ML20063P282
| ML20063P282 | |
| Person / Time | |
|---|---|
| Site: | Clinch River |
| Issue date: | 12/31/1977 |
| From: | Brown R WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
| To: | |
| Shared Package | |
| ML20063P281 | List: |
| References | |
| CRBR-ARD-0119, CRBR-ARD-119, CRBRP-ARD-0119, CRBRP-ARD-119, NUDOCS 8210130250 | |
| Download: ML20063P282 (59) | |
Text
{{#Wiki_filter:. CRBRP-ARD-0119 ~ [ { . CLINCH RIVER BREEDER REACTOR PLANT PRELIMINARY ANALYSIS OF HEAT. m. GENERATING BLOCKAGES IN CRBRP FUEL % AND RADIAL BLANKET ASSEMBLIES TO DETERMINE DETECTION REQUIREMENTS ~ TOPICAL REPORT -_~ d BRP ^t ) DECEMBER,1977 T APPLIED TECHNOLOGY ~ Any Further Distribution By Any Holder Of This ^ Document Or Of The Data Therein To Thiid Parties Representing Foreign Interest, Foreign Govern-ments, Foreign Companies, And Foreign Subsidi-arles, Of Foreign Division Of U.S. Companies Should Gfy:- w ~1-ME. Be Ccordinated With The Director, Division Of -~ Reactor Research And Technology, United States e., 3 4g.f, '( Department Of Energy. g: WESTINGHOUSE ELECTRIC CORPORATION ADVANCED REACTORS DIVISION W Prepared for Project Management Corporation And The United States f ee Department Of Energy Under Con-E g tracts EY-7 6 C-15-2 395 And EY 76 C-15 0003 8 DATE'S TECHNICAL INFORMATION CENTER UNITED STATES DEPARTMENT OF ENERGY l PD A KO 37 'A PDR ~~~
CRBRP-ARD-0119 DISTRIBUTION CATEGORY UC-79p CL[E.' CMS R[VER EREEDER REACTOR PLA14T Pre!!mingry Analysis Of Heat Generaung EMockages in CRBRP Fuel And Rsdis! Blanket Assemblies To Determine Detection Requirements TOPICAL REPORT AUTHOR: R.G. DROWN I Pre.pered for Project Management Corporation 1 and the United States Ocpartrnent of Energy Under Contracts EY-76-C-15-0003 and EY 76-C-15-239 5. Submitted to DOE in December,1977 Vles.tinghouso Electric Corporation Advanced Reactors Division P.O. Bor.153 Medicon, Pennsylvcnia 15663
TABLE OF CONTENTS SECTION PAGE ' LIST OF TABLES 11-LIST OF FIGURES-iii - 1.0
SUMMARY
AND CONCLUSIONS 1
2.0 INTRODUCTION
3 ,2.1-Local Heat Generating Blockages and Their Conseque.nces 3 2.2 Previous Studies on Heat Generating Blockages 8 3.0 ANALYSIS 10 3.1 ModelDescription 10 3.2 Verification of Porous Bed Model 13 3.3_ Thermal / Hydraulic Dat.a and Boundary Conditions 16' 3.4 Description of Parametric Studies 20 4.0' RESULTS 26 4.1 Single Subchannel Blockages.- Fuel Assembly 26-4.2 Six Subchannel Blockages'- Fuel Assembly 34
- 4. 3. Single Subchannel Blockages - Radial Blanket Assembly-
_41 4.4 Six Subchannel Blockages - Radial Blanket Assembly 48 .i
5.0 REFERENCES
53 l' f i
4 LIST OF-FIGURES FIGURE NO. TITLE PAGE F 1 Particle Size Distribution ~from Several 6 In-Pile (TREAT) and Out-of-Pile Laboratory Experiments 2 . Heat Generating Blockage Configurations 11 3 Single Subchannel Blockage Model 12 4 Six Subchannel Blockage Model 14 5 Parameters for Porous Bed Model Verification. 15 6 CRER Core'and Blanket Map Showing Assembly 17 Numbering.and Orificing Schemes 7 Maximum Cladding and Coolant Temperatures-27 for: Single Subchannel Blockage - Fuel Peak. Pin, c = 0.40 8 Maximum Cladding and Coolant Temperatures 28-for Single Subchannel Blockage - Fuel Peak Pin, c = 0.55 9 Maximum Cladding and Coolant Temperatures ~ 29 for Single Subchannel Blockage - Fuel Hot Pin, c = 0.40 10 Maximum Cladding and Coolant Temperatures 30 for Single Subchannel Blockage - Fuel Hot Pin,.c = 0.55 11 Blockage Exit Temperatures, 1.0 inch 33 i Blockage, Peak Fuel Pin, c = 0.40, D = 100u l 12 Maximum Cladding and Coolant Temperatures for 35 Six Subchannel Blockage - Fuel Assembly Peak Pin, c = 0.40 13 Maximum Cladding and Coolant' Temperatures for 36 Six Subchannel Blockage - Fuel Assembly Peak Pin, c = 0.55 14 Temperatures at Blockage Exit for Peak Fuel Pin 37 ~ with 0.3 inch Blockage, c = 0.40, D = 600p 15 Maximum Cladding and Coolant Temperatures for 42 Single Subchannel Blockage - Radial Blanket Peak Pin, c = 0.40 10 Maximum Cladding and Coolant Temperatures for 43 Sin;;1e Subchannel Blockage - Radial Blanket ISak Pin, t = 0.55 tii
O' '1.0
SUMMARY
AND CONCLUSIONS Heat genertting blockages in CRBR fuel and radial birinker assemblies during steady state operation have been analyzed. Blockages of both a single sub-channel and six stiochannels completely encircling one pin have been in-vestigated. The blockage porosity and particle size have been treated parametrically. The results itemized in Tables IV through IX have been provided to assist in determining the sensitivity requirements of the delayed neutron monitoring system. For purposes of blockage detectability by the delayed neutron monitors, the' total surface area of all particles within the blockage _ which are exposed to the sodium is the important parameter *. Several of the important conclusions of this study are: Heat generating blockages of a single subchannel adjacent-to the highest power fuel pin will not result in boiling of the seepage flow for a wide range of blockage porosities and particle sizes. In order to ensure that cladding temperatures of the rods (for both blanket and fuel pins) adjacent to the blockage do not exceed 1600*F, the delayed neutron monitors must be able to detect a total particle
- k) 2 e
surf ace area (exposed to the sodium) of +8 cm, For the most restrictive conditions considered, the minimum detectabla 2 exposed fuel-surface area must be less than 36 cm in order to ensure tha that a heat generating blockage large enough to cause sodium boiling will not exist within a fuel assembly. For the most restrictive conditions considered, the minimum detectable 2 exposed fuel surface area must be less than 20 cm in order to ensure that a heat generating blockage large enough to cause sodium boiling will not exist within a radial blanket assembly. For single subchannel blockages, the maximum fuel (or blanket) material temperatures in the adjacent pins are not significantly affected. For six subchannel blockages, boiling of the seepage flow was found to be more restrictive criterion (with respect to delay neutron monitor a detectability), than fuel melting.
- This assumes that the manner in which the presence of fuel in.he coolant channel is detected is by counting the delayed neutrons emitted from the precursers which are ejected from the particle surface into the sodium.
1 . ~.
2.0 -lNTRODUCT10N '2.1 Local Heat Generating Blockages and Their Consequences Local blockages within fuel pin bundles have been recognized as a potential initiator of pin-to-pin failure propagation in LMFBR's. The reduction in coolant flow around such obstructions can cause increases in coolant and cladding temperatures which are substantially greater than those for normal design operating conditions. However, it should.txt recognized that the formation of such blockages is indeed extremely improbable. Primary system _and coolant cleanliness requirements, filtration of the sodium prior to reactor startup,'and impurity monitoring throughout operation will assure that debris levels in the primary systen are not excessive. Any postulated large debris within the primary system'is prevented from reaching the pin bundle by the design features of the inlet module, the fuel assembly inlet nozzle and the pin attachment assembly. Because of the helical flow pattern in the bundle, individual particles passing through the attachment assembly which are larger than the wire wrap diameter would be trapped prior to reaching the active core, and not have any adverse effects on fuel pin performance. Even if it is postulated: that a particle were to travel vertically up the flow channel bounded by three pins, the largest particle which could reach the active core region would be %0.067 in. diameter for the fuel bundle and 4 0.094 in. diameter in the blankat assembly. Particles smaller than the wire wrap diameter would be easily swept through the core by the sodium flow. No mechanism has been identified which would result in a transport of debris preferentially to a single assembly. Furthermore, there is no preferential location for particulate collection within the pin bundle. Any debris deposition which might occur would be a generalized effect throughout the core and blanket and not a local one. A random collection of particles would have no effect on the overall assembly flow, and thus would have no adverse ef fects on fuel (or blanket) pin performance. Substantial flow ef fects could only be caused by completely unrealistic quantitir of blockage particles. 3
the pin hundic. These parcicles would be swept alcag with.the coolcnt, and have no impact on the system performance other than the contaminatien of cha primary coolant. Even if it is postulated that a particle large encuph to beccme trapped in the bundle is emitted through a breach, it is unlikely to remain in particulate form for a long period of time. The erosive ' forces of the coolant flow would be expected to break up the particle. Furthermore, depending on the oxygen content of the sodium, some fuel-sodium chemical reaction is likely to occur. The low density, friable reacticn product na3M04 (where M represents U or Pu) is unlikely to. remain in a large cohesive form in.the turbulent coolant flow. Hence, even unrealis'tically large fuel fragments would particulate into pieces small enough to be swept out of the core. Fuel particles carried by the sodium are unlikely to remain in the primary coolant flow. Large particles would te-d to drop out in low flow areas. In addition, it has been found that oxide fuel'would tend
- o plate out on the colder surfaces of the primary system (IEX outlet and cold leg piping), hence removing the fuel from the coolant t.ow.
Althcugh the probability of the presence of molten fuel within any single pin is extremely remote, fuel particulates in the coolant can also be postulated to exist in the coolant as a result of a molten fuel release from failure of an overpower pin. For such an occurrence, the particle size of the debris is important in assessing the potential for blockage f o rmation. A. compilation of the data from several in-pile and out-of-pile tests is presented in Figure 1. These experiments indicate that the majority of fuel fragments will range from 100 to 1000 microns in diameter, with a mass mean diameter generally less than 600 microns.ll,15,16 7 order for fuel particles to lodge within a fuel pin bundle, they must be greater than 0.056 inches (1422 microns). For a blanket assembly, particulates grcater than 0.039 inches (991 microns) may become trapped. Therefore, even if a molten fuel release occurs, there will be few particles Jarge enough to rcusin trapped in the bundle. i lhe consequences of a heat generating blockage are not as well understood a' t hese of r.on-heat generating material. Boiling and excessive cladding to-.;.cratures can he reached for much smaller blockages. In addition, es.<.srn has i.een expressed that blockages consisting of fuel debris could Initiator of " blockage propagation", a blockage which slowly increases 4 a:. 5
~ in size and results in further-pin failures. Mechanisms for blockage growth which have been postulated are: (1) the release of fuel particles or fuel coolant reactio'. products from failed pins which act to extend the existing blockage; and (2) the swelling of a failed fuel pin due to a fuel-sodium chemical. reaction. As the blockage grows, it can be postulated that more fuel failures will occur by overheating of adjacent fuel pins and the particles released would extend the blockage even further. Such blockage propagation processes could take place only very slowly, since considerable time is required for the fuel pin to fail de< to local over-heating. Subsequent to failure,-the time for fuel particles to be released,'or fuel-sodium chemical reaction products to form would preclude the rapid growth of any blockage.,Although all available evidence indicates that rapid _ pin-to-pin failure propagation would not occur, it could be postulated that the damage could extend over several pins, if remedial action is not taket. However, a-slow blockage growth such as discussed above is considered a highly unlikely mechanism for fuel failure propagation for several reasons. First, as discussed previously, the~ formation of local blockages within the pin bundle is highly improbable. This is assured by the wire wrapped pin bundle design and the cleanliness of the primary system. Even if pin failures are~ postulated to result, tests and previous experience have shown that the failure size would be small, and that it is unlikely that any fuel particles would be released. Assuming that either fuel or fuel-sodium reaction products are released to the coolant, it is very likely that they would be swept out of the core. It is difficult to discover a mechanism as to.how the blockage might be extended radially because of the high coolant velocities around the edges of the postulated blockage which would sweep the released particles out of the assembly before they could become attached to the blockage periphery. The turbulence in the wake region would act to prevent the growth of the blockage in the axial direction. As mentioned previously, blockage propagation 4 can be postulated to occur by fuel pin swelling resulting from fuel-coolant chemical interactions. However, swelling due to chemical interactions will
- r. o t be severe and certainly will not be extensive enough to result in
<innificant overheating of adjacent pins. Even if it is postulated that swellino is Jarge enough to result in contact with the adjacent pin, local cladding ti.mperatures in tle adjacent pin will not be excessive because sodium flow will
- till provide cooling except at the point of contact.
7
~ + could be used to scope t' e problem for the CRBR fuel assembly. However they do not provide information for use in assessing heat. generating-blockages in the radial blanket assembly. Furthermore because of the one dimensional nature of.the problem, the ANL approach assumes that the blockage is essentially infinite in the direction perpendicular to the flow. This is certainly not the case in the narrow coolant passages of the fuel or blanket pin bundle. Three dimensional heat transfer should be considered since heat losses to the clad and coolant through the vertical surfaces of the blockage may be appreciable. In addition the one dimen-sional problem does not allow calculation of the maximum cladding teLYeratures. The Oak Ridge studies of heat generating blockages considered the presence of the fuel pin in modeling the blockage using the HEATING conduction -code. Three dimensional calculations were performed for-several blockage configurations for an FFTF pin operatitag at 10 Kw/ft. However, these analyses were overly conservative in that no seepage flow through the-blockage was considered. In addition, the limited results reported are not adequate to assess the consequences of fuel material blockages in the CRBR fuel and radial blanket assemblies. 9
.-~ - ~.- I i t 1, I. r l. f Y5, s
- I
'T.M u. \\. v E d ' E *n d e. E $ J ?C F# h".EL b.2 AEGE t e - t t i It. s' ~. O i f I = JEi h. 4
- a'. ::. e a m'!.:I'L:::::%. ed,h m.mit E $'
~";.:) / . t .-.9 .g 'r
- =.\\
t:2.El - A - ;.- d s I w..:..-v.=..:: ::.;_:.2 2.:/ .. + - t - - g _--ymz 'r V..l.i.E.F. \\ 1 ) %d + b) ' ; ).
- :5 ;H/.h N E L ' 5LQ0K A GE t
f m t I I
- ?
c. : o. % i, \\mc - .m,. V#. 0a e c-c., b l cl,ptTM i. v N i a s..-- - ~i. n. =~. = a. O sA 9 f F-_.1 G U Fs e e se e_ -.4.-m. 1.1 w w.,. -,m ,+-T-m- t w =- mi-e m ~ ~' t
- - --=
A separate set of models was developed to analyze the case where a single . pin is completely surrounded by a heat generating blockage. Figure 4 gives the nodal structure used for the six subchannel blockage runs. Again, except for pin bundle dimensions, the models were the same for the fuel and blanket assemblies. Symmetry conditions permit simplification by modeling only one-twelfth of the configuration shown in Figure 2b. For the six subchannel. blockage cases, the fuel material was modeled explicitly in the center pin (see Figure 4) in order to determine the fuel temperatures. Test cases were also run for single subchannel blockages where the fuel was modeled. For these cases, the increase in the fuel center temperature was found to be negligible. Hence, a constant heat flux boundary condition (described in Section 3.3) was used for the single subchannel analyses, as well as for the peripheral pin in the six subchannel cases. 3.2 Verification of Porous Bed Model In order to assure that TRUNT could be used to model flow through a porous, heat generating bed, a test case was run to compare with the ANL resulte for a 2.4 inch blockage. To accomplish this, a simple one-dimensional -blockage consisting of 12, 0.2 in. long nodes was constructed. The input parameters utilized were the same as those provided in Reference 11. These are illuscrated in the schematic shown in Figure 5. .A discussion of the method used to calculate the flow rate through the blockage is provided in Section 3.4 The blockage material was assumed to have the heat capacity of the sodium and the heat generation rate of the fuel. As stated earlier, these values do not permit calculation for transient conditions or the temperatures of the fuel phase, but these were not of primary interest for this study. For the test case described in Figure 5, the sodium exiting from the blockage was calculated to be 2040*F using the TRUTT model. ANL analysis of the surc.e case predicted an outlet temperature of 2010'F. Thus, the difference in sodium temperature rise between the two methods (directly solving the conduction equations and the TRUMP model) is less than 3%. Further 13
n ,$p '$ ON * $h?., g "*0 #h, $~a.$ b Y 4 0 t O I5$p of($$"[Ol$hkc*c /.bb,.5h.??? *$3k;g
- R b
- O t> ' Cf o ' C k
4p <So 4.h. 9l$ c A i FLOW T 9 <?, ' t-COROJ' F E. C O N~ C ; T 1 0 N i (SN M80LS ::EFINE D IN SECTioN II,C) 62 9.1) l D: 4 0C p in r i q : 9. 2 5 x '. O Btv / ht -f t' Oc : O.i 3 -Tu/t.'n, 'F e 0.29 t / uc f 1 l { l P t. : 1 E T, i. g.: p op 0U 5 S E D FUJn VE: ; - Cr4~:- c ~lG1 IQ E C b
/M%. 2 <--( 9 ?i) / ~'K 7 2r eN / j 2 5 0;- as t o, o,A o m.- j y g 30[' 7 0. -d. A..m.5 ?_ aow / s avy.- c. iN..C0aNEa..~iS ,; in; C
- v Th i-8
'~^ag'f \\ vgt 9 j\\ 3 0{' 7j\\ (# 2 -1 I / a v. 3 7 -- 8 ,/~~% :-\\ ASSE!!BLY T, f[a0ak 7 f3 \\37.,(/.s reaEn 3. \\ / i \\ jr 2 ,f-"8 2 / iq l / 6 r 9 j 7 2 Or T1 j 2 /r v f==y I 3 g O8/3 i f',7 9 I ,r m I 2 io a( 6 9 io e ts f R0W g i ./, <' CENTRAL ! \\,...-... k l 2 7 { l INNER ZONE OUTER ZONE RADIAL BLANKET e \\- FLOW Ol'IFICIllG ZGNE .Il0TTEST ASSEi-1BLY/20NE CF.BR CORE AND BLANKET MAP SHOWING ASSEMBLY NUMBERING AND ORIFICING SCHEMES FIGURE 6 -x
.m .e, 4.' --J~ 1 The peak pin has a maximum linear power (3o) of 17.8 Kw/ft at the core midplane elevation, 32 in, from the bottom of'the pellet stack. The ~ maximum cladding temperature in the hot pin occurs at an elevation of 46 inches.- Thermal / hydraulic parameters for both the peak and hot pins in the blanket are also summarized in Table I. For the single subchannel blockage models'(shown'in Figure 3), a constant heat flux boundary condition was assumed for the cladding inner surface. The heat fluxes for each of the four positions analyzed are listed in Table I. The cladding outer surfaces not covered by the blockage were assumed to be. cooled by sodium flow in the coolant channel. The coolant temperatures -and film coefficients are listed in Table I.- Because the sodium boundary temperature was assumed'to be the same as in the unblocked channel, there may be a slight nonconservatism in the predictions of the cladding temperature immediately upstream and downstream of the blockage. However, because of the small extent of the blockage sizes discussed in this report, mixing with the free stream sodium should occur immediately downstream of the blockage, and the cladding temperatures would drop drastically with downstream distance from the blockage. In any event, the maximum cladding temperature in the wake region would not be as high as the cladding temperature adjacent to the blockage. Because of the relatively long cladding node heights used in these models, axial t conduction nnly slightly influences the maximum cladding temperature adjacent to the blockage. Hence, any effects of the constant coolant I temperature assumption are quite small. Any upstream flow stagnation effects will also be negligible. Both the upper and lower horizontal surfaces of the blockage were assumed-to be adiabatic, thus ignoring conduction and convective losses from these surfaces which would act to lower the maximum blockage and cladding i temperatures. Convection to the sodium was used as a boundary condition for the blockage vertical surface. The heat transfer coefficient was assumed to be the same as that used for the fuel pins. Accounting for leading edge effects, correlations for flow over flat plates provided in t 19
. c'y in different instances. Therefore, size, and_ bed por:i. ~ ~ ,s blockage composit:. -
- '. a was treated parametrically.
- ..e blockage could be represented by For simolicity, i:
y.ese composition can be represented a porous bed with - by.an average spher- -~ . : :.- a given diameter. In order to ..e ied. the following equation (derived calculate the f1c-- :. s in Ref erence 28) - t : -c ' 2 1.75o, (1-c) 2' .: V c + c -o D 3 o .c c p .P - pressure c., L - dimensi:: ,. :e ::1:n f coolant flow u - coolan: D - average. : 6:7. ..c. p c - porosi:*.
- - coolant d ez..
7-V - superfi. L- - _, 3.cerage velocity the fluid v uld .1 ,,.:e n: bstruction ptesent*. .: sed in the parametric studies and A listing of the 712- .;.3, .calues is provided in-Table II. the conditions us a- -_.3, Porosity is the :: I
- 37. ab ia in calculating the seepage flow through the bloc?.e; *
.,sity depends strongly on particle shape and size, 11.
- 33224 and size of the coolant channel where the blocka p -
- '
?.;r:hs-- ore the porosity is not constant. throughout the ia: he wall pack more loosely than . e r. - :: particles in the :* : :-- 2.ns1 and thus have a higher porosity.
- rosity as a function of distance Since there is a i
. re: from vertical c:nf 2 : - ' 5 i:: :.9e bundles, the values of porosity ,- 3! vere based on data for packed selected from thii - 28,29 beds enclosed by i..: ,...,..ders. The particle size . based on TREAT fragmentation values (100,400, in ; .e:. ~ 3.:es of fuel or reaction products data (see Figure. ..epage flow through the blockage
- i:ence, the true 2.~
- minal, unblocked cross sectional is given by m =.
.+ :e area of the e,r.r ~ e w e ,-r w y--
-- a washed out of failed pins will probably vary widely, however the above . values are felt to be representative for this postulated source. For _ particles larger than these values, the concept of a porous bed has .little meaning tecause of the small channel dimensions within the pin bundle. The blockage heating rate was determined solely _on porosity. It was assumed that the entire blockage was composed of fuel and no credit was taken for the presence of fuel-coolant chemical reaction products which could lower the fissile atom density considerably. Heating rates for the blockage q "' ""#e calculated from b q " S (1~') b f . here q is the volumetric heat generation rate in the fuel. w f Table III lists the heating rates for the various locations considered in this analysis. The thermal properties are also influenced by the bed porosity. Since the sodium temperature is of primary concern in this analysis (and not the fuel particle temperatures) the specific heat of sodium was used for the blockage nodes. Because convection off the vertical surfaces of the blockage is considered in these models, the thermal conductivity of the bed becomes an important parameter. There are numerous correlations and substantial data in the literature on the effective conductivity 0-32 of porous beds. Unfortunately, these deal mainly with beds where the coolant has a very low conductivity (i.e. gases). In a sodium filled bed, the conductive heat transfer through the fluid phase will be much more important than conduction through the coolant in a gas cooled bed. Conductive heat transfer from the solid particle to the adjacent particle through the contact point will be relatively less 1:+ortant. This is especially true for the case of a blockage of oxide fu.1, which bac a low thermal conductivity. Hence, the correlations in the 'it'r.u ure.wr. not considered to be applicable. 23
It was decided that a conservative estimate of the blockage conductivity could be calculated using the following equation for one material dispersed in another. 1 - K /K 1 + 2c 2K /K +1 b" f 1 K /K f e 1-* 2 K /K +T f c K ' R, and K are the thermal conductivities of the blockage, fuel, b f and coolant, respectively. Using this equation, values of K as a b function of temperature and porosity were calculated and used as input for the TRUMP computer model*. For each of the conditions listed in Table II, a series of runs were made for each blockage configuration, varying the blockage length. Using these results the size of blockage which would result in excessive cladding temperatures or sodium boiling can be estimated by interpolation. For this analysis excessive cladding temperatures are defined to be inner surface temperatures greater than 1600*F. Sodium boiling is assumed to occur at the saturation temperature (i.e. no superheat) which was calculated independently for each of the four core positions considered. Location ** Saturation Temperature Fuel Assembly Peak Pin 1945'F Fuel Assembly Hot Pin 1868'F Radial Blanket Assembly Peak Pin 1859'F Radial Blanket Assembly Hot Pin 1834*F In calculating these values, the local pressure was determined by using a cover gas pressure of 15 psia, an elevation head, and irrecoverable and f rictional pressur. drops f or each location as given in Reference 24. The ~dlun thermodynamic data were taken from Reference 34. Vor e:::u.ph, th is equation calculates a blockage conductivity of 6.0 Eit/hr-ft 'r at 1000*F for a porosity of 0.4
- As defined in Section 3.3.
23
,.....,= ... _..,... -~. -, .... ~.... a ..-2.a.._.. . _ _ t. _..... ..a.- ... 4 ~.. - _ 4.
- t::.
- 1...
-r 9 .t___... t... _,.._'A-MG G.Vrt &WM3'GWR4~-N7(T WTmT*"J#c;:-#T:ti.t!~r._ tm...._.sqgT._ c;Gry. .. _........ _...... _. _,.._..... a... _.-...., -. _..... _ - ~. c..aL.gpg yrv. _... a _._-......J.*.-_T_a.%._...,,....._....f..2.,. ...e ~. ... ~.~1. _.y . m- _ _. ~.. t_ --.._. .. 1,.._..... ._........_4. :.... .. 4. }.rfg[.. -, }{. p. ~... t_. .~ . 1 . _.... u......pgz.. _-_ p1 g: .. w m ._,t.. ....._...t._..,..y. a. m m_ .4% 1,- .......,_ _.L... r....... ~...... _. _ :1... . _ t--. -. _.... _. _.... ~.._,... _ ..e J. . p_.. m, -...m_.. ,..e_ _:._.s..u..4......., ..... ~ ...... t. a .. +_ r _ . ~.......... _ _1... u.. ...u....t...._..L_..._..t,-...._,. i -.......~. _ _-.._._...1. ~ .r.. _u_.. .- _... _-..w _ _... _--_
- p. _.
......._d_,__*~Q*,....p.- _n..._ .a. .~ .......s.y._. L...a'. _.' i _1_ F._. .. E i auM.~. .-w.1...__ .= _...J..- F- ..-. _...~. L i....-..,t.... q.... ~1 . ~... ~ ~... F.... --ta-***"-**t~_. _... . 1... - f,. ... r [._.~..._. 4....%. t-4 _. 4_ m ~. _._-.... .. - ----. 4.- - __#__- .. L.Q.g., ,11 L [. _ w.. 6 ....,,.. <.c;,. 1"* .. _.Z L,. 4_. ,.. ~...... _ p,.g. 94. g i.... - ..-_ 9.....-_ _ _,, - - - ._.1+.. ...Es. ... a. bd 3 ...ps., - g,'_. .Mr'-- .4 ,,g ...........A:...4e. ,;.,4. e.
- 4...
9 .E T ar. b.M. M. ..._n...- M ..J..- .,.e-q. s s , y 9,.,., .a. .h....+ m s. f.. - -. .a_. e .4. 4 .-... 7..........*. y .I.. ..._s . 1. +_ .r .... +- p r, y__ y Wg -f.. .,.,.g. . ;L4. g/, ...L....,.,....n.g ..,,y- - _..7...... 2.. p ..y =, 1 L..m. .3 .~. ..p.-..~..y--..- ,..e
- d....*t,..,.........
..M.. M1%.(%. - m.. ...-. _....y.... 3 .~
- g.... k.G. 9.J.
..... +......,. ....,...y...~, .....4......-p.. ..4.. a-pA.-. t. ..4......., ..ai . ~),..,.. .. f y. F ..g ,-.q,_.T..-..._.... g #._CT'.g.AS.g..... 2 2.. ;...:.- -., 4..... n s m _........_.4.....u.A.._..._..,f.,,,,L. _h. g. . - = .p t $............,....a.. ....a.........L-...,...............4.,,G. .a.. .. q-...y -..-...
- 6...,.
...... + .e {.. ( *. II.i_. ;........._ ...w....,. - 4 _............ 4,..- ..D,,...... ..4...--t. .. s. I,. +. w .4 .T**.. .. ***I" i .-..p.m. .4... s_._... 12.. "r.=.#. .4 f.. /. ...s L ~..r... .p.... ..A._ .i .e
- u. :t 3..
,. *a. -..9.. _w .}_.... 4- .3... ....1......4...............4..,..........,.. -
- --*2
..-....i L..
- g. L
...k .....I. .......y.... J........ ..A 4 1 -4... ...C..l............ .66..T.... . _...4........... .4. p .-.4 --a. . 7... ..I... ........iw. 4. ..I...... _p.. ..........,...+4....... -...+.......+,.e ,w .T'.... . 4 ......,...,.e..4..... T*.*........l ..e ...m.. ..s t... e
== 9,..
- e.
,e 4..- . 4.... ..l ... n.....~......p. [, e.+ .,4......,9........... ...e 4 6. .e.4 6 ..f,. .7 _.-. .e.. .- 9 pg ...e..... 6 p....a.r s.v... ....,.*...65~s.'.. p.- ..I. ...........I...e...*16... ........4. 7 -.8 I. ..m -.e,...g...4..,...
- 4..
4 4 .......6.... l......n...... .-..-)... ..T.-t. .....J.... ,I....l"... .w 4. 4 t... ....4.. ..5,....,.....,. w...... 4.. 4+...... p............. = $1 h O $N H.W. 4 ..U.. a 4 .. MIMA E&. ............4..ye.... 4..... ....o.e....+ 6 4.... .....'..,.4 g. g ~ 4. ......... 4.........~.. ....4... ......4.-- N.4 ..s A ....4... 4. u-- g .g. 6. ... (....e. .I. .....e....< e ..J.
- T e
.4 =.$..... .9 bJ $ ..g s.... a ...m.... _,, ), ...,4...., .a.. ..s.. .e. .o.. l .. l.. .............a. ..4...........s.4.......s... 4. '.DDA.M.d. a 6.. -.9.....,.....~..... .p e.-. g ....../ 9 .......q.... ...,...........6I...- g........ + .-4 5
- l. e..
....4.. (. e . _ -e.....**I6...-
- a s:
- e. m, 4
.6 ..,...6..., .....+ 4. e.... ...e.. .g 6. ....s...6 .,f
- s..
4........... ..4 e -..I g.. 3 ,.m. A l p q b . ~.... - .e .g ..g..,, .g. e .4. .t 6
- p...s...
.e......l...,,-- ... a .e ...m,.,. p... 4.......... ..a... .g ..s 9,......... i. .~.... e-. p.
- 4. p.g
. 6......~.9 )-*.=.%.... e }.. -... ....$..........n, m ...a . % e. 4... ..f. ..a. g.
- e...4....
.g ....*.l*.....4.... I 4 ,i... .M ...) 9 N. ...Z....M.-.$ .s..,.e..e...m......d. ...i...... .J.-- ...... 6 4. ..6 .e.s.,--- .e. f t. .......... ++.... T. I... * ' t. .m ,...S ..I...... +. 4... . g ,l,.,. .....4... e. .-...,. I........ $.. 1. ....f. ...I.m .....& h 4 } N_ .. ".{ i/. s...^. .....K.. ... +. ...s .e..... 27 L
n. m-IL 0 r.. ...3. ...2.. ..4................ ......( IMMM UM l.'i ADDW.FAHD; C.or.M. AM D.. T. AMR~S...AT.13..E..E.t... - Sc_.. S L.A. i. _ _....a...u.i,. 2.
- 8.. t.
s. .s...... _.._.... i ..1....... _... ~.... 9 _.._ ............. _.......4. ......,......... ~ u ..e.. f..._... 1 ............. ~...... _ ...2...._... , c. <...,. 4._ 2 .........u...... .........a. r._........ .a.. ...1. . +._....... _.. ..t ....... 2. _.. _..L.. .... _........... _.._.._._. _..... r 4 L. . t._... ...2 .......... 4, 4. ....r, .s.... ...o ......a......................... _,. _. .... ~., a.......,. ..............-... a..... ... _. 2....... ....e. ... r......
- .t
....t... ._..a....,......., ..m. i. ....r... _..... s._-.... _.. _. .1 .......i.. ..2...,_... .t........_ ..a...... r... 3............ ..c... ......a. i... ..... t .t .m.. s......a .......i, s... . r......_....... .a.. .m,._._ .....A. o............... ..2...._. f..n..._ . ~.......t................a, i._.._. t_x _.. -..._.... _... ...m.. ..............4....s.._.._....n..,.........t
- j..
..t......t_.....___.. .i.............__.r... .+ ..g...
- .c...
. _ ~.... (.,. 1. m t.. ........... I.,....... .._.2..._.. f ei .........)...... '.. ... _ l.... .....,....._.e..., i.s t... ........,..r.._.._.. ...-.-..._...t...__._ .eew.T .. /. .m,. T.._. ..n. _..... .. =... L,.s . c..... c4a......................._...... .......h.... . m. o.. _ .,c 1, l .2..... . i.... ......r..,... t.,.. i.. ..... -., nA.....rn............_.,..... ... u,.... .r .. s.- .......................,......f .l.._...... ............t.........._.,.. t.. g.
- l........
- 1...
..........._.s... u....... .~. .A....,.._........1........ ......,......A. ....18,....... o... ..l. ~.....,... ...,.............. ~_.. t. ..*1.. 1.. .1 .. ~ ._...a.. i .....l.4 %. 2..... a t".A....C........... t. .......k..- ..J.... .4.,. .......1... 1..... ....J.--. ....a.. ..g.............. .... =. . ~.... ,u.........,..... n.. g... 48..... ...~..s...t**.**.*.*.J' ,e .). e ...4.....I.... .....,....g. .J.......1...............-l...' ..3 .s...... ... _._.-.....~.t'. p ~.h....t............ ~... 1.....- s. ...l,.......,.... [,. _._.4...
- 1....-.....
..1......a.. .s. m .a.t.. 4. 4 ............1.,........ / 13_ p g .. c.e.e......_ .3 4...,...... ...l.. ..........s.... 1.. . ~.....,......,... a. .t .....l......-.1....... , ~.... .. n......1.........6.._....n.. 1 1. .. p.......t.........l . L.,....................Y.. .........., a............... .t .l........ .....I. .).......e~.......1.,,.....1..................... s ..e s. .....t.... .. ~.....,... ,I........ I........ i ......, L,i.J- ..........e_j....... ~.., - g g g .............!............ 1...... 't. A. ......1 !...,.. .f E ....,...t .........3...,. f.... .s y . 7.. i .. -.. g.. 4..- .....i .s .. 1.. ..l....... g g g. .l.......... .1.1...... l....... .-.........e..=...*.*. .-......8 .s,.......4.... ..f....u.......... 3.. _......... +
- 1...
(~......... ..l... . *) ..!............._..f.. 1...... .- ~....... m
TAllLE LV SINGLE SUllCIIANNEL BI,0CKAGES - FUEL ASSEMill,Y lleat Generating Material Required to Attain: 1600*F Clad Temperature Coolant Saturation Tempe' rature Total Total Blockage: Length thss Surfacg) Area Blockage: Length Mass Surface Area (cm) (g) (cm (cm) (g) (cm ) 2 Funi Assembly Peak Pin
- 0.55, D 400p**
2.84 1.33 18.2 c = = c.= 0.55, D 100n 1.47 0.68 37.2 = 0.40, D 400u 0.96 0.60 8.22 c = = 0.40, D 100u 0.25 0.16 8.75 c = = Fuel Assembly llot Pin 0.55, D 400p 7.62 3.56 48.8 c = = 0.55, D 100g 2.54 1.19 65.1 c = =- 0.40, D 4000 1.35 0.84 11.5 c = = 0.40, D 100p 0.74 0.46 25.2 .c = = l As defined in Section 3.3 t c - blockage porosity; D - average particle diameter i Analyses indicated that the maximum temperature of the coolant flowing t through the blockage was well below the saturation temperature for blockage lengths -less t han 10.cm l (see Section 4.1). 4 1 ~ s
~ n-- ~ \\ C Lt.D INM E R \\ S UR * *.C E TEMPE R ATUMS s k C OOLA NT CHANWhL 955 to43 to2 7 topo - BLOCKAGE S URFACE Q 9 TEMPER ATUTtES E ? I 1349 IMO b e S. I696 / ~2 / 16 72. I676 'e I637
- Ac N( \\
s / 182.9 N.N 's N / / ,\\ l e ~:0 N BLOC K AGC NODES \\ w At! A S AT IC - S U RF AC E.S E. L O C V A G E E. '/. I T TE tA P ER ATU R E E, l.C iuCW SLOC4 AGE F E 4 l' FUEL P il.1 6
- G. A*;
G: l O O,o NOT TO SCAL E 1. F - G L' R E l t - + 33
r.,- -. 4._.. .u. t - u s,. h.-.. s%_$ =g ~m%. .. s ... %. s. ,.,_.. i.n., i
- e......
- a...
.w
- .n.
..u.. n.m. m .... r-. ~*t - L s ~... .L , 4 .g ~. 4 ... 14 3*
- a..
~ m.,.,.
- m-ArMM IM+ r -.MNH_6 h++t-.i +
$fp t i-M....$.E. M., o .4ti m.wm.,e.2 ~_._.-1_4-...._m. . -.4 y..r.,. .r 4_q ......4 s .~- y 1.es... .. t;1 ...... ~... .-1.c.a.,., _;_o ~... _,.a. .t t .i o i._ - - -.- 4 _- -. 4 t.
- m..
..2::..---- p .i.- I .~ m -.d g . t;. m ,.....I*' .d.,.. m.... u. m_ ... ~ .n u mt.,. q,.r= .;4..u,n ~:t_.. =- .. - - - _ pt h_.~.g. g-. mw p.~g,~. %_.,:g. -.. m c. m... ~. .q... n -,=.h, .m D.. 4: +..... _y .. +.. p. _ _.......i t- * -
- 4.=.=*
,1 1 1 .4 ~ r .e.e]- ..e-- 1 _r. ,9 __ + - ^ w +,.' .w-7 .+.6.j. ..,.g-- b-- '-__L_. w.Jp
- **t ****I'1 - _^ = %,,, -
4- ~ ,r, =, w-irr -. a . 2 + * ~ m.c I": 42-9~ -- l ~ 1.
- y y..-
+. ; 4. - e. . m .y- _,w_ -_d e ,,,.,4,,..- j -...=_c-..... =. _ .( ^ R"i r-a i .. - /.;- .L'.... _-,r ...__,- -m .~. _4-c,- f ~ p.f'3 s s...n..m-t-A p. (4 4.. ... n, _e.4 .l..- - q. _ -.9 .s,.. ... ~. h g --.o I... W e.' 4. 5... 4-4 J.A _g. ..} j. 4'.. t 9 9 4, ..s y- .4. _ <.-- i ........,2.- s-I .m......... 4 1 ..g._ .J. 4-- ,-] .u 4..e i.L.. L .. e.... - - .4 ..-1 ,,i w. _,4.. {. 9.. .q .g. {.J .g
- q. __
9 ......,...-_.s. .4 .,......r.....,........ .. 4 L' l a 4. ._/..p y.... _ +. + - - -h.} q-4
- g. Jf. Ij.
_, ____4.9.4 4 ..A.4.L. 3 .q _.., --4... 4.. 4... l '9.q:. -.._+..._.4- ....y .g.. ~.. .q ..4. -_{.---_2. A e .44...._f.~_...,l.+....,.,.,.j,,. 4 .e 4.&.. ..4.. .4 ...34.......- ( __y- .f + ..,.u,4.,_- _-.p , rg 44.. 4. i a.-- .4- ..4.. . f,. . ~.1 ,..~ ~.. 1.-.-- 44...., .4. .44.... ..'=.=.=.t.p-.9.. 4. ...J.-- 4.- .44, 9.. 4 ..W 9 I-- I J 1..... J.E. 1 I. .J.., _._.4 .l 6-4.. .,.. ~.. .w.. .+....... 4 4.. . g...; .4 -p 4. .4..v...... p. 4.. F _.,... -.. 4 .J. 6 +4 L. 4... g4... 4 ..e .--{....... a. . 4 ... 1..4.~. 4....$,* .a.. m. .s 4 4...,.. ..yy.. .4-... 4 .. 4 2 6; i. m .. I..... 4 4.... ..m-44....d...._.e. g 4 m........... ...T*.... ~, s 4.. 6.. g 't.. !. 6.4...&..4._.. A ..p 4 .C
- g......
- e..
e .9.. 4 -.e.4 1.. ...4... 1..... 4.-. .. q.... s.e....e..,.........l.....,..,e... =... .+....
- 4....
4.. 4. ,..g... ..46 4 4.I.....a. J.. d. {... .6.,................... ...e .-.*6..........+. a. ..a 44 ...g ~...4+ +. 1 .6..e**.L........ I, e... b. ...). g..,......... 4.. .6. .7..... 4 4 g..4...1..... -4 . -,..,..::t,. J-I .e.. .......b...... .....4,.4....... i .,.4...4..... t .. g........ ...t. -.1 4,+. 6.... 4 .g. .....4. 4 s..... .9 ~4,e........,. .4 ...6 g. ..e (.. 9..... .....$................. i...... .e.,....6...J ..................4.. .. 4 4.. 1 9..... J .o........ ,4 .e t. ... 4 .a.. ..g...... ..........4. ......... +.....l.*.... 4.. ,.4 .-.4.e.. 4 .. ~......+......,.. ......^ .......4. ..l. ... e... ...4 ..~..c.......,.... t.. ;. ... -.I .. 4 3............... ..s .. l.... ~ -..... ....!*.-94. .,1..,.. .g., .g.....,.....I......~4.....p.......4....... J. ~....g..... e4...... ......,.............l .,I .4. ..... I ..a. m Q,..- ..*L....... .~ ..............a.,.. I s.. .=4....-,.:em.6.'. ...e. 4.....,e..........,. 4 ..e..... 4... 4 .e. ..E ...........s... q, e.... 9 .I.. .4 ...J.. ..j....... ..l....... 4a 4.-.. i. .......a. 1.,. l.... .,4. ,.......... d .l ...................,...$. M. 4 ...a. A.l.. .4 n.. . I
- m....
e L, g.. 6 e. ..J- .4 4.v e... .y-4 ...m.- i. .,......-s.... 4 .g. 9...g....,....... ...i... 4 e 4.
- 4. e.
,,....e..... 1 ..a...6.,4...... ...I,........ .J............. .L. a .l. 4 g I g .,..... I.....i...... 6 .4.... s =.... _ .. 1 4 ..4.r, 4. .e.....,.... 6 4. 9.... .......... Al ..... - -..A., 6 6,. 4. .e...d=8.-.4...... ....e.. _.....A .I A p -.4......... g 4- ~ "
i Y i A ?! A BATIC SUR FAC ES '4561 'N FUEL NODES N \\ NOT" TO S CALE 5 8 R m ) 1193 n BLOCKAGE
- '779 e C'AUDING f 6+B
. 1622 3 I I 90 CLAODING% / 1597 7'S IT2E B LOC W A G E. h 7 t:0 DES 850+ d 1399 i
- 1 i
r262' l 9 CocL ANT l O 9FF Cs AssE L. t TEMPERATURE S AT BLOCK AGE EX IT PEAK FUEL PIN O.3 INCH PLOCRAGE E = 0.4 0 D: GOOP. l Ff GURF 14 l 37
~ TABLC V SIX SUBCIIANNEL BLOCKAGES - FUEL ASSEMBLY Ileat Generating M1terial Required to Attain: 4. 1600*F Clad Temperature Coolant Saturation Temperature ~ Blockage: Length Mass Surface Area Blockage: Length - Mass Surface Area 2 (cm) (g) (cm )- (cm) (r.) (cm') Fuel Assembly Peak Pin 0.55, D 600u 1.32 3.70 33.7 2.36 6.62 60.2 c = = c.= 0.55 D 400u 0.91 2.56 35.1 1.96 5.48 75.1- = 0.55, D 100p-0.33-0.92 50.3 0.64 1.78 97.4 c = = 0.40, D 600p 0.51 1.89 17.2 1.07 3.97-36.'1 y c - = 0.40, D 400p 0.41 1.51 20.7 0.84 3.12
- 42.7 e =
= 4 0.40, D 1003 0.15 0.57 31.2 0.28 1.04' 56.9 + c = = + 4 -9 1 c
4 consi.iw . ;.i cnt fuel nciting occursifnr blockages largct thau i.nosc:
- necersy'
,i t;od2uo 5 ciling*. Iknee,- sodium. boiling is a more. restrb druner.t thaa fual_ nilting in deterninla;, delayed neutien ::nitor-sens"iti ~ frements for:blochage detection'in the peak fuel pin. 4.3 Si. .,rsci alt ry:.;ts - kadial B1cnket Assenih-n Time max ; . t,g and u,ulantitemperatures for'the radial blanket assembb ,.i- ;uhchanna] blockuge runs.are presented in. Figures 15 ~ -threligh v. .;,.,f3;1ockage patameters. ore noted on the figures.->T.ble VII lists tia t c.f'hcat gsnerating material required =to cttain the- ...i limitin ..,fiii.nz-for the various blockage paranetera which vere ^ s. cons'iden i.t inlly. the s=e trends as those discussid in Section t he ~ fuel ' asa er.ioly ; are ' observed for ~ the blanket pin -. bundle i."- . W ucver, for most of ' the conditions cor.sidered,' cooleu:; boiling n ,....ihle for blockcges'~1ess -than four?inchu, in ljui;;ht. This is 5.: it. n i!y due to the relativcly larger (by niore than a f actor - of 2) cdire.oi. rer.tial ' dimension from the center of the blockage to the edge for :L.. blanket pin bundle as compared to3the? fuel assembly' cases This iner..e...,I thermal res'istance results in'relatively larger makimum ~ ' t empe rat u r..' .in the blockage even though for a given particle si:*c' and ' porosity, t h.. he.., ting rate -is less and 'the seepage flow. fraction is Inrger than that of th.. i.. 1 fuel pin blockage cases. Figure'19 shoas.the tempora-tures :at a h..,pj,,ntal plane at the blockage. exit for a 0.5. inch-blockage . adjacent Io i6 peak radial blanket pin (c=0.4, D=400 micrens).
- It ab.u l q i.',.idded that nominal values of:the fuel thermal ~ conductivity were used in t hi.s.u..' i ss h.,n., del i.enec, _ the maximum fuel temperatures predicted by i: are somewhat In a:.y.
maller than the values for a "true" 3: pini sir.ee,i' tuel uelting la n n as of much concern ar. sodium boiling,- vi 42,,5.,j_quantitlen of stable t.olten fuc1 cat. be tule.ated' durini t-. h-e te i n ration witisut resulting in pin faiJure. Fu r t h' ' ?*..uiv significant quantity of molten fuel wculd drain dow:. ward insidi s n. ot ral vald and resolidify in a cooler region. 41
I, ......_.._............._.........w.,._. ., _T~.' ....J...... y .. _.....v........ . L.. a.... ..4 . 2. M AXl MO N dLA DD 1 N & AN DE Odi_AN.S:M5tdP5k@EiREE .:. ::. 9 F, E 5 INGLE 9.H C -i A KN E.L.d Co r.4. M...E. L.....i,. V..r... *d..) T ...t..,. t, .s.. 1 - y ,1 RAD! A L SL A N K c.T.FEA R. PIN...._. . 5. n;.!4.; s...i.! =. 21, I i B . G v. O. S.. . u.. i ., _..........m.. .I ...i. t... .t ...r._..........._.._.._ _t_.. ..s......... 1 ...i m . ~ s ....t._. 1 w . i.2._. .. q... _., .....i. ...a._....,1.. ..r.. ,..... _...._,...4.,.... _._s.. _................_: .....i.., ..x . _.. r..._.. . s.... ...,._.. g .r..... ..,.i_... .._..t.,....,..~.r... .c.. t. .. 1 ....t ..i..
- w..d.._....
.. i.. .......q on r m. c m.3 D. to o u...... 1 ,. s .. ; c_... _..........,... ......r.._.....i...... .,L.. . _....w 7......... _... ..it. 4 c....._......._...~... r 3 t. .1 u 1 .. F, .........r... .t.._.... t, .o .i...... . hi .. /,. ~ .4... c. 3. m. ....t_... .. _.. :. a,. .. 2.. 3. a....,...... us .... 4.. ../. .......__.,. _. w.,J. .i.,.s...... ..,............:r..... ...:... i ...t, ...../....... .......,.i. .t._._... ... _........4 .....,i.. ...,........... t. ..o, . i.. i._........t,........, ........r........ t_.. ........... s..,.t _.... _. -.......... _ t.._..._..,__._.......- ..........t... .. t 4 h,...... .m......,. .e g. ._a...........~.. . _ y
- r..~...
i s..... ....s.. ...M. ................._....t.... ............,.. 2 ... _.. 1..... 1. ..1.. _..... 1. _.. _. +... ........a......:.. .. 1 s.... .g.-.. .. ~... ..........._...,e.. . <... _....n... .... ~.. ...b. ......,.......r... ..,.....,.I. ...........r. 9 ........_..t...................,.... t .. :._.....t....._.. o, Ck. h r 3:... -...t.....-...... .........._.i.... .......\\....
- k..$
.........J.... . i e. . ~ i. .2... ..6 .m ...s. .l 4 1. 4 .........p. .......s_.... . ~ _ _... .a.- .g . n.. .... _.. s.._. .......r. . i..... 2.. .......1 -..a o ... _..it... ....s.....,... .a 43
m-.., K 1 _..4 4:
- +.--
~ 4 ._ i g. +. .M Y-NKMM,5: =hi: A N M++09E*FM 'I --t.t.-W.u-R-L n + WU a. - + a1. ..,z-. a. _.e ' h."' N +'ErMMtt..N 5HMrE-4-in 4TN E@ DIE Lf A d ~ ,p t-.*++;---- _1.,i.. ---++++* a.g...4 c 1. .w. ..s_, ,M - ] _ _I F &,] 'E_I.1 F - ,mC. g rs - 1.JP g 1' +: m _ i -- 'u E y I E___ -.4 4-4_..j. t, p.C* .,m ETOOX. -*'"*C.- ^
- D
- *2'
~. A 1 J ~' ._, --~,.- - 7 fg ' ~ P _4 y, .. p 6 .*2d....,....T, pa.
- p.. -
m -r 2W y-p. y-yaw 4 .h, ., 4... ..._.,..,_T.._ ,.. ~.. - ~- -.. e- ..-+. a - } J'..* .~..~& ... ~..
- ~..--
..I, j.p. .,.-...e.._t.",..-..+.
- t.. _..............M...~.
. Apr. -- ,m 4 4- . ~. - p.. yy,.~.
- y
.w =a.s u 9.g L+.E i
- 3....-.
_-....t
- t. -
p... ,F .u....., .C . 19 .6..s.-...,.... A,.
- f. f.
.-:...h.. .&.9. l 4 p q .L......4.... Z' f.... ... + -.y... ..e--
- ,..-6..- p..~_
- .6.
. 4....... l e ..q ~ .I...... ._..I.* .. I .,t .&.y ,a a + ..I.....v... .. p..,.+. A.......J... .*E.. .6. -t*-'+-*** -. _
- 7.e.. e p..........,....j..
....+..._...4............... + 7 .-3 .- -.~ 9,. ._&........y......_4.. . -: m +.... .-. g t. "L'".Iy. q.4 ... --e..-- .~. ...L ...... _ 6. .)" .......-.l........................... 1-__ y ( m, .....a....... .R t............f ..-}.e.e... p,-- _ -.. : .... w. s. . Z._ .. J........ t.........w., ..a I.~.. 4.. 4... .g.._. ...A . L... s ..e. ..e-- ..... ~... _..s ._...-.....I.. _4 .72'.+.... ..b..... ..s ... c h. .~.,._.4. .. l..
- e..6.....
- g 4..
.e.. .6 ~ -.__.._._.$.*__..,._..._...t,.._.i.__..._._.,;...a._~..................: m... ....... _. _....._......_k.._.. ...._.__.,r_.... _,,7. .......s i u..._.__.,...... .._t._..._..............t._....r-....... f_............ _.i__..... - -.. ......g rpg.f4. ,..,. g.g.1.
- .,.,._._._,p....__t._.............._
..fgyr gpgrwi,........r....._....a. .x. . _......... _.s_...... r o........... .._..a.3........._.... . r_ _m ..Eh._.....E.;.._.._......._.....,,............,..J Q,K_AQ._..,.,.... ._.p_..,.. ..._...~. _.,.... . mw.. __.._._..._...._.._1,.._....._....__...._......a-............ 3......... _..... .m .u. ..t. .....J._.... ..,... 7.. _. ................ a. .e............._-.,...'_t"._......,.. ..._.....,..w-
- 5. _...... m..
._.._s... _..........._..._..,.*7 s.... 4 +....f._.... _...... s . T...... .,.d. ..1.... -.+.... .g .....-. _- - :.,.....s .._.,t.. t..~.... .. t w_._...._.....- ........ _........w. .r... ...4...._. .....;.n........._.._..._........_........ 4.......... ... g a..._. .+.,, _..... <...,,~_..,1.._..._. _............ -. a.. ....( ..n ~ ...t._..... ..b r.,. _._4.'.".L..'.4 4. .._...._..._...t......._... _. t... _.... ...e.__. -.._..i_......_......_._.._.._...,....... ..s.. t.~...._......,...........,............ _......... _. ........ s .n....._....._... s.. p_ _ _... ........_.........-......._.1......z__...... _..._.._.i.e..... ... o. ,.g _..t..., ..t.......r._................... .... u.......... . _......L............. e... .. I. -.. t: n:q. v. y. m :1.. g m... _.. 4_ m..y H FCKt4E55 _UN 4. .. c:.' -i. ...4....._..._._.. _....i._ ... ~....... _ _ _4 .._..s..... .......i.. ......t..... -..i... .....n...... ................. t...
- t....
r g, 4.. g. r-a 45
~ s . A. = 5 \\ \\\\ CL A0 INNER SCRFACE \\ TEM ERATURES. 4 O ,1 c o c * ~:- C* N N E:. \\ 103l t i I L p_ I f f 22 flt T e l tr +.8LCCK AGE SURFACE. a m TEMD ER ATURES "I O IT74 , gg g 1547 .I' I e o O co ,N 3788 /. / e 1786 / /' F186 (,'\\ 1866 y. 1
- 1862,
,/ N., ,/ 3859 ' N, ' v.cc u,; r.:r - N 'N ,i s N l n.5 V* ActLyg r;e % > t '.A t 4 : !, c BLOCK AGE EXIT TENPE R ATURES i O.5 (NCH BLOCKAGE FF AK SL ANKET PIN Gs O.40 Ds 1DQu !i NOT To SCALE i L. . _E. LLEE...).E.... _... __._ ....._..__...J 47
-c. l t i ,.-.w.._.a.,...a. .+ ~,.,,,...- ..- 1. m_ -4.z
- 1.-..
.q 4 7_' ....... - ~. -,......_m__._,. --".'r: M A M MII7 M r Gl~4f1 UNW:tANTF MATG M :Y--# r MpKK#m* F~:~ I.~ O..+- _......t,...._ ._t ..... ~ _...,..... t... g p L... sk. r.. w r... ........s.._....... .a. ....t ...t_ ...t...... .....n.. .... 4 .:1..... ~ t................. i. R...... E..B.. . A. R..M +T.__.iP. E. . d..L-o. a - t:......f........ t 1..... 1..........J.,.
- ...r t
. _ r.. a. ... 3......... .D.9. 0. ..... i . _. ~ .... _..... _....1 2. ..._.3....._......f... g ......t._...r........-. ...r ....i............ . _..... a.. .L ~. 4".-.*.*.. .p........... ) . T.. _ ..._..,p. [.,... t ....-...,.....,.....A..... ~1..,..., g ..q-................9... 4... .<.-.3 e .. l........... .4.. 4 .{ ...-.g ..k,.....i.4...4....1.. 4... 6..e.4.... ....L...._.,p...~..l,- ,..4....... .t....... 4.._... m._.._ .w ~ ............(.......... -. ..4..._ ........,...9...........L........ ..t ...,4.. .................J..... .........4 .....)... ...4.
- 4... 4.;.
.g e....,., .q....... ..-.g. ,6 p.._. (.
- 'I......
.1. ..e..., ..s....I.......-.m. ..,..t.. s. . e i,......a,.,.....,
- g. 4..A.
...... e..... q %. U... a.- +.. v I* A,,., .a F..... l....4.. .4 j ,.,,,,..,.......g................. .4 A. .n....... I.... t,. e +... -...... <m,.!**,...~ .,.o.. 3. f.....L. ...............4i..... ....._..,.J..,. 4. .....o..t...1 9...... ... 4 . 4 4. 4 . I 4 - g (.....n.,... p ..........,J..... ...............J***'[.. ,... 4.. l.. 4... .../.... .....4...... p g........ ..(
- e. _..,.....yg.
-.Q ... p ..+... .....4 ,..b-.. ..........e. $..: ..e 3&-J...... ..... a....gg.....a .I....- .4.. .. -.o ........a....... -4,. w P.. e. e s. J........ ...d. .J...... b.. s,.,.. . 4.. .4.. 1 L... ... 6.. 4.. ... - 4p.*....... J.,............... j ...~E.,....6..4...e...4-..o,.,. w.- s ..*1.".-.~.g. b.,- J...,.... ....6.. t.......... O.. .s ..,...,.....e 9.. .........g.,..... -4...... ...L ..3....._ 4. .. p.. ,..a....... a.. j.. g..... C.M.... .t.. ...J .,.....4_... 6.. . g... .....e-...... 6. .s -eg .,......k.... g.. 4..... .fapa.h b F9 Auf ...4... . + ....** 4.. ...J..e..e.. .....e..... ....e ............. e. ^ .e.e. .-6 u. .i 4 4 .. e...d e 4.e ..e 4. .. w 'e.e n. 4 ...e.... S .e. .e ... g . ee . J ..4...4.,.... S. ... t ..q. g. g. 6.4.-...m..... ...q... $...,... 0._.. ..e4 .9 ....e... g e .. -.........f -... - t..e .e... 6.......a4.....,4.. .......................T....-...... ..c .4.....9. o. E ..... e 5a.. ....a .4 g.,.,. 3 ...s.... ............ 4... t. .1.... ....,.ej.. .......A.6 ..,..4 g p.. = 9.*...... 4 g. ... /. .s .., O c ..........4.
- '***f..............,...v..4..(..,..
I.. .sg.......e.. 4. ..[.. t. ..y ..... 4... ~.,. f y... .). . * * * * '. ' ~.. T.' ~' W.1
- a.
- '.**f..
e 4 . ~. * '"' * ' '. ......g.,.. ...,...3 ...4,....... a. .l.. *! ...,....................1.
- l..
.e...9..... g.. 4 . -... e.J .. g. ...e.=.. a. ...e,....... g . i... -...I
- a..
..6.. . ye g .......s.6.... + .~a. .l-g. .,.e... .-4 .L.. ....4eg..,... /. . 4 .9......,.! P* .y. ,M.....e....... 6 d. ..g..... 1.............6.S'i .g... 7 ..e. a.4 e...i 4 .4 1. j - ..e N..M. f e....... .4..*q. .9....- .g......i .g p. -^.j..ae... .i .......e..e.. .. *,..=.l 4...... g =. g 5 .....+ ..6....... i .s ..e.........,...... .e*. 4*.*
- 6..
..a......... ....e.4-* .40 ..6.. . * +
- 8.........
...e.-..,.... r.*..*e.-*.*l.....e....< .....8 t. e'......I.e b r 'd... .. {.- . 1 . 1' q L%........ .-4.. 1 .e.. ......I......9***..**... 4. g .*5.....**.M i....-,... 6- ...... *I..... 3 4.. ~ *
- .. 4 g
/.. + ._ C* r.. + L*L.. ge.......,...... .g 4 . t..(.). O *t 1 9 g t p t .a 1....... ...e ..e .1.-. -h ? s.. g .g....e .....4.. ....9 . B L CKAG,.. .3, . I. S... ..b... .6 s
- a.. 4
.{ 4 ..... *...... =.... -.......... I ....e. +g $s...E..s.,
- c. s e.. $.r. o..) er
.s. Q. .a..wn...... 49
L. TA141.F. VI.LI SIX SUFCilANNEL Bl.CCKAGES - R!d3I AI. tilANKET ASSEMBLY fleat Generating Material Required to Attain: 1600*F Clad Temperature Coolant Saturation Temperature Blockage: Length Mass Surface Area Blockage: Length ' Mass Surface Area 2 2 (cm) (g) (cm ) (cm) (g) (cm ). Radial Blanket Peak Pin 0.55, D 600u 1.37 7.36 67.0 2.44-13.09 119.1' = = 0.55, D 400p 0.99 5.32 72.9 l'.73 9.28 127.1 c = = 0.55, D 100p 0.30 1.64 89.7 0.56 3.00 164.1 e = = 0.40, D 600p 0.61 4.36 39.7 1.07 7.64 69.5 c = = M c = 0.40, D 400p 0.48 3.46 47.4 '0.81 5.82-79.7~ = 0.40, D 100p 0.18 1.27 69.5 0.30 2.18 119.2 c = = x._ ..., z..r :,. :.. .-<:#~~ ~ - - **
1
5.0 REFERENCES
1. Fast Flux Test Facility FSAR, Appendix C, " Local Fuel Failure Events". 2. Clinch River Breeder Reactor Plant PSAR - Docket 50537, Section 15.4, " Local Failure Events". 3. J. B. Van Erp et al. " Pin-to-Pin Failure Propagation in Liquid-Metal-Cooled Fast Breeder Reactor Fuel Subassemblies", Nuclear Safety 16, No. 3, pp. 291 to 307 (May-June, 1975). 4. H. K. Fauske, " Evaluation of Dryout and Flow Instability in the Wake Downstream of a Blockage in an LMFBR Subassembly", Trans. Amer. Nucl. Soc. 15(1): pp. 351-352 (1972). 5. M. H. Fontana and J. L. Wantland, "LMFBR Safety and Core Systems Programs rogress Report for July-September 1975", ORNL/TM-5197, April 1976. 6. K. Schleisiek, " Experimental Investigation of Sodium Boiling Processes Caused by Local Blockages", Trans. Amer. Nucl. Soc. 15(2): 838 (1972). 7. D. Kirsch, "The Temperature Distribution in the Recirculating Flow Downstream of Local Coolant Blockages in Rod Bundle Subassemblies", in Reactor Heat Transfer, pp. 784-804, Gesellschaft fur Kernforschung mGH, Karlsruhe, Germany, 1973. 8. A. J. Brock, " Local Boiling in Fast Reactor Sub-Assembly Geometry", SRD-R-34, 1974. 9. K. Gast and K. Schleisiek, " Local Boiling in a Partially Blocked LMFBR Subassembly", in Engineering of Fast Reactorc for Safe and Reliable Operation, Karlsruhe, 1972, pp. 730-741, Gesellschaft fur Kernforschung mGH, Karlsruhe, Germany,1973. 53
1 J i l 1
- 21. M. H. Fontana, et.al., "Effect of Partial Blockages in Simulated LMFBR Fuel Assemblies",'ORNL-ni-4324, December 1973.
- 22. W. D. Turner and M. Siman-Tov, " HEATING 3 - an-IBM 360 Heat Conduction Program", ORNL-TM-3208, February 1971.
- 23. A. L. Edwards, " TRUMP: 'A Computer Program for Transient and Steady-State Temperature Distributions in Multidimensional. Systems", IJCRL-14754, Rev. 11, July 1969.
- 24. M. D. Carelli, et. al., " Predicted Preliminary Thermal-Hydraulic Per-formance of CRBR Fuel and Blanket Assemblies", WARD-D-0054, January 1976.
- 25. Delete
- 26. J. G. Yevick, Fast Reactor Technology: Plant Design, MIT Press, Cambridge, Mass., 1966.
- 27. Delete
- 28. G. G. Brown and Others,~ Unit Operations (John Wiley, New York),1950.
- 29. L. H. S. Roblee, R. M. Baird, and J. W. Tierney, " Radial Porosity Variations in Packed Beds", A.I.Ch.E. Journal 4,, No. 4, pp. 460-464 (1958).
- 30. W. H. McAdams, Heat Transmission, McGraw Hill, New York,1954.
l 3
- 31. E. Singer and R. H. Wilhelm, " Heat Transfer in Packed Beds, Analytical Solution and Design Method" Chem. Eng. Prog. 46, No. 7, pp 343-357 (1950).
~i
- 32. M. Jakob, Heat Transfer, Vol. II, John Wiley, New York, 1957.
55 .-. -}}