ML20058K146

From kanterella
Jump to navigation Jump to search
Paper Entitled, Fracture Mechanics Analysis of Jaeri Model Pressure Vessel Test Presented at Joint Asme/Csme Pressure Vessels & Piping Conference in Montreal,Canada on 780625-30
ML20058K146
Person / Time
Site: Davis Besse Cleveland Electric icon.png
Issue date: 06/25/1978
From: Delvin S, Ricardella P
GENERAL ELECTRIC CO.
To:
Shared Package
ML20058K143 List:
References
NUDOCS 9003020264
Download: ML20058K146 (8)


Text

_

Docket Numbar 50-34' License Number NPF.

Serial Number 1768 The Society shall riot be responosele for statements or opiruons sougriced in pepers or in h e at r=tesangs of fie Socesty or of its Diviesons or Sectons. or onrneo in ris fu % Docusanan a onntec onty # the paper a puedshea e en ASME pumet or 1*rocoomngs.

Reamassa nor geners put* canon upon presermaan.. 2 e Fut crealt shoud be given to ASME. the Technscal Davieson, and tie i

I

$3.00 PER COPY aurierts)

?..

A S1.50 TO ASME MEMBERS

~~

~^

~'

~~"~ " ~'

i Fracture Mechanics Analysis of JAERI Model Pressure Vessel Test 1

I S. A. DELVIN l

P ogram Engineer P. C. RICARDELLA Panc:ca! Eng:neer i

l

^ienerai E ectne Co San Jose Caat l

l A tracture mecnanics evaluation of the Japan Atomic E*e'gv Aese8ren Institute (JAERI) l moce) cressure vessei experiment was certormed using a anaivticai metnoc whicn has been usec orevious:v to evaluate Boiling Water Reacto' 'eeowater nozzies Excellent agreement Detween analysis anc experiment was obtainec f rem wnich it is concluded that:

ia) the test confirms GE precictions of leak oetore Dreak as :ne nyootnetical failure moce.

anc (b) the tracture mecnanics metnocology usec by GE to : eciet nozzle crack growth is accurate for the entire range of crack growth. from nucleat:en to tnrougn wa:l leakage.

These conclusions are particularly significant witn regare to.erv arge cracks (greater than 20 percent of nozzle wail thickness) which have never occur ee,n an operating reactor. but for wnien the acoricacmty of tne metnoc cannot be cemonstratec theoretically l

l l

Contributed bv the Pressure Ve wis & Piping Division of Tne An,encen Socierv of Mechenecal Engineers for presentation at the Joent ASME/CSME Pressure Vessets & Pipiot Conference. Montreat. Canada.

June 15 30.11F4 Manusenpa received at ASME Headquarters April 5.19*8.

Copies will be available unti! March 1.1979.

9003020264 900220 PDR ADOCK 05000346 P

PDR 1

i RNGQ' UNITED ENGINEERING CENTER. 345 EAST 47th STREET. NEW YORK N.Y.10017

  • , w,p.

t

9'

^ Q_ F c i

a tf Fracture MechanicsL Analysis of JAERI-1 1

T Mode! Pressure-Vessel Test f

)

st

]

S. A. OtLWN P. C. RICARDELLA

'1 A

e A3sTRA:-

were machined into the nozzle tiend radius. ;. Type A -

had a 20-as (0.787-in.) surface length and a 3-am-(

A fracture mechanies evt.uation of the Japan (0.118-in.) depth witn a straight ersck front. Type

-[

Atosa: Energy Research Institute (JAERI) model 3 had a 8-se (0 315-in.) surface length and a 3-am;

')

pressure vessel experiment as perfonned using an (0.118-in.) depth with a circular are crack front.-

t analytital setnod which has been used previously to

f

- evaluate lollir.g Water Reactor feedwater nozzles.

Prior to sacnining the simulated flaws in the -

j Excellent agreement between aralysis and experiment nozzles, a static intamal pressure test.was con-;

l"1 as cotaines, fres wnica it is concluded thatt ducted in incrosents to the maximum internal pres-sure of 10.8 MPs (1566 psi).E te stress distributions -

1 Se test confirms O! predictions of leak-Of the inner and outer nozzle. surfaces were ' determined

.{

i

efore-pread as the hypotnetical failure frea strain sages.' Eisstic stress concentrations were
(
de.

setermined assuming Young's Modulus and Poisson's ratio values of 2.06 x 105 MPa'(29.87 x 106 psi) and 2 Se fn:ture secnani:s =ethodology used by 0 3. respectively. Circuaterential stresses and.

,j J

GE to predi:t not:le crack growtn is accu-stress concentrati:n factors for the nozzle blend I-rste for the entire range'of cracg growtn.

andius are summarized in -Table l'.'

'i fr:s nucleatton to tarougn wall' leakage.

i l

4 Tamle 1.

Stress Concentration of Inner Corner i

I

'nese ::nelusions are particularly significant Surface of Nozzles

(;

with.regar: to very large ers:xs (greater than 20

)

percent Of not:1e. wall thi:kness) wnich have never Nottle Type

~

occurred ir. an ocerating reacter, but for vnten the N1 -

N2, N3E appli: anility of the method can not be demonstrated theorett:a ny.

Circumferential Stress of Inner Surface, of 29 3-29.3 29 3 3"MMARY Of JAER: PRESSURE. VK33E:. !!37 Shell (ksi) l As an integrity assessment for a reactor pres.

Oircuatorential Stress sure vessel, the Japan Atcaic Energy Researen Insti-of Nottle Inner Corner 71.8 66.1 74 9 f

.tute (JAER:) conducted a model pressure vessel ex-Surface (ksi) l 4

4 periment to study stress concentration and crack

propagati:n senavior in the vicinity of vessel nos-Stress Concentration zies (Oeference 1).

A cycli: interna 1' pressure test factor of Nottle 2.5 23 2.6 was conducted :n an approximately one-sixth scale Inner Corner Surface

. Boiling Water Reactor (SWR) pressure. vessel model designed to tne criteria of Reference 2.-

Three (ksi)

(6.895 MPa)=

types of welde:-in nettles were used in the model.

The : vessel snell es constructed of low alloy steel.

The experimental :rsck g-owth results ottained ASTM Type A332 3 rads 0 vith ncz:les made of a forg-in the cycli: testing are summarized in Fig. 2.

Ding steel. A3*M Type A336 Modified. ' ne nottle Fig. 2(a) snows tne relatio. snip between erscu

. blend ra:ius ':f each nottle was sacnined to simulate length sensured fram the tip of the A-type : notch in a flaw vni:n woult produce -tracking under cycli the N1 nozzle and the nuaner of pressure cycles.

g pressure 1:ad, no internal pressure was' cycled Upon exasination it can ne con:Luded trat the crack ifroa 0 to 10.5 MPs (1566 psi) with oil as the pres. -

propagation rates in tne a-and > directions are

'surt:ing agent with a cycling rate - of 5 cps. After greater than that in the 0-direction except in the

_29.200-cycles the test was terstnated since one or early stages. Fig. 2(b) compares a-direction-track

.o

.the setif t:ial. cracks (crack type A. nottle N1) had propagation for the tn se nozzle types. Fig. 2(c)

propagated to tne outer surface resulting in oil in<11:stes final experimental ersck lengths and leasage..

epths for eaca noten and nozzle type.

Orcss sections of the three nozzle t'ypes uses

!amediate conclusions vni:n can be drawn from are shown in Figure 1.

Two of the three nottle the experiment are as follow:

types (N1 and N3) nad configuestions 'similar to BWR feedwater no::les. Two types of artif t:Lal cracas 1 The mode of failure was leak-before-break.

+

0 4

i a

f

~i P

m a,w -

r x

-.- m k

114*

114

. t.

,j, 413 e

+ 4.s e in.

g f

(

37l

'f-137 e N 28 0 6

344 6 2,s e

a j' 7+ 522 e +I s _

jb""124 0%

5 o

,,f tf 4s j 388

.ios e n

7 r

.1,,

3 fv/

A[

////] y U y NOTCH g fjj p

a o

f.

=*-- 172 e %

c 250e r

j.

  • ==-- 228 e c

285 e r

286 e (4) CROSS SECTION OF NCZZLE TYPE N1 tbl CROS$ $ECTION OF NCZZLt TYPt N2 i

l l.

e.

(

1-114 15-Y

  • i 1240 42 O O I

~

254 31 D

. 2.2 in.

140 p

A (55.9 mm) i

(////$, /,

/////l y ' y FLAW /

I

.TYPEBj Y.

NOZZLE

_,0 230e 0.118 in.'

O 118 in.

(3 mal (3 mal (4) MACHINED FLAW TYPE ILLUSTRATEC

' (e) CROLS SECTION OF NOZZLE TYPE N3 l

Fig.1 F.tcerimental noZZie model cross sections and flaw geometries (Units in m unless indicated otherwise) 2 l'he stress distribution and stress concen-4 The crack propagation rate of the pressure tration factors at the tiend radius for the vessel nettle is influenced-by geometry of three nottle types were not significantly notenes (flaw type) at the nozzle blend -

cifferent and are in agreement with analyt-radius.

ical data in the litemture (Referet.ee 3) 5 General trenes of crsek gr vth obtained -

3 The ' crack propagation rate of the p/ essure from the cyclic pressure test are consis-vessel nozzle is dependent on the stress tent with expectations. (Crack growth este concentMtion factor of act:le 31end radius, accelert -ta as enck depth increases.)

3-

i n,

t So -

=I i

.n m g 2 3..

e. A -.

e. at.

I,, g ", *g.

3Ik

~

o e

E - m y*,, '.,Q l

n e

(;

j I *,;c.

n n 4A Wg }t

    • *soTCH w

g imes, T dlo.neene.

<31 i

I 50gi ob Ik o

50 ooo 2o.ooo 3o.ooo

= so a. e z

NUMet R OF CYCLt3 (N) d l N

- 2h' Kg(o) g1(1)

W CR ACK LENGTH PROM NOTCH TIP CF FLAW TYPE A FOR N0ZZ' E NI I 4

i F=

F 1

v' M

Ao VE 2*A1 yTT ' 2a 1

l

.I i

3

(

g a

Mm e.

E l

! "u:

- 2.!

5 l ' " ~,

j i I.

N1

  • j a

- N.

U I.. " " -

Is e

-t<-

o gI $ 2a 6

E " 3o-N3

- 1*C Ni N2 Na N 20" N2 5

NQZZLt NUMetR

~

-NotcM I'2

  • A "3

$ 3 to,-

3

$3 (el CRACK LENGTH FROM NOTCH 3

E TIP FOR a. D, AND

=

W C

W o

to 000 2o.00o Jo. coo e-DIRECTION OF N1.N2 AND NUMBER OF CYCLES INI N3NOIILII 41 CRACK LENGTH PROM NOTCH TIF FOR FLAW TYPt B IN e-DIRECTION j

($ HELL $108180R N1. N2 AND N3 l

NCZZLt TYPE Fig.2 JAG! exce*1 mental :rs:< gr:wtn results y

lL FRA070RE ME0HANI:3 IVALUA;;0N K (2)

I3I i

2

.Ki 3r F3%

~

~3 A

2 in creer to fur ther assess the ex;eriment, the 2V's a

A3 yre de

.' AIM test results were oc= pared with an analytical

' a;;reacn previously used at Geners! Ilectri to eva;uate ER feecwater nez:les (Reference 4).

This analytical method censists of two tasi: calculations.

First. the stross intensity fact:r is deter =ined g,. g, iol. g, (1). g, (2), g, (31 L

using a polynomial curverit ap;r:acn. Secondly, the fatipo crack growth is calculated using an integra-Fig.3 Stre'ss intensity magnification factor

:n procer.ure. These cal:ulations and results are deteailnation tescribed in the following secti:ns.

- Stress S te.sity factors lar surface cra:W ge etries in half and quarter A genera; ;ur;cse, polynomial curvefit tech-his expressi:n (labeled FUN.11 in Fig.' 4)

spaces, is used to calculate stress intenalty factors in the i~

ni;ue was used to generate stress intensity factors experiaantal model for aczzle flaw type B (circular for the stress distributions in the no::le (Ref-flaw in Fig.1).

i erence 5).

In this method, stress intensity magni-fi:stion factors are generated for a given geometry A similar er;ression can be used to obtain -

for constant, linear, quadrati: and cubic stress upper bound stress intensity factor estimates for tistributions as illustrated in Fig. 3 Se stress the longer experiter.tal flaw type A (straight flaw.

l it. tensity factor for any ar:itrary stress distribu-in Fig. 1).

In this case. the nozzle flaw is mod-ti:n can then be deterstned by :urvefittir.g it to a i

1.-d ceder polynesial of the f:r :

eled by an infinitely.:ng Orack emanating frem a hole in an infinite plate (Reference 8).

The solu-tion is identical to that for a circular crack ex-Ao + A x + Agx2. A x3, (1) aa t

3 cept the FUN 11 =apiti:ation factors are replaced and sucerimposing the stress intensity factors free by the FUN 8 angnifi:ation factors of Fig. 5.

  • een ter? of the polyncaial.

FatiaJe Crack Crowth Evaluation Craew 3rewta ',n a, figure 6 presents a coe.

Magnification factors for several c:mmon two-

' dimenstenal ge:eetries are availacle in the litera-pilation of tne fat;pe : rack growth data for low alloy ASTM A533B-1 steel in amoient roca temperature ture (References 5 and 6).

For tne feedwater not-air (Reference 9). The A5ME 3ection C upper-cound

le. however, a set of three-dimensional sagnifica-air crack growth curve (Reference 10) is also snown ti:n factors were octained fr:m the Douncary inte-gral eduation/ influence function derivation of Pef-as a solid line and a best-fit crack growth curve is indicated as a damned line on the Figure.

"'h e l

trence 7.

As illustrated in Fig. 4 the SIE/IF low alloy steels used to fabricate the model. pres-

. net:1e corner cracx simulati:n is simply tne average sure vessel are very st.silar to A533B.1 and both of_3:Z/:F aagnification factors developed for circu-air and oil are ncnaggressive media.

  • hus, the 1'
f

, e' 1

4

.t

,l J 7 '

a

{

j q

j

+

N e.., + A, e +., m.. -

1

x.

1 L

e. stress oisTRisuTioN :

b M

R g

i

. ema e

=*-.

PUN 9 88MI. CIRCULAR CRACK IN MALF. SPACE i

Kg

  • vU [0 $$$ Ag *0.522 th) Ag + 0.43e (

) A2 + 0.377 I IA1 3

INFINITE PLAll s 'w a

i i

3hA2*84(

) ^11!

K av7e l'1 Ao

  • 82(MiAi*8 i

i X

1.3 i :-

.2 1

l FUN 10. QUARTER. CIRCULAR CR ACK IN OU ARTER. SPACE U

< 1.1 Kg

  • vTa 10.723 Ag
  • 0.651 (hl A3 + 0.442 If A2 + 0.4001 iA3 1

{

. r'1 s*

ru-Q i/

/~'r'<

3

=..,

5, r,

a 3

l n,

l i

i i

c i

i 1

q I

0 0.1 0.2, 0.3 0.4 c.5 o.s 0.7. o.s o.s ; t.:

]

'N l

es R gy l

X Fig 5 FUN 8 stress intensity factor solution. Crack-

/

' emanating frem note in an infinite plate g

3' Knin 8 0 g

N'

-(

4 AK Kaan - Ksin PUN 11. stMULATID 3 D NOZ2LE CORNER CRACE 8 @ io.70s Ao. 0.537 (M) Ag + 0.448 h). A2 + 0.3es ihl A h

(0.0267 x 10) 4 K3.*26 1

2 1' 5*

~ Fig.4 Boundary integral' equation / influence function (Sec I: upper sound air ersck growth curve)

,q magniflCation f actors for Circular noz21e flaws 6.

.ia,

(da/dN) x 1 curves.cf Figure 6 are considered applicable to th*

7.

a ao. aai 2

JAERI experiment.

l Steps 1 to 7 were repeated fer each cycle.

j Intet stion Procedure. The air environment constantly incrementing the citet depth-by Aa.

An crack growta-.aw of Figure 6 as integrated numeri*

aut:matic version of the precocure as used to gener-cally starting f.-on the initial crack size of 3 as ate crack depth versus numeer of pressuri:ation

-(0.118 inenes) to generate a cract depth versus cycles. For the best-fit erscu growth law case, the nuacer of cycles curve. The integration prpcodure curve-a s as.'followst 1.

Select a3 (initial crack size)-

ha0.02103x10 A K3.726

.2.

Kanx s K ressure was used in place of the cenex growtn law of Step 5.

o f..

n

=

4 e

CRACK D$PTH laisal be 556Tipsil Ki 100>

  • o o

se p

1 4

,4 DLblGN UPPER 900W0 AIR CR ACK ORow!TM CURyt

~

M = 10.0267

  • 10)

go 2., un

,f H

80 h SEST. Fit AIR PUN 8 iPLAW TYPE Al

/

CRACE GROWTM 70

(

CURVE d

e e

.(0.021 + 10)

}

  • M 3 --- - -"- 70

/

1 e /e 3,un E

e

=

e G

so 3 -

e i

e lte tu

/'

[

y

/

,o ;

j a'

p/*o aa

!=

/

.[,-

mi 1-f 33 Noz2LEq E-3 E

FUN 1

/=#UN G :

E e

M'j e

MOOPSTRt //

  1. /

[IA.02 OlSTRIOUTION%

g i kan -

ECTION D.01

/

'a f-lhn...a. 1 vi m taoop 10.

/

INSIDE QuT810E i

i l

I I

i 1

g 0

/

0 J.2 Q.4 J.a 0.8 1.Q n.g i.4 CR ACK DEPTH hn.)

e6e i

i i, e eii

-4 10 40 JO 40 3060[000:0100 aQQ J00 fig.7 $trell inttn$ tty f 4Ctcr$ for flaw typg$ A and g AK Iksi vin.).

Fig 5 Wi:e range of f atigue ersex propagation of ASTM A!33 3-1 steel (Reference 9) (R = 0.10, amate91 room (in.) = (25.4 ty);(kli dn'")

  • d.033 MN/m / )

2.0 M

    • h Results

/

The fracture mecnani:s ana).yti:al results are t = 2.2 in, grapni: ally illustrated in Firn 7 througn 10.

Fig.

gl 7 provices a plot of stress attensity factor Ke ver.

s

/

CRACK M B

.. b.

sus cra x :epth-for no:nle flaw type B (circular).

I w

U

' 1.5 ~

The plot is based on the polynomial curve fit ap-

~

g

/

2 t

preata asing FUN 11 magnifintion factors for a sim.

amatmcat assutTs g

ulated n02:le corner ers x as described above. A y8g'$'l,cusenacs

/

8 s

h second curve is also provided based on FUN 8 magni-k

... eest.*it tatieve cnacu l

}l1 f t:ation factors for an infinitely long crack eaa.

j g,,,40QA,',",'

h, so :

yL,,

nating fr:s a' hole in a plate. vnich should provide a

w a wea2La nst -

Q

,1 an upper 5 unc estimate of the 2xperimental net:1e O asoz2La Na flaw type A (straignt).

    • t.o r

/

U 8

g Cesex g w'.h curves based on the above stress l

C)/

8 g

f J

-intensity fa:*ars are provices in Figs. 8 and 9.

8,

6. /

20 M '

1 Fig. 8 presents erset gt:wth predictions for the

=

g j

'g a

circular flaw ge:setry (F"N 11) for both upper cound G

an3 best estimate cracx g-owtn curves. Experimental

,j w/

E

=-

W i$_,

data for flaw type B in not:les N1 and N3 are also

=.5 W Q

/

5 0

hl%

' anown for :omparison. The analyti:*,1 results are in 5

O /

w 10%

Q'"

excellent agesement with experiment, with the upper s

/

  • > /

6 bound cesign curve providing a conservative but rea-U y

sonacle preciotten of the test results. The best s'

' tit crsex growth curve is acre accurate, but sligns.

17 uncer;reciets the experiment in the central portion of sne :urve. Fig. 9 presents crack growth

  • o, I i

i precictions f:r tr.e infinitely long flaw gepeetr7 to 20 Jo

(TUN 3), c:apared to experimental data for flaw NUM9ER OF CYCLE $ ltheuesneel i ig type A in nettles N1 and N3 la this case, botn the cesign and test fit curves significantly overpreci:t Fig.3 Flan type B analytical and experimental :sa:(

cracx gr wtn tenavior.

  • he type A flaw appears to results

?,,

4

< 2.0 OISOU33:0N

- to a 'r expen esservat mesutts a i

e t*22 A =o8:48 mi

' The air design crac< ge:wth curve analytical

- in.

ACK TYPE A O noaste ms results of Fig. 8 were ::nservative but reasonable amatyticat mesutts wnen compared to the JAIR: experimental results.

osmon satioue ceacu omoWm iain Since the same analyti:a1 at: roach has been used to j

-- easterv aatieve caacu enowmaint Q 4e preciet feedwater nottle :rsex growth in SWR operat.

i e

ing plants it is ex;ecte: trat a similarly good

'l

{ L8 *

/

g comparison will occur tet'.evn $WR operating plants

.j.

g and analytical results..

[

I,, '

/

A In support of this ::ntiusion it is useful te -

3og point out the similarities :etween the experimental

[

g f

I apparstus anc BWR operating Mants.. Two of the es.

5-

/

4 portsental no::les (N1 an: 33) are similar in con.

j

- to -

N E

I

/

0 struction and configurati:r. to BWR feedwater no:.

les.
  • he ASME Boiler ar.: ?ressure Vessel Code l-

/

g neference u os nes :: ::nstn:t and. sign the.

4 20

  • JAERI experimental vessel :::e; as well as BWR pres.

.I

/

sure vessels. The :w a; y steels used in the

[

O

[

/

g experimental vessel are nrtually tne same as the j

=

material used in the t:nst.2: tun of BWR pressure w 0.5 -

4 l

vessels. Field observati:ns of SWR feedwater no: le T

/

O-v cracking have snown tras ::st :-sess wnich have de-g

/

g 10 velopes are similar to flaw ty;e 8 (circular) with s

i some tencing towarc flaw ty;e A (straignt). In sua.

6' mary. the experimental a;*arttus and SWR pressure j

vessels are similar in ::nstru:n:n, no::le config.

,e ;-

uration, material pt::ernes ar.: flaw geometry.

It i

0 0

l 0

.NUMGER OF CYCLE $ lthovannes) io go ao O1: similarities :etween ne JAERI experiment and $*a'R operating :en:in:na are tast: ally twet en-h;.9 M an type A analytical and experimental results vironment and ty;es f :yGu nacingo no experi.

l mental environment as an u. mecium at ancient

~

temperature 297K (?!:f) wnde tne SWR operating fall tetween tne' irpular anc infinitely lon,t flaw

. plant environment is a nign ;;rity water mecium at l

pre:1 ti:ns. tut muen : leser to the circular geome*

561K (5500F). However, tus ufference in environ-l try as '11hstrated in Fig.10, wht:n is a ::::ars*

tive pl:: of all the data from Figs. S and 9.

ment between test anc rea:t:r tan to addressed in the analysis by use f a f aut.e era 4 growth law 2.0,

So 3

Wnian is applicaole it. no 3WR envir:nnent, for H

j wnica extensive ex;ertzentd :sta are available and are centinuing to te ::taus:. In the JAERI expert.

ment, the secel netdes were su:jected to pressure FUN 8 - DESIGN FUN 8 = OEST. FIT cyclic loading onl l.

1 g.; FATIGUE CRACK pgygggg ggggg -

p,,gggggp ng ;,,,y,. rile ;n ;erating SWRs the -

(

}'

^ GROWTH IAIR) G ROWTH IAIRI' x,r tt,

tn pr,33u7t and y

i 40j thermal cyclic lea:1*.g.

-: wever tne polyposial'

.I E 1.5.-

/

y curvefit approaca is eaually valid for pressure and l-1

/

g thermal stress distri:u:1:r.s. Assuming that - the 8

j l

/

< ther-sal cycling can :e a :urnely defines in terms i

L I

/

oh

  • of stresses anc num:er of :ydes, its presence l'

j j

gy $/3 G" g#

S should not alter tte accura:

l 7 of the orack growth gg

/

,,,,1mm,

,7 preaicuens.mnu, ne effe er.ces detween ten and 4

reactor noted above to not invalidate the' demon-f

/0 C strated applicamility of un nr.alyst:a1 approacn.

2I to -

/

{ To the extent that envir:r.: ental fatigue crack

{

f G

growtn becavice and :es:rt:n: of reactor vessel

'I ['

ther-sal cycles are <newn. ut fracture seenanics

/

/

to 8

=

metnocology used in Referen:e i snould provide ac.

~

r 1 O' f

/

. / PUN 11 = 8EST. FITEs growth Versus react:P :;trn ing ty les.

= curate precicti:na of !WR tee: water no: le crack f

FATIGUE CRACK 2

5 0.5 r-

[

/ GR OWTH ( AIR) gggg;,g3;;g3 l-o!

expeniment,a6

- 10y

-E

/

3 v

j A/

n view of tne excer.or,; age,, ment between enae,gy e a a

/

/

g nozzkt t"e nt analytical cra:x ge:v:n pren:ti:ns and experimental W

b

/

g,,"g,8 8,',',,"," "3 no::le crack gr:vsn :sta it:: ne JAERI pressure

{

O A mo226st we =,

vessel test, and conn:erug us sistlarities and Sacarss ine =3 40; 1

differences between ne ten and SVR opersting ser.

o vice, the following ::ndun:r.s are drawn:

o to.

20 Jo NUMSER OF CYCtE$ tthouannes) j 3, g,3g 3;nfg7 3 ;g 77,;ggggen, g3,g gn 8!g.10. S aiary of flaw type A ano S exper m ent31 1

the unlixely event nat reactor vessel no:-

i ano analytical results

le cra xs :e:::e very large, the vessel l

7

6, 4 :

failure so:e wnien would covelop is one of

  • esc-cefore-creak.

2 - The fracture mechanics aetnodology usee 5*

lI ?.o pre:ict nottle tracx growtn vert

'itssel operating cycles is Tunaasent.,

ua.: ans. to the extent that envirenst ~

f atigue emu growth be avtor aM oeenrip-it:n of vessel thermal cycles are known.

Sn;ula previte accurate erscs growtn pretic-it:ns for sne entire range of cracc growtn.

f t:s nu ltati:n to tr.rcugn-eall leacage.

These conclusions are particularly significant with regar: t: very large ersecs igreater inan 20 per ent :f no::le wall tnickness) f:r uni:n there P.as been n: react:r ex;ertence, and f:r wni:n tne appli:2:U.ity :f tne methoc can not to ce: nstrated interett :s 'y.

3ETERIN;E3 1-3. Miya: no. S. Uedo. T. Kocatra.

X. 3hitatt. *. Ise:aka and M. Nakajima. "Tatigue 3enavt:r :f Mot:les of '.ignt Water Reacter ?ressure Vessel M::e'." Thir International Conf erence on

?ressure 7essel To:r.nology. AOME, 1 "*ules f:e Construct:en f Nuclear Vessels."

ASME 3:i'.or an: Pressure Vessel ::ce. Se:. :*.

3

1. O. Sil:an anc Y. R. Rasnid. "Three-Oi:er.st:na; Analysis of Reactor Pressure Vessel 30:-
les." *st :nternaticesl Cent. 04:RT Vol. 4 Part 3 Sept.

ti"*.

3 A. 3. Tife. I. R. Kocsa. P

-Ri::arcella.

H. 7. Watana:e. "!ctling Water Reacter Fee water He:-

le/S;arter ::terts Program Report." NE00-2MB0 July 1977. !W1?3. General Electric Cocpany.

! :. 3.- Buenalet. W. H. Ba: ford, Stress :n-ter.sttv ?titor So'.utiens f:e Continuous S.rfse, T'swa tr F eat::e P-essure Vesse.s. ASIM-3;?-5iO.

1975.

5 R. '.abtens. A. Pellissier-Tanen. J. Heliot.

Pasettes'.-Seined for Calculatinc Stress Intenstsv

Ta: ses '..reucn ae tcnt Functions. ASTM-3!?-is0 1975.

7 -?rivate Communication. P. M. Seswer to P. C. Ri::arcella. Three-Dimensional Stress Inton-sity Fatt:r Marnift:ation Constants for Rae:s1 Feed-water a:::.e ;ra 4s. Failure AnaAysts Assc1:ates.

.ane si.. iio.

~3

1. 3. Kotayaani. N. Polvani:n. A. F. E:ery.

W. J. *.:ve. " Corner Crack at tne Base of a Rotating

. Disg," AIME ? ster No. 75 WA/CT

  • B. April'4, 1976.

9

?. O. Paris. R. 3. Bucci. E. *. Wessel.

V. G. Olart, and T. R. Mager. " Extensive Stucy of

  • ow Fatir;e Ora 4 Orowth Rate in A533 anc A508 Steels." It ess Analysis and Creven of Crsexs.

Procesetnrs of sne 1471 Natter.aA S v ce s t'as en F-teture Meer. antes. Pars :. ASTM S!? 513.. Ameri:an Socasty.:e escing anc Materials 1972.

10 ' " Rules for Inservice Inspecti:n of, Nuclear Power Plant Oc=conents." ASME 3 oiler and Pressure Vessel ::e.'Section XI.

.8-