ML20065R359

From kanterella
Jump to navigation Jump to search
Forwards Caterpillar 940210 Memo Addressing Issues Re Emission Limits in Permit Issued on 931020 Which Differ from Limits Requested in 930830 Application for Permit to Install Emergency Standby diesel-powered Generator at Plant
ML20065R359
Person / Time
Site: North Anna  Dominion icon.png
Issue date: 05/02/1994
From: Hadder A
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To: Clayton G
VIRGINIA, COMMONWEALTH OF
References
NUDOCS 9405110095
Download: ML20065R359 (14)


Text

_ _ _.

innsbrooh 7ishnical (" enter 9000 I)omsnron th>ules arol

, 9 (elen Allen nrgenta J (Hran May 2, 1994 Vitt0lNIA POWER a

Mr. Gregory L.

Clayton Virginia Department of Environmental Quality 300 Central Road, Suite B Fredericksburg, Virginia 22401

Dear Mr. Clayton:

On August 30, 1993 Virginia Power applied for a permit to install an emergency standby diesel-powered generator at the North Anna Nuclear Power Station (registration number 40726).

The permit was issued on October 20, 1993.

Subsequently, Jim Cassada of Virginia Power and Terry Darden of DEQ had several telephone conversations during which they discussed certain emission limits in the permit which differ from those requested in our application.

Mr. Darden was very helpful and cooperative, and expressed a willingness to reconsider the emission limits.if Virginia Power could provide justification for the use of test data provided by the manufacturer (Caterpillar) rather than generic emission

factors, and justification for the safety factors Caterpillar added to the emission data to establish guarantee values.

Attached. is a Caterpillar memorandum which addresses those issues.

The differences between the emission limits requested in ' the application (which are the values guaranteed by caterpillar) and those contained in the permit are as follows.

The short-term emission limit for NO, (114.4 lb/hr) is lower than that guaranteed by Caterpillar (157.2 lb/hr).

The short-term and annual emission limits for TOC (3.3 lb/hr and 1.2 TPY at 700 hr/yr operation) are lower than those guaranteed (6.7 lb/hr and 1.68 TPY at 500 hr/yr operation, or 2.35 TPY at 700 hr/yr operation).

e The SO emission limits in the permit appear to be exactly 2

half the values requested in the application.

We believe the values in the application are correct, based on the heat input capacity and fuel sulfur content numbers given in the permit.

In. addition, the short-term emission limit for PM (1.8 lb/hr) is g

less than that originally guaranteed by Caterpillar (1.9 lb/hr) based on a 50% factor added to the nominal test data to account for variability in the engines and the tests. However, Caterpillar has subsequently re-examined the factor and determined that a factor of 40% is adequate.

Therefore, we are not requesting that the emission limit for PM be revised.

g 9405110095 940502 fDR ADOCK 0500o33g

}

e PDR

We believe the attached Caterpillar document will answer your questions about the basis of Caterpillar's emission rate data.

If additional technical information is required, please' contact Jim Cassada at (804) 273-3010.

Thank you for your assistance.

Very truly yours, b

l A. W. Hadder Manager Air Quality I

cc:

..U.S."1 Nuclear Regulatory-Commission >

Attn: Document Control Desk Washington, D.C.

20555 Re: North Anna Power Station Units 1 and 2 l

Docket Nos. 50-338 and 50-339 License Nos. !!PF-4 and NPF-7 l

l NRC Senior Resident Inspector l

North Anna Power Station l

[

i i

CRERPILLAR*

' " " " "i" *""* " d "'"

1 i

I noi o, -

o.,o s..

au..u..

February 10,1994 i

m.

i i

i i

e t t u.

Large Engine Center i

l 3600 Project Services l

l e...

o.. u.y r u. o.s u io..i a u.. u..

D E Davis j

S@RCT CATERPILLAR 3612 EMISSIONS DATA l

The emission values provided are primarily based on laboratory measurements on similar 3600 engines. The lab measurements were made on development engines located at the Caterpillar Technical Center in Mossville, Illinois. These engines are equipped with production hardware in the areas ofimportance for emissions (injector nozzles, turbochargers, heads, valves, cams, etc.). The data from lab engines are supplemented with data from the Geld.

The 3600 is a modular engine. It uses separate cylinder heads and unit injectors so the combustion chamber is identical for 6,8,12 and 16 cylinder configurations The 6 and 12 l

cylinder engines share turbochargers (one on the 6 and two on the 12) as do the 3 and 16 cylinder engines. The turbochargers used on the 6 and 12 are smaller than the 8 and 16 but the turbochargers are matched so that the intake manifold pressure is similar. The tion per cylinder and the air-fuel ratio are therefore similar TEST METHODS FOR GASEOUS EMISSIONS NOx - a chemiluminescent analyzer with nitrogen dioxide convener is used which is consistent with EPA Method 7E-Hydrocarbons (gaseous organic compounds) a flame ionization analyzer is used which is i

consistent with EPA Method 25 A.

CO - A non dispersive infrared analyzer (NDIR)is used which is consistent with EPA Method 10.

Exhaust flow -inlet air flow and fuel now are measured. Exhaust Dow is the sum of the air and fuel Dows.

1 Quality controlis consistent with EPA requirements for on highway truck engines Additional quality controlincludes a carbon balance of fuelinlet carbon vs. the measured exhaust carbon (CO, HC, CO2) to check the measunng systems j

i TEST METHOD FOR PARTICUL ATES Caterpillar has developed a special measur:ng system for particulate emissions called the Steady State Particulate System (SSPS) The Steady State Particulate System was 01-089620 00 PC

l designed to measure diesel particulate in a manner compatible with EPA.\\tethod 5 wtthout back-half wash Diesel particulate are very small(about 0 3 micron) and do not exhibit significant inertia effects so isokinetic sampling is not necessary (EPA method for truck l

diesel engines do not use isokinetic sampling). SSPS samples similar to method 5 in that l

the exhaust sample is pulled through a filter held at 120 deg C and the filter is weighed before and aller sampling. SSPS was found to correlate with Method 5 in lab tests (field j

experience will be covered later)

DATA USED FOR EMISSION VALUES PROVIDED The emission values provided for the 3612 are based on tests on a 3606 conducted March 21,1990 at the Caterpillar Technical Center. These tests are covered in an internal Caterpillar report,3606 High Speed Emissions Correlation with 3608 by DA Spurgeon The 3612 is essentially two 6 cylinder engines sharing a crankshaft so the data is applicable to both engines The test data are given on Sheets A and B. Caterpillar has computerized l

test cells which store the data electronically. The data on Sheets A and B are modified slightly for injection timing (21 to 215 degrees) based on data taken from other engines Plotted data are shown on Sheet C.

Emissions units are usually reduced to grams / brake horsepower hour (g/ bhp-hr) since this has been the historic unit chosen by EPA for regulating engines and allows comparing engines of various power (brake power i

is the power from the output shaft of the engine)

The published emission data sheet is given on Sheet D The emission values for this sheet are chosen conservatively.

COMPARISON OF L AB RESULTS TO FIELD D ATA Caterpillar is not normally provided with emission test data from the field unless there is some problem. The following is the field data we have on the 3600 Almega Corp. of Bensenville. Illinois measured nitrogen oxide emissions on a 3608 generator set engine located at the Caterpillar plant in Pontiac, Illinois on Oct. 9,1987 using EPA Method 7 (grab sample colorimetric method). The 3 runs were 46.4,38 8, anJ 51.2 lb/hr for an average of 45.5 lb/hr (7 38 g/ bhp-br)(see Sheet E) Caterpillar had run the same set-up at the Technical center on April 6,1987 giving 51.2 lb/hr (8 26 g/ bhp-br >

(see Sheet F-printer problems did not allow printing of full sheet).

Environmental Technologies International of Honolulu, Hawaii tested eight 3616 engine >

on the island of Guam for particulates (Method 5) and nitrogen oxides (Method 7E)

The measured values are given on Sheet G The NOx ranged from 6 34 to 7 37 for an average of 7.02 g/ bhp-hr compared to a nominal value of 7 20 g/ bhp-br prosided from W testing. The particulates included a very high emission measurement for Old GMH t ' nit :

which was reduced to a value consistent with the others on a repeat test. It is likely the high values was due to accumulated soot or rust blown out the stack during this initial running. Soot can accumulate in stacks during light load running and are then blown out when operated at full load. The average excluding the high value is 0 217 g/ bhp-br compared to a nominal of 0.32 g, bhp-br based on lab measurements with the Caterpillar Steady State Sampling System Measurements on a 3616 at Algona. lowa on August 4,1993 gave higher than expected particulate emissions. An emission rate of 0 307 g, bhp-br was measured using Method -

(front half) compared to a nominallab u!ue ef 012 gibhp hr Repeat measurements at made on October 15,1993 by Almega Corp which gave a value of 0 078 g/thp hr TN

early high values are believed to be due to scale and/or accumulated soot blowing out the stack. During engine warm up,large particles (about I mm) accumulated on surfaces near the stack. Diesels do not produce particles of this size.

Caterpillar measured particulates at the Algona site with the Steady State Paniculate System in parallel with the Method 5 measurements The SSPS gave 0 075 g/ bhp-br s s 0.078 for Method 5.

t These tests confirm that the emission values prosided from the laboratory engines are valid for actual engines in operation.

v

^

VARIABILITY Emission measurements are inherently variable. This variability must be accounted for when providing "not-to-exceed" values for emission permits.

Our standard tolerances are:

NOx 15 %

CO 30 %

.HC 30%

Paniculates ' 40%

l These tolerances are less than what were sent on August 4,1993 (20% NOx,35% HC &

CO, and 50% particulates). The higher tolerances had been revised down in early 1993 but there was a miscommunication internally.

The tolerances are based on Caterpillar experience on truck engines that must meet l

not-to-exceed emission standards, field measurements, and literature information l

Flow Tolerance Exhaust flow measurement error directly effects the emission rate. Measuring the exhaust flow with EPA Method 2 is prone to errors. For instance, at the high stack velocity common with diesels (30 m/s), the flow measurement is very sensitive to Type S pitot I

probe orientation. A 10 degree error can give about 10% velocity error The probable tolerance for exhaust flow is estimated at 3-5% at best.

i NOx Tolerance The data from the 3616 engines at Guam give a coetlicient of variation of 5.2 % of the mean NOx value. The coefficient of variation (COV) is the standard deviation divided by L

the mean value. The Guam data was taken with a chemiluminescent analyzer (EPA Method 7E). This COV is consistent with truck engine emission variability (chemiluminescent analyzers are used) l NOx measurements at the Caterpillar Pontiac plant with the grab sample /phenoldisulfone acid /colorimeteric procedure (EPA method 7) give a coefficient of variation of 59% ba>ea on the three measurements of 46.4. 38 S. and 5121b/hr. Method 7 uses an average of:he 3 samples so the COV would be reduced, but only to about 30%. Diesel engines produce l

very stabfe NOx concentrations at steady load, the variation must be attributed primarth -

the measuring system.

The emission values with tolerances are intended to be "not to-be exceeded" For a normal distribution,97.7% of the samples uould be less than the average - 2 standard l-

_. _ _ =

4 deviations Based on the use of EPA Method 7E (chemilumirescent) with its lower l

variability and the flow error probability, a tolerance of 15% was selected for NOx-This would be low for EPA Method.7 (grab sample).

Particulate Tolerance 1

The literature reports very high variations with Method 5. Licata and Egdall in The

- Precision of Source Emission Measurement Methods report coetficients of variations of up to 40% for particulate concentrations about 10 times what are found with diesels (see Sheet H); The Method 5 procedure has many potential sources of error er contamination and is very dependent on the skill of the operators The particulate measurements at Guam give a 106% coefficient of variation if the asterisked point is included (see Sheet G). It is obvious that this is not a normal c

distribution if this point is included. We believe the high value is due to accumulated-materialin the stack. Excluding this point reduces the COV to 7.3%.

Truck engine tests give coefficient of variations of 5-14%.

Considering the high tolerances reported by some and including tolerance for exhaust flow, a tolerance of 40% was selected.

Hydrocarbon Tolerance No field data are available on hydrocarbon emissions on the 3600. The coefficient of variation observed in truck engine lab tests is 8-12%. A tolerance value of 30% was selected based on the truck engine data (taken in well controlled conditions) and -

considering flow error and lack of field experience.

Carbon Monoxide No field data are available on CO emissions on the 3600. The coefficient of variation in truck ~ lab tests is about 6%. A tolerance value of 30% was chosen due to lack of field data J

and due to the low basic CO emissions of the diesel engine.

Y A W-edl J R Gladden Sr Project Engineer 3600 Product i

s93.1 inquiryWeth2. sam l

9

- ~-_ -. -- - n - - -

.. -.. n

. ~ ~ _ -. -

PART LEAD EMMAUef EstISSIONS AT See RPM (EPA SUS PART 0)

FILE

  • SFe2019 OATE* 21-MAR-90 OeS* SPUR CE 0m CELL
  • 302 FILE sg
  • 30089-909 OYtes CON
  • FAM:L Y ( E PA )

TURSINE DIA*

FLON TIME

  • Set.F 04 NIELS AIR FLON*

PAPE OIA*

ENC I ceE MODEle 3696-SITA 90 0

  • GOFM3 Coste CNAsse PISTON
  • CRATER
  • DORE* 209.8 MM STROKE 300.e MM CYLS*

6 CR* 13.Ge NonINAL PC*

ORIF*

TEST CSM AIR TO ENCIteE OR 19990 COMPR - TEleP i 24. DEC C FUEL SYST TYPE

  • LUCAS-UI PustP ORA
  • 2 4. s sen PRESS
  • 96.e EPA ASS AT EACH OATA POINT CleECK TYPE
  • CROUP NS*

F UE L-T YPE

  • IE262 T EIIP *
44. SEC C FUEL N622 PART 80 0
  • Lucas TYPE
  • 0.I.

SARO*

99.e KP4 AFTERCeeLIIeGe SC AC-SOC SRIFICES-N0* 30 084*

465eeM ANCLE' 145 OEC SMJ 1880E DEC STC* 21.0 SEC ASW*

e.e4 FUEL LIFES le ANO LEteCTM-ENTERNAL*

M TURee MesEL* VTC234A - SEE REMARKS INTERNAL

  • M NO *- A LOCATI60s* REAR EMN etAN TYPE. SPLIT PART N0*

RE M ARK S TUR30* WCileNFle/ Nee 4-NCes#EFle<EAG3 Pue84TA CEN APPL

  • FC3396 MICM SPEES fleL Caft AUTO SP APPL
  • 2359 EMISStese$ SATA (REF SFS2914 PART LOAO PERF )

DATA POINT 1.

2.

3.

4 S.

F.

DE Aes N-st 3382.4 7030.4 10566.7 141st.9 18300.6 22059.9 CWE RPet RPOI 904.

See.

900.

See.

See.

See.

eMEP KPA 39e.3 797.1 t19e.e is9e.e 2eF4.e 2see.e PeutR KN 331.00 642.42 993.5F 1320.63 1724.10

  • eFF.53 FUEL RATE SM/ MIN 8426.50 2449.54 3498.79 4 Set.e2 SF32.45 6920.52 CsFC (NASS S Ae l e )

G 88# K W-NR 230.595 223.643 210.448 2e3.262 199.4e5 199.eGe TURSS SPEED (L)

K RPM to.4 13.3 2e.8 23.9 27.6 30.5 AIR FLOM (L/L-PR)

KCrMR 3518 4649.

6878.

FeTF tellt.

12287.

Cn0KE G.031 e.848 e.422 e.013 e ett 0.011 CACK PotIT3ON iseSERVED Mn

-9.See

-3.687 4.676 6.469 82.649 17.926 GIL PR E S SUR E KPA 492.63 497.26 494.Fe 402.FF 4ee.68 4FF.29 FUEL PeESSURE KPA 702.42 6e9.43 6FS.FF 663.21 645.77 628.63 INLET AIR (L#L-Ph)

DEC C 22.1 22.3 23.2 23.8 24.2 24.0 AIR TEnP FROM C o nP R ( Le L - PR )D EC C 43.7 65.9 95.e 129.2 165.2 197.9 esA T E R T E MP TO AFTC00LER DEC C 52.2 33.9 54.2 St.e 49.7 47.1 l

tea T E R T E nP FROM ENC 8 9ef OEC C e3.8 e4.0 85.6 eF.5 SS.9 SF.4 OIL TO SEAR! secs DEC C et.e et 6 et.6 02.4 02.4 02.9 EmM TEMP TO TURSO (LF) eEC C 398.3 496.4 547.3 572.1 587.2 600 9 ENN TE RP TO Tuase (LR)

DEC C 379.4 49e.9 348.9 568.9 506 4 6e7.3 E x te A US T STACK T ElqP DEC C 332 4es.

439.

443.

434.

435.

FufL T E MPE R A TUR E DEC C 40.4 4e.3 40.3 48.3 48 1 48.3 INLET AIR RESTRICTION (L)

KPA

-3.6e

-1.67

-3.63

-3.63

-3.65

-3.59 EMMAUST STACK P R E S S URE KPA

-0.19

-0.32

-0.07 8.81 e.28 e.34 AIR PRE S FRest C OMP R (L )

KPA 88.95 49.92 e2.62 133.56 200.32 264.45 EmM PRES TO Tutto (LF)

KPA 12.49 24 12 44.69 Ff.66 il4.to 457.F5 ExH PRES TO TURSO ( LR)

EPA 13.56 26.54 49.23 79.6e 424 33 ITS 6F PEAK CYLINoER PRESSURE KPA 4340.

0750.

8IGee.

83598.

I6804.

8025e.

CS2 (ORY)

PERCENT 3.2e 6.9e F.4e F.5e P.34 F Se Co (ORY>

PERCENT

e. ele e.et?

e.ste o.eas e.ett e.ese te0 M (ORY)

P Pet 1637.

2152.

2898.

2061.

1983.

17F2, NC

( NE T >

PPM 273.

383 335.

278.

220.

19e DE M PotNT TEfePERATURE SEC C

-8.4

-I.3

-1.2

-1.3

-1.3

- 1. 2 y

DE M POINT PRESSURE KPA es e.s es e.5 e3 e5 g.

DAmenETER KPA 99 e4 99.e1 99.SS 99.79 99.FS 99 F3 (h

CYL 6 PEAK PRESS-EPA 6Fse e 9ees.o st2se.e 13FSe.e 1625e e lesse e rh 4GN T:ntNC - DEC F.ees e see le ese 1.see 18.oes ts.see w

PUMP 4 OYN 1NJ Tin - DEC 20 eee 28 see 2e ete 20.8e8 29.890 2e ese

]ggo ( Ag y 37 3 1l cvLImoER PREseuRE 6see e erse e t Isee e 135eo.e 16ees e aease e Icu of t A v - OE C B3 ese 82 000 se ese 9.0e0 9 000.

F.eee rune tu.s oun - otC at ees is ese is ese 23 ees ze ese 33 ese cones re as sua P - nea is ese 9e see les see 123 ese las see

< e s ee t onroe ssion ces ss - sea itse e eise e sese e 6Fse o esse e seese e s u u n t.*

satium as i. i os s.

a t u= =t a r u n a s t s s oe*

e6 -

'~

l y

5 -w,?

W tw in A

v.

$ 0Q 4vt T

w a

k.

e N

6 ki g

t 4 0

NN ts

\\

t

,,\\

b i

%E b N y%s%

i

~

..Mn

....ne~.,n wMe..,.M.9fteNMM

.s

.g

.a

...n.,,,,

P 9 WtTWIe>=9m** Mete.

N h.

Me98 p

% %g Ag g

m-9 9e.

9 se 9 ** e 9 M 4 =a m 9 m e. n N s.->. NOM a

e.

g >~

e g g g g a g,,,,,,g,,

T h e w am m.

n m e n s. e Nw.mMe-eN eN Nm g

m, u

enNNm NNeNo - mNum eens

-m--

e

.., w e,_

4 (lll.

MeeNo.me..,

N e== m a = = = =

G ef==

=*

N

== N b

N w w== e N et N e se se e

N

=*

eh eeMnne -. w p. n e e N P. m et N w w n, Gn e M n p..

e.

. g

. - eeeee eM -

gp

.MaeN Q h e = w p. p. e n9 es M, e a e e== M e, A =e. w w. em&e N

=== M e m p M 9

n

.m vi y g y, e,====g e w, $ e,, n,,,

og e

aussN -

-w m m e = *. e. m as - em *. - m N e w a s.

h.

y y g

p p.

N o.e.e.eie.e..s. e N e

- - e..e.

s. g. g g e e s. a. e.n.M

.e eNnMan e-Nm eewa e

N

.m,.

=p*

e N

n

=

g, I

l

, e. w P, se N w - e s N e N a re e m e w es m e

-e e

q *O e rt -

J m es - M e a v. e p.

- M e e P. e n e a m M n-e N

eneMMu o w e. a M e N

. 4 ps ee

=N

> enoe m W

ea. -

Np TM - Mw M St & e N

n.

P.M 4 e 9 masM A

&&3N= - e==

A M e== N W AN - n St y

e 9 e 3 M pl gg yt g se g.

=* O me86 9 9 R n

ae N

& 86

-@=

.eegea nNnemmAeSNe -

Amwh eeMA N

Nwe Q. Q

.v.

n. e e m m e m m e n,t

=

me M M Ft e A e **

T==**

mmTNm e

M g

g a

- S p. 9 o e pl - e N St W e==

ee -

A.

e g

e ed a N G e e

bMS n e pm T W M M N T m T StP. N w e N w e a

09 Meee99S==Se.nM 4

w ga y Me q

e e,9 96==

es ee gg,ee 9 9 W P. e MM - Me eegem,e.gaw M56me N

  • e M 86 M w 86 p et ww e 9 On m e

g

..m m,=e. ~ w w. N. S. O n

.St M e.ee P.== e M N.9 an 3 et m

enm.e-3.q33ga m,

p.

p N

N w

,m w

e =

3

== P9 N N e

oo M

S M

~

se ev w>

4 %

N h N

w yt N y N e + 9 4 e== 9 N ft P9 m N F9 WD= T ** N== T N e.== FD. e 9 Er

== e - - -

A

- o a

- p. n M 89 v et m -

,% y es e -,. es e a

== G 9 e e e e & G es n e - p.

en yt. g g p. e o e,

og e A.

- @ w T St G

=M 96 e N m A ft N

4 3 p. e e en g pg y, M g p, e e==== et p. g a 9 he en a N yt 96 -

W P.

-== M e & M w + Ob N -

P. A g

ff g W m gg eg. gi pg, e, p hwwwMNTTeMe -

maMm eGeh N

e m

p. m h eweNN

-e 4

ASe=Memh=Am g

i NNN e

es ye

n. M 3

Pt M A=c=

Es w

M 4 N e et se m P. =

y W9 e. p. P. G T== 9 w 9,- G, g e g M e,

o, e.N -

e...w g,

yg 3 e w yt. a a M M. en,= N... n. 2.e n R 3 e.N j"

-,. p.

pg gg p

,,3,,.,,,,,.,,. e e n s g,, m,.,

,3,.

n..m

- m gg et _ e N, e..e e

w

.N

.N

.,0.,

pg g...,

M Pt M N e o P9 R S T e - e ** A St Gewa N

=

rt yt e yt

. p. g,,,, gg

%g Pt M T WD n e

a g

  • NN e

eng m

o, A

Nm gg P*

a m

3

=*

oy A

W EE e

\\.

EE e

Es e 2

4 WE y

a.E. g a

%d

=33WW WW wu 3 tas

>a n=

m 4

EMMEE US mu EEEE WE EE REEE y

E4 5%

40 444mEEE% % % %

== %

taf E4

%m h 16 s w a E

LLEEEREGG tasE E & W thewkthEESE GE e

&4 Eu wwuuk om, EMMMUUUMM EUEMS MMuthtkupuu mW mW We wwwwM 1.,

E

=

rt a

a E

e

^

e 3

g aa g.

E

  • s e

Q 59 E

E

,3 e.

EE I

ea **

e e e

me I

A J

4 tal 4sf W1f E

0 4 tas a E

3 I

T 4

5 5

EOs

==

O 4

4 5

I M

St >

0 uN &

O>3 4

E e

u es >

n

>N w.

I gg Ee se u a g

e S U P.

8

=)

M>

n O nef 8 e4e u

N 9

R 4

8

^ ** w A.

O ** ** O J==

EEW 9

4 h I e6 0

m. # 2 5 W "9

%4 led S ft 4

e=1 u.U 0== w ^ O

>d

==

>E&

P.

O E as N *e 3

a 3

m e g

>OSS kW OhEO J

>W 00000 4ai C s

= 5" te. @ E J s S ** W O

O 3

G

=uuEE Eo~

a=

9 Oe > 5 las O O W W e= tes e.

a=.'

.,, 3 m

^ u e E 4 E a=

W1 m la. > ue E FB uEIEE ie o a=

g e e w 4 g 5 a= 4 4 u P. E se

>WE O

3 *=

5A tas O O O O Owme 20 4% % =* w I 5 5 8== W O

O wO O

O E

Ow a === = = W e

g.E.

==

u>443 WJ J45

  1. 4=O5JW>

E E

> I tes

=

u a>>>>w i

eOE w4 E E O> wtafOtas e-OE4 O>>>

u 5

0 0E w

>O4444>

  • =ai eag awwJe 3 > 3 b ig u e.

O u u W a=

e e

we t

&E u s u s J J J tes 5

=

g g

gg h 3 taf b b h 5 ** >>>

ES 4

4 a4 i

e W taf== 3

======E 2-g g gwwJgu (M%J

=3>WWW MMOm E

O e

4 AMMp4M>>>=O Ea.

I n= tas las E E tar m is. N E O N tas 4 O J W u J J > # 4 5 E N M

NM CM tas 8

> taslas O O E E O I E E E a a+

e ggg3em=ME=34 04423WEWW3OOOuCOOu uO b

I 6 > e 6 & e6 e e 4 tai e 4 4 tas # > & S =* = E M & 5 E u W E E u w 1 2 g

(>

ESSMEWwwwf

=3 G 4 e$ e e b tai as > > > > S

-- l' g

E i

g Sheet $

C D.A. Spurgeon

.69 g

6/5/90 g

\\e g

g

,g f

l

\\

~

ci 8

jit

!! s\\

s g

gg e s k

g

,l g

ss s

s as a

s a

l g

Uk I

H

/j 25.0 H

\\ l 5

~g%8) 5 H sw g

7 j oo as S Ep!

o o

//

i l

A o W[!

es

/ [

Eo*8 d

~

~

o ct o

f

_g ga g

g y

N ac

//

-l 8

g:h y

l!

5 g

a.

j=I

//

/

s 5

W 9

li 8

2 2

2 2

8 8

~al

=

9 9

~o (a

e 9

o o

e d

d d

d d

d u

o o o o

cm-es) smwTunww g

(m.mo) ca a-g H

t g

g

./

g i

/

r e

gg

~

7j g

i I si 8

8

/s

/ /

R g

8 i

!l

@8 !I

/ /

!g 5h

/ l

-I

$8

/ /

e p

Erz 5

e 3 Eg hA8

/

HI e

r Ewd s

/

r cc 2

z

)

~

ec s

/

a o *r @$

o 16 E

E

/

/ /

n e

/

f R-o Io

[ /

-l o

.5 at

  • 8@

//

-at s

/

)

- s w

@a k,

J

/

g,v O g g

gr 25

//

o f

/

/

t L

0

/

/

\\

/Y l

gl H

_U z

g at N

-o og q q e q

  • ,q q

o o

o o

o o

o o,

= r. g o o o o o o o o y

g e

e w

N o

e c

(m cHt/91 '3H j

( W dtti/9) 2CN 80 XCN i

CATERPILLAR 4

a 3600 EMISSIONS 12 CYLINDERS STANDARD TIMING 21.5 DECREES MOL CAM FUEL SULTUR 0.2 %

DISTIL1 ATE

]

TURBOCHARGER:

VTC254 ENGINE SPEED rps 900 900 900 900 900 900 900 ENGINE POWER bkW 4180 3800 3460 3140 2356 1570 786 ENGINE POWER bhp 5605 5096 4640 4211 3159 2105 1054 l

BMEP kPa 2514 2286 2081 1889 1417 944 473 BRAKE SPECIFIC EMISSIONS g/ bhp hr NOx (as NO2) 10.6 11.2 11.5 12.1 13.1 17.9 18.7 i

Hydrocarbons 0.40 0.43 0.47 0.50 0.64 0.81 1.05 Carbon Monoxide 0.56 0.48 0.42 0.47 0.55 0.73 1.05 Sulfur Dioxide 0.60 0.60 0.60 0.60 0.62 0.65 0.74 Particulates 0.10 0.10 0.10 0.10 0.18 0.28 0.42

\\

BRAKE SPECIFIC EMISSIONS g/bkW hr NOx (as NO2) 14.2 15.0 15.4 16.2 17.6 24.0 25.1 j

Hydrocarbons 0.54 0.58 0.63 0.67 0.86 1.09

-1.41 Carbon Monoxide 0.75 0.64 0.56 0.63 0.74 0.98 1;41 Sulfur Dioxide 0.80 0.80 0.80 0.80 0.83 0.87 1.00 Particulates 0.13 0.13 0.13 0.13 0.24 0.38 0.56 i

EMISSION RATE g/hr Nox (as NO2) 59418 57074 53359 50951 41389 37687 19711 Hydrocarbons 2242 2191 2181 2105 2022 1705 1107 Carbon Monoxide 3139 2446 1949 1979 1738 1537 1107 Sulfur Dioxide 3341 3037 2765 2509 1949 1361 785 Particulates 561 510 464 421 569 590 443 Sulfur dioxide emissions are proportional to fuel sulfur.

Values are nominal and do not include tolerances for engine to engine or instrumentation variation.

file s89.3 data /exc/06s900 jrg Nov 91

.r - e c a The Almeqa Ccap:2ATisN F7 y

SUMMARY

OF EMISSION TEST DATA _

4 TABLE:

1 PLANT:

Caterpillar Inc., Pontiac, Illinois SOURCE:

Stationary Diesel Engine 3(of OPERATOR:

M.

R.

Jackson REPETITION #:

1 2

3 TEST DATE:

10/9/87 10/9/87 10/9/87 TEST TIME:

4:00-5:00AM 5:00-6:00AM 6:00-7:00AM STACK GAS Temperature, average 'F 728.5 753.0 754.5 Velocity average fps 117.8 117.8 115.1 Volume flow x scfh db x 10' O.399 0.387 0.384 acfm 16,005 15,998 15,635

% CO 6.0 6.0 5.5 0,

13.5 13.5 13.5 Moisture %

6.5 7.0 6.1 NITROGEN OXIDE Concentration x 10-'

lb/scf db 116.2 100.0 133.6 ppm 974 837 1,119 Emissions lbs/hr 46.4 38.8 51.2 AUDIT SAMPLE NO concentration ppm x

calibration gas 350 audit samples 346 ff e'r H o o ]g

5ses r s i

\\

.I u

t, S

5 a

s 13,h i

0 T

tl

~

a i x% y J

W1

=

M 4

  • s

~

x.

e 1

d.

u u ' s

  • s y,

me v

x w

\\w m

4 m

s

~

g b Q k'

5 k

qm 3

m l

Em I

o,t 1 x

4

=

sg *.

s m

Wu n

1.

e.

a n

4 m

g j

E$ o h

% L M M LN w

n 5 :

xtM%

w 1

m.

_s S l a.

4 3

n d

Q

.a 3

4 a

J 1

V0 J.,

eu 3

..,*mm.m.e

,~m

....em.m...

y e

.......,..e, r

s e

m

,e 4

m.m

.e M 0

e.

>..e a.e.me. m M... M....e.

.A..

e e

e. m,e m i m =..e -

e e

A

.m

.m m.

a.

a..n m,

eA

~

omM e sa.

=>,

a s.

=

3a o

e J

=

M.n.. mea A,A A

m m.m.

s A.

==

e e

a m

emm 1

U M

3 J

NNS m

l M

a se e

.e3 e m e M a m. m J

e e e s e a m m a c e e n p e a. a, e m. A

.e.e e d. 6 5I4 e

4 v4 4

em emma

=am*4ee4 eme ese m

s i

e e3

n) s em e e e s.m m p e e M M e e4 eM e se S e e en emeemoMa m

u s

4 me va encadeamsem*34a mM eeM e es a enameseA e

5 m *e

=a as semamm**

    • MM m

=9ms e

N a

n d

m4 6 3 s

Nnme mm e

a mA e

qmm o

@m6 m

L3 4

NNm i

n m 3m 33 p d Sw e ecm-mem e enne-=ww=

.w e-o ur e e e es es e

l hv>

$m Websom edgee eemmmepee ed eseogegegmenos ene a

a31 OO e e emeN99 emN e ee e*9 e99he eM eM e e m e m e e

J 3eT Pememp>Se emmeme me s ee M e e6 9 enamemmM

=

3 4

=

armMmmmm m3

  • 9999 me a

mese A

E m

H d

memp mm o

a M

m m==

m 4

4 H

S NNe m

3 m

3 m

3

---w

---n--

-ww-wwwwc-ey se e e e es em o

E Q

4 S

J 4

9m emome oggemmpqq e en oom eggeoggspep og e m

j E

O9 e o emaee9 eMN e se edee@996 em e v ee n meem A

4.

S J

J J

@@eS99999 emmO99 af eem o em p emMmepAm j

E 4

4 4

2 empOmamm mee emA9 99 m

m egp g

3 3

3 3

W amm$

mm e

a M

e em m

V e

e b

W mme

=

  • *OmmSd9 e em*SamSSMm=Dem@ *eem e e e op ee e

a

== e9MM e eSNemPOWG e@ esm eW e em e p

e@$$gmgeppMm N

@ * *

  • e@@ @SS eM9 e
  • 9 end

$ em eempappm A

e PSMGmSOMA #3*Ome de edM e eS P dam eptep a

a m

NM*4MNSS 99 e eM e De e

emm e

3 A

    • M6 e

o m

ea e

~

4 m

a

=m9 4

ba m

m e e *O469mp e eomeSee09mmANmeee e en e e e eA eN e

3 m

4M Nm odd 9 e opemmAGMeed eD9 e@@3medmade op e p

AA as Jw ON e e op p e e e eN*

  • e9 em e ee964 em somem 3ee o

j J

m e 73999mm9m eSm3MS Nm e3M e e39 d=MepapA g

j 4m X

Qe E

teS9MMAd 9

e eMWM mp

=

_Nmd m.

9 J

4 9

m SSN m

tm e

f.

QJ U

M Ad M

ee m

4 e e#993mM e e

eS M $ 9 d e c e e 9 A M M S et om e o e eA em o

mW 3

LMA&

3 eme eAGm e ownP>mAMG e so eWa edeemposema se o m

+

m 3

&49d so 5

4>

e e e94A49 emM e

  • 9 e se 9 e9S&$ eN eeeap *e e e se 3

W e G M 'd M

3 PSmemeAmM e4Meme MA eem e see AmaNmeme e

SA Q

>3 e

4 m

9999MM99 99 e 9 MSS Ap pmA 9

ht 4

g ASm U-4 998 e

==

A 44 2

88

  • J

=

5

=

0 3

d 4

3 5

W v

9 e veAM===

ES E

i og meatbJD 43 m

> e Q% t 3t*3m 4J G

m a

a 3 454ma m

e swuzkw w w 4 as a

e

.e g

u sud=3 J

32 SW m

d j '

4

=$34 WW SJ B ee e5 4

da a

a e

a 33ed

>3934 mBATS SWW mW Ed East E

5 aws a==>

rests dvs ow stas mz w

km Wah 4

JW E

f4

% 5%

4 *J 4441Est% % %%

?

ga

>4 34k E

hh3SEASJW SMdsthd h&Bdbh&EEE4 mE d

e VW e 3456JwJWa sw&JSd3 ssJ&hh4JJQJ 3Q A

l 43 4

44M WF3Jh9 m

i

9. 4 4

313 3 3 J S e' e

A E

e m

(M b

e49 a

a 4

e 3

9

=e 3

m 496A Sm A

3 3

E l

Mm g3emm e 4 4m 3*

=

3 4

m 4 43 sge>

sea E

D J

4 4

4 54 4

.i em e m.. 3. *J adam 4Ca 4

3 m

E 338 3

=we a : ve

.=

vm a m

3 d

4.=>m.

  • a m

3 as mve 4

a 5

0 m m M

Wupy 4A 1

Mk e

3 d

5 444 K

i eh4 em 3wk >= mus anw m

3=

m eJe shw

's N

943 mJmasem3JahvM 5

4, am W

%4 W

W

' =

paw gJ3 3

mea 3

m4 I

e su

  • Eh a

1 e=JJe i

=m ma 1

gag $3>33 A

W 3

MO43

  • 'Ub5 3633 m

o i

4 S t,m f

m, 34W 4

g

=s u*musJuams J

s=

J ss3ssJum e

e

.aop z

3*w

...a

=dv>g 3

3 e

s avemema se euw=

u

=

3 m

J k

3 A4m451m44 Ume m Wda eq3 3

3 OWWW EO 4%% 3Com SESSm3 3

3 C3

=

J j

WM44 WJ Jedde

  • d14w s

a 4

Da mes*S*m**I*v**u*du*44=$S*Jwm 4

m m

a 3

dd V

  1. 38*

a d

vaw v m

a 66 a-mde sk Cuwdm ud 8

=

og w3 3

3 33 e3Wh bewdEm gS 4

4 W4 eug p

g 4

4 64wJWQ 45%J m&E3kWdd 4WUm E

d2 k

4

- = - -

n

Sheet G EMISSION MEASURENENTS ON 3616 ENGINES AT GUAM Engine Date NOx-PARTICULATES g/ bhp.hr g/ bhp.hr Old GhD4 Unit 1 5/20/93 7.11 0.210 5/26/93 6.99 0.23i Old GMH Unit 2 5/15/93 6.59 1 23 5/19/93-7.30 0.238 Talofofo Unit 1 5/21/93 6.34 0 226 Talofofo Unit 2 6/23/93 6.78 0 22i GPA Unit i 6/14/93 7,21 0 193 7/14/93 7.30 GPA Unit 2 6/13/93 7.37 0 218 7/14/93-7.12 Tumon Unit 1 6/24/93 7.22 0.209 7/l5/93 6.85-Tumon Unit 2 6/25/93 7.06 0.219 Average:

7.02 0 329 0.217 excluding *

  • Rust, mill scale, and/or accumulated soot in muffler probably gave high value.

1

Sker p 4'l 4

4

==

i N

=

==

a -

e l

=

wa "w

e, 5 *2

~. 3.e a

a 4

c '!! E 3:: U 11

,O n w

< E E

- w E

>= m W

$w 3_ =5 U

=

=

4 Ew l aa a

5

  • W 5 I i N

N

  • We w

w 3 E 4WW w 4 (l) w*

~

443

- g*

B>m W W M W A

se S

2 3

4 9

Noliviuva je tunisijnen g

- - * < - - - " = ' ' ' ~ ~ ~ " ^ ^ ~ ' * - ' ' '