ML20062J439
| ML20062J439 | |
| Person / Time | |
|---|---|
| Site: | Pilgrim |
| Issue date: | 10/20/1980 |
| From: | Morisi A BOSTON EDISON CO. |
| To: | Ippolito T Office of Nuclear Reactor Regulation |
| References | |
| 80-259, NUDOCS 8010270316 | |
| Download: ML20062J439 (8) | |
Text
{{#Wiki_filter:, BOSTON EntsON COMPANY ornamat arrica. som mort.,o= 5,asc, ....ou..........om, ^1N=l NUCLEAR c PERATioNE SUPPrtRT oEPARTM ENT October 20, 1980 BECo. Ltr. #80-259 Mr. Thomas A. Ippolito, Chief Operating Reactors Branch #2 Division of Licensing Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Comission Washington, D. C. 20555 License No. DPR-35 Docket No. 50-293 C02 System Discharge Test Pilgrim Nuclear Power Station Unit #1 References (a) BECo Letter #80-38 dated 2/29/80 G. C. Andognini (BECo) to T. A. Ippolito (NRC) (b) NRC Letter TAC #11077 dated 10-7-80, T. A. Ippolito (NRC) to A. Victor Morisi ',BECo) (c) Telecon conversation between J. D. Keyes, T. A. Venkataraman (BECo) and M. Willaims, T. Elexion (NRC) on 10-2-80 (d) Telecon conversation between J. D. Keyes, T. A. Venkataraman (BECo) and M. Williams, 5 Scott Hudson, T. Elexion (NRC) on 10-14-80 j
Dear Sir:
In Reference (a) Boston Edison Company presented the generic technical concerns it had regarding the perfonnance of a full scale C02 Discharge Test in the cable spreading room and requested NRC resolution of these concerns prior to committing to conduct the test. Reference (b) was the first correspondence BECo received which discussed the C02 Discharge Test. However, Enclosure 1 to Reference (b) addressed a Boston Edison request for postponement of the CO Refueling Outage, while Enclosure 2 to Reference (2) test performance until the 1981 b listed the status of the CO2 Test as completed (Item 3.2.8). l This apparent discrepancy concerning Boston Edison's cosition on the C02 test was resolved during conference calls between members of your staff and ours (References (c) & (d)). It was agreed that BECo's position was as presented in Reference (a) and quoted above. It was aiso agreed durinJ these discussions that in an effort to THIS DOCUMENT CONTAINS 80102703N/ [ P00R QUAUTY PAGES
COOTON EDICON COMPANY i. Mr. Thomas A. Ippolite, Chief October 20, 1980 Page 2 expedite final resolution of this issue, we would provide you with a copy of our previous submittal which specified the C02 system design adequacy. A copy of this letter along with the calculations which support the system adequacy are included as attacnments to this letter. We trust this information is responsive to your needs, however, should you require any additional information please do not hesitate to contact us. Very truly yours, ' (., lGr l 'Enn (( 4 Attachments 1 A - BECo Letter 78-135 (0-15) B - CO2 System Calculations
Attachment A W Q15 Evaluate the consequences of a design basis fire in the cable spreading room. Provide an analysis which shows the effectiveness and reliability of the present C03 system. State the CO2 density (as a fraction of time) at the height of lihe upper most cable trays considering air leakage through door - ways and ducts. Show that fire brigade operations could not adversely affect extinguishment of fire by the CO2 system. It is the staff's position that an automatically initiated CO, system is acceptable for the cable spreading room as primary fire suppression provided a fixed water system in used as 'a backup. (A 3TP APCSB 9.5-1 Section F3b (3)). Describe your proposed design modification to meet the above position or juscify noncompliance. 3ECo RESPONSE The carbon dioxide suppression system in the cable spreading room is designed to discharge at a rate of 80 pounds per minute threugi; each of the 15 nozzles in the room for a total discharge of 1200 pounds cer ninute. It takes approxi= ate].y 2 minute and 20 seconds to totally flood the CSR, requiring 2800 L3 of CO e provide a 50'; design 2 concentration. At a discharge rate of 1200 pounds per minute, the highest cable tray in the room will be covered with the design concentration of CO in slightly over 2 minutes. The origindi design calculations 2 allow for a loss of at least 270 pounds of CO due to leakage. 2 Recent tests of the installed rate of rise heat detectors in the CSR showed that the C03 system responded in 20 seconds from the time the heat was applied. 'The response time of these detectors to an actual fire in the CSR will vary with the severity of the fire. In addition to a the race of rise detectors, the CSR is also equipped with ionization detectors for early warning. Ad.ninistrative procedures call for immediate visual inspection of the CSR and if the CO system has not activated i 3 automatically it is to be manually tripped! The reliability of CO2 systems has been found to be 96.1% effective as determined by U. S. Navy evaluation reported in an article " Reliability of yire Protection Systems" by M. J. Miller (Chemical Engineering Progress, April 19 74). Administrative procedures require that the fire brigade enter the CSR with breathing apparatus to determine that there are no human occupants present and also to observe if the fire has been extinguished. If the fire has not been extinguished or rekindles, the low-pressure C03 storage tank has the capa:ity for a second shot which is activated by the fire brigade. In addition to fire brigade operations, the Plymouth Fire Departmer.c is also notified. The Fire Department has a normal response time of 6 =inutes or less l Their professional experience will assist in extinguishing the fire. A fixed water system is available outside the cable spreading room as a back up to the total flooding carbon dioxide system. No design =odification is required for this area. t I ~, -.,.
DevlSION CF CHEMETRON C OR POR ATIO rd Attachment B Law Pensure Carb:n Dionida Flow Calculstiens C A' '.. S H E F T._/_or b-4 ' ' '# /C /3 #d (8. SYST EM FOR PJL 8FA ry1 SF/1DD& SY d*U*A-DAt t - plans n.me 4...... AZARD $AElf MPPfA D PMM PROPOSAL NO. JOB NO. A~/$$AE c.-wie.t 4 m.ee r..e DRAWING NO. b / <~4 A "I INSURANCE REF. NO. Effective Desig. Lbs. CO2 Sterose Discharge Flow Ro e b HAZARD EFFECTIVE DISCHARGE PERIOD. DESIGN FLOW RATE Period ite.per s Wdl AND STORAGE REQUIREMENT (in .c.nd.) TOTAL FLOODING (TF)- Requirement is8868 lbs.CO2 /I //8-Vopor discharge period and vepor discharge. / 3 f *' #2## : 87# 0 Ef fective discharge period. design flow rate and storage. /S2 /ye a 26/2 Total Discharge Period. Design Flow Rote and Storage...... LCCAL APPLICATION (L A) Minimum effective discharge period-30 seconds.. Plus high temperature condition................... Plus other. l a' Ef fective discharge period. design flow rate and storage 'M Vapor discharge period and vapor discharge... L Tc'e' Deoga Pe iod. Doign Flow Rote and Sforoge. COMBINED LOCAL APPLICATION & TOTAL FLOODING (from L A ond T F figu es. bow.) r local opplication design flow rote,. Toto! flooding design flow rote....... Total Hozord Desa F % P-+a EXTENDED DISCHARGE I -1 ) o' Initial Dischorse Period and Design Flow Rote. a' Extended Dischorge Period and Design Flow Rote. /5s /2#o 26/2_ FINAL DISCHARGE PERIOD, DESIGN FLOW RATE AND STORAGE. LOW PRESSURE STORAGE:dton for 8 +T shot protection. = REMARKS; S S C HMfWE/1Y/0W WIA A EE WAlhWD NA ~ AAP/20% /$2 JJ/A4 Y ~ h _ r=hl a N AJu!G
.-se." 'y f,. ls j~g g 12 ( ~ --~ ~- ~__- .e} 1.';l 1 i ei, g, bbe nkbwbbt un \\ \\ e- _ % e.s m U I N1' N 4 % M h 9 % d, h\\ Y sj Jof e q v s s s sk % w o: N t x i N Y 8Ea Mi o t t O Q q 0 0 0 g D 0 0 0 0 .. i a : 23 m o m o m q Q
- - 2 541 g
E I j3 = 8 a { [2 v r 9 Z, l 3 an i u, O 3 a'. t v.! : i 6 I Ci 2 = 8 e _; g-] .32 2J j;s If 9 h Y"i 4 k j C N X i s 6-{ N N z li 3 gli U v 44 O a ~s i x N d 0 82 N N 1 7 o 21 y l
- 2 4
M o N 36 3 \\ 4 m c. ) ~.-. z c; p I5l?
- h \\
m .1b2 e z D a ;g !? l ma si sg s 't, m =s t g."; y az-I 9 o si % m
- 3) y
~{n 5; j N %s3-6 r>,>' h Z g o ss T E E y 54 3 ai5 _.__=.n-::sr-o w.n ws w.-m-- - ~- c- - r- * ~- - ~ ' ~
.a -.... a. ",,,,,,,,, @,,,;. j i,u* d,';,x,,* _. w._;n. M v : 2': %swl* y x o..,.. _c, sy M ' ' 8U' ~
- DATE SYSTEM FOR PROPOSAL NO.
sie. .e.e s..e eie. H%ZARD JO6 NO.-[I- /#d'48 DR AWING NO. INSURANCE REF. NO. PIPE SEC TION Cw,, ,s PE SECTION m 7 0.,M. PIPE SECTION J,-., PlPE SECTsON //4 -,a PIPE SIZE 3 " SCHED 6'd, PtPE SIZE 2)'2" SCHED.d/)' J PIPE SIZE /)
- SCHED e h PIPE SIZE /)'i'"$C'HED
- f -
octuel length M /p - octual lengt'h / // octwol length [f octuel length /Z E tee sipE 20 / te. .c.s pE /3 / too ssof 9 / tee ss pE 9 / eal 6 *a "rt.u re 8 3 eil 98* 20 / ell 90* 4 eli vaien.,colg .a er ca e wai a a;co s enien er cele s e / vee = 7"J, a 2 vel = eel = eelve / cat 2th' W M SECTION LENGTH // 3 SECTION LENGTH /.d s$ SECTION LENGTH /9 SECTH3N LENGTH B/ FLOW RATE gesd 'I FLOW RATE /JOd FLOW RATE ,.f4 0 FLOW RATE 4f84 STARY PSIA 3'00 START PSIA 2 97 START PSIA ggy START PSIA 28d START LENGTH START LENGTH f4C ' START LENGTH 9f START LENGTH _/Q, TOTAL EOulv. tENGTH l//5 TOTAL EOulv LENGTH y;.' o O TOTAL EQUlv. LENGTH // d;P TOTAL EOuiv LENGTH /4/ TE RMIN AL P51A 297 TERMINAL P51A [.0 9 TERMINAL PSIA 2P[- TERMINAL PSIA 2 C. A '. c PIPE SECTION An - I PlPE SECTION./ja , g. PlPE SECTION r/., - w'? PtPE SECTION #s v. = PIPE SIZE /j$
- SCHED M; PIPE SIZE / " SCHED.sf?e PIPE SIZE / " SCHED. 5 e PIPE SIZE f6/ SCHFD ectuel length
/d actual length /d actual length / /*t octuel leng'th r j tee 4 i DA ~ r& s tee );b f $p / tee $ /Of /*** $/ A 4" f eli eli ell ell un on or colg I wnson e' colg wnica or colg union or cpig volve volve volve volve SECTION LENGTH /6 SECTION LENGTH / [o SECTION LENGTH f f, SECTION LENGTH !/g~ I i atOw per A-f t'mw ens I y g,, 12pg START PSIA (28o START PSIA I27,f l START PSIA L7,,;;f l START PSIA START LENGTH //d START LENGTH d7 START LENGTH l//{ START LENGTH ' l 8 "r, TOTAL EOulv LENGTH l'_p2, TOTAL EOuiv. LENGTH #J TOTAL EOuiv LENGTH f / J/ t TOTAL EQUlv. LENGTH [h TERMINAL PSIA ffo l TERMINAL PSIA "C' M l TERMINAL P5IA E/f LTERMINAL PSIA Q* PIPE SECTION//,- n.-- PIPE SECTION r //> PIPE SECTION A/a ..,. /, PIPE SECTION </. m, PIPE SIZE % '5C H E D-f ('_e PIPE SIZE /)f'5CHED.4 6_e PIPE SIZE //2 SCH!D. '. ',. PIPE SIZE /d5CHED. 4 octual length g" actual length d actuel length 2J octuel length /2" } 'ee A fDg ( / tee G /d? C* 9 ) tee 3,rpf 9 / tee g / pp "' p* C eli ell / ell
- 1 O **
47 eli union or colg union et Cp39 union or cpig union or epig volve volve volve volve l / r t' r ' 7 7.n = / 3* SECTION LENGTH -/ 6 SECTION LENGTH /g SECTION LENGTH 5 (, SECTION LENGTH 14,; FLOW RATE )30 FLOW RATE 440 FLOW RATE f60 FLOW RATE L." #.S START PSIA gg START PSIA 2 START PSIA fcf[, START PSIA M/ START LENGTH VC START LENGTH l7/ ST_A R T. L E NGT H _. /. SP. $7Ae7 (ENGTH _ f _/,p., _ / _m TOTAt EQUIV. LENGTH [f.F 'a TOTAL EOuiv. LE 6Cl AL EOUW Lf NGin i' O TOTA
- EOuiv LENGTH I e 6 TERMINAL PSIA jg3Il TERMINAL PSIA Z76 TERMINAL P54A 2 #/
l TERMINAL PSIA ll? / PIPt. SECTIONj /-- ry s'/y PIPE SECTION is/-- ?>s%n PIPE SECTION b. n s& ' PtPE SECTION de r_, j,'T a PIPE SIZE //f 5CHED43, PIPE SIZE / SCHEDs/rg PIPE SIZE /" SCHEDef G PIPE SIZE M ' 5CHED..Jd-ectwol length /d octual length /O octuel length / p') ectuellength r' / tee G j Df S } f** TJDW h /*** TJAUS N / f** A /OS S ell ell ell ell un.on o,epig waien of cpl 0 union or epig union or epig volve v.i.e v.l.e vol 5ECTION LENGTH /di SECTION LENGTH j' 6 SECTION LENGTH /4 SECTION LENGTH /p FLOW RATE zf00 FLOW RATE ggt FLOW RATE 240 FLOW RATE //dp $7 ART P5f A g,7J $ TART P51A gy START PSIA 2,78 START PSIA gg START LENGTH jfg START LENGTH (( START LENGTH /LC. START LENGTH Jg _ _ TOTAL EQUIV. LENGTHfy TOTAL EOUlv. tENGTH 77I TOTAL EOulv. tENGTH / TOTAL EOuty LENGTH i /JjM TERwsAt P$iA 27 1ERMINAL PSIA M7C [ TERMINAL P$tA s[dfu TEKMIN AL P$lA gQ{ g
o vimw or cHEMETMN CgKp5Att!N -2...w _< I. E _ d ~ ?. _ ,.7= i SYSTEM FOR a.. e.... e....... SA~ l555 bOS NO. HAZARD INSURANCE REF. NO. DRAWING NO. PtPE SECTION A g 7p //p PIPE SECTION PIPE SECTION PIPE SECTION / PIPE SIZE SCHE D. PtPE SIZE SCHED. PIPE SIZE SCHE D. PsPE SIZE N/ SCHED..cffe .ctveslength I octuoileaeth ee+wel leaeth
- estwel leaeth
~ tee } tee $/DM _f tee %e eis oli ese est l vn.en eecels vaien se crie unlea er epig union et cP g velve verve volve vol SECTION LENGTH M SECTION LENGTH SECTION LENGTH SECTION LENGTH FLOW RATE M FLOW RATE PLOW RATE FLOW RAff START PSIA 2(0, START PSIA START PSIA . START PSIA START LENGTH g[" 5 TART LENGTH ' START LENGTH START LENGTH YOTAL EQUIV LENGTH TOTAL EQUIV LENGTH TOTAL EOult LENGTH '.,:.*p TOTAL EOulV LENGTH TERMIN AL P5tA 2 {C TERMINAL P%lA TERMINAL P51A TERMINAL P51A PlPE SECbON PtPE SECTION PIPE SECTION PtPE SECTION l PIPE SIZE SCHED. PIPE SIZE SCHED. PlPE SIZE SCHED PIPE SIZE SC HE D l ectuel length actuoi length octuel length actuel length tee see see tee I ell oli eli ell union or colg union or coig vol., voi.e velve velve < r m
- i s c.N SECTION tENGTH SECTION LENGTH SECTION LENGTH
. ~. - 8tO w 88?F I flow R ATE i em=~t START PSI A l START P51A ! START PSIA 1 l 2.Aeti Ps A i j START L E NGTH l START LENGTH START LENGTH l START LENGTH t TOTAL EOutt LENGTH l TOTAL EOult LENGTH ' TOT AL EOUlV LENGTH I TOTAL EOutv LENGTH l TERMINAL PS1A TERMINAL PSIA TERMINAL P$lA TERMINAL PSIA f PIPE SECTION PIPE SECTION PtPE SECTION PIPE SECTION h PIPE SIZE SCHED. PIPE 5tZE SCHED. PtPE St2E SCHED PIPE SIZE 5'"MED j octual length actual length actuel length actual length fee tee fee tee all ell ell ell waion or colg union or colg veien orcolg union er epig volve volve volve volve _5ECTION LENGTH $ECTION LENGTH SECTION LENGTH SECTION LENGTH PtOW RATE FLOW RATE FLOW RATE FLOW RATE START P51A START P5tA START PSIA START PSIA START 11NGTH START LENGTH STAR
- LENGTH START LENGTH TOTAL EOutV LENGTH TOTAL EOuiv LENGTH TOTAL EOutv.tENGTH TOTAL EOUlV LENGTH i
TERMINAL P$1A TERMINAL Psia TERMINAL PSIA TERMINAL PSIA l PIPE SECTION PIPE SECTION PIPE SECTION PIPE SECTION PIPE SIZE SCHED PIPE SIZE SCHED. PIPE SIZE SCHEO. PIPE St2E SC H E D. ectuel length actual length octual fength actual length see tee tee to. ell ell ell eft '~ vaion or colg union ercplg union or colg union or (pig l vel,e velve volve volve j SECTION tENGTH SECTION LENGTH SECTION LENGTH SECitON LENGTH f f FLOW R Alt ~Fh RATE Y W GATE.i FLOW RATE .-..m START PSIA $ FART PSIA START PSIA START PSIA START tENGTH 5, TART LENGTH START LENGTH START LENGTH I TOTAL EOuiv LENGTH TOTAL EOutV tENGTH TOTAL EQUIV LENGTH TOTAL EOulV LENGTH l T E R MIN AL P5tA TERMINAL P5tA TERMIN AL PSIA TERMINAL P5tA j .ig .ms
w
CARDOX ~ CALC. SHEET 4 - OF - [- ~. OlVISION Or CHrMETRON COR POR ATIO N g By A, A./.. DATE d ~ ~C SYSTEM FOR PROPOSAL NO. p6ene nome loce reen HAZARD JOB NO. M" ^4~4 83 ./ DRAWING NO. INSURANCE REF.NO.
SUMMARY
OF PIPE WEIGHT AND VOLUME SCHEDULE 80 PIPP. SCHEDULE 40 PIPE NOMINAL PEET OF WElGHT WEIGHT YOLUME YOLUME NOMINAL PEET OP WEIGHT WEpOMT VOLUME v0LUME g 8 PIPE PIPE OF PIPE TOTALS OF PIPE TOTALS PIPE MPE OF PIPE TOTALS OF PIPE TOTALS 882E lbs per ft. emit perft. SIZE Ibs.per h. cm it. per N. 6 28.37 181 6 18.97 .301 5 20.7s .126 5 14.42 .139 4 14.98 .0a 4 10.79 .008 l as ,2.3 02 as .068 3 /C 10.25 // 2.5 .046 , 440 3 7.5 s .05 2h 7.66 .029 2 '# /// 5.79 g-C 033 5.4/J.i 2 i 2 5.02 ,021 2 3.65 023 ,' f Ih 3.63 .u u 8.D' . 010 ,2:* 1 I 1 /s 3.0 .009 1 /s 2 2.27 I 2.17 .005 1 g/) 1.68 h[ .006 , f. ' Zg 4.la g '4 1.47 .003
- /4
.w.., y# I 2 1.08 . 0 016 /2 .8$ .0021 TOTALS /G , sf[,/) TOTALS @3h g, wEsoMis votuMEs / Lbs. CO2 teqwired to cool pipe line - Formula TANK SHUT-OFF VALVE SECTIONALIZING VALVE w a cpa T 120 MASTER VALVE / 514sd"TMm MASTER-SELECTOR VALVE M8 Time in seconds to obtain liquid discherse-Permule TOTAL SCHED. 80 PIPE /83 ,ddO w a Cp a T 1050ay TOTAL SCHED. 40 PIPE M S OO 3 II' E I w./ 3 /o / vo E.4 4 5 .w - wei.ht ef piee.etc. TOTALS Cp-Specific heet of pipe (steel.11.alvm..22) T - Tempereture el p.pein *P E - Design flew rote v - voivme.,,i,e W' 9 t[ l 36lX //X [O * /3q74 ~ 12 0 ,g g ,,o - jpg,, 0 -= /3174 / O s*o x S'. 1 (. /3 +74-s735 1/3 x/ zoo /200 /0f4 /20o /2-2 r 4.7: / 7 4 ~ A l? ) t _ - - - _}}