ML20062J584
| ML20062J584 | |
| Person / Time | |
|---|---|
| Site: | Waterford |
| Issue date: | 10/24/1980 |
| From: | LOUISIANA POWER & LIGHT CO. |
| To: | |
| Shared Package | |
| ML20062J578 | List: |
| References | |
| NUDOCS 8010310425 | |
| Download: ML20062J584 (24) | |
Text
Sh 1 of 7 O
Attachment III Asymmetric Loaas Slides
.s e
8010s10f/5
l a
a-s (k
' h' 1
t O
e 4t 4
e 9k j
%'0 }gl
~52-lt y l 9
h s9 Q
9 q
$g' b
k k
2
'up
@9 a
g t
$'q
{
O f4 '
T9 Ils I
$w s
u y
th@
t
~-
gg
{M wf eq ki 1A xa k4 Wh h
e*
a.
(A IE h 8%
e e
e A
-mmmm m
Sh 33 og 7 l
s&j u, j,+
w
,in-e s-5
't Et
%8 b
]
a
}9 s a) h Nl ew Q(
4 y [ {e E F IIk f Ik q'
- Ik
< kl!f I(I 4
l, 1
p Nhtl
~
)
l llk e
1y s
Uhk k
' jf JR
,t n, d[ k N h e! l
, e t, i
a,
'w,2e I4
~
- y 6?
t q
344 ik 4
l l
gg
-g-t
+
9
~,
v s
'q h
i
., g i
)
\\g N
S S
%s s
5 e
d
\\
1 2
m; o
ki k
Y/)fY"'W w-~J /~vireg y
O I
M, 1
e t
l
-t
.s I
f a
\\ P/ 1 I
[
,o l
1 i
]' \\
\\\\
resse/
~
I
{
m kwe/l y
)
I I q l
t\\
/f8m*pG t
/
l1 v i I* \\
l
\\
j l
\\
j g
I
\\
\\
I t
1 I
\\
s
.y]
P' g
- 2, i
t S
f
= = = '
Sh 6 of 7
~
e) c
=
~
d) 0 U+
e O
E e-~n e
o<
o A
v b
F
/
.j b
l
'N o'
D
~
N s
g
]
/
o
?
~#-
Q 4
o.
/
f E1%
O *
-)
k
)
v-g
' ~ ~
A L
g N
gs t
%,*o b,x Q,~~.
8
)
/
-g
~~
M y
a ',
e s
o
_____-c N
(~~k k
o
, h'~ ~
s 9 -?
4 h.
i 4
9 w
a
(
3' s'
N2WDVYJcfqs g
- em-ON $
.g pd$
~
it e
v 1
se ag 9 u 4 {2,! !14 I
], y e E34 sh
' di
'd I
l ll lh
,!f k]a
}'
t e
i u
n kJ 8
h
%vg e
v uv 9
'f u.f$'I'N$"$ L t
.t
(.i
- - I s.
g vt e
e s e,gt ' g.
4 g4 h 4
- h" ku
\\**
%w %
}a 4$
,U E
kc h
1 1 i
$q e al S*4
.~
f,2 :
ATTAcHMEuT
~
Reply to Additiona1 HRC Comments on Waterford-3 FSAR Relative to CEDM's (112240)
I The following information responds to additional NRC comments covering the design, analysis, and testing of the CEDM's as described in the Louisiana Waterford-3 FSAR.
The " Item" numbers are SER references.
A.
Additional NRC Comment on Item 50:
At the meeting with C-E and Ebasco on October 2, a copy of calculated stresses and code allowable stresses was shown to us.
The highest value of stress limit shown was 99.9 ksi for the motor housing.
1.
What is the value of Sm on which this is based?
2.
Can we have a copy of the data that was shown to us, so we can review it?
3.
What are the materials?
The last sentence of the proposal resolution should include the following words:
"for non-pressure parts."
Reply:
1.
Subparagraph NB-3222.2 of Section III of the ASME Soiler and Pressure Vessel Code requires that the stress intensity derived from the primary-plus-secondary stresses be less than the limit of 3 Sm.
The design stress intensity Sm is given in Tables 1-1.1 and 1-1.2 of Section III of the ASME Boiler and Pressure Vessel Code.
The values of Sm for the material of the motor housing and temperatures encountered in this analysis are also given in the following table:
Design Stress Intensity, Sm (ksi)
?
Temperature, OF Material Type 700 100 2000' 3000 4000l5000l6000l6150 SA 182 F403 33.3 33.3 33.3' 33.3 32.5 31.4 30.6 30.4 9
4
(
~
i
..T..~ ~."...^ '
2.. A c.opy of the data that was shown at the meeting with C-E, NRC and Ebasco on October 2 is attached to this memo as Appendix A and B.
i 3.
The materials for the various CEDM components are listed in Section 4.5.1 of the Louisiana Waterford-3 FSAR.
4.
The revised FSAR Subsection 3.9.4.2 still retains a description of l
the requirements for pressure boundary materials in addition to the revised sentence on non-pressure boundary natorials.
Therefore, it is suggested that the words:
"for further discussion of design requirements on CEDM pressure boundary and non-pressure boundary components", be added to the last sentence of C-E's response to '
Item 50.
B.
Additional NRC Comment on Item 52:
i
~
The proposed resolution covers the effects of distortion.
What are the effects of changes in pressure drop?
Reply:
As already described in the resolution for Item 52, changes in pressure drop will not affect operation of the rod drives.
The calculations of the magnitude and duration of the pressure wave associated with a small break shows that the pressure wave pulse lasts less than.03 seconds.
C.
Additional NRC Comment on Item 56:
The proposed resolution covers lifetime. What is the effects of the increased travel on the drop time?
Reply:
i The response to Item 55 describes scram times for the 150" motor assembly.
All scram times for the 150" motor assembly were less than the allowed maximum of 3 seconds.
l i
RFZ/dy i
Attach.
8 6
APPENDIX A Contents:
Pages A1, A2 and A3 Sheets 2, 3, and 4 of C-E Calculation RS-001,
Tentative Structural Sizing for the CEDM Housing" A4, A5 and A6 Sheets 1, 2 and 3 of C-E Calculation RS-002, " Structural Analysis of the CEDM Housing - Ball Seal Housing and dpper Pressure Housing" A7, A8 and A9 Sheets 1, 2 and 3 of C-E Calculation RS-003, " Structural Analysis of the CEDM Housing - Motor Housing to Upper Pressure Fittings and Motor Housing Tube" A10, All and A12 Sheets 1, 2 and 3 of C-E Calculation RS-004, " Structural Analysis of the CEDM Housing - Motor Housing Lower End Fitting" e
i P
.:O
m.
.m.
COT.It!U Ji'lON UNGINr.lililNG. INC.
f 4L 8 r H 'i la.- b' ~ ' M 2
o r _..N tucitat t.innu otr>Ar#Tr.10.In. ci tu rArnoont.1 r.r N.
Si st;tT llY i w;.V. '#
- h.
cimnOf! No. 7%7n-n DM t!
d ntscsi PTio.d U N OF T E C 'I319'I N
cHtck oATr.I #~I " o y
? ' E' '.'
ASSFi.'Df,Y 1.
ABSTRACT Presented in this report are the tentative sizing calculations for all pressure containinG Parts of the CEDM housing assembly for d2 sign, emer5ency, faulted and test conditions.
These calculati ons are basically a determination of the primary membrane and primary m'embrane plus bending stress intensities.
The results are evaluated by compar.in5 these stress intensities with the limits of the 1971 ASME Boiler and Pressure Vessel Code,.Section III for Nuclear Vessels.
All stresses are satisfactory and' meet the appropriate allowables in the ASME Code.
2.
S[GNIFICA"?RESULTS
~
O=cga Seals The' table on the next page summarizes the results for the four omega seals on the CEDM housing.
The omega seals are labeled as follows:
A.
The ' seal between the ball seal housing and the' housing nut.
~
B.
The seal between the ball seal housing and.the upper housing assembly.
C.
The seal between the upper housing assembly and the motor housing assembly.
D..
The seal between the motor housing assembly and the CEDM nozzle.
e O
O e
N
,Aa w
COMDUSTICf' CNGINEERING. INC.
sm:.uttist Ml -UM gtJG tN f.C I,t!NG DC f *Allit.W.rJT. Cll Al tai 40 0G A,7 CtJN.
-['?..;
f' -
DY.f.:.a d ?
C H A N C *d N O.
DATC c / ** se ocscnseTson SIZIi;G OF Til.. CED.1 HOUSIllG cs ECK DAT!I!/ '
ASSI *i3LY DY
- 'a
?, bd-v. s-rs/r-s&; tst r;.- ((c-ir-*c:r.)
CHEGA UCAL: SH*r-
.)
0+fr6,a & At c- ( 3 %.:.M.c Kc:.)
Oos/c.crm>/
' L?c.v.-Gs/
S/CMrs ACY Loc 4rxod 7' ; 7-E l d 3 H N 2 E b =~
l/fM-3pp/
//8-Epo-X l//8-8.0,0c-t..
rese
,d,.r Crsc~.--- Xticss-ry so. 85 l
9.76
/3. 88
~...
&,Leaers-c,., = sc. co
/. p J,.,= 2 0. o c l. M = /9. nd e+B Awpe:r.
.r.:,, - ar 70
< e:n c ro. se !/3. ; :. = ae. 29 cc,,e e,, er,,c:.e.ri,ci:.-r?l
- v. 7se
\\
so.se l
n e9 0,,, s's.x,a,we.e-l :n e /c. co s ac-m = co.: c l. 9 3,, = 19 :g
- T f.C 4:.e.aw.ew-l <.c:,., = o1. 7o
.e=,-ro.a 1.gsc
.m.m x
c.
ucm. c-erea-zirce:= r,i
//. 71 1
so. ce l
/1. e 9
& /'u.aseu=-
J,.,
c p 3. s o
- s. s J,, - o p. 9x
'. 9.., = :.ep
&+R Ass.c:.oyg.e /. ? Cn = 3 Y 95 s.9 Jm = rs Psr lsa ?:,,, c 1.23 i
1 Ecm
,,O
&m
.wrz.i::.- r%'f
// 71
'o. c 4 l
/ r. t 7 n
R,, dt.omi.e-Jn~=08.3o.
< 23,., = P 7. 94 l.?as::3:.ER O r g A t tes.:,c e s c 4SCm = 37. 95 s e% = 7/. 97. s. Esc., c 70.03
~,
l
// ore.::: G) Ers?c== o/rr'L.7Y Atcc Am.xcs ro ; >xs /Eue 7-Gutmy,-
~
- ?It/4 7" /1if.oeJ/'4*LCC s9A*C //2Gs*/C.G.
@ / & /E zv.cc+ocin O,,
P
& /9 r*@
m b~cRes./ lifeEAc--
~~
Gm/ i~w~r.c-IJrc:.=.cr/
O
G.sorr=oac-O. :r va Ga ec: crier 72=r-4 :tJE~ M di-f-
//c:-J.: d v. O sVc?.S:oy o r/&3:: >:. >
...-..-r=-.=:y..'...'-.y==...-
To~ncis o il ". C-m---- 3/ nit: y!
. 31
/ O!
s'. G S A v.o:.k,.m c
.c& = 9 9
.C5n c 'o. /8 l.*<:- :,, u-//.,:to
-...==:.=u.-.._
....: : -.... =.
p;;;u to 'e
&ner== *<ints.t'.z~y!
- t. C3
/??
/ t:f i
tA
...- y. cx = 9. %
.....-- - k..a o s.new-
. cs., ~o. is
- s. :::. :.,. : =m. -. =
. c., -a.
- = = - :- :..
7kesn 'c ' i fiREC;;'.1T/rrdCZ7Ys
- 4. 2O
.~ s.. nL.A. z:cww:.c l.6Sm ~ /.R 98
_ 3.23
__ l 7.6 7
.......h. :.cL..>.= #3. 98 1. crm =/.R PC
.. m w
....w.
- - - - - - u 7;;pg, p "o",l 5 hee..s..:. ZRrn.c..rsY..
=
2.22 2.07 3
i,.._..9. O4'
\\
=
oo l
Ct ;,u;U.. ! i U N Lint.iM. :1<!i K,. INC.___
-_____cm.
s eu r.t u u t -
reclNE tic!nG oct'ArtTt.ti:rst. cs:A1 rat Occa. Term.
r,ntg T O F --
^
7%70 n
'/'?
~
DATC. e,/# 4 ' A' -
ClfASfG E N O.
- s.. U Y h.. !.o.rr,
s f../ '/.(
- 'I ' h I N'Y'
. DESCIslPTION -
Cif ECIC DATLi l*
'/*#_OY
' / *'.
ASSif.'BLY
?. 3.'rws.es :rdni/r Ec=:.u.m t Gei ',)
s lby5 :r/S /kt t., 5-
^
7Re rs.'czc erioe cu~wm.. zce rus /=rcui m 2:/z
' me,c: eve rh:;r ce.:r c u sr=r.:cn/-
or rie.
Ce O/-f
//O:/:://G.
You- =is:- &i~os/c.- Wrrm: :-s / s 7.=) -
Ceao= r=w ce=--w skre cac.v ')l m::--
I l
locs. r rod
/I /fE" 2?T /YCM l//d '-330 s li/8-Soo f l//8-3 4
l Tec'=c<tZ'l&n.G.~-L,,--#;.
~i.~4s l
- e. 92 l
- o. ro
- 8. A u.e-i m c-lr,.,-n.no
- lx23,,=po.o: l=.Pr c/9.n l
y
&Q /.: z.=-is e:.z-l/::,, = cz ?o li. es,,, -so. se I/ := :n,..; ;s.e9 l la-ee:-.v. ire,e= N'.
/.oi l
<e. es i
~
}
,.y eccr.:= u le., xuea dis-lr,-,-is.co l i. sr-,, = co. n l o. e = = i.=..: c l sqh=.../.-. - !m
= ax90 l/se -so.s.e!ierm.,:e.e;i m
.===,
Eccr=od.a w -.ne.-.. :.i,c,.e.-#:
t
/zis
- a. n l
<2ev Pe /t w.p.-.._c-l3,,,=D!.So ls.Pe/n =' o2 95
- c. ?1. =.
.g;.
/? +Q /t:.c.:.!Ad li. = sr, '_:7.?c'- l /. 8._Sm~ = '7/. 91 l t. SEC,,, = fc. p => l s
Tecrxcrf.4L,. Ers.,r..2'm.t:-Y:
i1 GC.c ?
05.74 l
E';;. Y6 l<% Ji w. w. :e lT.,=a.o.Fo li. or,, - 2.:.17 l c. 9s, = c 7..:,;
^
, _&_ ___Q_/ u. :.u_u._.1_ __!w:,
_77 es- !i. e,_.e,. = :-c. 7o
-i.
&Ca rooi 5 c'n= =-.2.n i.
5'-
- u. -/s l_
l/s.c.,-7:.2p
/c. 58 l
s 7. e o P,,
Am.w c.c
- 3,,
=.
~y. p.-~
l/. :c;,, a p 7. y lc.92 =x,pp l& G 4 w.:/e:.c:x r,,=rs.92 l i. 63,,- = 7/ 91 o, a ss3a = :.'o. c3 Nbr=.- G)fim.r Gr.c>. w?: cwr.s= crwccr /i.t;;> si Oen A.uo.:.Mez.s::~.
Co)JT + @==.ec k m ;'j F,; 3./X Q.
i
&ccem. S'r -n--
/-, i - -
eene= rte sre:r.re c.e narr : //su:: stir e.cc u-vn = 7. 3B n.=- < 6,. ~ cc.c3A== @ C::~b 's=~
Jrserirrr ucaca Gmn..csrr.." &, c
/q,.. n-n.
1 a.
==.
,,,}.
f.G8 > f. 00 jl r* Art.2::'.c o
IU;-007 COMOUSTION ENGINEElllNG. INC, Nur.m cre
,ctac NE t s; SNG DE f *AHTt.1 Liv r. CH A1 TArdooG A.1 E t4N.
Sg ET-I N'
OF CHAuGe t:o. 7Wio-R ws/:O nrdLh.?:
og pg;f mPridN S' !NIC?UP'M' ;* 'U'Y'1I b OE CHECK DATC U
OY CEDM !!O*JfB_UG I.
IUTRODUCTION The pressure retaining components of the control element' drive mechanism (CEDM) are designed according to the rules c ? Ct;e 4JN E Ccie.
Under these rules prima ry s tress intensi ty is limited for design, emergency, faulted and test condi-tions, while primary-plus-secondary s tress intensities and peak stress intensities are limited only for normal and upset conditions.
Consecuently, it is convenient to separate the analysis and evaluation of the CEDM housing into tt:o distinct tasks: (1) a hand calculation of the' primary atresses in the housing cnd an evaluation of the resultin;; s tress intensities; and (2) a finite element analysis of the primary-plus-seccndary stresses and' peak stresses due to normal and upse t conditions and an evalus.-
tion of che resulting stress intensities.
Purthermore, the geometry of'the CEDM assembly
'r makes it possible to divide the. structure into,
three regions, separa ted by long cylinder distances, and to independently calculate the primary-plus-secondary (ar.d peak) stres.ses in,each region.
As a result of these con-siderations, the analysis of the CEDM assedbly is presented in four distinct calculations.
Calculation RS-001, is a tentative sizing and primary stress analysis
' for the entire CEDM assedbly.
Calculations RS-OO3 and RS-034, are primary-plus-secondary stress analyses of two of these three independent regions:
(1) the motor-housing-to-upper-pressure-housing-fitting regi.on, and (2) motor-housing-to-louer-end-fitting transia tion region.
In this report, CE Calculation'RS-002, the third indepen-dont region noted above, the ball seal housing and upper pressure housing region, is analyzed for prithry-plus-secondary stresses and peak stresses due to the normal and upset ccnditions.
Internal operating pressure, operating tempera tures, op ra ting basis ca rthcuake (OBE) lo:tds, dead weight, anc. techanical cr.ci t.a t ion loads a re con.. idered.
The renu.1 ting s tress j nt. ens i ties a rc evaluated according to the applicable E
c ri te rin.
c
e C O f.113 U G710 N U. N G IN. E l G. IN C.
re u r.m tll _u:.,_> - L3. i ENGINE CillNG DCl* Aft ff.lCf 4 8'. CilAlTAf4 COG A.ll:NN.
si t C ET ---
OF.
U
~
celAllan rio. 7 I S O A ocsCrlfFTioE -
NUbE N'N' I'I I.I Y..b OF
- li v _8__
fhM DATc-c-
CllECl; DATE Y_
- r*
C Ei N If0 0:; C :a The significant results of this inves tiga tion are summa rized in Section II of this report.
Section III describes the s truc tural geor..e try and looding of the CSDI! assembly and summa rize's the applicable design criteria,
...)
II.
SIG!!IFICAT RESETS
~
u The stresa evalua tion shows that all stress intensities and usage fac tors teet the recuirements of l
Section III of the 1971 ASI.3 Boiler and Pressure vessel l
- Code, for the nor:nal and-upset conditions, The. table below suttarizes the results of the primary-plus-secondary s tress analysis and evalua tion.
Summary of Primarv-Plus-Secondary Stress Intensities Primary-Plus-Secondary Stress Intensity Stress (ksi)
Limits
~ Max.
l
[
ASIZ Structural S tress Code Region Int.
Loc.
gAllowable Ref.
Upper Pressure Cut 1 11 9o-
,3S, = 60.0
!Ious in;-
Insida Lo.:er Onega Cutt)
Seal 17 13 3 S m = o,o. C Inside Ball Seal Cut 11 NB-3222*2 11.07
.dou s i ng.
Inside 3Sm = 60.0 Upper Omega Cut lo 14.11 Seal Inside 3a,m. = 60.C Thrended Connection!
Ele r..c n t Ball-Sea 1-To-Upper 8.41 Pressure !!cusinF.
12 5 S>. = 3 0. 0 Tnreadec Connectior "1er ant
~/e n t -S tem-To-Da ll 5.41' hal 1:oud r.-
378 S * = 30.0 HB-3227 3
~
r:.r.3:.dcJ Conne: 1.1:>,
'., 3 i
,,,, g
~ g{y,
Sy = 30.0
- 'oun in[r.-I u t.-To-8 33 4
h' e
[
ihd '. -f.ca 1 "ous i nr
?
e s
iw er 5-o N
.COh10USTION fiNGINiilIltlNG. INC.
Nu t.i ti ti n } ' '-(- Q')-
- t-i EtJGINti C Hlf JG DC T'AllTf.1E NT. C.ll AT I ANOOG A. T ENt4 sHECT-
.OF
'(%'(0-0
- A s., e s.v PJ*e CHARGE NO.
DATE DYr bTP K T
'I-O!'
CHCCK DATE
~
~~
1i
' ~'
DEsCRIPTIOT Cl;bM liOUSii!U The peak stress analysis and fatigue usage factor calcula-tion
. is summarized in the tabic below:
Summary df Peak Stress Intensitics and Fatigue Usage Factors l
Total Stress (ksi)
Fa tigue Usage.
Max.
Usage Struc tural Stress Factor Region Int.
Location U
Allowable Cut 5 Upper Pressure 17.69 Housing Inside
.00 1.00 Lower or.:ega Cut 6 23 38
.00 1.00 Seal Inside i
Ball Seal Cut 11 22.10
.00 1.00
{
.!ousing Inside r
Cut 16 Upper o.r.ega 23.60
.00 1.00 Scal Inside'
\\
l
~
1 O
e 8
.e w;
._....e--.--.--...
u_~
Guidi:U ElIGN LIN(olN11CittMG. lHC.
UUMUCH-U
TN.c Nc tntNo oci' Antr.u!N1. cHA rl/.NOOG A.'I CNN.
sitCET Ol' 7167O-0 8
oATC-U Y.,;.. / 7.-
l CHADGr NO.
., r nc sc nirraoN.-
..TRUCTUR AL /.ilAf// SIS OF cuccg oATu 7 I'ov'Y"
_5.
~
=
'~
Tile CE!;M 1101157i:G
~
I.
INTRODUCTION
~
The pressure retaining components of the control element drive mechanism (CEDM) are designed according to the rules of the /.5WE Cede.
Under these rules primary stress intensity is limited for design, emergency, faulted and test condi-tions, while primary-plus-secondary stress intensities and peak stress' intensitics are ' limited only for normal-and upset conditions.
Consequently, it is convenient to separate the analysis and evaluation of the CEDM housing into two distinct tasks: (1) a hand calculation of the primary stresses in the housing and an evaluation of the resulting stress intensities; and (2) a finite ' element analysis of the primary-plus-secondary stresses and peak,
stresses due to normal and upset conditisns and an evalua-tion of the resulting stress intensities.
Furthermore, the geometry of the CEDM assembly makes it possible to divide the structure into three regions, separated by lang cylinder distances, and to independent]y ' calculate the primary.plus-secondary (and peak) stresses in each region.
As a result of these con-siderations, the analysis of the CEDM assembly is presented in.four distinct calculations.
Calculation RS-001, is a tentative sizing and primar;; stress analysis for the entire CEDM assembly.
Calet lations RS-002 and.
RS-OO4, are primary-plus-secondary stress analyses of two of these three indepenc'ent regions:
(1) the ball seal housing and ball-seal-housing-to-upper-pressure-housing transition, ano (2) the motor-housing-to-lower-end-fitting transition region.
In this report, CE Calculation RS-oc3, the third independent region noted above, the motor-housi~n3-to-upper-pressure-housing-transition region, is analyzed rer primary-plus-secondary stresses and peak stresses. due to the normal and upset conditions.
Internal operating pressure, operating temperatures, operating basis earthquake (OBE) loads, dead weich: (D*.1), pump-induced mechanical excitation (Me) loads and motor driving impulse (DI) londs are consideroi.
The resulting stress inten- '.
sit.ies and faticue usade factors are evaluat.cd according to the applicable criteria.
- - ~
IU"' N #
cor.muGTION tiNGINt:Ercir,c;. INC.
N U I. inst.it 2
12) cucise tnina mennmctrr. cnnnanooca. T ctm.
snutr-
-or cnAnot no.
ofy
./,..g.-
_ n y_C2[,,
7h6'/O-0 PTio7, '
STRUCTI!RA1 Ai!A??T,TG ON
/ /.h?.f/@N ov.'Edf'v' cntcg or ptsCst:
Tile CEDM 110'101;:0
~
~.
=
The significant results of this investigation' are sum:r$rized in Section II of this report.
II.
SIG?lIFICANT RESULTS The stress evaluation shows thst all stress intedsities and usage factors meet the requirements of Section III of the 1971 ASHE Boiler and Pressure vessel Code for the normal and upset conditions.
The table below summarizes the results of the primary-plus-secondary stress analysis and evaluation.
Summary of Primary-Plus-Secondary Stress Intensities l
Pr-imary-Plus-Secondary Stress Intensity Stress (ksi)
Limits
~
Max.
Stress ASME Structural Int.
Code g
Region Range Loc.
Allowable Ref.
Motor Housing Cut 1 37.48 99 9 Tube Inside Motor Housir.g
~
Cut 11 Upper End 23 17 Inside
- 69 9 Fitting l'B-322 2. 2 1
Cut 12 Omega S'eal i 19 511 69 9 1
Outside Upoer Pressure!
Cut 10
/
45 91 60.0 Hour: inn Tube
, In. side
-i
'llircad ed E l c-men t i
20.74
'50 MH.Y.2277 7
i Connection 1705 i
E l
1
I! i
'A' 4 C O M I.: U STI O *.' Il N G I N E lli s'I N G, l[q c, uut.:ut:u g g:G it!C CHif JG D CI' ART r.'.C rJT. Cil ATT A r JO OG A. TC NN.
SitC CT 10?'
h." @
U Y _N*
CllAnGC NO.
~
DATC w.
CllCCK DAW. - !*
"U Y '
~ ! b-OCGcntFTso?, '
STRUCTi1RI.T..*.i: A Tl/ST S OF Tile CEfe.*1 !!oUCII!G The peak stress analysis. end fatigue usage factor calcula-tion
~
is surrenarized in the table below:
~
Surranary of Peak Stress Intensities and Petigue Usage l' actors Total Stress (ksi) f Fatigue Usage I
I Alt.
I Usage Structural Stress Factor Allowable Region Int.
Loc.
U l
Motor Housing Cut 7 l 2 5.42
.000 1.000 Inside i
Tube Motor Houstne
Cut 9 Upner End 32.11
.'002 1.000 Inside Fitting Cut 12 Omega Seal 28.85
. 001
- 1. coo Inside Upoer Pressure l Cut 16 licusin6 l 18.53 outside
- ooo 1.000 O
~
l g
e c
3 M
El A (*)
O
~
h!I-U'J 'i
'cOf.i!3 USTION liNGINiiElf!NG, INC, Nut.m t H I
I oF-I0 gr4GINE C HING oUf'ATM t.iCNT. CII ATT ANooG A. Ttt:N.
sists;r
- /4" h-ny(;,M[N.,,
CHAnocNo.
g_O _Q anyn pesen:FTioM '
- I TO
H Y-Tile CEDM llOUSII:G
_,n I.
Ii1TRODUCTION The pressure reta5ning components of the control element drive mechanism (CEDM) are designed accordin6 to the rulcu of the ASNE Cede. Under these rules primary stress intensity is limited "for design, emergency, faulted and test condi-tions, while primary-plus-secondafy, stress intensities and peak stress intensities are limited only for normal and upset conditions.
Consequently, it is conveni'ent to separate the analysis and evaluation of the CECM housing into two distinct tasks: (1) a har.d calculation of the primary stresses in the housing ard an evaluation of the r.esulting stress intensities; and (2) a finite element analysis cf the primary-plus-secor.dary stresses 'and peak
~
strcsses due to normal and upset conditions and an evalua-tion of the resulting stress intensities.
. Furthermore, the geometry of the CEDM assembly makes it possible to divic.e the structure into three regions, separated by long cylinder distances, and to independer.tly calculate the primary-plus-secondary (and peak) stre sses in,each region.
As. a result of these con-
'siderations, the analysis of the CEDM assembly is presented in four d5 stinct calculations.
Calculation RS-001,.
is a tentative sizing and primary stress analysis for the entire CEDM assembly.
Calculations RS-002 and
'RS-003, are primary-plus-secondary stress analyses of two of these three independent regions:
(1) the ball seal housing and ball-seal-housing-to-upper-pressure-housing transition, and (2) the upper-pressure housing-to-metor-housing transition region.
In this report, C-E Calculation RS-004, the third indepen-dent regica noted above, the motor-housing-lower-end-fitting-to-CECM-nozzle transition region, is analyzed for primary-plus-secondary stresses and peak stresses due to the norma) and upset conditions.
Internal operat.in.", pressure, operating temperatures, operating basi s earthquake (OliR) lead::, : east welr.ht (173),
pump-induced mechani cal t: :ci tati on (ME) lent:s at:d r::ct.or driving impulse (DI) J oads are considered.
The resulting j
stress int.cnsi tics and ratigue usage factors are evaluat.ed
MMM N - -- - -======
COMi'U".TlOil L.NGINii ClilNG. INC.
hO T _._ 2 OF
(* f !GIFl:ClllNG UC P/.G1 f *L IJI. ClI AT I Af 40oC. A.T Cf4f J.
r.1 t e t:
'Y0*'
13 Y.!.,.
>*g.
7.$Q'_[0,:0_
DAi t clinnot rio.
'EOY
[-
STilVCTUi: AI, /?!/d Y.9I.S 0E cur:cK D AT g-nc e.c mrliON Tile CEi'..i !! GUST;!G
_ =.. __.:
=--
The significant results of this investigation arc surriarized in Section II of this report.
.II.
SIG!!IFICANT RESULTS shows that all stress The. stress eva.luation intensitien and usage factor meet -he requirements of
'Section III of the 1971 ASME Boiler and Pressu're Vessel for the normal and upset conditions.
Code The table below summarizes' the results of the primary-plus-secondary stress analysis and evaluation.
Summary of Primary-Plus-Secondary Stress Intensities Primary-Plus-
. Secondary Stress Intensity.
Stress (ksi)
Limits Max.
ASME Stress Code Structural Int.
Region Range Loc.
' Allowable Ref.
1 Motor Housing 13 48 95.2 Cut 1 Tube Insice Motor Houning Cut 4 69 9 t!B-322 2. 2 Lower End 17.64 Outside Fi t tint:;
Cut 6 0:neca Seal 31.97 69 9 Inside l
Threaded
- 14. 52 lio..'"31h
'27.7 i1B-32 27. 3.
i Connection Mi t'
........w..
!#
- 3 ~ 0"
[..
raur.s tic s -
CO*.*.1:USTION E NGINE E RING. INC.
3 O
8f;G D C Parti f.1C tJT. CI 6 ATT ANOoG A.11.? tati.
Slac ;T
- o r:
E t4Gif 4C l!l:
'/ '* I' W, l o D ATI- -
11Y.
7bMd Cl,tAf( G U ti o.
Dr.SCillPTIOri -
ST!ntCTi'H AT, N A1.YST S OP CHECV. D AT E < / *' '
/f -
-*UY Tile CED:4 !!OUSI;;G The pcak stress analysis ind fatigue usage factor calcula-
~
is surr.marized in the table tion belori:
Summary of Peak Stress Intensities and Fatigue Usa.ge Factors Stress Intensity (ksi)
Fatigue Usage Alt.
Usage Structural Stress Factor Allo. table Location Int.
Cut 1
.000 1.000 7.85 Outside 000 1 000 Out 3 23 10 Inside
.000 1.000 Cut 4 17.86 Inside Cut 5 13 36
.000 1.000 Inside
.000 1.000 Cut 6 17.02' Inside e
g g
.=
O s
q S
. A A -m e.
[
APPEllDIX _B t
i r
Contents:
]
Page:
i B1 Sheet 8 of C-E Calculation RT-512 " Thermal Analys'is i
of the Control Element Drive Mechanisms CEDM and 2-
' PLCEDM" i
d e
b 6
4
.j 4-e O
e 9
e I
i 1
I o
e T
4 e
'l e
p
+.
,w e
,-y-y,er-yw,i,--.
+-y-
+--
=e-
-r-+,e
--r,--e,~".
c,,,--ve-,e
p.U.*/s a ) U s 8 I V 8';
b TMill4T. CH AlTAT4GOG ~ 1 CilN.
ggg;g 1_
-op_
,,g ggirdi'Elif f 4G DCr>Al#
7./-7./
- H Y 1~ > o'J g
VM70-0 DATC Cit ARGli NO.
ClIlO CHCCK DATC TJ Y.
U ')V orscnierioN -
4.0 RESULTS The worst thermal transient was Reactor Trip, Loss of Flow, Loss of Load.
The times evaluated in the structural analyses were times with pressure peaks as well as times with the largest thermal gradients.
The significant radial gradients were encountered at 2.0 sec. with axial gradients peaking at, 200 sec.
The foilowing ta'cle shows.the time steps used with
.the iteration and printout intervals.
Transient:
Reactor Trip. Loss of Flow, Loss of Load l
'I5 me ( Se'c. I
' Humber of Number of Iterations Printouta
.225 3
l' 375
3 1
5 3
1 7
3 1
1.35 3
1
'1.5 3
1
-2.0 1
1 20.0 12 l'2 25 0 1
l 30.0 1
1 50.0 4
4 100.0 2
2
'300.0 4
4
'1000.0 7
7 5.o Mi riton oF nourrIott The model was analyzed using the MISYS finite c3 cment.
I-
, computer program.
h.
b O