress in bottom bonnet weld, psi
- Where, S(64) = S(66) + S (67) = Total tensile stress, psi F +W g 3
4g S(66)
U Direct tensile stress, psi
=
=
1
==
M*
M S(67) =g g
= Bending tensile stress, psi
+
3 S(65) = S (68) + S(69) = Total shear stress, psi
(
(F
+F
)
+W4(g
+g
)
Y S(68)
=
U
= Direct shear stress, p.si 1
M
+T S(69) 3
= Torsional shear stress, psi
=
'3 I II
+
S(70)
=
2 Combined shear stress in top
=
bonne t weld, psi
- Where, S(71) = S (73) + S(74) 57
14 F
= [2 S(73)
Direct tensile stress, psi
=
M M
S(74) =2+1 Bending tensile stress, psi
)
=
3 3
1 2
S(72) = S (75) + S(76) = Total shear stress, psi (F 2+F 2) 4
= Direct shear stress, psi S(75)
=
x M
+T S(76)
= Torsional shear stress, psi
=
"4 TRUNNION BODY STPIGS The trunnion body stresses are calculated using the following assumptions.
1.
Operator loading is through the bolt connections.
2.
There is an equal and opposite reaction to the b.olt loads at the body.
The combined stress in the trunnion body was calculated using the following formulas:
S (78) +S (79)
(S (78) +S (79) ) 2 4 (S ( 80 ) +S ( 81) ) 2 ) :j 4
S(77)
=
2 2
- Where, F
+ W 9*
z 4
=
D'. rect tensile stress, psi
=
~
K K
.785B 45 2
~
(M +F K6).5K (M 'F K
=
^
x 6).5K g
y 3
y 5
Bending tensile stress, pc.
Ss
)
=
3 3
4
.0833K
~"
~"3 54 2
4 5 2
64 64 58
,_____,_.,_.-_,m
.,,,-,m,
-,.,---my w,
--.w---
-+
l
\\
l i
(F 2+F 2 ) -
7 7
4(a '+g
')3
& W 1
x v
-x v
S(80) -
2 Direct shear stress, psi
=
KK.
5B 4 S 2
?
7 b I
(M +T ).5(K
'+K
},
g g
4 S
S(31)
Torsional shear stress, psi
=
=
3 + E "4 3
4
.0833(K K I~~U 45 5
2 32 4
0 I
i I
1 I
39
_,,,,n---
- - - - - - - - - - - - - - - - - - - - - - -, _ - + -, - - - - - - - - - - - - -,
TOP TRUNNIO*1 ASSEMBLY The top trunnion assembly consis ts of the top trunnion plate, the top trunnion, the welds and the body material immediately adjacent to the trunnion.
Fig. 10 illustrates the elements of the assembly.
1.
Combined shear stress in the top trunnion plate welds is a maxi-mum due to seismic and torsional loads.
(S (78)
+ S(79) )b S(77)
=
- Where, 4(k*" +p=2)h F*
Y S(78)
=
7+
= Shear stress due to operator
.707 (.5) nD nD L
eccentricity yy yy yy
("*+TO
(
11+
11
= Torsional shear due to operator O
S(79)
=
J 3 (1. 41) nLyy(D y+2Tyy)3 eccentricity and operator torque
\\
2.
Combined stress in base of trunnion body due to combined bendina, torsion and seismic loads.
(S 81) +S ( 8 2 )
(S (81) +S (82) ) 2 + 4 (S (33) +S (84) ) 2)
S(80)
=
- Where, F +N a
~2 S(81)
= Direct tensile stress, psi.
=
/
.25n(D 2_g y1 2
32((k[+FK)
+ (
+FK} }
=
- 6 x6 11 y
S(82) 4 4
n(D
-B I
y1 2
O
= Bending tensile stress, psi 60
FIGURE 9 TOP TRUNION ASSEMBLY Trudon Plate a
Dg B
T a
yy 2
r
(
12 Trunion Plate
\\A Bearing
_\\
E Trunion 6
b
'%.)
Trunion Base Weld
"fMMMMHHM
'/M####M Body She.ll D
O 61
l
\\
Top Trunnion Assembly Cont'd (g"2,g '2) b (F
+F
)2 +g Y
S(83)
= Direct shear s tress, psi
=
2 2)
.25n(D
-B g
2 16 (f1 +T ) D 7
g yy i
S(84) 4 4
= Torsional shear stress, psi
=
j x(D
-B2}
yy i
3.
Combined shear stress in' top trunnion to shell weld is a maxi-
{
mum due to seismic and torsional loads.
(S(86)
+ S(87) )3 S(85)
=
- Where, 6} 2 +
x 6}2'h
==
4((M
+FK (M
+IK g
y S(86)
=
+
. 70 7 (. 5 ) :r D 11 11 yy I
= Shear stress due to operator eccentricit*>
4 (M +T ) (3Dyy+2Tyy)
Torsional shear due to operat':
g 8
S(87)
= eccentricity and operating
=
3 (1. 41) nLyy(Dg+2Tg)3 torque
{
O 62
\\
j FREQUENCY ANALYSIS A.
Introduction s
To calculate the natural frequency of the various components of the Triton NXL valve, a model sys tem with a single degree of freedom is constructed.
The i
individual components and groups of components are modeled and analyted as restoring spring forces which act to oppose the respective weight forces they are subjected to.
The static deflection of the component is calculated and is related to natural frequency as:
1 K
F
=
E%M or 1
a F
=
2n ; ay O
or F
= 9.8 ay The analysis details the equations and assumptions t.
used in determining the natural frequencies listed in the summary table.
Sketches are provided where appropriate.
B.
Valve Body Assembly The body shell, as seen in Figure 1, is assumed to experience loading due to the entire valve weight.
Natural Frequency of the body shell:
]
FN1 "
9'
^Y1 s
63
Frequency Analysin Where 3
ay1 = W L71
= Maximum deflection of body shell due to valve weight, inches.
48 E I 5 C.
Banjo Assembly Figure 2 shows the banjo assembly in the body.
The
~
natural frequency of the banjo assembly is calculated using the following:
FN2
- 9 " O oy2 Where ay2
- w E7l
= Maximum deflection of shaft, inches 12 E I 6
D.
Cover Cao Assembly As seen in Figure 6, the cover cap supports the banjo.
\\
The natural frequency of the cover cap is calculated as follows:
b FN3 = 9.8 (aY3 Where 2
ay3 = 3(m _y) g
(.5D +.125)
= Maximum deflection at 2
4
- **' C 9 3
16nE T m'
4 E.
Bonnet Assembly, Figure 7 shows the top trunnion assembly.
The follow-ing asseumptions are made in calculating the bonnet natural frequency:
64
_ _.. -. _. -.. ~..
f Frequency Analysis i
)
- 1. The worst valve assembly mounting position is where i
t the bending moment is predominant in producing I
deflection.
i
- 2. The bonnet is assumed fi:<ed a t the top trunnion.
l t
- 3. The adapter plate is assumed to be integral with and have a cross-section the same as the component it mounts to.
1 i
i O Natural. frequency of bonnet:
9.8,
F N4 = AY i
4 i
i Where f
Ay4 = W H38+4 3 3og
+
E H j
3EI 2EI 1
1 i
I j e t
i i
t I
i l
I t
I g
65 I
. I l
i i
l l
l l
1 l
I ATTACHMENT 3 l
SUPPLEMENTAL TORQUE CALCULATIONS J
l l
t
..---------..w--,rw-
_------,-m--
- * - - - - - - ' - - - - - - * ~ ' - - - ' ' ~
..-~..._.
i i
i ATTACIIMENT 3 i
?
The following pages illustrate the combined effects of disc blockage and delay time on dynamic torque.
In each case, the delay time is fixed at that which produced the k
worst case torque for the full open, unblocked condition.
)
The initial disc angle is reduced by blocking to illustrate the resultants of several different initial angles of opening.
]
j l
i i
s 4
I i
i l@
I
_.._,._,....___,.___.-..._..,__,....,..._.,___...,m__.
n O
b f
D-27256-1 TOROUE TAFLE 1
9 / 11 / 81 JOB: FLOR.PWP:TUPVEY-PT P2-VAPIAELE SISE ADJUSTED (PEYNLDS NO.FNCTN!)
SAT. STEAM / AIP fi!XTUFE MITH 1.4 LES STEAM PEP 1-LBS AIP SPEC.GP.=.738255 MOL.WT.= 21.3872 K AP A (I S EfiT. EXP. ) = 1.19775 P= 72.1972 GAS CurtITArtT-CALC.
SOfilC SPEED (MOVING MIXTR.) = 1371.29 FEET /!EC AT 283 DEG.
CRIT. CASE IrfLET VELOCITY IS 1.5676 TIMES HIGHER AS AIR CRIT. CASE INLET V1-CF 5 j
INCH MODEL MAX. TOROUE IS AT THE CRITICAL PPESS. PATIO (.585-(5 IN)MODEL OR APPX
.696352
( 53.25 ItD MITH STMIX.)FIRST SutlIC(G 72 DEG.V. A.)
~
ABSOL. MAX. TOPOUE < FIPST SOff!C) AT 72-68 DG.VLV. AriG. = 70174 IN-LBS S 0 DEG.
MAX. TOROUE IrtCLUDES SISE EFFECT(REYNOLDS NO.ETC) APPX. X 1.22629 FOR 53.25 INCH EASIC LINE I.D.
ALL PRESSUPES USED: STATIC (TAP) PRESS.-ABIOLUTEiP2 INCL. RECOVERY PRESS.
(TORQUE) CALC'S VALIDITY:P1/P2> 1. 07; e
VALVE TYPE:
54"-R1A!3/7.5 CLASS 75 DISC SISE:
53.062 INCHES SYMMETRICAL DISC SHAFT DIA.:
4.375 INCHES ERG. COEF. OF FRCTri.:
5.00000E-03 rg SEATIrlG FACTOP:
15
/-
INLET PRESS.VAP. MAX.: 49.9846 PSIR
\\
OUTLET PPESSURE(P6):
34.13 PSIA (72 DEG. ACTUAL PPE!!.ONLY(VAR.))
MAX.AriG. FLOW PATE:
110150.
CFMi 218647.
SCFMI 12019.6 LB/MIti CRIT.!OrilC FLOW-90DG: 59572.
LE/ MIN AT 25.7975 INLET PSIA VALVE IriLET DENSITY:
.10912 LB/FT^3-MIN..130799 LE/FT^3-MAX.
FULL OPEri DELTA P:
13.4968 PSI SYSTEM COriDITIONS:
PIPE-IN-PIPE-OUT -AND-AIR / STEAM MIXTURE SERVICE S 283 DEG.F MIt11 MUM 0.75 DIAM. PIPE DOWi1 STREAM F50M CEtiT.LINE SHAFT.
P1 ABS. PPESSUPE' ADJ.)FOLLOWS TIME /PFESS.TPANSIEt1T CURVE.
AESOLUTE MAX.TOFQUE IS DEPEriDENT Ott DELAY TIME Arid 3.43 TO 2.15-TH POWEP I
OF (P1/P2)IN UCRST PANGE X LIriEAP COff! TANT X DWri!TP.PPESS.
P6-AES.(75-60DEG.;
IN SUESOrlIC PAfiGE LIMITS-ONLYi!EE FDFMULATIOfiS.-FEP TESTS H.PRATT THIS TQ. AT 72 DEG.SYMM. DISC (68= OFFSET THAFT) CT=T/D^3/P2 (ABS)
--5 Itl.MODEL EQUIV. VALUES------ACTUAL SISE VALUES-----
ANGLE P1 P2 DELP PRESS.
FLOW FLOM TD TB+TH TIMEiLOCA)
APFPX. PSIA PSIA PSI FATIO (SCFM)
(LB' MIN)
ItiCHLBS---- TD-TB-TH SEC.
30 41.70 22.35 19.35
.536 218646 12019 40667 1847 38820 3.00 25 43.99 14.87 29.12
.338 152176 8265 41416 2046 39369 3.35 20 45.36 14.78 30.58
.326 95700 5260 29366 2132 27233 3.65 15 45.84 14.72
'31.13
.321
'52410 2881 12904 2185 10718 3.75 10 46.52 14.71 31.81
.316 26181 1439 9150 2288 6862 3.85 l 5 48.23 14.70 33.52
.305 3562 470 5434 2396 3037 4.12 0 49.98 14.70 35.28
.294 0
0 44886 2353 41533 4.50 l H
SEATING + BEAPING + BUB EAL TCP0UE (M-M) =
47240 IN-LE~ S 0 DEG.
MAX.DYri. - EEARIt1G - HUB SEAL TOPOUE (M/M) =
41416 Irt-LE!_S 25 DEG. _
4 e
Ne e
9 u
-m-
- y., - - - - -,,, - - -. -
, - - ~
~-
1
SUMMARY
TCPOUE TABLE-VALVE ELCCEED TO: 35 DEG.
b MAX.ANG.FLCW PATE:
136622.
CFMI 27119?.
SCFM: 14908.2 LB MIN OE.TTING + BEAPING + HUB CEAL TCFOUE
'M M)=
47298 IN-LEO G 0 DEG.
MAX.DYN. - EEARING - HUB CEAL TCPQUE (M/M) =
75262 IN-LB0 3 35 DEG.
AT 3 CEC. DELAY TIME TO 4.75 CLOSED VLV. (LOCA) TIME < 41.7 TO 51.191 PSIA UPOTR.PPE03.)
REYNLDS NO. FACTOD (MULTIPL. ) = 1.34657 TOTAL TORQ. INCFEASE-FACTCR (.TO MODEL BASIS)-F(RE). (P6 P2) +)9= 1. 48508
' (-'
w OUMMARY TOPQUE TAELE-VALVE ELOCKED TO: 40 DEG.
's MAX.ANG.FLCW PATE:
198618.
CFMi 394255.
TCFMi 21673.3 LB/ MIN OEATING + EEAPING + HUE OEAL TOROUE (M/M) =
47352 IN-LB0 7 0 DEG.
MAX.DYN. - EEARING - HUB OEAL TCPQUE (M/M) =
134174 IN-LBO G 35 DEG.
AT 3 OEC. DELAY TIME TD 5 CLDOED VLV. (LOCA) TIME ( 41.7 TO 52.3009 PSIA UPSTR.PRESO.)
REYNLDO NO. FACTCR (MULTIPL. ) = 1.33691 TOTAL TCRO. INCPERSE-FACTOR (TD MODEL EASIS)-F (PE).(P6 P2).J9= 1.47434 s.s%
SUMMARY
TCPQUE TAELE-VALVE ELCCKED TU: 45 DEG.
MAX.ANG. FLOW PATE:
277186.
CFMi 550210.
OCFMi 30,246.6 LE/ MIN SEATING + EEAPING + HUE SEAL TCPOUE (M/M) =
47395 IN-LES >
0 DEG.
MAX.DYN. - EEARING - HUB CEAL TURQUE (M M) =,189173 IN-LBO 9 40 DEG.
AT 3 SEC. DELAY TIME TO 5.25 CLOCED VLV. (LOCA> TIME ( 41.7 TO 53.
PSIA
}
UPOTR.PFESS.)
REYNLDS ND. FACTOP (MULT IPL. ) = 1.31068 y
TOTAL TOPO. INCFEASE-FACTOR (TO MODEL EACIS)-F(PE).(P6/P2).J9= 1.44 335
.............++...............+....
SUMMARY
TCPQUE TAELE-VALVE ELCCKED T0: 50 DEG.
6 MAX.ANG.FLDU RATE:
270127.
CFMi 536199.
SCFMi 29476.3 LB/ MIN SEATING + EEAPING + HUB OEAL TCPOUE
- N M) =
47439 IN-LEO S 0 DEG.
257751 IN-LBO P 45 DEG.
_ MAX.DYN. - BEAPING - HUB OEAL TOROUE (M M)
=
AT 3 CEC. DELAY TIME TO 5.5 CLOSED VLV. (LOCA) TIME ( 41.7 TO 54.0939 POIA UP.STR.PPESS.)
FEYNLDO NO.FACTCP (MULTIFL. ) = 1.27509 TOTAL TCPO. INCFEAIE-FACTCP (TO MODEL EAS IO)-F (PE) +(P6/P2? +)?= 1. 40416 9
6 l
m
)
SUMMARY
TCFOUE TAELE-VALVE ELOCKED TO: 55 DEG.
MAX.ANG. FLOW PATE:
333144 CFMI 661287.
SCFMi 36352.7 LE/ MIN SEATIffG + EEAPIflG + HUE SEAL TOROUE (M M)=
47481 IN-LES &
0 DEG.
MAX. DYtt. - EEARItiG - HUB SEAL TCPOUE (M/M> =
292362 IN-LIS 9 50 DEG.
AT 3 SEC. DELAY TIME TD 5.75 CLOSED VLV. (LOCA) TIME ( 41.7 TO 54.9701 P
SI A UPSTR. PRESS.)
FEYNLDS fiO. FACTOR <MULTIFL.)= 1.27452 TOTAL TCPO. ItiCFEASE-FACTCR (TO MODEL EASIS)-F(FE).*P6/P2) +J9= 1.40353 i,
+...++.........+.............++++..+
%l
SUMMARY
TCPOUE TABLE-VALVE ELOCKED TD: 60 DEG.
1 MAX.ANG. FLOW FATE:
401607.
CFM; 797185.
SCFMi 43823.4 LB/ MIN SEATIflG + EEAPING + HUE SEAL TUROUE ( M/ M) =
47522 IN-LES ?
0 DEG.
MAX. DYti. - EEARING - HUE SEAL TORQUE (M/M) =
402742 IN-LES 3 55 DEG.
AT 3 SEC. DELAY TIME TD 6 CLUSED VLY.(LOCA) TIME ( 41.7 TO 55.8265 PSIA 4
UPSTR.PFESS.)
REYNLDS NC.FACTCR (MULTIPL.) = 1.25547 TDTAL TCFQ. INCREASE-FACTCR (TD MODEL EASIS)-F (PE).(P6/P2)+J9= 1.38255
(~'
x
SUMMARY
TORQUE TAELE-VALVE ELDCKED TO: 65 DEG.
MAX.ANG. FLOW RATE:
478813.
CFMi 950436.
SCFMi 52248.1 LB/ MIN SEATING + EEAPING + HUB SEAL TCROUE (M/M) =
47563 IN-LES 3 0 DEG.
MAX.DYN. - EEARING - HUE SEAL TORGUE (MeM> =
$20710 Itt-LES & 65 DEG.
AT 3 SEC. DELAY TIME 70 6.25 CLDSED VLV. (LOCA) TIME ( 41.7 TO 56.6602 F
I SIA UPSTR.PPESS.)
REYt!LDS fiD.FACTEF (MULTIFL.> = 1.22865 TUTAL TDFQ. INCFEASE-FACTCP (TD MCDEL BASIS)-F(FE) *(P6/P2) *J9= 1.353 02
~
SUMMARY
TCRQUE TAELE-VALVE ELDCkED TO: 70 DEG.
e' MAX.ANG. FLOW PATE:
543479.
CFMI 1078798 SCFMi 59304.5 LB/ MIN SERTING + EEAPING + HUB IEAL TCPCUE (M M) =
47602 IN-LES & 0 DEG.
MAX.DYN. - EEAPING - HUB SEAL TCFCUE (MeM) 569863 Itt-LIO J 65 DEG.
=
AT 3 SEC. DELAY TIME TD 6.5 CLOSED VLV.(LOCA) TIME ( 41.7 TO 57.4675 PSIA UPSTF.FFESS.)
O PEYNLD t*D. FACTCP MULTIPL. ) = 1.2222
(~. /
TOTAL TCFO. IrfCF EAS E-FACTCF ' TD MCLEL E AS IS)-F
- FE). F6/P2) +J9= 1.347 02 woo e
9 e
4 9
e
s I
6 J
~
.47
++++....+.........+........+.+....+
SUMMARY
TURQUE TABLE-VALVE ELDCKED TO: 75 DEG.
~
MAX.ANG.FL'OM FATE:
624134.
CFM; 1238898 SCFM3 68105.6 LB/MIM SEATING + EEAPING + HUE OEAL TOPOUE (M/M)=
47639 IN-L30 4 0 DEG.
MAX.DYN.
EEARING - HUE IEAL TORQUE (M/M) =
626775 IN-LES S 70 DEG.
N-AT 3 OEC. DELAY TIME TD 6.75 CLOSED VLV.<tDCA) TIME ( 41.7 TO 58.2428 F
SIA UPOTR. PRE 00.)
REYNLDS NO. FACTCP (MULTIPL. ) = 1.21205 TOTAL TCPQ. INCREASE-FACTOR (TD MODEL EASIS)-F(RE) +(P6<P2) +J9= 1.33475
++++++++++...+...+++................
SUMMARY
TORQUE TAELE-VALVE ELOCKED TO: 80 DEG.
MAX.ANG.FL0u PATE:
654166.
CFMi 1298550 SCFM; 71384.9 LP/ MIN Ik,,)\\
SEATING + EEARING + HUB OEAL TCPOUE (M'M)=
47675 IN-LES @
0 DEG.
MAX.DYN. - EEARING - HUE CEAc TOROUE (M/M>
654312 IN-LEO & 70 DEG.
=
RT 3 SEC. DELAY TIME TD 7 CLDOED VLV.(LOCA> TIME ( 41.7 TD 58.9771 PSIA UPSTR.PPE00.)
REYNLD 5 NO. FACTOR (MULTIFL. ) = 1.20805
-TDTAL TORQ. INCREACE-FACTCR(TD MODEL BAOIS)-F(RE) +(P6 P2) +J9= 1.33034
++++++++++++++++......++a..+.++++++
I
SUMMARY
TCROUE TAELE-VALVE ELOCKED TO: 85 DEG.
N MAX.ANG.FLOM FATE:
691429.
CFMI 1372477 SCFM: 75448.9 LE/ MIN 0 EATING + EEAPIMG + HUE CEAL TCPOUE (M/M) =
47707 IN-LSS S 0 DEG.
MAX.DYN. - EEAPING - HUB CEAL TOPOUE (M/M) 675698 IN-LEO S 70 DEG.
=
AT 3 OEC. DELAY TIME TD 7.25 CLDOEI VLV.(LCCA) TIME ( 41.7 TO 59.6528 P
OIA UPOTR.PPECS.)
s' REYNLDS NO. FACTCP (MULTIPL. ) = 1.20502 TOTAL TUPO. INCPEACE-FACTCP (TD MODEL EASIO)-F(PE) + (P6/P2) +J9= 1. 327 g
N-6 h
"M' unumG sem
,g
.g 4,,
e
.g 9
e g
-~
l l
t
(
i i
i O
l ATTACHMENT 4 GENERAL ARRANGEMENT O
AND CROSS-SECTION DRAWINGS l
i 1
O O
\\
j