ML20059G846
| ML20059G846 | |
| Person / Time | |
|---|---|
| Site: | River Bend |
| Issue date: | 02/28/1987 |
| From: | Ha C, Larson C, Mccandless R GENERAL ELECTRIC CO. |
| To: | |
| Shared Package | |
| ML19311B360 | List: |
| References | |
| DRF-AOO-02558E, DRF-AOO-2558E, RE-029, RE-29, NUDOCS 9401250328 | |
| Download: ML20059G846 (117) | |
Text
,
GENERAL' ELECTRIC COMPANY CLASS III f
RE-029 DRF A00-02558E FEBRUARY 1987 TECHNICAL SPECIFICATION IMPROVEMENT ANALYSIS FOR M EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMIlffATION FOR RIVER REND STATION, UNIT 1 6
(TRIS REFORT EAS REIN FREFARED FOR' GULF STATE (ffILITIES CGtFANY THROUGR TEE TEC WICAL SPECIFICATION IMPROVEMENT CG9 TITTER OF TER EWR OWNERS' GROUF) g
}
FREFARED BY:
L r*
C. Ra, Seafior Engineer Reliability Engineering d-
,,,m,,,,,
C. L. larson.-Principal Engineer Reliability Engineering AFFROVID BY:
I A=
a Pl *-
R.J.iteCandless, Manager Reliability Engineering i
F-9401250328 940114
[
I PDR ADOCK O 58
/
R P
J L ---
GENERAL ELECTRZC COMPA.Y N
CLASS III e
D00RTANT NOTICE REGARDING CONTENTS OF TIIS REPORT Please Raad Carefully The only undertakings of General Electric Compay respecting.
information in this document are contained in the contract between the.
purchasing customer and the General Electric Ceepany as referenced in General Electric h:;::els thaber 355-1525 Eavisions'1 and 2, and-nothing contained in this docusant shall be construed as changing the contract. The use of this infarmation by anyone who has not contracted for its use for any purpeee other.than that for which it is intended, is not autherised: and with respect to any unauthorised use. General Electric Campany makes no representation or warranty, and assumes no liability as to the completeness.: accuracy, or usefulness of the informaties contained in this document.
I i
GENERAL F.LECTRIC COMPANY CLASS III i
TABLE OF-CONTDrrS 2111 1.
DrrRODUCTION 1
2 '.
EVALUATION METHOD
'2 3.
RESULTS OF ECCS EVALUATION 4
4.
SUPMARY AND CONCLUSIONS
'6 5.
REFERENCES 6
APPENDIX A,BCCS ACTUATION DISTRIMEbrIATION A EVALUATICII 7tX TB RIVER REllD STATICII. WIT 1 s
GENERAL ELECTRZC COMPANY CLASS III 1.
INTRODUCTION This report extends the generic study of modifying the technical specification requirements of the emergency core cooling systea (ECCS) on a
~
plant specific basis for River Band Station, Unit 1, a BWR 6.
The generic study (References 1 and 2) provides a technical basis to modify the
^
surveillance test intervals and allowable out-of-service times of the ECCS actuation instrumentation from those of the generic technical specifica-tiens. The generic study also provides additional analyses of various known different ECC5 configurations to support the application of the generic basis'en a plant specific basis. The generic basis and the supporting analyses were utilised in this plant specific evaluation.
The'.
results of the plant specific evaluation for River Bend are presented herein.
r e
?
p
.t.
GENERAL ELECTRIC COMPANY CLASS-III
.l 2.
EVALUATION METHOD i
The plant specific evaluation of the modification of the surveillance test i
frequencies and allowable out-of-service times of ths ECCS actuation instrumentation was performed in the following steps:
j Cather plant specific information on the ECCS from Gulf State a.
Utilities Company (GSU). The information includes the following:
(1) Piping and Instrumentation Diagrams (PEIDs) of ECCS, l
reactor core isolation cooling (RCIC) system, emergency service water systems, and air systems to ADS valves.
(2) Elementary Diagrams of the ICCS, RCIC..and related. systems.
(3) ECCS, RCIC and electric power distribution system descriptions such as those'in the plant Final Safety Analysis Report (FSAR)..
i (4) Technical specifications on the ICCS, RCIC, the suppression chamber, and the electrical systems.
(5) Information on ECCS surveillance test procedures.
(6) Dependency matrices showing dependence of ECCS and RCIC systems on suppott systems and on actuation instrumentation.
(7) Available data on actuation instrumentation failures.
The latest revisions of the above items were supplied by GSU.
Section I of the checklist in Appendix A was used to identify the-data source of the plant specific information.
i b.
Construct the plant specific ECCS configuration from the plant specific information. Sections "A" through."E" in Section II of the Appendix A checklist was used for this process.
Il i
A..
.~.
- i GENERA 1. ELECTRZC COMPANY l
CIASS III Compare the plant specific ECCS configuration with the generic c.
ECCS configuration using the generic ECCS fault trees ECCS I
description, technical specification requirements, and other-i generic inputs.Section III of the checklist s u used for this process.
l
[
d.
Classify the differences in ECCS system design, in support y
systems, and in instrumentation, into three categoriast (1) Differences which obvinualy have no negative effect on the reliability of the ICCS.. Examples of thsse "no effect" l
items are component name differences symbol differences, I
and other minor non-functional differences. Other effects..
not requiring analysis are those in which the specific plant' has greater redundancy than the generic model. Disposition of the items with obviously no negative effect is done with "no analysis required".-
l (2) Differm eas which require engineering judgment'for a
disposition because of the functional differences. Examples-of thase differences are the use of shared room cooling systems in a specific plant compared with individual' room cooling systems in the gemoric plant.. The disposition of such items would require engineering assessment.in a " simple:
f study" as shown in Appendix 7 of Reference 1.
i (3) Differences which require additional analyses to evaluate the offact on the BCCS reliability. Examples of such differences are use of two diesel gemorators and two f
electrical systems in a specific plant compared with a' r
larger number of diesel generators and electrical systems in the generic evaluation. Disposition of these items would require additional analyses ("Medify fault trees and perform j
analysis.") to compare with the generic results. These-6 analyses are documented in Reference 1.
j Compile a list of plant specific differences of Categories (2)'
.i e.
and (3).
I
i GENERAL ELECTRIC COMMW i
CLASS III j
f.
Assess the reliability effect of the differences identified in i
Step (e) on the generic results. The results of the assessment are documented in Section III of the checklist. Appendix A.
g.
Document the rasults of the plant specific evaluation.
t The above seven step process is documented in Appendix A of this report.
t 3.
RESULTS OF ECCS EVALUATION The results of the plant specific evaluation of the ECCS fer R151 are documented in Appendia A of this report. The results show that the ECCS ~
configuration of R&$1 has four differences from the gWR 3/4 generic model*
which are classified Category (3), and none which is'in Category (2). N RR$1 differences in Category (3), requiring detailed analysis, are as
[
follows:
a a.
N generic model has three emergency service water loops, each loop providing cooling water to one diesel generator. The RBS1 emergency service water system has two loops, with each loop j
cooling one diesel generator and supplying a common header which-
.l provides cooling water to the IPCS diesel generator. The common j
header can be isolated from the two loops by valves.
b.
The generic model uses 1-out-of-2-twice logic for the pressure permissive signal to manually open LPCI and LPCS valves, 1851 uses a 1-out-of-1 pressure signal.
I c.
The generic model has no ADB inhibit switch, R851 has an ADS inhibit switch.
The term " generic model" means the ECCS configuration used in the generic analysis.
1 I
4 i
t GENERAL El.ECTRIC COMPAhY CLASS III i
d.
Injection valves in the generic model are stroke.. tested d
quarterly.-at RBS1 the valve stroke test is performed at cold' shutdoe. shich could be as long as 18 months.
?
t i
J 1
i 6
4 k
h l;
f i
a 5
1 i
I i
. -l M,
GENERAL ELECTRIC COMPANY l
CLASS III
/..
SLHMARY AND CONCLUSIONS i
I A plant specific evaluation of modifying the surveillance test intervals and allowable out-of-service times of the ECCS from the technical specifications of-RBS1 has been performed. The evaluation utilized'the plant specific information supplied by GSU and the generic basis and the additional analyses documented in References 1 and 2.
The results indicate that the ECCS configuration for RSS1 is similar to the ECCS configuration in the generic evaluation, with four significant differences. The differences between RSS1 and the generic model have been modeled by envelope cases 55 and SC of Reference 2 which show that the,
proposed changes to ECCS actuation instrumentation Technical Specification's would meet the 4% acceptance criterion 14 Reference 2.
Therefore, the generic basis in References 1 and 2 is applicable to RSSI.
5.
REFERENCES (1)
D. 5. Atchason, et al., "EWR Owners' Group Technical-
-l
~
Specification Improvement Methodology (with Demonstration for EWR BCCS Actuation Instr m tation) Part 1", Geenral Electric Company, NEDC-30934P, November 1945.
(2)
D. 5. Atcheson, et al., "EfB Owners' Group Technical Specification Improvement Methodology (with Demonstration for EWR BCCS Actuation Instrumentation) Part 2", General tiectric l
Company, MIDC-30934P, to be issued February 1987.
1 5
i
) i
t t
' I GENERAL ELECTRIC. COMPANY CLASS III f
e i
+
i
't APPENDIX A ECCS ACTUATION-INSTRUMERCATION EVALUATION FOR RIVER REND STATION, UNIT.1 I
e.
l
+
z
.}
I,
. j i
5 i
1 l
Y
' I e
e 4
1
- i 1
I i
i l
i 1
-A-1.
s
GENERAL ELECTRIC COMPANY CLASS III Section I - ECCS Plant Specific Data Source I
t Utility: Gulf State Utilities Company Plant:
River Bend Station Unit 1 Source Number 1.
Emergency Service Water PkIDs l
3.
Electrical Drawings 4
Instrumentation Logic Diagrams
?
5.
ECCS Fault Trees l
6.
Final Safety Analysis Report
[
7.
Technical Specifications i
8.
Other Drawings 9.
Dependency Matricas i
10.
Failure Data 11.
Test Procedure Questionnaire 12.
Telephone Call Records 13.
MEDC-30934P, Part 1 i
I t
i A-2
I GENERAL ELECTRZC COMPANY CLASS III Section II - ECCS Configuration Data A.
ECCS Svstem Generic Difference-Data
- RBS1 BWR 5/6 (Y/N)
Scuree 1.
Number of:
LPCS Pumps / Loops 1/1 1/1 N
1 i
LPCI Pumps 3
3
-N 1
ADS Valves.
8 8
N 1
HPCS Pumps 1
1 N
1 2.
Needed for Success, Number of:
LPCS Pumps / Loops 1/1 1/1 N
6 LPCI Pumps 1
1 N
13 ADS Valves 3
3 N
13 t
3.
Number of:
I Diesel Generators 3
3 N
3 Electrical Divisions 3
3 N
3 l
The numbers shown in the Data Source column refer to the documents listed in Section 1.
4 s
9 4
i t
A-3
GENERAL ELECTRIC COMPANY i
CLASS III i
Section II - ECCS Configuration Data B.
SUPPORT SYSTD4 DEPENDENCIES The dependencies each front line ECCS systes has on the listed support-subsystens for both the generic and specific plant are shown.
FRGff LIMR SYSTBES SUFPWT
\\
---LPCI---
ADS ADS DIESELS SUBSYSTM5
\\ A B C LPCS A
B RCIC HPCS A B C OFFSITX AC POWER X X X X
X X
ONSITX AC POWER DIVISION 1 X
X X
X X
DIVISION 2' X X X
X DIVISION 3 X
r ONSITE DC POWER DIVISION 1 X
X X
X X
X DIVISION 2 X X X
X X
X DIVISION 3 X
X SERVICE WATER DERGENCY A X
X X
X S
DERGENCY R X X S
X $
DERGENCY C G
G WATER SUFFLY CONDENSATE TALE X
X SUFFRESSION 700L X X X X
X X
AIR DISTRLMMT AIR X
X l
30tM CotXJMi LPCI X X X LPCS X
RCIC X
IPCS X
DIESELS X X X j
X = IN BOTE GBERIC AND SPECIFIC EWR 5/6s G = ONLY IN GBERIC EWR 5/6 5 = ONLY IN SFICIFIC EWR 5/6 i
A-4 c
GENERAL ELECTRZC COMPANY CLASS III Section II - ECCS Configuration Data C.
INSTRLVENTATION DEPLNDENCIES The dependencies each front line ECCS. system has on the listed actua-tion instrumentation for the generic and specific plants are shown.
FRONT LDE SYSTBES ACTUATION
\\ LPCI LPCI LPCI ADS ADS DISTEttertATI(El
\\ A B
C LPCS A
B RCIC HPCS RFV WATER LEVEL 1 (LOW LOW LOW)
N691 A/E X
X X
N691 B/F X
X X
RFV WATER LEVEL 2 (LOW LOW)
N692 A,5.E.T X
N673 C.L.G.R X
RFV WATER LEVEL 3 (LOW)
L695A X
N6955 X
RPV WATER LEVEL 8 (HIGH)
N673 C.G S
N674 C.G X
N693 A,B X
RFV PRESSURE LOW N697 A,1/N698 A.E X
X N697 5,F/N698 B,7 X
X N654 A 5
S C
S X = IN Eggs tuninTC AND SPECITIC EWR 5/6s G = ONLY IN GENERIC EWR 5/6 5 = ONLY DI SPECIFIC EWR 5/6 A-5
__=
i GENERAL ELECTRIC COMPANY CLASS III Section II - ECCS Configuration Data C.
INS 7tHEhiATION DEPENDENCIES (Continued)
The dependencies each front line ECCS system has on the listed.actua-tion instrumentation for the generic and specific plants are shown.
FROIrE IINE SYSTRES ACTUATICII
\\ LPCI LPCI LPCI AUS ADS I)l5TIl343rIATI(N
\\ A B
C LPCS A
B RCIC HPCS' DRYVELL PRESSURE HIGH N694 A.E X
X X
X N694 5 X
X X
X N694 F X
X X
N667 C.G.L R X_
LPCI PUMP DISCHARGE I
PRESSURE HIGH N655A/N656A S
~X 1
N6555/N6565 5
X N655C/N656C X
LPCS PUMP DISCHARGE PRESSURE HIGH N652/N683 X
ADS TIMER K5A X
K55 X
DRYWELL PRESSURE i
BYPASS TIMIR A
X B
X i
ADS T m TT SWITCI A
S B
MANUAL INITIATICII SVITCH (1/ LOOP)
X X
X X
X X
X X
i X = IN DOTH GENERIC AND SPECIPIC BWR 5/6s G = ONLY IN GENERIC BWR 5/6 S = ONLY IN SPECIPIC BWR'5/6 1
)
R I
GEhT.RAL ELECTRfC COMPANY CLASS III Section II - ECCS Configuration Data C,
INSTRLMENTATION DEPENDENCIES (Continued)
The dependencias each front line ECCS system has on the listed actua-tion instrumentation for the generic and specific plants.
FN NE LINE SYSTBt5 RELATED IKM-ACTUATIM
35TEt33rtATIM
\\ A B
C LPCS A
B RCIC HPCS LPCI/LPCS PUNP DISCHARGE PRESSURE LOW N652 A X
B X
C X
N651 X
N635 A.E X-SUPPRESSION POOL WATER LEVEL IIGE N655 C.G X
N636 A E X
X = IN BOTE GBIERIC AND SPECIFIC EWR 5/6s G = ONLY U GRIERIC.DE 5/6 3 = ONLY DI SPECIFIC Widt 5/6 i
l 1
i A-7
GENERAL ELECTRIC COMPANY CLASS III Section II - ECCS Configuration Data D.
Minic:um Number of Sensors Channels, or Components for Failure, RBS1 A: = MINIEH SENSOR FAILURES REQUIRED TO FAIL TRIP FUNCTION
- B: = MINIEH NUMBER SENSOR FAILURES REQUIRED TO FAIL FUNCTION - TOTAL -
C: = MINIEH EMBER OF SENSOR TYPES REQUIRED TO FAIL FUNCTION DIFFERENT-FROM GENERIC TRIP (Y/N)
Tt'NCTION A
B C
B C
LPCS PLHP.
1 RPV WATER LEVEL 1 (LOW LOW 2
2
-N N
INITIATION LOW) AND 1 DRYWELL PRESSURE LPCS INJ VALVE 2 RPV LOW PRESSURE 2'
1 N
N LPCI PUMP 1 RFV WATER LEVEL 1 AND 2
2 N
N-INITIATION 1 DRYWELL PRESSURE LPCI INJ V/J.VE 2 RPV LOW PRESSURE 2
1 N
N ADS INITIATION 2 RFV WATER LEVEL 1 OR 2
1 N
N.
2 RFV WATER LEVEL 3, (LOW)
ADS TIME DEMY 2 TIMERS 2
1 N
N HPCS 2 RFV LEVEL 2 (LOW IAW) 4 2
N N
INITIATION AND 2 DRYWELL FRESSURE HPCS LEVEL 8 2 RFV LEVEL 8 (RIGR) 2 1
N N
HPCS INJ VALVE 2RFV5.IVEL2AND 4
2 N
N 2 DEYWELL PRESSURE HPCS WATER 2 CST LEVEL AND 2 4
2 Y
N SOURCE SUFFRESSION POOL LIVIL RCIC 2 RFV LEVEL 2 2
1 N
N INITIATICBf RCIC LEVEL 8 2 RFV LEVEL 8 2
1 N
N RCIC WATER 2 CST LEVEL AND 2 4
2 Y
N SOURCE SUFFRESSION POOL LEVEL RCIC INJ VALVE 2 RFV LEVEL 2 2
1 N
N Based on data sources 4 & 6.
I GENERAL' ELECTRIC COMPANY CLASS III Section II - ECCS Configuration Data E.
ECCS Instrumentation and related subsystems Surveillance Requirements
- SURVEILLANCE REQUIRDENTS**
DIFFERENCE l
GENERIC 5/6-RBS1 (Y/N)
CORE SFRAY SYSTEM REACTOR WATER LEVEL 1 (LOW LOW LOW)
M M
N DRWELL PRESSURE HIGH M
M N
REACTOR FRESSURE LOW M
M N
MANUAL INITIATION R
R N
LPCI REACTOR WATER LEVEL 1 M-M N
l DRYWELL PRESSURE RIGE M
M N
REACTOR FRESSURE LOW M
M N
FUMP START TDS DELAY RELAY M
M N
INJECTION VALVE DIFFERENIIAL PRESSURE LOW M
N/A Y
~
MANUAL INITIATION R
R N'
ETsI.
REACTOR WATER LEVEL 2 (LOW IAW)
M M
N DRWELL FRESSURE RIGE M
M N
M N
SUFFRESSION FOOL LEVEL II W M
M N
i REACTOR WATER LEVEL 8 M
M N
MANUAL INITIATION R
R N
q M
REACTOR WATER LEVEL 1 M
M N
DRWILL PRESSURE EIGE M
M N
ADS TIMER M
M N
CORE SFRAY FWF DISCRAME PRES $URE N
M N
LFCI FLBtr DISCEASGE PRESSURE M
M N
REACTM WATM LIVIL 3 (IAW)
M M
N 1
MANAL IIITIATIM R
1 N
ADS WVUELL PRESSURE BYFASS TDER M
M N
ADS IMIBIT SWITM N/A M
Y MMMM Q
CSD/Q Y
DIEEEL M M
M N
AC W
W N
ESSENTIAL DC W
W N
ESSENIIAL AC SUSSES W
W N
Based on Technical Specifications, data source No. 7.
M =
MONTELY, W =
WEEELY, R =
REFUELING, 0 = QUARTERLY CSD = COLD SHUI DOWN A-9
p.
GENERAL ELECTRIC COMPANY CLASS III Section III - ECCS Configuration Differences Classification (River Bend Station)
Plant Specific Classification'(Justifi-BWR 5/6 Generic Model Difference' cation if Insignificant)
A.
ECCS System Differences No significant differences.
B.
Support System Differences 1.
Service water has Standby service water 3 separata loops has 2 loops. Elec for 3 electrical Div 3 depends on Divs divisions.
1 & 2.
One SSW pep depends on IPCS DG (Div 3), one pump depends on Div-.1, and two pu ps depend on Div 2.
C.
Instrumentation and Procedures. Differences 1.
Manual opening of Manual opening of. low LPCS & LPCI injec-pressure system injec-tion valves has
, tion valves requires-permissive signal one. pressure signal from 1/2-twice which is tested every logic.
18 months, not asethly.
2.
Contaismsat spray No contaiansat spray signal comid pre,
signal interlock.
vest LPCI operation.
3.
Injection valves Injection valve stroke are stroke tested tests are performed at quarterly.
cold staatdown.
4.
No ADS inhibit ADS has inhibit switch.
switch.
A-10
4 f
r ENCLOSURE 4 1
s s
P r
- 1 k
o
e m osu m (o
(e n 000001 a= H ar wti,,r e,,,,y 1
1 OG9 749 32D August 7, 1989 TO:
BUROG Technical Specification Committee:
s FROM:
W. P. Sullivan
~'
SUBJECT:
Clarification of Technical Specification Changes Given in.ECCS~
Actuation Instrumentation Analysis i
REFERENCE:
NEDC-30936P-A, " BUR.0wners' Group Technical.' Specification-Improvement Methodology (With Demonstration for BWR ECCS Actuation i
Instrumentation), Part 2. December 1986.
4 Enclosed are clarifications to technical specification changes given'in Appendix A'of the reference report to assist you in your individual plant submittal to the NRC.
These clarifications came from questions raised by.
i members of the Technical Specification Committee.
If.you have any questions:concerning the enclosed material please call either myself (408) 925 6992 or Jim Klapproth (408) 925 5434).
)
.I l
\\
)
1'
.f f 1l mw
/
W. P. Sullivan Reliability Engineering Services -
M/C 789.(408)925-6992 J
- 1 Enclosures 1
.J
l 1
EW Fue 000002 l
Clarifications to Chanres Civen in Accendix A of NEDC-30936P-A
REFERENCE:
l NEDC-30936P-A. "BWR Owners' Croup Technical Specification Improvement Methodology (With Demonstration for BWR ECCS Actuation l
Instrumentation). Part 2. December 1986.
1)
Standard Technical Specification, Action b of paragraph 3/4.3.3-ECCS Actuation Instrumentation Limiting Condition for Operation for BWR 6 Solid-State Plants BWR 5/6 Relay Plants, and BWR 3/4 Plants was modified as follows:
"b.
With one or more ECCS actuation instrumentation channels inoperable, within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> take the ACTION required by Table 3.3.3-1."
In the technical specification markup for the above product lines.
i Table 3.3.3-1 was not included in Appendix A of the reference report.
Also, the current modification as written implies a 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> AOT before taking any action listed in Table 3.3.3-1. It was intended that Allowed Out of Service Time (A0T) of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> apply to the individual actions I
listed in Table 3.3.3 1.
Therefore, when making your technical specification submittal for ECCS actuation instrumentation the 1
following changes relating to repair ADT should be incorporated:
a) No change to Action b. of paragraph 3/4.3.3.
The paragraph should read as follows:
"With one or more ECCS actuation instrumentation channels inoperable, take the ACTION required by Table 3.3.3-1."
b) Markup ACTIONS given in Table 3.3.3-1 according to the attached Table 3.3.3-1 modifications for Standard Technical Specifications.
2)
Technical specification changes to RCIC were not included in the reference report. The required modifications are given in the attached markups of Standard Technical Specifications for the RCIC actuation instrumentation.
3)
A complete technical specification markup for the ECCS and RCIC Actuation Instrumentation is provided in the enclosure for the three current standard technical specifications (BWR 4, BWR-5, and BWR 6) and Clinton BWR 6 Solid-State plant technical specification. The following is a listing of the
Enclosures:
i i - BWR 6 (Clinton) Solid-State ECCS Actuation Instrumentation BWR 6 ECCS Actuation Instrumentation i - BWR 5 ECCS Actuation Instrumentation - BWR 4 ECCS Actuation Instrumentation BWR 6 (Clinton) Solid-State RCIC Actuation Instrumentation
> - BWR 6 RCIC Actuation Instrumentation BWR 5 RCIC Actuation Instrumentation - BWR 4 RCIC Actuation Instrumentation
i Eb Pee 000003 BWR 6 (Clinton) Solid State ECCS Actuation Instrumentation Technical Specification
.9
Es e e 000004
!NSTRUWENTATION 3/a.3.3 EufRCENCY CORE COOLING SYSTEM ACTUATION INSTRtvENTATION LIMITING CONOTT!ON FOR OPERATION 3.3.3 The emergency core cooling system (ECCS) actuation instrumentation channels shown in Taele 3.3.3-1 shall be OPERA 8LE with their trip setpoints set i
consistent with the values shown in the Trip 5etpoint column of Table 3.3.3-2 and with EMERGENCY CORE COOLING SYSTEM RESPONSE TIME as shown in-Table 3.3.3-3.
APPLICABILITY: As shown in Table 3.3.3-1.
ACTION:
a.
With an ECCS actuation instrumentation channel trip setpoint less conserv-ative than the value shown in the Allowable Value column of Table 3.3.3-2, declare the channel inoperable until the channel is restored to OPERA 8LE status with its trip setpoint adjusted consistant with the Trip setpoint value.
3 t
b.
With one or more ECC5 actuation instrumentation channels inoperable, take l
the ACTION required by Table 3.3.3-1.
{
t.
With either ADS trip system "1" or "2" inoperable, restors the inoperable trip system to OPERA 8LE status within:
1.
7 days, provided that the Hpts and RCIC systems are OPERA 8LE, or 2.
72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />, provided either the MpC5 or RCIC systems are inoperable.
,{
Otherwise, be in at least MOT SMUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and reduce reactor steas does pressure to i 100 psig within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
i SURVE!LLANCE REQUIREMENTS 4.3.3.1 Each ECC5 actuation instroentation channel shall be demonstrated OptRA8LE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and i
CHAfstEL CALIBRATION eperations for the OPERATIONAL CON 0!TIONS and at the frequencies shown in Table 4.3.3.1-1.
4.3.3.2 LOGIC SYSTDI MNICTIONAL TEST 5 shall be performed at least once per la months. The acteetion system logic associated with each of the ECCS divisions shall be manually tested independent of the SELF TEST SYSTEM during alternate refueling outages such that all divisions and att trip functions are tested at least once every four fuel cycles."
8 4.3.3.3 The ECCS Resp 0NSE TIM of each ECC5 trip function shown in Table 3.3.3-3 shall be desenstrated to be within the liett at least once per la months. Each test shall include at least one channel per trip systes such that all channels are tested at least once every N times 18 months where N is the total nuuter of redundant channels in a specific ECCS trip system.
" Manual testing for the purpose of satisfying Specification 4.3.3.2 is not require-l ed until after shutoown during the first regularly scheduled refueling outage.
i t
CLINTON - UNIT 1 3/4 3-33
ee Pac 6 000005 a
h RRm"ASSA RR4 4 4 2R44 s
asss i
iiii 3gg s__
am, aaaa e,--
5 gg:!
eae.aaaa asa a a casa us
- : : a ::
s=s E
I
.s G
-n B.
s Ee 222 2
22 22
~-- - ~ ~~-~
=
-2 I!
O~ ~
n v
sy n
m-e e
07 m
g' e
a t
g u
4 to e
g g
g z-a t
3 I
p 3
g s s 3'-
~
s yB a
8 A-g.
I jl j g
5 E I *j g a. -.
E ja E
I l sage:
y E
11 3
e 3
3-I E
E I
i_g1.:
a
-Es r
. l se-I:::j.:
z
.s -
24.5 22 3-: j 3- : 2--e -I E
3I=gjIII2}ye3-I j - E I 3 giIII3 5 s y 'r 3j=}3E_. s]r.r.r.j. a g j-ggg ] g e g $ A$5 $ A $ 4$ y =a 1 n m = i l Clip - UNIT 1 3/4 3-34 I
N taste _. .Ceatinneed) EMDCENCY CORE COOLING SY$1[M ACTUAileN INSTRUMENTAf f 0N hI MINileM OPERASLE APPLICABLE CHAleIELS PER 1 RIP OPERAll0NAL TUNCil0N CONDill0NS._ ACTION k TRIP FlaICileN -4 8. BlVISIGII !! TERP SYSTDI 1. AMR S & C (LMI IWSf) Seacter Wessel lister Level - Low Low Low, 2fb 1, 2, 3, 4*, 5* 30 a. 2,)
- 1,2,3 30 Level 1 h.
trywell'Pressere - Ni $ g 4 1, 2, 3 32 Descler Wessel Pressure-Lew 4*, 5" 33 c. (L KI le M ilen Velve Porteisstwo) 1, 2, 3, 4*, 5* 32 1 d. LKI Pump CS) Start flee teley Lesjg Card 1, 2, 3, 4*, 5* 40 1 LKI Pump (S) Slecharge Flow - Low,, 1, 2, 3, 4*, 5* 40 ) f. L KI Pimp (C) Discherge flow - Law 1(b) 1,2,3,4*,5* 35 e. w 1 g. Ilmewel Initiation Alf54pthilC OfPEES$1RIZATISIR SYSTEN T81F SYSTEM "2"# E 2. AB5 LEEIC w JWW r-Reacter Wessel lister Level - Law Low Law, 2,*)) g 1,2,3 30 e. I Level 1 2 1, 2, 3 30 6. erywell Pressure - Nigh 1 1,2,3 32 c. A05 Tleer d. Reacter Wessel lister Level - Law, Level 3 1 1,2,3 32 (Permissive) L K I P g (8 and C) Discherge Pressere - 2/ peep,) 1, 2, 3 32 g e. Nip (Permissive) 2 1, 2, 3 30 _8 m' .AS5 trywell Pressere Gypass fleer 1 1,2,3 35
- f..
Itaneet lahitit ADS Switch 2
- 1. 2, 3 35 s:*
g. m C i h. Monmal Initletion i O i O i O I O f C i CS I I ~ st - - -. - -- a -w, a .w,
w yIe m OOOOCI N N O O I I T T C 66277005 C 88 99 A 33333443 A 33 33 m 8
- 5$
55 U 55"5555
- 5 L
L EAS 4 444444 EAs 44 44 I l LNN LI I ,,,,,, S0C 8OO AII 33333333 AII 33 33 CTT CTT IAI IAI LRD 22222222 LRS 22 22 PEI m PEN ,,,,,,,, PPO N PPO O AOC 11111111 AOC 11 11 n n I T e o A ES t i T ILL s s N S BE i i R t v v IAIS s IRI i i a P IEA D D t I IPH / / T EI MOC 24 23 S tR N 8T l )) I A n n e e ) RR gg ))) S t t d N EE e O PP j g LP s s m I 0 g4g El i i I t v v e T Sl 44222111 e l li 1 i l 'l A f LO A 9 D t U tI MO / / EI T n T lS CT 22 23 C e C i I I C A NAl ( IHu M NCF m 1 E T 2 L n n S 3 .E o e Y l S e 8 ,m i t 1R s s 3 v 8 1I 3 G e A i i LI v v N L .l AO 1 i e E I , v T 9 D L L OF / / TO 24 23 B O w e A O a L ph T C L g , h ii EG w g NN O e i e e g g C L N l - we a a Y l 1 av t t C ei Le l l I v Ls e e D e l e v v G L err-r r A l vePe e e rI ret t d d m l M eteLseei e n i i t e gR t l e sk r n E t nlawe o I s I HeI r aehot u I u t I I lulTeclt t)e& t i B ese PsFa T ssse i l yg Iy l sesgnDmt caIIc l el nt I n I e r e a e,t s V el s e s WPWrl S as sI genng nn P rlrtsiy rWeer ee e el eSePSl e lte t I IR D tet r e nfasm s T T e u c C pS s u EoiiE i S nyaI pC t n R vv v I V ereCuOra E VsiiW l ksDDk B. GBRASIIM G e I I 6L 6 P
- 1. ( '
1 t l t I i F G e e a b c d e f gb G 4 ab4 ab I l l T C I S I V s O I F S 1 L 1 2 i P I R T C S
- ,2 b
- gq"
%'l* m m Il
~ c <o /hc 000008 TAgtE 3.3.3-1 (Continued) EMERGENCY CCRE COOLING SYSTEM ACTUATION INSTRUMENTATION TABLE NOTATIONS y (a) A channel say be placed in an inoperable status for up to ours during periods of required surveillance without placing the trip system in the tripped condition provided at least one other OPERABLE channel in the same trip system is sonttoring that parameter. (b) Also actuates the associated division diesel generator. (c) Provides signal to close HPCS pump injection valve only. (d) Provides signal to HPCS pump suction valves only. when the systes is required to be OPERA 8LE per Specification 3.5.2 or a 3.5.3. Required when ESF equipment is required to be OPERABLE. f Not required to be OPERABLE when reactor steam does pressure is 1 100 q psig. These Trip Functions are not required for ECC5 actuation. l N I t The HPCS initiation functions of the Crywell Pressure - High and Manual Initiation are not required to be OPERA 8LE with indicated reactor vessel water level en the wide range instr oent greater then the Level-8 setpoint coincident with the reacter steam does pressure less than 600 psig.. tt One reisy with three inputa in 3 out of 3 logic. 1 2 -l i CLINTON - UNIT 1 3/4 3-37 l i
.I N 000000 TABLE 3.3.3-1 (Continued) EMERGENCY CORE COOLING SYSTEM ACTUATION IN$TRUMENTATION ACTION ACTION 30 - With the number of OPERA 8LE channels less than required by the , Minimum OPERABLE Channels per Trip Function requirement: a. With one channel inoperable, place the inoperable channel in the tripped condition within 3-Mwe* or declare the associated system inoperable. 24 hovr# b. With more than one channel inoperable, declare the associated systes inoperable. ACTION 31 - Deleted. -l I ACTION 32 - With the number of OPERA 8LE channels less than required by the Minimum OPERA 8LE Channels per Trip Function requirement uJ#h 4 Sy ho.o declare the associated ADS trip system er ECCS inoperable. ACTION 33 - With the number of OPERA 8LE channels less than the Minimum OPERA 8LE Channels per Trip Function requirement, place the ) inoperable channel (s) in the tripped condition within 2 5 - -i ACTION 34 - Deleted. I'/ I10u6 ACTION 35 - With the number of OPERA 8LE channels less than required by the j Minimum CPERA8LE Channels per Trip Function requirement, restore the inoperable channel to OPERABLE status within * "- - or - declare the associated A05 valve er ECCS inoperable.\\ar/ A,e ACTION 36 - With the number of OPERA 8LE channels less than required by the Minimum 0PERA8LE Channels per Trip Function requirement: a. For one trip system, place that trip system in the tripped ,. l conditten within ;-- !M or declare the NPCS systes inoperable. Hkev6 J b. For both trip systems,~ declare the MPCS system inoperable. l ~ ACTION 37 - With the number of OPERABLE channels less than required by the 1 Minimum GPERABLE Channels per Trip F action requirement,' place at least one inoperable channel in the tripped condition within i declare the l#CS systes inoperable. With]the ausber of OPERABLE channels less than the T i 1 ~ ACTION 38 of Channels. declare the associated emergency diesel generator j inoperable and take the ACTION required by Specificattens 3.8.1.1 r J or 3.4.1.2, as appropriate. ACTION 39 - With the number of OPERABLE channels one less than the Total thauber of Channels, place the inoperable channel in the-tripped seedition within 1 hour"; speration then continue until performance of the next required L PnmCTIONAL TEST.. ACTION 40 - With the number of OPERABLE channels less than required by the stinis m OPERABLE Channels per Trip Function requirement, place the inoperable channel in the tripped condition within eno-Mwe.Wheve5 j Restore the inoperable channel to OPERABLE status within 7 days or esclare the associated system inoperable. l l "The previsions of Specification 3.0.4 are met applicable, I CLINTON - UNIT 1 3/4 3-38 J 4 n
i 3-2 1 O ElttGENCY Coaf C00LIIIG SYSTEM ACTUATICII INSTRSENTATION SE1 POINTS 5 E All0WA8tE YtiP FIAICTIe1 TRIP SETPOINT VALUE U A. BlVI510N I TRIP SV5TBI e 1. ING-A (Lpti gest) Ass LPCS SYSTEM e. Reacter Dessel lister Level - Lew Low Law,' 1 -145.5 in." 1 -147.7 in. Level I b. Dryuell Pressure - Nt p < 1.68 pstg < 1.88 psig c. Reacter Wessel Pressare-Lew (LPCs and LPCI ~ Is k tles Valee Peretsstwo) 472 pste > 452 pstg < 478 psig d. LPCI Pump A Start flee teley L gic Card 5 sec. 5 2 0.5 sec.- > 875 gym > 750 gpo
- e. - LPCS Pemy Blecharge Flow - Leer [
T 1100 gym i 900 gpa f. LPCI Puey (A) Discherge Flow - Le 1:' g. seenmal Inittetten NA NA 't3 2. ANIG HIIC REPW 551SIIATIgIl SYSTEM TRIP SYSTEM *1" AW5 LeEsc "A" __ T e. Reacter Wessel Water Ledel - Law Law Law, 1 -145.5 in." 1 -147.7 in. Level 1~ b. Brywell Pressere - liigh < 1.54 pstg < 1.88 psig c. ASE Tleer < 105 sec. i 117 sec. Level 3 -I S.9 in." i 8.3 in. ReacterWesseltenterLevel-Law lgh i 145 psig i 125 psig d. LPCS Pump Blecharge Pressure-II e. f. LPCI Pump A Discharge Pressure-Migh i 125 psig i 115 psig g. ADS tryuell Pressure typass fleer < 6.4 min. < 6.5 aln. h. Itemmel Bahlbit A05 Swttch 54 lin
- 1..Itemmet Isilletten IIA NA
+ % (I)O GN O O O OW C s L I 9
4 taste 3.3.3-2 (Continued) O EIERGENCY CORE COOLING SYSTEN ACTUATl001 INSTRLSENTATION SETPOINTS 9 All0WA8tE m TRIP FisICTleN TRIP SETPolNT VALUE 3. SIVISIGN II TRIP 5V57BI 1. 888 8 AIS C (LMI IESE) ~ ~ e. Reacter Wessel IIster Level - Low Low Low, > -145.5 to." ~> -147.7 In. ~ Level 1 b. tryuell Pressere - di d 1.68 psig -< 1.88 psig c. Reacter Vessel Pressure-Law (LPCI lejectice Velve Pennissive) 472 psig > 452 psig, < 478 psig d. LPCI pump (S) Start flee telay L Card 5 sec. 5 i 0.5 sec. e. LMI Pump (5) Discharge Flow - L > 1100 spo > 900 gpa f. LPCI hop (C) Discharge Flow - > 1100 gym > 900 gpa g. femenal Inittette.e R4 ilA Y 2. Alf5WI4 TIC OEPM551EllATlWI SYSTOI TRIP SYSTEM "2" mut t=::. _r a. teacter Wessel lister Level - Law Law Low, > -145.5 lo.* -> -147.7 in. Level 1 3 1.68 psig i 1.88 psig b. Bryuell Pressere - Ni$ c. Ae5 fleer < 105 sec. < 117 sec. d. Reacter Wessel lister Level-Lew, level 3 i S.9 lo.* I 8.3 in. e. t K I Peup (e and C) Discharge Pressere-Nigh i 125 psis i 115 psis f. Ae5 Myuell Pressere espess fleer < s.e ele. < s.5 ein. IIA IIA a
- f. nessel Ishibit Ae5 switch Itsemel leltlettes N4 NA 2G in f s
O O O H p. e W g w,_ r .w a,-, w- ,c-
T AstE 3. 3. 3 lamed)- l 0 INFaGENCY Coef CastitIE SYSTEM ACTIAATION INSTRUMENTATION SETPolNTS I ALLOWABLE TRIP SETPOINT VAlUt 1tIP FIAIC199N C. BlVI518N lli TRIP SYSTEM 1. NPCS SYSTBI Seacter Wessel lenter Level - Low Law. Level 2 > -45.5 in." > -47.7 in. a. b. Bryuell Prosauro - Nigh 31.68psig j1.88psig Reacter Wessel lenter Level - Nigh. Level 8 < 52.0 in." < 54.2 in. c. d. ECIC Storage Tank Level - Law i 3% in.** i e in.*a 5egeressten Peel lenter Level - Nigh,, j6%in.t j12in.t e. f. IWC5 Pump St Pres Hip 1 145 psig 3 120 psig 3 IWC5 System Flow -L > 625 pm > 500 gpa h. Mammel Inittetten R4 HA k S. LOS$ SF PSIER 4.16-kV Emergency tus tendervoltage (Less of Voltage)# 1. a. Divistems I and II I. 4.16-kW Basis - 2879t143.5 volts 28701525 volts 2. 120-volt Basis - 82t4.1 volts 82115 volts 3. < 14 sec. time delay < 10-sec. time delay b. Sfwlsten III 1. 4.16-kV Basis - 2520t175 volts 2520+210. -175 volts 2. 129 volt Basit - 7215 welts 72*6; -5 volts 3. < 2.5 1 0.075-sec. < 3.0-sec. time delay ~ time delay 2. 4.16-kV Emergency Bus Ibnderweltage a. 4.16-kV Basis - 1 C\\ 3797t35 welts 3797135 volts i (Segraded Voltage)- b. 129-volt Basis - ' E, O 108.5t1 volt 108.511 volt c. 15-sec. 20.5 sec. 15-sec. 11.0 sec. time delay time delay C O O O IC .a..<. m .m. 1 m .. m. 2 .. ~ - ,%-.~.,,r +w w
t EL ih6 0000.13 TABLE 3.3.3-2 (Continued) EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION SETPOINTS TABLE NOTATIONS See Bases Figure B 3/4 3-1. These are inverse time delay voltage. relays or instantaneo'us voltage f relays with a time delay. The voltages shown are the maximum that will not result in a trip. For the inverse time relays, lower voltage conditions. will result in decreased trip times.
- These Trip Functions are not required for ECCS actuation.
Instrument zero is elevation 739' 10-3/4" as1.
- a t Instrument zero is elevation 731' 5" est.
b I CLINTON - UNIT 1 1/4 3-42
Es fht 000014 TABLE 3.3.3-3 EMERGENCY CORE COOLING SYSTEM RESPONSE TIMES RESPONSE TIME (Seconds) ECCS 1. LOW PRES $URE CORE SPRAY SYSTEM i 37 2. LOW PRESSURE COOLANT INJECTION MODE OF RHR SYSTEM a. Loops A, 8 and C i 37 MA 3. AUTOMATIC DEPRESSURIZATION SYSTEM 4. HIGN PRESSURE CORE SPRAY SYSTEM i 27 NA 5. LOSS OF POWER O o e M SW O 4 CLINTON - UNIT 1 3/4 3-43 .)
TASTE 4.3.3.1-1 h EIERGENCY CORE COOLING SYSTEM ACTUATION IN51Rt3 ENTAIL 0N SURVElllANCE REQUIRININIS 5 E CHAISIEL OPERATIONAL CMMeEL FUNCTIONAL CHANNEL CON 0lil0NS FOR MtICH cg TRIP FtBICTICII CHECK TEST CALIBRAil0N SURVElllANCE RfQUIRED / pfg A. SIVISIGN I TRIP 5YSTEM 1. 25-4 (trC3 _ _1 AIS LMS SYSTEM
- [//#
e. Reacter vessel Meter Level - Law Law Law, Level 1 5 WQ Rf* 1, 2, 3, 4*, 5* R* 1, 2, 3 b. Seywell Pressure - Nigh 5 M--=y q c. Reacter Wessel Pressere-Lew (LMI and LK5 Injectlen Velve IR *I 1, 2, 3, 4*, 5* Permissive) M 4 G( d. LPCI Puup A Stort Tlem teley Logic Card IIA M--> Q R{*) 1, 2. 3, 4., 5' e. LPCS Pimp Bischarge Flow-Lew 5 M4 Q R 1, 2, 3, 4*, 5* I w1 f. LPCI Pump (A) Discharge Flow -Law 5 WQ R(,) 1, 2, 3, 4", 5* g. IIsomel Isliletten IIA a NA 1, 2, 3, 48, 5" w j 2. AelfWinTic OEPEE5511RIZATIgII SYSTEM su r anutsu "1"8 i
- AB! i LEEIC "A" AIS *E' e.
Beester vessel Meter Level - R *I 1, 2, 3 I Law Law Law, Level 1 5 M-+ Q R *I 1, 2, 3 I 6. erywell Pressure-wish 5 M-+ c3. c. A35 Tleer IIA Wq R 1, 2, 3 l d. Reacter Wessel IInter Level - R *I 1, 2, 3 3 I Law, level 3 5 M-> Q y III e. LMS Pump Sischarge R,I 1,2,3 gp I C Pressure-Nigh 5 MQ f. LMI Pimp A Discherge Pressure-Nigh 5 M-ap Q R(,) 1, 2, 3 O g. ABS Grywell Pressure Bypass Tleer NA M+ (A, R 1, 2, 3 O h. IIemuel Inhibit AB5 Switch IIA M-t-Q NA 1, 2, 3 O IIA R NA 1, 2, 3 O l. Manuel Initiation g CTl amp e v -,..w. e.i- -,=,
a e s, m.t 00001G 55 s ':s a a as gg y e d-d a ad ~5 d4 4 4 4 da add ad ad t E s.E ?. .V E .E I I:
== == .I1 5 "*1
- ~
== = =. =
== =
g } I esy cr en l .g ece s w e e nu a^ 4 oj. 3 u n a g, y n it 3:
- =
- i: :: =
u.- .i 8 1 af ..I 111 g 5 i E E. g & I I E H Ig g j,I f,3 C -.g I j a 3 g "g -= I I l' 1 -5 5 ga1_s.t I _ 83 g1.] s a. = i g r g 3g .g i.i s.i g.es et g g A lia:.}e s s. si vyt v -j 1ij3g'i*:-}-} 3.A_gj3nI-l** II p g a o i g e 3"lII"EI 3}}*5"E#i# I g-lgs}ais. Ej l x . is . c = .i e a .5 CLINTON - UNIT 1 3/4 3-45
~ taste 4.3.3.1-1 (C uttand) O E9ERGENCY CORE COOLING SYSTEM AtiuAilom IN51steENTATION SURVEfilANCE RfQUIR(MENTS 5 CIWeEL OPERATIONAL CmueEL FUNCTIONAL CHANNEL CONDITIONS FOR WICH k.-4 TRIP FIAICTION CHECK TEST CAtisaATION SURVElttANCE RfQUIRfD C. 81Wl5Isu III TRIP SY5ftM 1. IrCS SYSTEBI e. Reacter Wessel iteter Level - t,) 1, 2, 3, 4*, 5* g Law Law Level 2 5 R *) 1, 2, 3 I b. Dryuell Presserw-Ittgh 5 W c. Rem:ter Wessel Meter Level-Nigh, R,I 1, 2, 3, 4 *, $* I tevel 8 5 04Q d. BCIC Storage Tenit Level - R *I 1, 2, 3, 4*, 5* I Lew 5 QQ .2 e. Seppresslee Pool Water R,) 1,2,3,4*,5" g tevel - Ni$ 5 NQ -f. IWC5 Pia,Bischerge Pressere A' -telp 5 W R,)) 1, 2, 3, 4*, 5* g IR* I, 2, 3, 4*, 5* Hg g. IIPCS System Flow Rete-tow 5 R HA 1,2,3,4*,5* h. Itemmel laltletten IIA 9. 1955 W PGER 1. 4.16 W Emergency Bus thoder-IIA NA R 1, 2, 3, 4**, 5"* voltage (less of Weltage) 2. 4.16 W Emergency see under-5 N R 1, 2, 3, 4 * *, 5" )o qI voltage (tegraded Weltage) 6C O O O O H w! t 8 l ..e .. ~,, ~#. ..,m.- ,s .r- ,,a-. -r.--- m + c.-re
t t ^ e9 l rmt 000018 t TABLE 4.3.3.1-1 (Continued) EMERGENCY CCRE C00LI M SYSTEM ACTUATION INSTRUMENTATION SURVEILLANCE REQUIREM t t TA8LE NOTATIONS
- Not required to be OPERA 8LE when reactor steam does pressure is 1 100 psig, j
When the_ systes is required to t>e OPERA 8LE per Spectficati6n 3.5.2. Required when ESF equipment 1: required to be OPERA 8LE. r (a) Calibrate the analog trip module at least once per K da>s. &n I /N f .i 1 I q 1 I f t i i CLINTom - UNIT 1 3/4 3-47 i t a Y
t ~~.,a e% me 000013 r i BUR 6 ECCS Actuation Instrumentation Technical Specification 4 6 b b 5 e
l E} i Fw 000020 NSTRUMENTATION i 3/4.3.3 EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION f J H T!4G CONDITION FOR OPERATION .\\ 3.3.3 The emergency core cooling systes (ECCS) actuation instrumentation l enannels shown in Table 3.3.3-1 shall be OPEAA8LE with their trip setpoints set consistent with the values shown in the Trip 5etpoint column of Table 3.3.3-2 1 and with EMERGENCY CORE COOLING SYSTEM RESPONSE TIME as shown in Tele 3.3.3-3. t AP8LICABILITY: As shown in Table 3.3.3-1. ACTION: l a. With an ECCS actuation instrumentation channel trip setpoint less conservative than the value shown in the Allowele Values column of Table 3.3.3-2, declare the channel inoperable untti the channel is ~ restored to OPERA 8LE status with its trip setpoint adjusted consistant with the Trip 5etpoint value. t with one or more ECCS actuation instruentation channels inoperable, e. take the ACTION required by Table 3.3.3-1. with either ADS trip systen "A" or "B" inoperable, restore the inoperable c. trip systas to OPERABLE status within: 1. 7 days,providedthattheMpCSandRCICsystaesareOPERABLE[" g
- 2. $72 Srs, ;= :'id $6ss At* WKf e. AC /C 33-ea '; &,
i Otherwise, be in at least MDT SalTDelft within the next 12 hours and reduce reacter steam dome pressure to less than er equal to (100) psig within the following 24 hours. ) i SUWEILLANCE REQUIRBeff5 j 4.3.3.1 Each ECC5 actuation instrumentation channel shall be demonstrated OPERABLE by the perfefuence of the CN4leEL OECK, CNMcIEL RBICTIONAL TEST and j CHAleIEL CALISAATION aperations for the OPERATIONAL COISIT!0115 and at the frequencies shoun in Table 4.3.3.1-1. I 4.3.3.2 LDSIC SYSTBI RSICTIONAL TESTS and simulated autamatic operation of all channels shh11 he perfereed at least once per 18 aanths. 4.3.3.3 The ECCS RE5p0lISE TDE of each ECCS trip function shown in Table 3.3.3-3 shall be demonstrated to be within the limit at least once per 18 aanths. Each test shall include at least one channel per trip systas such that all channels are tested at least once every N times 18 months where N is the total numer of redundant channels in a specific ECCS trip systas. GE-STS (BWR/6) 3/4 3-27 .m
t i y~ u Eb s/ 1%c 000021 N u 8 m _s y RR% %=mmas ms l RRammas I ' *e i I e e mc a i gE. -s
- n-acae a acea i eaceaea i
55! - -.: i i.:.:.: \\ s T 2 = $3 4 2 5 gg=s = G-es== = =.=.~=,x e I I :M =I ss ~ ~ - _, _ _ !.
==
~~__ s -2 am a m-2 = s -= 4 i_i n v i _72 7.:c s, I i;- = g
- ~
s .g ae s -e .2z,' 5 I g l ~ d; a 8 i e ~,) i .a.s
- e.a
.it? \\ e!a-I), .-gi r s g s-a 3) iIl aIk I E I =l 6 5 gE I j g I E I' El' Is E.I _I j:a _I s Es= g-s:i_. s: s:.., E s i a:..- a. a s_ ss s_js 2 I 1h i i si il "=lhHij a g 5 A 0*$ $$ $5 d $ $ $$5dh E E. ~ ~ k E i GE-STS (SWR /6) 3/4 3 28 l
i Xh A Ec, M 000022 3' b 1 g ma=== 3i amu=== i E 5 55 h, j i ?i ?- E!! d amm esa mmmmme si: eae ec e eeeeee S d s 5%l - - - %.: - -- l \\ 1 1 5 I :s, Ic,t -== x I I =s 2_2_ 1 1 1l 2_ 2_ - 1 1 l Er! s ]s I _= am -= a-2 _3 a 4 ]~] w -5 E 1 ~ - T; }I ~ 5 m = 33: s ! }2'I 22 !g !hrj E 3 g E 8-9.e.il m g - 3 a. _3 l _I I = s 1, g -31 23 8 5 i i s se III 2: a 3l ai: E _I sus la l _1 3. 5.e 3 3 _I_i_m E.3j 3-e 33I e g 3=j3__ I2 m = o N bb$ b g ~ 5 $ did is d id h 4Adiss e e .M m ~ L E a M-5TS (SWR /6) 3/4 3-29
s ,l !l ,I' lil1 l m $p bfO OOOONA ,M 5 / 3 7 m 0 N 7 0 00 '9 f 8 9 1 l 277 + 45 M%333 i 3 1 I 4 33 C C A kl A .g
- a a
5 5 ) i 5 555s s $5 m s e p d t t L ee s ) E AS 4 4444 4 44 EA5 4 4 rn y 0 NN LN0 io s 0 0 tt00 SO0 u 1 33333i Al Cl l 1 33 ail 3 3 qt p ( l CTi es e I Ai I Al ra e e LRm 22222 1 2 22 LRB 2 2 e k t 60 PE0 PEI fl a I 0 PP0 PPO o m l AOC 11 I 11 1 1 1I AOC 1 1 t a 1 I sa l u A d e q I . ) ed e e N I m l e p E E e rd r 4 L I t 8 eirn S N s pveo 3 e lR A 0 y oti 1 RRl s gres 5 ' ne 5 EEi - / npms 3 h 9 li PPC " d ) 1 )) i ae t I ) l O S I 1 l 1 rnrr r 'ueap d 5t 44222 ( f (( E5 e s I I e N S Lf S tL dl pp s u 0 RE RsE s s t P 2 e n l e f S OA e e e sits l i l i IRf h b rdn I I l AR NEA / / uneie 5 t A l s n N iNI IPI 1 2 soth 3 i o I MC NOO bc t
- . C C
&Adnd n e g ( A S e r ) LP ein t s M 2 Et s s e 1 opra'. t s E Ss e e t pe( a.es 3 T l i b b it y c I S e A / / yrl rl iEr 3 Y v It 1 2 etaen f t p I 3. S e ) Ci st o is L 8 reaa cAe G ( .s oh re eRm I E l t ft sev. pE a w 5r inl y5Pd t i l ) S t a e e e J 1 s sa eal O A 0 L v v a s s ul mgvnr m I 0 e i Ls u se t e oeea C L s Au b h amtl e pb e w w ,e$ s lr / / tesegs t C_ E e e 1 3 stysreEos t l o TF sseavLt l L hLi o ( gN r G ey ihl0 r C il - e e e l s pd c a A d o
- Nel CP g g b i svRet Y
- ve ( a a ayrni Erc C l l ev t t rlt ednPia N e eL e'" e l l er t eSue m E v v L e e ptespl qr 'r G L $L s r - e ek _A v v m mietee R r r aeave tbrn E i ae - e e e e lh si p e e rNrTt t d d t d sose E e e a nt i 8 o i n e n e 5 tiw t-te et t m A i aghdCp I t s sg an ot ermdtE iel ali w f o s s al t t i l ueeL l r re o i u u l cae prsB l el oe l rt t B all e ieA esetP F ea ) dl c s 5 u pR IB sssS ui p)ye e pt eoCqlE ses n m et
- ecg E
e r e e e' e Fi gaa atma c slWeuP T sci r gO S WPWtt r t n ast l u o Y ssa s sI t gl poe oos e S rl resi y u el eneD S Bl nl re hhettiFb' l eeW etch 5 l P itet er e - Wm bi tll mEo I l cucdps 5 m f Ed R ayanpa C om w aee t mcMtil R f e y snst n ae egysed T Y ereoee N ra E wowd S RDRC5P l I nf t k ka t ye e 3 e s r e assswry S P 4 s4 g l eEu il I l I l C 1e1 o elWtssedun e e P ....... h1J 8 4(4( si addtre F .l .t nl ceeheqo l 0 I abcdef g I i 5 j eer il t re I k 5 hweevwns r E V 5 c rh o o o o gt a N I 9 etl rrheol I F D 1 L 1 2 AseAPPNRIsA P I ) ))) R T C 8. a bcd
- f
( (((* N _ y&0 q, **; g m
i em tw 000024 TABLE 3.3.3-1 (Continued) EMERGENCY CORE COOLING SYSTEN ACTUATION INSTRUMENTATION 3 ACTION ACTION 30 - With the number of OPERA 8LE channels less than required by the Minisue OPERABLE Channels per Trip Function requirement: With one channel inoperable, place the inoperable channel a. in the tripped condition within en M or declaet the associated system inoperable. 2 Y hev N) With more than one channel inoperable, declare the associated D. systes inoperele. ACTION 31 - With the number of OPERABLE channels less than required by the Minimus 0PERABLE Channels per Trip Function requirement, place the inoperele channel in the tripped condition within one.24 hc.og~ hour. Restare the inoperable channel to OPERA 8LE status within 7 days er declare the associated system inoperable. ACTION 32 - With the number of OPERA 8LE channels less than reevired by the Minimus declare the associated A05 trip system er ECC5 inoperele. OPE ACTION 33 With the number of OPERABLE channels less then the Minis m OPERABLE Channels per Trie Function twouirement, place the inopere le channel in the tripped condition within OWS Y CTION 34 - With the number of OPERABLE channels less than reau the ? Minies OPERABLE Channels per Trip Function requirement, verif bus power availellity at least once per 12 hours or declare' y e theassociatedECC5inoperele.h. X ACTION 35 - With the ne ber of OPERA 8LE channels less than reguired by the Minimum OPERABLE Channels per Tris Function requirement, restore the inoperable channel to Orta48LE states within4-Apuser er declare the associated A05 velve or ECC5 insperable.\\jy ggg,3 ACTION 36 - With the n eber of OPERABLE channels less then required by the Nintaus OPERA 8LE Channels per Tri en resent: a. For one trip system, system in the tripped condition within er esclare the WC5 systas inoperable. b. For both trip systems, declare the WC5 systas inoperable. ACTION 37 - itith the numer of OPERABLE channels less than required by'the Minism OPERABLE Channels per Trip Function requirement, place at least one inoperele channel in the tripped condition within er declare the WC5 systas inoperable. ACTION 38 - numer of OPERABLE channels less then the Total Number ~ of Channels, declare the associated emergency diesel generator inoperele and take the ACTION required Dy Specification 3.8.1.1 or 3.8.1.2, as appropriata. ACTION 39 - With the number of OPERABLE channels one less than the Total Nummer of Channels, place the inoperable channel in the tripped condition within 1 hour"; speration then continue until performance of the next required L FUNCTIONAL TEST. "The provisions of specification 3.0.4 are not appliable. GE-STS (SWR /6) 3/4 3-31
b h } '/ A puc 000025 rr rr I-:u:u a _/ r vu Is441s I s-2 44 3131 1 fliis W 1s - 1 e e, is c s-~~--- $.. dire!.:~ l $,d----~~........ m.. a I ,e!i ... m.... a i rr " rr .2 22 5 E n _/ x
== E I s 441 s i s-2 44 2an1 w 2 t--n _I E _ 8!___n__ -v _ 8 k _ _e s a a s s m __ c _ = ::::: Ai vamami l ,7 5 s,u.v a m m v a m n A is,c - s.,,. aa n = E n i D i c g
- 4 !
m 3 .I.& a.da I I m, = I 5 5 1l l k-e I $ _k i.i.,_g.s a = 1 gia !.11a a a r M la" .3* 3 jg i s i 11y 1 I I
==- r~s1 I 1 E 1 3 3 =l'3 _i,r =es i s 33 i E -5 a 1 3 f 3 =1 jj-j11s = 3 _a . s = jj.jj_rr.e. u..r u g 3 I
- ! n.
e A J4 su sA :A I e A as ia sa e .~ E GE-STS (RWit/6) 3/4 3-32
1 i \\ E (o F*c 000026 i F g .~ ] : r._ j.3. _2 5 :* *. 1 !k .! :*-vs g, t _ Eks_ Em-__ IE 2 2 dC .= = m i E
- i a
.... a i a i v i.... a ! vi E F i y ( 3 2 3 3 2 g 2 =
- 1. 3 -
j.1 5 lI:i L1 j _3i m. }I E9 i ts_ ~ ;. bG Y
- L S
C 1 2 . =:c-
:s=
' a i v.. v io s 3 l A i v i. ix.. a l ? E 2
- i h
s F w s I..t. E I 3 I E a g .k 5 I 0l' 5 $s
- I t
s E sa n E 2 g 3433 g ". 3 l de A u g I }glI.I] I s I. n n i il 1 3 M G .lp gg i -p g i it 5 i. es~s E iEi1 es 1 y s__,- itt s=Js_t- = 55 55555 = IIh3535 3 ~ s =! : , so<,e u i . ; o ,e. E. ~ E I GE-5TS (s*/6) 3/4 3-33 i i
er s -\\ he 000027 I i t ~ 1s j E 25 a,,,) .2:. 2 . ;Xjj" % 2 % 8 W t:- 2 g G _y g. E M 5
- t W
S M
- E A 0 4
1 3 _15 2 . 4 -- E E il a C 0050 g i 1. v iv i....... J l [gO 2 3 g O O vi E A5. E f aE 5 J
- =.is
..g W i P .~ = t - E G 2 o.jj* : 223G4 4GTS St C u l* J %J .;24* 22 4- -[ r
- v!y a.Me%'
c 3 gg s[g g:a, =s c,.n. 8:::j J8 y-g g ----- 2 s:s s C Oge? s-.., 4. o 2 55.. i b II l 5 a vivi..... 4 1 4 ; J 4 4 J ] g-n i -1 1 5, i a W g w e s 3; g 3 j I E a 11 ". a s Ial_1 u a i sa 8.'. ' s I I gIEi I a 8 ~lg=I g,I ~ .I..w S see w I'j 1.I 5 J d-l4s = _ji s o 2 a e s E 5 I I5 g
- 'I 3
- t s J. -
IJ g g s ,s i i 3 2 ElS$1 2
- [t ts a
8 E 53.~3 ~I~
- I
$] i2 i-
- 1 v.l21 3
5.[] IMM l s,. s} C 1 i 1 3 s, 5 3 : x t e. e s se i. a M4 ; J w e e s,s;4. p ij,3 ~. 7 2 a n 2 ra j GE-STs (swit/s) 3/4 3-34
i e c. e+c 00002i5 TA8LE 3.3.3-3 EMERGENCY CORE COOLING SYSTEM RESPONSE TIMES. ECCS RESPONSE TIME (Seconds) 1. LOW PRES 5URE CORE SPRAY SYSTEM i (40) 2. LOW PRESSURE COOLANT INJECTION MODE 0F RNR SYSTEM a. Pumps A and B < 45) {((40) D. Pump C 3. AUTOMATIC DEPRE550RIZATION SYSTEM MA-4. HIGH PRES 5URE CORE SPRAY SYSTEM $ (27) 5. Loss 0F POWER N.A. 1 h 5 1 8 e f ~ GE-575 (BWR/6) 3/4 3-35
p X-g>4<,c 000020 55 k Sg a sia 5555 l = 4 444 4444 g _5 " A Em mMm m M MM = 5 l22-asada dada add a a da B .e u 5 5 8 i g=j 3#.... .. a l 3.. i . in j -}. 0 T = ,y 7 i 5 t s A ~ .W !. C"GIO2IT ( I GOPl W 1 i l E-UWA WNW : A AA A A ',/ 4 : E =* 2 2 E g "'c T.gs:::mic sus si1: I i z u::: s: s: srl e 1 E ir*" v' j '[g 1., . s. h,*...t0 555I ..E a 4 0 5 .5 I
- ? q's, a
5. 5 = 3 i i_g s .a m r_i _ d I I ', a .i g E 8 al*'il-1 j]l*3(,5}J ljj11.li)1 I s 8 x I E: a.i.n. c15 18 1" 2 .c - 1 s -l. n j_i . s s ss_ ,v a1 i ,ns.i js. l_ e as = ]- }r. )).r, _ _-- . ] ji.g.e .r2 U k Eb b$ $ Sk k b $ $E E sa a -M GE-STS (8Wl/6) 3/4 3-36
EG Ns' 3 F'y ~000030 s!. k, s, s s sss. a-- a n www. .g
- 4
,,8l ?. ' "".*
=
~~~~~~~i g gg J _* -_I ,s i n ,z
- v...
. s 1 = s_s s -_! ti s.3.../. = = l g g e? et G 4g 1l 5 c. a a % 7. wx e!. =i
- n. y sJ
= A I 2 = I p s.:.: ..,n: a s /' w = s-W g l8 5.55 l .i.5l g M "I 5 34 E.g = I 5 I I g - - 5 l.3 4 -m - a I-[g = I8ea~s[.1, 35 l l gl g = w s +ni8e=s 1 a3.i i 53 ig 3 v g E g .35JI=Ii 3 i E i 1._a1_,1::- 1.,_)1 s , 1,lii'il] I l i,i jj-3 u ~ 8 =. e ; I. s I4 40w ~ de e E 4 4JW g ce B s3 4 4 N GE-STS (82/6) 3/4 3 37 l
.EL p pue 000031 7 ?.. 55 k as s a s >>sss j g o, sun x .g . Ig1 8. a, a a aaaae ea ll iss ca a e acace ee l Ej y y ggg
- -g s
2 4:= 3.;! ) w g W W rj e E 221::SL j Ij;5 -l lE ~~ = -},5La -~- is ~5 ~ 84 II ii cd e e erded(? "j 8 anA A mw i: ta g a b a !- 3. t' d:1 s E
== 2 E: .!2 n g m.: .....s a. 5 m s .-z = a 1 5 L s% ji "s 5 ss!1 5 8. .. g. *N-an a. --s i 151ss-[ s-5 ?j s 8 i I Isf 23 ? n I I n3 -} 8.11 e aIlaf,3l33 i l -1 3c 3 - l1l*'!! l ll l 3338 33.i IIf.*mi g s 5 g a 3ijja.
- = 3..
e j 3 2:gs:3 3 -.v 81 ss1: .=j-fjI,Isll8-jggi[:II }tI3::. e a e a Ij y s.i eg-3 33 =. y........m -3 s y = .s
- All_elu, g
e -~ E ..2*7 GE-STS (SWIt/5) 3/4 3-34
es eu4c 000032 BW 5 ECCS Actuation.'nstrumentation Technical Specification J i i l 1 l l l i
e <. INSTRUMENTATION Fw,e 000033 3/4.3.3 EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION LIMITING CONDITION FOR OPERATION 3.3.3 The emergeacy core cooling system (ECCS) actuation instrumentation channels shown in Table 3.3.3-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.3-2 and with EMERGENCY CORE COOLING SYSTEM RESPONSE TIME as shown in Table 3.3.3-3. APPLICABILITY: As shown in Table 3.3.3-1. ACTION: a. With an ECCS actuation instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.3-2, declare the channel inoperable until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value. b. With one or more ECCS actuation instrumentation channels inoperable, take the ACTION required by Table 3.3.3-1. c. With ADS trip systes "A" or "8" inoperable, restore the inoperable trip system to OPERABLE status within 8 hours or be in at least HOT SHUTDOWN within the next 12 hnurs and reduce reactor steam done pressure to less than or equal to (100) psig within the following 24 hours. I d. The provisions of Specification 3.0.3 are not applicable in OPERATIONAL CONDITION 5. SURVEILLANCE REQUIREMENTS 4.3.3.1 Each ECCS actuation instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHAMNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.3.1-1. 4.3.3.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months. 4.3.3.3 The ECCS RESPONSE TIME of each ECCS function shown in Table 3.3.3-3 shall be demonstrated to be within the limit at least once per 18 months. Each test shall include at least one logic train such that both logic trains are tested at least once per 35 months and one channel per function such that all channels are tested at least once every N times 18 months where N is the total number of redundant channels in a specific ECCS function. GE-STS (BVR/5) 3/4 3-23
%C gg OOOOCA a. l l N ) O )) ) 23 3 I I 001 1 111 33 0 011 11 3 C 3333 333(( 3 33333( A a *
- a *
- 5 5 5 $ "5 5
$5 L tAS 4 44 44444 NN t800 Al 3333 33333 3 333333 l Cll l Al iR0 2222 22222 2 222222 PEN PPO AOC 1111 11111 1 1111I 1 NO ) I L ) m ) T t e e A 8{ t v T AE) s l N RPM) y ) a E lN s c v M psi 0 ( ( ( t OLSl / ) / R EYi )))) ) ))) b )))) MNSC 2211 1 121 I ( 1221 1 5 N(N (((( (1((( 2 2I(((( N RA U HPI ) I I NCI( e N I R v 0 M 1 i 1 s 1 1 s A .i 1 U l l m T e w w e r)) 3 C v o o v eee A e L t e Pvv 3 L L (ii M e e ss 64 3 E .r r 3ss 1 w u u w ii E S o s s mm o l "A t Y L s s L err 8 S ) e e ) vee A w sr r s w .ePP 1 G o sP P s M o L(( N L a yg S ~ E L pl l I T ,h h L w ya a S w wgg O o Bi i a Y o oii O L (t t L LHH l C n n we e R w,r e P - ee E or r oo I rr R M l L e e yLt R l l uu O E e - f f ai T e ess wn v vss C T v wf f l S ehoi eoo M e h eee i Y Y L gl D D DlM E L g L rr C S iF F T i PP N rH e e e r S r H r E 5 e ev v mee Y e eee G t - gl igw S t t gg K l E a ra a Tron a arrn L WeaV V aPo N W e Waao M rh th i O hr hhi E l ucn)n)rcst I ltu l cct essoeoeasua T eis essa M ) s s ii vi v ti B i A sws siii E E seDtitiSD t Z s e sDDt T D er cscs ii I et r e i Y M V P gjiji m m n l S esespp a R WnPrVppn I U e e mmI S rl nmInmiio 5 rdl mruu I olPI rPPil S oill oPPl P K cw5SPIPIIi u R cnw c5I u t e e e sa E tceIt a I R L a yK PC(C(KKlvn P ai yS a n eorDeKKa er .P a E 1 ( RDLL L LLOM D RcDARLLM A I C N N W I 0 O .h I W abcd e f g(1 4 a bcdef g l I i S IW C I N V T U U l F O 1 A P I R 1 A 2 = m7R5 t' * *'; %
Qg COoCa.1 l l C N ) O )) ) I 23 3 T '001 1133 0 011 13 C 333 33(( 3 333 3( A
- a *
- 5 5
5h55 L EAS 4 4 4444 LNN 800 All 333 3333 3 333 33 Cli IAl LR0 222 2222 2 222 22 PEN PPO AOC 111 1111 1 11I 11 N ) O I E ) m ) ) e ) e A Bg T L e p t pv T AE) v m s ml l u y ) ua N RPM) E E EN II a p s c pv M PST0 v ( ( ( (( U OLSl I / / / I ) // N b ) )) R EYi ))) ))) ( 1 21 221 121 T MIS (S C N ((( 1((( 2 21( (( S UI N NA U I IHPF ) NCI( e I R v N i ) O M T s d I T 1 1 s 't A i m n U l l o T e w e r C C v o v e ( A e L e P L L ( 1 M e h 3g r E 3 T w u I w i o lH "B S a s L e-3 Y L s S e ) ve 3 w r s w er G o P s M o Lu y E L s ay S E N L T , s L I l l S w we B L w a e Y o or A O o i L LP T O L t R C n e ywr P - e E r aoe I r R l e lLt R l l u O e f et T e es C v f Dwn v vs ehf oe M e h ee Y L gO sl I E L g Lr I eF T i P C i N rNe l r S r H r E e v fee Y e ee G t - l gw S t tg A a a tron a ar n W e Wa o I WeV raPo I M i C hr h i r ah E l un)tcst I ltu l c)t esoeSsua T eis esea M ) ssiv iBi A sws sivi E E seti8D t Z s e sDit ercs ii I etr e si N T n R WnPrVpsn VPesgp S jl mnI U e e miI Y I rl ne ue S rdl erum S I elI rPPtl S eill ePrl P C te e sa E t ceTt ea I P cwIP1ti u R caw cIPu al yS a n eerDeK(M vn P ayK(KKl R L a er a E T ( RcDARL RDL LLOM D 2 S C N S 1 I 1 .f T 0 0 M abc de( g A a bcde f l 1 i 5 M O C i I v T B U L l F O 1 A P I R T s 2
- mJ3 mIR3 t* Yy l
lllll 1,
R g r-2Fm OOOCk~ l l ll ll NO )) 1 23 N I 001441 O T 333333333 I C ( ~A T 5 6 C 3 3 A
- "aa * *
- 5 55Ss555 d
5 5 ee rn "4 4444444 L io tAS u tNN a0O 333333333 L qt EAS 4 4 es 3 ^lI ra ciI ,,,,,,,, LNN e 5 iAI 222222222 BO0 tRD ail 3 3 fl 3 o "ENPO CTi t 11111 I1II IAl 2 2 sa r ^OC LRG d o PEI ed PPO e 2 N AOC 1 1 l g rd 5 O ei r c is I E ) pve i tb ot g 3 p T 8 SE gre o A tLL l n ) ) S EB s s npm A t )N ) s tI A u u T i a o 0 R'EN N 0 E e $S R b b rnr 2 i E PSTO t I I B O'SI s NAE / / uoa t 1 R EYi b y IHP 1 2 dip f a ( t t o c s MCO sit i t (S C T )) a' N ( rda t f SN ta U 44 / unh u i s (g)') ti"PF )))) oot o c i I ) 2 gg 1111 hc e NcI( S g 2 p e s222(((( LP ~sDXdn N I R ( S r ) O M T EI s R u u ei n u d I t 't A f1 b b opr' o r s T s A ./ / tpo e s y p.e 1 2 it. n U H0 prir l Er o T C1 utne n ELp C - C nt o LB ( A ) reaa BAe . arm 2 oh r e .M S 1 RE a ft se v E l .L yEPd n l i 3 T e OE sn e al PO S v NIS s s uimg vnO m 3 Y e S L LA u u t e o ea I e ebe 3 AH b b amtl. g's b t ) TC / / t ese G 1 3 s t ys m r e os E N w ssee avot ) e O L I o sv TF ey ithl t r B L L O A O si l s pd s c a do ysvdet as b i T O C u w h ps aprnsi erc o a g yi rit o dnria er i t oi u e E L hLitm ( g N( r pt e s n pi u q r RO il - e o mi e m t q e C MelhP r r neavmucern v e g( e e) ih si t pur e l l evi d)de t da s sh Y neng n e eS si w eL eMg C e v L-u gU a a gh d r C pi N v tE ek e a t ntetrm E L$Lnrr-umnL e r stsl ni t t G aeueo ul ue icnas peeB R i E rMrTtstt botW aii a e tmA 9 e e asai V dl c g s S s pR E t-teWeRn y yd e pl o o C yi E cf ce c e s yl P s u P a ag r an qO ID WeWalPwl o nond atns6cH f e ea l una ee T r re o i l ul oeel rt gsgr poa nooh e Y e s e t P gF e a rsrg hheatttFb S S S sssS r wi eeee etcht N ses nanot mLnB bi tsll nEo aae t P E ereeohePi E(E( wELssnnhn I T VPWtict n yaeBeeggwed t R S assssi wewe he S el eneDSBl _ E k gk g mcAttiinRaassewry T Y rl r s si yu l tet er a e a a l il l aEuu P 6t6t elPttssbdun 3 c w c d p pS 5 u nlOcceeaeqo a ya n pmCC n 1.l1l.o 5 aaddcre F o 4 I C ereouiPFa O 4v4v aer u r ni 1 I re iii i 0 G F RDRCSPNIM hveoovvl 1 I I 1 S S c r h s s o o p qt a utll rrpeol C I S AseAAPPARIA l O I V .h I L 1 2 U I 1 F D 1 abcdef )))) ) 8 P a .bcde ((((*
- #8 i
( t D i C t[h S'$w nEs5 w f
- g. =
E (o TABLE 3.3.3-1-(Continued)
EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION ACTION ACTION 30 -
With the number of OPERABLE channels less than required by the Minimus OPERABLE Channels per Trip (Systee) (Function) requirement:
(For "per Trip Systes")
/> y h ev r
y---
7 ---,
m AlvlAl^1 Al vlAIAE Alviviaint-E
_z 2
FF
^
C R
m
^' 22
^
...=
j_jm..
s 2
.!:=las ts,5 e
.!rvuss a ra ri m
l 2
at a
-g--g2 g. -
-s-2--
R *.
- C R
R *.$ 4 3 % E t OOEOMOMCO. ~~~~~~ viaia n Aiviviti^iad i ? 5 Aiviaiai ai 1 C 3 I I 3a r W e 3 y y 3 -J ^ 3 5 2 E a R 5 5 5 I 1 5 gg a I 5 I [ 'l ? s .a a 5==. 5 E I gm3 s u t g- - -m a ek-) m g = 5 - Ig.I.. IM. : j -1l 5 5 E E 5*. E 2 3. j: -j g a aI $Y$ a I sl::Y s E 3 3 ~
- b3 3
S l-l!IIm 1 3f53 ^ 3 Ix x II.!s u 3.3..- 3: sa -m E ~ EE2 gjEE. j EE E ,5 E 0 8 g h .se te, M M N GE-STS (BWR/5) 3/4 3-28 i k i
l eu the 000040 g 2' e e a s @ b ". = jn?go^1**g* w* 3*2* t g.53W1 m -g E^^^ ..g-- E _E ?"E A ":::OR !=
- _f___
- =
- _f___
m N ElvlAl vlAIAI kivivialAk x E F ^ R C ^1 E "h ^ I= 1:3I]. N& 3 !W*t ^ M Ip T = 5 =[ 1: e g e,.- -c a- ^ S R*S43 I-E R*CEcc-
=====d
===- z-t 5 5 Aivi i vimian i Aivivisi-e= ~t 2
- R=
w i,
- I E
g N g 4 e = 8 5 5 .a v .a 2 "4 1 6 g1za n .g a.m -,E _r a y - u s yg E E ik_I a E r., a 3. 1 52 53 E 3., _sc, s Sj s I sE:, 33.Is eaI s,z .j c g s E s-a
- E_..ala I. : :, *..x a
m e ._e i
- ~ ~ 3,Is.
E 2.1,II,1 a 3,58 3:s m _5 o _m-ma R.,..E_r_2x2.]o ~ ,}ga j r = g a y s a I se a 4 4=4 a seawee GE-STS (BWt/5) 3/4 3-29 .t
29 4 x %c 000041 og i g g,3 .=. .2 s 2.- J "S* a e-5 e eo 8 ^ -pu -Om g Om$ U Yg3 .f_E.s $$f 55 596 699, l ~ ~ ~g2 .3 =, vv gE" m. A- ~ 25 _g------ g ge -- v s --- Q i nn ga MM -w---w-- g j> vivivisivia.. & = E T = -5 2 =~ = 37
- g
~ g> g g: GI Cw i If
- *J%
^ E
- =E
=~ Sd* 3 'u E 22, "! El E f E5 M W~ [2 UIt 614-k' .$) g A'4 A3 t - ~ 8- ~ 8 W _s..gg--- e -g E S - o =., ,g ,c, v IVlv$AIV1AGAlA 'g i*i i*2 d 5 .a ,as i c. .s ~ m C ~2* -22 2, c, E = --vi u m C e$ ~ => 44; did t ag u 9 8 ISE. 2 TI: 1 3 i i 8 3 %"E S E - ~ I" u d E45-1 } .2 g Ig=33-g j1" -,*I I I"m'"1 E E u S y -a Ifld ,u b3 %d.d ~~ ^ 3'Bf.Ej*3 in i X e315 W 5 r B -s-1.r. u J.E: sass s - I E- - ~. ~. #. ;M E[is e a , I I1..E I ~_ l i8 j# 5 i t i E" I l a}sz i *5-g I 21 h*
- au} y~-
4 4 f =
- ....e
.} M e, f~~1gC 5 Y di di da s$a S 46 4-
== E d a 4 t u - GE-STS (BWR/5) 3/4 3 30 1 .l
Eu i Fuc 000042 TABLE 3.3.3-3 i EMERGENCY CORE COOLING SYSTEM RESPONSE TIMES ECCS RESPONSE TIME (Seconds) 1. LOW PRESSURE CORE SPRAY SYSTEM $ (40) 2. LOW PRESSURE COOLANT IKJECTION MODE OF RHR SYSTEM l a. Pumps A and B < (45) b. Pump C 3(40) 3. AUTOMATIC DEPRESSURIZATION SYSTEM NA I 4.- HIGH PRESSURE CORE SPRAY SYSTEM i (27) 5. LOSS OF POWER NA I f .i
- r 8
i i GE-STS (BWR/5) 3/4 3-31' i l 9
i l' TABLE 4.3.3.1-1 (Continued) a EEAGENCY CORE COOLING SYSTEM ACTUATION INSTR 961All0N SURVEILLANCE REQUIR CHAISIEL OPERAi!ONAL CHANNEL FUNCT10NAL CHANNEL CONDIiIONS IOR WICH CHECK TEST CALIBRATION SURVLILLANCE REQUIRED E ?" TRIP FUNCTION v A. Olvl51018 i TRIP SYSTEM 1. -A (L M 3. i i. _ LPCS SYSTEM a. Reacter vesse' IInter Level - Law Lew Law, Level 1 5 M >Q R 1, 2, 3, 4", 5* b. Drywe11 Pressure - Nigh (5) M PCs (R) 1, 2, 3 c. LK 5 Pump Olscharge Flow-Low (5) M---9 Q (R) 1, 2, 3, 4*, 5* d. LK5 Injection Valve Olfferential Pressure-Lew 5 M 7Q R 1, 2, 3, 4*, $* LCPI Injection Valve Offforential Pressure-Lew 5 N D C4 R 1, 2, 3, 4*, $* e. f. LK1 Pump Start flee Delay P *) y Q Q 1, 2, 3, 4*, 5* g M - g. L K 1 P g Flow-Lew 11 4 Mw Q Q 1, 2, 3, 4*, 5* 1:' Relay (NA) 1, 2, 3, 4*, 5* ) l Y (h. Division i Sus Power Monitor HA M(p Q NA 1, 2, 3, 4*, $* M l. Manual Initiation IIA M yg 2. AU1914 TIC OEPRE150RilAilell SYSTEM TWir 5nsus "A - l Reacter Vessel tinter Level - R 1, 2, 3 a. Low Law Low, Level I 5 y (R) 1, 2, 3 l b. Drywell Pressure-Hl $ (5) 283 > g Q 1, 2, 3 c. A05 Tleer 10 4 y d. Reacter Vessel teater Level - Low, Level 3 5 M >Q R 1, 2, 3 IT~ e. LK5 Pg Olscharge Pressure-High fl4 M y (A Q 1, 2, 3 A (R) 1, 2, 3 l f. LKI Pep Discharge M(b) >> Q Pressure-High (5) M NA 1, 2, 3 O g. Manual Initiation NA O O O 4 C.) 4 ,r -,y =,, .4, ---ew.--.r
E t 1 E4 3:mc 000041 ZC Su g-gs$ 5 a 1555 1 m m :- 5 5 5555 { am a adda mmm m mm g -: aa a acaa eaa a ca ~ ~ u ~ E ^ 2 '= a5 - aali ata 51 n n a l In 9 E "! ) =E "W d G 36b GGO D
- [
an aw ^ ur A ^ ^ gi a g=E 2 7 2 ~ vg*
- st s: szn zn n n
n s i 5 2 U l ~ n n n 5 Iag m$ fiff mOf Of i e e gu M a3 5 t' g -I E8 kl 5 j-i w --S a c s 8E)e 3 j B- ) 6-s I 8j=I. e }}! e -)g; c 8 a 8 3 -I m g. w a 3lsg.s~s[ sa3 xi.s
- e. 3 y a v s -
x a g g ,I s.i l'5 J e 'g si E g Il*E35r.i= 1"! r.E I 3= 5
- 2 E
, ~sI a-2 c c. ] ,v e v. g y e !! Eis ;o w 4:i4 EE 4 saw ee 5 a a GE-STS (BWR/5) 3/4 3-33 1 1 1
TABLE 4.3.3.1-1 (Continued)- EMEENCY CORE COOLIE SYSTEM ACTUATION INSTRUENTATION SURVEILLANCE REQUIRIN(Nis CHANNEL OP(RAIIONAL n j CHANNEL FUNCi10ML CHANNEL CONDIIIONS IOR tellCil TRIP FUNCTION CHECK 1ESI CAllBRAll0N SURV[lLLANCE REQUIRED ) v C. DIVISION 3 TRIP SYSTEM 1. 19C5 SYSTEM l a. Reacter Vessel Water Level - (Lew Law, Level 2 5 M---# M R 1, 2, 3, 4*, $* b. Drywell Pressure-Hi p (5) M----> Q (R) I, 2,'3 c. Reacter Vessel Water Level-Nigh NA M g Q 1, 2, 3, 4*, 5* d. Condensate Storage Tank Level - Low (5) M----3m.Q (R) I, 2, 3, 4 *, ha l e. Sgpression Peel Wate-t' Level - High (5) bQ (R) I,2,3,4*,5* l f. Pug Discharge Pressure-High NA M >Q Q I, 2, 3, 4*, 5* '1' g. NPCS System Flow Rate-Low NA M M Q 1, 2, 3, 4*, $* - W (h. Divisten 3 Bus Peuer Monitor NA 34(~b) G ( l 2, 3, P, $*) l l. Manual Initiation MA M MA 1, 2, 3, 4*, 5* D. LOSS OF POER th 1. 4.16 kw Emergency Bus underveltage a (Loss of Voltage) NA NA R 1, 2, 3, 4**, 5** a 1 2. 4.16 kw Emergency tus underveltage c (tegraded Vestage) 5 M R 1, 2, 3, 4**, 5** s C:l~ Not required to be OPERABLE uhen reactor' steam done pressure is less than er equal to (100) psig. When the system'is required to be OPERASLE per Specification 3.5.1, 3.5.2 or 3.5.3. Required when EFS equipment is required to be OPERABLE. (a) During test of logic. (b) Manual initiation switches shall be tested at least once per 18 months during shutdown. All other circuitry associated with manual initiation shall receive a CNAf0IEL FUNCTIONAL TEST at least once perKdays as part of circuitry required to be tested for automatic system actuation. pp -.-- m- _----.____.,___._,*,,-.--m_. .--~,,-.v--. ..~__.,sw.. ,4 m., .... ~ ~. m., +%~..-r .,,m...,...,.,,,,,,. _. _, -,
I t a e4+ c 00004G Cnclosure 4 t -A BWR 4 ECCS Actuation Instrumentation Technical Specification J 9 e n i i I i - I l l l l l
sc (-129) inches *
>(-136) inches b.
Drywell Pressure - High 7 (1.69) psig 7 (1.89) psig 5(455) psig,(decreasing) I (i (435) psig, (decreasing) c.
Reactor Vessel Pressure - Low d.
CSS Pimy Discharge Flow - Low i( ) gpa
) gpa e.
Manual Initiation RA RA f.
2.
LOW PRESSURE C00UWT INJECTION MDOE OF RHR SYSTEM a.
Reactor Vessel Water Level - Low Low Low, Level 1 >(-129) inches
- 7 (1.69) psgi 7( 1.89) psig
> 136) inches b. Drywell Pressure - High I(455) psig,(decreasing) 7 (435) psig, (decreasing) w T ( 2 c. Reactor Vessel Pressure - Low d. LPCI Pump Discharge Flow -Low ( ) gpa I( ) gpm w4 e. Manual Initiation RA RA f. 3. HIGH PRESSIEE C00UWT INJECTION SYSTEM a. Reactor Wessel Water Level - (Low Low, Level 2) 7 (38) inches * >-(45)' inches b. Drywell Pressure - High-7(1.89)psiph) i (x*3) inches 1.69) psig gg) c. Condensate Storage Tank Level - Low I (X) inches d. Sippression Pool Water Level - High 7 ((Y-3) inches I,,)- 7 (Y) inches ( 7 7 (54) inches-e. Reactor Vessel Water Level - High, Level 8' T-( ) gpa I (. ) gpa 3m (55.5)' inches f. 19CI. Pump Discharge _ Flow - Low g. Manual Initiation HA RA ep l h. 4 l O 'O [: O O Cn l V l l l h. .m. ..f m a
TABLE 3.3.3-2 (Continued) E E E RGENCY CORE COOLING SYSTEM ACTUAll0N INSTRtN NTATION SE1POINIS U AtLOWA81L [ 1 RIP FUNCTION 1 RIP SE1 POINT VAtUI j 4. AUI0MATIC DEPRESSURIZATION SYSTEM a. Reactor Water. Level - Low Low Low, Level 1 >-129)-inches * >(-136) inches b. Drywell Pressure - High 5((1.69)psig. 5(1.89)psig c. ADS Timer.- < 105) seconds < (111) seconds d. Core Spray Pump Olscharge Pressure - High V(145) psig,(increasing) I (135) psig. (increasing), $ubsystem A > (155) psig, (increasing), 5ubsystem 8 (115) psig, (increasing) RHR LPCI Mode Pump Discharge Pressure-High > (146) psig, increasing > Subsystem A e. > (135) psig, (increasing), ubsystem 8 f. Reactor Vessel Water Level-Low, Level 3 > (13) inches > (11.5) inches { g. Manual Initiation HA RA h. b 5. LOSS OF Powa a. 4.16 kw Emergency Bus Undervoltage a. 4.16 kw Basis - (Loss of Voltage (**)) (2940)*(161) volts (2940)1(315) volts b. 120 v Basis - (84)+(4.6) volts (84)1(9) volts c. < (15) sec. time delay $ (10) sec. time delay b. 4.16 kw Emergency Bus Undervoltage a. 4.16 kw Basis -- 7 g (Degraded Voltage) (3727)+(9) volts (3727)1(21) volts Ic b. 120 v Basis - (106.5)+(0.25) volts (106.5)+(0.60) volts (10)1(0!5) sec. time (10)1(l!0) sec. time O' c. delay delay C O " See Bases Figure B 3/4 3-1. o (** This is an inverse time delay voltage relay. The voltages shown are the maximum that will not-g result in a trip. Some voltage conditions will result in decreased trip times.) h' (# X is value that ensures adequate NPSH and precludes air entry due to vortexing.) (#f.Y is (5) inches above normal water level.) .-m. - -.mm.. .m._--_,__mm._._..___.__.__=_2.._.__mm mm m m .m m mm m. e
e6 em 000053 TABLE 3.3.3-3 EMERGENCY CORE COOLING SYSTEM RESPONSE TIMES ECCS RESPONSE TIME (Seconds) 1. CORE SPRAY SYSTEM 1 (27) 2. LOW PRESSURE COOLANT INJECTION MODE OF RHR SYSTEM 1 (40) 3. AUTOMATIC DEPRESSURIZATION SYSTEM NA 4 HIGH PRESSURE COOLANT INJECTION SYSTEM 1 (30) 5. LOSS OF POWER NA i 0 0 1 . j ~' GE-STS (BWR/4) 3/4 3-33
TA8tE 4.3.3.1-1 EE RGENCY CORE COOLING SYSTEM ACTUAll0N INSTRUNfMTAil0N SURVEllLANCE REQUIRIMENTS CHA881[L OPERAI10NAL G CHANNEL FUNC110NAL CHANNEL CON 0lil0NS IOR Wiltil k-TRIP FtBICTION -CHECK IE51 CAllBRAll0N SURV[ lit ANCL REQUIRED 1. CORE SPRAY SYSTEM a. Reactor Wessel Idater Level - Low Law Low, Level 1 5 M ' 6( R 1, 2, 3, 4*, 5* b. Drywell Pressure - High (5) M y Cg (R) I, 2, 3 c. Reactor vessel Pressure - Low (5) M m (R) I, 2, 3 '4*, sa d. CSS Puup Discharge Flow - Low (5) M Cs (R) I, 2, 3, 4 *, 5* e. Manuel-Initiation ' MA ( ) (R) NA 1, 2, 3, 4*, 5* f. cs 2. LOW PRESSURE C00UWIT llUECT1001 ISOE OF RHR SYSTEM Reactor Vessel teater Level - a. low Law Low, Level 1 5 16--- :pCg R 1, 2, 3, 4 *, 5* - i., _g b. Drywell Pressure - High (5) M--A q (R) 1, 2, 3 c. Reactor Wessel Pressure - Low (5) It- ::im Cq (R) 1, 2, 3, 4*, 5* d. LPCI Puey Discharge Flow - Low (5) M A (R) 1, 2, 3, 4*, 5* e. Manual Initiation NA ( ) (R) NA 1, 2, 3, 4 *, 5" i-CQ 3. HIGH PRES $URE C00UWT 11MECT1011 SYSTEM I a. Reactor Vessel Idater' Level - (Low Low, Level 2) 5 M R 1, 2, 3 b. Drywell Pressure - High . (5) M (R) 1, 2, 3 QUI c. Condensate Storage Tank Level -- Te Law '(5) N M (R) 1, 2, 3 A l 7 d. Suppression Pool idater Level - High (5) M >Q ' (R) 1, 2, 3 . O e. Reactor Vessel teater Level - O- - High, level (8) (5) M >1 (R) I, 2, 3 O (N *I)7 (R). 1, 2, 3 o f. HPCI Pump Discharge Flow - Low- -(5) M I (R) NA 1, 2,.3 CA g. Manual Initiation NA A. h. .mm m m. m.m -mm. .m ._.m,-.____2_ m ,_.rm_ u. m-s. ......__.2.4.-,w,_ ,w .m.
TABLE 4.3.3.1-1 (Continued) EIERGENCY CORE COOLING SYSTEM ACTUAil0N INSTRUMENTATION SURVEILLANCE REQUIREMINIS g CHAlgeEL OPERA 110 MAL y, - CHANNEL FUNCil0NAL CHANNEL CON 01110NS FOR WHICH '} TRIP FUNCTION. CHECK TEST CALIBRATION SURVElllANCE REQUIRLD I 4. AUTOMATIC DEPRE550RI!M1010 SYSTEM a. Reacter Yessel tinter Level - R 1, 2, 3 L W Lew Low, Level 1 5-M )Q. q, b. Drywell Pressure - Hi p (5) M (R) I, 2, 3 yq Q 1, 2, 3 c. A05 Timer MA M d. Core Speay Pump Discharge Pressure - Hip (5) M >Q (R) 1, 2, 3 e. RHR LP;I Mode Pisup 01scharge Prr.ssure_- High ' (5) M >Q (R) 1, 2, 3
- f. ' Rer.4ter Vessel ifater Level - Low,
) tevel 3 5 P R 1,23 g. Manual Initiation NA ( R MA 1, 2, 3 v' 5. (055 0F P0hER a. 4.16 kw Emergency Res Under-voltage (Less of Voltage) IIA NA R 1, 2, 3, 4**,.5** b. 4.16 kw Emergency Sus Under-voltage (Degraded Weltage) 5 M p 1, 2, 3, 4**, 5** ((a) Manual initiatica switches shall be tested at least once per.18 months during shutdown. All other M l circuitry assectated with manual initiation shall receive a CHA4GIEL FUNCil0NAL. TE51'at least once h per day as part of circuitry required to be tested for automatic system actuation.) Up \\ tlhon system is required to be OPERABLE per Specification 3.5.2. Requi OPERABLE when ESF equiement is required to be OPERABLE. Not requ to be 9"GAsit when reactor steam dome pressure is less than or equal to (100) psig. 1 2 0 C C11 ' C:I .-..--.6,.- -*e .<m ..w e ....-.m.-...- <,1 --....,..--..,..e. m m., ..--m.-
Ec, e4e.c 00005G BWR 6 (Clinton) Solid-State RCIC Actuation Instrumentation Technical Specification 9 2 g
eu 000057 INSTRUMENTATION REACTOR CORE ISOLATION COOLING SYSTfM ACTUATION INSTRUMENTATI 3/a.3.5 LIMITING CONDITION FOR OPERATION The reactor core isolation cooling (RC:C) systes actuation instrumenta-tion channels shown in Table 3.3.5-1 shall be OPERABLE with their trip set-3.3.5 points set consistant with the values shown in the Trip setpoint column of Table 3.3.5-2. OPERATIONAL CONDITIONS 1, 2, and 3 with reactor steam dome APPLICABILITY: pressure greater than 150 psig. ACTION: With an RCIC systes actuation instrumentation channel trip setpoint less conservative than the value shown in the Allowable Value column of Table a. 3.3.5-2, declare the channel inoperable until the channel is restored to CPERABLE status with its trip setpoint adjusted consistant with the Trip 5etpoint value. With one or more RCIC systee actuation instrumentation channels inoperable, take the ACTION required by Table 3.3.5-1. b. $URVEILLANCE REQUIREMi[NTS Each RCIC system actuation instrumentation channel shall be demon-TEST and CHANNEL CALIBRATION operations at the frequen 4.3.5.1 4.3.5.1-1. LDGIC SYSTEM FUNCTIONAL TESTS shall be performed at least once per All RCIC actuation systes logic shall be manually tasted 4.3.5.2 independent of the SELF TEST SYSTEM such that all trip function.s are tested 18 months. j at least once every four fuel cycles." i l
- Manual testing for the purpose of satisfying Specification 4.3.
outage. I 3/4 3-54 CLINTON - UNIT 1
e6 ruc 000066- ? E i c samm; 1E S e E w e 5 xn xx c In-$gkkkkb g g isE 5 c 8 ~ a 5 5 g l. A a a a _f 3 $ W 1g = =,. a 4 0 . I ' j e.d e 11ll. ~ i 1~ I i . I ~ se B a-o a E j j i 1 l ) .CLINT0M - UMIT 1 3/4 3-59
? I e6 i fe 00005n-l TABLE 3.3.5-1 (Continued) REACTOR CORE ISOLATION COOLING SYSTEM ACTUATION INSTRUMENTATION + TABLE NOTATIONS b (a) A channel may be placed in an inoperable status for up to { hours for required surveillance without placing the trip system in the tripped condition provided at least one other OPERABLE channel in the same trip system is monitoring that parameter. 3 (b) Two trip systems with two channels per trip system. l (c) One trip system with two-out-of-two logic. i (d) One trip systes with one-out-of-two logic. (e) One trip system with one channel. ACTION ACTION 50 - With the number of OPERA 8LE channels less than required by the Minimum OPERA 8LE Channels per Trip System requirement: a. For 1 trip systes, place the inoperable channel (s) and/or that trip system in the tripped condition within enetowr or declare the RCIC systes inoperable. .2(f h e ve b I b. For bet.h trip systans, declare the RCIC systes ' inoperable. ACTION $1 - With the number of OPERABLE channels less than required by the Minimum OPERABLE channels per Trip Systas requirement, declare 1 the RCIC system inoperable 44/M4.*g.,7</ hosp,4, j-ACTION 52 - With the neber of OPERABLE channels less than required by the Minimum OptRABLE Channels per Trip System requirement, place at least one inoperable channel in the tripped condition within 4-4mer er declare the RCIC systas inoperable.. 29 hour!S ACTION 53 - 1 tith the naber of OPERABLE channels.less than required by the Minimus OPERABLE Channels per Trip Systas requirement, restore the inoperable channel to OptRA8LE status within 64eers or + -declare the RCIC system inoperable, py bgy3 l _j- -) i -1 I CLINTON - UNIT 1 3/4 3-60 l
eg Pee.0000G0 i i: g .e g$ Ida 2 m m =a 4 :p Al VI Al .I a 2 m E E l 5 i i *. 7> g >K$ C 3 a. _s E ',,....a s ~ 4 W 5 0; !.y $j 5 s = a a. 5 "*g' = [ hI a .E E l - fi-t y. g 3g1)1 ihh n -ss sal l2s ggg 11 i = ' 33 j l g o 3 "M s s c 338 y b S S i l cuwTon - UNIT 1 3/4 3-61 ) i
e co 74 4 000061 I a su n wm l:5 8 v l Cs yWW = A /\\ h h g g g=
==x =. g = 2 = C, I i a a d ! llv .a 1 s m i s E e s W I -j s } 8 8 3=1 1 1 a r 8 8 ~ N 8~ y I 8 84 5 g a 2 ] h
- g.,
i = 3 3 m E 33 3, a E J l 13 jsi23}$j = As Ms z 3 i E g 1 2 o n I CLINTON - UNIT 1 3/4 3-62
ev NE 000082 B'w'R 6 RCIC Actuation Instrumentation Technical Specification 4-
I i l 1 i ec h 000063 INSTRUMENTATION i 3/4.3.5 REACTOR CORE 150LATION COOLING SYSTEM ACTUATION INSTRUMENTATION -i s LIMI?!NG CONDITION FOR OPERATION 3.3.5 The reactor core isolation cooling (RCIC) system actuation instrumenta-4 tion enannels shown in Table 3.3.5-1 shall be OPERA 8LE with their trip set-points set consistent with the values shown in the Trip 5etpoint column of l Tante 3.3.5-2. APPLICA81LITY: OPERATIONAL CONDITIONS 1, 2 and 3 with reactor steam l done pressure greater than (100) psig. j ACTICN: i a. With a RCIC system actuation instnmentation channel trip setpoint less conservative than the value shown in the Alloweble Values t column of Table 3.3.5-2. declare the channel inoperele until the i channel is restored to OPERABLE status with its trip setpoint e adjusted consistent with the Trip 5etpoint value. l t b. With one or more RCIC system actuation instrumentation channels inoperable, take the ACTION required by Table 3.3.5-1. 1 SURVEILLANCE REQUIRDENTS i 4.3.5.1 Each RCIC system actuation instnmentation channel shall be demon-strated OPERABLE by the performance of the CN4 feel CNECK, CN4fsIEL FISICTIONAL TEST and CHANNEL CALISSATI0lt operattens at the frequencies shown in Table 1 4.3.5.1-1. 1 4.3.5.2 LOGIC $YSTEN FisICTIONAL TESTS and simulated autaastic operation of all channels shall be performed at least once per 18 months. r i i i I 1 GE-STS (BWR/6) 3/4 3-49 as-f i
j es 'x 's Puc 00006<1 y'N Y 1 1 = 2
=
L W v =* ed 8 if s m l Ew a a I _E : -3 3 e e a ~ a z.h ~~t a = ~ O 5 g ". 2 g 44 E 3} z t~ 5 b k m R 5 ~ u 'g I e gg 1se n s-s -l n [ Je s gII E S I kl.g~Iy
- _g33, a
--3g agrrrl I .l I 1 "s 445118 .s1is: ill-III st ~ 2n.sse w I -33s - ssi-a I
- Iis*$
I$jjjj' In 55 e Esssa ,s1 s ,1 ] 1 sss I l!ssi = ,e, a y se: GE-STS (Swit/6) 3/4 3-50
i e9 M 000085 INSTRUMENTATION .l TA8LE 3.3.5-1 (continued) REACTOR CORE Is0LATION C00LIbG SYSTEM 4 ACTUATION N5TRUMENTATION { ACTICN 50 - with the numoer of 0? ERA 8LE channels less than required by the Minimum OPERA 8LE Channels per Trip Systas requirement: wk w t' - 1 _': Y t ';.,.' z. Pf ace %, inoperable channel (W,.;'m a. the /
- 2. ^. ;. ;,.,. : __ in the tripped condition within one-nove or declare the RCIC systes inoperable.
C4l Asvis uZsL m W H -J _ = & __? ; "- 1 % b.
- L ;..:; :,:" -, declare the RCIC system inoperable.
K ACTION 51 - With the number of OPERABLE channels less than required by the Minimum OPERABLE channels per Trip System requirennt, declare the RCIC system inoperableu/$il, .7 y /ws. { ACTION 52 - with the number of OPERABLE channels less than required by the Minimum 0PERA8LE Channels per Trip System requirement, place at least one inoperab o channel in the tripped condition within one-hove er ' re the RCIC system inoperable. .9y hour.*5 ACTION 53 - With the number of OPERABLE channels less than required by the Minf aus OPERABLE Channels per Trip systas requirement, restore the inoperable channel ta CPERABLE status within (*).'; = or declare the RCIC system inoperable. py Aoves a P 3 GE-575 (SWR /6) 3/4 3 51
f e~b Pbs 000066 1h I d d 1 4 2 E t t t w M 5 7 t 5 a
- E C.3 C 0 C O i
a 5 ^ ' " ' ^ ' " ' = E I a d ->>>I E W W W r s g eg -n i c,, O O ? 4 2 W b m Al vi Al Vl
- 5 k
a w ew ( 3 k N 3 [ vf., t g t h E h 53 S E -I j _I. i 3 s I lE e e a I*1 5 E 5 5 h , s= ,e k~} = E t l I a = s; a4 N i GE-575 (Wit /6) 3/4 3 52
) G P44 000067 h. K X X 5}/ 8 j.:
- s il E
i !l! i a i=x a sg2 = s. a i 5 i Iw"I eg er er sl1 5 y l:l:- 'T /( 14 11 't s t 2 g-3 ~ x a z a% og-23 3 g-3 s 5 9 . ~13 I j.!1 l5 M3!} E
- 8 t is!
i g L i 11l21 I w "J i 13 .! j5s -I s n~ t I E I j p {. 13 j}i 3" j a 2 l is i o I J s".! is aI8 1 s g e 3 eg' 3 I I i ~- 3 j*3-j 3I I -W 5 l . p*, a p1 I= o 4 7$ -( ~ GE-sts (BWR/6) 3/4 3 53
u= w Pec 00000o BWR 5 RCIC Actuation Instrumentation Technical Specification 1 w # 0
i Ek Pe5 000006 INSTRUMENTATION 3/4.3.5 REACTOR CORE ISOLATION COOLING SYSTEM ACTUATION INSTRUMENT FION f LIMITING CONDITION FOR OPERATION 3.3.5 The reactor core isolation cooling (RCIC) system actuation instrumenta-I tion channels shown in Table 3.3.5-1 shall be OPERABLE with their trip set-points set consistent with the values shown in the Trip Setpoint column of Table 3.3.5-2. APPLICABILITY: OPERATIONAL CONDITIONS 1, 2 and 3 with reactor steam dose pressure greater than (100) psig. l ACTION: With a RCIC system actuation instrumentation channel trip setpoint a. less conservative than the value shown in the Allowable Values column of Table 3.3.5-2, declare the channel inoperable until the channel is restored to OPERA 8LE status with its trip setpoint adjusted consistent with the Trip Setpoint value. b. With one or more RCIC system actuation instrumentation channels I fnoperable, take the ACTION required by Table 3.3.5-1. l SURVEILLANCE REQUIREMENTS l*I 4.3.5.1 Each RCIC systes actuation instrumentation channel shall be demon-l strated OPERA 8LE by the performance of the CHAfstEL CHECK, CHANNEL FUNCTIONAL i TEST and CHANNEL CALIBRATION operations at the frequencies shown in Table 4.3.5.1-1. i 4.3.5.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of i all channels shall be performed at. least once per 18 months. l l i GE-STS (BWR/5) 3/4 3-45 1 i I
esT IAstE 3.3.5-1 5-vs REACTOR CORE ISOLATION COOLING SYSTEM ACTUATION INSTRUNENTATION MINIMUM O OPERABLECHANNEL{*I FUNCTIONAL La8ITS PER TRIP SYSTEM ACil0M a. Reacter Vessel Water Level - (Low Low, Level 2) 2 50-l ID) b. Reacter Vessel Water Level - High 2 51 c. Condensate Storage Tank Water Level - Low (2)ICI 52 l d. Suppression Peel Water Level - High (1)Id) 52 l s. Manual Initiation (1)/(system)(d) $3 l 1 p V (a) A channel may be placed in an inoperable status for up to % hours for required surveillance without placing the trip system in the tripped condition provided at least one other OPERA 8LE channel in the same trip system is monitoring that parameter. (b) One trip system with tue-out-of-two logic. (c) One trip system with one-out-of-tue logic. (d) Single channel. b ae o O C 9 St C' .mv w -e.., ,,s- .-w~ -a. v- ..+.wr v--,. +
E4 (' M 000071 TABLE 3.3.5-1 (Continued) REACTOR CORE ISOLATION COOLING SYSTEM ACTUATION' INSTRUMENTATION ACTION 50 - With the number of OPERABLE channels less than required by the Minimus OPERABLE Channels per Trip System requirement: For one trip system, place the inoperable channel in the tripped condition within one-hoor or declare the RCIC systes inoperable. Ju/ hogo b. For both trip systems, declare the RCIC system. inoperable. i ACTION 51 - With the number of OPERA 8LE channels less than required by the minism OPERA 8LE channels per Trip System requirement, declare the RCIC system inoperable.d,yff,, p 4 h ou r.S' ACTION 52 - With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Systen requirement, place at least one inoperable channel in the tripped condition l within W or declare the RCIC system inoperable. MhoaY > ACTION 53 - With the neber of 0PERABLE channels one less than required by the Minimum OPERABLE Channels per Trip System requirement, 8 restore the inoperable channel to OPERA 8LE status within f*) ' r ; or declare the RCIC systes inoperable. l .~14 l100 Yb .g i GE-STS (8WR/5) 3/4 3-47 t
Ek i 00007a i .) "o = e h .E 1 m M M 1 g
- c M
n n l$ ^ 2 E g: r Al vi At vi k g 5= l
- 2 e
m 2 W 2
- j 5,
2 W M E
- g
^ ? 8 t I [ Q 4: vi ai vi s, x N w g T 5 W E B 5 as a .s. "E 7 3E g 2 E*1 "2 3 b lb. >= 2 3 9 7 5 99 E g --3Js R i S S 3 m 8- )j3 E2 -a e 5 S-l j. }g C n. I 5 3 3 i i l; ii G 4 i b GE-STS (BWt/5) 3/4 3-48 i 1 )
Rg TABLE 4.3.5.1-1 m REACTOS CORE ISOLATION C00tIIRi SYSTEM ACTUATIGN INSTRISENTATION SURVEILLANCE REQUIR[MlNis 3 -y 's CHAISIEL O CH40eIEL FUNCTI0044L CHAleIEL FUNCTIONAL UIIITS CHECK TEST CAtl8 RATION
- a. -Reactor Wessel Mater Level -
WN R l (Low Low, Level 2) 5 b. Reector Wessel Meter 5 M 'h R f Level - MlWt 4 c. Condensate Storage-Tank Level - Law (5) M gg (R) l t' d. Suppression Peel Water Level - Nigh (5) M > fq (R) l h e. Manual Initiation MA IIA l (a) Ranual Initiatten switches shall be tested at least once per 18 months during shutdown. All other circuitry asseclated with manual initiation shall receive a CHAI91EL EUNCTIONAL TEST at least once per'S4-Jays as part of circuitry required to be tested for automatic system actuation. l Yh pm a O O O ,O M' Gi 6 ew--
e s-00007= g C 2 ~ e g li j 3 i g b asR a g "E Q I -[ y .E. E " - ~ 1us s ES T 5 R R E 3 '; s e 4 3 5 E
== C u u ~ 5 2 2 t ~ s yy y a = i a+ GE-STS (Bwlt/4) 3/4 3-49
I f n ' ] TABLE 4.3.5.1-1 a [ REACTOR CORE 150LATION COOLING SYSTEM ACTUATION INSTRl8ENTATION SURVEILLANCE REQUIREMENT 5 CHANNEL CHANNEL FUNCT10NAL CHANNEL FINICTIONAL INtITS CHECK TEST CALIST.ATION a. Reacter Vessel Idater Level - Wh (Low Law, Level 2) 5 R M4h b. Reactor Vessel Ideter 5 R Level - High Level (8) c. Condensate Sterage Tank 7-h Level - Low (5) tt-(R) w d. Suppression Peel ifater Level - A High (S) M 27' (R) c (M *)) (R) I e. Manual Initiation NA NA ((a) Manuel initiatten switches shall be tested at least once per 18 months during shutdown. All other circuitry assectated with annual initiation shall receive a CHAleIEL FUNCTIONAL TEST at least once y per 4Pdays as part of circuitry required to be tested for automatic system actuation.) 92 ) a G e o O C C M c;, -.-.,--..m. w y .-w.. ,c ,..,, +,
c_ GENERAL' ELECTRIC COMPANY PROPRIETARY INFORMATION CLASS III RE-029 DRF A00-02558E FEBRUARY 1987 TECHNICAL SPECIFICATION IMPROVEMENT 4 ANALYSIS FOR THE EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION FOR RIVER BEND STATION, UNIT 1 (THIS REPORT HAS BEEN PREPARED FOR GULF STATE UTILITIES COMPANY THROUGH THE TECHNICAL SPECIFICATION IMPROVEMENT C0tMITIEE OF THE BWR OWNERS' GROUP) PREPARED BY: M C. Ha, Seryior Engineer Reliability Engineering VERIFIED BY: C. L. Larson, Principal Engineer Reliability Engineering 0 5 ">da-d= - <' " - APPROVED BY: R.J. McCandless, Manager Reliability Engineering
GENEPJd. ELECTRIC COMPANY PROPRIETARY INFORMATION CLASS III 1 A PROPRIETARY INFORMATION NOTICE The information contained in this document is proprietary to General Electric Company, and is furnished in confidence for the purpose of providing the members of the BWR Owners' Group.with plant specific analysis related to changes to the Emergency Core Cooling System actuation instrumentation Technical Specification testing intervals and allowable out-of-service times. No other use, direct or indirect. -of the document or the information it contains is authorized. The information shall not be reproduced or furnished to third parties or made public without the prior express written consent of the General Electric Company. IMPORTANT NOTICE REGARDING CONTENTS OF THIS REPORT 1 Please Read Carefully The.only undertakings of General Electric Compay respecting information in this document are contained in the contract between the purchasing customer and the General Electric Company as referenced in General Electric Proposals Number 355-1525 Revisions 1 and 2, and nothing contained in this document shall be construed as changing the contract. The use of this information by anyone who has not contracted for its use for any purpose other than that for which it is intended, is not authorized; and with respect to any unauthorized use, General Electric Company askes no representation or warranty, and assumes no liability as to the completeness, accuracy, or usefulness of the information contained in this document. 4 i 1
GENERAL ELECTRIC COMPANY PROPRIETARY INFORMATION CLASS III l 2 1 TABLE OF CONTENTS l P_ggi l i 1. INTRODUCTION 1 2'. EVALUATION METHOD 2 f 3. RESULTS OF ECCS EVALUATION 4 i ] 4. SUt9(ARY AND CONCLUSIONS 6 5. REFERENCES 6 APPENDIX A:,ECCS ACTUATION INSTRtMDITATI001 A-1 i EVALUATION FOR TEE RIVER REND STATION, UNIT 1 -i [ i f J I i t . i" -ii-
GENERAL ELECTRIC COMPANY. PROPRIEIARY INTORMATION CLASS-III A h 1 1. INTRODUCTICN i This report extends the generic study of modifying the technical-specification requirements of the emergency tore cooling system (ECCS) on a plant specific basis for River Bend Station, Ut:it 1, a BWR 6. The generic study (References 1 and 2) provides a technical basis to modify the surveillance test intervals and allowable out-of-sarvice times' of the ECCS. actuation instrumentation from those of the generic technical specifica-tions. The generic study also provides additional analyses of various .f known different ECCS configurations to support the appiteation of the-generic basis'on a plant _ specific basis. The generic basis and the ~ supporting analyses were utilized in this plant specific evaluation.. The - - y results of the plant specific evaluation for River Band are presented herein. b i e F t i .i 2 1 i
k GENERAL ELECTRIC COMPAN"Y 'I PROPRIETARY INFORMATION CLASS III i F 2. EVALUATION METHOD L The plant specific evaluation of the modification of the surveillance test frequencies and allowable out-of-service times of the ECCS actuation instrumentation was performed in the following steps: a. Gather plant specific information on the ECCS from Gulf State Utilities Company (GSU). The information includes the fellowing: (1) Piping and Instrumentation Diagrams (P& ids) of ECCS, reactor core isolation cooling (RCIC) system, emergency service water systems, and air systems to ADS valves. 1 (2) Elementary Diagrams of the ECCS, RCIC, and related' systems. (3) ECCS, RCIC and electric power distribution systoa descriptions such as those in.the plent Final Safety 'f Analysis Report (FSAR). (4) Technical specifications on the ECCS, RCIC,'the suppression. j i chamber, and the electrical systems. (5) Information on ECCS surveillance test procedures. (6) Dependency matrices showing dependence of ECCS and RCIC systems on support systems and on actuation instrumentation. I (7) Available data on actuation instrumentation failures. 1 -1 The latest revisions of the above items were supplied by GSU. 1 Section I of the checklist in Appendix A was used to identify the data source of the plant specific information. l b. Construct the pla..? specific ECCS configuration from the plant specific information. Sections "A" through "E" in Section' II of the Appendix A checklist was used for this process. l 'l . l n
k GENERA 1. ELECTRIC COKPANY-PROPRTETARY INFORMATION -CLASS III Compare the plant specific ECCS configuration with the generic. c.- 4 ECCS configuration using the generic ECCS fault trees, ECCS description, technical specification requirements, and other generic inputs. Section III of the checklist was used for this-process. i d. Classify the differences in ECCS system design, in support ~i systems, and in instrumentation, into three categories:. i (1) Differences which obviously have.no negative effect on the - reliability of the ECCS. Examples of these_"no effect" items are component name differences.. symbol differences.. and other minor non-functional differences. 'Other effects. 1 not requiring analysis are those in which the specific plant. q i has greater redundancy than the generic model. Disposition 'of the items with obviously no negative effect is done'with "no analysis required". (2) Differences which require engineering: Judgment _for t disposition because of the functional differences'. Examples of these differences are the use of shared room cooling _ systems in a specific plant compared with individual room cooling systems in the generic plant. The disposition of such items would require engineering assessment in a " simple-study" as shown in Appendix 7 of Reference 2. i (3) Differences which require additional analyses to evaluate the offact on the ECCS reliability. Examples of such differencea are use of two diesel generators and,two electrical systems in a specific plant compared with._a-larger number of diesel generators and electrical systems in. ~the generic. evaluation. Disposition of-these items would require additional analyses (" Modify fault trees and perform analysis.") to compare with the generic resultr. These 4 analyses are documented in Reference 2. I Compile a list of plant specific differences of Categories (2). s. and (3). 3 1
s a + - 4 i GENERAL ELECTRIC COMPAh7 PROPRIETARY 1hTORMATION CLASS III f. Assess the reliability effect of the differences identified in Step (e) on the generic results. The results of the assessment are documented in Section III of the checklist, Appendix A. g. Document the results of the plant specific evaluation. The above seven step process is documented in Appendix A of this report. 3. RESULTS OF ECCS EVALUATION The results of the plant specific evalustion of the ECCS for RBS1 are documented in Appendix A of this report. The results show that the ECCS ~ configuration of RBS1 has four differences from-the BWR 3/4 generic model* which are classified Category (3), and none which is in Category (2). The RBS1 differences in Category (3), requiring detailed analysis, are as follows: The generic model has three emergency service water loops, each a. loop providing cooling water to one diesel generator. The RBS1 emergency service water system has two loops, with each loop cooling one diesel generator and supplying a common header which provides cooling water to the HPCS diesel generator. The' common header can be isolated from the two loops by valves. b. The generic model uses 1-out-of-2-twice logic for the pressure i permissive signal to manually open LPCI and LPCS valves, RBS1 uses a 1-out-of-1 pressure signal. c. The generic model has no ADS inhibit switch, RBS1 has an ADS inhibit ruitch. The term " generic model" means the ECCS configuration used in the generic analysis. 1 GENERAL ELECTRIC COMPASY PROPRIETARY.INFORMATION CLASS III d. Injection valves in the generic mohl are stroke tested quarterly, at RBS1 the valve' stroke test is. performed at cold shutdown, which could be as long as 18 months. 1 All four of these differences result in less redundancy of emergency equipment for RBS1, so they impact the ECCS water injection function failure frequency. The BWR 5/6 fault trees were modified to Case'5B, as described in Section 5.5 of Reference 2, to account for the first three of-these differences, and to Case-5C to account for the fourth difference plus a different ESW configuration. As indicated in Table 5-3 of Reference 2, the water injection function failure frequency for Case 5B with current technical specifications is ~ 1.952E-5 per year, and this value changes by only 2.0% (4.0E-7 per year) when STIs are increased to 2190 hours, test ACTS are increased to 6 hours, and repair ACTS are increased to 24 hours. The small increase in failure frequency is well within the guidelines of acceptability in Reference 2. As indicated in Table 5-4 of Referenes 2, the water injection function failure frequency for Case SC with current technical specifications is 1.386E-4 per year, and this value changes by only 1.1% (1.5E-6'per year) when STIs are increased to 2190 hours, test ACTS are increased to 6 hours,- and repair A0Ts are increased to 24 hours. The RBS1 differences from the-generic model are enveloped by the combination of Cases 5B and 5C of Reference 2. These cases have more changes than those at RBS1, and an overestimate of the 1851 change in water l injection function failure frequency resulting from the proposed changes to technical specifications is obtained by summing the values for Cases SB and SC. This gives 2.0% + 1.1% = 3.1%, which is below the 4% guideline of acceptability in Reference 2. GENERAL ELECTRIC COMPANY-PROPRIETARY IN70RMATION CLASS III 4.
SUMMARY
AND CONCLUSIONS A plant specific evaluation of modifying the surveillance test intervals and allowable out-of-service times of the ECCS from the technical specifications of RBS1 has been performed. The evaluation utilized the plant specific information supplied by GSU and the generic basis and the additional analyses documented in References 1 and 2. The results indicate that the ECCS configuration for RBS1 is similar to the ECCS configuration in the generic evaluation, with four significant differences. The differences between RBS1 and the generic model have been modeled by envelope cases SB and 5C of Reference 2, which show that the _ ~ proposed changes to ECCS actuation instrumentation Technical Specifications r would meet the 4% acceptance criterion in Reference 2. Therefore, the generic basis in References 1 and 2 is applicable to RBS1. F 5. REFERENCES t (1) D. B. Atcheson, et al., "BWR Owners' Group Technical Specification Improvement Methodology (with Demonstration fer BWR ECCS Actuation Instrumentation) Part 1", General Electric Company, NEDC-30936P, November 1985. t (2) D. B. Atcheson, et al., "BWR Owners' Group Technical Specification Improvement Methodology (with Demonstration for BWR ECCS Actuation Instrumentation) Part 2", General Electric Company, NEDC-30936P, to be issued February 1987. 6-
h GENERAL ELECTRIC COMPANY PROPRIETARY'IhTORMATION CLASS III t APPENDIX A ECCS ACTUATION INSTRLHENTATION EVALUATION FOR RIVER BEND STATION, UNIT 1 M b' 1 A-1
3 g: F t GENERAL ELECTRIC COMPANY PROPRIETARY INFORMATION CLASS III i Section I - ECCS Plant Specific Data Source Utility: Gulf State Utilities Company-i Plant: River Bend Station, Unit 1 i t Source Number 1. ECCS and RCIC P& ids 1 1 2. Emergency Service Water P& ids -l 3. Electrical Drawings i 4. Instrumentation Logic Diagrams i 5. ECCS Fault Trees ~ j i 6. Final Safety Analysis Report l 7. Technical Specifications j i 8. Other Drawings i 9. Dependency Matrices 10. Failure Data 11. Test Procedure Questionnaire 1 12. Telephone Call Records 7 13. NEDC-30936P, Part 1 'I 9 l i e i i I .t A-2 i
f GENERAL ELECTRIC 'OMPA.W PROPRIETARY INT <..dTION CLASS III Section II - ECCS Configuration Data A. ECCS Svstem Generic Difference Data
- RBS1 BWR 5/6 (Y/N)
Source 1. Number of: LPCS Pwsps/ Loops 1/1 1/1 N 1 LPCI Pumps 3 3 N 1 ADS Valves 8 8 N 1 HPCS Pumps 1 1 N 1 2. Needed for Success, Number of: LPCS Pumps / Loops 1/1 1/1 N 6 LPCI Pumps 1 1 N 13 ADS Valves 3 3 N 13 3. Number of: Diesel Generators 3 3 N 3 Electrical Divisions 3 3 N 3 The numbers shown in the Data Source column refer to the documents listed in Section 1. A-3
s GENERAL ELECTRIC COMPANY PROPRIETARY IhTORMATION CLASS III .j l l Section II - ECCS Configuration Data f B. SUPPORT SYS'EM DEPENDENCIES - i The dependencies each front line ECCS system has on the listed support _ i subsystems for both the generic and specific plant are.shown. FRONE LDE SYSTEMS SUPPORT \\ ---LPCI--- ADS ADS -DIESELS j SUBSYSTEMS \\ A B C LPCS A B RCIC HPCS A'B'C OFFSITE AC POWER X X X X X X I ONSITE AC POWER DIVISION 1 X X X X X DIVISION 2' X X X X ~ I DIVISION 3 X ONSITE DC POWER DIVISION 1 X X X X X X DIVISION 2 X X-X X X X-DIVISION 3 X SERVICE WATER EMERGENCY A X X X -S X S EMERGENCY B X X S X S EMERGENCY.C G G l WATER SUPPLY CONDENSATE Tt.NK ~ X X SUPPRESSION POOL X X X X X X ' AIR INSTRUMENT AIR X X ROOM COOLDIG LPCI' X X X LPCS X RCIC X i HPCS X DIESELS X X X X = IN BOTH GENERIC AND SPECITIC BWR 5/6s G = ONLY IN GENERIC BWR 5/6 S = ONLY IN SPECIPIC BWR 5/6 A-4
4 GENERAL CLECTRIC COMPANY-1 PROPRIETARY INFORMATION CLASS III Section II - ECCS Configuration Data C. INSTRLHENTATION DEPENDENCIES The dependencies each front line ECCS system has on the listed actua-tion instrumentation for the generic and specific plants are shown. FROBrr LDR SYSTEMS ACTUATION \\ LPCI LPCI LPCI ADS ADS:- INSTR 13GiftATI(El \\ A B C LPCS A B RCIC' HPCS RPV WATER LEVEL 1 (LOW LOW LOW) N691 A/E X X X N691 B/F X X X RPV WATER LEVEL 2 (LOW LOW) ~, N692 A B.E.F X N673 C,L,G,R X RPV WATER LEVEL 3 (LOW) L695A X N695B X RPV WATER LEVF,L 8 (HIGH) N673 C.G S N674.C.G X N693 A,B X ~ RPV PRESSURE LOW N697 A.E/N698 A.E X X N697 B F/N698 B,7 X X N658 A S B S C S X = IN B&fB GEIERIC AND SPECIFIC BWR 5/6s e G = ONLY IN GEIERIC BWR 5/6 S = ONLY IN SPECIFIC BWR 5/6 i j A-5 j
GENERAL ELECTRIC COMPANY PROPRIETARY INFORMATION CLASS III Section II - ECCS Configuration Data C. INSTRLHEN'ATION DEPENDENCIES (Continued) The dependencies each front line ECCS system has on the listed actua-tion instrumentation for the generic and specific plants are shown. t FRONT LDE SYSTEMS ACRIATION \\ LPCI LPCI LPCI ADS ADS INSTItBGBrtATI(M \\ A B C LPCS A B RCIC HPCS DRWELL PRESSURE HIGH N694 A.E X X X X N694 B X X X X N694 F X X X N667 C.G L,R X i. LPCI PUMP DISCHARGE PRESSURE HIGH N655A/N656A S X N655B/N656B S X N655C/N656C S X LPCS PUMP DISCHARGE PRESSURE HIGH N652/N683 X ADS TIMER KSA X K5B X DRYWELL PRESSURE BYPASS TIMER A X l B X ADS INRIBIT SWITCH A S B S MANUAL INITIATION SWITCH (1/ LOOP) X X X X X X X X 'i X = IN BOTH GENERIC AND SPECIPIC BWR 5/6s G = ONLY IN GENERIC BWR 5/6 j S = ONLY IN SPECIFIC BWR 5/6 1 -ngx _ = - - z;
g. [. ' GENERAL ELECTRIC COMPANY PROPRIETARY INFORMATION CLASS III Section II - ECCS Configuration-Data C. INSTRLHENTATION DEPENDENCIES (Continued) The dependencies.each front line ECCS system has on the listed actua-tion instrumentation for the generic and specific plants. FB0ert LDE SYSTEMS RELATED MON-ACTUATION \\ LPCI LPCI LPCI ADS ADS DISTEBSNEATICII \\ A B C LPCS A B RCIC HPCS LPCI/LPCS PUMP DISCHARGE PRESSURE LOW N652 A X B X C X N651 X CST LEVEL LOW N654 C G X N635 A.E X SUPPRESSION POOL WATER LEVEL HIGH N655 C.G X N636 A,E X X = IN BCrrH GENERIC. AND SPECIFIC BWR 5/6s G = ONLY IN GENERIC BWR 5/6 S = ONLY IN SPECIFIC BWR 5/6 A-7
GENERAL ELECTRIC COMPAhY PROPRIETARY INFORMATION CLASS III Section II - ECCS Configuration Data D. Minic:um Number of Sensors Channels, or Components. for Failure, RBS1 A: = MINIMLH SENSOR FAILURES REQUIRED TO FAIL TRIP FUNCTIOd* B: = MINIMLH NLHBER SENSOR FAILURES REQUIRED TO FAIL FUNCTION - TOTAL C: = MINIMLH NLHBER OF SENSOR TYPES REQUIRED TO FAIL FUNCTION DIFFEREhi FROM GENERIC TRIP (Y/N) FUNCTION A B C B-C LPCS PUMP 1 RPV WATER LEVEL 1 (LOW LOW 2 2 N N-INITIATION LOW) AND 1 DRYWELL PRESSURE LPCS INJ VALVE 2 RPV LOW PRESSURE 2 1 N N LPCI PUMP 1 RPV WATER LEVEL 1 AND 2 2 N W-INITIATION 1 DRYWELL PRESSURE LPCI INJ VALVE. 2 RPV LOW PRESSURE 2 1 N N ADS INITIATION 2 RPV WATER LEVEL 1 OR 2 1 N N 2 RPV WATER LEVEL 3, (LOW) ADS TIME DELAY 2 TIMERS 2 1 N N HPCS 2 RPV LEVEL 2 (LOW I4W) 4 2 N N INITIATION AND 2 DRYWELL PRESSURE HPCS LEVEL 8 2 RPV LEVEL 8 (HIGH) 2 1-N N HPCS INJ VALVE 2RPVk.EVEL2AND 4 2 N N 2 DRYWELL PRESSURE HPCS WATER 2 CST' LEVEL AND 2 4 2 Y N SOURCE SUPPRESSION POOL LEVEL RCIC 2 RPV LEVEL 2 2 1 N -N INITIATION RCIC LEVEL 8 2 RPV LEVEL 8 2 1 N N RCIC WATER 2 CST LEVEL AND 2 4 2 Y. N SOURCE SUPPRESSION P00L LEVEL RCIC INJ VALVE 2 RPV LEVEL 2 2 .1 N N Based on data sources 4 & 6. IMD
GENERAL ELECTRIC COMPANY PROPRIETARY INFORMATION CLASS III Section II - ECCS Configuration Data E. ECCS Instrumentation and related subsystems Surveillance Requirements
- SURVEILLANCE REQUIRDE.NTS**
DIFFERENCE GENERIC 5/6 RBS1 (Y/N) CORE SPRAY SYSTEM REACTOR WATER LEVEL 1 (LOW LOW LOW) M M N DRYWELL PRESSURE HIGH M M N REACTOR PRF3SURE LOW M M N MANUAL INITIATION R R N LPCI REACTOR WATER LEVEL 1 M M N DRYWELL PRESSURE HIGH M M N REACTOR PRESSURE LOW M M N PUMP START TIME DELAY RELAY M M N INJECTION VALVE DIFFERENTIAL PRESSURE LOW M N/A Y ~ MANUAL INITIATION R R N HPCS REACTOR WATER LEVEL 2 (LOW LOW) M M N DRYWELL PRESSURE HIGH H H N CST LEVEL LOW M M N SUPPRESSION POOL LEVEL HIGH M M N REACTOR WATER LEVEL 8 M M N MANUAL INITIATION R R N ADS REACTOR WATER LEVEL I M M N DRYWELL PRESSURE HIGH H H N ADS TIMER M M N CORE SPRAY PUMP DISCHARGE PRESSURE M M N LPCI PUMP DISCHARGE PRESSURE M M N REACTOR WATER LEVEL 3 (LOW) M M N MANUAL INITIATION R R N ADS DRYWELL PRESSURE BYPASS TIMER M M N ADS INHIBIT SWITCH N/A M Y INJECTION VM M TEST Q CSD/Q Y DIESEL GENERATOR M M N ELECTRIC POWER ESSENTIAL AC W W N ESSENTIAL DC W W N ESSENTIAL AC BUSSES W W N Based on Technical Specifications, data source No. 7. M = MONTHLY, W WEEELY, R REFUELING, Q = QUARTERLY = = CSD = COLD SHUT DOWN A-9
GENERAL ELECTRIC COMPANY-PROPRIETARY INTORMATION i CLASS III i Section III - ECCS Configuration Differences Classification (River Bend Station) Plant Specific Classification (Justifi-BWR 5/6 Generic Model Difference cation if Insignificant) k i A. ECCS System Differences j No significant differences. i B. Support System Differences t 1. Service water has Standby service water ECCS function has a higher 3 separata loops has 2 loops. Elec dependence on service for 3 electrical Div 3 depends on Divs water since Elec Div 3'. j divisions. 1 & 2. One SSW pump could be unavailable due i depends on HPCS DG' to the failure of Divs 1 'f (Div 3), one pump & 2 and a combination of depends on Div 1, and MOV failures. Modify I two pumps depend on fault trees and perform i Div 2. analysis. C. Instrumentation and Procedures Differences 1. Manual opening of Manual opening of low Lower probability of valve LPCS & LPCI injec-pressure system injec-opening. Modify fault tion valves has , tion valves requires tross and perform analysis, i permissive signal one pressure signal from 1/2-twice which is tested every 1 logic. 18 months, not monthly. 2. Containment spray No containment spray Lower probability of LPCI signal could pre. signal interlock. failure. No analysis -l vent LPCI operation. required. 3. Injection valves Injection valve stroke Higher probability of. valve- 'l are stroke tested tests are performed at sticking.. Modify fault quarterly. cold shutdown. trees and perform analysis. .j I .4. No ADS inhibit ADS has inhibit switch. Added failure mode, modify switch. fault trees and perform analysis. O*N. '}}