ML20062J736

From kanterella
Jump to navigation Jump to search
Summary of 800930 Meeting W/Util & Westinghouse Re Lab Examination Results for Steam Generator Row 1 U-bend Tube Samples Removed from Plant
ML20062J736
Person / Time
Site: Trojan File:Portland General Electric icon.png
Issue date: 10/20/1980
From: Trammell C
Office of Nuclear Reactor Regulation
To:
Office of Nuclear Reactor Regulation
References
NUDOCS 8011060253
Download: ML20062J736 (53)


Text

{{#Wiki_filter:[p %,b UNITED STATES EY NUCLEAR REGULATORY COMMISSION yw ~'-'- r WASWNGTON, D. C. 20555 f October 20, 1980 Docket No. 50-344 FACILITY : Trojan Nuclear Plant LICENSEE: Portland General Electric Company (PGE)

SUBJECT:

SUMMARY

OF MEETING HELD ON SEPTEMBER 30, 1980 WITH PGE/ WESTINGHOUSE TO DISCUSS INTERIM LABORATORY EXAMINATION RESULTS OF STEAM GENERATOR R0W l U-BEND TUBE SAMPLES REMOVED FROM TROJAN On September 30, 1980, the NRC staff met with representatives of PGE and Westinghouse to discuss the results obtained thus far from the laboratory examination of steam generator rows 1 and 2 U-bend tube samples removed from Trojan. A list of attendees is contained in Attachment 1. A summary of the technical material presented at the meeting is contained in, which includes the viewgraphs and slides presented at the meeting. PGE/ Westinghouse removed 26 row 1 and 3 row 2 steam generator tube U-bends from Trojan during a refueling outage this spring. PGE had been experiencing leakage in row 1 tubes in all 4 steam generators. Tube samples vere removed to gain a better understanding of the cause of tube leakage. PGE/ Westinghouse has submitted two reports of the investigations thus far: July 11, 1980 - nondestructive examination (interim reselts) August 15, 1980 - destructive examination (interim results) The purpose of the meeting was to gain a better understanding of these reports and results obtained to date. Axially-oriented cracks originating from the tube I.D. have been found in the vicinity of the transition zone between the U-bend and the straight section. Details are contained in Attachment 2. A further meeting with PGE/ Westinghouse will be held in mid-December, when final examination results will be available and discussed. There appear to be three corrective action options with respect to row 1 tubes at this point: THIS DOCUMENT CONTAINS P00R QUALITY PAGES BdacM pzs3 P

Me' ting Summary for e Trojan 1. plug all row 1 tubes 2. plug selected row 1 tubes (those susceptible to cracking) 3. leave row 1 tubes unplugged ;f it can be shown that large tube ruptures are unlikely (i.e., small leaks only, as has been seen thus far). Corrective action will be decided when the examination has been completed. h. lY Charles M. Trammell, Project Manager Operating Reactors Branch #3 Division of Licensing Attachments: 1. List of Attendees 2 Viewgraphs and Slides cc: w/ attachments See next page l l

$r. Charles Goodwin, Jr. Portland General Electric Company cc: Mr. J. W. Durhac, Esquire Donald W. Godard, Supervisor Vice President and Corporate Counsel Siting and Regulation Portland General Electric Company Or,egon Departrent of Erergy 121 S.W. Salmon Street Labor and Indestries Building Portland, Oregon 97204 Room 111 Salem, Oregon 97310 Columbia County Courthcese . Law Library, Circuit Court Room St. Helens, 0, egon 97501 Michael Malmros, Resident inspector U. S. Nuclear Regulatory ComT.ission Trojan Nuclear Plant P. O. Box 0 Rainier, Oregon 97043 Robert M. Hunt, Chairnen Board of County Conmissioners Columbia County St. Helens, Oregon 97051 Director, Technical Assesseint Division Of fice of Radiation Programs (AW-459) U. S. ~nvironmental Protection Agency Crystal Mall #2-Arlington, Virginia 20450 e f f e

  • s i

j 'i ? l

MEE1111G SUlGRY DISTRIBUTION Licensee: Portland General Electric Company

  • Copies also sent to those peopie on service (cc) list for subject plant (s).

tocket File .fiRC PDR .t.RR TERA _) ti IC OR3 Rdo -#3 11RR Rdg HDenton ECase + DEisenhut 4 RPurple RTedesco TNova k Glainas R.5eid Tippolito S','a r c a D ruichfield U iark ORE Project "anager - CTrammell i-Li:ensin; Assistant - PMKreutzer 3 Gi' D AIO2 - JHeitemes II-3 S5hewe (P',:R) or CThayer (BWR), IE R: aley, A RS (10 I Fr:;-a.- S ;per: Eranch GIech Litrinski ES+ ss ':::i.4 ns . :::ano i E-4;sncy F soarecncss Developmer.: 3 ranch S naa-. Di s t. ',f t a -ti ci r.a nts Brurovlin LFrank .. LKintner ^ PWu DHuang ASchwencer WHazelton DESmith FMariliga BDLiaw PMatthews BJYoungblood l SPawlicki CStable ADromerick i EMurphy JKerrigan l rQ1

LIST OF ATTENDEES PGE/WESTINCHOUSE MEETING SEPTEMBER 30, 1980 NRC PGE C. Trammell J. Carter B. Turovlin G. Zimmerman P. Wu W. Hazelton W B. D. Liaw R. Aspden S. Pawlicki C. Hirst E. Murphy R. Bagby R. A. Clark E. Murphy L. Frank D.' Huang Brookhaven D. E. Smith J. Weeks P. Matthews D. Van Rooyen a

(AChYkut$ $ INTRODUCTION The Trojan Nuclear Plant is a four loop Westinghouse Pressurized Water Reactor facility with a Namplate Rating (Gross MWe) of 1216 and Maximum Dependable Capacity (Net MWe) of 1080. The initial power generation took place in Dec. 1975, and the plant was declared commercial in May, 1976. STEAM GENERATOR CHARACTERISTICS The four steam generators designat,ed "A", "B", "C". and "D" are Westinghouse Series 51 units, and were fabricated in the Tampa facility. The 3388 0.875" OD X Q 250" wall Inconel 600 u-bend tubes in each generator were produced at the West-inghouse-Blairsville mill. The tubes were shop rolled into the tube plate and later Wextex explosively expanded in the field. The nominal primary pressure is 2235 psig-Primary inlet and outlet temperatures for the steam generators are 616.80F and 552.30F respectively, and the nominal secondary temperature is 533.30F. Typical mill properties for the Inconel 600 tubing can be characterized by those for the three defective tubes to be discussed later. These are: i C Mn 1.Fe , ', S Si' Cu Ni Cr A1. :Ti Co IIeat No. f 5889 .03 .21 6.37 .007 .15 .01 77.74 15.46 .27 .34 .01 2652 .03 .13 7.33 .007 .21 .22 76 78 15.27 .18 .28 .03 2834 .04 .19 8.16 .007 .28 s47 75.86 14.97 .19 .23 .04 Ilea t No. YS;ksi UTS, ksi ELONG. % Rb 4889 57,58,56 103,104,102 58,36,37 77,86,82 2652 57,59,59 103,102,107 39,41,40 89,88,87 2834 57,56,59 102,111,103 40,41,39 87,86,87 The operating history of the plant is summarized in the attached charts. Maintenance and refueling shutdowns are ge'nerally timed to coincide with the spring runoff and available hydropower. Other outages of any duration are explained on the charts. 7

PRIMARY WATER CHEMIS1)) Primary water chemistry has been,within norma) Yentinghouse specifications except for the following. 2 was about 15 co/Kg H O for,about.a two month period during 1. H 2 startup. It has since been in the 25 to 35 cc/Kg H O 2 range. 2. While there is no specific limit on SiO2, the plant experi-enced a high initial SiO2 level thought to be due to residual blasting sand in a storage tank. This level (<-1. 5 ppm) was graddally reduced during operation. 3. Li70H concentration during the period from June f977 - March 1978 was maintained at the low. level of .2 .S ppm Li as p' art of a joint experiment with Westinghouse. STEAM GENERATOR INSPECTIONS The first figure summarizes the results.of the steam gen-erator eddy current inspections performed to date. All relevant indications (not found during pre-service inspection) have been located in the Row 1 U-bends, of which there are 94 per generator. The next figure shows the configuration of the U-bend region for the Row 1 U-bends. Returning to our summary, initial leakage was detected in January, 1978, after about 10,000 hours of operation. Note that this leak in the "B" steam generator was not found with the equipment then available. Pressurization of the secondary system revealed the leak to be in the cold leg..This leak was plugged, and a long outage due to seismic deficiencies in the control building occurred. Leakage was again detected in Janunry, 1979 (s12,000 hours of operation). Upon shutdown in Octoben, 1979, all Row 1 tubes in all four generators were inspected.' Operat-ing time at the point was over 17,000 hours, and a maximum leak rate of about 150 gpd had been observed prior to shutdown. Five leakers and four indications in Row 1 U-bends were found. Leakage was again observed soon after startup in January, 1980, and increased to a maximum of 68 gpd just prior to shut-down in April, 1980 at about the 20,000 hour mark. Leak checks of the "A", "B", and "C" generators revealed'five leakers. Eddy current inspection of all Row 1 tubes found five indications. The two indications in the "D" steam generator may or may not have been leakers. In addition to the indications found in this inspection, R1, C7, which was not inspected prior to removal, had an indication in the cold leg tangent region upon laboratory examination. The next figure summarizes the overall history of leakers and eddy current indications found. The' rough balance between i hot leg and cold leg occurrences is of interest. It in also interesting to note.that if one marks the column numbers off i f

, on a tube sheet diagram, no particular pattern is observed. Some tube marks are displaced one trib e because of duplication among the generators. Eighty percent of the occurrenceu are located adjacent to flow slots, which happen to be adjacent to eighty percent of the tubes. t TUBE REMOVAL OPERATION Pursuant to an agreement with the NRC, it was decided to remove 26 Row 1 tubes (Cl - C26) and 3 Row 2 tubes (Cl - C3) from the "D" steam generator. This provided one known leaker (R1, CG) and one indication (R1, C26) plus comparison t ubes from Row 2. Subsequent identification of R1 - C7 as a defective tube was a bonus of sorts. Tube removal procedures and tooling were developed by Westinghouse -NSD whose personnel supervised the operation. After drilling a pilot hole to verify location, a weld-deposited buildup was applied and machined to accommodate a flanged cover for this field installed hand hole. The buildup was post-weld heat treated to satisfy applicable pressure vessel code requirements. A six-inch hand hole was then cut in the steam generator vessel and the tube bundle wrapper just above the seventh support plate. After measuring the leg spacing on each tube, the tube was cut above the seventh support plate by a plasma arc TIG torch. The tube ends were sealed with tape to prevent loss of contamination from the inside. Photographs were taken of the tubes, and they were crated for shipment. A typical field photograph is shown in the next figure, followed by a f igure showing a general view of the situation after cutting of the Row 1 tubes. NONDESTRUCTIVE EXAMINATION Upon arrival at Westinghouse - Forest Hills, the tubes were uncrated and photographed. A photograph of Rl-C6 is shown as the next figure. Following this documentation, the tubes were eddy current tested, radiographed in several rotat ions, and limited dimensional measurements taken. The leg spacing, l before and af ter cutting of each Row 1 bend and the maxi. mum ovality measured, after removal, at the apex of the bends and at the hot and cold leg tangent points are summarized in j the next figure. Also included are the NDE findings. It should be noted that there is an uncertainty associated with the pre and post leg spacing values due both to the dijficulties inherent in making the measurements in the steam generator prior to cutting and in duplicating the location for the measurement a f,terward. Assuming that the reported values are reasonably correct, it appears that RICG, the leaking tube, and R]C7, re-ported by radiography and eddy current to be cracked, have the smallest leg spacing, prior to cutting of any of the Row 1 1 e

< &E%) '. STEAH OUTLET T0 t TUR81NE GENERATOR HOISTURE SEF AR A10R l ,'1 y HANWAY P y - OPPER SHELL SWIRL VAN E HDISTURE y SEPARATOR FEEDWATER INLET u y ANTI-VIBRATION BARS h 1lj l I L j l l -LOWER SHELL -l7 l ! 10BE SUPPORTS L.k Nill ff TUBE BUNDLE l } tl /. p{ [ PARTIT10H C ? (' '*~ f. C' y. 4 3 TUBE PLATE c ~ MANWAY l IL' 'A " SUPPORT FOOT CHANNEL HEAD 4 PRlHARY COOLANT PRlHARY COOLANT INLET CUTL E T Figure 5.5-4 steam Generator t l

1200. ua.,ux., l. ' 3,, ;, .} g.a.. ask rt,7p a,- I 1000 f anar ad\\ i i } i -100 5 ) - qt = 31 gj i r F;5 -) J.- !l !l ~ i 800-F 0 iF l i Z e S [ l l [ C E E l DEC. 3 600 \\(975 / j g i a:g: E ...i, m...,, C.i... :,.....,

t..

+ l clk:lll 400- } i p: m L.a.J l i Z 200 L.a.J E l l l [ j CD ~ d j l .mqu'.mymp.g.a. :u.,u.qu.a.p'l...h g..n.aj.a.p...,- i.k....w...pi..;, a....... 0 .i ,i.. b ' 1$ ' #., -. 25 l 5 15 25 5 15 25 ' 5 15 ' 25 1!. 25 5 5 25 5 5 25 O th 25 t$ ' 25 th 25 " 'S 25 ' 25 I$ 15 JAN. FEB. MARCH APRIL MA{ jug J U,LY Aug , SEPT. 0 CT. ,,N O V,. ,, D,E C. C., Ce a i C a i C., a c 37 a e

2. n

, m.s n C .a W n o 1 a O A'200 y 3ii..iqiir t i s i ii ri7-4 - 4 i i i.iii,i 4 ii .r. i..ii.. ..i i. r i6 4, i ii E l e i j i W 1000, 1 )= ms I ~- i y 3 ~' 4 hgg g f-d 3 b' l ' 3';- -d W 800- ?- g kk Nh -Y , A O1 k C ?: ' ..m k) ' Riu s ~k $an$pIk'4 h $600-5.ang-@j! E"i 5 9 2 s %g s d p'4-u n -= , l$$% }L @f[c- '7' s$ - m = ww 1*fi k* - k e* w~- . e d 3] "h ^~' p M 5NM '-tf m 400 t _M i d C A twN__ i CD a M$,hbW 200 EBilEl-- H i Margese i L 0. k.i.;.. g i.q......;,.. ...m. .u...

1... i..,. ;n.. i..p. t o,

,.. r.... i.., o ..n. o... m. o.Y5 ' 25 ' $ th 25 5 15 25 5 15 25 ; 5 ...a... 15 25 1 25 th'25 6 ' 15 ' Y5 k 15'N5 k'15'25 6 15 ' 2'5 f $ is ' 25 DEC. JAN. FEB. MARCH APRIL MAY JUNE JULY AUG. SEPT. OCT. NOV. + i A, 95 7% A. 94 6 % Ae 61 8% A. 96% 1 A, '50% t As 9n Ao f16% av TX% A, P', <, % 'g, M ;g 1, L 7% 5 Cao B3 7% Cap 9, 2 % Cap 37!% i Cu N 7% Cu tv ' Cu 221% Co-di 9% Ca. 86 9 % 4 Cw 6u 1 % e cn EIS.

c. 2 37 Cw K 1

9 7 7 " "'~ ""~~ "" '=::x';=w.

, j '."'i T"'i~T"; ,,,,, g ie i l's ~l 4"i 6 6 i i 4' . 6 i 's iI .~l' . r. i... i.iii i iiii.. ii.. .'4 .ii + 000 ,.CM D. E CO...'t.Ct.,,L - m., j j i l

  • .v.4LAJiL1Y 37 0, l

C. CAP.C.TV 65,, g ] QLSELECTMsCOLTPUT l l 800. =~'a-- Z l2 J e a ..,m_,_ g J. in 600 -g g [. 4 e,_ om,o.c o.m. o,....,,,........ co . < o. c e l =* E! g l gl3::: 400-9 j l L.LJ h Z 200-L.E.J M ~ h i O,qu.em,.,, m[a.;,,ae.. Q g f l R Elyn m,,..,4 g.A.,:,y,.gg, A s.g..;gm,,.,,,,n.....," L y,. .,a.. ..2s s is. 2s s s 2s O s 4 ' rs s 4s,. e 7.y 3.. i m,ms. 7S...g...g ; ..,;..., m : g u. s 25 is 2s 5 ts 2s 6 25 is 2s s is 25 is 2s s s as g"g J,A N. FEB M A R.C.,H APRIL MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC. .. s I ic e o. c

c. o c.,

o co co c., o co c. c. . c,,, O 1 9 7 8 1200 y 3,,,1 ,i.igi.iii.giiii, iiii.; iiii ,ii)iii. jii. iiiiiq i.i,.a .. i i ii ,i_ 1000; >== l 1 L.s.J 800+ l i. ca.1c.. w.a E l l Be 600f a:I"

s W,

2 $ CJ m i L.. "ts't'i J CD I I m 400-m CC l g 200-i + ..s.... s. . r s., -- y -. - I l 1 l i ~ i 0 .,,.,3,u.,..,g...,...;...m.m,%.,,. 3.;.a.g..e,eprpasp,g,:.3,<,,.....'ga.q.grg;...g.m p,.,. agep.:. ops.ejan p.v,. :.;.:a.r:.. err...op.mr.,rg. c ; :.r.g,..x. q.,wr'. 1 u s s 2s & s as s ik 2s e as 2s s s 2s e 2s 2s is as is 2s s as s as AP R,,I,L 'MAY JUNE JULY AUG. SEPT. JAN. F E,_B. MARCH O C.T. N.OV. DEC. .m .m c c,_ m ,m c m. c., o -.m c.,,,,, m.,, m u.,

m.,,

i c. 1 9 7 9 T=:2.';:w.c u.:. ~~~""c'"'c"='c'"'"~~'~

1200 g. n.,,.prv,, vm ry c o r , i,,.;,,,,. j c, c i, - r,,.,, .,3 n nce,1, i, 3. + 1000- "" " "Eb"Oi; I l ' Av.14A83LaTY 8,9% C.7.c1TT M F, Cmoss ELECTetlC OUTPUT 800: '"a"'- i Z 22 u c3 g g l 1

  • 600-auuu ufe g

g [x ,00., om,o,.,c o.o.. o...... .. -o.o c 1. .m o~ r l 4 iii j' t g2::: 400 LaJ l 2 230-La a R i 0.. ..;a, . 1, ..spr i;aa,nai......,....p .yati n-.p..i+f...i.pg..p p pritay.*a. o.,jmi.aga.;mi..p gu pg.. par ajc.utugainura ; u a.c.o...q..a. p.p..p a.c Q is 25 s s :s + $, 's 2s is 2s 6 25 s 15 2s i 5 25 25 15 25 25 2s 2s ga'"g J,A N. FEB MARC,,H APRIL MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC. i i ~ -m c .m c ...s,

c. o co co c., o co co c.,

c,, c., o J 1 9 7 8 t 1200 ,,,,i ), 4 t y i, i, rg, i r a r i,ii,, c, 4 ic

26i, ccrer i cit 1 ci, i,i

., c i i vr r c. J l 1000t U ~ Led l 11 5 l ~ l LaJ 8004 l 7- ..c.mse..oe,.c. l = i c 3: 600t 2 5dd ex: s 400-7 =';=' l = l c3 I I c2:: p 200-a. l ' l l I 0 m,m gdm.g r.,., g....,.m..,m.c..,p.,,25,,m.g.: pi,.:,s r.,ic...n;.a gmp.i.. g.. :......mi.nrr.ng.pprpgn.pd.q.13.u.uga t...go.d gsprp. u.i.,.,3,r.. :. g.ieg..r".,..a i: d d 2s s is 2's $ is s ?s 2s s ik 2s I s is 2s s u 2s s 2s I u as

  • 2s is 2s 2s i

JAN. APR,,IL 'MAY JUNE JULY AUG. SEPT. FE .., B. MARCH O.,.CT. N.OV. DEC. h .. m .m .., m m .,a ~., o ~- i~ .m c -,, ~,, c o c .m ~.,, c c m., c., o c,, !~

.~
:2:;te: =2.:.;.

1 9 7 9 ~ ~ = " ' " ' ~ ' " ' " ~ ~ l

i i: ' i ' li! .s

i. M 2

C .-. C . sE 5 D. m. .5E ' p i. t D. m " + c m r a [

I I+

.}' o m n ps p5 i2 m. 2 V., j V. c p i - ps O i. gO ' p N m i - e N. m i. c a i ps [ ,!I p ll I l ll [ m. a - ps N. 2 T. m as 2 i a T.. n.j n c - y .S. C ps C i - t. O. n..: O. - o .i. m c pi p I

l' ltl I

l: .I' a, i. p5 ps 2 T. T.. 2 P - n P ,s ps - E r E p' S j a c u. S. c n ps c e i!I l lll dj. iit l' I .li l ,I l p:s ps c a, v2.. a. G j G a .i w

4. s U m6 U p
p

. A ~ A. u. c. i c

i. s u

[ l p l i2 gs q 1

i. s a

o t; Y g Y l I I . s L3 r a L pu = qs nj U a U 8 c J J c 1 m n I .l o l n n u s ps s.2

m. 2 E. o j E 0-n i.

N N . e .. s U t U i.; J n J c a c s . s i 1' I l il!l -1 + ) l f ,I c 5 5 w n - 2 2 u Y Y A s A .s . M i q u t M. i ps c i ps-c m. q-i[ gs c s L,,, qa .a .i n, IL p IR,, u, a.qs R c i = ,s i P P c r j A n.; A s c n6 c p i a s q n, s s i a H, o i j2 H., n C-,, i j C i.as R =. s R

i A

,.i A 13 M i M c i c rs u. e!I. 1 ' !l iI l I l .i l s s r a B, o. . 2 p i B .,. s ms E ni E

i. i F

y F. 1 ~ m c. u i.

.s is i

n. i ib' 5 . 5 n : Nmm. i. i,2 2 , N J. . v. s A cs A i, i J. m. c g i .g

?E
?i:
E E;:

E m.Q n. w c

a. s qs 4c 0

0 0 0 0 0 0 0 0 0 0 0 0 0 e ~. m 0 0 0 0 0 0 0 0 0 0 0 0 m 2 0 8 6 4 2 2 0 8 6 4 2 . oC 1 1 1 1 .fo SEi$ E . r. m =G3oE e .D . mo ~ki ra m O"'"=ggCm&W FLZ Z<i3:z. ~tc ZCH4lcll:awZwc. 3 3 - J. e 7 F n a. l

C c g.,

.I ii

i TROJAN STEAM Gl:NERATOR INSPECTIONS t

SUMMARY

I i i PRE-SERVICE: April, 1975 l 100% of " accessible" tube area; 400 kHz [ 3 i j APRIL, 1978: SG/B t 507 tubes @ 400 kHz around U-bend. i 68 tubes - small radius 400 kHz. I 27 tubes @ 100 kHz. Leak @ RlC57 not located by eddy current. OCTOBER, 1979: All Steam Generators 94 tubes (all row 1)/SG @ 100 kHz absolute. 1 1 5 leakers: One (1) in SG/A; four (4) in SG/D f One (1) indication in each SG. 720 mil ball gauging in Row 1, SG/D: All tubes 4 passed. 1 I + JUNE, 1980: All Steam Generators Row 1 in all four (4) SG's. t a Reg. Guide Program in SG/D. 5 leakers: Three (3) in SG/A; Two (2) in SG/B. 1 EC Indications: One (1) each in A,B,C; Two (2) in SG/D. (possibly leakers) r 1 t f I i i i t t f b w ,w rw - e-,, -,,,wv.,

-u + ~ ,-Aa -M 6 e n 2.628" 1F n 3.505" 3.370" 0.750" i I i 1 2.760" ~ I l

Date SG Column Elevation Finding Plugged A 68 CL-Tangent L 11/79 A 38 HL-Tangent I 11/79 A 48 CL-Tangent L 6/80 A 80 CL-Tangent L 6/80 A 87 CL-Tangent L 6/80 A 7 HL-Tangent I 6/80 B 57 CL-Unknown L 6/78 B 47 CL-Tangent I 11/79 B 48 HL-Tangent L 6/80 B 51 HL-Tangent L 6/80 B 50 HL-Tangent I 6/80 C 34 HL-Tangent I 11/79 C 68 CL-Tangent I 6/80 D 6 CL-Tangent L 13/79 D 62 IIL-Tangent L 11/79 D 70 IIL-Tangent L 11/79 D 91 CL-L. 11/79 D 26 CL-Tangent I 11/79 D 31 CL-Tangent I,L? 6/80 D 55 IIL-Tangent I,L? 6/80 D 7 CL-Tangent I s

  • Nor inspected prior to removal - laboratory findinr.

12 Cold Leg - 9 Hot Leg b

( O (1) ~ n .Z ~ ~ ~. ~ee ~ - n n n

  • e e

ee ~ *.= , e n em n 4 o l a n n e lI oo 4_tilli [- .i _f i. 3 ..i ,1 s. e i 8 3 . 1 a n .e ,e i.,,, .f . a. .i. i < -p 1 . p i,.

xi

.4 i _ m LLL .I t - i n- _ i ,' ' t - 3 I ,*.I _ i iij I y J .,, n 6 a1 i. g v,. B i e I ? I l' i l t g N _ t _ .8 i a.In 8 r 4 - I e -, i. ! ; I! a a g ? 65 _ I-I - .e

== Q - I .s I ) ei e!4 8 *. _ tI 3 I e-i, a iI ., ? I e i - I, II ,{ a [ ] 1 l,ei. 1 4. I .a. 5 a _./ - l I 4.. ' l 3 i . - I

  • I-i
  • i'_

t 8 a 1

  • I i,

e.a. ' t I.. a g _.,,, [., . ' e, 8,, I.*

  • n,. 3.. - e n

4 s e, yu a i...

  • iu a i

1, = .i t.I,... / ' 6,,,. 6., l. - 4 i /... s.u... si,... 4 , e ...,f g =* 4 . ; s .? . s i t i.. = n .I- . 1-e e i ,e s s.. ++ ..i _/ s. s n s. .o i

== ii.sI. =" 1 .... i -.. e t i .A ~ I i ~ t _ w 1-i [ . 5 A _l - t i,,. ei' l f.. Ya. 1,*- ' I . : n a a .. Jilt.g..e 6.,4.. e .e.

,. ti tir.,1,6,. 5. netin 5

i i 1 i. 1 i '+I n. ,-.it, 5.il a I iw M a p t w a . a e I I t e 3 e .g .,., -.... i ..,w; a,,,,i. f.. a e I a i i a:.. .,i-.,, i ~. 1 .i, n - a = , r, ,=

  1. ,..., ea. i a

N a, .ii .i I s. i t.. . 1. z..i. 4 a 1._., ., ' i . i . a i li.II ! i,. e. get.;,, .i., ..i.e.s,.... i.. = i t. . i, 1 .. 6 [

  • I

. ] 5

  • t

,- i { W t - - t ..t -. e w; e.m . u.. 8 e X l j I., , ! i w ,,6 ...ty- ,.,..i..

2.,

........ i.., I a a 1 - 3 w ' I, m e 1

i.

5 .= s. 1 n-e e I< .t .. 4, a .A w II. i = 1# e i _, I

  • f 3., e a

g tt. i g ,8 1 t i,_ i g. 1 6 i,

==

=

U - e* 1~ t n n .c .,4 .,.. a i g., , i - t t._ f.g s .e. is a - 6 . i-i i u I i s i,. 4 i 1;... .= aI = si .y 1

== 1a. 6 .w \\i ' 1, = ,. !3.* 1 .m. 11, s., ' r a a a 1 1- ' , i 4. 4 i s i Ut. 8. ., i . i a. n i , !

  • i i a a*

,4 ,1 . 5 i i n;I 4 a \\t t 't = ' M. i ll, I,!!tl. ..,'.. I _ 8 i i, 1i

1.,

g }* e ',t I i t

  • 6.*

?* i s,' e \\l l e t ti t tt

  • i t '

, t i n . _ in t - 1 i n. O 1-8 ' ' I f r I J , g,, .,,.] (- J = !3 i I.-: 6, y so,,4 Ni t + . t.. . 4. 1 \\,* s., ,e e i pg e. j14 j-5 4< \\nx, 'i. m-t e g. a =- x,. ! I - . 5 kl n 0 g M . i. .I g i ( N i x,.. . w... r.. i

== x, i 1 e. x e , a. 1 g N< e n. ,e e w . i.i. ) w m '+j I x ~ e. N x i = = x. I N atill

.o STEAM CENERATOR TUBE DIMENSIONAL HEASUREMENTS AND NDE RESULTS Percent Ovality Tube Leg Spacing (Inches) (Maximum) l Number Pre Post A CL Apex HL NDE Results RI-C1 3.505 3.457 .048 4.8 2.'06 1.71 OK RI-C2 3.481 3.480 .001 '4.23 1.37 2.40 OK R1-C3 3.483 3.566 +.083 1.71 3.54 4.57 OK RI-C4 3.483 3.479 .004 1.26 2.06 0.57 OK Rl-C5 3.476 3.489 +.013 2.17 2.74 4.11 OK Rl-C6 3.447 3.495 +.048 3.66 1.60 4.80 Crack in cold-leg transition per RT and ET RI-C7 3.452 3.474 +.022 2.17 2.40 2.06 Crack in cold-leg transition per RT and ET Rl-C8 3.465 3.435 .030 2.06 2.97 2.40 OK RI-C9 3.473 3.466 .007 1.23 2.29 3.20 OK Rl-CIO 3.501 3.450 .015 2.06 1.71 4.57 OK Rl-C11 3.493 3.478 .051 4.80 2.97 2.17 OK i RI-Cl2 3.479 3.466 .013 2.51 1.37 2.97 OK RI-C13 3.481 3.463 .018 2.06 1.71 5.14 OK RI-Cl4 3.497 3.480 .017 4.91 2.74 1.37 OK 's Rl-C15 3.481 3.420 .061 4.11 2.17 2.40 OK R1-C16 3.478 3.470 .008 3.31 2.17 3.09 OK RI-C17 3.471 3.417 .054 2.74 2.06 3.54 OK l Rl-C18 3.513 3.535 +.022 4.34 3.26 1.66 OK Rl-C19 3.483 3.450 .033 3.09 2.06 1.14 OK i RI-C20 3.503 3.556 +.053 4.91 2.97 2.51 OK Rl-C21 3.506 3.534 +.028 4.69 3.20 1.26 OK Rl-C22 3.507 3.510 +.003 4.69 3.77 1.26 OK RI-C23 3.502 3.535 +.033 2.86 3.31 0.97 OK Rl-C24 3.503 3.542 +.059 4.23 3.09 1.03 OK RI-C25 3.495 3.466 .029 2.17 2.51 5.37 OK RI-C26 3.503 3.509 +.006 2.63 2.40 2.57 Crack in cold-Icg transition per RT and ET o l 1 5 _g.

l s Page I cf 2 NONDESTRUCTIVE EVAL,UATION OF STE/J: CCNERATOR D tulle U-BEND SECTIONS Tube Number Visual Examination Radiography {al Eddy Current Examinationib) RIC1 No indications'(NI) No discontinuity (ND) No indications (NI) RIC2 NI ND HI i RIC3 NI ND NI RIC4 NI ND NI RICS NI ND Indication - hot leg RIC6 1 indication - OD One axial. crack Large indication - 3 indications - ID (3 segments) at cold-cold leg leg transition on extrados, total length 0.75-in. t RIC7 No indication - OD One axial crack at Indication - cold Icg I indication - ID cold-leg transition f near extrados, total i length 0.5 to 0.625-in. RIC8 NI ND NI s RIC9 NI ND NI RIC10 NI ND NI RIC11 NI ND NI RICl2 NI ND NI RICl3 NI ND 'NI RICl4 NI ND NI RIC15 NI ND NI RIC16 NI ND NI RIC17 NI ND NI [a] y RT analysis at 150 kV (6-26--80) [b] E ET analysis with Zetec probe (6-12-80) 9

/ Page 1 of 2 NONDESTRUCTIVE EVALUATION OF STEAM CENERATOR D TUBE U-BEND SECTIONS Tube Number Visual Examination Radiography [a] Eddy Current Exaraination{b) RICI No indications (NI) No discontinuity (ND) No indications (NI) RIC2 NI ND NI RIC3 NI ND HI RIC4 NI ND NI RlC5 NI ND Indication - hot leg RIC6 1 indication - OD One axial crack Igrge indication - 3 indications - ID (3 segments) at cold-cold leg leg transition on extrados, total length 0.75-in. RIC7 No indication - OD One axial crack at Indication - cold Icg 1 indication - ID cold-leg transition near extrados, total length 0.5 to 0.625-in. RIC8 NI ND HI ? RIC9 NI ND NI ND HI RIC10 NI RIC11 NI ND NI RICl2 NI ND NI RICl3 NI ND 'NI RICl4 NI ND HI RIC15 NI ND NI RIC16 NI ND NI RIC17 NI hT NI la} E RT analysis at 150 kV (6-26-80) [h] E ET analysis with Zetec probe (6-12-80) (

Page-2 of 7 i f-Tube Number Visual Examination' Radiog'raphy[al Eddy Current Exanination{b] RIC18 NI ND NI RIC19 NI ND NI j RIC20' NI ND NI RIC21 NI ND NI RIC22 NI ND NI RIC23 'NI ND NI RIC24 NI ND NI RIC25 NI ND NI \\ l RIC26 NI. 'No axial cracks at Indication - cold leg cold-leg transition on extrados, total length 0.625-in. R2Cl NI ND NI R2C2 NI ND NI R2C3 NI ND NI 2 i 6 f I e g e b e h ,,w

45* 0 I E L M Q ff a 0* 45' 0* Cold Leg 45* Hot Leg I 4 t Figure 1. Definition of angular positions. I t ..,e y

l ~ Indication ^ Tube by x-ray Symbol l ( 60 RI-C6 yes 6 ~ - ~ ". g 6~ ~ R1-C22 no 2 50 l o . ~. _ _... x 40 2 2 ~e n g '} 6 -r m e 4 2 2 ,x T 20 m 4 10 2 .w 2 c 0 ,t ,l. _b I = .e o -10 w -0.5 0 0.5 1.0 1.5 2.0,,, Apex 2.0 1.5 1.0 0.5 0 -0.5 1 ,, Smooth Transition Opposite Transition 1 T ..I Ovality for. tubes R1-C6 and R1-C22 at the smooth transition, apex and opposite .i Figure 2. transition. Zero positions correspond to intrados transitions. h em ....a g

i I Table 1. Diametral data at the apex on 3 U-bends with indications by x-ray and on 5 without indications (values are deviations from 0.875 in mils) Angular Position Difference in 0 45 90 135' (Dia 9 90* - Dia 9 0*) Values R1-C4 - -13.0 - 4.0 1.6 6.8 14.6 -13.5 - 8.0 0.8 5.0 14.3 .3 R1-C6 -14.2 - 7.9 - 1.7 8.2 12.5 -14.8 ..- 9.2 0.4 6.5 15.2 2.7 R1-C7 -14.9 - 9.1 1.1 7.2 16.0 -14.7 - 7.8 1.6 6.0 15.3 .7 R1-C10 - 0.8 - 9.3 2.5 4.2 3.3 R1-C13 -15.9 -11.3 - 2.0 9.8 13.9 -15.0 -11.1 - 1.0 11.0 14.0 .1 i R1-C18 -12.3 - 4.3 13.2 2.7 25.5 l -12.4 - 6.2 11.5 4.1 23.9 1.6 R1-C22 -13.3 - 3.5 13.0 4.0 26.3 R1-C26 -11.5 - 2.5 10.6 12.3 22.1 l -11.7 - 7.3 12.4 3.7 24.1 2.0 i -7 ,-r--

i Table 2. Comparison of us11 thickness (mils) and Nacop Hardness (500s) for three tubes ~ with x-ray indications and three without at various approximate an8ular positions on a straight leg. Ttbe/Le8 Wall Thickness Hardness (mid-wall) 135* 180 225 Av8 90 135 180 225. 270 Av8 (Extrados) (Extrados) R1-C6 )j 57 55 54 55.3 219.8 233.9 245.0 234.7 216.7 230.0 (Rb = 93) Cold

  • lg R1-C7 h*

57 57 55 56.3 186.7 187.3 178.2 178 -183.2 182.7 Hot ** g w 56 57 56 56.3 199.6 190.4 185.2 201.4 206.3 196.6 )E R1-C26 4 l Kat** a ! R1-C10 D 59 60 57 58.66 179.1 186.4 183.1 180.4 186.1 183.0 i Colde 3 (I f I g 52 52 54 52.7 187.8 183.1 187.8 186.5 190.8 187.2 R1-C13 Hnt** y R1-C22 A 59 57 55 57.0 181.3 185.2 183 5 176.8 181.3 181.6 (Rb = 83 Cold ** fg 0 Opposite Transition lco Smooth Transition 3 s.A

Table 3. Compar-ison of ovality measurements obtained from as-polished transverse cross-sections at the apex with those from diametral valves measured with a vernier caliper. Tube. Ovality (Dia. Flank - Dia. Extrados) Meta 11ography CaHper RI-C6 9.0 mils 12.5 15.2 R1-C1D 0.0 3.3 R1-C22 28.4 26.3 CDEF

l 'j i 1 L II 70 - Tube Symbol i ~ RI-C6 6 RI-CIO O' R1-C22 2 I d-J i af60< 2 ,o 0 0 0 0 0 6 t 2 2 a 2 r i 50 < Z 2. y y 9 2 a 5 M,, c ~ o a I -0.'S 0 0.5 1[0 1.'5 2.0 2."5 l 2.'5 2.'0 1.'S 1."0 0.'5 0 d.5 i Smooth Transition apex Opposite Transition I I-Wall thickness measurements at the extrados (180*) for the smooth transition, apex, Figure 9. and opposite transition. Zeros correspond to extrados transitions. l e-

(> L i

SUMMARY

.0F THE PRIt!CIPAL FACTS ~6 l 1. DOUBLE WALL X-RAY RADIOGRAPHS IDENTIFIED THREE TUBES WITH INDICATIONS CUT OF 26 ROW l TUBES. 2. THESE If; : CATIONS OCCURRED AT THE TPt.NSITION WITH WELL DEFINED EXTRAD 3 A"D IfiTRA:0S TRA!!SITIONS AND ON THE EXTRADOS JUST EELOW THE EXTRADOS TRANSITION AND IN THE STRAIGHT LENGTH SECTION. 3. HE INDICATION ON TUBE R1-C6 CONSISTED OF INTERGRANULAR CRACKS WHICH RESULTED FROM MULTIPLE INITIATIONS ON THE I.D. 4. THE HARDf!ESS OF R1-C6 TUBE WAS HIGHER THAN FOR TWO OTHER TUBES WITH IriDICATIONS Af1D FOR THREE OTHER TUBES WITH NO If1DICATIOffs. P 1 f

77 PROGRAMS UNDERWAY TROJAN

1. EXABINATION OF R2-C3
2. EXAMINATION OF R1-C26 (INDICATION) AND ONE WITHOUT INDICATION A) MICR0 STRUCTURES AND HARDNESSES AT SMOOTH AND OPPOSITE TRANSITIONS AND APEX B) MICR0 ANALYSES OF FRACTURE SURFACE
3. RESIDUAL STRESS MEASUREMENT AT LOCATION OF CRACKING ON A VIRGIN TUBE AND ON A TROJAN TUBE WITHOUT AN INDICATION
4. SEM AND AUGER ANALYSES NEAR AND AT-FRACTURE SURFACE
5. CHEMICAL ANALYSES OF TUBES
6. DI STRIlluTION OF CARBIDES IN THE GRAIN BOUNDARIES AND DEGREE OF SENSITIZATION TURKEY POINT NO. 4, SURRY I AND SURRY II U-BENDS
1. EDDY CURRENT CHARACTERIZATION AND DOUBLE WALL X-RAY RADIOGRAPHY
2. DIAMETRAL DATA, METALLOGRAPHY, AND HARDNESS DATA ON OPPOSITE TRANSITIONS
3. RESIDUAL STRESS MEASUREMENTS t

i s

t t 1 1 70 ' Tube Symbol RI-C6 6 RI-CIO -0 1 RI-C22 2 0 a 60 ' 2 0 o .l J 0 I E 6 2 "o 2 l - o a w

  • =

q 2. I 50 ' 7 N ' ? _ 2 ( a

ll

~ I f 40 l _ 2.5 l -0.5 0 0.5 1.0 1.5 2.0 2.5 2.0 1.5 1.0 0.5 0 -0.5 l Smooth Transition apex Opposite Transition i i cigt : 9. W:1! t'.ichness masurar, cats at the cxtrsdcs (180*) fcr it.c smocth transition, apex. and opposite transition. Zeros correspond to extrados transitions. 1 l ~ (7 4,, v

Table 1. Diametral data at the apex on 3 U-bends with indications by l x-ray and on 5 without indications (values are deviations from 0.875 in mils) 1 Angular Position Difference in 0 45 90 135' (Dia 9 90* - Dia 0 0') Values RI-C4 -13.0 - 4.0 1.6 - 6.8 14.6 -13.5 - 8.0 0.8 - 5.0 14.3 .3 R1-C6 -14.2 - 7.9 - 1. 7 - 8.2 12.5 -14.8 - 9.2 0.4 - 6.5 15.2 2.7 RI-C7 -14.9 - 9.1 1.1 - 7.2 16.0 -14.7 - 7.8 1.6 - 6.0 15.3 .7 R1-C10 - 0.8 - 9.3 2.5 - 4.2 3.3 1 RI-C13 -15.9 -11.3 - 2.0 - 9.8 13.9 -15.0 -11.1 - 1.0 -11.0 14.0 .1 RI-C18 -12.3 - 4.3 13.2 - 2.7 25.5 -12.4 - 6.2 11.5 - 4.1 23.9 1.6 R1-C22 -13.3 - 3.5 13.0 - 4.0 26.3 l R1-C26 -11.5 - 2.5 10.6 -12.3 22.1 -11.7 - 7.3 12.4 - 3.7 24.1 2.0 l i i 1b

i l Table 3. Comparison of ovality measurenents obtained from as-polished transverse cross-sections at the apex with those from diametral valves measured with a vernier caliper. P Tube Ovality (Dia. Flank - Dia. ExtradosI [ Metallography Calfper I: RI-C6 9.0 mils 12.5 r 15.2 RI-CID 0.0 3.3 RI-C22 28.4 26.3 I b l 1 L CDEF

Indication ~ Tube by x-ray Symbol 60 RI-C6 yes 6 5 6 [ 50 R1-C22 no 2 o 40 2 2 Ae o 6 30 u e g 2 2 Y 20 m E t 10 a 2 2 C 0 .h 8 -10 t ~ -0.5 0 0.5 1.0 1.5 2.0, Apex 2.0 1.5 1.0 0.5 0 -0.5 l Smooth Transition Opposite Transition --- - Figure 2. Ovality for tubes R1-C6 and R1-C22 at the smooth transition, apex and opposite transition. Zero positions correspond to intrados transitions.

J e P l 'I t \\, t t i l r 45' e ~. O' \\ s i i i i }.; ; i' l j 4-f w i 2 + M 4 'k [Q t. k 0' .s 45' 0' l' Cold Leg 45' n, 1 iI Hot Leg 9p k I i i i Figure 1. Definition of angular positions. I

Table 2. Comparison of wall thickness (alis) and Enoop Hardness (500g) for three tubes with x-ray indications and three without at various approximate angular positions on a straight lag. a i Tube /Les Wall Thickness Hardness (mid-wall) 135* 180 225 Av8 90 135 180 225 270 Avs. { (Extrados) (Extrados) i 57 55 56 55.3 219.8 233.9 245.0 234.7 216.7 230.0 RI-C4 )j (Rb = 93) Cold * ,y 3 1 R1-C7 -57 57 55 56.3 186.7 187.3 178.2 178 183.2 142.7 Hst** g t w 56 57 56 56.3 199.6 190.4 185.2 201.8 206.3 196.6 )E R1-C26 Hst** 5 h k 39 60 57 55.66 179.1 186.4 183.1 180.6 186.1 183.0 R1-C10 l Cold

  • 3 2

R1-C13 52 52 54 52.7 187.8 183.1 187.8 186.5 190.8 187.2

Hst**

I g RI-C22 39 57 55 57.0 181.3 185.2 183.5 176.8 181.3 181.6 (Rb = $3) l Cold ** j g i I 6 0 Opposite Transition co Smooth Transition f 7 0

(. SUMMAR1 0F THE PRit!CIPAL FACTS DOUBLE WALL X-RAY RADIOGRAPHS IDENTIFIED THREE I 1. If;DICATIONS OUT OF 26 ROW l TUBES. THESE II:?! CAT 10fiS OCCURRED AT THE TPt.NFIT10'! WITH 2. DEFillED EXTRADOS A!!D If;TRA 0S TRANSIT 10!!S AND ON THE EXTRADOS JUST BELOW THE EXTRADOS TRANSITION AND IN STRAIGHT LENGTH SECT 10ft. IHE If4DICAT10N ON TUBE Rl-CE CONSISTED OF INTERGRA!;ULAR 3. CRACKS WHICH RESULTED FROM MULTIPLE INITIAT 4. THE HARDilESS OF El-C6 TUBE WAS HIGHER THAN FOR TWO OTHER TUBES WITH If;DIC ATIONS Af?D FOR THREE OTHER TUSES WITH NO !!1DICATIOfiS. i f 9 + r

,/ JP PROGRAMS UNDERWAY TROJAN

1. EXAMINATION OF R2-C3 2.EXAblNATIONOFR1-C26(INDICATION)ANDONEWITHOUT INDICATION A) MICR0 STRUCTURES AND HARDNESSES AT. SMOOTH AND OPPOSITE TRANSITIONS AND APEX B) MICR0 ANALYSES OF FRACTURE SURFACE
3. RESIDUAL STRESS MEASUREMENT AT LOCATION OF CRACKING ON A VIRGIN TUBE AND 0N'A, TROJAN TUBE WITHOUT AN INDICdTION

/

4. SEM AND AUGER ANALISES NEAR AND AT FRACTURE SURFACE
5. CHEMICAL ANALYSES-0F TUBES
6. DISTRIBUTION OF CARBIDES IN THE GRAIN BOUNDARIES AND DEGREE OF SENSITIZATION i

TURKEY POINT NO. 4, SURRY I AND SURRY 11 U-BENDS

1. EDDY CURRENT CHARACTERIZATION AND. DOUBLE WALL X-RAY RADIOGRAPHY
2. DIAMETRAL DATA, METALLOGRAPHY, AND-HARDNESS DATA ON-OPPOSITE TRANSITIONS
3. RESIDUAL STRESS MEASUREMENTS

/ 5 I s s h s 5 i 5 { ..\\ s i m- -w

V g __f n ( ' r, Ta >1s 2, Comparison of wall thickness (mils) and Knoop Hardness (!D0g) for three tubes with x-ray indications and thres without at various approximate angu'ar___ _ positions an a straight leg. ' Tube /148 Well Thi-knese Hardness (sid. wall) 135' 180 225 Avs. 90 135 180 225 270 Avs. (Extrados) (Extrados) lR1-C6 57 55 54 55.3 319.8 233 9 245.0 234.7 216,7 230.0 (Rb o 93) Cold

  • g u

i A RI-C7 0 57 57 55 56.3 186.7 187,3 178.2 178 183.2 182.7 Hot ** g Y I R1-c26 x 36 57 56 56.3 199.6 190.4 185.2 201.8 206.3 196.6 [Hst** f E 3 59 60 57 58.66 179.1 186.4 183.1 180.4 186.1 183.0 R1-C1.0 . Cold

  • u E

~ I R1-C13 52 52 54 52.7 187.8 183.1 187.8 186'.5 190.8 187.2 ' Hot ** g Y R1-C22 M 59 57 55 57.0 181.3 185.2 183.5 176.8 181.2 181.6 (Rb = 83) Cold ** j g c $" lc%. ' s sN :;Y s. l w o opposite Tr co Smooth Transition }h . - = =.. - f SL ~ >,.y

A ..**'a .,\\ 5 t g

  • ' {'.8 (R

c'. ' <(

, W} -

.a f,,'; .'.},'.\\ 7 3.:'? p f.,.;3,.r~,. ),Q p. QL k,sy :. : , y, ,.. e.,+.i 4 -a : s N,e y . r.n.e ~.;. 'r.,.* v. ~ ~,. ;,yl,-:.N,~Q~Q* a: 0x . w-. ~ h:),.,.J'pf},.9,Q~,s&,?,-;J...'e.3;1,.,a.. xwm ~. , y,,.'.d. ; y',., < ; u<o s-p.. '....,.'.,;.'...wn-4 . j), v,. e m s.n r e-No -.\\. ,..,,..,:d,.. .),p, g.%"y9. % : o, e ),j f>sp v:g4;, a. t c - ve

w. 4 <,v,,..

. g. L,_s.. m r, ..p, e ...,,..s....... e. ~g 3 7~ b. U.i.- y.'.<: ,. ~ :,y., ~ *. <,.a.. . + - y m ~,?,. 3. "3../.n M.p w,:n-"OR. a...g,94;). , u._ - r .o ,;s. .,,,h..i 3 W N . c F.. 2 .a,..,- 4 ,.t k,.< 1;* , A,, %, :t -re.- h h .( a *-.' . x. s. ,- 3

  • ~ !.R ; e,;a 4'1'.Q < 'c ! l 5., Y C Q*

u n .m u .c ..,f & r_ h. 'N Y i ~ f. k. f vrYYy .U;h. - 5*.:khf i 0 l ' 3N ..n.x.w%;,.y gen;. L,. c ; p':'hy:.:b',%, &,' (,m,,;w, ' If q' m n 4'Qiih';i. %n',$J,h. M $'d y .,s. wi6,2 ' s. s,;.m,m. 4'c. p e..r.. ;%,,;g.6,..M.,*,Qps;y.. '(m.i T.' ::,. *% G, g o f3 w',,.Iy

,~

.s. w c mo y --m .c .e r, y > < F~...,,., mmW;lhh, h(',,.[< f I.z. y ao q[r,.;f-f. p ~ ( ;:A, 9.. r > xu-e .m. - ht, s.. %. a.n. >.-p , '3 y v, n a v.',. 't N Q.j *~ 2 fh if,.' g', e y.,p, J., *:u [,.,., n. 1q.4. j'., y,.,,M), '.:. .s L y V M ! M % & w.k D M fry h e % : Mz.h [w;.~ ~ .j+ m,-~:h,,,hg$j ,y e -d:Q., t' y. i 8 -8 ~. m.. ~ m,.,.,w.m.. s ....21 m Y. a. ;s.. f g.%.< *r.m&ua? .. ,,.., ~. '

  • T..
  • y Q ~.',\\..C** f. D N.z,&.,.s,A,V1

~

e. T -

,~ ' l, ) '.: V ' .,gW. k.... u 4_ Q,:a g.,- f. ?.N.. t.*..< w.,' Q;,y.. o, '.'.n?:'e. { M. f."% G. :.,c,,' 3 b,' 5 ? l. qW' 'E U. h j' %'.Q .,..a.f 9, w . ;., t ~.. .t.. 2 .; g a s: R':p p~ y )',y'., ;.w;% ~' . s a '. y q.',... s dt -4g. b~. 'y,,,". % a,..A%. g~~ .s'.6<r' y;4"X,l, kg,fl % %y.. n , r. n m ~:, -: y a4o a 4 i); 4 my '.p + - . 2}p. t1 ..,.wAL

. 'g;;:;<h R'. &e.:

eoo u

W.-..,. ;

m AX'. ;2.. gg' ye,,, ~j pf,p%. ;.p,p.,.,. ey~... L.[t,. y &D* 3 'T.; QA.,, : s s. g . V 5 Q- .g. v.. 3 n. m.,Q s.q+,,....,,.:n.. w 2.. W> ;,'<M, b s" N.3H u .y . >. } NcW - y.<,,-4,ip- %; 3 ',Ny <,.f.M-) .G.s.pr d,St -Q',4 s,p.n (0J."W.% v. : rQ.y : >t ' Lcc 2 u 7 M v, u v.;G.p-A -. d:.< i ,xA A v.. 12 4. a ; - g s.

w. %3 P;.

g m u 4 . < ;y. > ' gr, &..p.9,1 m,.,. - o ,,;.,. y. % . < e. a ~,.a. y c. 3 h 4

  • l.t
,W
, ds I"?. r 3,...?r. e

...=, ', ; r.. q( L 3 5.f,4. ;T'.,-vt~--a A.pu :

_ w.

u j g.qn. - n m y "- U

.3.n.S
p,;q:.p gy.,
  • pS.p q,,

,- g p - h rAR. - J.,-.> y.. w;-j ,.).ga,3.. A.. ., a,

g. p. w,.g j.. _ -

s y n.,, ,n. .a-d I. g J.- n? a,#.... g,y g. ' c, 4ps ;# ,w' .g'-- N c.. u g i,*9 y.,'~'l .. y:- d4's... h,i A = ,5 y.g.

w. A, g, f

\\ . i, -f g 7 (g4.b,% f J [ W,.g - m Tk .~,? h/'f., p.-. l,,,. y .Y..WyT L,%'.m.,- K.,,d '. , d, o to . A, 4? 5 ~:. s#. ay~ e ~ x ti;h'd. a;W i i /. 4 s< A,.6, t.7.%. 1.. ' n- . ~'~ . f t ( & m. m ! & k. h,, kp. k, y "p y.}.. Q * @. . !W. f1 M-d,.. %. 4 g s,1. .N, - ? O<o a - s. p '. .s.,. g hh U; kygfk. 4h; $ f. e e in .c 3 -4 t ":< - {y,h 9 r s. 5 ~:.a m s. f,'

c..a

..gce.ge w ggwp.;. 3,.. ls q~ e

..,c.

e c h,, - T.,. ,1 'E . v.w, w.~.:,.n w,.r.www q'(y,w g.,d - e w Jo,b,,4:d,.-c -n m -u an _wouA m y W = e w,..g,. m. o<0 o,,e s s. a a 4 . : m r O - w,:. u.s.1 ~ ~ n, m.. - t, c,o,. . g.p :'. ;. A

    • g

-n xw- <a - 9 g . y .m.

s. u m

yh,..'.;.e ,,; g ( %'a yc,,,g.d. h.7 g. t -g.f.h% L,. Q, a -Mr: p ac +W.,e c.A - -e. t o tw 3 v. 4 <a m.- W$lNgfM*M* M> A%H b l 9l w b 4 @a$ 4 s W f p# M Y E % m ' w se &#6 n M M, p %p7 fddr is 1 4 e d,,e +.p d. W i g%, g,,q- = d ~ s.gJ - ph A s-y1 e1 o .<o o-a qu$y, }e.t.. o2 gee yay.gyT.w., }M. e. .. %. :.;r h.g m, A g.t. u.r.i t.% - n 3r ~ s f[j. I-

c. h'fe A %.

W. y' k,. u m.J..,b m' A, h Y 4 ef t w -e u eu-2 nU CD C4 3 0c e= F= W < La-O O O

61.0 62.0 mils t-4 ':Q .O.. ..]l1 * '2 )_l ~< ? ' '?O '1[243]& $b0 f? --2 54'0 56.0 C. Tin? 62.0 - f as ma n y gg 48.0 51.0 Sect. 6F (Rl-C6) Sect. 22F ( 22) l \\ .,t ,.,1, M.,,,{ ';g 54.0 59.0 ( f 50.0 Sect. 10F (Rl-C10) l Figure 4. As-polished cross-sections at apex for tubes Rl-C6, Rl-C10, and Rl-C22 showing variations in dimensions. Angular positions are given plus wall thicknesses in mils as-measured with thre~d a micrometers prior to mounting.

  • ka

~ '[ ~ ! '. ~ .I. f-m l I = i i i d o I ' tw // ~ i ~ l i l [ 1 t i 8 i i l l l 1 f Figure 5. Shallow intergranular penetrations on the I.D. at the extrados on Section 6F (R1-C6). These were observed to a lesser extent at the flank (90 ) and 0 positions. l I l l i t l

6F E6E4 Eg 6G I6E3 I6El l E6C I_gD E6H 16C 16H - Extrados Transition 16B1 E61 I6Il I6B E6B ~ Intrados Transition - E6J1 16A E6A i ~ E6J Hot Leg Cold Leg Figure 6. Print of double wall x-ray radiograph of RI-C6. Solid lines shown approximate locations of major i cuts; sections are identified; surfaces polished for metallography are designated by A. Underlined sections were flattened and their ID surfaces examined at 5X. Further cuts of E6C are given in next figure. i

( 3 y ..h r E. l .} ) { E6CAk i E6C3I L. g k E6C2I ~ h E6CTI y S. E6B 8 \\ E6A \\ i' T;',,; -

  • 2 som"

.8

in

~ J Prints of single wall x-ray radiographs of the cold leg of F.gure 7. tube Rl-C6 showing cracks at the extrados (180 ) and near the transition from straight to curved. (Section was l subsequently cut to form E6A, E6B and E6C.) I l i l

i

a l

, #t i t :, ) .S.:- ' .I, [.'il, . [f T f, lgg&y m g i i" 7 1 c i I d[ ^ r r ,4 i g-L l t ji t 5 , ;r .I \\j' .. k 1 e M. '. l y I n. l I.D. i 0.D. l. 2 Figure 8. Photographs of I.D. and 0.D. surfaces in the neighborhood of ll J the crack on the cold leg of tube Rl-C6 A bluish deposit color l-is evident on I.D. at location of crack. Distance of end of I crack from cut tube-sheet-end was 0.71" on I.D. and 0.85" on 0.D. i l ? e

l ' mil ' 0.D. Deposits Crack i L. 'nd' i \\ a l IG penetration on I.D. i l Figure 10. First plane of polish on section E6B showing through wall crack at extrados,1.5 mils of deposits on 0.D. and IG penetration on I.D.

i 5 I r i s t l i S. ) v ? 1.o. 0.0. n i r l ? t W* .~ ~ ~ t [ 0.0/o I l I on ,e { J f i t I Figure 11. Through wall crack on first plane of polish on Section E6B; wall thickness is s 51.5 mils. i e de i I I l i y .,c

q >. g } 5 . -{ . u [f W, A M 't ~.- v ' up ^ P s t ' m // ' a O.D. Deposits [ d I i I I ~ fp I /19II i i, IG penetrations on the I.D. l 5 i Figure 12. Second plane of polishing (45 mils below first plane) on Section E6B showing through wall crack, 0.D. surface deposits, f., and shallow I.D. intergranular penetrations. t jI, u.

4 m-- .yy. ,. p - p_, ~ ... ~ ~. ~ .- mem 4 0.D. .g s ~ ~ 6._ o.wo 1 .g. ' 88. .),J. - e - h - ' g-- s 3 \\ . j .A s ~. .-s.. l, ',,'. -. ~ v,. ~ 3 -($., g.n. -t . e' /r* ...~* { s ~ .. ~. 1 t: .e .I,t.

g. -

re - s ig .( 'o, u e= i i I.D. ) Figure 13. Through wall crack observed on second plane of polish of Sect. E6B. 1 a --m----

0.D. n

m. reg?y:]*,

%L 4 <... /, + ; N, ' 3 ~

  • M$gM

@p -g a 4 .w. 2 Mp.'- + ;yv.r. %?P.%,.**.;t%pl..

y y'.:, Q '@ :.. '?%.W s.-+. v.;9.. M..g,.-

.. '?.9.9 k ~ ..==. a. g - e,- 4 4 s,. ? .q~ r .z 1 cQ;>N},$, oh;$hf, f'.5.f'- %.W q gyrW. ~ '- I;, .s - ~ ~ 4 Q}Y {- 4.s neg.,, . + ;gsg 5.. $.pyhw. s..$.f%wh Q b' .i ' 8-r _$fhg !%g.~:. y:-f}l3 - ?.hjf \\)? '-.. ~ '* . 9t

. s y

$fj**.. -ym hf. N.Q_ T .J ~ , ?,.7.f. 9,ft Y ~ i ,y ~ A :% 't.',> . n. ,7 5.q i _..,'. 1 , 'v._.cf?l(*i.'?.4.t.k@:..s. '..:." 'is 'g'. 4.. my. .... g .. ng ~' .L, (- I l Wm?'$u;k., 2,.7.-.. l%.%.M.: 2Q, *. i - ' k.'.&

... - ~

il c s } .t m g I.D. Third plane of polishing (33 mils below second plane) of Section E6B at the extrados. Figure 14. e I

1 I 'Nfl,;.$ l ? w *- @ j f g ---= $5' f:Y; '. f ..n.Y.h Af).. - 5,ff-!i. .T.n.M 3 . m.a k. ( kW . "GEfgc-jip? m N 7$;fh 5Vi . iY$,tW?; :.'$ Q*?f h?" $ ^:? 2:^$ b:, o[ 5 i k$ [h&f[k[ h f"$.. fl)0!??h.h $ ,m ,, 3 "fk$t(i'Li??k $ ? 'Y~Y" .a.$", W

  • 4..?

lE c :~ ~%N. h }4'ditWr$$1: 'MAbA .s' & Q .-:b' L i ,s v F [J/ jiinpSN.Q.-t,j..p.. ' ; l 1,, )f, i$n;'f5i kN6 'U,.] ' -= 4 + s.:s!. <l . ?f 4.,f+pt 'af W~ y, N.. Y.,s ff.O 'A @.<~* ^' t;;.ge:n?)p$'h<n.m% %Nfih b . f M, ^t4 ?.3 3 www:.: - c 4 r gt, .s f. % 7 11 4 w q. % -a J,lg r i, $

  • t Q ' p S $ D / w 4

~ i..sidFNEdp4./ %Pjiltif - i t g.. 1.0. Figure 15. SEM micrographs of cracks in 2nd polished plane of sect. E6B (Rl-C6 tube) showing areas examined with energy dispersive X-ray analyses (identified by numbers). Only Si and Na were identified as present plus alloying elements found in Inconel 600.

%Y *>:3!. :::%1l4% n' '3 -a. := ap: .j. c. m.h '- fg,..y r I <. w. M. e iv .5,n.1'/s .... e, k,,i e.H lg;- F - 1.D. .. 4.W. c.. V b Nh48;%iR$A.t4&l~. i i I I (LM) t if.?'Y$~Y [i f ] .p ' yf () $b~. ? E Ae k. f n i.! u ?<$ U $iN y; e t e.; SiXa BSE Not Detected: P, S, Pb, K, Na and As Two areas on the 2nd polished plane of E6B (Rl-C6) were examined l Figure 16. with Electron beam micro analysis for Si, P. S, Pb, K Na and As, and are shown in the photograph obtained with the light microscope (LM). Similar results were obtained for both areas. Back scattered Si was detected electron micrograph (BSE) is shown for Lower area. in localized areas. None of the other elements was detected by area scans or by line traces through tight cracks. i l 1 i -~ t

\\ 10F E10E4 10G E10E2 4 M Ef E10H Il0El E10D Il0H 110D1 E10I 110I E10J1 - I IIl0J1 110D E1081 110C E10J Il0J = t ~,

  • T - E10A Hot Leg Cold Leg Figure 17. Print of double wall x-ray radiograph of tube Rl-C10. Solid lines identify cuts; locations and identification of sections studied are given.

) I i

22F 22G E22E4 E22E2 E22H1 g E22D I22E3 Ig E22H E22C 122D 122B 122C E22B1 1221 122B1 E22J1 I i a 122B E22B i E22J 122J .z s - r 1*' ' E22A \\ })ot le9 Cold Le9 I l Figure 18. Print of double wall x-ray radiograph of Rl-C22. Solid lines identify cuts; locations and identifications of sections studied are given. i + i ..}}