ML20058L845

From kanterella
Jump to navigation Jump to search
Forwards Responses to Audit Items 3 & 11 of 930222 & 931113 Audit Repts,Respectively
ML20058L845
Person / Time
Site: 05200001
Issue date: 05/07/1993
From: Fox J
GENERAL ELECTRIC CO.
To: Poslusny C
Office of Nuclear Reactor Regulation
References
NUDOCS 9305130032
Download: ML20058L845 (28)


Text

7 o *[..

s GENuclear Energy GeneralElectnc Company 115 Cartner Avenue. Sun.bse. CA 95125 May 7,1993 Docket No. STN 52-001 Chet Poslusny, Senior Project Manager Standardization Project Directorate Associate Directorate for Advanced Reactors and License Renewal Office of the Nuclear Reactor Regulation

Subject:

Submittal Supporting Accelerated ABWR Review Schedule - Audit items 3 and 11

Dear Chet:

Enclosed are responses to Audit Item 3 of the February 22,1993 audit report and Audit item 11 of the November 13,1993 audit report.

Please provide copies of this transmittal to Tom Cheng and Gautam Bagchi.

Sincerely, Jack Fox.

Advanced Reactor Programs cc: Gary Ehlert (GE)

Norman Fletcher (DOE _)

Ai-Shen Liu (GE):

l j-JIB 143 l

l-9305130032 930507

.PDR ADOCK-OS200001

~

A PDR-

a psspours To Avovr i r5 Li 3 OF Z /2.2 /93 Ass O rT R-690ET Power Spectra for Vertical Time History i

i 1

TARGET POWER SPECTRUM Presented in this attachment is our recommended function of the minimum target Power Spectral Density (PSD) requirements appropriate for the Reg. Guide 1.60 vertical response spectrum. The U.S.N.R.C. Standard Review Plan 3.7.1 (Rev. 2) generically refers to the requirement of the minimum PSD with regard to horizontal or vertical ground motion, however, while referring the reader to Appendix A for the recommended minimum PSD, the Appendix presents the PSD function developed by Kennedy and Shinozuka (1989), which was specifically developed to be compatible with the Reg. Guide 1.60 horizontal spectrum. The process used here for the development of the recommended vertical minimum PSD function follows the methodology as presented by Kennedy and Shinozuka.

l Kennedy and Shinozuka (1989) presents the following " standard" PSD for use in minimum PSD requirements of the SRP 3.7.1 and consistency with the Regulatory Guide 1.60 horizontal design response spectrum scaled to a peak acceleration of 1.0 g:

Standard PSD So(f) = 650 inch 2/sec3 (f /2.5)02 f s 2.5 Hz

= 650 inch 2/sec3 (2.5/f)13 2.5 < f s 9.0 Hz

= 64.8 inch 2/sec3 (9.0/f)3D 9.0 < f s 16.0 Hz

= 11.5 inch 2/sec3 (16.0/f)8D 16.0 < f Hz Kennedy and Shinozuka suggest a form of the following iterative process for developing the So(f) function to fit a target response spectrum:

1)

Establish initial candidate PSD.

2)

Calculate several time histories using the PSD, each with a different phase function.

3)

Calculate 2% critically damped pseudovelocity response spectrum (P!) of each. time history.

4)

Compare the suite of PSV's from 3) to a target PSV.

l 5)

If the average of the suite of PSV's does not fit the target PSV, j

adjust form of PSD and go to Step 2.

6)

Final PSD obtained.

1

It should be noted that the " test for fit" in step 5) is subjective, based only on a visual fit criterion. There is no rigorous or analytical procedure outlined by Kennedy and i

Shinozuka for assessing the fit.

Figure I shows the 2% critically damped response spectra for five artificial time i

histories (light solid) calculated using the Kennedy and Shinozuka (1989) standard PSD above and their method of time history generation, as compared to the Reg.

Guide 1.60 horizontal (dashed) and vertical (heavy solid) seismic design response spectra. There are two items to note. First, the time histories were developed for a target peak acceleration of 1.0 g. To obtain the appropriate PSD function for a time history corresponding to a peak acceleration of MAXPGA (g), each of the leading PSD coefficients would be scaled by (MAXPGA)2. Second, following a technique suggested by Kennedy and Shinozuka, the one (or few) time history peak (s) that exceeded 1.0 g - possible because of the effect of the random phase term used in calculating the artificial time history - was (were) clipped to 1.0 g. Without clipping the high spikes in the time history, the resulting response spectrum migrates slightly upward for frequencies above about 23 Hz.

Figure 1 visually shows the degree of fit with which the response spectra of time-histories generated with the standard horizontal PSD correspond to the Reg. Guide l

1.60 horizontal spectrum. Since the fitting procedure is visually subjective when following the Kennedy and Shinozuka method of determining an alternative PSD for a spectrum other than the Reg. Guide 1.60 horizontal spectrum, Figure I suggests how close an acceptable fit should appear.

l As can be seen in Figure 1, the Reg. Guide 1.60 horizontal and vertical response spectra have the same shape for frequencies greater than 3.5 Hz. For frequencies less than 3.5 Hz the vertical spectrum is nearly a downshifted version of the horizontal spectrum. This suggests an initial iteration of estimating the vertical PSD function j

by using the standard PSD function with the "650" coefficient replaced with the coefficient 650 * (2.5/3.5)1.8:

PSD: TH_V1 (coefficients for peak ground acceleration (PGA) of 1.0 g)

So(f) = 354.72 inch 2/sec3 (f /3.5)o2

- f s 3.5 Hz

= 354.72 inch 2/sec3 (3.5/f)1.8 3.5 < f s9.0 Hz

= 64.8 inch 2/sec3 (9.0/f)30 9.0 ' < f s 16.0 Hz

= 11.5 inch 2/sec3 (16.0/f)8.0 16.0 < f Hz Figure 2 is similar to Figure 1, except the time history spectra correspond to the.

)

attempted vertical PSD TILV1. The fit appears to be very good for frequencies less than 3.5 Hz (SRP 3.7.1 requirements for PSD do no apply for frequencies less than 0.3 Hz). The time history spectra appear slightly low for frequencies greater than about 2

y w~wu e-wrw1-yr ww u-t'Fu W=

4 Hz, suggesting that some of the powers on frequency need to be slightly reduced.

I A few iterations of the Kennedy and Shinozuka methodology resulted with the following PSD:

PSD: TH_V3 (coefficients for peak ground acceleration (PGA) of 1.0 g)

So(f) = 354.72 inch 2/sec3 (f /3.5p2 f 5 3.5 Hz

= 354.72 inch 2/sec3 (3.5/f)1.6 3.5 < f s 9.0 Hz

= 78.272 inch 2/sec3 (9.0/f PD 9.0 < f s 16.0 Hz

= 13.931 inch 2/sec3 (16.0/f)70 16.0 < f Hz Figure 3 shows that the PSD TH_V3 generates time histories for which the response spectra fit the target vertical Reg. Guide 1.60 spectrum at least as well as, if not better than, the standard PSD does for the horizontal Reg. Guide 1.60 spectrum.

It is concluded that the PSD TH_V3 above be used in place of the standard PSD presented in Appendix A of U.S.N.R.C. Standard Review Plan 3.7.1 (Rev. 2) in applications involving the vertical Reg. Guide 1.60 spectrum.

CHECKING AGAINST THE TARGET POWER SPECTRUM Power spectral density (PSD) function of vertical component of design time history (SSE with 0.3g PGA) was computed and subsequently averaged and smoothed using NRC SRP Section 3.7.1., Revision 2 criteria. Similarly, the target PSD is computed for 0.30g maximum acceleration. The PSD of the design time history is compared with the target and 80 percent of target PSD in Figure 4. As shown in this figure, PSD of the vertical time history envelopes the target PSD with a wide margin. This comparison confirms the adequacy of energy content of the vertical time history.

3 w -

RG1.60 chrt H l

l

\\

Reg. Guide 1.60 Spectra Scaled to 1.0 g, 2% Critical Damping Horizontal (dashed); Vertical (solid) 1000 l

i ' i ill l l,';,

i i

i,iiiii i

i i i iiiii i iiiii I

I I Itilli l

I i iIlill I

t i Ilill I

l llllll l

l ll

l l

i lIllll CD 100 l' f '

4

,,, l,!

;;l,

.,,,i i iiiii i

if i

i iii,i, i

i iyu ii i

I I

I I Ilill I

I j l%

II i

1 I II I

lllllll l

l l 'i<,kd l

Ill I %l i

PSV I

10 (in/s) l ;ll:

N l l ; ;!;i i

i i iiiiii i

i i i iiiii g

iisii.

I i

i i lilli i

i I i Illit lA l l Ilill I

llIlilil i

l l Ilill l \\ l ll ll 1

.. :N i,,.....

i i

i iiii, i

i i iiiii i

i i

iiii l

i i

l ilill l

I i iitil I

i i i i Ill l

l lllll l

llll l

l l

lll 0.1 0.1 1

10 100 Frequency (Hz)

Figure 1. Comparison of Reg. Guide 1.60 vertical and horizontal spectra and spectra for 5 artificial time histories generated using the standard PSD.

1 RG1.60 chrt V1 l

l l

Reg. Guide 1.60 Spectra Scaled to 1.0 g, 2% Critical Damping Horizontal (dashed); Vettical(solid)

PSD: TH_V1 1000 I

, 4,,,,,

I l

l I I i i t il I

I i iil Iil i

l it illil i

1 i

i i tilli I

i i i I!i i

i i

I i!lil l

l l

lllll l

l l llll l

l l

l!illl l

1 l

ll l

I 5 I I I'I N

w n, a r =

.','fn

~-

100 n

! TM'E',

17!."(i cr4A f

1 m

,s.,4 l[ V I

i il il1Ii l

i iMkI i4l t

I i

t iII I

I I

I i liIll i

i i

Il I

I I i ! Ili l

l lllllll l

l l3,El l

l I I llll l

PSV 10 l

(in/s) i l

l l

;!ll l

l l,;;l i

,,l i

i i

i i i iiii i

i i iiiii.

is i i,iiii i

i 1 i lilli I

i I 1 lll11

&l 1 I t i t ti l

I l l lll!I l

l lIlllll li I l !ll

!L ii I A b' 1

N.s i

l i i !iii i

e iiiii i

ii!, isi l

l l

i lill l

I l Iil i

l i i!111 l

l ll ll l

l llll l

I l lIlll 0.1 0.1 1

10 100 Frequency (Hz) 1 Figure 2. Comparison of Reg. Guide 1.60 vertical and horizontal spectra and spectra for 5 artificial time histories generated using PSD TH_V1.

l RG1.60 chrt V3 Reg. Guide 1.60 Spectra Scaled to 1.0 g, 2% Critical Damping i

Horizontal (dashed); Vertical (solid)

PSD: TH_V3 1000

,,l,'i i

i,,,;

,,;i i

i iiiiii i

! iiisii i

i iiiii l

I I Il1 il I

I Iiifli i

l i I I III l

l l l llll l l l llll l

l llllll

_Lill 100 S b

I '-

~ ~ ~ ~ -

T i,s 1%'. m

%,; ^ ';ll l__ ' 9-

..i

f. x y,,, - u

.u m.

.e

,,,,i, t w,,,,,

)

I il 6 iii l

iMb{i I

I I

I I i ilI 1/ V I

i l l lllll l

l D

i l i liIll l

l l l lllll l lll%

l l l lll PSV 10 (in/s)

't

,;;i!

N i

i iiiiii i

iiiiii s

i i i i f i i; l

I l l 1Ilij l

l I I Ill l\\ !

l I I Ilil l

I l l lllll l l l llll l 1 l l l.l lll

'A 1

N.

.N i

i.,,ii, i-i,,..i k

l l h Iilll l

i il l l l11 l

0 l l i lIl l

i I Iii11 i

i l ilIiIl i

i l i lII l

l llll l l llll l l llII 0.1 i

0.1 1

10 100 Frequency (Hz)

Figure 3. Comparison of Reg. Guide 1.60 vertical and horizontal spectra and spectra for 5 aruficial time histories generated using PSD TH_V3.

~

e l

- =

=

1

- i

~

i I

I 1

7.
  • g.*'

g.-

-f'

/.-

n i

~

r

(:

/-

7:'

7_ C-

/:.

/

I w

1

//

]

^ > -

//.

l f_

I_

f:

\\

C I

'.9 v

)

/. -.

z i

f-

> w e

n.

,.m a

1:

i

~

=

t_:

i, a._

g:

.._ ~_.

g.

i i

l.

l :.

{.-

c

- - =

~

g.'

l d

9 1

l.

j_

=

^

l s

1 m

T

_w 1:

t =

l:

Lm I ::

u I

wC j-

-COZwm<

i:

.--O,==

l-a_-

1 UC i

a=

<<=

a i

u-=

i

{

l lI i

l....

i...

e.,,,..

i.......

n e.

n.

=.

~

o C

S C

C C

C C

S S

i 1

(se:/g.,9-30ni idWV 1

l l

l l

1 I

i 1

i Rss Po uss ro 3

Ad Ds T iT3 M 11 c F n/is t s3 wo rr p.sgoa.T i

i Stick vs. Finite Element Model 1

i t

l f

1

1

~

In the original comparative study of the stick and finite element models of the ABWR reactor building (Ref.1), both models were analyzed considering surface

{

fixed base condition. In that study, although the horizontal responses were in good agreement, the vertical responses were relatively different, mainly due to vibration of local modes in the detail finite element model. In order to assess the differences, these analyses were repeated considering the design embedment condition of the reactor building as well as overall response of the finite element model at each l

respective floor elevation.

j The stick model used in the analysis is shown in Figure 1. The finite element model and the node numbers at selected elevations are shown in Figures 2 through i

5. Both models were analyzed using Stardyne modal time history analysis option.

The reactor building wa": below Elevation 4.8m in both models were fixed to stimulate rigid site condition with one-story height separation. Separate analyse 5 l

were performed to obtain responses in X, Y, and Z-directions.

The results are compared in Figures 6 through 17. To reduce the effect of local-modes in the response of the finito element model, the average response of the l

respective parts of the finite element model were obtained. The averaged responses l

are, subsequently, compared with the stick model responses.

j i

As shown in these figures, the comparison of the horizontal responses show a good l

agreement as was observed in the prev ous study (Ref.1). Comparison of the i

vertical responses show a significant h provement due to reducing the local mode

{

effects by averaging the responses of the finite element model. From the results of l

this study, it is concluded that the stick model and the finite element model are j

dynamically equivalent, and the assumption of double symmetry for the reactor building stick modelis adequate.

I i

i i

l I

1" Final Responses to NRC letter of November 13,1992 Regarding Audit of October 12-15,1992", a transmittal frorn B. A. Posta to J. F. Quirk dated January 19,1993.

.l N

t 1

Buildtrg waits Tus!

a Y (270')

49.7 M 95 o

> X (0')

Iliil 3S.2 M o

96 RCCV Legena:

I 941 107

  • Nocal Point 3: Kig Kt7i:

O Beam eernent t

31.7 M

^

88 We Spnng Eernent 98 Kio

- Rigid Link l 96l 87 108 e

TuSL

(

i: Kie KsM K

3 90 S,

l 23.5 M

^^

' 33 100 Kit 70 21.2 M g

f-M 34 18.44 M 74 78 ITs-l

_10g

[8sj g

K1k-b Ks 2

2 18.1 M o 79 Rsw 17.02 M 102

'K'th 91 76 o 80 15.60 M I I "O

o 81 13.95 M g

12.3 M Grade

.A 82 12.3 M

/-

103 Kts 92

[T5]

46 12.0 M L69J 8.2 M 9

I' 7

6

_111 83 7.0 M

Ksh, d

4.5 M 4.8 M

" 2' 2

o 72 Pedestal 104 K,i 93'

$Ks I103i ga 3.5 M l1011

_112 I

66

K27k, 5

-0.18 M K26 0 65

-1 7 M 105

'K'th 94 b

-2.1 M o 86 11021 M

d o 87

-4.7 M 88 86

-8.2 M h 071 Basemat 106 l

-13.7 M NOTE:

1. The rotational sonng between noces 90 and 88 is presern onty in the X-Z plane.

FIGURE 1 Reactor Building Stick Model g-5 esc 0E AswRc73 ?2 '3.ar wrevi1c21et:51 t as-92 Aev 5

'4

.any.

i 1

\\

E I

E E

9 en oo 3

&\\*

"s 2

i f

4 l

tu m

4

/

A

/

A/A/A

/A/ h/

A

/

N

/

A/

A/

/

N

/

/V

/

\\

lh

\\

\\\\

\\

\\

1 N\\

\\

\\ \\

/4

\\

\\

\\

\\

1 1

1 1

/

I

\\

A

\\

\\

/

/

/

/

/

/

/

^

I I

I I

I

\\

\\

(j"- ll

.~

i r

i rx

.g

\\

t st su -

l I

f a

\\

,s rm\\ \\

t i t tg Y

\\

\\' M.

g x

g M

E\\ \\

\\

\\

\\

h f

\\

\\

\\

\\ \\

w q\\

s s

\\

\\

\\

\\

o L

\\

y J\\

J' ' l W l h \\ \\ Ntb \\ \\ \\ \\66 / n \\ \\ \\v / / $. \\ \\ / /\\ \\ i / / / /A! / / / / / / 5 s V / / / / \\ \\/ / / / / / a / //// / \\ \\,/ / / / / -_] 3 / / / /A i / / / // \\V i / / / / // // / / / / / / u / / /// / / / / / / / / / / ///// / / / i f I = / i / ///////// / N u 8c \\

s Ie f3 0: Ge {2%6 1'l54%m v 6 m s,66 11 9 , lib 8 4149 216 rigg h / lhf ,,,.1 c .r 6 m. ,6., ,,,,,,.6,,,,,..,.,,,.,,,,,9,,,,,,... ,,,8 ,,,,,,m %M 69 Itet tb68 8 ses ,reet 18e6 teet asi'ess; seet 3 gg,2689 g ME litt 1992 1911 tit 9 ftal 15tb i811 3818 2610 Sf6 l951 2928 1829 isle is.t 3 (33 h JSN" E981 %L*** tats tess . Lags.-- Y tais sets tent reti ists is19 tsie rest test 209 tes9 as95 te96 temi ress te99 tese ress test assa is essl tats (111 f8ig..f859 FMS 206l IB62 .tMt (Mi IMS IBM FM1 8968

  1. 369 28,0 7818

.f812 .itil 1911 2015 f3% 231 gnig i it,9 4000

  1. 003 ft92 ftt' ISS1
  2. 00%
  3. 8M
  4. 801 2000 teti
  5. 990 reil ft9f 1998 (891 1944 lith 4091 1998 1999 ages (986 7982 _I901
  6. 989 t991
  7. 996 2901
  8. 980
  9. 999
  10. 984 till till 29:3 1911 1995 2966 7981 2988 2939 29tg 29ts igli a.901 -

(zmz (m2. = FIGURE 3 finite Elenent Model - Elev. 87' (31.7'") m m__. _ _... _.._ _ _ _ _ _ _ _ _. _ _ _ - _ _. _ _ _ _., _ _ _ _ _. _. _ _ _ _. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - -m m

i ll i q 3 g 3 31 q e g 2 1 q r g n ,6 3 I a g 22 n s 1 a I r g a i ( t l e i I s a u t vd g t n I 8 5 i 6 l t 3 n I i ( l l I i l t e 9 ) e t n l i t g l 9 l l l n n I l l i a f. I f f I e 1 i I 6 g 2 u l 1 g I 9 i 1 f 2 .i I 1 l 3 n t 7 t I s 2 pE I t 1 l l 1 5 u s I s t i I 9 a l I f ? I l i l E a f a l t l, 2 I f s i I 1 i e s j I 1 s 9 u i I s 1 l a r l ) I i e H l s i u '5 t l l g s f c 5 u 9 3 yti 8 1 8 g o 8 r 2 1 g 2 2 3 n 1 ( l 3 n e 2 Ws s i i i 9 1 t 1 n l e .I n 7 6 a l i t I l t f_ 3 8 n's e n l v e s l I 9 e a f 'n l Ln 4 E l 1 e s l n 1A, pa' n 1 t i 2 t a ed' I n e D e i l i l i y, f4 g e a. l l t~ n I. d I. a t o n s l 9 i m i% ". i 3 189 e 3 i 3 3I l S l t I R a h n ,%s n 6 e 4 w t 9 4 e 1 6 1 i n e s 3 8 a 3 S l i s L I. n f s 0 l 0 e 3 f g g 2 t e 2 i 1 9 t l 8 5 i t S i n n l 1 t s B i t e S I t I e i f e .l u M J I s 9 t 6 O o n f f s l f e f g 4 o 6 8 2 s t e 6 8 e l i .I n E 1 f s l m 7 f a I R U 3 o u n G 8 s i i 4, i I 8 a f a F e i 6 w t e 2 n n 8 I l i 9 r 1 1 e n I. 4 i l e = 2 s f e ~ s n 1 6, i o 2 6 n n n 3 3 u' z eeie LCDG G l

L 4 ie Ce 0: Ge [ il% 1365 3 16% il66. 36 1 ilbe.s111110268 _ itel _ile. _ille ille . s lii _ i lM iiii lie llt illi _sli, _ i th 1 ille O .III [ [ v gp iffs' Llis g 11 altl 1 I:1 8'! *8n y :Is. ilei nos. no, , ine i t,1,* 3,t(, . tin o ne on inee,se i lin11 N n e5 in in, >N ni was i ..im int int i n, i nst in. s a le ' i n. tie m .i ne i n, nu nei no 8't_1 is asi ,3 ,y ., e ' "' m n,is i,i, i,il i,i, i,i, ..i,e l s,., i,., i i.e, i,e ,,e m ens s i9:6 i,il i,is iH9 iME. nti. tu HI gy, i,li e,li e,1,. i,lt i, 36 i,Il I mLp' E ~ im nn n,,l,,s i i,,. i,,, n,e i,,, i,s, i,si i,s, i,si e,a i,n .,se i,,, n i, i,n i,,e i,,i i,,, i,u ge e,. i,n im im im nn im im n,e nu. nu nu nw nis nw nu nw nu na ini 1 ne nel nn nos = nn i*se nos ice nu n*3 n" n95 n,6 n$1 n" n" '5" - n's - n '588 ne, nos nu ne, nes. eses - nie. isu isia asu e5n 85 5 '586 85n. nu '5n '5 '5 55'8 '5n '5" '5'5 1504f {13;5 lI525 = 4 FIGURE 5 finite Element Model - Elev. 23' (12.3"') e -,__-._,._-.-__-----_.-.._.-.-_..__.-_..m . - - ~ - - - -. --.m

2 0 r 1 rD ) rD E D i E U M r E ( i m G 7 D i L 1 B 3 R D L G I E N G N i C I A G K I R I il P E N A M D S A R L D ~ A Hl - R D l 2 l A O X 2 T 3 0 C i 1 E P, S, 1 E i S S i P N s1.* C O P-i 1 Y C S 2 6 E N 'R i 2 E E 3 v 2 U R Q U N 2 G E 1 I O i 3 R F I 2 F T 1 A 0 R 9 2 ) E L S 0 E p 10 D C i D C i N A i F D i 8E i 9G A ER DE r iDV NA i - M E KF C 0 i l i-S3 3 0 .1 0 6 A 2 O n 2<r>JJg eimn Zomt<tt taLt< ^i)) rl t L a (t t i

ACCELERATION RESPONSE SPECTRA H. 7 i i i i e i T-i i i i i i i 1-T i i i i 1 1 T~ SilCK - i400E 100 AUkJR RE AC TOR BL OG. ( E MUE 00E D ) ' 3-D FEM - AVERAGE Of fl0 DES 2360 2373 2309 UUILDIt4G EL. 23.5 = X - Sti AK i tlG 22 DAMPIf4G cn i O. m ut 2o 6-< tr td -j 4. f - 1l-8 Li g:i ih 1 5; tr F-k .4 L3 tth Aj _ '\\ n. 2, .= tn ~~ O i0-1 10 108 10 8 2 FREQUENCY-CPS FIGURE 7

2 0 r 1 rD ) rE D i D E B M i E ( m r G 3 D i L 2 U 1 RO L G T E N G N i C I A G K I E N A P H M R I D S A R L D A Wl - R D u 1 a 3 A B X 2 T 0 1 E, C P, Sm E i S S i P N C O i f Y P C S 5 N 8 2 E i 5 E E R U R 1 Q UG N 5 E l 1 O i 5 R f F I 1 T 4 A 0 R 5 1 E L S 0 E L 0 Cr L1 D O C i N A F i O i 3 0E i 1G A ER DE iOV NA i - M E KF C .l D i-S3 1 '0 1 H 6 4 2 O

  • on zOst4trl IuU< YtVU$n r

r t ti l e t

ACCELERATION RESPONSE SPECTRA U. i i i i i i ii i i i i i iii i i i i i mr SilCK - NODE 90 ADWR REACTOR BLOG. (EMUEDDED) 3-0 FEM - AVERAGE OF NODES 2140 2143 2150 RCCV EL 23.5 m X - SHAKING 22 DAMPING cn i 6. <n tn Z O .t.:: s 6-4. rr

i

^h! l 10 la' 4. U L) 4 i n .i (r E \\ n. 2. i en O. ~ 2 10'l 108 108 10 FREQUENCY-CPS FIGURE 9

ACCELERATION RESPONSE SPECTRA U. i e i i 17 Ti-T i i i i i: I' i i i i i i T 1-STlEK - NDDE 30 ADNR HLAET(lR HLOG. (EMULDDLD) 3-D FEH - AVERAGE (If Nuot.S 2756 2766 2301 2322 atilt. DING Et. 31 7m y - SHAKING 22 DAMPlHG i 6. (D z p. o fi H 6- .t (r LLb 1 4' tij i (J u< x \\ t-r (J taj n. 2. m in 1: f i i i i ii i 8 i e i i i i ii B. 1 0 ' '- 10s 10i 102 FREQUENCY-CPS FIGURE 10

ACCELERATION RESPONSE SPECTRA u. i i i i ii i i i i i i i i i i i i i i i i STICK - NODE 100 ABWR REACTOR BLOG. (EMBE00ED) [ 3-0 FEM - AVERAGE OF NODES 2223 2233 2368 2369 UUILDING EL. 23.5 m Y - SHAKING 22 DAMPING cn 6. ro in zo se i 4. - tr -l = tt1 [+:1 J 4' to U U 4 i k -J< i tr ' i i t-u i h1 's t CL _2. tn i .0. ~ 10-1 10e 101 102 FREQUENCY-CPS FIGURE 11

ACCELERATION RESPONSE SPECTRA O-1 i i i i i F T-i i a i i 7 T I-i i i T-T i I T-' SilEK - t10DE 103 ABWR REACTOR BLOG. (EMBEDDED) 3-D FEH - AVERAGE Of NODES 1365 1375 1504 1525 UUILDING EL. 12.3 m Y - SHAKING 22 DAMPING m i 6. re tn Zo c-4 F 4 tr tij' 4-14 : (J LJ< 1< tr F LA 0-2. tn t s.--- -1 0. 10-3 108 10' 102 FREQUENCY-CPS FIGURE 12

ACCELERATION RESPONSE SPECTRA B. i i i i i ii i i i i i i i i i i i i i i i i l SilCK - NODE 90 ABWR REACTOR BLDG. (EMBEDDED) 3-D FEM - AVERAGE OF NOD;5 2140 2149 2158. RCCV EL. 23.5 m Y-SHAKING 22 DAMPING cn 6. to tn 2 O H e 4 m ta i : J 4* id if : 1 LJ LJ i 4 i _J I i <x. . p. ) i t) uj. . ' ' ^ . u-2. r tn [ i ~ t 'j-J l O. r 10 ~ 1 - 10e ggt 102 t ~ FREQUENCY-CPS 1 'l flGURE 13 I +

ACCELERATION RESPONSE SPECTRA o. ,,.,i i i i i i i i i i i i i i i i i STICK - NODE 98 ADWR REACTOR BLDG. (EMBE00ED) D FEH - AVERAGE OF NODES 2901 2912 2922 DUILDING EL. 31.7 = Z - SHAKING 22 DAMPING m 6. e en zo s F 4 T la J 4-na U U 4 .J< T F-o la e a 2. tn ......l..- J\\, i e i i i a t a i i i i I a I a 1 2 j 0-1 10e 10 10 FREQUENCY-CPS FIGURE 14 e e.., e ~,,

i y ' O e ACCELERATION RESPONSE SPECTRA o. i ,.i i ii i i i i i i i i r i i i i i t STICK - N00E 100 ABWR REACTOR BLDG. (EMBEDDED) l -- 0 FEM - AVERAGE OF NODES 2360 2379 23t19 BUILDINC EL. 23 S = Z - SHAKING i 22 DAMPING e 6. ia ln 7 (' s t--t b 4 M tu J 4. gg U U 4 _a

  • C m

'r-U id A t n. 2. - tn I ' +............ *....... 3 l t I i t i I 1 I I I i I I i i l I i R R 0. 10-1 10e igi 10 2 FREQUENCY-CPS FIGURE 15 i i l .m ......, ~ _ _ _ - -.. _.. _ _. -... - _. _... _ _... _ _...., .I

ACCELERATION RESPONSE SPECTRA U. i i i i i i.. i,,,i i i i i i i i i SilCK - NODE 103 AUWR REACTOR BLDG, (EMBEODED) 3-D FEM - AVERAGE OF NGDES 1504 1515 1525 BUILDING EL. 12.3. Z - SHAKING 22 DAMPING en i S. to in Zo t-4 T lil 1 4, tilu U< _.1< E F-U tu n. 2. tn pi i i e i ii i i i i i ' i 8 0. 10. 10 I0 102 8 FREQUENCY-CPS FIGURE 16

j e s l ACCELERATION RESPONSE SPECTRA a. i i.... i i... i STICK - 'NDDE 90 ABWR REAETOR BLOG. (EMDEDDED) 'iS 2140 2149 2158 3-D FEM - AVERAGE OF N00 : RCCV EL. 23.5 = Z - SHAKlHG 22 DAMPING m i 6. _a ui z O e-4. F4 m. tra t i.' J- !,T lli. -4' u }; g - u a + _J. 4 E H i i u na O. 2. tn 'i c.- e I i I I i iI I I I I I I I ' O 101 102 k 0-3 10e. ' FREQUENCY-CPS e FIGURE 17 irw 1 4~ ~ -}}