ML20058E333
| ML20058E333 | |
| Person / Time | |
|---|---|
| Site: | LaSalle |
| Issue date: | 07/26/1982 |
| From: | Delgeorge L COMMONWEALTH EDISON CO. |
| To: | Harold Denton Office of Nuclear Reactor Regulation |
| References | |
| 4591N, NUDOCS 8207280154 | |
| Download: ML20058E333 (41) | |
Text
{{#Wiki_filter:' , in - [] ) one First Nabonal Plaza, Chicipo, llhnois Commonwealth Edison 4 [ J Addrrss Reply to: Post Office Box 767 -( v N, ,,e chicago, lmnois 6%% Jul y 2 6, 1982 Mr. Harold R. Denton, Director Of fice o f Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, DC 20555
Subject:
LaSalle County Station Units 1 and 2 Drywell/Wetwell Vacuum Breaker Assessment NRC Docket Nos. 50-373/374
Dear Mr. Denton:
The purpose of this submittal is to document the Commonwealth Edison assessment of the drywell/wetwell vacuum breakers which was reviewed with your staff on July 22 and 23, 1982. The subject valves have been reviewed through the Mark II Containment Owners Group and a generic bounding load definition established. The methodology associated with this review was discussed with your s ta f f in May,1982. We are unaware, at this time, of any outstanding questions although a report documenting this methodology has not yet been submitted. Relative to the bounding load definition, it should be recognized that the LaSalle County valves, due to their location outside the wetwell, do not experience cycling (open and shut) as a result of the post-LOCA chugging phenomena. The LaSalle County valves are expected to undergo a single open-shut cycle as a result of the wetwell pressurization associated with pool swell. The pipe break size leading to the maximum swell induced differential pressure gip) is discussed in Attachment I o f this letter. Having established that a pool swell inducedd P across the vacuum breakers must be assessed to assure that the valve safety function will be fulfilled, Commonwealth Edison has performed what is judged a bounding assessment using bounding generic angular velocities associated with the maximumd P developed through the Mark II Owners Group. The conservatisms in this load definition, both with respect to the generic methodology and plant specific applicaton to LaSalle County are discussed in Attachment II. Of primary importance is the fact that the LaSalle County valves are lhDgl outside the wetwell and are in a pipe loop which also contains two isolation valves. This configuration is likely to have a significant' e f fect on the LaSalle County specifie d P and thereby, the LaSalle County specific load definition. These numbers, and other plant specific adjustments to the generic load denfition are now being developed and will be incorporated into the final design basis evaluation. 8207280154 820726 PDR ADOCK 05000373 P PDR
's J 'I 1 Notwithstanding the expected reductian,in the plant specific load definition, a bounding evaluation o f the vacuum breakers has been performed. This evaluation, which.was reviewed with the staf f on July 22, 1982 indicated that the LaSalle County vacuum breakers would fulfill their safety function. As a result of uncertainties associated with this evaluation, i.e. the applicability of the closing impact results on the opening impact loads on the valve body and internals; Commonwealth Edison reviewed and prsented to the NRC staf f the results of extensive analyses and confirmatory tests performed by Mark I containment owners having vacuum breakers of similar design (18" and 24" GPE valves). The applicability of these results to the LaSalle County valves was reviewed with the Mark I owners' consultant, and those results were judged indicative of the capability of the LaSalle County valve. The results of this detailed assessment, presented to the staf f on July 23, 1982, are docuemented in At tachment III. Of particular interest is the fact that this assessment clearly indicates that the closing impact bounds the opening impact case, the major expressed staff concern. It is on the basis of the simplified analysis of the LaSalle County vacuum breakers, supported by the applicable Mark I program detailed analyses and test of similar valves that Commonwealth Edison has concluded that the LaSalle County vacuum c breakers are adequate and will fulfill their intended safety function. This conclusion is further supported by the fact that the bounding load definition is of exteremely low probability due to its dependence on a double guillotine failure of the largest diameter pipe (s) ( Attachment I); and due to the expected reduction in the LaSalle specific load definition wheniappropriate refinements are s made to reflect actual LaSalle County parameters ( Attachment II). ~ Notwithstanding our belief in the present adequacy of these. valves, Commonwealth Edison will conduct a confirmatory test on a full size LaSalle County valve using the bounding generic loads j. definition. This test will be completed and an evaluation presented to the NRC by November 1,1982. The NRC Staf,f will be given advance notice o f the date of the bounding test run to allow for their observation of the test if desired. It is fully expected that this test of an actual LaSalle County valve to what is judged a very conservative load definition will resolve all present uncertainties. s k b
f4 l + l i,. i r i i If you have any questions concerning this submittal, please contact this o f fice.. s ~ l , '. Ve ry ' t ruly y ours,. 1 a ,/ 't e I L. O.-De l Geo rg e l i j cc: NRC Residerit -Inspector - LSCS ) i i l i S s = 3 l i, -;~ \\ i 4 - j l. i s' s ) f l 1 1 ? i. I i e g k '. \\ g ~A in \\ 4 A 4591N w' 'ps k q, t: t,- f S ;3. V 4 i y \\ / .g / ~ t w 4. 7,' '\\. \\ ,f-3 y \\ ,~
- 1 i
I, \\. , 'g, 1 I i s t. q-s 5 A g ).. ._..._.._,-._/--. - - _. - _., _ _. -.. -.... - -, - - - _. - ~. - -.- --~.- 5-..--...-----.---...,_.--
s .s 't f AT T AC HMEN T I _LaSalle Couhty Maximum Uplif t Pressure d Re fe r' enc e : LSCS DAR VD W = 221,500 f t3 Vww = ' 166,400 f t3 f., Ventsub = 12.83 f t vent = -29 5.2 f t2 A po'o1 = 142,160 f t{98 vent s) V r Pool depth = 26 5 ft. 4 pool = 5069 ft$ (i.e. Voool '- Avents) Dpg31 1. From Majse - Economos Report (NUREG-CR2191) F = As x Ap x Vww/ Vow x A8 ~ d PUP = MAX. AT F =.06 and is positive from F = 0.35 to.12 2. For LaSalle County at F = 06 ABreak 1.37 ft2 for max. uplift pressure I .80 < AB < 2.74 f t2 J l { I
s .e ATTACHMENT II Exp c4<1. Va.t v e. Dtsc Ve.lec.M7 Ni suae.tl aPup - Je 4Tc0 runs & di%. men. soc ed a P op . a max cows - ge.w e M c-c \\c.o I 4 i os pce.Aic 4s 4 Pop for M k.-n 's a P up Vcdu.e. J.d._ p e N4 4 i. 2. M ca m.e_ co e ee_c.41 ew 6.5eA. e w-ene. - Grs c.e c c e <._4 t o s bm.sel es km.b +5 F uc 4ke.c-co e ree A-1.s 5. -Q.c-owc.ee4alw\\y + t. s-b pec4=d uwe.ec4 ?wly. '.5 - C.e w.c h> s \\ o w. - E.s pe.c_%.1 pen.k 6.P o p ~ 9 p ii - b p s e h.J ve.\\ o c.t +7 s ( c.s s i l l l t
.o A S - 6 tA IL T VALVE con PICUA A Tlo N . V4 C td u m b t E A k E R. 15 BETtuC E M i S o L A-TI o N v4 LVES AP APPLtEb A ctos s VA CIA 4 m BREAKER ur . AP VA ct4 ta m seeAEG R 4 APup ' Ae.suitr OE5I G M s VA CLAu M B RE A K.ER-RestsTA NCG iS r \\/ $ op kS~ ButLT CO NFI G ulA T/o At e 4
B HYDRO DYNA MCC 'ToEquE T=L A b ? (k') a Bou N b IN G. VALU E MSED CVE R PRE blCT S /M C A S 49_ E D RE SuLTS RE FlME M A E &lM Mk1 EXPEEIEN C E PRO Du c E D REbuc e 6 (M P AcT VE t oc t T '(
4 O O 9 ATTACHMENk' III e l gNGK I. CrP e_ x a cA.\\1 M e M Nt<f4-5,, AN b Cohl$ hG.A 6bN 'PD \\ A S Auf VACO4L4 O(/_6Ah6 Tn W %aunsM DDdQ 6GXLDN O C= V A Lus_ 'TY 9 5 s \\ t @ h(L K L 2.9 d MK T._ (,,_ As A LLE. ~ ht.wis Wtcu. c 8 scats hy b<a ms c.s Ttao Pcr Motet 5 STeess./s nc-ewecs Mossu hNm_xsss 9 6s.m 3 = - wguac.euw- %s. A. m e s. - Sw-eN c,T w (2-Am o s \\ &" M Pr X T__ c 2.% N NEK T. ~ TEST P(ZcCR.hM kNh bM# A 6>S O M mp h u.>< st.5 con C.Le,aW 5
~ ~ CPE - WETWELL/DRYWELL VACUUH BREAKERS LASALLE 24-INCH HK I 18-INCH HK I PALLET DIA. (INCHES) 25' 22 21 PALLET WEIGHT (LB) 45 50 40 TOTAL SUSPENDED WEIGHT (LB) 61 50 PALLET THICKNESS (INCli) 3/8 7/16 3/8 PALLET MATERIAL SA 516-GR70 SA240-TP31655 SA516-GR70 HINGE TYPE HALF PINS HALF PINS FULL PIN VALVE BODY THICKNES'S (INCll) 3/8 3/8 3/8 VALVE BODY MATERIAL SA516-GR70 SA516-GR70 SA516-GR70 VALVE BODY SEAT DETAIL PINS RING PINS O G O
Il1' 1 N PO OI {- TT SA )S C TO C L L ~ E P + LD 4 LU ( + + AT 0 pS T E LL / qA I 3 i- + ~ g+C ~ ~ ~ + )No i T Y ) I G S R 8 T 0 j O E 2 h 5 Ri P M T O 0 E E E 4 S 2 T L G 2 1 A LO L G E AL 4 1 E D HM V L I F S PC E L .CW ( I L. G AR U V P R A E E T E 1 I G Y FLE S "oN N I T K F 8 E TA 1 E E EE P s SJ R E G k C bGB P ( G n' A L M M O U C ' f A Y 1- ~1 / c t \\ r k' . '4 r / \\ 4 re y \\ x\\ - n 's_C 0Y$ o5 .0 3g+r(O~T D l IllI
) i\\ / l t 0a i G s A l G A-E I G F Ag i N E N s E O L p S F IT
- C, t
is1 C E re G. S l wr T t Fi, e' gN-p / i T) Ee sP T Al Lu sL L 0 Pw e5 A v3 S. ) t. 3 I AA I 8 vS A 3 ( T 5 E 0 D 4 E 1 2 G E M T ) A A E V I R L'L L E A l F S iG V E 4(_ P I F Y C) gI 4 T 2 g\\ Q E i P / l \\ P G e e, G ( Q 1 / s / \\ ,W @t _~ e l3 ++ A4 E ^ Of N g / ~ [ i / s-1 e S \\ / @/hl g( g C +e G O a NYm Yo I
O P HIMGE SHAFT eo HINGE EAR HINGE EAR ~ A HIMGE PIN j HUSHING -... I.N ~ p .. 9a. J f .. 10... s N bI ' E', [" " " L- - -- l ( PALLET g s ,/ g s s j~ N 7 / HINGE ARM STUDS -n VIEW A-A FIGURE 1-3 GPE 18" VALVE IIINGE DETAILS UC c-e-(DO3
l l [ i k p i PALLET SEAL PA.LLE T SE AL RETAINER r- /Ji\\\\ STANLESS STEEL [- WELD BUILDUP E^'- SEAT Rt NG. SA Sib dl / / / / /li \\ \\ ti: -s i i i i \\ \\ PALL'ET STOP STUD b T y p. 4 PJCE S SEE FIG. 1-2 FIGURE l-4 GPE 18" VALVE SEAT DETAILS ~ GEN-67-018 . - - - -r -2
?;j * ? e PALLET HINGE -HINGE pivot T BRACKET SHAFT g / s \\\\\\\\\\\\\\\\\\\\\\ % %N 2 I I .-- f/ N\\ " I + -lkN i \\\\ \\\\3 . N Y 'l \\\\ [/ j f q
- r
-p 1 7 k...M~Y Y /Y$ I t )VoT SLOCK t P HINGE ARM SECTION A-A 7,,,,. m. x t-P1VOT BLOCK - PlVOT ( \\_ BOLT (Yzi @_@i i _ d) l I, h (A l s sinos j ~-@- i Ang 1 l ,,,,, N S -,~ ~ _e_ _s-H1NGE ARM STUD ('/z) ,-e-PALLET PALLET HINGE PALLET BRAC.KET H1MGE BRACKET STUD (D'r,*) FIGURE 1-7 GPE 24" VALVE HINGE GEOMETRY mtech cts-67-ois 1-12
.o h 1 .<l i i k, i t ~ R TAIMlWG r N / VA.LV E N l SEAT 7 GASKET 'i r p-jg/ -[ t STAJNLESS STEEL WELO B:.MLDUP FIGURE 1-6 GPE 24" VALVE SEAT GE0h!ETRY nutech CEN-67-018 1-11
1 k o . 7 -/ h __ _I \\_ _ g --1 s- \\\\ \\\\ g 't. \\\\ i lfW (%\\ \\\\ co wwtw \\\\ vat VE F5 CLOSED \\ \\,_ A \\ A P \\\\ f ? \\\\ F \\\\ \\\\ N, J gib FIGURE 2-4 VALVE ASSEMBLY AND FORCE SYSTEM GES-67 -018 2-14 UUI6C1
yoelnu i (SOLID LINE) RNGULAR DISPLACEMENT (RAD) ) 0.00 0.40 0,.80 1,.20 1,.' 6 0 2.00 i m t.s,,s .m (. t o <~~ r ,,.-s,. g- ~ ' - -.,3 +,. m-e o o g g m f g e =a gm j n R .T - ~ 5 e e o a m O, C3 e. n n Z 5m 4f ~ ~ y e y gm o m ~a .e ce zo g ggm e n e ~< y us ,s n u m-OF O E a c "a j, x ? E 7 o o m a w x , F _=_. g-m x n m, m .a - m e w o m y A o w =o i s a v z ...\\ Cn M 9..../ d tm g mo -12.00 -8.00 -h.00 0'.00 4'.00 8.00 ' (DRSHED LINE) DISC PRESSURE FORCE (LB) +10 IIO-l.9-Ngo
GEN-67-Oll (a) UP IMPACT 6 7 N m. 5 GAP ELEMENT O
- D
/\\ 1 2 3 4 '/HH/' 6 7 1 $,><D f-I I I - 1 j8' 'h (b) D0'WN IMPACT l 2 GASKET MATERIAL GAP l l ELEMENTS - 8, 9, 10, 12 '9'i .!'3) l i METALTO'METALCONTkCT L, (DISC WITH STUDS) l 3 GAP ELEMENT - 11 l ~ po; -g U'~ l 4 11 -h $. 3M a... ~a. 2 l 5 ,V p2l h 2 FIGURE 4-1 BEAM IMPACT MODELS USED IN GPE ANALYSIS nutech
GEN-67-011 UP = UP-IMPACT (OPENING) DOWN = DOWN-IMPACT (CLOSING) P h UP V x s \\ h3 ~ \\ \\~ / FDOWN' 7 Q p, 1r / s-d .U u -s s .. g', _. _. S FIGURE 4-2 GPE DISC AND VALVE BODY STIFFNESS AND DYNAMIC MASS DETERMINATION MODELS nutech
m+*Og y GEN-67-011 J_ 4 @ @ 'e @ 1.S 1.25 1.00 G = 5 .75 z 50 s g 3 ( P fS f O x a s g '25 N \\ \\ ^@ .50 \\ .75 g - 1. 0 0 L 0 2 3 4 5 6 7 8 9 10 TIME (MSEC) ' ~D-FIGURE 4-3 GPE UP-IMPACT ANALYSIS DISC (BEAM) NODES DISPLACEMENT HISTORY nutech 4-8
4 e GEN-67-011 3.6: i i p, 3.2 - u 2 m-we 5 2.4-I 5 .Ns@ / 7 g 2.0 g,__@6 HF / s ,/ y/ 1.6 g u / 1.2 e r 8 x N l m '4 ( 0' /[ lb 0 1 2 3 4 5 6 7 8 9 ~~ t TIME (MSEC) .7 _ q --6 '.- /,4 FIGURE 4-4 GPE DOWN-IMPACT ANALYSIS DISC (BEAM) NODES DISPLACEMENT HISTORY l nutech 4-4
~;, g- - gg g-p._gg ,.g e g I' N ? O o' 5 25 Ksl I ^ r. 50 xs! -125 Est 00 KSI 75 KSI s / \\ b
- "' /
\\ \\ \\ l ^Y \\ so Est / ~ FIGURE B.3,5 3g GPE Pall.ET DOWN-IMPACT STRESS CONTOUR PLOT OF d (D MAXDillM STRESS AT TOP SURFACE O "5
Max Principal Stress Top Surface ---G-Max Principal Stress Hid Surface
- -- Min Principal Stress Bottom Surface 150 - -
100 - 50 - - n. n m i 0 r. f i-i i im g 2 4 6 8 10 12 Distance From Centerline (Inches) m 50 - - 100 - - -150 FIGURE B.3-6 GPE PALLET DOWN-IMPACT PRINCIPAL STRESS l ' DISTRIBUTION ALONG SECTION FROM PALLET CENTER TO IMPACT POINT (SECTION A-A) CEN.67-018 B.23 nutech
e l s,. A_ 1 125 E I 100 KSI y 75 KSI 50 KSI-25 KSI ~ ~~ .N t ( 0 KSI N A g N % J e 4 5 KSI 25 KSI .t i 7 FIGURE 5-6 y
- s.. _
C GPE DISC UP-IMPACT STRESS CONTOUR PLOT OF g [ '- MAXIMUM STRESS AT TOP SURFACE U O3 ~. -.
l I 3 STL U S E R S SE R R A T E 0 S l 5 E Z 2 T G N F C N ( A I 5 1 l P l 2 1 IDN p s 2 3 e I 0 B N r V 0 W S t E O S 2 R D E t U R v 5 c G L T 7 E S e I I r 1 F D i O M D M U ) 0 M ) ^ s C 5 ) E I f (s M C G X / 1 ( E N A 5 S 1 M s l 2 M l s ( i V e 1 D r r e E t 0 m L S 0 i I T A 1 n g T n n E / 5 D i l c 7 n ne B 0 5 5 2 0 2 1 4 0 6 2 8 0 1 1 2 2 2 1 1 O E$ 3C*OOT_ ,c fl l l
4 = E S 8 3 e 3 i S E 3 E y S y g = s a ~ 3 t 3 eg =,, \\,,.. I I I f ~ e s ./ @ y@ E t O E 8 i ( FIGURE B.3-7 1 CRITICAL STRESS PLANES FOR COMPUTING PALLET l STRENGTH RATIOS FOR D0h*N-IMPACT nutech CEN 01 R B.24
s GEN-67-011 ~@ ll.IL_ n es ~, Tl g 8% e
- 4. 4,,
H }~ n a n ..l. .1 n s es l' J n 88 is g .e ,t f.f Q) e. w m u = W 6 y
- s.
9.
- 5 d.d 4.4 5.5 5.5 34.5 4 3. d ut renam sederte arse
~ FIGURE 7-1 CRITICAL STRESS PLANES FOR COMPUTING t-DISC STRENGTH RATIOS FOR UP-IMPACT e 7-3 nutech
GEN-67-011 TABLE 7-1 Disc / Pallet Strength Ratios SHORT TERM e FSTF FORCING FUNCTION FORCING FUNCTION UP-IMPACT DOWN-IMPACT DOWN-IMPACT (16.02 RAD /SEC) (19.59 RAD /SEC) (8.04 RAD /SEC) e Disc Section' .20 .36 .15 (1) .36 .62 .25 (2) e6 .24 .52 .21 (3) .20 .32 .13 (4) . 19 .14 .06 (5) NOTE: No up-impact predicted with short term forcing function. 1. p D ... ~, eum *( g e -.,, ;.~
- ~
~ k G 7-5 nutech 9 1
~ h e s t l l TABl.E 7-2 A litnge component Strength Ratios Sil0RT TERM FSTF FORCING FUNCTION FORCING FUNCTION UP-lHPACT (16.02 RAD /SEC) DOWN-lHPACT (19.59 RAD /SEC) DOWN-IMPACT (8.04 RAD /SEC) TYPE OF STRESS CAPACITY STRENGTil STRESS CAPACITY STRENGTil STRESS CAPACITY STRDiGTil COMPONENT STRESS (KSI) (KSI) RATIO (KSI) (KSI) RATIO (KSI) (KSI) RATIO lilNGE ARM RENDING 78.02 110.4 0.71 69.7 110.4 0.63 28.6 110.4 0.26 DIRECT 0.4 89.7 0.2 89.7 0.1 89.7 -s o' illHCE SilAFT BENDING 73.2 108.5 0.71 .328.6 108.5 1.14 49.9 108.5 0.47 SilEAR 9.5 46.6
- 10.1 46.6 4.1 46.6 DIRECT 7.1 84.8 4.1 84.8 1.7 84.8 Il1NGE EARS BENDIl4G 22.6 110.4 0.21 21.8 110.4 0.22 8.9 110.4 0.09 DIRECT 4.5 89.7 8.7 89.7 3.6 89.7 lilNGE ARM DIRECT 75.5 84.8 1.18 68.6 84.8 0.87 28.2 84.8 0.36 STUDS SilEAR 36.2 46.5 15.5 46.6 6.3 46.6 HOTE:
- - No up-impact predicted.with short teria forcing function.
Ox 17 C = r+ 07 a
2.6 STRENGTHS RATIOS Component strengths for the vacuum breakers were computed utilizing the Von-Mises maximum energy distortion criterion to cvaluate the ultimate strength capacities. According to this criterion, failure occurs when the strain energy reaches the ultimate capacity of the component section. Accordingly, the interaction equation for general loading is: )2 1/2 - Strength Ratio (-h-) 2, (_,) 2, ( _ _) 2 + ( ( y u u u u where: M, N, T, V = computed bending moment, normal force, torque, and shear force -s M = ulti= ate bending moment assuming S at the u y neutral surface and S at the outer fiber u N = ultimate membrane capability assuming S u u 1 through the section T = ultimate torque capability assu=ing a shear u stress equal to.555 through the section, u ultimate shear capability assuming a shear v = u stress equal to.555 through the section u I l Tor all components, ultimate capacities for each mode of loading l Vere developed based on the material properties from Tables 2-3 l ( and 2-4 multiplied by the Strain Rate Factor. CD-67-018 2-24 "+^^b
r TABLE C.3-1 ~ STRENGTH RATIOS,FOR GPE 24" VALVE F ULTIMATE YIELD TENSILE STRENGTH COMPONENT MATERIAL STRENGTH STRENGTH RATIO m PALLET SA240 TYPE 316 22.33.ksi 75 ksi .27 (SECTION 3-3) F.INGE BRACKET SA240 TYPE 316 22.35 ksi 75 ksi .32 PALLET HINGE ~ BRACKET STUD SA320 BB 30 ksi 75 ksi .76 ?IVOT ELOCK BOLT SA193 B8M 30 ksi 75 ksi .35 PIVOT BLOCK SA479 TYPE 316
- 30 ksi 75 ksi
.13 RINGE PIVOT SHAFT SA479 TYPE 316 30 ksi 75 ksi .28 RINGE ARM STUD SA320 B8M 30 ksi 75 ksi .503 RINGE ARM SA479 TYPE 316 30 ksi 75 ksi .06 CEN.67-018 C.26 nutech =
UNMODIFIED TEST PROGRAM 8 PURPOSE OF TESTS SHOW LINEARITY OF ANALYSIS CONFIRM THE ACCURACY OF ANALYTICAL RESULTS WITH A SIMPLE DROP TEST IDENTIFY ANALYTICAL CONSERVATISMS 8 TEST SETUP 8 TEST RESULTS e 9 e 17 6/2/82 gut g
s TEST SETUP O SIMPLE DROP TEST 10*, 20*., 30*, 40*, 50;,.54* e s TEST INSTRUMENTATION e STRAIN GAUGES e VELOCITY PROXIMITY PROBE (USED TO MEASURE IMPACT VELOCITIES) e INCLIN0 METER 't 9 I 18 NIO-5/2/82
IIl; i R ED R O C E R YT I T C R O O L P E P V US G IH T G S N E O 1 L O A T E MO C NO )R I EK T A A E T R D N M E U M UC U A T [ E t V i N T F G O A S L T L M N F E R O I A W E R f Y T T iS R E C T ( D U M EL S TN O E A N E IO P T L T I E C T L N Y O L I V YT TI l M P P ICI E OXB LOO ERR VPP LL i iW IEH M C+rGO7 z"s0l I ifii i
g,_ t e e % g l E U N d O E, b 8 4 = / s g o M d / N 2 J. b M / S q ^ C w j m n 8v. O 1AJ / N -o z u. d' ~ c:: \\*2. en: D f C m M uJ Q = 0 CB ~ 2 .O. emus v1 &d l u = S O e 9 O F-n nutes] =
- en N
'NN sN i oo i N r:4x Mus sr.tsss An.EA MAKIF1UM STRESS ASEA i i "HIMGE SHAFT sa uiuot can is 4 eHiuGE pin s 4 --;p- + ^ <.Q_. 3 / ausuiwo --{ - gj--. g g@.rb l 1A r 4_ sects 64 A-A A SUMGE ARM we SEAT nius l . AA - -r8 As l f pgg,g,gy / / A / V MAwsnun sreus N .p d REA g s' 1 i l LOCATION OF SilAFT AND lilNGE STRAIN GAUGES 1A, 2B, AND 2A, 2n i ~3C a+ }@ O lr
.___ e s' [ Max Principal Stress Tap Sirrisse -k-- Te.,{ tes ul+s se I a e O y-10 -- / = e t 9 f 9 7 2 M i i i l'c ' A Distanca Free Cantarline (!at.hss) 5 "* ~
- 1. STRESSES ALONG SECTION A-A
- 2. IMPACT VELOCITY OF 5.0 RADS /SEC.
Cn,u: a m.:.m= PRIN:1FAL 371113 ;]37111UTl0M ALONC sic!cx TRCH 215C CIxT1170 IDAO PCIX7 (SEC10N A-Al +t 24 nLit.ech_ snm
== 1 Plot of Bending Stresses in Shaft zWACT VELC OTY ( N N N ') . m 50 - 7;. iOst nES: . 0. 9 1.6 2.4 3.2 4.0 5.5 5.9 40. a 35 - 30 S T 25 R e S 20 S g ~ (ksi) G Test Points 10 < - 3 Analysis Point 5, 0 10 20 30 40 50 60 70 ANGLE (Degrees) 2s nutec'1 6/2/82
s' OPENING ANG1.E (DEOPm) 12.7 24.5 36.2 48.0 60.0 71.5 12.5 R. s:NGE S ISS / 10.0 O 7.5 / l 5;C c: m / / g g 2.5 / B / 0-- 0 1 2 3 4 5 6 DiPACT FE!TY (PJC/SEO) X ANALYSIS POINT -*- COMBINED TEST RESULTS (SRSS) l l l l 2s nutech 6/2/82
g l 8 m G e P s .~-* g' f r p 6 9-- - Rr M As v. 20 f(-Ab[sEc ~~ - (Cyn sNL. Et_ns.w_ NN u9 s - CON f'IVSFO 8Y W c. h OEINk )Nh \\ 7
- s.,
. M? E. c7 kuoT~ sc.u R seoemw O i -rmwm m LA ss ut.a e u,a s. ( p cewes u~cE_ 2.e s u L t s. l b-A bD \\ DON A L-N M 2-(_,ti\\] 3 EEvoND 7_o 9.Ab\\h%dS G 20NB Ex9ELTrb EEc.Aus E ) o F-9 uWm < W-f E5=f= FM hND 9 T h A % C. N h N.c5 oF Lo A b -.----,.---,--,-,~v n,.,_. -, ,,,_.n,,-----....,-..,,n~,n
l ELASTlC //l//sMa' 'uW // // /n //// l // // / /// s / / ELASTIC - PL es T/ y' n sn i i 30 50 9A O Impact vekaill [ed./sec.) - - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.}}