ML20057A683
| ML20057A683 | |
| Person / Time | |
|---|---|
| Issue date: | 09/01/1993 |
| From: | Cullingford M Office of Nuclear Reactor Regulation |
| To: | Rathje M NRC OFFICE OF THE SECRETARY (SECY) |
| Shared Package | |
| ML20057A684 | List: |
| References | |
| NUDOCS 9309150148 | |
| Download: ML20057A683 (37) | |
Text
{{#Wiki_filter:- pe na j.;. 4 i h% ' 2 ! E UNITED STATES 4 r NUCLEAF: FiEGULATORY COMMISSION gf' g v4 / wsmsTow, o.c. 20sss am September 1,1993 MEMORANDUM FOR: Mary Jean Rathje Public Documents Branch, SECY FROM: Michael C. Cullingford Special Assistanf or Technical Policy and International Liaison Office of Nuclear Reactor Regulation
SUBJECT:
TRANSMISSION OF STEAM GENERATOR TUBE INSPECTION DATA RECEIVED FROM ELECTRICITE de FRANCE (EdF) Following our telephone conversation I hereby transmit data, listed on, on steam generator tube inspections received from EdF during a meeting between NRR and EdF on June 24, 1993 (Enclosure 2). ' is a copy of a telefax ! received from Henry Herbin, Senior Executive for International Program :^ ordination, EdF, stating that EdF does not consider that this material shot,o be treated as proprietary. Michael C. Cullin ord Spccial Assistant for Technical Policy and International Liaison Office of Nuclear Reactor Regulation
Enclosures:
1. List of Documents 2. Meeting Slides Edf/DSIN/NRC l 3. Fax Herbin to Cullingford cc: R. Keating, Westinghouse J. Taylor, B5W Nuclear Technologies Document Control Desk, Pl-37 i r _7_ O 'J l ?, on g 9309150148 930901 7 PDR ORG NRRB {
r i I i 1. Hydraulic Test i 2. Steam Generator Leak Rate (L/hr) versus the summation of defect crack lengtt (meters) for different steam generators at a pressure of 207 bars l during hydrostatic pressure testing. 3. Steam Generator Leak Rate (L/hr) versus the summation of defect crack length (maters) for cracks with lengths in the range 7 tp 13 mm (for j ~ 24 different steam generators) at a pressure of 207 bars during [ hydrostatic pressure testing. 4. Forced Outages Due To Corrosion 5. E.C. RPC Inspections / Number of Inspectei Tubes 6. Model 51 SGs - Mill Annealed Tubes - Percentage of Cracked Tubes (RPC Inspection) 7. Plugging Due to IGA / SCC at TSP Elevation 8. IGA / SCC At Tube Support Plate Level 9. PWSCC in Roll Transition: Number of Plugged Tubes Each Year 10. Crack length (in roll transition region) and signal voltage (at tube i support plate elevation) distributions and primary to secondary leak-rates under hydrotest differential pressures for S/G number 1 of Dampierre 3. 11. Crack length (in roll trans.cion region) and signal voltage (at tube support plate elevation) distributions and primary to secondary leak rates under hydrotest differential pressures for S/G number 2 of Dampierre 3. 12. Crack length (in roll transition region) and signal voltage (at tube support plate elevation) distributions and primary to secondary leak rates under hydrotest differential pressures for S/G number 1 of Tricastin 3. 13. Crack length (in roll transition region) and signal voltage (at tube support plate elevation) distributions and primary to secondary leak rates under hydrotest differential pressures for S/G number 1 of Saint-Laurent B2. i .)
l "~ HYJ2AU:1::C T3ST h 2 oc 307 bus . r.z o Pace. goo _ 4,33 ? neem. f 4s5 ku T h eir4 4t
- g
' e pus *4. is G l 100 3 kwr5 0 ~ 30 Y lo So c i (depence Reseto, ve. net eru.or) on P 6 (cak rate. Leak cale tn ea su re m'l fn ek sure rn. O re q uie e < ( for inbrm *) overpressure /;oul(ec4 co n c< * = 47.2 bars (P.,c.) l i i
ETUDE DES DEBITS DE FUITE LORS DES EPREUVES HYDRAULIQUES { ( sTeh 6ex eRATort. t-e A K aAre mi c g, Dowc,. n4f4. sinc. Paessoas remne-Ar 2.0 7 a- ( soot esi) vs s-4ws 5 , c aehet cvack h sa p% S-e-u.3m_) i 8x 3 5= fUHY207 3 200-gj 1/4 ~ ~'~~ 150-4" l o =U o e ___ -+ ~_,_ p'$ 100~ do 50- ~__o_ __o. 3 C ~...-r ge 0- ~ ' ~ ' _ s er s 'o g," i o ~ c" ,,,,ii,,,,,,,,,,,,,,;,,,,,,,,ig to 0 10 20 30 40 ad Cs C r e fUHYl55 d -) cmde5 A E! v.dus p kW C4 g D D En fUlTES A 155 Bors EI 207 Bors 9 8 5 9 C
'. 2 em ; i ETUDE DES DEBITS DE FUITE LORS DES EPREUVES HYDRAULIQUES g =z a Ox 3 5= fUHY207 200-ej o l U-150: " E, o o mu g o n, "~~__ Se 100-o o o h a o n 50: 3* R a - - - - - - - - - - - - - - - -, - - - - - + - - - - - - - - - - - - - - dQ o g 0 ', Q,q p-
- o,_
Co C o o 2 g" gg 0 2000 4000 6000 8000 10000 12000 14000 SM o C. Lf107A13 RE m n dv ce s+w b b* l"l ( 7 - e -).- M ( c oh uh is G ** i; M disoNA - E cv %44 c<a
- h, E FUITE A 207 Bors/Longueur fissurce entre 7 el 13mm A '^ C##
LA l9 PAkA er_ g p ra.eder,
m m. 9 FORCED OUTAGES DUE TO CORROSION h 7 --- r l l i i i 6-4 j l I NEW CRITERION FOR MAXIMUM 5-I ACCEP TABLE P/S LEAK : 51/h ( 32 gpd ) l .[ T 4 _. W l t CD E
- )
i z 3 ---- i l 1 f i I-2-- - - - - - i i l L 1-i i 0 i 4 0 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 YEAR
E.C. RPC INSPECTIONS / NUMBER OF INSPECTED TUBES 200000 ' 175000-150000- ' 125000- ' 100000-O 900MWe z E 1300MWe 75000-50000- ~ 25000- ' c ,Or N N N N d% 0-h r 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 Year EDF-DEPT / Central Laboratories 1
l MODEL 51 SGs - MILL ANNEALED TUBES I PERCENTAGE OF CRACKED TUBES ( RPC i INSPECTION ) i 80 -- i j I i 70 -- i I a 4 l 1 60 a' a j t a m 1 50 a m 8 i k 40 y gg e' a =: 30 I e a a a l a 5 a a .., i. 20 --- - ,-..,-m. l ,e a a m I ^ 10 -- - j I j 1 j i i i ~ I ,{ 0 } i I i i i 1 i 6 40000 50000 60000 70000 80000 90000 100000 hours of operation .-.e.--en-e*-.-a.-r-e---- ,%m.- .--w&--.*,.e-m rm- --wa
ODIGA/ SCC PLUGGING CRITERION ( TSP elevation ) 2 Volt (17 Volt with US calibration ) bobbin coil, differential rnode t L i PLUGGING DUE TO IGA / SCC AT TSP ELEVATION N 100 ' 90 ~ 80-' 70 ' ~
- z 60-L s' 50 '
5 / 40_ l ~ 30-20-' W ~ 10-' 0#& M N M M.-4M M M b Y r v r 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 YEAR EDF / Central Laboratories
4 EDFIDEPT/ Central laboratories IGA / SCC AT TUBE SUPPORT PLATE LEVEL ( indications > 3V ) CUMULATIVE NUMBER OF SG TUBES PLANT YEAR AFFECTED PLUGGED
- PULLED DAM 3 92 868 14 0
SLB 1 92 526 87 23 SLB 2 93 435 5 1 FES 2 92 381 1 0 FES 1 93 365 25 3 BUG 5 92 214 5 1 DAM 2 92 156 1 0 TRl4 93 143 0 1 DAM 4 93 133 0 0 BUG 3 91 71 0 0 BUG 4 93 32 2 0 TRl 1 92 18 0 0 TRl 2 93 15 0 0 GRA4 93 13 0 0 BLA 1 92 10 0 0 GRA 3 92 8 0 0 GRA1 92 7 0 0 TRl3 92 2 0 0 BUG 2 92 2 0 0 ~ i
- Number does not include pulled tubes I
PWSCC IN ROLL TRANSITION PLUGGING CRITERIA : AXIAL CRACKS : 13 mm above contact with tubesheet J CIRCUMFERENTIAL CRACKS : all detectable cracks 1 PWSCC IN ROLL TRANSITION : NUMBER OF 'g EDF/GDL PLUGGED TUBES EACH YEAR l er .,n... ,....e++.~ ~ 1030 - -~ EDO - l U l 4 600 - E I 1 R 4og. l j i i l .. -. - i. .........l...._....... 20o. ..-_.q_...._ l i 4 0 - 8" a a = = = s a = = a a a ? ? ? ? ? ? ? ? ? ? ? ? YEAR O aval cracks E circum. cracks O preventive
i l TEN-YEAR OUTAGE UNIT : DAMPIERRE 3 SG: EDF/ DEPT DIFF. PRESSURE: bar ( psi ) centrat Laboratories normal oper. hydrotest 100(1428) 155(2214) 207 (2957) 50(714) l l P/S LEAKAGE ( L/h )
===> 0,7 1,4 34 l PWSCC IN ROLL TRANSITION IGA / SCC AT T.S.P. ELEVATION DAM 3 SG 1 : crack length distribution U* 3 SG ' ; 'W ""* *"' " 20o. ._.7.. 7 250 i p 200 18G - ! - -, yf 3m. 2 150 - 130 U i I ~ D 100 87 ? i o 3 E E i 4 42 gg _p j g 50 3 ., _ L __. g . b O!0 1 M fg j j { O ;M. 1 234 5678 9 1 1 1 1 1 1 1 1 1 1 2 .%Baus!1di 0 !0 o. 01 234567890 y a n = = N a crack length trwn coa voty ( US camet*m ) % of cracked tubes : 19,7% % of cracked tubes ( > 3V ): 5%
TEN-YEAR OUTAGE UNIT : DAMPIERRE 3 SG: 2 EDF/ DEPT DIFF. PRESSURE: bar( psi ) central Laboratories normal oper. hydrotest L 100(1428) 155(2214) 207(2957) 50(714) P/S LEAKAGE ( Uh )===> 0,5 12,5 105 PWSCC IN ROLL TRANSITION IGA / SCC AT T.S.P. ELEVATION DAM 3 SG 2 : crack length distribution DAM 3 SG 2 : signal voltage distribution p 78'g 800 -{--,- -b-200 7- - - r q 700 - + r-I 600 dW . q g~+I ~ I* I 161 3 o i b500 f-446 -- h-l, 150 - p i-7----- l-o 400 -l- '5 I l = + 100 - as L g j 1 $300 -t-t + l200 f l I 1 t37-n 50 "31", 2f! c 100- % Mi - 3 OE- .E 'I 1 234 5678 9 1 1 1 1 1 1 1 1 1 1 2 y n g .o 0 1 23456 78 90 crack length bobbin coil voltage ( US calibration ) % of cracked tubes : 51,7 % % of cracked tubes ( > 3V ): 12%
TEN-YEAR OUTAGE UNIT : TRICASTIN 3 SG EDF/ DEPT DIFF. PRESSURE: bar ( psi ) central Latioratortes normal oper. hydrotest L 100(1428) 155(2214) 207(2957) 50 (714) P/S LEAKAGE ( Uh )===> < 0,5 <1 180 <1 PWSCC IN ROLL TRANSITION IGA / SCC AT T.S.P. ELEVATION TRI 3 SG 1 : crack length distribution TRI 3 SG 1 : voltage distribution 700 10 r v i i 7 l,i 7, em i l i g i 00 + m y j j g l ) f500 -i } }l 2j g {400 337 !5+l. j 3, 3 l l +
- 5 3+
n, - 300 j 218 l - + o cj L 3 d-E 200{ 379 t l 4 a 10110493 m b 0- -l-l .ma 33 i to tt a 3 7 i i oo i r g:i + + c 0 1 23456 78 9 1 1 1 1 1 1 1 1 1 1 2 m n m e w p o 0 1 2 3 4 5 6 7 8 9 0 crack length bobbin coil voltage ( US calibration ) % of cracked tut >cs : 28% % of cracked tubes ( > 3V ): < 0,1 % l. .~,
TEN-YEAR OUTAGE UNIT : SAINT-LAtIRENT B2 66: 1 EDF/ DEPT DIFF. PRESSURE: bar( psi) Central Laboratories normal Oper. hydrotest 100(1428) 155(2214) 207 (2957) 50(714) P/S LEAKAGE ( Uh )
===> < 0,5 15,6 153 PWSCC IN ROLL TRANSITION IGA / SCC AT T.S.P. ELEVATION SLB 2 SG 1 : crack length distribution SLB 2 SG 1 : signal volta 0e distribution 700 r a,rs2- -~-(. 200 ~ a 600 - 577 , 3 M 500 4m C8....... !., a _ 3 150 t- + $400 m b ? ?' 300 i-100 -3 3 E - j-d -j-j U E a3 i i i E 200-t c C; i i C 100 E 28 m i o ' E.1 0 M.S.3) 5 1 23 4567 89 1 1 1 1 1 1 1 1 1 1 2 y n s o 0 1234 56 78 90 crack length bobbin coit voltage ( US calibration ) % of cracked tubes : 42% % of cracked tubes ( > 3V ): 11 % 5 -. _ - _.= - - - - L
l EDF/EPN/DSN i i MEETING EDF/DSIN/USNRC - JUNE 24 - 1993 i i i
- i CONTROL OF SGTR : OPERATING PROCEDURES i
I 1 i i 1 - Generalities on french EOPs 2 - Leak detection l 3 - Event based EOPs :IRCP8 - A3 4 -Improvements due to SPI - UI 5 -Improvements due to generalised state oriented EOPs : 1 ECP3 6 - Other improvements : equipments - training 7 - Severe accident intervention guide 4 I j i 1 't l
_ __= J GENERALITIES ON FRENCH EOPS ( 1 ) -> TWO KINDS OF EOPs v. EVENT - ORIENTED EOPs STATE - ORIENTED EOPs -> THREE GENERATIONS OF EOPs 1 1st GENERATION = ONLY EVENT - ORIENTED EOPs ( UP TO EARLY EIGHTIES ) (,2nd GENERATION = EVEN - ORIENTED EOPs + STATE - ORIENTED EOPs SPl/U1/SPU j 2 STILL IN APPLICATION IN MOST FRENCH PLANTS ) 3rd GENERATION = STATE - ORIENTED EOPs ( generalized state - a pproach, gene-relized state - orientec. procedures ) i + EVENT - ORIENTED EOPs for non-ther-rnohydraulical accidents ALREADY IN APPLICATION IN SEVERAL FRENCH 1300 MWe PLANTS 4 NOW BEING GENERAllZED TO OTHER PLANTS A FOURTH GENERATION UNDER DEVELOPMENT ONLY STATE - ORIENTED EOPs IMPLEMENTATION IN PLANTS FROM 1993 - 1994 J
LIST OF CURRENT EOP . ~ .g#. 9t,q,x.y.., g n. %a. )
- Protection systems p, Design;OperallrisConditions1 i...'~D
- Safeguard systems
- e m A $ ? % j kl y
- y y G i!: 4 5 g
e category 2,3,4 events
- 1, A procedures Complementary conditions
- Complementary means Loss of redundant
- H procedures systems Beyond; design coriditions'
- State approach g
7 before c'oro degradation ^ .) spg
- Multiple failures
- Unofficiency of 1, A, H U1 - SPU Radiological consequences
- Ultimate means U2 - US procedures
EVENT PROCEDURES : I AND A 4 i f I procedures 20-25 e loss of electricalsources (power - Instrumentotion and controD ~ i i o loss of compressed air circuit 3 loss of systerbs : RHRS - CCS - CVCS t e leaks without Si starting ( on primary or secondary circuits or SGTR) t i t A procedures i e Al : LOCA e A2 : secor.dary breaks (:leam - feedwater) e A3
- SGTR e
A7 dilution e A10: LOCA when RHRS in op6 ration r 6 ?
CONTROL OF SGTR leak detection NUCLEAR SAMPLING SYSTEM OR SG BLOWDOWN - delay, no direct relation with leak flowrate MEASUREMENT FROM CONDENSOR VACUUM SYSTEM - no identification of SG ~ DETECTOR ON MAIN STEAM LINE (N16 or Kr 85) - sensitivity, accuracy in normal operation (0,5 to S0001/h) - available after shutdown, when SG is depressurized - redundancy MANUAL SAMPLING ~ 06/
......m.. . v vuvvnvsn1 t.t % 3 DETECTOR g S [ M ---> T O TH E T UR B IN Ha! detector [; % CONTROL N ELECTRONI fi ' 'd' 'd NN D'dM STEAM ij '4\\\\\\'4\\ (( Leak rats ~ n a ~ \\ ! Containment b\\\\ ^ MONITORING OF THE LEA N RATE O P E R ATION R ADIO ACTiYlTY MEASUREMENT SGTL/R REACTOR IN HOT NOBLE DETECTION m m ~ m SHUT DOWN G A S'ES g LEAK / PTURE STATE
- r. A DIO A CTIVITY
'4EASUREMENT VOLUMIC ACTIVITY MEASURING CHANNEL INSIDE STEAM (VAM CIS) n
CONTROL OF SGTR choice of proper procedure FLOW LEAX max 0I/h -70 I / h CHARGING FLOWRATE EVENT PERMANENT REFERENCED ALARMS AUTOMATIC 58 ACTUATION VAMCIS Implementation implementstlon e of degnosis procedure of degnosis grocedure (DEC) (AO) I CmR for Safety Engineer DIAGNOSIS g 3 condensor activity From LOCA procedure DIAGNOSIS Confirmation SG blowdown actMty in cese of abnormal condmsor actMty of RFFF aiterfs Steam lines actMty increase of ong SG SG blowdown actMty level. Stesm lines actMty or from l RCP 8 in case Normal operation E IRCP8 Shutdown to mergin (Asat < 20*C) fallbsck mode accordng to j r normel opersting procedures Cell for Safety Engineer u n u fattback mode i RCP 8 : fe tback mode A3 : fallbeck mode r PROCEDURE l cold shutdown for repairing cold shutdown for repairing cold shutdown for repelring 44 / pas D!,M/GtTS 21/06/s3
e CONTROL OF SGTR I RCP8 procedure ENTRY FROM DEC SG PRE-ISOLATION CONTROL DOWNLOAD MANUAL REACTOR SCRAM FOR P < 10% I Damaged SG finalisolation (ex-it blowdown and steam dump to atmosphere) Boration in operation CANCELLATION OF LEAKAGE I I l PRIMARY SECONDARY I Coolin0ElttL; 28'c/h D.cptenutization; subcooling margin 25 to 30*c . Damaged SG LEVEL controlled by blowdown I k P RCS - P SG simultaneous depressurization and cooling down of PRIMARY and SECONDARY circuits t COLD SHUTDOWN FOR REPAIRING
CONTROL OF SGTR A 3 procedure m ENTRY FROM A0 I Confirmation of automatic actions Damaged SG Immedist isolation CANCELLATION OF LEAKAGE I I I PRIMARY SECONDARY I Coolinatate_; 56 c/h D.eptessudIntioru subcooling margin - 20'c Damaged SG LEVEL controlled by blenn Stop of S. I. on criteria g k V i P RCS - P SG I simultaneous depressurization and cooling down of PRIMARY and SECOt0ARY circuits l (SG level must tg decreased until bundle by blowdown) l Boration in operation l COLD SHtJTDOWN FOR REPAIRING then D98tf41$ 21/06/93 1
D LIMITS OF EVENT - ORIENTED EOPs t -> MULTIPLE FAILURES -> " COMPLEX SITUATIONS " e -> EVOLUTING ACCIDENTS 4 -> HUMAN ERRORS WRONG DIAGNOSIS OF THE INITIATING EVENT / ERROR (S) DURING POST - ACCIDENT OPERATION 't p b b SL
SPI-U1 PRINCIPLES State = actions Physical state Entry. permanent monitoring summm$ ' criterla' """+ + restorations SPI in U1 U1 "7 ',@k -@j7.m
- t;;;:c;:+.19Pw ti
~$HumanMQ@d$ Permanent monitoring w q ig.; g o :a r;. FredundancM M f b ' W @MISRh ' musum$ is implemented by she .,.dQ:::'-:
- 3n Am l
l -. =
CONTROL OF SGTR SPIU1 o Radioactive SG misdetected initially (eg Paolo Verde) A radioactive SG in incident -> Permanent monitoring of activity measurements -> SG isolation and control of SG pressure by SG blowdown a Multiple SGTR O STGR + Steam break -> Permanent monitoring of activity measurements + SG low pressure -> Entry to U1 : quick shutdown to cold shutdown
. CONTROL OF SGTR transients 900/1300 MW PWR UNITS N4 PWR UNITS 3rd category 1 tube 1 tube 4th category 1 SGTR + safety valve S. O. 2 tubes Safety valve S. O.+ n tubes Beyond DBA Steam line break + n tubes ii";';;
m HOW ECPs COVER ACCIDENTAL SITUATIONS PRESENT EOPs SECOND GENERATION PHYSICAL STATE EOPs A SEVERITY A SEVERITY U1 ECP 7 ECP 6 ECP 5 ECP 4 SPI U1 A ECP 3 ECP 2 I ECP 1 COMPLEXITY COMPLEXITY
4 IMPROVEMENTS DUE TO STATE ORIENTED APPROACH FOR SGTR ACCIDENTS SIMPLE SGTR > SAME CONTROL STRATEGY AS IN THE EVENT ORIENTED APPROACH IRCP 8 k ECP 1 A3 > ECP 3 UTILISATION OF VESSEL LEVEL ALLOWS TO STOP THE LEAK QUICKLY (SIS CRITERIA)
~ ~ 5 IMPROVEMENTS DUE TO STATE ORIENTED APPROACH FOR SGTR ACCIDENTS (CONT D) MULTIPLE FAILURES SITUATIONS BEST ADAPTED OPERATIONS FOR : o SEVERAL SGS AFFECTED BY SGTR OR = SLB PLUS SGTR SGTR DURING A PREVIOUS INCIDENT = BEST ADAPTED OPERATIONS FOR LOSS OF SUPPLY SYSTEMS DURING SGTR ACCIDENT o (SUBSTITUTIONS) ALL RCS CONTROL STRATEGIES INTEGRATED IN ONE EOP (ECP3) o ALL SGS CONTROL STRATEGIES INTEGRATED IN ONE EOP (ECS1) o a n
CONTROL OF SGTR PROCEDURES FLOW max uAx m. % i,= OI/h 701/h CHARGING = (* mutopie t=nwes) Si FLOWRATE EVENT BASED APPROACH IRCP8 A3 SPl/U1 PHYSICAL STATE APPROACH RFFF ECP 1 ECP 3 (APE) NEW GENERATION OF APE ECP 3 s
- $U
CONTROL OF SGTR other improvements l PLANNED INCREASE OF SAFETY VALVES SET POINT BEST RELIABILITY OF DISCHARGE LINES TO ATMOSPHERE TRAINING - SEPIA (AUTONOMOUS TRAINING TOOL ) - SIPA (ANALYSIS OF COMPLEX SITUATIONS) - FULL SCOPE SIMULATORS (EOPs TRAINING) ih;; I
9 4
- AGSde-^^-
_h* 9 e e o e esm mW - 1 SEVERE ACCIDENT INTERVENTION GUIDE KNOWLEDGE IMPROVEMENTS IN SEVERE A ARE INTRODUCED PROGRESSIVELY IN THE SEVERE ACCIDENT INTERVENTION GUIDE
GUIDE FOR MANAGEMENT OF SEVERE ACCIDENT OBJECTIVE AFTER CORE MELTING TO AVOID-LIMIT-DELAY ACTIVITY RELEASE h PROTECTION OF REACTOR BUILDING FOUNDATION PROTECTION OF CONTAINMENT
.------o------
GUIDE FOR MANAGEMENT OF SEVERE ACCIDENT PRINCIPLES e INSTRUMENTATION IS NOT SUFFICIENT FOR A STATE ORIENTED DIAGNOSIS e THE CHOICE OF ACTIONS TAKES INTO ACCOUNT THE CURRENT BEST ESTIMATE UNDERSTANDING N MATRIX SYSTEMS I ACTIONS sis CSS SG .9 9 9 9 9 6
3 SEVERE ACCIDENT INTERVENTION GUIDE ACTIONS RELATIVE TO SGTR STOP REACTOR COOLANT PUMPS TO AVOID REACHING HIGH TEMPERATURES IN THE TUBES (SUPERHEATED STEAM) RADIOACTIVE SGS : KEEPING OF A SUITABLE LEVEL IN ORDER TO FILTER FISSION PRODUCTS IN CASE OF SLB + S m -.}}