ML20054D854

From kanterella
Jump to navigation Jump to search
Paleomagnetic Investigation of Pre-Missoula Gravels,Pasco Basin & Vicinity,Wa
ML20054D854
Person / Time
Site: 05000000, Skagit
Issue date: 04/30/1982
From: Van Alstine D
SIERRA GEOPHYSICS, INC.
To:
Shared Package
ML20054D847 List:
References
SGI-R-82-055, SGI-R-82-55, NUDOCS 8204230448
Download: ML20054D854 (150)


Text

{{#Wiki_filter:, l f' L I [ r L PALEOMAGNETIC INVESTIGATION OF PRE-MISSOULA GRAVELS, PASCO BASIN AND VICINITY, WASHINGTON [ [ By: [ David R. Van Alstine Sierra Geophysics, Inc. [- 15446 Bell-Red Road Redmond, Washington [ [ April,1982 [ { Prepared for: Golder Associates [ r L SGi-R-82-055 [

W k TABLE OF CONTENTS Page ( ABSTRACT......................... ii I NT R O D U CT I O N....................... 1 SAMPLE COLLECTION.. 2 LABOR ATORY AN ALYSIS.................. 7 D AT A A N A LYS i s...................... 9 l RESULTS..... 10 DISCUSSION 28 f CONCLUSIONS..... 32 REFERENCES........ 33 ( APPENDIX 34 ( [ ( [ [ [ SGI-R-82-055 f

( r L ABSTRACT Ninety-seven samples of Pre-Missoula Gravels were collected for paleomagnetic analysis from a corehole on the Hanford Site and from ( four surface exposures in the Pasco Basin and vicinity, southeastern Washington. The paleomagnetic results from corehole E-20 indicate the existence of reversed polarity below a depth of 40 feet. At two of the surface exposures (Yakima Bluffs and Marengo), the Pre-Missoula [ Gravels contain reversed-polarity remanent magnetizations of high { stability upon alternating-field and thermal demagnetization. At the Marengo section, reversed polarity apparently endured long enough for [ deposition of two loesses and formation of several paleosols. These paleomagnetic results indicate that some Pre-Missoula Gravels beneath [ the Hanford Site almost certainly (P>97.4%) pre-date the Brunhes normal-polarity epoch, which began 730,000 years ago. [ [ [ [ [. [ SGI-R-82-055 T.

1 INTRODUCTION The purpose of this study was to investigate whether paleomag-netism might elucidate the age of the Pre-Missoula Gravels, which underlie part of the Hanford Site. If these deposits are less than seven hundred thousand years old, they would probably contain only normal-polarity remanent magnetization, since the present normal-polarity epoch began about 730,000 years ago. On the other hand, if the Pre-Missoula Gravels are greater than 730,000 years old, they might contain reversed-polarity magnetization reflecting either deposition, weathering, or diagenesis in a reversed polarity geomagnetic field. To determine whether any of the Pre-Missoula Gravels contain reversed-polarity magnetizations, it was considered desirable to sample these sediments both in the subsurface of the Hanford Site and in nearby surface outcrops, where fully oriented samples could be obtained. Accordingly, 42 paleomagnetic samples were collected from ( corehole E-20 at the Skagit/Hanford Nuclear Project on the Hanford Site, and 55 samples were collected from Pre-Missoula Gravels at four surface exposures. [ [ l [ [ ( SGI-R-82-055 L

2 SAMPLE COLLECTION Forty-two samples were collected for paleomagnetic analysis from depths between 24.8 and 63.1 feet in corehole E-20 on the Hanford Site (Figure 1). The sampled sediment ranged from predominantly fine-to medium grained sand at the top to very coarse-grained, poorly sorted sand near the base. Initially, 30 samples were collected by D. R. Van Alstine on June 11, 1981, within minutes after the core runs were brought to the { surface. Cubical samples of sediment were carved using demagnetized stainless steet knives. The samples were encased either in 6-cubic-f centimeter, non-magnetic plastic or quartz boxes. Plastic boxes (15 samples) were used for the coarsest lithologies, which were to be subjected only to alternating-field (AF) demagnetization; quartz containers (15 samples) were used for the finer grained or more { oxidized samples, which could then be subjected to thermal demag-( netization. After placing each sample in its container, a 50% solution of sodium silicate was dripped onto the exposed surfaces to prevent grains [ from rotating during transport and subsequent laboratory analysis. Samples were collected while the core was positioned horizontally in a fixed cradle. Consequently, any magnetization imparted to the sampie ( while it was being carved would have an inclination no steeper than i21 (the complement of the angse of the present geomagnetic field at the sampling site). To verify results from these initial samples,12 additional samples from E-20 were collected by D. R. Van Alstine on December 15, 1981. ( These samples were collected using similar sampling procedures but SGI-R-82-055 f

3 [ lib

  • 118 '

MOSES LAKE 47 *- -47' MARENGO [ [ [ [ HANFORD [ b SITE

  • E-20
y

[ m [ ) f b CHLAND AKIMA BLUFFS KION GRAVEL PIT [ g WALLA WALLA [ 119* II8' -4 6' [ '?, i, i,, ? 2 5 "E 8 to O to 20 30 40 50 WILCMETERS Figure 1: Index map of paleomagnetic sample localities (stars). ( SGI-R-82-055 V

4 { within the magnetically-shielded room of the Sierra Geophysics paleo-magnetics laboratory. Because the ambient field in this room is <0.4% of the Earth's field, and because aluminum knives were used, no mag- [ netic components are likely to have been imparted during sampling. All { but one of the 12 samples were collected from core segments that haJ been wrapped in aluminum foil and then sealed in wax since the initial ( sampling on June 11, 1981. The 55 surface-outcrop samples were collected at four exposures of [ Pre-Missoula Gravels in the Pasco Basin and vicinity'(Figures 1 through 3). Sampling was conducted by D. R. Van Alstine and E. P. Chase of Sierra Geophysics on December 5-6, 1981. The sampling sites were selected after consultations with D. M. Caldwell and H. J. Delaney of Golder Associates and with A. M.

Tallman, K.

R. Fecht, and J. T. Lillie of Rockwell Hanford Operations. Sampling procedures were identical to those used in the initial core hole sampling, except that the surface-outcrop samples were fully { oriented using a Brunton compass and were carved from vertical faces. The horizontal and vertical separations between samples were measured with a meter tape. E [ [ [ [ b SGI-R-82-055 F )

1 s g l .!,*[,# '7 ' .-g w. < Y ","j /. 7ln, - f, E 8 I Of {p 4'.' f,fl4'2' $ \\'\\ ,a,; p, g - {g5, ;> f 2 ,&oyI =;; ..:).. f ]

  • Q,.. a.Q ~ h h,.p +h&-w-

,r l ~ gg g-I %-r-g.1:q...,z.;!. ' i - O - 'I ^ N w 'r r r - : r.

  1. 3k' kMd W O W,. / / / = R$M b(h(4Ffgl$fl l

.= h /#;M daeg+;aWgh! I g =cwgras ! h k h )1 Re=k h % g y7 _o ! i k ga 3, %}a n.".g,=n,, m,

maffy, tr

. f's.'b. J l - =1 - e.- a \\ g ..'tx i+.3. o M fgM - ! - \\ ~~ ' g 1 s. ,Qn. dg @aeR .):ctQ. l f x' ';- -s o,m.u /{._ _ g :' C g g, g@ _~ w u >s m. 2 y pp;. ~ 6 e ,,4 ~ s 4,,,,- m ,ji, < b sr-g2, o '^ p Sr, e /p y j,j i g l,r. ,y 'e,q- , /45 o}Y6 f14.- N. 9.-- ,M. >- l.N:) .y ~ l ' m, n', n[ g n ?. ."h

    • l f

,/h, b ? n ww /'=(A.S t Sty.)//5, n. ~0 E ,' l -o =( r ccI en sj j ! = t ,c.- Ps : 4 ,-.. -. ; v.. r. A /* h* d $ N f rh ~ ih_f...Y .fk~ ~ ?h..f O ~\\h l D [f1 %f. FOS)-Kf' W s. it &-wyfu M N *t I i .. tm n.-[ b e. k iws t w h= s,,_xt, w &'..,,L e e :x ,;r. w f,ty 'J[+rp,. ~

/1 _re'.

.'w a yr e/ b .4 . = ' - q /y .u = D I I 'f I - =. - hg. m V r;;,- Q'..,t L...' N ' f~ g' i e ' _r 1 . c. m a y n. $ f (l f ' ~\\;'-)x [. j?;, \\ ~ I h.a.3 o n m wm,..,7.N' u* xjM,1,)k - Nt x C 's l = k: ..n. e.nwn.~. n = r' r rg 3 r 'r r r ? ?

i. ']
  • "' P g

[ 't 't j' '1-

6 p syt1 l i v x. s %, t 1 3 j t P Q $,1 ,\\.g Y'-E --- '.'?"N..?.. eh ^l ~.. ~ ' ; 2 - ~ 'c.'*-----. -[ ~ '.[ ~' i {

-Q _~ M Q..
  • il~

- 1 e '..,,..% ,,a gy l ~ e s g.7._., _ w .., t to,x

p =

r .s

5. ; - '

. 3- : ,P - Q n l-.. g l 9.s --., \\. q_ '$]h-K,. _,j * . _ _ _ _ _ _ wq% _+_s_. .N_ k.. j!' -.cy. V ____4.- \\N l 1 q,0 K% \\ O >8

a t

b N ]s% 1 N TN-or 5 4 (^ w m Ei ~ 2 .,[ = ( .h $ W. K' M% N ; f.si. y' -.Q C,,,-. j. 29 y{,i j. b '.________i Sfs ) (' *.

  • i c

% W g' Q &*"Lh.. ~. m ( .\\. - - - - - - _, \\s) - , s,.- z, - 3 j@ - ^ l.. p'nl1 i N9 y p 8't-( - ij h 'I y ~$ : + i ~ r t,. m . :Y s 3 -- {' } s _/) 2 ~t ' W.' .Q R .g ~ .m X

['s, y

~. ed f. ' X.; G - ~ ~ 1; ': pQ v I <t( A a ~%, O ( g 1-s J is g i N* 4,2 ' '-[#h 04 e' (*.,s g\\ !g. '\\, \\., s. ,e '3 ,~: ~ ~ 7'C ' ^ ' !.. ' b E ")~ \\\\L sN*'*x C j! i. -{v---Iy;. -f;;, g [ s,( ^ Q, K: '; - 2. - ] s, . #.;,,., M(b y l,- I_.-- ,.,. A '. /

  • f% '.

l 8 g' 4J T. f .s

  • f *.*

d i ../"\\ ' P t ~ e' - - -l - p{f _ f j;""F'&,.D ~X, - ;: Qi (L,,~ m.. .jtj j.. 7 L,,. m~. . x.,. - . = [ +: i.. u.. M ,,. f. .A e & n%. .. L.: -:L & ii L_;p a, y A k.Y l Y k,: h ? w)..M g>[ % \\- 6 i f' fm s ? e, e +' : '~A 6% fD ' c iwMW~ S..W._e-3 T.X, %f6',< , s -l % [ r r r n. ri e a. ~ SGI-R-82-055 { [

7 LABORATORY ANALYSIS in the Sierra Geophysics paleomagnetics laboratory, an effort was made to isolate the primary detrital remanent magnetization (DRM) from l any secondary magnetizations. For the initial E-20 samples, this consisted of first measuring the direction and intensity of natural remanent magnetization (NRM) of all 30 samples. Eighteen of the samples were then subjected to progressive alternating-field (AF) ( demagnetization at as many as 12 steps between 25 and 1,000 oersteds { (1 oersted = 0.1 millitesta). Eleven other samples were subjected to progressive thermal demagnetization in 11 steps between 110 and ( 600 C. One sample disintegrated at an early stage of laboratory analysis. ( For the later E-20 samples and for all surface-outcrop samples, the NRM and bulk magnetic susceptibility were first measured for all 67 samples. Half of these samples were then subjected to alternating-field ( (AF) demagnetization at 9 steps between 50 and 1,000 oersteds (Oe). The remaining samples were subjected to progressive thermal demag-netization in 9 steps between 150 and 660 C. A total of 991 magnetic remanence measurements and 67 bulk mag-netic susceptibility measurements were made of the 97 samples. ( All paleomagnetic measurements were made on Sierra Geophysics' 3-axis, 6.3 cm-access superconducting (SQUID) magnetometer manu-factured by Superconducting Technology, Inc. Thjs instrument has a -8 dynamic range between 10 and 10*l emu. The magnetometer is inter-faced to a mainframe computer, which permits real-time computation of { magnetic directions, intensities, induced / remanent ratios, uniformity of SGi-R-82-055 f

8 magnetization parameters, structural corrections, and virtual geomag-netic poles. The superconducting magnetometer measurements are traceable to the National Bureau of Standards and to Sierra's own set of reference samples, which have been checked against three magnetometers at other laboratories. Reproducibility of any given measurement is generally within 1* in direction and 1% in intensity. Alternating-field demagnetization was performed using a Schonstedt Model GSD-5 specimen demagnetizer, which provides 400 Hz fields up to { 1,000 Oe. The demagnetizer tumbles the specimens around orthogonal axes while the peak field is decaying. During each decay cycle, the f sense of rotation of the tumbler is periodically reversed; this cancels effects of rotational remanent magnetization (RRM) and results in ( smoother demagnetization paths. Thermal demagnetization was performed using a custom-built, three-zone furnace with a very large isothermal region. Samples are ( heated and cooled in a magnetic field of less than 5 gammas (nT). Magnetic susceptibility values were measured on the superconduct- [ ing magnetometer. This is accomplished by applying a known field along one axis of the instrument, measuring a sample's magnetization in three different orientations with respect to this field, and then sepa- [ rating the remanent from the induced magnetization by vector sub-traction. Magnetic susceptibilities were measured in a DC field of 0.55 Oe. All measurements and demagnetization procedures were carried out in a 120-square-foot magnetically shielded room in which the ambient ( magnetic field is less than 0.4% of the Earth's magnetic. field. This I SGI-R-82-055 L

9 [ improves the accuracy of the paleomagnetic analysis by minimizing the contribution of any viscous components of magnetization (VRM) to the magnetization of the sample. [ DATA ANALYSIS [ For each sample, vector analysis was performed to identify the [ multiple components of magnetization that might be present. Compo-nents of magnetization were identified visually as approximately linear stretches of points on the demagnetization diagrams, or as clusters of ( consecutive points on the demagnetization path that showed little change in direction or intensity. A least-squares line was then fitted through each line segment. Although a computer was used to calculate the least-squares lines, the endpoints of each segment were. chosen by the investigator, unlike the computerized search method proposed by [ Kirschvink (1980). We have found that the computerized search invariably yields line segments that are biased by curved parts of the demagnetization paths. The advantage of calculating magnetization directions using least-squares lines is that scatter of directions due to effects of VRM or anhysteretic remanent magnetization (ARM) are mini- { mized in the final computation of the mean direction for a site. The component with the highest coercivity or blocking temperature [ was considered to be the " characteristic magnetization" (Zijderveld, 1967) of the sample. The characteristic magnetization directions were used to cc:npute the mean paleomagnetic direction for each locality, { together with its estimated 95% confidence limit, 95 (e.g., McElhinny, a 1 I [ SGI-R-82-055 c-

10 1973). The mean and a are derived from the statistics of Fisher 95 (1953), which measure dispersion on a sphere. { RESULTS ( The results from this paleomagnetic investigation are summarized and interpreted below; they are presented in detail in the Appendix, which documents, in both tabulated and graphical form, the complete [ demagnetization history of each of the 97 samples analyzed in this { study. The tables list the magnetization directions, corresponding virtual geomagnetic poles, intensities as a function of demagnetization step, subtracted vectors between demagnetization steps, bulk magnetic susceptibilities, and output from the statistical analysis program. The [ graphs show vector demagnetization information in the form of vector { demagnetization diagrams, stereonet plots of directional change upon demagnetization, and normalized intensity versus demagnetization level. [ COREHOLE E-20 [ The NRM directions of all but one of the initial 30 samples have positive inclinations, pointing downwards at moderate to steep angles (Figure 4). The one exception is sample #24 (49.7 feet), which con- [ tains a large basalt pebble about 2 cm in diameter. This sample was collected to test whether the drill string was imparting an appreciable magnetization to the core samples. Alternating-field demagnetization re-vealed that the drilling process was indeed imparting a downward-pointing (normal-polarity) magnetization to the samples, at least at the { 49.7 foot level. SGI-R-82-055 r

11 DEPTH SAMPLE REVERSE NORMAL l __25 i A S^"d-f *- e N D. sand 6grv1 i

  • e i

A k ( 5 e a 4 g sand-f.m. k ~ ,/,; lenses of 7 7 f ~ 4 ' /- m.c. sand G 8 dp si g is ( --35 db A I' sand-m.c.

l.. ". " - some grv1 g

[ 11 13 4 2 silt ( lenses --40 ..j g ..I! g .',. 4 - 17 0.*.. [ e ie g A I? g eo [ --45

  • . o':

e er g -).'. gG [ --50 - 6 sand-c.g. o' some f.g. g g 25 as

  • .'. 6 f'.' i t.

g as [ --55 27 g some grvl i > e% A s c..:- h --60

      • I '.

cobble conglom. ..' *ll e ( '."./> so O so <s.... --65 i..".' * [ p ( --70 FEET -90' O' 90' -90' O* 90' inclination inclination NRM directions ar cyeristic Magnetizations Figure 4 Remanent magnetization directions before (left) and after (right) alternating-field and thermal demagnetization [ of sediment samples from corehole E-20. For enhanced clarity, some sample numbers have been suppressea. 1054 SGI-R-82-055

12 l A downward-pointing magnetization with low coercivity (i.e., resistance to alternating magnetic fields) was most pervasive in the coarsest sediment samples. This vertically-downward magnetization is undoubtedly a drilling-induced remanent magnetization (DIRM), nearly ( ubiquitous in drillcore samples (cf. Johnson, 1979; Van Alstine and Gillett, 1981, 1982). Because of the presence of normal-polarity DIRM in corehole E-20, the polarity of the primary DRM may have been obscured in many of the samples. However, the most accurate paleomagnetic record is { generally preserved in finer grained sediments. In corehole E-20, samples #1,13,14, and 15 apparently contain the highest silt fractions; [ these samples also contain the best records of a normal-polarity magnet-ization with high magnetic stability upon both AF and thermal demag- [ netization (median coercivity $300 Oe and blocking temperature s400* to f 500 C). This is consistent with a normal-polarity DRM residing in L magnetite and acquired penecontemporaneously with deposition. Al-h though samples between #1 (24.8 feet) and #15 (39.6 feet) are coarser grained and contain more drilling remanence, their demagnetization paths generally exhibit positive inclinations trending toward the origin. Thus, the upper 40 feet of E-20 probably has penetrated only normally-magnetized sediments. ( In the initial suite of samples, reversed polarity magnetization was discovered below a depth of about 40 feet. A reversed component was best isolated in sample #20 (43.8 feet; after thermal demagnetization at 350 to 550 C) and in sample #26 (54.3 feet; after AF demagnetization at 200 to 1,000 Oe). The presence of a reversed-polarity magnetization { was suggested in many other samples (particularly #17, #18, #22, #27, SGI-R-82-055 F

13 and #28) by negative-inclination directions at higher demagnetization steps or by demagnetization paths that do not trend toward the origin. Many of the samples from the very-coarse grained sands were magne-tically unstable, and two samples have normal polarity characteristic [ magnetizations. This may reflect a superposition of normal polarity VRM and DIRM (residing in coarse grains of magnetite) on a previous reversed-polarity magnetization residing in fine grained magnetite or in hematite. To further substantiate the indications of reversed polarity in the ( initial paleomagnetic data, 12 additional samples were collected for { paleomagnetic analysis from the E-20 core. Resampling was restricted to the few intervals in which the core had been sealed in wax and had ( not disaggregated into loose sand. Emphasis was placed on resampling near and below the 40-foot level, where the initial results had sug-( gested a change from reversed to normal polarity. { A characteristic magnetization direction could be recognized in only 5 of these 12 samples. The other seven samples exhibited either un-( stable demagnetization behavior or superposition of multiple components. In the five samples yielding characteristic magnetizations, normal po-larity was confirmed at 39.5 and 39.7 feet, and reversed polarity at 40.2 and 57.2 feet. A single, apparently normal polarity sample at 57.4 feet probably reflects a predominance of secondary, normal-polarity ( VRM and DIRM. YAKIMA BLUFFS SECTION Ten oriented samples were collected from about 8 meters of Pre-Missoula Gravels at Yakima Bluffs. This section is the closest [ [ SGi-R-82-055 E

14 sampled outcrop to the E-20 site. The uppermost sample (#1) is from a sand lens near the base of a coarse flood gravel; this gravel may not be a Pre-Missoula deposit. Eight other samples are from underlying, clays, silts, and sands deposited in fining-upwards sequences of graded ( beds. One sample (#9) was collected from one of many clastic dikes that cut the Yakima Bluffs section; these dikes are truncated by the overlying coarse flood gravel. Neither of the flood gravels that form the top and base of the Yakima Bluffs section contains enough fine-grained matrix to be sampled for paleomagnetic analysis. { All Pre-Missoula samples from Yakima Bluffs (including the clastic dike sample) yield reversed-polarity characteristic magnetizations. The [ only sample from this section with a normal-polarity characteristic magnetization is sample #1, from the younger coarse flood gravel. [ Most of the reversed polarity samples contain some degree of a secondary, normal polarity magnetization. This magnetization could be removed, however, in alternating-fields as low as 50 Oe or at temp-( eratures as low as 150 C (Figure 5); this normal-polarity component could be either a VRM residing in coarse-grained magnetite or a chem-ical remanent magnetization (CRM) residing in " limonite" (mostly goethite) produced by weathering. The reversed-polarity magnetization that predominates-in these ( sediments is probably a DRM residing in both magnetite and hematite. Alternating-field demagnetization shows that a major fraction of the reversed polarity magnetization resides in fine-grairled magnetite, since the median destructive fields (MDF; defined as the peak alternating-field required to reduce the NRM intensity by one-half) are typically SGi-R-82-055 F.

15 Figure 5. Vector demagnetization diagrams of representative samples from the Yakima Bluffs section. Vector demagnetization diagrams display changes in both remanent ( magnetization direction and intensity upon progressive demametization. Shaded circles represent the endpoint of the magnetic vr projected onto the horizontal plane; the declination is the angle (t.orured clock- { wise from due north) between the north-south axis and the horizontal component. The distance from open circles to the origin is the total length of the magnetic vector; the angle between the abscissa and the ray from the origin through the open circle is the inclination. The [ demagnetization steps are indicated beside the figures (AF steps are labeled with G = gauss = cersted = 0.1 millitesla; thermal steps are labeled with T = C). [ [ [ [ [ [ [ [: [ [ [ [ SGI-R-82-055 [

16 YAFIMA AF Demag + Thermal Demag Sm el 50G 100G T150 7225 T300 T360 N Up T420 T480 l O z. ( 5 Down o N R'1 N Up N Up NR*t O NR:1 ~ YAKIMA Sm 88 YAKI!!A Thermal Demag [ T150 M Dena7 T225 33G T200 100C { O T300 150G T42C 253G T480 400f; 7540 TGC0 g E CG 7:: Oc. 7660 950G ( 10000 g g Hoz. W ( 9 e e z. e e z. ./ s n o- /y.m, r l L Figure 5 ( SGI-R-82-055 (

17 between 250 and 700 Oe. Thermal demagnetization reveals that some of the reversed polarity magnetization resides in hematite, since between 10% and 40% of the NRM intensity remained at temperatures above the Curie point of magnetite (s580 C) 95= 10.0 ), calculated { A mean direction (D= 175.8, != -58.6 a from the nine reversed-polarity samples, is not significantly different k from the reversed-polarity, axial-dipole-field direction (D= 180.0, l= -64.0*) at this locality (Figure 6). KIONA SECTION { Eight oriented samples were collected from about 6 meters of Pre-h Missoula Gravels in a gravel pit near Kiona. In addition, two samples were collected from overlying loess deposits of Missoula or Holocene [ age. All 10 samples from the Kiona section yield normal-polarity charac-teristic magnetizations. The two loess samples exhibit a stable magnet-( ization with MDF of $500 Oe and blocking temperature consistent with a magnetization residing in magnetite. The eight Pre-Missoula samples are from two sandy interbeds in coarse flood gravel. The upper sand lens yields a characteristic mag-netization with MDF of $250 Oe (Figure 7) and blocking temperature { consistent with a magnetization residing primarily (98%) in magnetite; less than 2% of the NRM intensity survived heating above the Curie point of magnetite, indicating that these samples co,ntain little, if any, hematite. The linearity of the vector demagnetization diagram indicates that the samples contain only this single, normal polarity magnetization. [ SGI-R-82-055 [

18 0 t X [ O [ 270 -- + - 3 'l b OO O [ [ [ [ 180 [ Figure 6: Stereographic projection showing least-squares-fitted magnetization directions from the Yakima Bluffs section. The X marks the [ direction of the present axial dipole field at the sampling site. Solid (open) circles are on the lower (upper) hemisphere, respectively (i.e., [ solid circlas have normal polarity; open circles have reversed polarity). The large circle around the star is the 95% confidence circle (Fisher, 1953) { surrounding the mean. { SGI-R-82-055 F

19 l Up th { ( KIONA Sm #1 AF Demag H ( 50G i 100G 150G 250G r Hoz. l 400G 550G 700G [ 850G 1000G { [ S Down rl ( NRf1 c. Figure 7: Vector demagnetization diagram of a [ representative sample from the Klona section, u L I SGI-R-82-055 u

20 The six samples from the lower sand lens also exhibit normal-polarity characteristic magnetizations. The lower magnetic stability (MDF of 50 to 100 Oe) of these samples is consistent with the magne-tization's residing primarily in relatively coarse-grained magnetite. ( The eight samples of Pre-Missoula Gravels yield a mean paleo-l magnetic direction (D= 3.9, l= +64.4*, a95= 3.9 ) which is not significantly different from the normal-polarity, axial-dipole-field direction (D= 0.0*, i= +64.0*) at this locality (Figure 8). l l { GRAVEL PIT SECTION Ten oriented samples were collected from about 4 meters of Pre-( Missoula Gravels at a gravel pit near Kennewick. As at the Kiona locality, all 10 samples yield normal-polarity characteristic magneti-zations. AF demagnetization reveals that this component resides in { magnetite of intermediate stability (MDF of 100 to 400 Oe). As much as 6% of the NRM intensity remains after thermal demagnetization to 600 C, ( indicating that some of this magnetization resides in hematite (Figure 9). [ The - 10 samples from the Gravel Pit section yield a mean paleo-magnetic direction (D= 8.3, != +65.1*, a95= 6.0 ) which is not signifi-cantly different from the normal polarity, axial-dipole-field direction at ( this locality (Figure 10). MARENGO SECTION Twenty-five oriented samples were collected from 4 meters of loess and calcic paleosol between two coarse flood gravels at Marengo (Figure ( 11). b SGI-R-82-055 [

21 [ 0 i i I k [ L 9 L 270 --- + --90 L [ [ [ ~ i 4 160 Figure B: Stereographic projection of least-squares-fitted magnetization directions from the Kiona section. [ [ ( SGI-R-82-055 f

22 i [ N Ug i GRAVEL PIT [ ~ Sm #8 Thermal Demag T150 [ T225. ~ T300 E T360 r L j T420 T480 T540 [ HozT600 T660 [ [ [ [ [ S Down i ( NR?! ' [ Figure 9: Vector demagnetization diagram of a representative sample from the Gravel Pit section. [ SGI-R-82-055

( 23 b 0 I [ [ t l 88 l I --33 270 -- + I I I I I / / l 1h3 l Figure 10: Stereographic projection of least-squares-fitted magnetization directions from the Gravel Pit section. I l SGI-R-82-055

24 MARENGO Palcomag. SOIL HORIZONS <2pCLAY (%) DESCRIPTION Sample No. Polarity ( 0 10 20 0-j jj[j, g I. "l2 Ifll B t t,,, 53 Piaod*

  1. 61-62 N

o ,f-},. Cea u e. i ego

  • 8, il Cca Flood Grovoi Unsampled 9,

___N ~~~ coscie esseosoi Unsampled ] j ( 111 Cea

  1. 51-54 N

Loen l g i ; w. x

^

ceicie Pos.osoi m

  1. 41-42 N

f m g L p 2-7 .r.. - J g m .c ' ' e. IV Cea E, Loen

  1. 31-35 R

( m

4
  • s,

[ g ._~_ Z Superimposed M ' - ~ VK Petexeicie

  1. 21-22 R

93-T:~S-Peseosoi ( I 8 Unsampled F h-{_f-Bica 4 noot costs J D,rei a

  1. 11-15 R

Bat e Lases with 'i - Ces 4-Fro,t-Heeved

  1. 1-5 R

Cobbles [ ,ff)g o L

o n _.

goo

  • O VI Cca Flood Grevel Unsampled e, /e 8

( 5-EXPLANATION '.' l Structureless Loots t '. yy, Meeslwe Ceiiche ] Soil K Horiron f Laess evith Orsenics {'~{f Piety Ceiiche ISoit A Horizoni O' ( hl l N.M Lases us4th Prismatic Structure .*8, Cobbies with certponete Cff: Coacified Loess evith Costings Ptery Structure [ 0 .g 6 o rroet-we so catibios in Loess [ Figure 11: Stratigraphic position of the paleomagnetic p samples collected at the Marengo section. Geology L after Baker (1978). SGI-R-82-055 { f

25 The stratigraphically lower 17 samples all exhibit reversed polarity characteristic magnetizations. Results of AF and thermal demagnet-ization indicate that the reversed-polarity magnetization resides pri- ~ marily (s95%) in fine-grained magnetite (MDF of 250 to 700 Oe) and partly (%5%) in hematite (Figure 12). The four samples (#21, 22, 41, and 42) of " calcic paleosol" (Baker,1978) evidently contain normal-and reversed polarity magnetizations with overlapping stability spectra; neither AF nor thermal demagnetization can separate these two mag-netizations. ( The loess deposits immediately below (samples #51 to 54) and above (samples #61 and 62) the upper flood gravel both contain only normal-polarity magnetizations (Figure 12). Results of AF and thermal demag-netization reveal that $98% of the magnetization resides in fine grained [ magnetite (MDF of 250 to 400 Oe) and the remainder in hematite. { Excluding the paleosol samples, the reversed polarity samples yield a mean direction (D= 169.1, l= -60.8, 095= 3.6*) very close to the ( reversed-polarity, axial-dipole-field direction (Figure 13). The normal-polarity Pre-Missoula samples yield a mean direction (D= 8.4, l=+65.1, g3= 3.76) which is not significantly different from the normal-polarity, o axial-dipole-field direction. { [ [ [ [ SGI-R-82-055 E -- - -- _

L 26 I [ N Up N Up Marengo NM Te al Demag O h25 M Demag !$!G f T420 1500 L T480 2 LOG T040 4000 TC00

50G I

TCGC 700G [ SLOG L 1000G E n H o z. [ 4 ab, H o z. g 9 e ~\\ ep ( t i \\ 5 n 5 'wn [ . n+ p [ f FNLENGO cm 151 M Demag H If E Soc 100G 150G ( H o z. 2gg 550G 7000 9504 1000G [ Figure 12: Vector demagnetization ( diagrams of representative samples from the Marengo section. [ ~ 5 Down NP11 SGI-R-82-055 [ l

27 i L 0 ( i L L [ 270 -- -f_ __og ( 3 ( [ O [ [ [ isa [ Figure 13: Stereographic projection of least-squares-fitted magnetization directions from the Marengo section. E ( SGI-R-82-055 L ------

28 [ DISCUSSION ( { Paleomagnetic results of this study indicate that some of the Pre-Missoula Gravels of the Pasco Basin and vicinity contain reversed-( polarity magnetizations. The first indication of reversed polarity was in the initial paleomagnetic results from corehole E-20, below a depth of 40 [ feet. Reversed-polarity magnetizations in the Pre-Missoula Gravels were confirmed both by resampling of the E-20 core and by paleomagnetic results from two of the four sampled surface-outcrop sections (Yakima ( Bluffs and Marengo), in corehole E-20, the evidence for reversed-polarity below the 40-foot depth is based on the following observations. First, reversed-polarity magnetization was found or is suggested in a significant frac-tion of samples below this depth. Second, there is little possibility that { any of the samples were inadvertently collected upside-down, because they also exhibit the low-coercivity DIRM pointing directly down-hole. Third, the paleomagnetic inclination, especially that of samples #16.6, 20, 26, 27, and 28.4 is considerably steeper than the 121 inclination [ that might have been acquired during the sampling process. The { stability of the reversed magnetization upon both AF and thermal de-magnetization indicates that it resides either in fine grained magnetite [ or in hematite. Paleomagnetic results from corehole E-20, therefore, strongly suggest that a change from normal-polarity sediments (above) to reversed-polarity (below) occurs at a depth of 40.0 1 0.3 feet. This { depth, which also marks a change from siltier, finer-grained sediments [ above to coarse-grained sand and gravel below may represent the [ SGi-a-82-Oss F

29 Missoula/ Pre-Missoula contact. Indications of reversed polarity in the Pre-Missoula Gravels of E-20 are supported by the paleomagnetic results from the surface exposures. Two of the four surface-outcrop sections (Yakima Bluffs and Marengo) yield well grouped, reversed polarity { magnetizations of high magnetic stability. Because the reversed-polarity magnetizations from the surface outcrops were found in fine sands and silts, it is likely that the generally poorer magnetic stability of the E-20 samples reflects their coarser grain-size. The existence of reversed polarity magnetization in the Pre-Missoula Gravels indicates that some of these deposits have an age { greater than 730,000 years, the beginning of the most recent (Brunhes) h normal-polarity epoch (Figure 14). This statement can be made with better than 97.4% confidence, by the following reasoning. It has been [ estimated by Champion and others (1981) that the cumulative length of reversed-polarity events within the Brunhes normal-polarity epoch is 19,000 years. The average duration of any single event, therefore, is [ between 4,000 years (if all five better-documented events actually occurred) and 19,000 years (if only one of these events actually oc-curred). The maximum probability that all three observations of re-versed-polarity in the Pre-Missoula Gravels are younger than 730,000 years B.P. is, therefore, 19,000/730,000 = 2.6%. This most conserva- { tive probability assumes that there is only a single reversed polarity event in the Brunhes, and that all three reversed magnetizations date from the same event (and hence are not independent observations). The 2.6% probability would be reduced (1) approximately linearly as the number of proven, Brunhes-age reversed polarity events increases; { and (2) exponentially if the reversed-polarity magnetizations in the SGI-R-82-055 F l

p m m m pm m m m m m m m cm r-m rm r r r M erj O P. T C n nwa w E H+ N i D U U .N N 7 .~ 9 o 8 H3H p O p O p O p Pm

  • PA

.T ut L H ** wH T 3 P-O aOo r 3: O ua mx3 3o9 Q XWQ PND 5[ D v3 0 5 $ ' I. GLBERT GAUSS MATUYAMA BRUNHES 52 NORMAL REVERSED NORMAL mn ~4 U O 'O 4 Q. 3 O ,o u / ( /' 's / \\ / N A AAAA Hn N' V m mO H O V' E x P e m m * <r ,= ,r a s Nar x m g m, e w c cs o R 3m x 2 a 5 m g ~ x zm 5 8 l 1 } l g-0 9 2 0 = Y YYYY -o, E ~wa DWQ u u uu N N NN NN - O O O O O OOO '4 > 5 M DT H 2 2 b IU Q .o - P. m m O ' w O "U Um A E O T > mn us r U m D' " U yO D' T r OO o y D' T aw , 4 w N 01 O 03 #

31 Pre-Missoula Gravels were demonstrably separated in time by >19,000 I years (and hence should be regarded as independent observations). Evidence of a >730,000-year-age for some Pre-Missoula Gravels is compelling if the reversed-polarity magnetizations were acquired over a ( time-span significantly greater than 19,000 years. This is indeed suggested by the geologic and paleomagnetic evidence from the Yakima Bluffs and Marengo sections. At Yakima Bluffs, the reversed-polarity magnetization of the clastic dike indicates either that the dike was ( emplaced penecontemporaneously with its surrounding sediments or that ( this time of reversed polarity was sufficiently long to encompass both deposition of the graded beds and later dike intrusion. ( Even more convincing evidence of a >730,000 age for the Pre-Missoula Gravels is provided at the Marengo section, where reversed ( polarity seems to have endured long enough for emplacement of two loess deposits and development of several paleosols. As described by { Baker (1978), a lower flood gravel at Marengo is overlain by a loess ( (with reversed polarity), capped by a petrocalcic horizon 60 cm thick. The pedocal soil (nearly pure carbonate) appears to have been super- [ imposed on an older, pedalfer soil (with a strong illuvial textural B horizon and with associated root casts) and then eroded to its resistant carbonate layer prior to deposition of another loess. This second loess, ( also of reversed polarity, is overlain by another calcic horizon con-taining rever 2d-polarity magnetization. This stratigraphic sequence implies several dramatic climatic fluctuations betweer) high temperatures and high humidity (which produce pedalfers) versus low temperatures and low rainfall (which produce pedocals). It seems extremely un- { likely, therefore, that the deposition of the lower loess, formation of SGI-R-82-055 L

32 the pedalfer and pedocal soils, subsequent erosion, deposition of the overlying loess, and formation of a second calcic horizon all occurred within 19,000 years. Separation of the two reversed-polarity loesses by >19,000 years implies that they could not both have been deposited { during the same Brunhes-age event; the probability that these two loesses were deposited during two different events within the Brunhes l is 5(9,500/730,000)2 0.02%. Thus the geologic and paleomagnetic = evidence indicates with near certainty that at least some of the Pre-( Missoula Gravels are older than 730,000 years. [ ( CONCLUSIONS ( Paleomagnetic results from corehole E-20, at the Skagit/Hanford Nuclear Project on the Hanford Site, indicate the presence of [. reversed-polarity remanent magnetization in Pre-Missoula Gravels below ( a depth of 40 feet. The existence of reversed-polarity magnetization in Pre-Missoula Gravels of E-20 implies a high probability (P>97.4%) that these deposits are older than 730,000 years B.P. The discovery of reversed polarity in Pre-Missoula Gravels at two surface outcrops supports the conclusion that reversed-polarity Pre-( Missoula Gravels underlie the Hanford Site near corehole E-20. The existence, at the Marengo section, of reversed polarity magnetizations in a stratigraphic succession of loesses and paleosojs implies with near certainty that at least some of the Pre-Missoula Gravels are older than [ 730,000 years. [ [ SGI-R-82-055 f

33 REFERENCES Baker, V.R.,1978, Quaternary Geology of the Channeled Scabland and Adjacent Areas: in The Channeled Scabland, Baker, V.R., and

Nummedal, D., eds., National Aeronautics and Space Administra-tion, Washington, D.C.

Champion, D. E., Dalrymple, G. B., and Kuntz, M. A., 1981, Radio-metric and paleomagnetic evidence for the Emperor reversed po-larity event at 0.46 1 0.05 m.y. in basalt lava flows from eastern Snake River Plain, Idaho: Geophys. Res. Lett., v. 8, p. 1055-1058. { Fisher, R. A.,1953, Dispersion on a sphere: Proc. Roy. Soc. Lond.,

v. A125, p. 54-59.

{

Johnsun, H.P.,

1979, Paleomagnetism of igneous rock samples--DSDP Leg 45: Initial Repts. Deep Sea Drilling Project, V. 45, p. 387-395. ( Kirschvink, J. L., 1980, The least-squares line and plane and the analysis of palaeomagnetic data: Geophys. Jour. Roy. Astron. Soc., v. 62, p. 699-718. (

Mankinen, E.A.,

and Dalrymple, G.B., 1979, Revised geomagnetic polarity time scale for the interval 0-5 m.y. B. P. : Jour. Geo-phys. Res., v. 84, p. 615-626. McElhinny, M. W., 1973, Palaeomagnetism and plate tectonics: Cam-bridge Univ. Press, 358pp. [ Van Alstine, D.R., and Gillett, S.L.,1981, Magnetostratigraphy of the Columbia River Basalt, Pasco Basin and Vicinity, Washington: { Rockwell Hanford Operations, Richland, Washington, RHO-BWi-C110, in press. Van Alstine, D.R., and Gillett, S.L.,1982, Magnetostratigraphy of the [ Wanapum and Grande Ronde Basalts, Pasco Basin, Washington: Rockwell Hanford Operations, Richland, Washington, in press. ( Zijderveld, J. D. A., 1967, A. C. demagnetization of rocks: Analysis of results: in Methods in Palaeomagnetism, edited by D. W. Col-

linson, K. M. Creer, and S. K. Runcorn, Elsevier, New York, p.

254-286. { [ [ [ SGI-R-82-055 [- u

34 E [ E E [ APPENDIX g E E E E E E E E E E [ 1 L--------------------

r L 35 E L { INTRODUCTION p This Appendix presents the paleomagnetic data from samples of L Pre-Missoula Gravels (both from surface outcrops and from corehole E-20) that were collected by Sierra Geophysics in June and De c e mb er., 1981. Surface data are arranged by sampling locality and subsurface [ data according to corehole designation (E-20). DESCRIPTION OF DATA FORMAT Paleomagnetic results from each sample are listed individually on p ceparate pages. Three plots are shown in the upper part of the page, L cnd the data pertaining to the sample are tabulated in a number of columns below. The format of the tabulated data will be described first, followed by an explanation of the plots. Tabulation Description r L The first line lists general " locality" information, including an identifier (e.g."Marengo"), as well as the latitude and longitude of the sampling site. Next, the total number of demagnetization steps for the sample is given. On the following line, " INTERVAL" refers to a { stratigraphic interval. For subsurface samples, it is the depth (in feet below the surface) from which the sample was obtained. " STRIKE DIP OF BEDDING" are also shown on this line, and all beds in this study p are assumed to be flat-lying. The next line, if present, gives the L Koenigsberger ratio of the sample, using the measured susceptibility and normalized to an ambient field of 0.5 De. [ The following lines give the measurement data for the sample in a set of columns. The abbreviations above these columns are as follows: "SM#" is the sample number, including the " rock unit" prefix. "DEC G - INC G" and "DEC S - INC S" are the declination and inclination of the { magnetization vector in coordinate systems uncorrected for (" geographic coordinates") and corrected for (" stratigraphic coordinates") bedding attitude. " INTENSITY" is the intensity of magnetization, in units of emu /cc. The columns labeled "DIFF VECT" and "JDIFF" are the directions and intensity of the vector removed between successive demagnetization steps. "V LAT" and "V LONG" are the latitude and longitude of the virtual geomagnetic pole calculated from the stratigraphic declination and inclination. "DEMAG" is the demagnetization step. " NRM" stands for " natural remanent magnetization"s i. e., the zeroth demagnetization p step. Alterrating-field demagnetization steps are in oersteds and have E a suffix of "G" (for gauss). Thermal demagnetization steps are in degrees centigrade and are prefixed by "T". Chemical demagnetization steps are in hours in solution and have a prefix of "C" (for chemical). s [

36 I L The column labeled JH/JO is the ratio of the intensity of magnetization at the givers demagnetization step to the NRM intensity. Finally, " CHI" to the bulk susceptibility, in dimensionless cgs units, and "C/CO" is f the ratio of the susceptibility at any demagnetization step to the ousceptibility at NRM. For these samples, susceptibility was measured at NRM only, so the entries for all positions following NRM are blank. f L Types of Plots In the lower left corner, above the tabulated

data, a

plot of the { change in total magnetic intensity with demagnetization is given. The intensities are normalized to the NRM value. The data points are shown as shaded stars. A " vector demagnetization diagram" of the sample is given slightly to the right and above the normalized intensity-ratio plot. In most cases, the plots overlap to some degree. Vector demagnetization f diagrams (cf. Zijderveld, 1967s Roy and

Park, 1974) illustrate changes in both intensity and direction of magnetization upon progressive demagnetization.

Shaded circles represent the endpoint of [ the magnetic vector projected onto the horizontal planes the declination is the angle (measured clockwise from due north) between the north-south axis and the horizontal component. The distance from open circles to the origin is the total length of the magnetic vectors [ the angle between the abscissa and the ray from the origin through the open circle is the inclination. To avoid unnecessary clutter, the damagnetization step, except for the

NRM, is not annotated by the

( points. The successive points inward from the NRM point are the demagnetization steps in the order listed in the tabulation. Linear stretches of the demagnetization path, which if present are apparent on these diagrams, indicate that a single component is being removed by [ demagnetizations hence, these diagrams allow different components of aagnetization to be separated (e.g., Kirschvink, 1980). The rightmost plot is a Lambart equal-area projection of the direction of the magnetic

vector, illustrating the change in direction with demagnetization.

On this plot, solid circles represent positions on ( the lower hemisphere (positive inclination), and solid triangles are on the upper hemisphere (negative inclination). The NRM point is identifieds the other demagnetization steps follow this point in the order in the tabulation below. STATISTICS OF FULLY-DRIENTED SAMPLES Samples taken from surface outcrops are conventional paleomagnetic f camples in that they are fully oriented.

Hence, the traditional L

E

( [ ctatistical approaches of paleomagnetism can be

employed, and paleomagnetic poles calculated.

( Fisher Statistics These statistics, which are the ones most commonly employed in ( paleomagnetism, were initially developed by Fisher (1953). N refers to the number of sampless R is the vector resultant obtained by treating oach direction as a unit vector and summing thems "M. L. E. of kappa" f is the Maximum Likelihood Estimate of the concentration parameter kappa; " kappa" is the unbiased

estimate, given approximately by (N-1)/(N-R).

" Alpha-95" is the half-angle of the cone of 95% confidence, in degreess " circular stnd. dev." is the circular ( standard deviation, also in degrees. " Declination" and " inclination" give the mean directions " pole lat." and " pole long" give the latitude and longitude of the paleomagnetic pole calculated from the ( cean direction. "Paleolat" is the paleolatitude, calculated from the mean inclination. "dp" and "dm" are the semiaxes of the 95% confidence oval about the pole calculated from the alpha-95 circle about the mean ( direction (e.g., McElhinny, 1973). " Oval azimuth" is the azimuth of this oval with respect to a meridians this azimuth extends from the campling site toward the the paleomagnetic pole. Moment of Inertia Statistics ( These statistics are beginning to be applied in paleomagnetism (e.g., Onstott, 1980), and they offer advantages over Fisher statistics in certain cases. They are based on the directions and relative { aagnitudes of the axes of a " moment of inertia" which can be visualized by imagining a point unit mass at the tip of each unit vector. When two axes are

equal, corresponding to a

circularly symmetric distribution of

points, Dimroth-Watson statistics are appropriates

[ otherwise. Bingham statistics are used. An excellent summary of these distributions, with references and some worked examples, is in Mardia (1972). [ Again, N is the number of samples. "Eigenvalues" are the eigenvalues of the moment-of-inertia matrix. " Uniform test statistic" tests { tihether the data are distributed randomly over the sphere (Mardia,

1972, p.

276-277); large values of this statistic suggest that the data are not random. "Dimroth-Watson k" is the concentration parameter for Dimroth-Watson statistics: "M.L.E.'s of Bingham parameters" are [ the maximum likelihood estimates of the two Bingham concentration parameters. "Stnd. dev. angles" and "confid*ence angles"

give, respectively, the standard deviations and conf.idence intersals, in

( degrees, of the major and minor axes of the Bingham confidence ellipse. " Oval azimuth" is the azimuth of this

ellipse, with respect to a

seridian. I L " Declination" through "paleolat" are as for the Fisher statisticss for E

l' 38 coll-grouped data, these directions will be nearly the same as the corresponding Fisher estimates.

Finally, two test statistics for rotational symmetry of the data are calculated (Mardia,
1972, p.

p L 277-278), one for bipolar (axial) and the other for " girdle" ( i. e., squatorial) symmetry. Small values of the bipolar statistic coupled eith large values of the girdle statistic suggest that the data are E cxial with circular symmetry about the stan. In the case that these L otatistics indicate the the data have rotational symmetry, a mean confidence angle ALPHA is calculated. REFERENCES

Briden, J. C., and M.A.

Ward, Analysis of magnetic inclination in bore cores, Pure Appl. Geophys. 63, 133-152, 1966. [

Fisher, R. A., Dispersion on a sphere, Proc.

Roy. Soc. Lond. A,

217, 295-305, 1953.

[ Kirschvink, J. L., The least-squares line and plane and the analysis of { palaeomagnetic data, Geophys. J. Roy. Astron. Soc., 62, 699-718, 1980.

Mardia, K. V., Statistics of Directional Data, Academic Press, New York, 1972.

[ McElhinny, M. W., Palaeomagnetism and Plate Tectonics, Cambridge University Press, 1973. [

Onstott, T. C., Application of the Bingham distribution fuunction in paleomagnetic studies, J.

Geophys. Res., 85, 1500-1510, 1980. [

Roy, J. L.

and Park, J. K., The magnetization process of certain red ( beds: Vector analysis of chemical and thermal results, Can. J. Earth Sci., 11, 437-471, 1974. [ Zijderveld, J.D.A., A. C. demagnetization of rgcks: Analysis of results, in Methods in Palaeomagnetism, edited by D.W. Collinson, K. M. Creer, and S.K.Runcorn, Elsevier, 1967. ~ ru r

E E E E E E E E E E-20 E E E 1 [ E r L_ E

I ( ( ( ( ( ( ORIGINAL SAMPLES OF [ JUNE 11, 1981 ( l ( ( [ 1 [ [ [ L_

l'lI llIi r 0 9 WP9 o O \\' 1 \\ / C N //.;p / N C / g. o o .\\ e G i h C N / to o N l p O007794933S83 J048?63833I00 a /073421000O00 ~ e H.... r J1O0O0O000O00 o ^ sl a g 00O00000O00 a aM13O30503O50 u mR11223344S36 p/r. N (\\ n q eNTTTTTTT1TTT 0 e d \\ .5 o1' .X + f 44443333666 1 o tO00000000000 n i- - - - - - - - - - f wt s sEEEEEEEEEEEE e n3809934366H3 e 4 2 6 818 9 4 3 8 6 0 Y a t........... R n n432116321632 D o i I I d A f 7 r 23963687028 R o n....... O o o321101928274. B C l222222120203 A

  • 111111111111 L

o / V-S 0 tO895038277a8 C 0 a............ I x~ 6 l398767842314 T T g 11111111 - 23 E o V N / e G n / 5 000000000000 N 0 G 143333336666 A f-O x~5 : fEEEEEEEEEEEE E T m O71117927711 L i a DO18100833978 A 0 r J.. P 7 0 g O16773219832 o 2 0 a 1 a. 5 i d tO73773148304 T c........... r eO47752393617. N o v 67777777674 O 0 t T o 5 c f G

,T 4 e fOO6333605433 N

v 0a............ I DO0409O736333 H f0 0 9988H863422 S 0 o3 11111112121 AW 0 S983464346I83 n s9

,T 4

e1 0............ D t1 .c233434323773 a-0n77777777633 N n I O 0 i0 M @W d3 S366616296274 D ,5 n 3 r. E o6 =c733423034378 R T o4 ge888888886860 C nD111111111112 i 0 Z d 0 dtO75773148304 D ,3 = ec..... nE ,H T g beO47752393617 C .n v 67777777674 N yo f I 0 tl of 5 fOO6333603433 S i sL C N ,2 n iDO04090756333 I n W T et d 99088863422 S 11111112121 Y ta. O .,,\\ nle8 H 0 I l C983464346183 P 0 epe O Tb ,2 tmkc233434323773 E =. iaan77777777633 G T

SsrI o

NS d t A 0 sSG366616296274 R e 1 i R 5 1 h c733423034378. E ,1 1 t0e888088806860 I T a 0D111111111112 S 2 m r8 oH ' H n 2 000000000000 0 r o. 0 o f4 000000000000 1 s 000000000000 , 1 s0 p T i2e 111111111111.. Et o t s o: =S M ly!M R pt a aS 1 imv N g 0 5 0 oler iaDe tc t GGGGGGGGGGGG o 1 0 ao2n NNMNNNMNNNNN RL1I PPPPPPPPPPPP o illlil

r 0 _L r' x / ,/ / / N / X NJ N UP W E

  • jh

. --90 270-- + 4n

1. 5 -

,,c --,. - e,__ _ - m e HDZ. H0Z. / ~ l / / 1.01 i o ,/ M- / E

o. 5 -

/ / @flM / S DOWN f /,,/;;9 / a 180 A A, t, 7 0 NRM 50G 150G 250G 350G 500G 700G 900G 1000G Rstio plot is normalized! Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Lecelity: E20 Site lat & long= 46.50 -119.30 9 D5 mag steps for this sample. (

0. 0
0. 0 bedding = S Interval =

26.900 Strike & dip of Dec Inc S D1ff vect JDiff V lat V lona Intensity demag JH/JO Chi C/CO SM# Dec G Inc G Daff vect PNG 2.000 94.1 42.7

0. 0
0. 0 94.1 42.7
0. 0
0. 0 0.OOE-01 13.0

-49.0 1.33E-04 NRM 1.000 PNG 2.000 91.6 37.3 99.1 31.2 91.6 37.3 99.1 31.2 3.18E-03 13.9 -45.3 8.23E-03 SOG O.619 PMG 2.000 82.3 36.2 98.1 37.6 82.3 36.2 98.1 37.6 4.91E-05 19.6 -38.3 3.37E-03 1500 0.233 PNG 2.000 79.4 33.6 83.4 36.8 79.4 33.6 85.4 36.8 1.63E-03 21.3 -36.1 1.74E-03 250G O.131 PNG 2.000 88.1 44.2 68.3 20.1 88.1 44.2 68.3 20.1 6.74E-06 19.7 -46.7 1.12E-05 350G O.004 PNG 2.000 37.3 66.0 103.7 20.4 37.3 66.0 103.7 20.4 7.24E-06 64.8 -47.6 3.79E-06 SOOG O.044 PNG 2.000 83.1 26.8 288.3 29.0 83.1 26.8 288.3 29.0 3.04E-06 13.6 -33.9 6.32E-06 700G O.04H PNG 2.000 47.3 -23.2 128.3 32.4 47.5 -23.2 128. 5 32.4 3.7PE-06 17.6 11.4 4.27E-06 900G O.032 PNG 2.000 90.2 14.7 321.3 -41.3 90.2 14.7 321.3 -41.3 4.34E-06

3. 2

-34.0 3.19E-06 1000G O.039 ~ SIERRA GEOPHYSICS,INC. REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

a [ O f ' ~~ u u \\ ~ E E o ^ / 4 / \\ u / o i / "a O O O O o r n brdb - C O 7 0 n b N 4 = 4 b n e rs = 4 NonnrdaaOOOOOO I Eddddddddddd a = l \\ la a O0000000000 f 4 gE=nononOnonO g s Eg =NNnneenn4 cr e Z e > F H e > F > > > >= C e w Od-K E 13 --O wennonn444444 M o

  • O00000000000 C

/

  • 114IeIi11Iai

'E I/ [ e eWWWWWWWWWWWW

r nnavobbbbao c o.a m rd a P n 4 N rd b n a e

e >= e l 8 CAdtdOm$dkk N O 6-= w me ~~ oc3 N O O b > PID n n e n 8 806dii666dNd6 ea "n 0 0 0o n 4.e.o o e04 4 4 tD 0 4 45 u J >1IIIIIIII { O e tD N e a n > O =a O 4 0 0 L \\ O e............ / i f (.D

== O b e rd O N M Q3 n e lD 4 H-r. cm e v e e e n n-c3 nno LAJ o Z e c.D c 0 annen4444444

  • E 000000000000 E

StI I I I I I i1 eiI O YW.. 4WWWWWWWWWWWW LAJ t >= E =OZonQnhnabbe J g C o n > =* ** P h o n n tD 4 <C g C s. Q o en On-annnedea [s C 4 (q M"O wCN-ObbeNaNan w p., "dedd6464Na6N z s.o > bbbb4noe nrd o O i I 6-- e Li) u s C.D 4 8-y e

  • O n N rs o n N N e n P N Z

5ddndstiddNdr,d 5 SO O n e o b te n o b b n ed O on (d rd n td td n n a Nn O e6 rn.tD o e c e.e tD tD O O L it -* e-O H-u.a .w 4 n 4 e NtDC3e b e b b C3 41 OCNbbbb44b401N ZQ c w O -O E m 30 ut n = tD 4 tD n e e b e o e c3 { K ~M od auddJdndWNJd44 L H-og ca s s o t::b b o 4:D o tD e - O cQrdrdrerdfdntdanrdn C w O m u o N a O b b e N a rd a n N ~ 'cn $eddntD6d6dNE6N C3 i .c > bbbben e ned Z 0

Po
  • I I

a.- U = I O e ro os* O nN No n tdNe t"3 P rd tii g - OJ +$ddddddddNdNd a-* '/ 3 >= em W 0 0* O N N n o b b n N CD / O we. NNnNNnn=* Nr3 A c a e.3 Z C O >= e O ** tD O P O v a t tD tD O O Q .h3 O U=widddddd4N4NN O 9 c.D .ul 6.ebbbbb44 ban 1N llp W al w <r e eu)O n-tD a tD n e ed e O e ce a dr. N m O 2 udf;ddWNW ;n44 h O

  • O e N CD tD b N o c tD n tD e **.

-- = (n g jordNrdrdunN-ntdn r. p 3g b 0000b000000b .h o o N OOOO OOOOOO c 9 000000000000 [ /- $0$ ddnbdddddbdd j o.. s3 f E== :P crea E $ g *> I i e a a i m o n o nat [ ww

  • 000000000000 O

g ard c EEEEEEEEEEEE 0I108 Sa-~ tu""""' s F

r r c- ?- e r-m i-W E O [ 9 sN. H0Z. f 'x p_ \\ \\ l x i I t 270-- + --90

1. 5 -

ggy NP.H 1.01r ~ o e9 s G cc

0. 5 -

OWN lb0 / ,Yq 0 NRM 25G 50G 100G 150G 200G 250G 350G 500G 700G RStio plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Locality: E20 Site lat & long= 46.50 -119.50 10 Demag steps for this sample.

0. 0 00 bedding = S Interval =

29 000 Strike & dip of vect Dec Inc S Diff vect JDiff V lat V long Intensitu demag JH/JO Chi C/CO SMW Dec G Inc G Diff PNG 4.000 167.5 59.9

0. 0
0. 0 167.5
59. 9
0. 0
0. 0 0.OOE-01

-2.0 -110.I 8.86E-OS NRM 1.000 PNG 4.000 168.8 60.9 160.5 53.0 168.8 60.9 160.5 53.0 1.16E-05 -1.0 -111.2 7.71E-05 25G O.870 PNG 4.000 167.0 62 1 177.6 53.0 167.0 62.1 177.6 53.0 1.07E-05

0. 7 -110.I 6.66E-OS SOC O. 752 PNG 4.000 165.4 63.5 170.2 58.8 165.4 63.5 170.2 58.0 2.OOE-05 2.5 -109.2 4.67E-05 100G O 527 PNG 4.000 169.9 60.3 140.0 72.4 169.9 60.3 140.0 72.4 1.09E-05

- 1. 8 -111.9 3.62E-05 150G O.409 PNG 4.000 168.6

57. 1 177.8
71. 5 168.6
37. 1 177.8
71. 5
8. ole-06

-3.2 -110.5 2.84E-05 2OOG O.321 PNG 4.000 168.7 55.6 168.3 60.8 168.7 55.6 168.3 60.8 8.12E-06 -6.8 -110.3 2.03E-05 250G O.229 PNG 4.000 167.1 50.5 189.5 77.5 167.1

50. 5 189. 5 77.5 3.80E-06 -11.3 -100.3 1.68E-05 350G O.190 PNG 4.O'3 173.1 71.1 164.8 28.8 173 1
71. 1 164.8 28.8 0.82E-06 12.2 -115.5 9.23E-06 SOOG O.104 PNG 4.000 167.7 42.9 344.9
6. 1 167.7 42.9 344.9
6. 1 5.79E-06 -17.7 -107.8 1.19E-05 700G 0.134 SIERRA GEOPHYSICS.INC.

REDMOND. WASHINGTON PALE 0 MAGNETICS LABORATORY

r, c-, r, H E O ,7 m N H0Z. g H 0 2. en / \\ \\ X [ 270-- --90 .n

1. 5 -

1.01

S DOWN j

E

0. 5 -

l j / y-180 / /4,a A 2 n NRM SOG 100G 150G 200G 250G 350G 500G 700G / ' ,g,?,' q / 0 7 e Ratio plot is normaltred: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Locality: E20 Site let & long= 46.50 -119.50 9 Demaa steps for this sample.

0. 0
0. 0 Interval =

28.200 Strake & dip of bedding = S Inc S Diff vect JDiff V lat V lona Intensitu demag JH/JO Chi C/CO SM# Dec G Inc C Diff vect Dec PMC 5.000 191.9

84. 5
0. 0
0. 0 191. 9 84.5
0. 0
0. 0 0.OOE-01 35.9 -122.2 3.6tE-04 NRM 1.000 PNG 5.000 164.9 84.7 222.5 82.1 164.9 84.7 222.5 82.1 1.36E-04 36.4 -116.1 2.26E-04 SOG O.626 PNG 5.000 148.8 82.7 199.8 85.9 148. 8 82.7 199.8 85.9 1.03E-04 33.9 -110.6 1.2tE-04 100G O.335 PNG 3.000 152. 9 81.7 138.2 84.3 152. 9 81.7 138.2 84.3 4.38E-05 31 6 -110.9 7.72E-05 150G O 214 PNG 5.000 169.3 85.4 144.6 75.3 169.3 85.4 144.6 75.3 2.96E-05 37 5 -117.4 4.79E-05 2OOG O.133 PNG 5.000 214.0 82.0 87.7 76.7 214,0 02.0 87.7 76.7 1.46E-05 32.9 -129.9 3.39E-05 250G O.094 PNG 3.000 202.0 79.5 261.1 84.5 202.0 79.5 261.1
84. 5 1.19E-05 27.4 -127.9 2.2tE-05 350G O.068 PMG 5.000 179.1 79.7 227.6 76.8 179.1 79.7 227.6 76.8 9.18E-06 26.5 -119.2 1.30E-05 SOOG O.036 i

PNG 5.000 344.6 77.9 173.4 36.7 344.6 77.9 173.4 56.7 6.92E-06 68 2 -135.9 7.17E-06 7 DOG O.020 i l 1 SIERRA GEOPHYSICS,INC. REDMOND. WASHINGTON PALE 0 MAGNETICS LABORATORY

  • l O

O g i

  • g

.w i g kk u N 5 s [ / \\ pt..d N e / \\ u a Co e n 4 e rJ n & N n 4 P /( 28;ris 8888358 E g I EdoddOdddOOd gf1 [ ~ o 00000000000 g gE=nonOnonOno 3 E m a

  • N rd M M e e n n e d

6ZY>>>>>>>>>> /4- --co nnnn4444444 O e = o X [ M o

  • O00000000000
  • 1 8610 4t11 61 1
  • WWWWWWWWWWWW 6

C S O N O M N O N rd rd N N o 6nne44Nhnnete >= CNbk A$$dbNYA O [ r- \\ 4 w 6 mtge-NNOpbMMe ut odbbdCdbNbbb$ 0 u abbbCQPb404P4 4 W ll46 6 1 1 8 * ** 8 J 11 [ d C3 ,qpg.pn3n nge O g ~~ i t g) -e > N b h 0 0 M e s rd a r. a tv - -rd 4 M rd n uJ o l111 1 2 t C.D [ 00044444444 4 D 0 0"00000000000 E O

  • I 1 888 1 6 61 1 1 6 Q

i b U) i F-

  • WWWWWWWWWWUU uJ E

-O-en48-nerdom 4 Q Ordo P h a

  • Orde =.N e

a. Q u [ O m OPNa>QMoneQM ps O g Cj iC $0 seMNvom0884eM f u 04eune--em-e O > 44404040" " O O [ E W $ e r Oz WIFv e

  • O rd M e e n e b b N-m EZ

~ $6dibssddadod UO ~

  • O O

OOQGNPMetON w O on

== = a rd a rdM 4 [ Wl'T ea O O m4MonnocedN4Me ,p e- .uneN&~NS re 4 4 0 c3 of O C44404nMae f fe l 2I C w l I C O =O E [ I y) to moneN4MnehmNa c3 ( ~N ob 3udNNSddddNibd H of a t O = = M M e M M b a rd M 25 o c o- ~ ~ ---- ~ ~ rd M a 3 O E C3 O vuOMNeemobNeen C3 K 8

  • u p

gggggj;;gg;g g a 2f .C > 444n4M4M-yo

  • 8 1

a e i s a a i a a a a a i a O da o* S O N M P > n e b b ed - D U3 ( rb ' g7 m SaOdiedddddddd N [ ~ f ~N C >- ** w O O CD N rd P M P *t o rd (13 ug. -- w a rd a rd M >= C~ed X ~ O = = 04MonnomNN4Me g Enubk$$NSNA&bbb JJ [ .m

  • gaC44404nMaeINl CD g..m o b=

l 1 4 = e e emOOneN4MnebONd 2 ~ o D w" $ ubSdddddSNdbb b

  • O *O a-Mn e MMP ardM o

- N .e = p g O Q m a = = m a n - w rd n a VJ O r E ba O o

  • O 000000000000 C

M 000000000000 000000000000 45 kbbbbbbbbbbb We. o.. ES 7 m m mw E si "";;* i r-a m o m o^ "at [ oooooooooooo j ou o g ord C ELEEEEEEEEEE 0I109 'J-~ t uu u u"'

a O t [ ' \\ u s Q u a's o* i O l 2 / U / \\ M 1 o l ow O O O O e - P CI N a M 4 h 700 4 0n? 4 e r fd OO e N o n M rd-O O O O O O O I EdddOOdddddd ~ a e t a m 00000000000 g E a n.= fd td M M e e n n 4 ononOnono 9 E ct a 3 cf e Z H H H H H F W P > e >= E O e w o-- X + -m -eennnnn4444 M o

  • O00000000000
  • 4eeei16eiI6e a

wWWWWWWWWWWWW e ca m a r & N: Dona & O eM 4N n OMide O O O M >= .c.d Ed d ddN ENNfEN b o 4 s. ord t N b tD b b C NID O

  • tt:

o c,........... O o obMMN4peMe=bO Cn a r.d.fd td fd = *

  • a tD > a fd 4

O .m== .e e m e Iw J ( DIii11Iil i U') O 4,nngnogy.ogno y O g............ .-= i f t.D .N tD.4.M N 4 M o n N 4 0 P-m ea a .IM e LM o 1 4 I Z [ t C.D o O aennnnO44444 4 O 000000000000 E

  • 1 eeieiet6et 6 C

f N .= g O O 4 b n e b o 4 tD P tD e a:E [ NkddNNWNbNb O ci c4 o

  • U $~

so-MNe440eeCed "Od6dadONNdN8 z uo > 4bbbbbmen i O [ o e w If4 u s c.D ilhv e

  • OrtD4nMnbM*4M z

C64dddWNddddd 5 LD SO O &&Pobbbo S.M etE o on .=.. fd -- fd [ O (D 4 0 b m C P N o tD O 4 0 5"T e~ O............ C3 >= *. =. ua n n a m e n N ID o b b el Ochbbbb44ne I z N G; O EO E C 2 I t.h en (D 4 tD a 4 M N O M o n n o c3 ( oc a uddbririddddddd LM - I I -[ c o m.etD e.b b b b M oe. h m. m ce cQ a. wa u O [ o =,O-nNe4.meeON Sedddddd6dNdNW L.i w a .c > 4 b b b b b tD e n .z. h llP o 4 r o ee os ~ t/3 l ~ C g# ct OPID enMnbM-4M S w.5 U i ( -gC" H ** w "N c

  • c o c e N a t h tD = M M 4 Q

m e > O bemmfdbbo beM tr3 s ee .N og. O .c-e.s r x

  • a 0 40 b tD O P N o tD O 40 ca e

[ St$uAdddddddddNN -gachbbbb44ne I c.o g ..(D e s. e 9 3 4 e etD O 4 tD ee 4 M fu o n n M o n CE o $,O ne m e m bbe a.ma e uddNnnMdNdddd LAJ IfJ = b b M n be.= N' CD CQ=aaaa k-g [ e s.m O o o *d C00000000000 'E . I c M 000000000000 l 000000000000 dI NNNNNNNNNNNN [ W# e e ES .o.. T e :pw E I I P 3 4 1 E in o in o 0 ;3 uw

  • 000000000000 l

O g ord c EEEEEEEEEEEE Q[JSQ EJa* AAALLALALLAA

-- u, r-, r, r __f-r, r, r, e r, c-r- O 11 E 1 g N 102. / 'x sN ~\\ \\ X \\ \\k 270-- --90

1. 5 -

I s \\e 1.01r o s-. Cr EC

0. 5 -

M S 00HN ~ / w Cgq 28o m ? ? 5 4 e NRM T110 T150 T200 T250 T300 T350 T400 T450 T500 T550 T600 Ratio plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Crog l Locality: E20 Site lat & long= 46.50 -119.50 12 Demao steps for this sample.

0. 0
0. 0 Interval =

31.600 Strike & dip of bedding = S Inc S Diff vect JDiff V lat V long Intensitu demag JH/JO Chi C/CO l SM# Dec G Inc 0 Daff vect Der PMC 8.000 178.9 75.6

0. 0
0. 0 178.9 75 6
0. 0
0. 0 0.OOE-01 19.4 -119.0 1.16E-04 NRM 1.000 PNG 8.000 145.5 68.9 210.1 75.8 145. 5 68.9 210.1 75.9 7.16E-05 13.1

-98.6 4.60E-05 T110 0.397 l )' PNG 8.000 141.0 64.4 184.2 80.5 141. 0 64.4 184.2 80.5 1.15E-05

8. 9

-93.4 3.50E-03 T150 0.302 PNG 8.000 146.3 58.6 118.6 75.1 146.3 58.6 118.6 75.1 1.16E-05 O. 9 -94.O 2.38E-03 T2OO O.205 PMG 8.000 117.7 66.7 167.0 41.4 117.7 66.7 167.0

41. 4 1.04E-05 20.0

-81.6 1.46E-03 T250 0.126 PNG 8.000 79.8 76.8 135. 5 45.1 79.8 76.8 135.5 45 1 6.09E-06 45.1 -83.2 9.34E-06 T3OO O.001 PMG 8.000 127.4 58.5 20.6 74.6 127.4 58.5 20.6 74.6 6.19E-06

7. 8

-81.1 3.66E-06 T350 0 032 PNG 8.000 319.2 79.3 131.7 -41.8 319.2 79.3 131.7 -41.8 4.02E-06 39.6 -146.7 5.90E-06 T400 0.051 PNG 8.000 22.4 31.8 217.4

8. 3 22.4 31.8 217.4
8. 3 3.81E-06 67.9
2. 0 6.68E-06 T450 0.058 PNG 8.000 114.3 31.0 344.0 30.8 114.3 31.0 344.0 30.8 6.30E-06

-3.6 -50.5 3.93E-06 TSOO O.034 { PNG 8.000 35.8.5 22 2 142.5 10.1 358. 5 22.2 142.5 10.1 5.24E-06 35.0 63.I 2.92E-06 T550 0.025 ) PMO 8.000 116.7 5.1 332.4 12.7 116.7

3. 1 332.4 12.7 4.19E-06 -16.1

-31.3 2.03E-06 T600 0.018 l ( SIERRA GEOPHYSICS.INC. REDMOND, WASHINGTON PALEDMAGNETICS LABORATORY

r, e, r, c-c r, r, c, c c-, c e-t O N UP 1_ H E N ,n... n i n H y HDZ. o X 270-- i"M --90 F r )

1. 5 -

A k 1.01 o C Gcc l

0. 5 -

S* N 1 MM 1 0 A q 0 NRM 50G 100G 150G 200G 250G 350G 500G 700G Catio lot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Locatigy: E20 Site let & long= 46.50 -119.50 9 Deman steps for this sample.

0. 0
0. 0 bedding = S Inc S Diff vect JDiff V lat V lono Intensitu demag JH/JO Chi C/CO IntervaI=

32.300 Strike & dip of Dec SM# Dec G Inc G Diff vect PNG 9.000 257.5 88.8

0. 0
0. 0 257.5 88.8
0. 0
0. 0 0.OOE-01 45.9 -122.9 9.24E-05 NRM 1.000 PNG 9.000 186.1 71.2 350.9 73.1 106. 1 71.2 338.9 73.1 5.02E-05 12.4 -123.0 4.69E-03 SOG O.500 PMG 9.000 180.7 71.0 192.0 71.2 180.7 71.0 192.0 71.2 2.25E-05 12,0 -119.9 2.44E-05 100G O.264 PNG 9.000 174.7 61.9 238.4 84.2 174.7 61.9 238.4 84.2 9.09E-06

-0.3 -113.6 1.59E-05 150G O.172 PNG 9.000 182.1 72.7 168.2 33.6 182.1 72.7 168.2 33.6 4.81E-06 14.6 -120.7 1.19E-05 2OOG O.129 PNG 9.000 230.3 81.6 150. 2 22.9 230.3 81.6 158. 2 22.9 3.01E-06 34.0 -134.9 1.03E-05 250G O.111 PMG 9.000 249.1 81.9 211.3 80.2 249.1 81.9 211.3 80.2 4.64E-06 39.1 -138.8 5.67E-06 350G O.061 PMG 9.000 153.8 64.0 323.8 -37.2 153.8 64.0 323.8 -37.2 5.74E-06 5.0 -101.5 1.01E-05 SOOG O.109 PNG 9.000 184.2 -13.3 67.7 76.3 184.2 -13.3 67.7 76.3 1.03E-05 -50.1 -125.9 5.07E-06 700G O.055 l SIERRA GEOPHYSICS,INC. REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

-m. r rm r r r r-r r r-r- r r r e r m c- .m _m 0 N UPh U.4 ,e N \\ Z: l y ~ 270-- --90

1. 5 -

( 1.01 o C T

  • s C
0. 5 -

Ah3 o*N l [, 0 l NRM 50G 100G 150G 200G 250G 350G 500G Ratio plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Ceog. Locality: E20 Site lat & long= 46.50 -119.50 8 Demaa steps for this sample.

0. 0 00 Interval =

34.900 Strike & dip of bedding = S Inc S Diff vect JDiff V tat V long Intensitu demag JH/JO Chi C/CO SM# Dec G Inc C DaFF vect Dec PMC 10.000 338.3 87.7

0. 0
0. 0 338.3 87.7
0. 0
0. 0 0.OOE-01 50.7 -122.1 1.82E-04 NRM 1.000 PNG 10.000
3. 9 87.9 312.1 86.7
3. 9 87.9 312.1 86.7 7.OOE-05 50.7 -119.0 1.12E-04 SOG O.615 PNG 10.000 55.2 69.0 245.2 72.4 55.2 69.0 245.2 72.4 6.09E-05 34.6

-60.0 5.77E-05 100G O.317 l PNG 10.000 43.5 53.1 174.5 75.8 43.5 53.1 174.5 75.8 2.27E-05 34.8 -23.9 3.98E-05 150G O.219 PMG 10.0C0 50.1 42.2 353.5 74.6 50.1 42.2 353.5 74.6 1.24E-05 44.5 -18.2 2.46E-05 2OOG O.163 PNG 10.000 50.8 38.2 41.6' 66.9 50.8 38.2 41.6 66.9 4.27E-06 42.1 -15 9 2.50E-05 250G O.142 PNG 10.000 50.2 36.8 13.6 37.9 30.2 36.0 13.6 37.9 4.72E-06 36.4 -21.1 2.10E-05 350G O.120 PNG 10.000 79.1 30.8 20.9 -16.8 79.1 30.8 20.9 -16.8 7.65E-06 29.4 -45.7 1.97E-05 500G O.108 SIERRA GEOPHYSICS,INC. REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

r m m m m m m m m m rm m rm w. rm rm. rm. _r m 0 _1_ H UP N l H E H0Z. H0Z. X eBN 270-- + --90

1. 5 -

1.01r l o I C l Gx t

0. 5 -

S DOWN M / '_,ghw 'j a NRM 50G 100G Ratto plot is normalized

  • Intensity.

Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Locality: E20 Site let & long= 46.30 -119.30 3 Demaa steps for this sample.

0. 0
0. 0 bedding = S Interval =

33.100 Stenke & dip of vect Dec Inc S Diff vect JDiff V lat V lone Intensitu demag JH/JO Chi C/CO SM# Dec G Inc G Daff PMG 11.000 312.8 68.1

0. 0
0. 0 312. 8 68.1
0. 0
0. 0 0.OOE-01 39.1 176.8 7.42E-OS NRM 1.000 PNG 11.000 322.4 68.7 288.8 63.4 322.4 60.7 288.0 63.4 1.86E-03 63.1 177.1 3.60E-05 SOG O.733 PNG 11.000 318.3 70.0 331.6 64.4 318.3 70.0 331.6 64.4 1.41E-03 62.8 -178.3 4.20E-05 100G O.366 SIERRA GEOPHYSICS,INC.

REDMOND WASHINGTON PALE 0 MAGNETICS LABORAIDRY

m m m m m u m m n. m m. m m m ca a cm ia m o X-' If""hP s 9. ~ H E H0Z. 270-- + --90

1. s -

1.01 ~ Op E

0. 5 -

3 ONN NRM ~ _ e w 3 q 0 NRM SOG 100G Ratto plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Locality: E2O Site lat & long= 46.30 -119.50 3 Demaa steps for this sample.

0. 0
0. 0 Interval =

36.900 Strike & dip of bedding = S Inc S Diff vect JDiff V lat V lone Intensitu demag JH/60 Chi C/CO GM# Dec C Inc C Daff vect Dec PNG 12.000 333.8 69.8

0. 0
0. 0 333.8 69.8
0. 0
0. 0
0. ODE-01 81.9 -146.4 8.43E-05 NRM 1.000 PNG 12.000 348.7 68.0
2. 3 72.0 340.7 68.0
2. 3 72.0 3.36E-03 81.3 -173.8 4.00E-05 30G O.379 PNG 12.000 323.9 63.9 14.9 66.3 323.9 63.9 14.9 66.3 2.33E-05 67.0 167.3 2.62E-03 100G O.311 SIERRA GEOPHYSICS,INC.

REDMOND. WASHINGTON PALE 0 MAGNETICS LABORATORY ^ _j

c, 0 _1_ [' fHHM N UP 4 N

  • se

\\

4. s

'/ X H E 4 270-- + --90

1. 5 -

l l H0Z. 1 1 1.01r D

0. 5 -

S DOW l g'.P ~' e N 180 ,/ 1 n - ~ _ - g, q O e m NRM T110 T150 T200 T250 T300 T350 T400 T450 T500 T550 T600 tatto plot is normaltred Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Coog. .ecality: E20 Site lat & long= 46.50 -119.30 12 Demag steps for this sample.

0. 0
0. 0 Interval =

38.000 Strike & dip of bedding = S Inc S Diff vect JDiff V lat V lona Intensity demag JH/JO Chi C/CO SM# Dec C Inc 0 Diff vect Dec

  • NC 13.000 336.7 41.0
0. 0
0. 0 336.7
41. 0
0. 0
0. 0 0.OOE-01 60.3 107.7 3.61E-04 NRM 1.000

'NG 13.000 336.8 40.4 336.1 44.4 336.8 40.4 336.1 44.4 5.41E-05 60.0 107.0 3.07E-04 T110 0.850 'MG 13.000 333.3 38.8 352.8 52.7 335.3 38.0 352.8 52.7 3.3*E-05 38.3 100.0 2.75E-04 T130 0 762 rNG 13.000 336.0 38.3 330.2 42.1 336.0 38.3 330.2 42.1 3.52E-05 38.4 106 7 2.40E-04 T2OO O.665 'MG 13.000 336.9 37.4 333.7 40.5 336.9 37.4 333.7 40.5 6.91E-05 38.3 104.7 1.71E-04 T250 0.474 ENG 13.000 336.4 37.6 337.9 37.0 336.4 37.6 337.9 37.0 3.eOE-05 38.2 105.5 1.15E-04 T3OO O.319

  • NG 13.000 337.0 38.6 335.6 36.1 337.0 38.6 335.6 36.1 4.70E-05 39.0 105.4 6.80E-05 T350 O.108 rMG 13.000 336.0 40.0 338.2 36.9 336.0 40.0 338.2 36.9 3.05E-05 39.4 107.9 3.75E-05 T400 O.104 ENG 13.000 339.3 49.7 331.7 21.2 339.3 49.7 331.7
21. 2 1.33E-05 67.4 113.0 2.33E-05 T450 0.070 rMG 13.000 342 1 44.5 315.3 69.7 342.1 44.5 315.3 69.7 5.10E-06 65.2 101.7 2.07E-05 T500 0.057 FMC 13.000 350.9 45.8 340.1 44.1 350.9 45.0 340.1 44.1 1.67E-05 69.4 84.0 4.02E-06 T350 0.O!!

FMG 13.000 297.1 30.9 19.6 28.0 297.1 30.9 19.6 20.0 2.58E-06 40.3 156.4 2.15E-06 T600 0.006 SIERRA GEOPHYSICS,INC. REDMOND, WASHINGTON PALE 0 MAGNETICS U i MTORY

m r e r m rm c t__r rm r __r m r m r r r-r r O N UP N l N NRM x g \\ T kRM X i W E 270-- + --90

1. 5 -

B 5 H0Z. 1.01 C T" N

0. 5 -

S DONN NRM 1 I .t /M'P 0 NRM 25G 50G 100G 150G 200G 250G 350G 500G 700G Rstic plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Leca11ty: E20 Site lat & long= 46.50 -119.30 10 Demag steps for this sample.

0. 0 00 Interval =

38.100 Strike & dip of bedding = S Inc S Daff vect JDiff V lat V lona Intensitu demag JH/JO Chi C/CO SMe Dec G Inc C Daff vect Dec PMG 14.000 354.9 38.6

0. 0
0. 0 354.9 30.6
0. 0
0. 0 0.OOE-01 64.9 71.7 3.99E-04 NRM 1.000 PNG 14.000 355.3 38.5 348.8 39.9 355.3 30.3 348.D 39.9 2.51E-05 64.9 70.8 3.74E-04 25G O.937 PNG 14.000 355.1 36.4
2. 6 71.0 355.1 36.4
2. 6 71.0 2.41E-05 63.4 70.9 3.54E-04 50G O.887 PMO 14.000 356. 5 36.1 343.9 30.1 356. 5 36.1 343.9 30.1 4.06E-05 63.4 67.9 3.14E-04 100G O.707 PNG 14.000 357.1 35.7 351.2 39.4 357. 1 33.7 351.2 39.4 3.32E-05 63.2 66.6 2.81E-04 150G O.704 PNG 14.000 357.2 36.2 336.4 31.8 357.2 36.2 356.4 31.8 3.21E-05 63.5 66.5 2.49E-04 2OOG O.624 PNG 14.000 336.0 35.2
6. 1 42.5 356.0 35.2
6. 1 42.5 3.25E-05 62.7 68.8 2.17E-04 250G O.544 PNG 14.000 353.6 35.2
4. 4 34.8 353.6 35.2
4. 4 34.8 4.04E-05 62.4 73.7 1.69E-04 350G O.424 PMG 14.000 355.2 36.0 349.6 33.0 355.2 36.0 349.6 33.0 4.72E-05 63.2 70.6 1.22E-04 SOOG O.306 PNG 14.000 359.5 40.8 347.9 26.0 359. 5 40.8 347.9 26.0 4.11E-05 66.8 61.0 8.22E-05 7 COG O.206 l

I SIERRA GEOPHYSICS,INC. REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

e c c c, r-r, r, c-c c c r r O N UP / \\ wm m \\ H E \\ l HDZ. H0Z. X 1 NRK 270-- + --90 \\

1. 5 -
1. C S

DONN o -w Tx

0. 5 -

NRM l ~ ~ 1$0 MM /// 'q 0 NRM 50G 100G 150G 200G 250G 350G 500G 700G 800G Ratio plot is norme11 red: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Locality: E20 Site lat & long= 46.50 -119.50 10 Deman steps for this sample. SM# Dec G Inc C Diff vect Dec S Diff vect JDiff V lat V long Intensitu demag JH/JO Chi C/CO

0. 0
0. 0 Interval =

39.600 Strike & dip of bedding = S Inc PNG 15.000 313.9 72.8

0. 0
0. 0 313.9 72.8
0. 0
0. 0 0.OOE-01 60.2 -169.3 3.11E-04 NRM 1.000 PNG 15.000 307.0 72.2 354.9 71.2 307.0 72.2 354.9 71.2 4.63E-05 36.3 -170.9 2.66E-04 SOG O.855 PMG 15.000 305.8 71.2 323.8 79.5 305.8 71.2 323.8 79.5 3.04E-05 55.7 -173.6 2.36E-04 100G O.759 PNG 15.000 308.8 71.6 287.7 67.0 300.8 71.6 207.7 67.0 2.03E-05 37.5 -172.9 2.00E-04 150G O.669 PNG 15.000 309.4 72.O 304 8 60.3 309.4 72.O 304.8 68.3
2. JOE-05 57.8 -171.7 1.85E-04 2OOG O.595 PNG 15.000 311.7 73.1 295.7 59.7 311.7 73.1 295.7 59.7 1.65E-05 59.1 -160.5 1.69E-04 250G O.543 PMC.

15.000 304.7 69.7 26.3 79.4 304.7 69.7 26.3 79.4 3.2OE-05 34.7 -177.4 1.30E-04 350G O.444 PNG 15.000 302.1 72.2 308.5 64.5 302.1 72.2 308.5 64.5 4.56E-05 33.9 -170.6 9.27E-05 SOOG O.290 PNG 15.000 303.2 67.7 189.4 80.2 303.2 67.7 109.4 00.2 1.06E-05 33.2 178.4 7.53E-05 700G O.242 PNG 15.000 311.8 70.2 295.5 64.4 311.8 70.2 295.5 64.4 3.32E-05 39.0 -177.0 4.03E-05 BOOG O.130 I SIERRA GE0 PHYSICS,INC. REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

m rm rm r m rm rm m rm rm rm rm rm rm rm cm c c r-N UP N gNRM_ eN N H& E l 6.,,,,, dT H0Z. 270-- + --90 l

1. 5 -

1.01 o ~ ~ a cc

0. 5 -

~ NRM S DONN 1 0 g'pa A A, ^ ^

_a

'gu q r 0 / HRH T110 T150 T200 T250 T300 T350 T400 T450 T500 T550 T600 Ratio plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Lacality: E20 Site let & long= 46.50 -119.50 12 Demaa steps for this sample.

0. 0
0. 0 bedding = S Dec Inc S Diff vect JDiff V lat V long Intensity demag JH/JO Chi C/CO Interval =

39.900 S' ske & dip of SM# Dec C Inc C Diff vect PMC 16.000 343.7 62.0

0. 0
0. 0 343.7 62.0
0. 0
0. 0 0.OOE-01 78.0 140.6 1.63E-04 NRM 1.000 PMG 16.000 342 2 60.7 346.1 63.8 342.2 60.7 346.1 63.0 6.67E-05 76.4 136.5 9.64E-05 T110 0.591 PNG 16.000 345.3 59.4 324.3 65.5 345.3 59.4 324.3 65.5 1.72E-05 77.7 125.4 7.95E-05 TI5O O.400 PMO 16.000 342.6 30.9
2. 4 61.1 342.6
30. 9
2. 4
63. 1 1.17E-05 75.6 128.2 6.00E-05 T2OO O.417 PNG 16.000 342.4 39.8 343.0
57. 0 342.4 59.8 343.0
57. 0 2.16E-05 76.0 132.0 4.64E-05 T250 0.205 PNG 16.000 341.5 60.2 344.0, 59.1 341. 5 60.2 344,0
59. 1 1.64E-05 73.6 135.1 3.OOE-03 T3OO O.104 PNG 16.000 347.9 56.3 326.1 66.0 347.9 56.3 326.1 66.0 1.10E-05
76. D 107.7 1.92E-05 T350
0. 110 PMO 16.000 330.8 38.0 91.7 60.9 330.0 38.0 91.7 60.9 7.50E-06 35.5 113.8 1.53E-05 T400 0.094 PMG 16.000 347.7 22.3 266.2 54.1 347.7 22.3 266.2 54.1 6.05E-06
53. 6 81.1 1.19E-05 T450 0.073 PNG 16.000 36.0
4. 4 297.7 24.9 36.0
4. 4 297.7 24.9 9.16E-06 35.0 14.1 0.55E-06 TSOO O.052 PMC 16.000 15.1

-6.9 62.8 17.3 15.1 -6.9

62. 8 17.3 4.31E-06 38.3 41.1 5.23E-06 T350 0.032 PNG 16.000 230 8 46.2 33.0 -25.6 250.0 46.2 33.0 -25.6 7.76E-06 7.0 -177.2 3.77E-06 T600 0.023 f

SIERRA GEOPHYSICS,INC. REDMOND. WASHINGTON PALE 0 MAGNETICS LABORATORY

e-c O W E _L N j. h HDZ. / \\ Alt x e,_ X h- -90 270-- {-

1. 5 -

6 %e / e 1.01 o 1 G N- / c

0. 5 -

S DO m l / a MN / [7 9 i ._2 A 130 93 ^ ^ ,99 l 0 NRM SOG 100G 150G 200G 250G 350G 500G 700G 800G /' l l Ratto plot is normalised: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. i l Locality: E20 Site lat & long= 46.50 -119.50 j 10 Demag steps for this sample, inter val = 41.200 Strike k dip of bedding =

0. 0 00 SMW Dec G Inc 0 Daff vect Dec S Inc S DIFF vect JDiff V lat V lono Intensity demag JH/JO Chi C/CO PNG 17.000 191.7 86.1
0. 0
0. 0 191.7 86.1
0. 0
0. 0 0.OOE-01 39.0 -121.5 1.67E-04 NRM 1.000 PNG 17.000 102.O 82.9 243.O 71.3 102.O 62.9 243.O 71.3 5.65E-05 42.O -101.O 1.14E-04 50G O.683 PMG 17.000 129.9 81.9 60.4 80.7 129.9 81.9 60.4 00.7 4.35E-05 35.2 -104.6 7.09E-05 100G O.4?5 PNG 17.000 133.6 77.8 351.4 87.0 133.6 77.8 351.4 87.0 2.03E-05 28.6 -100.5 5.11E-05 150G O.306 PNG 17.000 1:s3. 9 75.O 59.O 87.5 135.9 75.O 59.O 87.5 1.01E-05 23.9

-98 4 4.13E-05 -2OOG O.247 l PNG 17.000 123.7 74.1 193.5 60.6 123.7 74.1 193.5 68.6 6.59E-06 26.2 -92.2 3.51E-05 250G O.210 PNG 17.000 119.3 56.6 284.2 79.3 119.3 56.6 284.2 79.3 1.33E-05

9. 8

-74.7 2.24E-05 350G O.134 PNG 17 000 137.0 64.3 61.8 -43.2 137.0 64.3 61.8 -43.2 5.3PE-06

9. 9

-90.8 2.40E-05 500G O.149 PFC 17.000 116.5 43.3 185.9 74.2 116.5 43.3 105.9 74.2 1.47E-05

1. 8

-65.4 1.19E-05 700G O. 071 PNG 17.000 140.0 47.6 34.5 -23.9 140.0 47.6 34.5 -23.9 3.92E-06 -6.6 -84.9 1.32E-05 800G O.079 SIERRA GEOPHYSICS,INC. REDNOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

( I e O 9 hI O L O [ g<\\ ( d I xxs 4 \\ a F o 6 L / O / s nu / [- / N S C o m o t e n rJ 4 T

  • P P 70&Onds&4e4-0 g

N o rd rd-O O O O O O O O bdOd66 Odd 666 [' f b g o C0000000000 g gE-nonononono I 3 E z --N rd n n e t o n e d eZ>>>>>>>>>>> C3 e = CP X d~ E ~40 [ zonn44444444N M o

  • 000000000000 E
  • st ieiliiI La0 2

eygggggywwwyg S e c v - ntdren O M T P o n eb on o n P rd e 7 rdN P \\ .c4rbdW4kbtr5kN0 $b [ \\ r-N[ o-neembottomN -,4sowssssend B 84 n4n4ssssen-O _J [ \\ >llli 18 00 i O N O awn..wNnw4>-0 u g.. j ( W>- - m 3 & & n e t trJo ned a rd 4 --- a re n 6 - t L&J o liti11 8 Z [ e C.D O O -n4444444444 4 m C00000000000 E

  • eaieil l atiei O

IbW t

  • WWWWWWWWWWWW MJ E
  • O - rw - > m > m O S T S

_J g g Co m m N T T ed m e n NO 6kbb$ ANAdnN ~ O m O g '4 ~ ~ [_ w

  • OobNemamNeba dddnddddNdEd E

k o o > smenn -rd-i-o [ 1 >= W u C3 WC-T e

  • Onen-Nbeb--4 2

~~ BongssedNNverJ 3

  • O o

nnonconense o on re n td-rd N rd-rd re <c [ C) op mNeb-nONc8 Nee unsp4484k6cidd c5 gl OcNonne t-ee Z c 1it O O -O E [ W wo m4mbence2ON-N Q f ~ od 8 udddOded6ddtdd og p e n n ed-o n M N N N 6 4 E C O c QN N rd ed td rd rd rd 4rd rd Z g = O [ wuossNem.mmes. ( - M) 3 su...-...... H. m meOmmnO4NOnO-4 O .c > boenn - rd - e - z N 2a

  • l l

O o e-os bJ _ I J) W

  • Onon-NNv8--4 u3

~ [ K-N $ " O E drir:i i d 6 d N i 4 d 2 2 H-e = nnnnennense m c

  • g N n ed-rd N N a rd N g

c-ed Z OJ JJ C3 O ONek-nosm8New g EIud6MMd6dedNdd uJ U (

  • g-chonne laev cp

[ U) w w

  • E i

ll p. ..m e k-tie g; c3 e emO 4 mb mn e t m ord-rd 2: W $ urid46dddWddt5 b

  • O enned-nnnrerdh64

== >- g OQrdrdrdrdrerdrdNrdrdre UO [ wA r E k-m 6 c. V O o

  • rd 000000000000 c

4 000000000000 g e 000000000000 [ $0,$ d$dbmbmS65Nb W . e o.. AS r - --- E E ""3;* a m o e o-oggt [ au - Oooooooooooo O goNc EEEEEEEEEEEE Q{1Sg ca-= LLLLLLLLLLLL

T lll I qijjl1 I 'F 0 a4 9 7 O F //.C / C g o R e G i F h C to 7 l p O0 F J0 a /0 e H. r J1 a R l g F a aM u mR q eN e d 01' X + f u5 7 o t0 M i-F R s sE N e n1 e t e9 Y a t. R n n6 O 7 i I T d A r r aI R o n. O o o3 B C l7 A 1 L n V S t4 C a. I i l1 T g 6 E o V N e G n G 1 A 0 M f-0 fE E iO L m a DO A 0 r J. P n 7 g O a 2 c. i d tO r eO N o v O n t T c f G e fO N v 0a. I .DO H f0 0 S o5 AW n S1 s9 e1 0. t1 .c7 D a-0n6 N n I O i0 M d5 S8 D n r. E o6 = c6 R M o4 ge1 m C nD3 i o d Z dtO n 0 = ec. g beO C E , H .n v N yo f I tl of i fO S sL pi. C n N n iD0 I et d S W te, Y nle& H P O I l C1 P U D epe O tmkc7 E iaan6 G n ~

SsrI d

t A N S e sSGB R s i R i h c6 E W l t0e1 S I a 0D3 n M m r9 R r o. N o f2 0 n 4 0 g s 0 s0 p i2e 9. 7 Et 1 t s o: =# F ly M ptaaS imv oler iaDe n tc t G ao1n M I 'e RL 9 !l l. l

r r-r r-, .r e r, r r .r r-e r r w r e r O _L' ^

t. Nr*U P A'

\\ / \\ ~ / e[' W E H02. Y ~ ~~

1. 5 -

a 1.01r o C T cc

0. 5 -

S DOWN h i 3 i / 0 ~ NRM T110 T150 T200 T250 T300 T350 T400 T450 T500 T550 T600 e Ratio olot is normalized-Intensity. Coordinates of vec tor diagram: Geog. Coordinates of equal-area plot: Geog. Site lat & long= 46.50 -119.50 Lecality: E20. this sample. 12 Demme steps for

0. 0 00 IntervaI=

43.800 Strike & dip of bedding = S Inc SMM Dec G Inc G Diff vect Dec S Diff vect JDiff V lat V long Intensity demag JH/JO Chi C/CO PMC 20.000 354.7 62.5

0. 0
0. 0 354.7 62.5
0. 0
0. 0 O.OOE-01 85.4 116.6 1.03E-04 NRM 1.000 PNG 20.000 16.1 57.4 347.0 63.3 16.1 57.4 347.0 63.3 7.93E-05 75.4
0. 3 2.44E-05 T110 0.237 PNG 20.000 23.9 46.9 324.8 75.0 23.9 46.9 324.8 75.0 8.05E-06 63.7
6. 6 1.75E-05 TISO O 170 PNG 20.000 34.3 25.2 320.6 73.4 34.3 25.2 320.6 73.4 7.07E-06 46.0
8. 4 1.23E-05 T2OO O.119 PNG 20.000 53.2 17.1 345.8 32.2 33.2 17.1 345.8 32.2 4.61E-06 31.2

-7.2 9.45E-06 T250 0.092 PNG 20.000 45.9 13.4 191.0

7. 2 45.9 13.4 191.0
7. 2 2.02E-06 34.2
1. 0 1.09E-05 T3OO O.106 PMG 20.000 49.3 -32.8 44.0 48.4 49.3 -52.8
44. 0 48.4 1.02E-05

- 1. 4 21.2 6.38E-06 T350 0 062 PNG 20.000 13.0 -32.6 124.9 -45.5 13.0 -32.6 124.9 -45.5 3.53E-06 24.7 46.9 4.70E-06 T400 0.046 PNG 20.000 5.8 -22.7 182.2 16.9 5.8 -22.7 182.2 16.9 8.3FE-Ob

31. 4 33.9 1.3OE-05 T450 0.126 PNG 20.000
31. 1 -35.1
0. 1 -18.8 31.1 -35.1
0. 1 -18.0 1.03E-05 18.4 29.6 2.01E-06 T500 0.027 PNG 20.000 310.2 -50.7 79.2 20.2 310.2 -50.7 79.?

20.2 3.11E-06

0. 0 101.2 3.40E-06 T350 0.034 PNG 20.000 228.5 -32.8
5. 0 13.4 228.5 -52.8
5. 0 13.4 3.26E-06 -51.3 152.6 4.33E-06 T600 0.042 SIERRA GEOPHYSICS.lNC.

REDMOND. WASHINGTON PALE 0 MAGNETICS LABORATORY

O 4 [- O U cn [ U o [ a Q000905 40-000~ e N o rd *

  • 0 0 Eddddd b

[ [ cn 0000 2588888 ct e Z n a ard N O e = ~}- ~~D 04-s

nn n n 444

[ m o

  • O00000

-eeeI ei e WWWWWWW e cre a a rd o b e obtOOn" >= cd ddb'r$d G [ b cat t N tD N n CE O o C o o M O CD O N b CD U a n a n N(D 4 ee I m e* I J [ f.M

  • (DNaa**

O l g...... t -O' O 4 - C' M t-- cm not1MO LJJ o l Z e C.D [ O .ar$n 4 4 4 4 000000 E

  • It 6 8I I O

9

  • WWWWWW LaJ

-J E = O 9 0 0.d 0 0' 4 C O O'.rd e - O'. e O u cn_ cn O n a b tD M [ b 03 w +s 0 9 04 61 M b ddddtN Z / o > n T rd i O o [ u CD e +040400 Z Q > O*...... O - Q O - tD = 0' a Z 50 0 04-N6 LO < p af3 g on O N ** g [ I..,' 80 m n N t -e.b wprd o tD d d O cot ord, d r z e N c IO E ~ O O un U10 4 0' e n

  • C3

[. dK"O $4 swpadJnd L1J "C N 09 cne m t o n n t U con ON- -=w&OTNbtM [ c' !n * %ddri44d c3 m o .c > n v ed i = qg.m

Po *

= 040400 L5 ~ Z ~ 1 c'.'&d.:d.:6 A bl [ 0. D

=

04-NN cn Q 'ia x D c d .c O nta t-bb g M

.

EI wdrJriddri ~ us g -.-cognNi c. n [ e. LaJ ..(D e b ee w 4e 4

  • (D00 4 0 7 D*

CE CE = m w0'a==nN

    • *Omatonot e

000 O rd a Lt3 O E b -* [ 1 [ ~O sd O00000 z o LO c e C00000 W e 000000 h$ 44444d We rd N rd fd td N [ e e o.. sS E ce :P an.* E E i a e a a E ID C ID Q 0,Q g [ ww & 000000 O goce grrggr 0I169 'd F

L l a [ [ 3 ousu 4 a / o o a w n / u / \\ so e [ O O m m n N.= 4 n c.= e a 4 sk J O C N 4 0 e o rd n edo e Nonfe=OOOOOOOO E bd66666660666 g ) b 00000000000 [ E o g granonoconono E 3 E E. rd rd m n T T 0 n 4 Z e sZw>>>>>>>>>> l O e m l o-- X l --m -nnn4444444N M o

  • O00000000000

[

  • tieeie1 I eiII e

eWWWWWWWWWWWW i e c n a-CD n 0 a n tD n 0 0-I t o.*t0 4 g rdtD M o n = 4 i .C.Ad&NW$d$NdSb b w [ n 4 s. aan b a N a n o tD N 4 b n g I 56tD666e dtD ddd6 cza o 4 ( -0 aN e 4 0 n a N ea n.a u l.- J l "> lII I Cn [ O

  • b b e n b a a.* n o tD a t J.

i O g i f CD an-NbnNn0 00 0 - I r a enonena-aean w a 18 Z e C.D c 0 annn44444444 g [ O C00000000000 U

  • tt I tI i 44 14II C

iIbO..

  • WWWWWWWWWWWW LA.J g

W E

  • O n = e N CD 0 C O O.-v J

g OONnaOO 0 erdNO S 4 6dddtDididddd O m [ l W _82 A t O b n N O a > N rd = N o 7 o > S tDID ED e an i 9 9 T c5 O i H w [ W u CD Ev e SO CD CD N n O 4 N o e n n 2 86nadna 64and E l '~ *

  • O O

0Snnbnnoand CO C on a.*** rded a rd 4 O,, o-En4 e o.a n tD CD 0 0 4 5 0-....... C"3 ) [ WlbT em O .uN N n.*4 ned.*O t n 4 1 ei O CCDID ED(D 4nN a at n Z O SO k ~ m en tab n o b tD e 40 to b b a c:2 U "[ cd s uddd6tiddd4Niri og o t CD rd ardn N O O b N a O cQ nnnnrdn afdn O O ,,0 0,4,0 4 4n 0 no $$O$d5 AWS'd NS tb [ m .c > blD to tD e a n i e e v Z

P O
  • l W

l C M ** om m*

  • CIDID N nc o rd n e n n C/5 a,b0d$dt'i$ A6 d$dd

~N c [ 0 r nor nno-no en. eg. ama NN a fd E 3*. N O .ca e. 5 sc 04e0 nntDtD0'0 4be g z o Z _R a.ltfosadaddsadsnd w td I I - g - c tD O CD tD e n N a-e n c.D O . En a b e* IIt [ w 4 g e e tn o b n o b tD t 40 tD b b o CE o E $ uddddr'idddMNMN. L.a.J T O Yb i i i i -

  • O D CD re a'e n N O O b N m

9 00 nnnnNn -Nn. cn [ E kn C o

  • b' 000000000000 c

t C00000000000 000000000000 I NrdrdrdrddedrdrdrdNN we rd N rd rd rd re rd ed N rd ed rd [ w e o.. es E== :P or= E k .= E I F-3 4 a m o e o-o ;g: su & 000000000000 [ O g ord c EEEEEEEEEEEE DI188 'Ja~ u"" [

0 t N UP ' ^ /p N i s E n y.n,,, ~ 7 X l_ \\ _ -90 270--

1. 5 -

1.01 ~ .o. I w CC e

0. 5 -

NFIM A-2 S DOWN 'A t O 0 NRM 50G 100G 150G 200G 250G 350G 500G R2tio plot is normaltred: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot; Geog. Locality: E20 Site lat & long= 46.50 -119.50 0 Demaa steps for this sample.

0. 0
0. 0 Interval =

48.300 Strike & dip of bedding = S Inc S SMe Dec G Inc G Diff vect Dec Diff vect JDiff V lat V long Intensity demag JH/JO Chi C/CO PMO 23.000 242.5 86.2

0. 0
0. 0 242.5 86.2
0. 0
0. 0 0.OOE-01 42.6 -128.6 2.OOE-04 NRM 1.000 PNG 23.000 255.1 81.7 93.2 79.3 233.1 81.7 93.2 79.5 5.10E-05 40.3 -140.4 1.51E-04 SOG O.735 PNG 23.000 249.2 80.9 276.8 83.2 249,2 80.9 276.8 83.2 4.11E-05 38.0 -140.8 1.10E-04 100G O.SSO PMG 23.000 316.0 28.8 133.2 34.6 316.0 28.8 153.2
34. 6 9.37E-05 42.1 124 9 6.69E-05 150G O.334 PNG 23.000 358.3 21.3 238.0
7. 8 358. 5 21.3 230.0
7. 8 4.64E-03
54. 3 63.0 7.14E-03 2OOG O.357 PNG 23.000 198.6 43.9 7.0 -10.3 198.6 43.9 7.0 -10.3 1.16E-04 -13.8 -136.9 6.77E-03 250G O.33H PNG 23.000 201.5
0. 0 49.3 83.6 201.5
0. 0 49.3 83.6 4.72E-OS -39.8 -140.0 5.34E-05 350G O.267 PNG 23.000 302.3 31.3 166.2 -19.7 302.3 31.3 166.2 -19.7 8.03E-03 34.3 138.6 3.20E-05 SOOG O.260 SIERRA GEOPHYSICS,INC.

REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

m r r r rm r r rm r r r r r r r r r r . r-r 0 N UP / xN ~ Nhn X f ~ H E .eM 270-- + --90

1. 5 -

' 5' / H0Z. 4 4 1.01A l Ta m o C ANRM <r cc

0. 5 -

S 00HN hNRM I /'y O Nf1M SOG 100G 150G 200G 250G 350G 500G 700G Ratio plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Locality: E20 Site lat & long= 46.50 -119.30 9 Demag steps for this sample.

0. 0
0. 0 Interval =

49.700 Strake & dip of bedding = S Inc I JH/JO Chi C/CO b ntensitu demag SM# Dec G Inc G Diff vect Dec S Daff vect JDiff V lat V lon 4.53E-04 NRM 1.000 PNG 24.000 213.6 -23.5

0. 0 00 213.6 -23.5
0. 0
0. 0 O.OCE-01 -45.6 -170.

PNG 24.000 230.5 -47.7 183.5 38.7 230.5 -47.7 183.5 38.7 2.12E-04 -47.1 156.6 4.23E-04 SOG O.934 PNG 24.000 251,7 -59.0 188.1 20.8 251.7 -59.0 188.1 20.8 1.23E-04 -39.1 130.6 4.16E-04 100G O.918 PNG 24.000 263.6 -63.2 216.5 -20.7 263.6 -63.2 216.5 -20.7 6.44E-05 -34.4 119.4 3.74E-04 150G O.826 PNG 24.000 273.5 -66.0 231.9 -38.0 273.5 -66.0 231.9 -38.0 3.53E-05 -30.9 111.2 3.2BE-04 2OOG O.724 PNG 24.000 282.7 -66.5 239.1 -57.4 282.7 -66.5 239.1 -37.4 5.74E-05 -26.6 106.3 2.74E-04 250G O 605 PMG 24.000 295.3 -67.9 258.7 -59,5 295.3 -67.9 258.7 -59. 5 7 87E-05 -22.2 98.5 1.98E-04 3500 O.437 PNG 24.000 316.0 -69.3 267.2 -59.7 316.0 -69.3 267.2 -59.7 6.94E-05 -16.3 86.3 1.32E-04 500G O.291 PNG 24.000 324.6 -68.I 295.8 -70.2 324.6 -68.1 295.8 -70.2 4.28E-05 -12.3 82.3 8.97E-05 700G O.198 SIERRA GEOPHYSICS,INC. REDMOND WASHINGTON PALE 0 MAGNETICS LABORATORY

uma C O N UP o. e h.\\ N s\\ s x H e E w e H0Z. ^ NRM ~ 270-- + --90

1. 5 -

1.01 ( O m 6-ct _k C J

0. 5 -

H v _. 2 S DOWN 1$10 [pq 0 /' NflM 50G 100G 150G 200G 250G 350G 500G 700G 800G 900G 1000G Ratio plot is norma 11 red: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Ceog. Locality: E20 Site 1st & long= 46.50 -119.50 la Demaa steps for this sample.

0. 0
0. 0 bedding = S Inc Interval =

52.100 Strike & dip of Dec S Daff vect JDiff V lat V lon Intensit demag JH/JO Chi C/CO SN# Dec G Inc C Diff vect PNG 25.000 301. 0

59. 2
0. 0
0. 0 301. 0 59.2
0. 0
0. 0 0.OOE-01 47.6 163.

1.37E-O NRM 1.000 I PMG 25.000 305.6 49.4 199.1 80.3 305.6 49.4 199.1 80.3 3.47E-05 43.3 149.0 1.10E-04 50G O.003 PNG 25.000 305.6 43.3 305.6 88.1 305.6 43.3 305.6 88.1 1.66E-05 42.2 143.6 9.76E-05 100G O.712 PNG 25.000 306.9 43.6 291.6 38.9 306.9 43.6 291.6 30.9 7.87E-06 43.2 142.9 8.99E-05 150G O.656 PNG 25.000 305.9 41.7 344.9

71. 0 305.9
41. 7 344.9
71. 0 3.55E-06 41.6 142.2 8.53E-05 200G 0.623 PNG 25.000 304.9 43.4 318.7
9. 9 304.9 43.4 318.7
9. 9 4.74E-06 41.7 144.3 8.14E-05 250G O. 594 PNG 25.000 310.4 40.8 260.3 51.2 310.4 40.8 260.3
31. 2 1.18E-05 44.2 137.7 7.15E-05 3500 0.522 PNG 25.000 308.4 38.5 327.9 54.5 308.4 38.5 327.9 54.5 9.75E-06 41.7 137.9 6.23E-05 500G O.453 PNG 25.000 303.2 42.1 318.9 29.2 303.2 42.1 318.9 29.2 1.8HE-05 40.0 144.6 4.42E-05 700G O.323 PNG 25.000 320.0 30.0 202.7 39.1 320.0 30.0 202.7 39.1 1.38E-05 45.0 121. 5 4.19E-05 BOOG O.306 PNG 25.000 290.7 31.4
6. 0 13.7 290.7 31.4
6. 0 13.7 1.H9E-05 26 4 147.7 3.16E-05 9000 0.231 PNG 25.000 281.4 36.6 315.7 10.5 281.4 36.6 315.7 10.5 7.87E-06 22.4 157.0 2.52E-OS 10000 0.184 SIERRA GEOPHYSICS,INC.

REDMOND. WASHINGTON PALE 0 MAGNETICS LA110RATORY

7 FU Ul, n n U R R R R Fm R R R Fl Fl F1 O -W._.N N UP s c -.'6m r \\ N H0Z. HDZ. X k /A --90 4 270-- + 3, 3_ A {

1. 0 C

etc w

0. 5 -

N S DOWN m-* ~ .a 180 ~23 n a / . q 0 NRM 50G 100G 150G 200G 250G 350G 500G 600G 700G 800G 9009 1000G Rat $o plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Local 4 ty: E20 Site let & long= 46 30 -119.50 13 Dewao steps for this sample.

0. 0
0. 0 bedding = S Inc S Interval =

54.300 Strike & dip of vect Dec Diff vect JDiff V lat V lono Intensitu demag JH/JO Chi C/CO SM# Dec G Inc G Diff PNG 26.000 80.7 73.6

0. 0
0. 0 80.7 75.6
0. 0
0. 0 0.OOE-01 44.1

-80.7 8.17E-OS NRM 1.000 PNG 26.000 69.0 68.0 136.7 82.6 69.0 68.0 136.7 82.6 3.44E-05 46.0 -62.0 4.86E-03 SOG O. 595 PNG 26.000 46.1 64.9 83.1 68.1 46.1 64.9 83.1 68.1 3.01E-05 38.8 -47.3 1.89E-03 100G O. 231 PNG 26.000 26.8 16.6 79.6 77.9 26.8 16.6 79.6 77.9 1.58E-05 45.7 20.9 3.80E-06 150G O 071 1 PNG 26.000 38.1 -30.0 298.3 38.1 58.1 -30.0 298.3 38.1 6.30E-06 8 3

4. 9 7.39E-06 200G 0.090 PNG 26.000 78.4 -49.2
0. 9 49.7 78.4 -49.2
0. 9 49.7 3.52E-06 -14.1

-0.4 8.43E-06 250G O.103 PNG 26.000 68.9 -37.1 211.6 68.8 68.9 -57. 1 211.6 68 8 4.14E-06 -14.3 10.8 1.22E-03 350G O.149 PMG 26.000 96.6 -63.1 335.3 38.6 96.6 -63.1 335. 5 353. 6 4.02E-06 -34.5

1. 3 1.43E-05 500G O.175 PMG 26.000 66.0 -31.0 200.0 -23.1 66.0 -31.0 200.0 -23.1 4.98E-06

-8. 2

8. 8 1.39E-03 600G O.170 PNG 26.000 106.4 -48.6
4. 4 -17.9 106.4 -48.6
4. 4 -17.9 6.09E-06 -31.8

-18.6 1.19E-OS 700G O.146 PNG 26.000 80.6 -34.9 216.2 -17.5 80.6 -34.9 216.2 -17.5 3.13E-06 -7.6 -9. 5 1.29E-03 800G O.138 PNG 26.000

  • 72.4 -49.2 94.0
4. 8 72.4 -49.2 94.0
4. 8 4.11E-06 -10.3
3. 3 1.02E-03 900G O.123 PNG 26.000 70.3 -33.O 80.O

-3.7 70.5 -33.O 80.O -3.7 1.34E-06 -13.6

8. 4 9.32E-06 1000G O.114 SIERRA GEOPHYSICS,INC.

REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

m r u r r c r r r r r r r e r c-r m 0 m 'N F;n N UP h s / x / \\ / ff H A 4 H HDZ. X gNRM 270-1 + --90 l

1. 5 _

1.09 o C E cc S 00HN

0. 5 -

NfD1 4.a 4;q NRM T110 T150 T200 T300 T350 T400 T450 T500 T550 T600 / l Ratio plot is norma 113ed? Intensity. Coordinates of vector diagram: Geog. Coordinates of equa l-dres p lo t-Geog. Locality: E20 Site lat & long= 46.50 -119.50 11 Demaa steps for this sample.

0. 0
0. 0 bedding = S Interval =

55.300 Strike & dip of vect Dec Inc S Diff vect JDaff V lat V lona Intensitu demig JH/JO Chi C/CO SM# Dec C Inc C Diff PNG 27.000 325.3 67.1

0. 0
0. 0 325.3
67. 1
0. 0
0. 0 0.OOE-01 66.8 171.6 3.04E-OS NRM 1.000 PMG 27.000 281.2 66.2 344.1 63.2 281.2 t.6.2 344.1 63.2 2.59E-05 39.3 -176.4 1.34E-05 T110 0.349 PNG 27.000 250.3 60.5 325.6 61.8 250.3 60.5 325.6 61.8 6.07E-06 17.9 -167.3 7.94E-06 T150 0 207 PMG 27.000 284.5 53.7 185.8 42.7 284. 5 33.7 185.8 42.7 3.02E-06 33.4 167.0 6.03E-06 T2OO O.157 PNG 27.000 344.4 -33.2 245.0 63.8 344.4 -33.2 245.0 63.8 7.09E-06 23.9 76.7 2 75E-06 T3OO O.072 PNG 27.000 287.3 -36.1 65.5
30. 9 287.3 -36.1 65.5 30.9 4.60E-06 -15.6 113.2 6.12E-06 T350 0.159 PNG 27.000 185.4 -32.7 339.0 20.7 185.4 -52.7 339.0 20.7 8.04E-06 -76.1 -138.8 9.96E-06 T400 0.239 PNG 27.000 198.0 30.3 175.0 -73.3 198.0 50.3 175.0 -73.3 1.18E-05 -10.7 -135.1 4.36E-06 T450 O.114 PMG 27.000 284.5 -13.1 114.3 23.6 284.5 -13.1 114.3 23.6 1.7&E-05
3. 0 135.4 1.67E-05 TSOO 0,435 PNG 27.000 213.2 -18.2 307.5

-6.3 213.2 -18.2 307.5 -6.3 1.53E-05 -43.3 -167.4 6.70E-06 T350 0.174 PNG 27.000 2,45.0 32.6 110.0 -38.4 245.0 32.6 110.0 -58.4 9.04E-06 -3.2 -179.3 1.04E-05 T600 0.071 SIERRA GEOPHYSICS,INC. REDh0ND, WASHINGTON PALE 0t1AGNETICS LABORATORY

o o o o o o o o o _o o o o o r r r r rm m 0 [ N UP M,, Q i h, e g, H02. H0Z. NilM --90 270-- +

1. 5 -

l 1.01 o i l 1 4 E CC

0. 5 -

S DOWN snn u a_ n n ~ i-A 2 M A .A /a 180 ^ ^ q 0 NRM 50G 100G 150G 200G 250G 350G 500G 700G 800G Ratio plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Locality: E20 Site lat & long= 46.50 -119.30 10 Deman steps for this sample.

0. 0
0. 0 Interval =

56.000 Strake & dip of bedding = S SM# Dec G Inc O Dsff vect Dec Inc S Diff vect JDiff V 1at V long Intensitu demag JH/JO Chi C/CO PMG 28.000 274.5 54.3

0. 0
0. 0 274.5
54. 3
0. 0
0. 0 0.OOE-01 27.3 173.4 5.43E-05 NRM 1.000 PNG 20,000 291.5 33.6 236.8 68.2 291. 5 33.6 236.8 68.2 3.03E-05 27.9 148.2 2.85E-05 50G O.5?5 PMG 28.000 304.0
7. 4 267.8 57.6 304.0
7. 4 267.8
57. 6 1.62E-05 25.5 126.9 1.63E-05 100G O.300 PNG 28.000 319.3

-9.8 226.9 48.5 319.3 -9.8 226.9 48.5 6.44E-06 27.2 107.5 1.60E-05 150G O.295 PNG 28.000 329.1 -30.5 297.8 36.5 329.1 -30.5 297.8 36.5 6.43E-06 21.2 92.4 1.29E-05 2OOG O.238 PMG 20.000 332 2 -22.0 187.1 -58.5 332.2 -22.0 187.1 -38.5 2.01E-06 26.9

91. 3 1.29E-05 250G O.238 PNG 28.000 337.4 -19.9 20u.4

-0. 3 337.4 -19.9 208.4 -0. 3 1.41E-06

29. 8 86.3 1.36E-05 3500 0.250 PMG 20.000 332 1

-5.9 350.4 -44.4 332.1 -3.9 350.4 -44.4 5.26E-06 34.7 95.2 9.21E-06 SOOG O.170 PNG 28.000 242.0

8. 4
7. 5

-9.6 242.0

8. 4 7b

-9.6 1.14E-05 -15.6 174.4 6.60E-06 700G O.122 PNG 28.000 206.3 -64.9 263.0 36.8 206.3 -64.9 263.0 36.8 8.31E-06 -72.1 139.5 6.61E-06 BOOG O.122 SIERRA GEOPHYSICS,INC. REDMOND, WASHINGTON PALE 0HAGNETICS LABORATORY

m rm rm rm rm rm rm rm rm rm rm rm rm rm rm rm rm rm rm n O H UP ~ y N y e N x o,p : / \\ e s / \\ d H0Z. e X N e 'N l x 270-- + j-90

1. 5 -

f 4 hn 'y 1.05 o / n. n CE ~ cc /

0. 5 -

/ NflH s %mQ m, /,d 4^- 4'p,'%q n A* 150 0 NRM 50G 100G 150G 200G 250G 350G 500G 700G Ratio plot is norma 11 red: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Locality: E20 Site let & long= 46.30 -119.30 9 Demag steps for this sample.

0. 0 00 bedding = S Interval =

61.700 Strike & dip of PMG 29.000 211.3 67.7

0. 0
0. 0 211 3 67.7
0. 0
0. 0 0.OOE-01 10.9 -139.b 6.49E-OsIntensity demag JH/JO Cha C/CO Dec Inc S Diff vect JDiff V lat V lon SMW Dec G Inc G Daff vect NRM 1.000 PNG 29.000 210.1 72.6 212.3 63.7 210.1 72.6 212.3 63.7 3.60E-03 17.4 -133.7 2.91E-03 SOG O.448 PNG 29.000 199.1 70.1 236.9 73.0 19V.1 70.1 236.9 73.0 1.04E-03 11.8 -130.8 1.88E-03 100G O 290 PNG 29.000 220.1 74.9 186.3 63.6 220.1 74.9 186. 3 63 6 9.32E-06 22.9 -138.9 9.67E-06 ISOC O.149 PMG 29.000 129.8 73.0 239.8 36.9 129.8 73.0 239.8 36.9 4.11E-06 22.9

-93.7 7.18E-06 200G 0.111 PNG 29.000 108.2 33.7 203.3 78.7 108.2 33.7 203.3 78.7 3.90E-C6 14.8 ~67.1 3.39E-06 230G O.033 th 29.000 103.O 3.6 283.8 23.7 103.O 3.6 203.8 23.7 3.79E-06 -B. 9 -41.7 7.23E-06 330G O.112 PNG 29.000 96.8 -11.8 220.3 39.4 96.8 -11.8 220.3 39.4 2.44E-06 -9. 0 -30.3 8.02E-06 500G O.IP4 PNG 29.000 34.0 38.7 109.9 -27.3

34. 0 38.7 109.9 -27.5 7.27E-06 40.2

-19.0 2.73E-06 700G O.042 SIERRA GE0 PHYSICS,INC. REDMOND. WASHINGTON PALE 0 MAGNETICS LABORATORY

7 n n n n n O n U n n n n n n U R G O N UP t_ ~ N A4 f N E H 'i / [ \\ H0Z. iQ&. / i X -4 ~~ Y ~

1. 5 -

1.01 / O C 1 $w (C

0. 5 -

NHM ~ A-A r a /j)q ~ 28o 0 NRM 50G 1000 150G 200G 250G 350G 500G 700G 800G 900G Ratio plot is norma 11 ed: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Locality: E20 Site lat & long= 46.50 -119.50 11 Demaa steps for this sample. Interval = 63.100 Strake & dip of bedding = S Inc S Diff vect JDiff V lat V long Intensitu demag JH/JO ' Chi C/CO i

0. 0
0. 0 PNG 30.000 116.9 75.7
0. 0
0. 0 116. 9 75.7
0. 0
0. 0 0.OOE-01 30.4

-91.6 9.49E-OS NRM 1.000 SM# Dec G Inc C Diff vect Dec ( PNG 30.000 99.4 74.9 145.9 74.0 99.4 74.9 145.9 74.0 3.33E-05 35.8 -84.2 6.01E-05 500 0.633 ( PNG 30.000 91.4 75.7 120.0 70.5 91.4 75.7 120.0 70.5 1.36E-05 39.7 -83.4 4.66E-05 100G O.491 PMG 30.000 90.0 74.3 106.4 82.6 90.0 74.3 106.4 82.6 7.68E-06 39.2 -80.2 3.90E-05 150G O.411 j PNG 30.000 71.7 70.3 193.0 45.4

71. 7 70.3 193.0 45.4 5.52E-06 45.7

-67.2 3.57E-05 2OOG O 376 l PNG 30.000 85.3 70.4 11.6 46.3 85.3 70.4

11. 6 46.3 4.27E-06 38.6

-71.0 3.24E-05 250G O. 341 PNG 30.000 79.7 73.3 102.8 45.5 79.7 73.3 102.8 45 3 3.95F-06 43.3 -75.4 2.90E-05 350G O.306 j l PNG 30.000 64.0 61.6 202.4 67.6 64.0 61.6 202.4 67.6 8.92E-06 45.6 -49.0 2.22E-05 SOOG O.234 l PNG 30.000 55.6 70.1 73.8 36.4 35.6 70.1 73.8 36.4 6.13E-06 54.7 -62.8 1.69E-05 700G O.170 PMG 30.000 169.5 66.5 33.0 48.1 169.5

66. 5 33.0 40.1 1.14E-05 6.0 -112.6 0.04E-06 BOOG O.005 PNG 30.000 ' 37.4 36.5 203.0 12.6 37.4 36.5 203.0 12.6 9.77E-06 49.9

- 1. 6 8.82E-06 900G O.093 i SIERRA GEOPHYSICS.INC. REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

[ [ [ [ [ [ RESAMPLES OF [ DECEMBER 15, 1981 [ [ i I [ [ [ [ [ l [ r L c_

r-r- c-c- m c-r- r-r- r-r- r-c- r-c- c-a?. g s H0Z. ? Q X A l 1.5-270-- + -90 / ,N/ ~ NRH pNM 1.01 o C a l x

0. 5 -

S DONN /' 180 n ~- 2 x x / , q 0 ? ? T m NRM T150 T225 T300 T360 T420 T480 T540 T600 T660 Rstio plot is normaltred: Intensity. Coordinates of vector diagram: Coog. Coordinates of equal-area plot: Geog. Le c a 11 t y : E20 Site lat & long= 46.50 -119.50 10 Demaa steps for this sample. Interval = 38.500 Strike & dip of bedding =

0. O O. O Macnigsberger ratio =

0.663 AT NRM SN# Dec Q Inc Q Diff vect Dec S Inc S Diff vect JDiff V lat V long Intensity demag JH/JO Chi C/CO NG 14.400 180.4 55.8 O. O O. O 180.4 55.8 O. O O. O O.OOE-01 -7.2 -119.8 1.37E-04 NRM 1.000 4.13E-04 1.000 NG 14.400 130.0 76.7 107.6 42.8 130.0 76.7 187.6 42.8 9.50E-05 27.9 -97.8 4.95E-05 T150 0.361 NC 14.400 101.1 56.0 227.9 75.9 101.1 56.0 227.9 75.9 2.81E-05 19.0 -63.0 2.52E-05 T225 0.184 NC 14.400 106.6 40.5 90.5 69.3 106.6 40.5 90.5 69.3 1.38E-05

6. O

-57. 1 1.23E-05 T3OO O.090 f NG 14.400 90.O 15.9 236.4 41.6 90.O 15.9 236.4 41.6 6.46E-06

5. 9

-35.I 1.35E-05 T360 O.099 MG 14.400 107.1 17.7 79.1 14.0 107.1 17.7

79. 1 14.0 8.30E-06

-4.9 -48.2 5.49E-06 T420 0.040 NC 14.400 82.6 7.6 216.8 14.0 82.6 7.6 216.8 14.0 3.12E-06

7. 9

-26.7 6.93E-06 T480 0.051 1 NO 14.400 85.4 -65.2 82.2 26.3 85.4 -65.2

82. 2 26.3 6.62E-06 -29 6
9. 3 2.22E-06 T540 0.016 NC 14.400 33.3
9. 4 205.0 -30.0 33.3
9. 4 205.0 -30.0 5.89E-06 39.2 15.5 5.70E-06 T600 0.042 NG 14.400 29Dl6 -43.7 55.9 27.3 295.6 -43.7 55.9 27.3 7.26E-06

-2. 5 115.0 3.47E-06 T660 0.025 SIERRA GEOPHYSICS,INC. REDMOND WASHINGTON PALE 0 MAGNETICS LABORATORY

r r r r r-r r-r v r e r-r em r r-r c-W E O SS. H0Z. \\ X I-- / l 270-- + --90

1. 5 _

l o" P ~ 4 l l i NRM 1.01 o C G (C

0. 5 -

S iN 0 i h NRM 50G 100G 150G 250G 400G 550 700G 850G 1000G Ratio plot is normattred: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Locality: E20 Site lat & long= 46.50 -119.50 10 Demaa steps for this sample. IntervaI= 30.800 Strike & dip of bedding =

0. O O. O 0.576 AT NRM Kosnigsberger ratto

= SMe Dec G Inc G Diff vect Dec S Inc S Diff vect JDiff V tat V lone Intensitu demag JH/JO Chi C/CO MC 14.600 194.3 59.3

0. 0
0. 0 194.3 59.3
0. 0
0. 0 0.OOE-01

-2.5 -130.4 1.31E-04 NGM 1.000 4.55E-04 1.000 MG 14.600 221.9 69.9 179.9 44.1 221.9 69.9 179.9 44.1 6.45E-05 16.4 -143.8 7.22E-05 SOC O. 551 MG 14.600 231. t 65.3 202.8 74.7 231.1 65.3 202.8 74.7 3.17E-05 13.9 -152.4 4.10E-05 IOOG O.313 MG 14.600 218.4 61.0 272.3 68.9 218.4 61.0 272.3 68.9 1.29E-05 4.8 -147.1 2.88E-05 150G O.220 1 MG 14.600 244.0 67.8 202.9

50. 9 244.0 67.8 202.9 30.9 1.46E-05 21.8 -157.3 1.50E-05 2500 0 115 MG 14.600 311.9 60.4 187.9 31.5 311.9 60.4 187.9 31.5 7.44E-06 55.5 159.8 1.15E-05 400G O.088 MG 14.600 252.3
3. 2
3. 9 61.6 252.3
3. 2
3. 9 61.6 S.ItE-05 -10.9 164.6 4.82E-06 550 0.037 NG 14.600 289.8 -52.8 195.3 62.3 289.8 -52.8 195.3 62.3 6.33E-06 -11.8 113.9 6.70E-06 700G O.051 NG 14.600 273.4 46.0 70.5 -76.4 273.4 46.0 70.5 -76.4 1.25E-05
21. 7 168.0 9.49E-06 850G O.072 MG 14.600 246'.3 74.7 302.8 -63.9 246.3 74.7 302.8 -63.9 8.19E-06 30.2 -130.1 1.47E-05 1000G O.112 SIERRA GEOPHYSICS.INC.

REDMCND. WASHINGTON PALE 0 MAGNETICS LABORATORY

l C ( e>w S 88 s N yg\\ Da .A. N 'M ! s m e t { x y c: \\ \\ j / f I OOmMnanmenn 7 0== O 4 fd e = = O O ( e NO4Mm=OOOOO bddddOd6Cdd E a m 000000000 e g e n N O 4 N:D v 04 D 3 E c== N M M e e O 4 4 3 g g ezb -b----be-o X + -m -eennnn444 M o

  • O000000000

== I 6 eI eeI eee

  • WWWWWWWWaiW e

ce a e M M N v 0 N CD w se W n b M > n o = > ED c6NNNddtb NdSN O a e.e w e 4 [ 6 crb O a o tD No n cn cr o c.......... C e o m a th n n n e b & CD CQ u a = O m e P o b tD e e 4

== -* t i i =a 4 1 a i J >II 1 I t.n

  • P N b tD n CD = N e N C)

[ O g.........

== p g(D

  • = N 4 = b a 4 (D e n a D- -

a

== =1aac W w y 0 aeennnnen. 4 0000000000 E [

  • I e6 4 i i I I ee C

t O..

  • WWWWWWWWWW LaJ i

O E

  • O P Q N M = = N a rd J

C k@ Q. [N m O N a lD N e a a a e G [ w

  • OM40NQbeno O

u......... z + A eOOeN4*Mnab q p go o > obboheNbe Q u C.D e

  • OnonenenNm Z

[ . QOebNn.*Ohnb

E 0

a.......... O 60 0 C e n e rd CD b & M U3 CD on

= = = * = =

rd 4 "Y#

  • P' U3 -* * ** N o b t O t o U

udEddNMENNd C$ ( e: O caba44ncevN z c = i O L.I.! O =0 E (\\j un trJ b O O b 404 = M O Q E (~* Id a udNNddNJdad E' z, g z e4eeve c a = = = 4 a rd O O og a [ ~ u c a a rv a c a Q O E *CnenNtobenO ,a S edd&NdddddN t.i y 4 a 4 s a I g gy n g g n g g gg s, g po

  • E l

w D e en 026

  • OnOnenenNP LO QddNNnddNr$N O

c. a

=

.o e.e n e N o.eba n en m ee. n . aa m. re ce*edP Z N

=== NO at-afs o b t O e O g )E NuddddNdENNd LaJ l e g ** C4be44044eN C.D LD ..tra e b ** I e (\\j u e 4 N .m e acts Oboob4neano cr O M E E B udNNNNNEddN ' [ Z .I v eO e4eee C O O *e oo en e.e 4.* N O O e on = =. a rn ee LO E E En* sz-O 6 o.* . $,_ $0 $ e 8888888888 'n: c e a .oro.... [ d.i.d.&.dd.k &.&.d W., m ....a.a. e e b Q.. EeS E== p ope a r g ebe e e *ED s a e s a s

  • E>a

( E gQ e c. O O O O

  • u es O

gooco 0000000000 oil 09 "Ja-s errrrrrrrr

c, c-, e-r-, c, c-0 x NN' H E B I 5 I 5 5 I 5 5 I 5 e 5 5-5 3 5 5 3 s H0Z. X e i 270-- + --90

1. 5 -

~ ~ dNRH 1.01 qpHRH ~ p ec

0. 5 -

/ n OWN / A -A % 1$10 / n n q 0 NRM 50G 100G 150G 250G 400G 550 700G 850G 1000G Rr,tio plot is normalised: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Lecclity: E20 Site let & long= 46.50 -119.50 10 Deman steps for this sample. Interval = 39.700 Strike & dip of bedding =

0. 0
0. 0 K2:nigsberger ratio =

1.489 AT NRM SM# Dec Q Inc Q Diff vect Dec S Inc S Diff vect JDiff V lat V long Intensit demag JH/JO Chi C/CO MG 15.100 146.6 49.2

0. 0
0. 0 146.6 49.2
0. 0
0. 0 0 OOE-01

-7.7 -90.7 2.07E-O NRM 1.000 2.70E-04 1.000 MG 15.100 129.1 56.6 174.3 21.3 129.1 56.6 174.3 21.3 6.15E-05

5. 3

-81. 1 1.61E-04 500 0.778 NQ 15.100 120.8 57.7 148.8 31.1 120.8 57.7 148.8 51.1 4.35E-05 10.0 -76.3 1.19E-04 1000 0.575 MG 13.100 120.9 60.0 120.5 48.4 120.9 60.0 120.3 48.4 2.37E-05 11.9 -78.0 9.57E-05 1500 0.462 NG 15.100 111. 1

59. 8 130.6
58. 5 111.1 59.8 138.6 58.5 3.37E-05 16.5

-71.9 6.27E-05 250G O.303 MG 15.100 115.8 62.4 96.9 46.8 115.8 62.4 96.9 46.8 1.16E-05 16.5 -76.7 5.16E-05 400G O.249 MG 15.100 116.O 68.O 115. 6 35.O 116.O 68.O 115.6 35.O 2.23E-05 22.O -02.O 2.96E-05 550 O.143 NG 15.100 98.9 71.4 173.4 -22.0 98.9 71.4 173.4 -22.0 3.65E-06 32.8 -78.5 3.04E-05 7000 0.147 MG 15.100 171.3 80.4 81.2

30. 9 171.3 80.4
81. 2
30. 9 1.46E-05 27.9 -116.4 1.77E-05 850G O.006 MG 15.100 288.2 69.6 130.1 25,6 288.2 69.6 130.1 25.6 7.84E-06 45.3 -173.2 1.30E-05 10000 0.072 3fMMLOPIYSICSo INC.

REDMONU, WASHINGTON PALE 0 MAGNETICS LABORATORY

C3 ( IU I(s( O ( l v8 s s. ua t o O e i O

  • W R4 uN N

N o m a OOPM4naa50n 70ncaenaann e NONaaaa-OOO dddddddddd ( e 1 m 0n0000000 e ernNO4Nmv04 3 Em=Nnneen44 i a ezerrrerrre l C3 e = ( oH X + -m -nnnnnn444 M o

  • O000000000 allilitellt
  • WWWWWWWWWW j

e CNDOWNPPaPN i e emnmatNobet i CWSSNNNNAab r l a 3 6 .nnaNsmNesN 5ddddddddWd ou -4* tem 44mmn wm >l i ebedenoneNa C) g.........

p. US.
    • 4tnOOOOON m

WN aNNnn4N q) o >ll i g, O anO4644044 0000000000 +1 1191 1 1111 O

  • WWWWWWWWWW t

O e aosasenn8ss i e not4N4440nN f g qp gy "addNdiddib L rs m E M iw

  • OP&nonment z

hJ "ga464dg;4s O c3 uo > 1841 4n4N l uJ . I <lE v3 i 18 I r e

  • OnO*Oahn>4 O *..........

O 60 O. QOa4e4n4nNN O*P4Nn am c) on NNNaNO O i ~ ** eW me-4NnmSon4 F-e- O

    • . vaOPPPNe4PN el O catenNnNON4 C

Mi llatti 1 O aO Al un MONODNebnen ( ~ ** od a uddWNddbddd h-og a ownammonone o c QNNnnnnnnaN =* [ O w somenoncene u) e e u...... m a eOneneobaec Z ig . g3 .c r> stot 4n48 H po 1 Il i y

  • z.

e-oz Q. C3 sono-O-Snee [d,3QBg;f4jgjggg

3 C3 o

e* w Ca>4Nm am qk . C) an. _ m g,N NNNaNn n

  • e g3 H
  • 40t*4NncNOn4 Z

O i SEn6uA0$WW$d4WN 6 ca. nNnNnse ..- e a US Web wi lllitt I nj u e e em OONOPNPhnen .,cy H I suddWNdMbddd a

  • O eanaNnnoont e

OOQNNMnnnnnaN Z E E bNa ac O 6 o.* z U) o *0e 0000000000 c Tb 0000000000 e 4444444444 $$e bbbbbbb44b We a -aaaaaaaaa t w e k o.. Eme E -2. mar neeeem g C I 6 P s i e

  • E>m 2:

[ m o m o oagg7 eu me O ecoco 0000000000 OI199 =Jaar rrrrrrrect

U m m m b m 0 e %a IN 'N N N UP X hMRM 270- + --90

1. 5 -

NS9 E 1.01 16Z. o mW E S DOWN / /

0. 5 -

vm f,' 0 y NRM 50G 1000 150G 250G 4000 550 700G 650G 1000G / Ratto plot is normal 11ed: Intensity. Coordinates of vector diagram: Coog. Coordinates of equal-area plot: Geog. Locality: E20 Site lat & long= 46.50 -119.50 10 Demag steps for this sample. Interval = 46.900 Strike & dip of bedding =

0. 0
0. 0 Kosnigsberger ratio =

0.132 AT NRM lon JH/JO Chi C/CO SMe Dec Q Inc Q Diff vect Dec.S Inc S Diff vect JDiff V lat V168.hIntensitudemag 2.23E-05 NRM 1.000 3.30E-04 1.000 HC 21.500 283.8

54. 5
0. 0 0 t 283.8 54.5
0. 0
0. 0 0.OOE-01 33.4 MG 21.500 332.4 17.2 185.4 3'

4 332.4

17. 2 185.4 31.4 2.09E-03 45.6 101.3 2.46E-05 SOG 1.103 NG 21.500 329.5
2. 8 142.1 31.5 329.5
2. 8 142. 1 31.5 1.09E-05 37.6 100.3 3.27E-05 100G 1.466 MG 21.500 326.0
3. 7 95.2 -13.5 326.0
3. 7 95.2 -13.5 2.65E-06 36.4 104.6 3.43E-OS 150C 1.538 HQ 21.500 328.8 9.0 311.4 -22.0 328.8 9.0 311.4 -22.8 6.08E-06 40.I 103.0 2.92E-05 250G 1,309 NG 21.500 335.4 7.6 305.0 12.9 335.4 7.6 305.0 12.9 6.72E-06 42.3 94.6 2.32E-05 400G 1.040 NC 21.500 332.9 20.8 342.9 -31.3 332.9 20.8 342.9 -31.3 6.75E-06 47.5 102.0 1.85E-05 550 0.830 NG 21.500 338.5 13.1 315. 9 38.6 338.5 13.1 315.9 38.6 5.63E-06 46.1 92.1 1.35E-05 700G O.605 NC 21.500 343.1 29.7 330.3 -20.5 343.1 29.7 330.3 -20 5 3.07E-06 56.4 90.8 9.76E-06 8500 0 438 NG 21.500 322 3
4. 2 107.3 37.3 322.5 4.2 107.3 37.3 6.51E-06 34.9 100.4 1.22E-05 1000C O.547 SIERRA CE0 PHYSICS,INC.

REDMOND, WASHINGTON pal.E0 MAGNETICS LABORATORY

1 m o m r r o r r, e o o o r r-, r r-r-v-W E O .en_ _ - y H02. ^ m X 270-- --90

1. 5 -

MR i 1.01 b o -w ax

0. 5 -

S DONN / 180 / 'pa m ^ A ^ -- -3, + 3 a, / 9 0 NRM T150 T225 T300 T360 T420 T480 T540 T600 T660 / Catto plot is normalised: Intensity. Coordinates of vector diagram: Coog. Coordinates of equal-area plot: Geog. Locality: E20 Site l e t 8. long= 46 50 -119,50 10 Demas steps for this sample. Interval = 48.100 Strike Se dip of bedding =

0. O O. O K3:nigsberger retto =

0.692 AT NRN SMG Dec C Inc 0 Diff vect Dec S Inc S Diff vect JDiff V lat V long Intensitu demag JH/JO Chi C/CO MC 22.500 251.3 65.2 O. O O. O 251.3 65.2

0. O O. O O.OOE-01 22.6 -163.6 1.74E-04 NRM 1.000 5.03E-04 1.000 MC 22.500 232.0 64.8 265.9 63.8 232.0 64.8 265.9 63 8 9.79E-05 13.7 -153.3 7.75E-05 T150 0.445 MC 22.500 202.2 45.2 272.9 69.7 202.2 45.2 272.9 69.7 5.02E-05 -14.1 -139.8 3.25E-05 1225 O.187 MC 22.500 209.1 28.4 149.6 74.7 209.1 28.4 149.6 74.7 1.21E-05 -23 O -150.2 2.40E-05 T3OO O.130 MC 22.500 207.4 18.3 221.O 63.3 207.4 18.3 221.O 63.3 5.92E-06 -29.O -130.8 1.95E-05 T360 O.I12 MC 22.500 207.7 6.5 207.0 33.0 207.7 6.5 207.0 33.0 8.93E-06 -34.6 -753.0 1.1tE-05 T420 0.064 NC 22.500 234.9 11.2 197.4

-0, 5 214.9 11.2 197.4 -0. 5 4.60E-06 -29.4 -160.2 6.68E-06 T480 0.038 MC 22.500 321.5 43.4 190.1 -16.1 321.5 45.4 190.1 -16.1 8.71E-OS

54. 0 131.2 5.2tE-06 T540 0 030 MC 22.500 79.4 -11.7 293.5 37.0 79.4 -11.7 293.5 37.0 7.2tE-06
2. 9

-17.0 3.12E-06 T600 0.018 MC 22.500 255.6 -12.6 77.O

3. 7 255.6 -12.6 77.O
3. 7 8.20E-06 -14.5 156.6 5.34E-06 T660 0.031 SIERRA GEOPHYSICS,INC.

REDMOND. WASHINGTON PALE 0 MAGNETICS LABORATORY

e, c, e-r-, c, c, r-, c, 0 N UP {V E W N o unu m g. H0Z. H0Z. X [ 270-- 1 + --90

1. 5 -

l 1.01 o s C / c / CC

0. 5 -

/ / / ~ i h / 0 p' NRM 50G 100G 150G 250G 400G 550 700G 850G 1000G e Ratio plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Luca11ty: E20 Site let & long= 46.50 -119.50 10 Demme steps for this sample. Interval = 48.500 Strike & dip of bedding =

0. 0
0. 0 Kacnigsberger ratto =

1.323 AT NRM SN# Dec G Inc G Diff vect Dec S Inr S Diff vect JDiff V lat V long Intensitu demag JH/JO Chi C/CO NC 23.500 269.6 67.9

0. O O. O 269.6 67.9
0. O O. O O.OOE-01 34.O -169.1 1.76E-04 NRM 1.000 2 66E-04 1.000 MG 23.500 269.8 75.5 269.4 31.6 269.8 75.5 269.4
31. 6 5.74E-05 40 0 -156.4 1.22E-04 500 0.693 HC 23.500 282.3 62.9 150.4 79.6 202.3 62.9 150.4 79.6 4.90E-05 37.7 178.4 7.85E-05 1000 0.446 MG 23.500 283.8 53.4 160.2 86.9 283.8 53.4 160.2 06.9 2.09E-05 32.8 167.2 6.10E-05 1500 0.347 NG 23.500 291.3 38.6 198.8 76.7 291.3 38.6 198.8 76.7 2.06E-05 30.1 151.2 4.64E-05 250G O.264 MG 23.500 298.2 24.7 255.7 66.1 290.2 24.7 255.7 66.1 1.59E-05 28.7 138.7 3.44E-05 4000 0.195 MG 23.500 297.1 22.2 300.0 28.6 297.1 22.2 300.0 28.6 1.34E-05 26.8 130. 5 2.11E-05 550 0.120 NC 23.500 317.9

-8. 1 267.7 47.2 317.9 -0. 1 267.7 47.2 1.33E-05 27.2 109.3 1.26E-05 7000 0.072 MG 23.500 337.3 3.9 250.4 -35.6 337.3 5 9 250.4 -35.6 5.10E-06 42.2 91.9 1.16E-05 050C O.066 NG 23.500 344.9 21.6 207.3 -60.5 344.9 21.6 207.3 -60.5 4.39E-06 32.5 85.3 1.41E-05 1000C O.000 SIERRA GEOPHYSICS,1NC. REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

O N N E x N h,, x \\ H0Z. / '\\, / \\ [-[ f x I t -~90 270-- +

1. 5 -

\\ p-o' I g p NftM gg 4RN 1.05 o C e / l cc l

o. 5 -

j l t 7}/ d'%.:;} 1 4 180 m m T 0 HRH T150 T225 T300 T360 T420 T480 T540 T600 T660 e' Retto plot is norma 113ed: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Locality: E20 Site 1st & long= 46.S0 -119.30 10 Demas steps for this sample. Interval = 57.000 Strike 8. dip of bedding =

0. 0
0. 0 KsCnigsberger ratto =

0.397 AT NRM SN# Dec O Inc 0 Diff vect Dec S Inc S Diff vect JDiff V lat V lono Intensitu demag JH/JO Cha C/CO NG 28.200 155.O 53.5 O. O O. O 155.O 53.5 O. O O. O O.OOE-01 -6.3 -9 8. 9 1.49E-04 fartM 1.000 4.99E-04 1.000 NG 28.200 117.0 58.1 186.2 35.0 117.0 58.1 186.2 35.0 7.13E-05 12.2 -74.2 9.29E-05 T150 0.623 NG 28.200 111. 8 49.0 141.2 74.1 111.8 49.0 141.2 74.1 3.30E-05

8. 1

~65. 2 6.25E-05 T225 0 419 NG 28.200 100. 5 44.3 168.3 52.1 100.5 44.3 168.3 32.1 1.41E-05 11.8 -54.9 5.16E-05 T3OO O.346 NG 28.200 103.7 41.4

2. 5
56. 5 103.7
41. 4
2. 5 56.5 3.80E-06
8. 3

-55.6 4.97E-05 T360 0.334 NO 28.200 99.5 41.6 120.9 38.9 99.5 41.6 120.9 38.9 9.62E-06 11.0 -52.9 4.04E-05 T420 0.271 NG 28.200 87.9 30.6 131.1 43.3 87.9 38.6 131. 1 43.3 1.22E-05 17.0 -43.5 2.96E-03 T400 0.199 NO 28.200 90.1 68.6 87.5 25.8 90.1 60.6 87.5 25.8 2.18E-05 34.8 -70.9 9.63E-06 T540 0.065 NG 28.200 50.2 -62.8 120.7 79.3 50.2 -62.8 120.7 79.3 1.29E-05 -10.9 26.4 4.15E-06 T600 0.028 NG 28.200 56.0 65.6 242.7 -81.9 56.0 65.6 242.7 -81.9 1.15E-05 52.7 -32.7 8.49E-06 T660 0.057 SIERRA GEOPHYSICS,INC. REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

l 0 N UP N N\\ i \\ X / e/ W I 270-- + --90

1. 5 -

Z.

1. 0 s O

Mw E S DOHN i

0. 5 -

/ l o ,7' NRM 50G 100G 150G 250G 400G 550 700G BSOG 1000G Ratio plot is normalized: Intensity. Coordinates of vector diagram; Coog. Cooreinates of equal-area plot: Geog. Lacality: E20 Site let 8 long= 46.50 -119.50 10 Deman steps for this sample. IntervaI= 57.200 Strike 8 dip of bedding =

0. O O. O Kuenigsberger ratio =

0.216 AT NRM SMS Dec 0 Inc Q DiFF vect Dec S Inc S DiFF vect JDiFF V ist V lone Intensit demag Ji/JO Chi C/CO MO 28.400 136.9

6. 9 O. O O. O 136.9
6. 9 O. O O. O O.OOE-01 -27.3

-69.4 2.15E-O NRM 1.000 1.99E-04 1.000 MQ 28.400 98.5 -39.0 169.1 41.3 98.5 -39.0 169.1 41.3 1.87E-05 -21.5 -19.7 1.55E-05 500 0.721 MC 28.400 83.6 -57.3 165.2 67.8 83.6 -57.3 165.2 67.8 8.28E-06 -22.6

2. 3 2.07E-05 1000 0.963 NG 28.400 80.3 -63.9 103.7 55.3 80.3 -63.9 103.7 55.3 2.84E-06 -25.9 10.4 2.20E-05 1500 1.023 NG 28.400 70.9 -63.5 198.2 42.3 70.9 -63.5 198.2 42.3 2.69E-06 -20.7 15.0 2.41E-05 2500 1.121 NG 28.400 63.1 -57.6 186.8 -61.6 63.1 -37.6 186.8 -61.6 3.69E-06 -11.8 14.8 2.17E-05 4000 1.009 MQ 28.400 55.4 -68.2 70.7 -32.4 55.4 -6e 2 70.7 -32.4 6.99E-06 -18.8 27.6 1.57E-05 550 0.730 NG 28.400 71.7 -64.3 353.7 -65.5 71.7 -64.3 353.7 -65.5 4.04E-06 -21.9 15.3 1.21E-05 700C 0.563 NG 28.400 79.0 -48.3 269.2 -13.4 79.0 -48.3 269.2 -13.4 3.87E-06 -14.0

- 1. 4 1.34E-05 050G O.623 NG 28.400 62.7 -26.2 126.3 -66.4 62.7 -26.2 126.3 -66.4 6.99E-06

7. 7
0. 0 8.15E-06 1000G O.379 SIERRA GEOPHYSICS,INC.

REDMOND, WASHINGTON PALE 0 MAGNETICS LABORA10RY

llll llll ll 1lll 1ll l l -r r 0 9 a 0 O0 C0 /. r C1 g 4 \\ o 0 N e G iE \\' h2 C2 r \\ 3 to l p O0846514 J0644737 a /0666554 r e H....... r JI00O000 a l g 05O000 a aM52O628 u mR123344 q eNTTTTTT c e d 0 X + f y4555555 o t0000000 i-s sEEEEEEE e n4280852 t e4623268 Y r a t....... 9. n n1999876 0 M i I T R d A N r e0348462 R o n....... O o o2482445 B -r C l6777777 A 1111111 L V-S t7978493 C a....... I l8026224 T g 11 111 E r o V N e G G 1556566 A 0000000 M f-0 fEEEEEEE E m iOO19834 L a DOO48234 A r 0 r J....... P 7 0 g 0719168 Z 8 a 2 0 -4 i d t0713841 E - H T c....... r e0475986 N r t T o v 22 144 O c f G e f0229233 N 0 v O i...... I 2 . D0828251. H ,^ 4 f0 O 884244 S o5 123222 A r T S5966252 W s9 e1 O D c0198223 t1 a-0 n4444355 N n I O 0 i0 M 6 d5 S6164062 D r 3 r. R E o6 = c6056224 T o4 g e2654555 C n D2222222 N i d W d t0713841 = e c...... r O 0 g b e0475986 C D 0 .n Mv 22 144 N 1 ,3 yo fR I tl oNf ~ ~ - } ~ - ~ ' T i f0229233 S s& pTi....... C r S n iAD0820251 I et d 884244 S ta. 4 123222 Y nle&9 H 5 I l 8Q5966252 P 2 epe. 0 1" ,2 tmk0c0198223 E iai n4444553 G r T

Ssr I d

t A e sS 06164062 R r i ER t h =c6056224 l t0 e2654555 I 0 a 0oD2222222 S n 5 m r4t H r r o .t ,1 o f7e 0000000 T n 5r 0000000 s 6666666 s0 p r....... i2e e 8888888 Et g 2222222 t s r r o: =e# H l yslb N R pt a a sS 5 imvg N 5 0 5 0 oleri iaDen tc te 1 1 0 ao7no OOOCGCQ r oCTc RL IK MNMNNNN + l l1l!

~ 0W'N N UP g s \\u N 4 E \\ K P Z. l X l l 270- + -90

1. 5 -

oNRM p NRM 1.01 o C / G j cc

0. 5 -

l 0 M ~ / hjj o NRM SOG 100G 150G 250G 400G T540 550G T600 T660 700G 850G 1000G / Ratio plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Lscality: E20 Site let & long= 46.30 -119.30 13 Demas steps for this sample. Interval = 37.600 Strike & dip of bedding =

0. 0
0. 0 KnGntgsberger ratto =

0.134 AT NRM SN# Dec 0 Inc 0 Diff vect Dec 9 Inc 8 Diff vect JDiff V lat V long Intensit demag JH/JO Chi C/CO NG 28.800 201.3 65.3 O. O O. O 201.3 63.3 O. O O. O O.OOE-01 5.7 -133.O 7.OOE-O NRN 1.000 9.12E-04 1.000 NG 28.800 294.0 68.6 177.5 42.6 294.0 68.6 177.3 42.6 4.43E-05 48.1 -176.8 3.61E-05 SOG O.316 NG 28.000 313.3 42.3 164.2 35.1 315.3 42.3 164.2 35.1 1.76E-05 48.4 134.2 2.85E-05 100G O.407 NG 28.800 317.8 19.2 182.0 84.1 317.8 19.2 182.8 84.1 1.16E-05 38.8 118.6 2.32E-05 130G O.331 NG 28.000 321.T 31.0 284.3 -64.2 321.2 31.0 284.3 -64.2 4.97E-06 46.2 120.7 2.35E-05 250G O.336 NG 28.800 316.. 20.7 352.4 60.6 316.0 20.7 352.4 60.6 6.26E-06 38.4 121.0 1.88E-05 400G O 269 NC 28.800 246.7 55.9 19.0 -47.9 246.7 55.9 19.0 -47.9 3.32E-05 12.2 -168.6 3.78E-05 T540 0.340 NC 28.800 325.6 26.2 206.8 44.9 325.6 26.2 206.8 44.9 3.35E-05 46.4 113.3 1.73E-05 550G O.247 NG 20.000 242.9 30.4 356.6 -9.8 242.9 30.4 356.6 -9. 8 1.71E-05 6.2 -169.3 1.37E-05 T600 0.196 NG 28.800 342.4 -36.2 233.6 54.6 342.4 -36.2 233.6 34.6 1.57E-05

3. 2 74.6 2.69E-06 T660 0.038 NG 28.800 318.6
8. 3 136.8 -13.1 318.6
8. 3 136.8 -13.1 2.02E-05 34.6 113.0 2.11E-03 700G O.301 NG 28.800 317.5 25.7 319.9 -14.6 317.5 23.7 319.9 -14.6 9.76E-06 41.5 121.9 1.27E-05 850G O.181 NG 28.800 297.4 -10.1 76.9 33.7 297.4 -10.1 76.9 33.7 1.02E-05 14.3 126.3 1.36E-03 1000G O.223 SIERRA GEOPHYSICS,INC.

REDMOND. WASHINGTON PALE 0 MAGNETICS LABORATORY

w e L L [ E E E E YAKIMA BLUFFS L [ [ E E ( E f E

L F 'w F l u e l I I l E L l l l i ZZZZZZZZZ 000000000 L

=

CCEEECCEg 0Q00C00000 EWOOO 000 O CDODOnonOn

O=0 0=O

>=>n>=>n> = e 0 0 0 ZMNwWMCn>M e w Q......... Jet *On4440 >>N=ONDONn 1 1=

== 3 N l l N e N e = = N = 3 N = 3 wn=.On44=ev. N e k N e b ( = sonNP=nnNN >N4NnNNQNm o O e O 4 I l i l l 4 I l = = m G 0 N Q W 8 N m = 0 UPNQMNMP=t e = N =. N e = Z......... a N a N L =enN=Mw444 a e O. 4 a

  • O 4

e M e = meenMNN404 9 M e = m E O 1 t 6 I l I l l i l I m E M N M o l a N M o e a UNONN40tWM B

== 5 h e

== n 6 w......... = wc N g = wc N e cnOCOQmnPP M ee g t= M ee g a= l mN4NNDNceh 8 .h eo 3 6 eo = ga e m

=

m = ga e e m

== g

  • m

== O&NmMSMP=T 04o c 2. e t.e 040 C m. n om I = 0 n om a o SQt I .e 39 .e 4 g ..= ( Z.,.. RT .e 4 g 3

*nN=ne444 g. CD

49 I O (D 4.. g CD =* 4e 1 O O e.. OntnMNN404 anngM Te anty anngM Te anLy e es N . e a B 6 a=1 L. . e ei k Q t i e 1 I ea 1 1 aa st. 00 3 M =* es N OQ R M =. *e e m. ON = n .e m. ON = n Q w.........

  • S ece.

4 g eseE >3 4 g etwE L UNnNN40emn a >s O N( ces sece O N( ces y 03 O&B M OnomOCQnPD e owop9 M... e .el =1 4 PN e e =la PN. W o5 y [ W. e .== a qJ O N 4.N N o h c P. h.

== ===e ( .e

  • ..OM 6

Mem .e

  • ..OM 6

Mme Wee sm. e m.es6 Wee 3m. e =.eak m ( .cceEv0 e ecme .cceEuO tcom u Q Jew ow= e N

cm Jew e=

e N = c= EEEEEEEEE .o=cae me OB=03 m .e=c=> 28 OR=c3 = L1 000000000 w E ucem 4g .Nu-u W E uDem 44 .Num u WWWWWWwwww 2.. kc= = a .6 enc 6 b c= = a .6 enc 6 = m em =>E v4e >=e= e= =>g ude &=e= I a m m m m to m m m m L J W = e g ( m * = ak ( =u Z = eg( owm ah ( =u = m 3m=>>ee t 00 O >ZZZZZZZZZ =3m=>>eet On u.comse 803 .A6 W

========= Z ( av.oOmDe EOS .L6 Q..== 6 n t

== ea .4 o O JJJJJJJJJ O Z.. = 6 c t

==

.4 o

L1N=N B(eesa seN4

mb=N m( gesa men 4% m m Qu .u=M .=>4ge eem, u .u=M .=>ege e.e m. .u [ (2 2 0000 O OO u =5 .v>ce c== No uwe .v>ce c== No m ** 0000 O 00 = > 4 Nagesc= me eu > 4 Nageac= mm mu WW = rm W 0000 O 00 > m e a we omecc e= um & G We onecc 0 NMTn4NmPO. m um .3 6 IZwee aeep

  • ==

.3 s 8Z=& e aggg (= = > &c E=We*** c e ZW Pc E=We*** c e ze = = > u( B o w eeos.eo

  • ats o e eeos. eo = =<

4 =>g8*4 L v3 E>u=3* (pga=I L v3 E>u=Re Q> I .E > Zm n u.* O c em*ecuee um ne*OO im=ecaee m o Pee 4. PEz* =we9 ee O Md W A DP4 4. W E z '. a s e g e e = w (g c==> be g wcm o =g c==> be .4 3 c=* g kg 4= =Z ooW u gl F 2 e LW ew =Z oOW .== = O' m=e

  • b

.=wom me (. z=e ab .=ww-ee 1 J >>>>>>>>> e C6 au=B

  • EJeccu=e g b1 aum B

=EJgccum e Am C ELEEEEEEE e um B= mon ac=. >ecece >= n= mon y c .>*osce O= u Lattataca e OLZ(QL= ZDQEQWucap mLZ(QLD Z D Q E O Li u c L > >L

m___ m _ f~%1 m p m m m m m m m m m _ rm r-, r-r r.. m l 8.OPYRICHT SIER'A GEOPHfSICS. REDMOND WA. PAGE 2 I I f1* '9 R= 8.6290 H. L. E. of kappa = 24.3 kappa = 21.6 Alpha 95=11.34 Circular stnd, dev.=17.47 Pole lata -84.5 Pole long= -98.5 tKHENT OF INERTI A STATISTICS: ff= 9 Elgenvalues= 0.198

0. 521 8.201 ihiiform test. statistic =

34.91 Data not random at 1% level. Damroth-Watson K= -13.13 f t t.. E. 'S of Bingham parameters: K1= -23.30 K2= -9.30 Hval atimuth= 17.5 9tnd. dev. angles = 0.06 14.31 l 'onfidence angles: A952= 7.23 A953=11.67 s' ole lat= -84.6 Pole long= -88. 9 Test statistics for circular symmetry: Dipo!qr= 2.26 Girdle = 36.00 lest indicates symmetric bipolar.dist. ALPHA = 9.45 l [ O i

e m. c r-c c-n O N s 'N \\ eP \\ x ) -. N 270-- + N,, --90 3, 3_ N UP 1.01 H E ,,...........J l '. o wrin 7 H0Z. f i E H02.

0. 5 -

S DOWN l / c"a 150 / A m i a / w';f, q n n. -r 9 NRM 50G 100G 150G T150 T225 T300 T360 T420 T480 T540 T600 T660 Rstic plot is normalised: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Lace 11ty: YAKIMA Site let & long= 46.30 -119.20 13 Demag steps for this sample. Interval = 0.000 Strike 8. dip of bedding =

0. O O. O

' /CO SMe Dec C Inc 0 Diff vect Dec S Inc S D1ff vect JDiff V lat V long Intensity demag JH/JO Chi 3.544 AT NRM 4 Kasnigsberger ratio = PMY 1.000 93.0 20.5

0. 0
0. 0 93.0
20. 5
0. 0
0. 0
0. ODE-01
5. 6

-39.7 1.40E-04 NRM 1.000 7.90E-05 1.000 PMY 1.000 74.0 34.0 100.0 -0.6 74.0 54.0 100.0 -0.6 9.75E-05 34.5 -45.2 6.18E-05 SOC O.441 PHY 1.000 45.5 73.0 86.9 20.6 45.5 73.0 86.9 20.6 2.00E-05 60.4 -70.5 4.20E-OS 100G O.300 PMY 1.000 17.0 74.4 97.0 41.2 17.0 74.4 97.0 41.2 7.90E-06

72. 5

-90.9 3.63E-05 150G O.239 PMY 1.000

7. 5 74.3 49.6 71.2
7. 5 74.3 49.6 71.2 7.44E-06 75.0 -104.8 2.90E-05 T150 0.207 l

PMY 1.000

5. 7 74.9 13.O 72.O
5. 7 74.9 13.O 72.O 6.31E-06 74.2 -109.2 2.27E-05 T225 O.162

) / PMY 1.000 357.5 73.0 37.7

77. 8 357. 5 73.0 37.7 77.0 6.18E-06 77.7 -125.2 1.66E-05 T3OO O.119 PMY 1.000 10.1 72.4 314.1 68.2 10.1 72.4 314.1 68.2 3.44E-06 77.1

-94.2 1.33E-05 T360 0.095 PMY 1.000

1. 2 72.4 41.3 68.7
1. 2 72.4 41.3 60.7 2.66E-06 78.7 -116.0 1.07E-05 T420 0.076 PMY 1.000 7'. 8 72.2 334.8 70.9
7. 8 72.2 334.8 70.9 2.09E-06 78.1

-90.5 O.64E-06 T480 O,062 PMY 1.000 350.9 70.2 84.2 54.7 350.9 70.2 84.2 54.7 1.33E-06 80.2 -152.1 7.59E-06 T540 0.054 PMY 1.000 343.8 66.8 25.8 76.7 343.8 66.8 25.0 76.7 2.07E-06 78.7 372.5 5.5BE-06 T600 0.040 PMY 1.000 335.6 67.3 358.3 64.7 335.6 67.3 358.3 64.7 1.90E-06 73.4 173.0 3.70E-06 T660 0.026 SIERRA GEOPHYSICS,INC. REDMUND. WASHINGTON PALE 0 MAGNETICS LABORATORY

m rm rv rm 7 cm rm rm rm m rm rm r r. rm r r r-r m O O"" N i N UP N N X \\ H E 270-- + --90 3, 3 _ ~ H0Z. i MRM 1.01 l C [' O l E N l

0. 5 -

f S ' ONYl

<E [ W O O O O C00000000 0-0-O=O= nwn>Own> [ C 3 5 b = [ C o O M ZT40CMbON M O........ Jov&Mo&OO 5 >NNQa44nt e e a tw 4 I i N e rd HMSO**MTV O. t 0 w O e k O e k JP4M4MnON rd N e 0 e Q >NCQGQWQN 0 0 t at N m W N rd Q = 4 W a N a N. UT&OnnevN g = 4 g [ o -n=&NNn4n n

  • 4 M

a e 4 O Z........ mn4444444 9 M 4 h A g M g b A t 4 I 4 m E v m E v 'u M 4 4 W T o

  1. M C

4 o 04&O&Mehn Os a 6 Ow a 6 W..... El 4-3 c N gR tn Mc rd eu [ Q4mNMmmmm re ee g s-< N &e

  • s=<

Wen Ca* rd 8 .b eOI N 3 .h

  • CI b

= eat MM M N = gaa 4 e v -*J g a v -*J [ Ut&OMnOTN NWo C v. Ove NWo c T. 9 oQ< o o T om( 0 9.* sN. e M M 3 -n*>NNO4D g .v-ne ed g g g... g 1-ng N vet... l SN .e M M Z..... 004444444 an4gh Ou 4 A re an d g h O* I 41 p

  • k a

L. .e 5 k e a E. .e 3 pee es a 00 4 M Q e eg

  • Co 3

M e a. 4& w n .e3

  • . ab n

.es Z E v4&OPMthe * >n 4 g &BOE >E 4 g & WOE O W Q43NMQMMW...... e mec0 4( cMEb

  • ac0 44cMEb N.= c.

4 of we ouOME b... 4 oi me Q W.. e ou005

  • I a

= tD e .O* e= e .O* p-tc Onn ow-

  • 3m MM M

.e e.OM b TMw o .e

  • .. O M b

WMe o e .esha Wu4 3m. e .43 b a k Wwe 3m. rd c o e

  • Ju*m*O N.c m e =

.cc8 EU Je*mEUO .ccB e 4 c-a m 4 e 4

  • c-,

EEEEEEEE .e-c=H nE 4e-os m .e-c=> CE 45-03 o u W E uogm a1 Nu-uu m 00000000 W E ucom 4e . N u - u.u 6 cm - a .6 rd n c hw [. Nocene6 WWWWWWWWW 2 - 6 c- = a 6 g- -esug g e-e=5 - m g- -eaug e e g < e - - a rd < -uw I ammmmmmmm 1 J W este-a a rd 4 -we Z e Oo o O s t o> >m s e s E 4 a e Oo e - nu c .Lk E 0 3 & o> >m s *e *i E4e .tk E o Q 522222222 O JJJJJJJJ O Z.4bMA -* en.. e og .46M4 CM .9 O E nu .o


Z <

W -m&* MCgeez em Msp Mew MCe*pz ea Mwy m Qu.u M .->egm se e o 0 M .->4ga ee -- Ne m moecc .4Hce 2 O 000000 u g-b .49 ce c -- Ne vN om mue W 3 0 000000 - Or N 5 gmec* me mue r N N J O 000000 > Om & Wm onecc w e um & W Wm emW cc

  • e >

....... M U- .R NZwee eggN

== . 5 NZa#

  • z9=3 de k

MC E-Weese C eg IN Mc E-We*** c ee Z a rd M T n 4 b Q UCI o w eeo3.eo

  • u CC3 o e ee03.so
  • u

-bg3*# E -3 E>uw Re* <>gp*E 4 v3 E>s*5*= Q ce** em*ecav Em n**OO am*6~wo=g,= 5 u mm m e mege. m Em ..w==ce,es [ I - E F Im oveOO . e. w* *c - o c e o me=e. mEs-O <m c-cr u w e* -m c-nw u* O

  • Ey ea Z

ooW HW ea Z ooW W Q. z-e W

  • b

.-ww-eve (I zw e W & b .-ww-ome E EJeccu-oe L cm au-5E u-n-eoas.c-E J a,c c u - e e --=-oouOne- .>-ososs e DM au-t %fMKTfti=EEu:

  • e Q

J oesee / d OLckiCac f Ce2<OE5 EZDOEO7UQL-- M *4 Z C C C D E Z D G E O '4ULa>F c

9 m m .m m.... m _m m m m r-m _ _m m e-m _m m m e, m m COPYRICHT SIERIA GEtJPHYSICS, NEDNOND WA. PAGE 2 FIGt'JR ST ATISTICG: ta=. O R= 7.9325 M L. E. of happa= I!8.5 kappa = 103.7 Alphs 95= 5.46 Circular stnd. d ev. = 7. 95 Pole lat= 87.1 Pole long= -36.0 rp1ENT OF INERTIA STATISTICS: 8 4-* 8 Eigenvalues= 0.036 O. 098 7.866 8)niform test statistic = 38.02 Data not random at 1% level. l Disroth-Watson K= -59.42-

  1. 1 L. E. 'S o f Bingham parameters: Kl= -110.83 M2=

-41.40 . i l Oval erimuth= 34.7 Ctnd. dev.' angles = 3.89 6:39 r,onfidenc e angles: A952= 3.37 A953= 5.53 Pole lat= 87.I Pole long= -36.4 2.14 Girdle = 160.82 Erst statistics for circular symmetry: Bipolar = l Test indncates symmetric bipolar dist. ALPHA = 4.45 s

' M _Ym U 1 0 N fjf yW 'N s s, s N N i \\ I l) W !bE 5 ~ GP H0Z. -90 + 270-- \\

1. 5 -

l 2 1.05t-n / /

o.,

/ ,/ w ctx /

0. 5 -

u J S DONN M l /. 180 /, ',B /,e#",,. q 0 HRH 50G 100G 150G 250G 400G 550G 700G 850G 1000G Ratio plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot; Oeog. Locality: M 10f4A Site let & long= 46.30 -119.50 10 Demaa steps for this sample. Interval = 0.000 Str16e & dip of bedding =

0. O 0, O SM#

Dec C Inc 0 Diff vect Dec S Inc S Diff vect JDiff V lat V lona Intensity demag JH/JO Cha C/CO IK 1.000

2. 3 64.2 O. O O. O
2. 3 64.2 O. O O. O O.OOE-01 00.4

-20.O 1.57E-04 NRM 1.000

8. 82F'-05 1.000 3.560 AT NRM Kosnigsberger tatto =

TK 1.000

9. 7 70.0 335.7 -29.8
9. 7 70.0 335.7 -29.0 1.81E-05 00.1

-84.0 1,60E-04 50G 1.019 TK 1.000 10.2 70.0

3. 6 69.9 10.2 70.0
3. 6 69.9 1.20E-05 79.9

-D2. 0 1.40E-04 1000 0.943 TK 1.000

8. 5 69.7 37.4 72.1
0. 5 69.7 37.4 72.1 1.01E-05 00.9

-05.6 1.30E-04 1500 0.879 TK 1.000 10.4 69.0 356.2 73.0 10.4 69.0 356.2 73.0 2.21E-05 00.0 -76.0 1.16E-04 250G O.739 TK 1.000

4. 8 69.0 30.9 67.3
4. 8
69. 0 30.9 67.3 2.40E-05 83.0

-94.9 9.23E-OS 400G O. 500 TK 1.000

5. 4 71.0
3. 3 61.9
5. 4 71.0
3. 3 61.9 2.03E-05 00.2 -101.2 7.22E-05 5500 0.460 TK 1.000 12.0 68.2 302.9 76.9 12.0 68.2 302.9 76.9 1.26E-05 80.6

-66.7 6.01E-05 700G O.303 TK 1.000

1. 0 70.9 32.4 57.2
1. 0 70.9 32.4 57.2 1.51E-05 81.0 -115.7 4.56E-05 850G O.2VO TK 1.000 11.1 68.8 301.7 70.2
11. 1 60.8 301.7 70.2 0.24E-06 00.7

-72.9 3.79E-05 10000 0.241 REDMOND. WASHINGTON PALE 0 MAGNETICS LABORATORY __ SIERRA _ GEOPHYSICS,INC. _ _ _ _

m r r r m r r- ___r . r r _c r e e-m e r O nrm N UP x N N \\ \\ l H 1 E eg*nn ^ ) H0Z. HDZ. l 270-- + --90

1. 5 -

l

1. o s o

E / ) (C. / l

0. 5 -

S DOWN NRM ~ Ib0 l (('q A. / l 0 + /' HRM T150 T225 T300 TJ60 T420 T480 T540 T600 T660 i l Rr;tio plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Lecnlity: K10NA Site lat & long= 46.30 -119.50 10 Deman steps for this sample. Intsrval= 2.000 Strike & dip of bedding =

0. O O. O 2.973 AT NRM Kunigsberger ratio

= SM4 Dec 0 Inc G Diff vect Dec 9 Inc S Diff vect JDiff V lat V long Intensity demag JH/JO Chi C/CO TK 2.000 345.3 59.6

0. O O. O 345.3 59.6 O. O O. O O.OOE-01 77.0 126.8 2.78E-04 NRM 1.000 1.87E-04 1.000 TK 2.000 352.9 64.8 334.8 47.0 352.9 64.8 334.8 47.0 8.78E-05 85.1 158.4 1.94E-04 T150 0.698 TK 2.000 355.9 65.1 344.0 63.5 355.9 65.1 344.0 63.5 4.72E-05 87.1 168.9 1.47E-04 T225 0.529 TK 2.000 352.6 65.2 359.7 64.9 352.6 65.2 359.7 64.9 6.81E-05 84.9 163.4 7.90E-05 T3OO O.284 TK 2.000 351.5 65.4 355.9 64.5 351.5 65.4 353.9 64.5 1.94E-05 84.1 164.8 5.96E-05 T360 0.214 TK 2.000 351.9 65.3 350.3 65.7 351. 9 65.3 350.3 65.7 1.47E-05 84.4 164.6 4.49E-05 T420 0.162 TM 2.000 349.7 64.6
4. 4 68.2 349.7 64.6
4. 4 68.2 7.65E-06 82.9 155.7 3.73E-05 T480 0.134 TK 2.000 347.9 65.6 352.8 62.6 347.9 65.6 352.8 62.6 1.2BE-05 81.6 165.0 2.45E-05 T540 0.088 i

TK 2.000 351,7 58.7 342.9 71.1 351.7 58.7 342.9

71. I 1.36E-05 80.8 105. O 1.11E-05 T600 O.040 l

TK 2.000 33?.2 56.5

3. 3 59.5 339.2
56. 5
3. 3
59. 5 6.02E-06 72.0 126.9 5.15E-06 T660 0.019

{ SIERRA GEOPHYSICS,1NC. REDMOND, WASHINGTON PALE 0 MAP,NEllCS LABURA10RY

r.~, c c, c, e c O N UP pm N N N \\ \\ i Nft1 l I g tt X q d E 1 i 270-- + -.-90

1. 5 -

H02. 1 f / 1.01 o l C a ,i x

0. 5 -

/ ~ / S DOWN 1 l / y' ~a f'y.w);q A 180 ^ l 0 HRH 50G 100G 150G 250G 400G 550G 700G 850G 1000G lo is normalised: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Retto $v: t Locali K10NA Site lat 8 long= 46.30 -119.50 10 Demaa steps for this sample. Interval = 10.000 Strike 8. dip of bedding =

0. 0
0. 0 Srl#

Dec Q Inc C Diff vect Dec S Inc S Diff vect JDiff V lat V lona Intensitu demag JH/JO Chi C/CO K3Gnigsberger ratio = 2.266 AT NRl1 PMK 1.000 359.6 46.8 O. O O. O 359.6 46.8 O. O O. O O. DOE-01 71.7 bl. 7 2.47E-04 NRM 1.000 2.18E-04 1.000 PNK 1.000 356.9 55.O 9.2 -13.8 356.9 55.O 9.2 -13.8 3.84E-05 79.O 73.9 2 31E-04 500 O.935 PNK 1.000 354.9 55.1 10.8 53.3 354.9 55.1 10.8 53.3 2.83E-05 78.7 82.2 2.03E-04 1000 0.822 PNK 1.000 357. 5 34.7 338.O 56.3 357.5 54.7 338.O 56.3 2.85E-05 78.7 71.1 1.75E-04 150G O.709 PNK 1.000 353.8 55.1

5. 4 53.4 353. 8 55.1
5. 4 53.4 5.43E-05 78.4 86.2 1.21E-04 250G O.490 PNK 1.000 353.8 55.1 353.8 55.1 353.8 55.1 353. G 55.1 4.19E-05 78.3 86.3 7.91E-05 4000 O.320 PNK 1.000 331.2 55.7 359.6 53.5 351. 2 35.7 359.6 53.5 2.35E-05 78.0 96.9 5.57E-05 550C O.226 PNK 1.000 354.3 30.3 339.5 67.4 354.3 30.3 339.5 67.4 1.73E-05 74.2 78.6 3.90E-05 7000 O.150 PNK 1.000 351. 6 32.3
1. 4 43.7 351.6 52,3
1. 4 43.7 9,53E-06 75.1 89.I 2.96E-05 850G O.120 Plin 1.000 O.1 40,8 327.2 57.4 O. 1 48.B 327.2 37,4 9.14E-06 73 4 60.3 2.09E-05 1000C O.085 EdlFfm FSTNW% llc"L____ REDMONDg___WASHl_NGTO_N PALE 0 MAGNETICS LABORATURY

r m rvt m m m rm m m m m m m m m m m m m r -- O N UP f pHRH s.x s y N a l t t .\\ U E ) t H0Z* 270-- + --90

1. 5 -

~ / /

1. 0 s

/ 2 /- a 00HN / ec

0. 5 -

/ NRM - i / / w 160 / l n /' j,',,& 0 ~ NRM T150 T225 T300 T360 T420 T480 T540 T600 T660 / Ratio lot is normalised-Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog l l Lacoli g: KIDNA Site 1st & long= 46.30 -119.30 l 13 Demag steps for this sample. I n t;:. r va l = 0.700 Strike & di of bedding =

0. 0
0. 0 KKnigsberger ratio =

1.859 A NRP1 SN4 Dec Q Inc G Diff vect Dec S Inc S D1FF vect JDiff V lat V long Intens1t demag JH/JO Chi C/CO PNK 2.000 357.5 55.2

0. O O. O 357. 5 55.2
0. O O. O O.OOE-01 79.3 71.4 3 56E-O NRM 1.000 3.83E-04 1.000 PNK 2.000 359.2 62.0 355.7 44.3 359.2 62.0 335.7 44.3 1.39E-04 86.9
71. 0 2.21E-04 TI5O O.621 PNK 2.000 358. 7 61.8
1. 8 63.0 358.7 61.8
1. 0 63.0 3.70E-05 86.6 76.6 1.84E-04 T225 0 517 PMK 2.000 350. 0 62.0
0. 1 61.4 358.0 62.0
0. 1 61.4 6.10E-05 86.6 86.3 1.23E-04 T3OO O.346 PNK 2.000 357.6 62.6 359.4 39.7 357.6 62.6 359.4 39.7 2.57E-05 87.1 97.2 9.73E-05 T360 0.273 PNK 2.000 357.5 63.6 357.8 60.6 357. 5 63.6 357.8 60.6 3.24E-05 87.9 119.4 6.49F-OS T420 O.102 PNK 2.000
0. 7 64.4 347.1 60.0
0. 7 64.4 347.1 60.0 1.37E-05 09.5

-16.4 5.13E-05 T480 0.144 PNK 2.000 354. 1 61.8 15.3 60.0 354.1 61.8 15.3 68.0 1.00E-05 84.6 113.9 3.27E-05 T540 0.092 PNK 2.000

1. 8 56.8 350.9 63.4
1. 8 56.8 350.9 63.4 2.44E-05 81.0 31.2 8.35E-06 T600 0.023 PMK 2.000 10.0 33.5
0. 4 57.3 10.0 33.5
0. 4
57. 3 7.20E-06 73.6 25.2 1.16E-06 T660 0.003 SIERRA GEOPHYSICS,INC.

REDMOND,14ASHINGTON FALEUMAGNETICS LABORATORY

r r-r, r, r c, r, r, r i-r r-r r-r c c-r ~ 0 N U NRn o-NN i o \\ *NflH y " E o H g* .m l H0Z. e i ~ 270-- + --90

1. 5 _

~ I 1.01 ~ o e4 1- / E

o. s -

/ l S DOWN l Rn l / lb0 / + + .q, 0 NRM SOG 100G 150G 250G 400G 550G 700G 850G 1000G l Ratio plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coerdinates of equal-area plot; Geog Lecolity: K10NA Site lat & long= 46.30 -119.50 10 Deman steps for this sample. Int 9rval= 3.000 Strike & dip of bedding =

0. O O. O Kssnigsberger tatto =

0.484 AT NRM SMG Dec O Inc 0 Diff vect Dec S Inc S Diff vect JDiff V lat V lona Intensity demag JH/JO Chi C/CO PMK 3.000 11.6 60.6 O. O O. O 11.6 60.6 O. O O. O O.OOE-01 80.4 -4.5 1.01E-04 NRM 1.000 4.17E-04 1.000 PMK 3.000

0. 8 69.2 22.0 41.6
0. 0 69.2 22.0 41.6 3.43E-05 83.6 -115.2 6.90E-05 SOG O.691 PMK 3.000 339.7 67.3
2. 7 71.8 339.7 67.3
2. 7
71. 8 2.94E-05 86.2 -122.2 4.03E-05 1000 0.401 PMK 3.000
4. 5 63.3 345.7 73.9
4. 5 63.3 345.7 73.9 1.46E-05 86.5

-3. 5 2.61E-05 1500 0.238 PNK 3.000 355.1 43.2 66.8 81.2 355.1 43.2 66.8 81.2 1.32E-05 68.5 72.8 1.50E-05 2500 O.149 PMK 3.000

1. 5 81.0 354.2
8. 2
1. 5 G1.0 354.2
8. 2 9.64E-06 63.8 -118.5 9.OOE-06 400G O.007 PMK 3.000 327.0 31.1 97.4 81.0 327.0 51.1 97.4 81.0 6.69E-06 60.9 132.4 2.93E-06 550G O.029 PMK 3.000 210.9 53.O 356.3
3. 5 210,9 53.O 356.3
3. 5 2.91E-06

-3.5 -144.9 2.63E-06 700G O.026 PMK 3.000 343.1

3. 2 177.1 20.0 343.1
5. 2 177. 1 20.0 3.16E-06 43.9 84.2 3.66E-06 050G O.036 PMK 3.000 27.7 6.1 246.7

-4. O 27.7 6.1 246.7 -4. O 4.08E-06 40.5 22.9 5.79E-06 1000G O.057 SIERRA GEOPHYSICS,INC. REDMOND, kASHINGTON PALE 0 MAGNETICS LABORATORY

[ O ) O ,[ 7 .Ndds l CO .x 00 s. ~ 's\\h e s e [ / \\ O -w 20 / n O,O=mNmN4Nne [ 00ncnen<-N e NONaOOOOOOO Eddddddddd 6 b o Oc0000000 E [ Q e gEnNO4Nmv04 2 se-Nnneen44 e eZFFHMMe>>M O e w CA X d ~4 =enn4444444 g m o

  • O000000000

-sisisist ii e ewwwwwwwwww a cosee-N-sev e eO-enebenn-E .cdd-6dddddd E5 w b oGNO=mmannb 3: odiNNddddNd u -* N4 NN en <C I 1 _I t.n vomN40Nemen u [ O e.......... e-= p'. g3 -mmnown= Nom H-U) m bbbbennnnt QJ U l O -n44444444 4 0000000000 E 46 4 I liI 4 iI i O [ O.. sWWWWWWWwww uJ C) e OnnnenNnON _J i qp g3 e QO4cOe-COan H" dddddddNMd a ca [ .OmenNnnebn b(.m o O o w u s C.D e

  • Conte 4bNaa 2

. 06ddd$ddddd 5 [ C3 so 0 -Nee 4-84n u7 CD 00 Na N n ~[ 86 manenNaNmae U uddddNNdddd d [ 41 O c4cngeNNaN4 2 c lI C O =O E N en matanONON-* C od B unddNMddNdd f ~

  • W og a emmmcNNNenn u

c Q n na [ w w O 3 *OmenNonebn 5 ed$ddddddd$ Li E OC i( .c r> en4=cNNNO 2 m r 0-LLJ O E3 Uw 5 [

  • OOnet4bNam E

D C3 LJ .m>*.......... _al ma O 4connnh-mnne c. e 3 -Nee 4-sen m n? .o i i i i i a i i e i i g m

  • e.

w N~ N n c-ean I [ V) Z r no-nenN-Nm-> a SESOudddd$$dddd S c4nnegNNaN4 C W .54* s's a b = 11 W w e 4 ~ .N e

  • W OatanObmNaa 2

E nudddNiddidd [ . N e con n na v = - *o e--anNNNenh z e 60* O ic O 6 o.* o *Os 0000000000 . U) 2 . I z c4 6 00o0000000 Ze 0000000000 r

  • B' 2 4444444444

.s.e u r - = --.o. o. n E" g '": * :i i i r i [ 32a,t; n o o o ou e <<<<<<<<<< o socco EEEEEEEEEE Q{Jhg EJa-g LLLLLLLLLA

i o m n _n r o n n o o o o o o _n n o o r-0 t N UPpn g E i H f 2,/ H0Z. H02. --90 270--

1. 5 -
1. o n o

C cc

0. 5 -

nn DONN e 7 150 / / / ' ]' 4 i 1 2 /, n ^ ? 0 HRH 50G 100G 150G 250G 400G 550G 700G 850G 1000G Ratio plot is normalised: Intensity. Coordinates of vector diagram: Geog. Coordinates or egual-area plot: Geog. Lacolity: K!ONA Site lat & long= 46.30 -119.50 10 Demas steps for this sample. Intseval= 0.000 Strike & dip of bedding =

0. 0
0. 0 Sete Dec 0 Inc 0 Diff vect Dec S Inc S Diff vect JDiff V tat V long Intensit demaq JH/JO Chi C/CO Koenigsberger ratio =

0.485 AT NRM PMK 5.000 14.4 59.9 O. O O. O 14.4 59.9 O. O O. O O.OOE-01 78.2 -6.6 2.33E-O NftM 1.000 9.60E-04 1.000 PMK 5.000 10.3 69.3

17. 5 45.5 10.3 69.3 17.5 45.5 9.50E-05 80.6

-77.9 1.43E-04 SOG O.614 PMM 5.000

7. 2 69.2 15.2 69.3
7. 2 69.2 15.2 69.3 5.55E-05 82.1

-86.3 0.75E-05 100G O.376 PMK 5.000 355.7 67.1 36.5 70.5 355. 7 67.1 36.5 70.5 2.63E-05 85.4 -156.6 5.90E-05 150G O.257 PMK 5.000 22.2 66.4 325.3 61.6 22.2 66.4 325.3 61.6 2.61E-05 74.9 -47.5 3.51E-05 250G O.151 PMK 5.000 24.1 73.5 21.0 57.6 24.1

73. 5 21.0 57.6 1.50E-05 70.6

-80.7 1.96E-05 400G O.004 PMK 5.000 209.8 81.0 25.6 39.1 209.8 81.0 25.6 39.1 9.75E-06 30.6 -129.5 1.20E-05 550G O.055 PMM 5.000 186.4 60.6 345.0 31.8 106.4 68.6 345.0 31.8 3.53E-06

8. 4 -123.5 1.06E-05 700G O.045 PMK 5.000 21.6 46.0 195.5 22.3
21. 5 46.0 195. 5 22.3 1.03E-05 64.5 10.9 0.20E-06 0500 0.036 PMK 5.000 191.9 32.0 16.6 10.1 191.9 32.0 16.6 10.1 1.21E-05 -25.4 -132.1 7.26E-06 1000G O.031 l

i SIERRA GEOPHYSICS,INC. REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

o r~, o o o o o u o o r t_f o _o o o o r O N UP NRM ~ N x N l N l I o \\ \\ a H J,E \\ nnn ,U .y2 g H0Z. -90 ~ 270-- +

1. 5 -

,i / l 1.01 ~ / O C / cc / l cc

0. 5 -

/ S 00HN l /,qa i 180 g,f7 l F n N A 4, -- C,,' 9 3, m o NRM T150 T225 T300 T360 T420 T480 T540 T600 T660 c Rstio plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. L#cality: K10NA Site let & long= 46.30 -119.50 10 Deman steps for this sample. Interval = 0.000 Strike & dip of bedding =

0. 0
0. 0 i

SM# Dec C Inc Q Diff vect Dec S Inc S Diff vect JDiff V lat V lona Intensitu demag JH/JO Chi C/CO Ksenigsberger ratto = 0.539 AT NRM PMK 6.000 12.9 61.6

0. 0
0. 0 12.9 61.6
0. 0
0. 0 0.OOE-01 00.2

-12.9 1.52E-04 NRM 1.000 5.64E-04 1.000 PNK 6.000 349.5 66.9 19.0 59.0 349.5 66.9 19.0 59.0 1.13E-04 02.3 179.1 3.99E-05 TISO O.262 i PMK 6.000 353.4 66.2 330.0 68.3 353.4 66.2 "30.0 t 8. 3 1.OBE-05 05.0 179.3 2.91E-05 T225 O.191 PNK 6.000 343,8 60.9 80.8 69.9 343.8 60.9 80.8 19.9 5,74E-06 77.6 135.O 2.43E-05 T3OO O 160 J PMK 6.000 345.6 68.0 341.? 43.2 345.6 68.0 341.5 43.2 7.10E-06 79 4 -177.6 1.76E-05 T360 0.116 PMK 6.000 352.4 43.2 303.7 04.5 352.4 43.2 303.7 04.5 1.09E-05 68.0 79.2 8.04E-06 1420 0.053 PMK 6.000 300.9 54.9 49.3 -21.0 300.9 54.9 49.3 -21.0 5.18E-06 45.1 158.5 9.OOE-06 T4BO O.059 PMK 6.000 306.5 42.9 195,9 77.3 306.5 42.9 195.9 77.3 2.46E-06 42.6 142.8 7.29E-06 7540 O.040 PMK 6.000 152.4 38.5 313.6 24.0 152.4 38.5 313.6 24.8 7.96E-06 -17.6 -92.6 2.60E-06 1600 0.017 PMK 6.000 191.3 -59.0 47.3 73.2 191.3 -59.0 47.3 73.2 7.50E-06 -79.4 -175.1 6.49E-06 1660 0.043 2WO!B FIDMM@h INC. RE0t10ND, WASHINGTON PALE 0MAGNEIICS LABORATORY

c-r- r-c- c-c-, c-c, O N UP .t_ x wnn s \\ A l W E N X = ^ u H0Z. ~ j t 270-- + --90 l l

1. 5 -

~ 1.01 .o. e-G x

0. 5 -

RM OWN ,s 1ElO I m Nm i n, n, n. <,, q O NRM 50G 100G 150G 250G 400G 550G 700G 850G 1000G Ratio plot is normalised: Intensity. Coordinates of vector diagram: Coog. Coordinates of equal-area plot: Geog. Lat c a li t y: K10NA Site lat & long= 46.30 -119.50 10 Demaa steps for this sample. Interval = 2.400 Strike 4, dip of bedding =

0. O O. O I

SM# Dec Q Inc 0 Diff vect Der S Inc S Diff vect JDiff V lat V lona intensitu demag JH/JO Cha C/CO Koenigsberger ratio = 0.631 AT NRM PNK 7.000 22.9 59.4

0. 0
0. 0 22.9 59.4
0. 0
0. 0 0.OOE-01 72.3

-17.7 1.20E-04 NRM 1.000 4.06E-04 1.000 PNK 7.000 16.5 67.2 29.7 43.2 16.5 67.2 29.7 43.2 4.37E-05 70.4 -54.1 0.71E-05 500 0.680 PNK 7.000 17.7 66.6 14.2 68.2 17.7 66.6 14.2 68.2 3.14E-05 77.8 -49.6 5.57E-05 100G O.435 i PNK 7.000 19.7

69. 5 14.2 38.9 19.7
69. 5 14.2 30.9 1.55E-05 73.6

-65.6 4.04E-05 1500 0.316 PMK 7.000 31.6 73.3 12.1 65.5 31.6 73.3 12.1 65.5 2.11E-05 67.3 -75.2 1.95E-05 250G O.152 PNK 7.000 42.7 66.0 296.3 78.7 42.7 66.0 296.3 78.7 5.73E-06 61.4 -49.3 1.43E-05 400G O.112 PNK 7.000 64.5 78.9 37.2 55.6

64. 5 78.9 37.2 55.6 8.33E-06 31.4

-07.5 6.31E-06 550G O.049 PNK 7.000 39.6 61.9 205.9

5. 1 39.6 61.9 205.9
5. I 2.17E-06 62.0

-37.5 6.OOE-06 7000 0.053 PNK 7.000 25.1 23.I 185.3 57.6 25.1 23.I 185.3 57.6 4.41E-06 49.7 20.6 5.79E-06 850G O.045 PMK 7.000

47. B

-1.5 287.O 45.3 47.8 -1.5 207.O 45.5 3.41E-06 27.O

4. 2 6.14E-06 1000C O.048 SIERRA GEOPHYSICS,INC.

REDMOND. WASHINGTON PALE 0i1AGNETICS LABORAIDRY

c c c c c, e-c c c c 0 N UP tm N x /. \\ NN g l H E

  • ~, NRM X

i c-1 H0Z. 3,3_ 270-- + -90 1.01 I o / n / p a i

0. 5 -

NHM S DONN 150 / w y pa 1 -A g a m 2 q r 0 NRM T150 T225 T300 T360 T420 T480 T540 T600 T660 Ratio plot is normattred: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Locality: K10NA Site t a t la long= 46.30 -119.50 10 Demas steps for this sample. i Interval = 0.000 Strike & dip of bedding =

0. 0
0. 0 l

Kc:nigsberger ratto = 0.570 AT NRM SPl# Dec Q Inc G Diff vect Dec S Inc S Diff vert JDiff V lat V lona Intensit demag JH/JO Cha C/CO PMK 8.000 16.4

58. 6
0. 0
0. 0 16 4 58.6
0. 0
0. 0 0.OOE-01 76.2

-5. 2 9.40E-O NRM 1.000 3.30E-04 1.000 PMK 8.000 333.7 56.7 22.7 58.4 353.7

56. 7 22.7 58.4 7.45E-05 79.9 90.3 2.01E-05 T150 0.214 PMK 8.000 347.8 52.6 32.7 67.8 347.8 52.6 32.7 67.8 4.2SE-06 73.9 100.0 1.62E-05 T225 0.172 PMK B.000 341. 5 53.3
7. 7 47.7 341. 5 33.3
7. 7 47.7 3.63E-06 71.2 115.7 1.27E-05 T3OO O.135 PMK 8.000 322.7 45.6 43.3 52.7 322.7 45.6 43.3 52.7 4.10E-06 54.9 130.3 9.6VE-06 T360 O.103 PMK B.000 331.4 24.2 254.8 73.3 331.4 24.2 254.8 75.3 4.16E-06 48.6 105.5 7.00E-06 1420 0.075 PMK 8.000 334.7
8. 7 197.4 73.5 334.7
8. 7 197.4 73.5 1.93E-06 42.6 96.0 6.93E-06 T480 0.074 PNK 8.000 293.3

-3.0 17.4 13.9 293.3 ~3. 0 17.4 15.9 4.73E-06 14.7 132.2 4.6DE-06 1540 0.050 PMK 8.000 252.6 55.2 304.5 -26.2 252.6 53.2 304.5 -26.2 4.3PE-06 14.7 -172.7 2.02E-06 T600 0.OP1 PMK 8.000 176.6 30.9 327.4

7. 3 176.6 30.9 327.4
7. 3 2.31E-06 -27.O -115.8 2.66E-06 T660 O.020 SIERRA CE0 PHYSICS.INC.

REDMOND. WASHINGTON PALE 0 MAGNETICS LABORATORY

Y W W I c u r u rL E c L GRAVEL PIT c E E E E E E E E L - ---- - - - --- -

[ [ s [ ZZZZZZZZZZ [ 0000000000

===w

ECEEEEEccc 00000000000 4EW O O O O O Q0000000000 OaO*O*0aOM CHOHC>nkD> I 1 [ 3 O O 4 4 d A o 4 l e ZMm=.ObMoaar a l C.. a JbtNONNNaMM >aamt NAM *M 3 4 I l a t la E I a e a e a >Om40&OmMbN 4 w 4. 3 4 e b 4 e b [a 4........ .4 = JONNM44~O

  • > b m 4 m m m 4 b "e m e

o e o = a m m W B N N m 8 8 N O O T h o rd a p 4 N N 4 e a 4 9 a 4 Z. a O a O A =m S&MOaNNM a e & O a e O Li n 60406444 e a g N g g a e rg . e I N a m I N a m E w O T o En. h N E t O T o RO Mw s L unN4Mbotbo4 Mw e b Mc N ga W.......... M Mc N gR M QOWmNMO4Na0 h bg g R-( b Ng g Ba< [. WN M a rd a n 8 .k

  • OI B

.k

  • 0:

M M e 04 g at N gaa i e

  • m

==J e e m n o om4 m o > om UtbONa04NN4 Dao c N WOm na o c N COe Z.......... 25. e rd n .m 3S. e N o ..= 3 = tD N 4 & M O = N N M g.ca Ng a c c e... g .0-8g e o n g... 004be44N444 a&4ga =* 4 L pu a&4ga a* 4 4 pe [ Q' a L. g s be a L. .g R b e gB C 00 a O gB e CO 3 M >*a a o .63 a n .tw m Nm D e m. Nm unb4MNO&bo4 * >R N g PsmE >. u. N g &PmE W.........

  • eco O

a(CMEk

  • ec0 O

a(cMEL t3 o ed M

  • Nan
  • 1*

&4 .. 4 oi pg onog8 4... 4 0 8 pg W COPmNMO4 Nan. og of 5 4. e . O' * *=

  • l*

&4 ea M M 4

  • ..Ow 6

bMe o

  • ..Ow s-hMe O

b WW g 3m. e . g3 km WW 4 3m e .43 km m 4 .cceEuO ecag* .ccesuo. ecega = u o Jew m*= e m

  • c=a Jew m*=

m m

  • c-a EEEEEEEEEE

.e-c=> gE 4p-o3 m .emc=> WE <s-o2 m 0000000000 W E uogm a g .Nu-uu W E wogm a g .Nu-wu = WWWWWWWWWWW Z bc= a u 6 onc kw b cm = 5 .k coc k* a m g= abB whg &=**k 4 g* -H3 wNg .P=e*k Ammmmmmmmmm [I J W = e 9 4 e

  • M a rd 4 mue Z

a eg4**MnN ( a uw &3M->>est eo a eo e = O HZZZZZZZZZZ >3Ma >Fe*g . p . L s. E o Mw. o O U3 3 e Ea. 3 . A s. E W

  • ========a Z <

Mu. o O (D 3 e Ea o JJJJJJJJJJ Q Z.4kmL eM .. m oE g.4kma gM .. m os =mm* b(gesma e* N** Omma b4g*Umw ee rd *

  • 4 m

OO.u N. = > su g m ee .

  • Ou

.U rd .a >ega ee e a 0000 00000 u m=P PFce c -- ee u=> .Pkce c -- ee c 0000 00000 = Ok e

  • mesca em mum

> c

  • Kemc*

mm Qum W 0000 00000 > Om & W We omacc

  • e um &

W We omacc 8 =NMec4bm&O. >m uw . N NZwee 4 gg3 wm .5 RZwee zggB m = > nc E=We*** c eg I> cc E=We*** c eg a > v40 o w eeo3.eo

  • w 148 o

w eg03.eo -w 4 wHt9*3 L

  • 3 E>uc t**

(WE8*B 4 v3 E>w-S** I > Im o**CO i m**cesg3 mm o**CO am* ace *gm o m W L OPg g. OEm- =weeesc o OPg9. OEe* =weeo*C EM W (Ea cabra ke .g wca e* mEm cabka ke .g mcm ** c Z aW g* Z ooW

  • W g*

Z ooW = LLLLLLLLLL UI da s W 6 h.wwwa e** (I ma e W

  • b

.aww-e** EJoecu-ee e. J ococooocco e om awa s

  • EJeccu-ee em au-sE g

O EEEEEEEEEE e .W=Nm eon a c* >*omose >=Ra eonOW Ca >W oscee LLLLLLLLLL OLZ<QLDEZ3QCOMUCL*M mLZ(CLDEZ3GEOmOCAFF s

-m r-m m m r, f-m c-, m e, m r-~~ PACE 2 LOPYRIGHT SIEftRA CEOPHYSICO. REDHOND WA. VCP COORDINATES. FISHER STATISTICS: N* 10 R= 9.6647 M. L. E. of kappa = 29.8 kappa = 26.8 l Alphs 91 9.50 Circular stnd. dev.=15.64 Pole lat-84.3 Pole long= -46.4 NOMENT OF INERTIA STATISTICS: N= 10 Eigenvalues= 0.215 0.424 9.362 Uniform test statistica 40.90 Data not random at 14 level. Dimroth-Watson M= -16.25 M.L.E.'S of Bingham parameters: K1= -23.85 K2= -12.40 Oval azimuth = 148.1 0.67 12.17 Stpd. dev, angles = Confidence angles: A952= 6.71 A953= 9.42 Pole lat= 84.1 Pole long= -42.1 Test statistics for circular symmetry: Dipolar= 1.20 Girdle = 55.41 Test indicates symmetric bipolar dist. ALPHA = 8.07 l I i

o N UP N

  • NRrl N

s N \\\\ Y H E. X ~ H02.

1. s -

270-- + --90 ~ ~

1. o n-y o

N / M / ~ / cW 1 ,/

o. s -

M S 00HN __ i g 1$0 /jaq o NRM 50G 100G 150G 250G 400G 550G 850G 1000G Ratio clot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Locality: CRAVELPIT Site lat & long= 46.30 -119.20 9 Demaa steps for this sample. Interval = 0.000 Strike & dip of bedding =

0. 0
0. 0 Kosnigsberger ratio =

3.251 AT NRM SM# Dec C Inc G Diff vect Dec S Inc S Diff vect JDiff V ist V long Intensity demag JH/JO Chi C/CO PNGP 1.000 15.0 56.1

0. 0
0. 0 15.0 36.1
0. 0
0. 0 0.OOE-01 75.3
6. 3 1.57E-04 NRM 1.000 9.66E-05 1.000 PMGP 1.000 25.3 30.0 311.5

-1.0 25.3 58.0 311.5 - 1. 0 1.63E-05 70.0 -16.0 1.54E-04 50G O.981 PNGP 1.000 24.8 58.2 30.0 35.9 24.8 58.2 30.0 35.9 1.40E-05 70.4 -16.0 1.40E-04 100G O.892 PNGP 1.000 26.0 38.4 14.7 55.9 26.0 30.4 14.7 55.9 1.41E-05 69.7 -17.8 1.26E-04 150G O.803 PMGP 1.000 24.7

58. 6 30.5 37.6 24.7 58.6 30.5
57. 6 2.76E-05 70.6

-16.8 9.84E-05 250G O.627 PMGP 1.000 26.7

58. 6 18.0 58.4 26.7 30.6 18.0 50.4 2.26E-05 69.3

-19.1 7.59E-05 400G O.483 PNGP 1.000 20.8 56.7 53.2 62.6 20.0 56.7 53.2 62.6 1.65E-05 72.2 -6.2 6.OOE-05 5500 0.302 PMGP 1.000 29.0 56.9

9. 4 55.5 29.0 56.9
9. 4 55.5 2.47E-05 66.8

-17.4 3.56E-OS 850G O.227 PMGP .1.000 20.7 56.8 53.2 53.9 20.7 56.8 53.2 33.9 8.03E-06 72.3 -6.5 2.71E-05 1000G O.173 SIERRA GEOPHYSICS,INC. REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

e- ~ e-m e ... r-r- r r e c e c e c e c O N UP wnf \\ N \\ N. H E p \\ HDZ. 1 270-- + --90

1. 5 -

I 1.01 o / l C E LC

0. 5 -

/ 160 i ^ n, q r 0 HRH T150 T225 T300 T360 T420 T480 T540 T600 T660 Ratio plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. 1scelity: CRAVELP1T Site let & long= 46.30 -119.20 10 Deman steps for this sample. Interval = 0.900 Strike & dip of bedding =

0. 0
0. 0 SMS Dec 0 Inc 0 Diff vect Dec S Inc 9 Diff vect JDiff V let V long Intensitu demag JH/JO Chi C/CO 1

Kasnigsberger ratio = 0.706 AT NRM PMGP 2.000 348.3 64.1

0. 0
0. 0 348.3 64.1
0. 0
0. 0 0.OOE-01 81.9 151. 7 7.13E-OS NRM 1.000 2.02E-04 1.000 PNGP 2.000 11.7 63.8 325.4 60.4 11.7 63.8 325.4 60.4 3.46E-05 81.8

-27.3 3.80E-05 T150 0.533 PNGP 2.000 B. 5 62.3 27.2 68.6

8. 5 62.3 27.2 68.6 8.OOE-06 83.4

-0. 1 3.01E-05 T225 0.422 PNGP 2.000

6. 9 63.1 11.3 60.7
6. 9 63.1 11.3 60.7 1.04E-05 84.9

-11.9 1.97E-05 T3OO O.276 PNGP 2.000

7. 6 59.2 357.6 80.3
7. 6 59.2 357.6 80.3 3.71E-06 81.6 16.8 3.62E-05 T360 0.227 PNGP 2.000 14.0 60.3 354.4 35.5
14. 0 60.3 354.4 35.5 4.87E-06 78.7

-7. 8 1.14E-05 T420 0.160 j PNGP 2.000

6. 3 58.8 52.8 60.5
6. 3 58.8 52.8 60.5 2.12E-06 01.8 24.2 9.42E-06 T480 0.132 PNGP 2.000 15.4 67.3 359.1 45.9 15.4 67.3 359.1 45.9 3.95E-06 79.1

-55.1 5.66E-06 T540 0.079 PNGP 2.000 1: 4 66.8 42.5 64.6

1. 4 66.8 42.5 64.6 1.87E-06 86.7 -103.3 3.84E-06 T600 0.054 PMGP 2.000 103.9 72.5 343.O 45.7 103.9 72.5 343.O
45. 7 2.47E-06 31.5

-81.7 1.85E-06 T660 0.026 SIERRA GEOPHYSICS INC. REDMOND WASHINGTON PALEONAGNETICS!.ABORATORY

e 0 N Y N s\\ N E H0Z HDZ. I gnn e% Y

1. 5 -

1.01r O, l e-- E DOWN / HM 1$0 / y,6?$ A ,i",i,y 0 NflH SOG 100G 150G 250G 400G 550G 850G 1000G / Ratio plot is norma l i s ed : Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Leca11ty: GRAVELPIT Site let & long= 46.30 -119.20 9 Desmo steps for this sample. Interval = 1.500 Strike & dip of bedding =

0. 0
0. 0 SM#

Dec G Inc G Diff vect Dec S Inc S Diff vect JDiff V lat V long Intensit demag Jfi/JO Chi C/CO sberger ratio = 0.512 AT NRM PMGP 3.000

6. 6 72.6
0. 0
0. 0
6. 6 72.6 lb O O. O O.OOE-01 77.7 -102.4 5.22E-O NRM 1.000 2.04E-04 1.000 Kosnav PMGP 3.000 33.0 73.0 321.1 52.4 33.0 73.8 321.1 52.4 1.20E-05 66.4

-76.3 4.20E-05 50G O.005 PNGP 3.000 50.8 76.6

9. 1 62.6 30.8 76.6

'r. 1 62.6 1.17E-05 57.2 -81.1 3.OUE-05 100G O 590 PMCP 3.000 58.1 75.O O. 9 79.3 58.1 75.O O. 9 79.3 5.02E-06 54.1 -76.O 2.31E-05 150G O.481 PMOP 3.000 85.3 7 5. ') 23.O 68.5 85 3 75.O 23.O 68.5 9.14E-06 41.6 -80.2 1.63E-05 250G O. 312 PNGP 3.000 73.5 72.9 111.6 76.7 73 5 72.9 11?. 6 76.7 6.06E-06 45.9 -73.0 1.03E-05 400G O.197 PNGP 3.000 44.2 61.0 168.2-61.4 44.2 61.0 168.2

61. 4 3.73E-06 58.4

-37.8 7.51E-06 550G O.144 PNGP 3.000 87.7 76.O 32.O 43.1 87.7 76.O 32.O 43.1 4.16E-06 41.2 -82.8 3.04E-06 050G O.074 PNGP 3.000 32.O 40.8 190.2 38.O 32.O 40.8 190.2 38.O 2.63E-06 D5. 3

1. 6 3.23E-06 1000G O.062 THED EEPRSICS,INC.

REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY i

r-r-, r-, c, c-, r r c r r 0 HRM N N UP / V s g H I E g ' m t HDZ.

  1. -~

+ ~#

1. 5 -

1.01 o e-g W E CC

0. 5 -

S / ]b0 x x n ^ ^ ' - A A ? ? q A 0 HRH T150 T225 T300 T360 T420 T480 T540 T600 TS60 Ratio plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Leca11ty: CRAVELPIT Site lat & long= 46.30 -119.20 10 Demas steps for this sample. IntervaI= 0.600 Strike & dip of bedding =

0. 0
0. 0 SMS Dec C 1ric Q Diff vect Dec S Inc B Diff vect JDiff V lat V long Intensitu demag JH/JO Chi C/CO Kacnigsberger ratio =

0.705 AT NRM PMCP 4.000 353.2

61. 0
0. 0
0. 0 353 2 61.0
0. 0
0. 0 0.OOE-01 83.5 112.1 5.89E-OS NRM 1.000 1.67E-04 1.000 PNGP 4.000
5. 0 37.5 341.3 63.0
5. 0 57.5 341.3 63.0 3.2OE-05 81.0 34.9 2.73E-05 TISO O.463 PMGP 4.000
2. 1 37.7 16.7 56.0 2.1 57.7 16.7 56.0 3.24E-06 81.9 48.7 2.21E-05 T225 0.373 PNGP 4.000
0. 7
32. 8
6. 7 67.8
0. 7 52.8
6. 7 67.8 7.27E-06 77.1 58.2 1.50E-05 T3OO O.255 PMGP 4.000
6. 6 47.7 339.5 63.1
6. 6 47.7'339.5 63.1 4.52E-06 71.7 42.0 1.07E-05 T360 0.182 r

PNGP 4.000 355.0 46.5 39.3 44.6 355 0 46.5 39.3 44.6 2.91E-06 71.1 74.4 8.09E-06 T420 0.137 PMCP 4.000 354.o 30.8 357.O 11.O 354 6 50.8 357.O 11.O 9.40E-07 74.6 78.3 7.34E-06 T480 O.125 l PNGP 4.000 353.2 45.3 356.7 57.2 353.2 45.3 356.7 57.2 3.39E-06 69.7 78.6 3.99E-06 T540 0.060 PNGP 4.000 18.7 33.3 310.6 48.9 18 7 33.3 310.6 48.9 1.9BE-06 37.9 25.8 2.45E-06 T600 0.042 i PMGP 4.000 35.1 15.3 251.2 31.0 35.1 15.3 251.2 31.0 1.15E-06 41.1 13.6 2.86E-06 1660 0.049 N N LFSiT.TRESJUL REDMOND WASHINGTON PALE 0 MAGNETICS LABORAIGHY

c- ~ 1-r- m r-r- r-i-- c-r- c-c- c- .~ 0 g N Rt1 ~ N UP i l H E e s H0Z. H02. c 270-- + --90

1. 5 -

1.01 O s- / m E' ,/

0. 5 -

~ lb0 l N A~ 2 1 7 . q 0 N8M 50G 1000 150G 250G 400G 550G 700G 850G 1000G Rntio plot is normalt red: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Coog. Lecality: CRAVELPIT Site 1st & long= 46.30 -119.20 10 Deman steps for this sample. Interval = 0.900 Strike & dip of bedding =

0. 0
0. 0 JH/JO Chi C/CO SM#

Dec C Inc C Diff vect Dec S Inc S Diff vect JDiff V lat V long Intensity demag MMnigsberger ratio = 0.504 AT NRM PMCP 5.000 349.1 65.1

0. O O. O 349.I 65.1
0. O O. O O.OOE-01 82.3 161.3 3.6BE-0.3 NRN 1.000 1.46E-04
1. 000 PNGP 5.000
4. 9 64.7 316.9 60.1
4. 9 64.7 316.9 60.1 1.14E-05 86.6

-36.7 2.60E-05 50G O.707 PMGP 5.000 12.5 59.3 324.3 74.6 12 5 59.3 324 3 74.6 7.43E-06 79.0

0. 3 1.90E-05 100G O 316

( PMGP 5.000

4. 9 61.3 31.6 50.3 4 9
61. 3
31. 6 50.3 4.48E-06 84.8 16.8 1.47E-05 150G O 379 PNCP 5.000
4. 5 66.1
5. 6 47.5
4. 5 66.1
5. 6
47. 5 3.85E-06 86.3

-66.7 1.10E-05 250G D.299 PNGP 5.000

5. 0 39.1
0. 7 81.6 50 59.1
0. 7
81. 6 3.50E-06 02.7 29.5 7.68E-06 4000 0.209 PMCP 5.000 19.3 48.6 311.8 68.8 19.3 48.6 311.8 68.8 2.91E-06
67. 5 12.1 5.17E-06 550G O 140 PNGP 5.000 42.8 86.5 17.7
3. 1 42.8 86.5 17.7 3.1 3.22E-06 31.2 -111.6 3.71E-06 7000 0.101 PNGP 5.000 58.2 54.9 241.4 39.2 58.2 54.9 241.4
39. 2 2.14E-06 45.7

-36.6 2.28E-06 850G O.062 PMGP 5.000 35.2 41.5 184.2

2. 5 35.2 41.5 184.2
2. 5 9.96E-07 54.0

-2.9 2.75E-06 8000G O.075 mm mmrLWSEL lEGE]l)o_WASHl_NGTON __ PALE 0 MAGNETICS LABORATORY

1 e c-, c-c c c r c r c c-m O en UP l b i l h l . Tom W L E q X L i HDZ. l 270-- + -90 i l 1.5-1 1.05t o N C C ~

0. 5 -

S HN M ~ n, / ~ 180 / 2 ? m ,e e a q 0- / NRM T150 T225 T300 T360 T420 T480 T540 T600 T660 R2tio plot is normalised: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Lecality: ORAVELPIT Site lat b long= 46.30 -119.20 10 Deman steps for this sample. Interval = 1.400 Strike in dip of bedding =

0. O O. O JH/JO Chi C/CO Kasnigsberger tatto =

1.052 AT NRM SNe Dec C Inc 0 Diff vect Dec S Inc B Diff vect JDiff V ist V long Intensity > demag 6.84E-0 NRM 1.000 1.30E-04 1.000 PNCP 6.000 350.9 59.4

0. O O. O 350.9 59.4 O. O O. O O.OOE-01 81.I li t. 4 PNCP 6.000
5. 2 59.7 330.5 56.0
3. 2 59.7 330.5 56.0 2.70E-05 83.1 26.0 4.23E-05 T150 0.618 PNGP 6.000
2. 7 59.8 12.6 59.1
2. /

59.8 12.6 39.1 1.05E-05 84.0 40.4 3.18E-03 T225 O.465 PNCP 6.000

4. 7 59.3 359.0 60.6
4. 7 39.3 359.0 60.6 1.14E-05 82.9 30.2 2.04E-05 T3OO O.298 PNGP 6.000
5. 7 58.8
1. 2 60.9
5. 7 58.8
1. 2 60.9 4.01E-06 82.O 27.I 1.56E-05 T360 O.228 PNGP 6.000 12.0
38. 4 348.7 58.3 12.0 38.4 348.7 58.3 4.27E-06 78.6
5. 7 1.14E-05 T420 0.167 PNCP 6.000 358.9 56.1 54.5 56.0 358.9 56.1
54. 5 56.0 2.93E-06 80.3 66.0 8.77E-06 T480 0.128 PNCP 6.000
4. 0 34.7 344.6 58.6
4. 0 34.7 344.6 58.6 2.5DE-06 78.5 44.2 6.30E-06 T540 0.092 PNGP 6.000 10.3 44.4 351. O 66.O
10. J 44.4 351.O 66.O 2.97E-06 68.1 35.1 3.47E-06 T600 O.031 PNCP 6.000 331.8 32.1 47.6 42.4 331.S 32.1 47.6 42.4 2.16E-06 32.9 109.1 1.83E-06 T660 O.027 SIERRA GEOPHYSICS,INC.

REDMOND. WASHINGTON PALE 0 MAGNETICS LABORATURY

E M' IM M m m m g gg 0 NRM N gh. /. .\\ N UP \\ H E l I I g H0Z. nnb' 5 270-- + --90

1. 5 -

1.01 ~ / o C cc cc

0. 5 -

/ S D ![' i 1 -A lb0 n / '~ / o NRM SOG 100G 150G 2500 400G 550G 700G 850G 1000G Retto lo is normaltred: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot-Geog. 1Acc11kg: tCRAVELPIT Site let 8 long= 46.30 -119.20 10 Deman steps for this sample. Interval = 1.000 Strike 8. dip of bedding =

0. 0
0. 0 SM#

Dec C Inc C Diff vect Dec S Inc S Diff vect JDiff . let V long Intensitu demag JH/JO Chi C/CO Koenigsberger fatto = 0.331 AT NRM PMGP 7.000 320.3 66.1

0. 0
0. 0 320.3 66.1
0. 0
0. 0 0 OOE-Os 66.6 168.1 5.75E-O$

NRM 1.000 3.47E-04 1.000 PMGP 7.000 342.7 71.2 311.2 31.7 342.7 71.2 311.2 31.7 1.79E-05 75.6 -161.6 4.07E-05 50G O 700 PMGP 7.000 322.9 63.8 42.5 73.4 322.9 63.0

42. 5 73.4 1.5BE-05 64.4 162.6 2.61E-05 100G O.454 PNGP 7.000 326.0 47.2 165.7 78.5 326.0 47.2 165.7 78.5 9.30E-06 30.0 120.0 1.95E-05 150G O.339 PNGP 7,000 345.9 30.0 257.9 58.0 345.9 30.0 257.9 50.0 D.50E-06
37. 6 86.6 1.42E-05 250G O.247 PMGP 7.000 335.1 39.4 357.4 16.4 335.1 39.4 357.4 16.4 6.32E-06 58.7 109.4 0.37E-06 400G O.146 PMCP 7.000
4. 3 21.6 241.0 30.9
4. 3 21.6 241.0 30.9 4.40E-06
54. 7 53.5 0.30E-06 550G O.144 PMGP 7.000 30.8 37.7 300.3 -19.3 50.8 37.7 300.3 -19.3 6.07E-06 41.9

-15.5 8 28E-06 7000 0.144 PNGP 7.000 20.3 25.4 152.4 24.6 20.3 25.4 152.4 24.6 3.33E-06 49.4 15.0 B.500-06 050C O.149 PNGP 7.000 13.7 19.8 42.3 29.9 15.7 19.8 42.3 29.9 4.36E-06

51. 5 35.5 4.45E-06 10000 0.077 NNNMNLWi-- MEWh1% MMS PALE 0 MAGNETICS LABORATORY

1 o m o n o o o o o o o o o o o n n o m 0 N UP""" .NN H E y&if HDZ. 270-- + --90 3,3_ f l 1 1.01 o C a / x

0. 5 -

1 DOWN I NRM ~, h 0 NRM T150 T225 T300 T360 T420 T480 T540 T600 T660 Rr,tio plot is normalised: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Lecelity: CRAVELPIT Site lat & longa 46.30 -119.20 10 Demag steps for this sample. Interval = 0.600 Strike & dip of bedding =

0. 0
0. 0 SMG Dec 0 Inc 0 Diff vect Dec S Inc S Diff vect JDiff V lat V lona Intensitu demag JH/JO Chi C/CO Kasnigsberger ratio =

1.746 AT NRM PNGP

8. C 00 10.5 63.4
0. 0
0. 0 10.5 63.4
0. 0
0. 0 0.OOE-01
82. 5

-22.6 7.34E-OS NRM 1.000 8.41E-05 1.000 PNGP 8.000 27.4 61.8 336.5 60.2 27.4 61.8 336.5 60.2 2.40E-05 70.4 -29.6 5.01E-05 T150 0.683 PMGP 8.000 26.8 62.1 29.8 60.5 26.8 62.1 29.8 60.5 9.71E-06 70.8 -30.1 4.04E-05 1225 0.550 PNGP 8.000 26.9 62.6 26.6 61.3 26.9 62.6 26.6 61.3 1.55E-05

71. 0

-31.9 2.49E-05 T3OO O.339 PMCP 8.000 24.7

61. 8 35.6 65.1 24.7 61.8 35.6 65.1
5. 52E -)6 72.2

-27.6 1 94E-05 T360 0.264 PNGP 8.000 30.0 60.0

6. 8 65.5 30.0 60.0
6. 8 65.5 5.18E-06 67.8

-26.1 1.43E-05 T420 0.195 PNGP 8.000 25.8 60.3 49.6 56.5 25.8 60.3 49.6 56.5 2.35E-06 70.8 -23.4 1.20E-05 T480 0.163 PMGP 8.000 24.2 60.6 30.5 59.3 24.2 60.6 30.5 59.3 2.96E-06 72.0 -22.7 9.04E-06 T540 0.123 PNGP 8.000 12.4 39.2 37.7 60.9 12.4 59.2 37.7 60.9 4.36E-06 79.0

1. 1 4.74E-06 T600 0.065 PNGP 8.000 24.9 56.3 353.2 60.9 24.9 56.3 353.2 60.9 2.05E-06 69.2

-11.0 2.74E-06 T660 0.037 E RS GEOPHYSICS,INC. REDMGND, WASHINGTUN PALE 0 MAGNETICS LABORATORY

c-r- r-c- c-i- c e-c- c, c-O N UP n o s H E H0Z. 270-- + --90

1. 5 -

1

1. O n-

^- ~ o l cc a-

0. 5 -

M ~ S DOWN 1a0 -a NRM SbG lbOG lbOG 2 BOG 4 BOG SbOG 7 BOG 8 BOG lbOOG / #- Ratio plot is normalized! Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Locality: GRAVELPIT Site lat 1. long= 46.30 -119.20 10 Demme steps for this sample. Intsrval= 0.000 Strike fa dip of bedding =

0. 0
0. 0 Keanigsberger ratio =

2.094 AT NRM SM# Dec 0 Inc 0 Diff vect Dec S Inc S Diff vect JDiff V lat V long Intensitu demag JH/JO Chi C/CO PMCP 9.000 350.6 60.7

0. 0
0. 0 350.6 60.7
0. 0
0. 0 0.OOE-01 81.8 120.0 1.33E-04 NRM 1.000 1.27E-04 1.000 PNGP 9.000 10.3 62.5 283.6
1. 8 10.3 62.5 283.6
1. 0 2.20E-05 82.3

-13.8 1.30E-04 500 0.977 PMGP 9.000 10.0 62.7 12.8 60.7 10.0 62.7 12.8 60.7 1.3OE-05 82.7 -15.8 1.17E-04 1000 0 880 PMCP 9.000 13.2 61.6 337.1 67.8 13.2 61.6 337.1 67.0 1.35E-05 80.0 -13.5 1.04E-04 1500 0.782 PMCP 9.000 12.3 61.9

16. B 60.3 12.3 61.9 16.8 60.3 2.OOE-05 80.7

-13.7 8.40E-05 250G O.632 PNCP 9.000 12.2 62.2 12.5

61. 2 12.2 62.2
12. 5
61. 2 2.42E-05 80.9

-15.4 5.98E-05 400G O 450 PMCP 9.000

5. 8 61.8 30.2 60.7
5. 8 61.8 38.2 60.7 1.18E-05 84.7
7. 9 4.83E-05 5500 O.363 PNGP 9.000 14.0 62.9 343.2 55.0 14.0 62.9 343.2 35.0 1.11E-05 80.0

-23.2 3.76E-05 700G O.283 PMCP 9.000 15.6 62.7

9. O 63.4 15.6 62.7
9. O 63.4 9.31E-06 78.8

-23.3 2.03E-05 8500 O.213 PMCP 9.000

6. 4 64.5 36.4
54. 5
6. 4 64.5 36.4
54. 5 7.16E-06 85.6

-31.7 2.14E-05 1000G O.161 SIERRA GEOPHYSICS.INC. REDMOND WASHINGTON PALE 0 MAGNETICS LABORATORY

c, c, r-_ O N UP ~ NRM _ .A N i i i b E H I l Irf( ,' l. ~ H0Z. 90 270-- + i

1. 5 -

1.05 o. / w E -4 / 0.5- / S DOWN IEIO M + 'ggq c /' o NflM T150 T225 T300 T360 T420 T480 T540 T600 T660 Rr,tio plot is normalised: Intensity. Coordinates of vec tor diagram: Geog. Coordinates of equal-area plot: Geog. Ler c a l i t y : CRAVELPIT Site 1st 8e long= 46.30 -119.20 10 Deman steps for this sample. IntervaI= 0.300 Strike & dip of bedding =

0. 0
0. 0 17t#

Dec O Inc C Diff vect Dec S Inc B Diff vect JDiff V lat V long Intensitu demag JH/JO Chi C/CO K23nigsberger ratto = 2.680 AT NRM PNGP 10.000 339.8 61.8 O. O O. O 339.8

61. 3 O. O O. O O.OOE-01 75.3 145.I 1.38E-04 NRM 1.000 1.03E-04 1.000 PNCP 10.000 355.0 63.1 303.5 48.2 355.0 63.1 303.5 48.2 3.28E-05 86.1 125.7 1.09E-04 T150 0.790 PMGP 10.000 356.7 64.0 348.0 38.4 356.7 64.0 340.0 38.4 1.85E-05 87.7 137.0 9.06E-05 T225 0.657 PNCP 10.000 355.8 63.5 358.2 64.8 355.8 63.5 358.2 64.8 3.50E-05 86.8 129.1 5.56E-05 T3OO O.403 PNGP 10.000 357.9 63.1 348.8 64.6 357.9 63.1 348.8 64.6 1.33E-05 87.7 103.1 4.23E-05 T360 0.307 PMGP 10.000 358. 3 62.5 356.9 64.5 358.3 62.5 356.9 64.5 1.28E-05 87.3 87.9 2.95E-05 T420 0.214 PNGP 10.000 358.7 62.2 356.6 63.7 358.7 62.2 356.6 63.7 5.90E-06 87.0 79.3 2.36E-05 T480 0.171 PMGP 10.000 359.8 62.6 335.9 61.1 359.8 62.6 355.9 61.1 6.50E-06 87.6 64.6 1.71E-05 7540 0.124 PMGP 10.000 354. 5 60.3
4. 6 64.3 354. 5 60.3
4. 6 64.3 9.52E-06 83.5 101.0 7.60E-06 T600 0.055 PNGP 10.000 345.4 56.8
7. 9 63.5 345.4 36.8
7. 9 63.5 3.49E-06 75.9 116.5 4.16E-06 T660 0.030 SIERRA GEOPHYSICS.lNC.

REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

E [ [ [ [ [ [ l [ [ MARENGO [ [ [ [ E [ ( [

r m m m.. .m m tm m m m m fm m m m 1-* 1 fm im m m s Ue)H1GH1 SitHHA CEDPHYSICS REDNOND WA. PAGE 1 SM# TYPE CDEC CINC SDEC SINC VLAT VLONC JH DEMAC LINES: PMN 1.000 LIN SECM 165.3 -49.0 165.3 -49.0 -69.5 -79.3 1500 DRICN NUM 2.000 LIN SECM 170.8 -60.1 170.8 -60.1 -81.1 -67.3 T225 ORICN Prui 3.000 LIN SECM 170.0 -64.8 170.8 -64.8 -83.7 -26.8 1000 ORICN eMN 4.000 LIN SECM 171.3 -50.4 171.3 ~58. 4 -79.9 -76.2 T150 ORICN "llM 5.000 LIN SECM 187.4 -54.6 187.4 -54.6 -76.9 -145.9 T225 ORICN "MM 11.000 LIN SECM 168.0 -62.6 168.0 -62.6 -81.1 -43.7 1000 ORICN 8'l 21 12.000 LIN SECM 175.6 -65.5 175.6 -65.5 -86.9 -12.4 T150 ORICN I'MM 13.000 LIN SECM 179.2 -56.1 179.2 -56.1 -79.6 -114.6 1000 ORICN PMM 14.000 LIN SEGM 172.2 -63.1 172.2 -63.1 -84.1 -49.1 T150 ORIGN DMH 31.000 LIN SECM 171.9 -62.7 171.9 -62.7 -83.6 -52.6 1500 ORICN PMM 33.000 LIN SECM 156.0 -64.4 156.8 -64.4 -74.1 -22.7 1500 ORICN t 'MN 34.000 LIN SECM 148.0 -61.3 148.0 -61.3 -67.0 -28.0 T3OO ORICN PMM 35.000 LIN SECM 156.3 -63.4 156.3 -63.4 -73.5 -26.6 1500 ORICN

  • eeee STATISTICS ON LINE DATA meeee CEOGRAPHIC CDORDINATES:

FISIER STATISTICS:

  1. 4=

13 R= 12.9105 M. L. E. of kappa = 145.3 barPa= 134.1 Alpha 95= 3.59 Circular stnd. dev.= 6.99 Declination = 169.1 Inclination = -60.8 T' ole lat= -80.7 Pole long= -57.8 Paleolat= -41.9 dpu 4.2 dm= 5.5 Oval azimuth = 52.8 HOMENT OF INERTIA STATISTICS: f4' 13 Eigenvalues= 0.061 0.117 12.822 Uniform test statistic = 62.36 Data not random at 1% level. Dimroth-Watson K= -72.93 f1. L. E. 'S of Bingham parameters: K1= -106 94 K2= -56.26 Osal asimuth= 126.6 I Ctnd. dev. angles = 3.95 5.46 l Confidence angles: A952= 2.68 A953= 3.71 I licclination= 169.1 Inclination = -60.9 l l Pnle lat= -80.7 Pole long= -57.7 Paleolat= -41.9 ( I test statistics for circular symmetry: Bipolar = 1, 41 Girdle = 357.38 l Test indicates sgemetric bipolar dist. ALPNA= 3.20 GTRATICRAPHIC COORDINATES. flSIER STATISTICS: tia 13 R= 12.9105 M. L. E. of kappa = 145.3 kappa = 134.1 dev.= 6.99 Alpha 95= 3.59 Circular stnd. Declination = 169.1 Inclination = -60.8 Pole lat= -80.7 Pole long= -57.8 Paleolat= -41.9 dp= 4.2 dm= 5.5 Oval azimuth = 52.8 HOMENT OF INERTIA STATISTICS: ti" 13 Eigenvalues= 0.061 0.117 12.822 uniform test statistica 62.36 Data not randon at 1% level. Dicroth-Watson K= -72.93 11 L. E. 'S of Bingham parameters: K1= -106.94 K2= -56.26 Oval azimutha 126.6 3.95 5.46 Gtnd. dev. angles = Confidence angles: A952= 2.68 A953= 3.71 Declination = 169.1 Inclination = -60.9

M M M M ~m m M M M M M M M m m a r COPYRICHT SIERRA CEC?HYSICS. REDMOND WA. PACE 2 Pole lat= -80.7 Pole long= -57.7 Paleolat= -41.9 ) ) Test statistics for circular symmetry: Dipolar= 1.41 Cardle= 357.38 Test indicates symmetric bipolar dist. ALPHA = 3. 20 VCP COORDINATES. FISHCR STATISTICS: N= 13 R= 12.8420 M. L. E. of kappe= B2.3 kappa = 75.9 Alpha 95= 4.79 Circular stnd. dev.= 9.29 Pole lat= -80.8 Pole long= -55.9 flOMENT OF INERTIA STATISTICS: 14= 13 Eigenvalues= 0.000 0.232 12.688 Uniform test statistic = 60.41 Data not randcm at 1% level. Dimroth-Watson K= -41.42

11. L. E. 'S o f Ding h am parameters: K1=

-81.39'K2= -28.59 l Oval asimutha 125.9 = 4.56 7.74 Stnd. dev. angles I Confidence angles; A952= 3.10 A953= 5.25 Pole lata -80.0 Pole long= -55.8 Test statistics for circular symmetrg: Dipolar= 3.99 Cirdle= 170.05 Test indicates symmetric bipolar dist. ALPHA = 4.17 l i l l l l I

i n n n n n O F~~1 n n n n n n n n n n n F LUPYRIGHT SIERRA GEOPHYSICS, REDMOND WA. PAGE 1

LINES, SMs TYPE CDEC CINC SDEC SINC VLAT VLONG JH DEMAC PMN 51.000 LIN SdGM
3. 7 63.2
3. 7 63.2 86.6
11. 2 500 ORICN PflM 52.000 LIN SECM 13.4 67.6 13.4 67.6 80.5

-54.6 T150 ORICN PMM 53.000 LIN SECM 11.4 62.5 11.4 62.5 81.4 -10.8 500 ORICN PMN 54.000 LIN SECM

5. 5 67.0
5. 5 67.0 85.5

-65.9 T150 ORICH

          • STATISTICS ON LINE DATA *****

CEOGRAP'f!C COORDINATES: FISHER STATISTICS: N= 4 R= 3.9952 M. L. E. of kappa = 832.D kappa = 624.0 Alpha 95= 3.60 Circular stnd. dev.= 3.24 Declination =

8. 4 Inclination =

65.1 Pole lat= 84.3 Pole long= -32.9 Paleolat= 47.2 dp= 4.8 dm= 6.0 Oval azimuth = 91.4 NOMENT OF INERTI A STATISTICS: N= 4 Eigenvalues= 0.003 0.006 3.990 Uniform test statistic = 19.86 Data not random at 1% level. Diaroth-Watson K= -416.14 M,L.E.*S of Bingham parameters: K1= -630.81 K2= -309.92 Oval atinuth= 17.0 Stnd. dev. angles = 1.62 2.31 Confidence angles: A952= 1.98 A953= 2.82 Declination =

0. 4 Inclination =

63.1 Pole lat= 84.3 Pole long= -32.9 Paleolat= 47.2 Test statistics for circular symmetry: Bipolar = 0.53 Girdle = 617.34 Test indicates symmetric bipolar dist. ALPHA = 2.40 STRATICRAPHIC COORDINATES. FISHER STATISTICS: Nn 4 R= 3.9952 M. L. E. of kappa = 832.0 kappa = 624.0 Alpha 95= 3.68 Circular stnd. dev.= 3.24 Declination =

8. 4 Inclination =

65.1 Pole lat= 84.3 Pole long= -32.9 Paleolata 47.2 dp= 4.8 dm= 6.0 Oval asimuth= 91.4 MOMENT OF INERTIA STATISTICS: N= 4 Eigenvalues= 0.003 0.006 3.990 Uniform test statistic = 19.86 Data not random at 1% level. Disroth-Watson K= -416.14 M.L.E.*S of Dingham parameters: K1= -630.01 K2= -309.92 Oval azimuth = 17.0 Stnd. dev, angles = 1.62 2.31 Confidence angles: A952= 1.98 A953= 2.82 Dsclination=

0. 4 Inclination =

65.1 Pole lat= 84.3 Pole long= -32.9 Paleolat= 47.2 lest statistics for circular symmetry: Dipolar= 0.53 Girdle = 617.34 Test indicates symmetric bipolar dist. ALPHA = 2.40 VCP COORDINATES. FISHER STATISTICS: , N= 4 R= 3.9903 M. L. E. of kappa = 413.7 kappe= 310 3 Alpha 95= 5.22 Circular stnd. dev.= 4.60 Pole lat= 84.2 Pole long= -33.8 _ }

COPYRIGHT SIERRA CEDPHYSICS. REDMDMD WA. PACE 2 MOMENT OF INERTI A STATISTICS: f4= 4 Eigenvalues= 0.000 0.012 3.981 Unsform test statistico 19.71 Data not randem at 1% level. Daaroth-Watson K= -206.89 N L.E.'E of Bingham parameters: K1= -266.56 K2= -169.91 Oval aatmuth= 54.4 2.49 3.12 StnG. dev. angles = Confidence angles: A952= 3.05 A953= 3.02 Polo lat= 84.2 Pole long= -33.0 Test statistics for circular symmetry: Dipolar= 0.21 Ctrdle= 337.17 Test indicates symmetric bipolar dist. ALPHA = 3.43 I e I

r, e, c, e-q l l 1 1 O l N UP s NfM \\ \\ X W E 270-- + --90

1. 5 -

H0Z. A 1 1.01 f O ~ NFiH C E l C NRM

0. 5 -

~ / S D x 5 5 B B 5 5 HRH 50G 100G 150G 250G 400G 550G 700G 850G 1000G R tio plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Lecality: MARENGO Site lat 8e long= 47.00 -118.20 10 Deman steps for this sample. Interval = 0.000 Strike & dip of bedding =

0. 0
0. 0 SN#

Dec C Inc C Diff vect Dee S Inc S Diff vect JDiff V lat V long Intensitu demag JH/JO Chi C/CO Kronigsberger ratio = 0.650 AT NRN PMN 1.000 154.5 -34.8 O. O O. O 154.3 -34.8 O. O O. O O.OOE-01 -53.2 -72.6 9.42E-OS NRM 1.000 2.90E-04 1.000 PMN 1.000 164.4 -41,9 62.9 St. 5 164.4 -41.9 62.9 St. 5 2.18E-05 -64.O -84.2 1.06E-04 500 1.125 PMN 1.000 165.5 -44.3 149.2 12.O 165.5 -44.3 149.2 12.O 5.50E-06 -66.1 -84.4 1.03E-04 1000 1.093 PMN 1.000 166.0 -46.6 162.5 -25.6 166.0 -46.6 162.5 -25.6 1.16E-05 -67.9 -83.4 9.21E-05 150G O.978 PMN 1.000 167.8 -49.8 163.4 -41.1 167.8 -49.8 163.4 ~ 41. 1 3.41E-05 -71.1 -84.0 5.83E-05 250G O.619 PMN 1.000 173.6 -48.2 159.2 -51.5 173.6 -48.2 159.2 -51.5 2.45E-05 -71.5 -100.4 3.40E-05 400G O.361 PMN 1.000 172.6 -42.8 178.O -63.O 172.6 -42.8 178.O -63.O 9.23E-06 -67.1 -100.7 2.52E-05 550G O.268 PMN 1.000 172.O -38.7 175.3 -36.I 172.O -38.7 175.3 -56.1 6.01E-06 -64.O -101.O 1.94E-05 7000 O.206 PMN 1.000 175.9 -32.3 43.1 -54.6 175.9 -32.3 43.1 -54.6 2.42E-06 -60.3 -110.2 1.90E-05 8500 0.202 PMN 1.000 168.9 -31.3 187.8 -32.8 168.9 -31.5 187.8 -32.8 7.18E-06 -38.6 -97.5 1.2OE-05 1000G O.127 SIERRA GEOPHYSICS,INC. REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

1l .1 fl ,lI fl I .l 0 G9 9 0 O0 +y C0 /. h, 4 C1 4 g o 0 e N G iE N h1 C8 t 2 N o l p O0268677810 J0824696062 H a /0428643200 R e H.......... H r J111O00000O A a l g 05O000000 a aM52O628406 u mR123344566 q eNTTTTTTTTT 0 e d 0 X + 5 f ya555555667 1 o tO000000000 i-s sEEEEEEEEEE e n1351799795 t e6869026571 Y. a t.......... R n n4653321929 O i I T d A r a3995967134 R o n.......... O o o1546907019 B C l7763783944 A 1 L V S t5216886285 C 0 a.......... I 6. l5812149585 T g 5788877857 E e6 o V-N T G e G 1555666666 A 0000000000 M N_. 6 f-0 0 : fEEEEEEEEEE E 0 m iO235529366 L a DO227537400 A 0 r J.......... P T 0311886772 7 g a 2 i d t0187154I37 0 c.......... 4 r e0126030338 N o v 743773637 O 5 t T T c F G e F0143770227 N v O 1.......... I . D0489803008 H 0 f0 O 766507585 S 8 o2 1312111 AW , 4 88239589646 s8 T e1 O t1 c5701932113.......... D. a-0 n3366536683 N n I- - - - - - - - - - O 0 i0 M 2 d0 S905148694O DE , 4 r. R o7 = c3002385619 T o4 g e5777766746 C n D1111111111 i d 0 d t0187154137 E B 6 = e

c..........

C g b e0126030338 P 0 , 3 .n Mv 745773637 N T U yo fR I tl oNf e 1P 4 1 i f0143770227 S s& pTi.......... C m 4 0 n iAD0489803008 I N S 0 et d 766507585 S e8 1112111 Y , 3 ta. nles2 H I T 3G8239589646 P I l e pe........... O tmk0c5701932113 E iai n3366536683 G 5 :Ssr I- - - - - - - - - - 2 d t A . 2 e sS 0905148694O R E z i R T i h =c3001385619 E O l t0 e5777766748 I W B H a 0oD1111111111 S m r0t M 0 rOo.t R M 5 oCf0a 0000000000 O , 1 nN r 0000000000 Es 0000000000 T sR p r......... iAe e 2222222222. Mt g t s r o: = e# M l yalb M R pt a a sS 1 imvg N 5 0 5 0 oleri iaDen tc te MMNMMNMMNN 1 1 0 ao0no MMMNMMMMMM o[Ec RL1IK PPPPPPPPPP c ll Ill ll1l ,i l

v rm r~ rm m r m r-m rm r w r rm . r r r r m 0 x. N UP N s N NRM ~ X 270-- +1 - -90

1. 5 -

~ s wnn H f F 'U' H0Z. mM S s l G l x 7

0. 5 -

1 S - llOWN N 1 $10 /,f l '4,'j.y 0 HRH SOG 100G 150G 250G 400G 550G 700G B50G 10000 l Ratio plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot:

Geog, L*cality: MARENCO Site lat & long=

47.00 -118.20 10 Deman steps for this sample. Interval = 0.000 Strike & dip of beddinD=

0. O O. O Kscnigsberger ratio =

0.256 AT NRM SM# Dec 0 Inc 0 Diff vect Dec S Inc 9 Diff vect JDiff V lat V lono Intens1t demag JH/JO Chi C/CO PMM 3.000 132.6 -62.4

0. 0
0. 0 132.6 -62.4
0. 0
0. 0 0.OOE-01 -57.1

-16.1 4.19E-O NRM 1.000 3.27E-04 1.000 PMN 3.000 163.6 -66.2 31.8

57. 3 163.6 -66.2 31.8 57.3 2.48E-05 -78.9

-14.1 6.34E-05 SOG 1.513 PMN 3.000 170.7 -65.3 18.9 56.3 170.7 -65.3 18.9 56.3 1.21E-05 -83.6 -21.2 7.49E-05 1000 1.798 PMN 3.000 170.8 -64.7 167.9 -75.3 170.0 -64.7 167.9 -75.3 4.27E-06 -83.7 -28.2 7.07E-05 150G 1.687 PMN 3.000 176.4 -61.0 153.7 -71.2 176.4 -61.0 153.7 -71.2 2.36E-05 -84.4 -89.4 4.75E-05 250G 1.134 PMN 3.000 100.1 -60,1 173.0 -61.7 100.1 -60.1 173.0 -61.7 2.52E-05 -84.0 -119.2 2.23E-05 400G O.532 PMN 3.000 190.1 -73.9 175.0 -40.1 190.1 -73.9 175.0 -40.1 9.72E-06 -75.6 82.5 1.36E-05 550C O.325 PMN 3.000 185.7 -50.2 2.8 -16.5 185.7 -50.2 2.8 -16.5 5.97E-06 -73 4 -135.6 1.4BE-05 7000 0.353 PMN 3.000 11't. 4 -69.1 202.1 -25.7 111.4 -69.I 202.1 -25.7 1.01E-05 ~4 7. 1

5. B 7.4HE-06 8500 O.179 Pf91 3.000 181.8 -49.8 25.6
7. 4 181.8 -49.8 25.6
7. 4 6.27E-06 -73.6 -123.6 1.02E-05 1000G O.243 SIERRA GEOPHYSICS,INC.

REDMUND, WASHINGTON PALE 0 MAGNETICS LABORATORY

O C, C N F j N UP M s X ~ 270-- + --90

1. 5 -

E H I 5 5 5 4 5 1.01 o -w G CC 1

0. 5 -

~ ' S 0 / l NRM T150 T225 T300 Ratio clot is normalised: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot; Geog. Locality: MARENGO Site let as long= 47.00 -118.20 4 Demas steps for this sample. Interval = 0.000 Strike se dip of bedding =

0. O O. O Ksenigsbarger ratio =

0.724 AT NRM S'A Dec Q Inc Q DiFF vect Dec S Inc S Diff vect JDiff V lat V long Intensit demag J4/JO Chi C/CO PMM A.000 162.2 -37.4 O. O O. O 162.2 -37.4 O. O O. O O.OOE-01 -74.2 -36.4 1.01E-O NR;1 1.000 2.79E-04 1.000 PMM A.000 173.O -60.2

86. B 29.8 173.O -60.2 86.8 29.8 1.39E-03 -83.1

-84.9 1.06E-04 T130 1.OSO Pr1M 4.000 171.O -38.4 180.7 -62.3 171.O -38.4 180.7 -62.3 4.69E-03 -79.8 -75.3 3.93E-03 T223 O.387 Pf1N 4.000 236.9 -67.3 133.9 -46.9 236,9 -67.3 133.9 -46.9 4.21E-03 -33.2 124.9 2.14E-03 T3OO O.212 l SIERRA GEOPHYSICS,INC. REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

1 0 N UP \\ H E d am y H0Z. X \\ e 270-- + --90

1. 5 -

1.01 O C T tc 05-h,y (/'//$ 'e 0 NRM T150 T225 T300 T360 T540 T600 T660 /' Ratio plot is normalized: Intensity. Coordinates of vec tor diagram: Geog. Coordinates of equal-area plot: Geog. L#cality: MARENGO Site let & long= 47.00 -118.20 0 Demaa steps for this sample, interval = 0.000 Strike & dip of bedding =

0. 0
0. 0 Keenigsberger ratio =

0.206 AT NRM SN# Dec 0 Inc 0 Diff vect Dec S Inc S Diff vect JDiff V let V long Intensitu demag JH/JO Chi C/CO PMM 5.000 193.5 -0.2

0. 0
0. 0 193.5

-0.2

0. 0
0. 0 0.OOE-01 -41.7 -136.4 3.22E-OS NRM 1.000 3.13E-04 1.000 PMM 5.000 199.6 -44.1 189.9 29.3 199.6 -44.1 189.9 29.3 2.34E-05 -63.8 -161.2 1.66E-05 T150 0.516 PMN 5.000 193.9 -59.3 205.5 -12.6 193.9 -59.3 205.5 -12.6 6.03E-06 -77.8 -178 7 1.19E-05 T225 0 370 PMM 5.000 170.6 -30.7 247.4 -59.0 170.6 -50.7 247.4 -59.0 4.79E-06 -72.8

-89.9 7.92E-06 T3OO O.246 PMM 5.000 193.3 -42.4 96.1 -40.7 193.3 -42.4 96.1 -40.7 2.57E-06 ~65. 1 -148.1 6.60E-06 T360 0.205 PMN 5.000 149.0 -31.5 197.9 -40.0 149.0 -31.5 197.9 -40.0 5.90E-06 -62.2 -49.3 8.40E-07 1540 0.026 PMN 3.000 300.5

0. 5 134.6 -32.9 300.5
0. 5 134.6 -32.9 1.22E-06 20.4 128.6 5.31E-07 7600 0.016 PMN 5.000 2.2 -30.5 246.6 28.8 2.2 -30.5 246.6 28.8 5.91E-07 26.6
59. 5 5.32E-07 T660 O.017 SIERRA GEOPHYSICS >lNC.

REDMDND, WASHINGTON PALE 0 MAGNETICS LABORATORY

t _ rm n m m rm m .m rm m . rm rm m rm rm ra rm rm. ra c' N UP Q-- I s MRM X ~ 270-- + --90 l 1.5-E H 2 1 H0Z. 1.01 o a / l f mn cc sc S DON l / w n 0- / ", NilM 50G 100G 150G 250G 400G 550G 700G 850G 1000G Ratio plot is normalized! Intensity. Coordinates of vector diagram: Geog. Coordinates of egual-area plot: Geog. Lacality: MARENGO Site l e t 1. longe 47.00 -118.20 10 Demas steps for this sample. Interval = 1.500 Strike 8 dip of bedding =

0. 0
0. 0 0.000 AT NRM SN#

Dec 0 Inc G Diff vect Dec S Inc 8 Diff vect JDiff V lat V long Intensitu demag JH/JO Chi C/CO Ksenigsberger retto = PMN 11.000 143.4 -54.9

0. O O. O 143.4 -54.9
0. O O. O O.OOE-01 -60.5

-37.9 8.76E-OS NRN 1.000 2.19E-04 1.000 PMN 11.000 164.7 -59.6 58.9 42.1 164.7 -59.6 58.9 42.1 2.36E-05 -77.2 -33.2 1.03E-04 SOG 1.176 PMN 11.000 167.5 -62.1 134.1 25.3 167.5 -62.1 134.1 25.3 5.12E-06 -80.4 -46.3 1.03E-04 1000 1.176 PNN 11.000 170.2 -62.8 149.2 -54.4 170.2 -62.8 149.2 -54.4 1.09E-05 -82.6 -46.7 9.24E-05 150G 1.055 PMN 11.000 170.6 -63.7 169.5 -61.1 170.6 -63.7 169.5 -61.1 3.16E-05 -83.3 -39.2 6.00E-05 250G O.694 I PMN 11.000 173.9 -62.3 164.1 -65.9 173.9 -62.3 164.1 -65.9 2.23E-05 -84.5 -64.5 3.86E-05 400G O.441 PMN 11.000 169.1 -65.3 181.1 -55.9 169.1 -65.3 181.1 -55.9 t.29E-05 -82.6 -21.2 2.39E-05 5300 0.296 PNN 11.000 175.O ~66.6 156.8 -61.2 175.O -66.6 156.8 -61.2 7.37E-06 -86.1

5. 9 1.86E-05 700G O.212 PNN 11.000 162.8 -64.7 239.O -38.3 162.8 -64.7 239.O -50.3 3.06E-06 -78 3

-24.1 1.60E-05 850G O.183 PNN 11.000 184.7 -48.9 56.5 -56.5 184.7 -48.9 56.5 -36.5 5.87E-06 -72.3 -131.8 1.27E-05 1000G O.145 REDMUND. WASHINGTON PALE 0 MAGNETICS LABORATORY SIERRA GEOPHYSICS,INC. _

p r r c c c-m ~ ~ r r r- ~ v-O N UP 9 \\ x o.n \\ l X l 1 -90

1. 5 -

270-- + W E I HDZ. D o -El -llN / E ~ /

0. 5 -

1 Nf1M ~ / S OWN f 1$0 / q /,- 0 HBM T150 T225 T300 T360 T420 T460 T540 T600 T660 Ratio clot is normalised* Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Loca11h: MARENCO Site 1st & tong = 47.00 -110.20 10 Demas steps for this sample. Interval = 0.000 Strike & dip of bedding =

0. O O. O Koenigsberger ratto =

0.991 AT NRM SMe Dec Q Inc C Diff vect Dec S Inc 9 D!ff vect JDiff V lat V lono Intens!t demag JH/JO Chi C/CO PMM 12.000 156.6 -62.7

0. O O. O 156.6 -62.7
0. O O. O O.OOE-01 -73.4

-29.9 1.12E-O NRM 1.000 2.26E-04 1. 000 PMM 12.000 174.9 -66.0 74.8 45.2 174.9 -66.0 74.0 45.2 2.33E-05 -86.3 -3. 0 1.27E-04 T150 1.134 PMN 12.000 176.9 -65.1 161.6 -70.2 176.9 -65.1 161.6 -70.2 2.02E-05 -87.9 -22.1 1.07E-04 T225 0.955 PMN 12.000 175.9 -65.3 179.5 -64.5 175.9 -65.3 179.5 -64.5 2.91E-05 -07.2 -18 6 7.79E-05 T3OO O.696 PMM 12.000 175.7 -65.7 177.0 -62.9 175.7 -63.7 177.0 -62.9 1.11E-05 -07.0 -0. 6 6.68E-05 T360 0.596 PNM 12.000 172.4 -64.6 187.0 -68.6 172.4 -64.6 187.8 -68.6 1.63E-05 -04.8 -31.5 3.06E-05 T420 0.452 PNM 12.000 170.9 -64.1 177.2 -66.O 170.9 -64.1 177.2 -66.O 1.27E-05 -83.6 -35.7 3.79E-05 T480 0.330 PMM 12.000 181.0 -67.0 150.0 -57.8 181.0 -67.0 150.0 -37.8 1.40E-05 -07.2 74.7 2.42E-05 T540 0.216 PMN 12.000 175.8 -61.2 104.2 -69.5 175.9 -61.2 104.2 -69.5 1.60E-05 -04.4 -84.5 7.44E-06 T600 O.066 PMM 12.000 329.8 -70.O 172.9 -32.7 329.O -70.O 172.9 -52.7 6.60E-06 -14.1 79.6 1.35E-06 T660 O.012 SIERRA GET HYSICS.INC. REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

t r, rm n r r rn n r, w 1 .n n n r ro ro r ro o . r-0 - -4 t! UP '\\ km l y N E 270-- + --90

1. 5 -

.N 1 H02. 1.01 NRM l o -I b p cc S (/

0. 5 -

DOHN O M M f / 150 q 0 NRH 50G 100G 150G 250G 400G 550G 700G 850G 1000G / Ratto slot is normalised: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Coog. Locality: MARENCO Site let & long= 47.00 -118.20 10 Demas steps for this sample. Interval = 0.000 Strike 4 dip of bedding =

0. O O. O Masnigsberger ratto =

0.395 AT NRM SMe Dec C inc Q Diff vect Dec S Inc S Diff vect JDiff V let V lone Intensitu demag JH/JO Chi C/CO PMM 13.000 166.2 -45.1 O. O O. O 166.2 -45.1 O. O O. O O.OOE-01 -67.O -85.3 4.03E-05 NRM 1.000 2.04E-04 1.000 PMN 13.000 178.O -54.6 48.O 66.5 178.O -54.6 48.O

66. 5 1.91E-05 -78.O -110.1 5.65E-05 500 1.402 PMN 13.000 178.9 -55.2 20.6 64.3 178.9 -55.2 20.6 64.3 3.20E-06 -78.7 -113.5 5.96E-05 1000 1.479 PMM 13.000 177.O -36.2 191.2 -46.3 177.O -36,2 191.2 -46.3 6.66E-06 -79.5 -103.O 5.31E-05 150C 1.318 PMM 13.000 177.2 -56.5 176.6 -55.5 177.2 -56.5 176.6 - 5 5. 5 1.66E-05 -79.8 -103.4 3.65E-05 2500 O.906 PMM 13.000 178.7 -37.O 174.5 -35.3 178.7 -37.O 174.5 -55.5 1.27E-05 -80.3 -112.2 2.30E-05 4000 O.391 PMN 13 000 171.O -49.2 216.O -70.9 171.O -49.2 216.O -70.9 7.SOE-06 -71.7

-92.7 1.70E-05 550C O.422 PMM 13.000 181.3 -57.6 161.7 -36.8 181.3 -57.6 161.7 -36.8 7.39E-06 -81.2 -125.0 1.OOE-05 7000 0.248 PMM 13.000 163.4 -56.3 246.5 -33.5 163.4 -36.3 246.5 -33.5 1.99E-06 -74.1 -61 8 8.83E-06 850C O.219 PMN 13.000 168.3 -48.5 5.7 -12.T 168.3 -48.5 5.7 -12.9 1.43E-06 -70.2 -86.7 9.38E-06 10000 U.233 SIERRA GEOPHYSICS lNC. REDMUND WASHINGTON PALEUMAGNETICS LABORATORY

m' m O M M M M-0 N UP ~ 'N X 270-- + --90

1. 5 -

1 E 2. q HDZ. i, a 3 c, _O [ G NRH

0. 5 -

5 HN [ 10 2 /p-q ? o NRM T150 T225 T300 T360 T420 T480 T540 T600 T660 Retto plot is no r ma l i s e d - Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Locality: MARENCO Site 1st & long= 47.00 -118.20 10 Demag steps for this sample. Interval = 0.000 Strike & dip of bedding =

0. O O. O SNe Dec Q Inc 0 Diff vect Dec S Inc S Diff vect JDiff V ist V long Intentit damag JH/JO Chi C/CO Koenigsberger tatto =

0.293 AT NRrf PMN 14.000 149.3 -54.8

0. 0
0. 0 149.3 -54.8
0. 0
0. 0 0.OOE-01 -64.3

-44.0 3.61E-O NRM 1.000 2.46E-04 1.000 PNN 14.000 174.2 -62.1 57.1 56.0 174.2 -62.1 57.1 56.0 1.76E-05 -84.5 -68.0 4.99E-05 T150 1.302 PMN 14.000 171.4 -62.8 190.5 -35.8 171. 4 -62.8 190.5 -55.B 6.22E-06 -83.4 -49.4 4.30E-05 T225 1.213 PMN 14.000 164.4 -61.6 193.1 -64.I 164.4 -61.6 193.1 -64.1 1.16E-05 -78.2 ~4 3. 5 3.24E-05 T3OO O 898 PMN 14.000 165.7 -62.0 159.5 -59.9 165.7 -62.0 159.5 -59.9 6.41E-06 -79.3 -43.7 2.60E-05 T360 0.720 PMN 14.000 170.2 -59.8 127.9 -69.8 170.2 -59.8 127.9 -69.8 4.11E-06 -80.5 -66.4 2.21E-05 T420 O. 612 PMN 14.000 170.3 -59.3 169.9 -61.2 170.3 -59.3 169.9 -61.2 5.70E-06 -80.2 -69.1 1.64E-05 T400 0.454 PMN 14.000 166.5 -54.4 181.1 -67.9 166.5 -54.4 181. 1 -67.9 5.83E-06 -74.2 -73.5 1.07E-05 T540 0.296 PMN 14.000 170.4 -62.2 165.8 -52.6 170.4 -62.2 165.8 -32.6 8.71E-C6 -82.4 -52.4 2.01E-06 1600 0.056 PMP1 14.000 132.7 10.8 299.9 -75.5 152.7 10.8 299.9 -75.5 2.10E-06 -32.3 -85.6 1.36E-06 1660 O.038 ESTnKsmMr@JEL FfDMUNDo WASHINGTON PALE 0 MAGNETICS LABORATORY

r r r r r r, r r r r r c m r m r-r c. O N UP W E H0Z. X l i

1. 5 -

270-- + --90 NRH \\ 1.01 l o p S DOWN 8 <r [C

0. 5 -

uns m _ a 7 jf% 26 ^ / 0 NflH 50G 100G 150G 250G 400G 550G 700G 850G 1000G Ratio slot is normalised: Intensity. Coordinates of vector diagram: Coog. Coordinates of equal-area plot: Geog. l Locality: MARENCO Site 1st & long= 47.00 -118.20 10 Demas steps for this sample. Interval = 0.000 Strate & dip of bedding =

0. 0
0. 0 0.306 AT NRM SN9 Dec 0 Inc 0 Diff vect Dec 8 Inc S Diff vect JDiff V tat V lone Intensitu demag JH/JO Chi C/CO Koenigsberger tatto

= PMN 13.000 236,3 34.2 O. O O. O 236.3 34.2

0. O O. O O.OOE-01 6.2 -101.O 3.44E-05 NRM 1.000 2.23E-04 1.000 FMN 13.000 237,2 44.2 232.O 76.1 237.2 44.2 232.O 76.1 1.13E-03

-0.8 -167.3 2.43E-03 30Q O.706 PMN 13.000 234,3 23.4 16.6 80.8 234.3 23.4 16.6 80.8 9.03E-06 -13.6 -172.9 2.02E-03 1000 0.387 PMN 13.000 226.6 11.O 283.7 38.6 226.6 81.O 283.7 38.6 3.33E-06 -23.3 -170.I 1.72E-03 2300 O.300 PMN IS.000 221.6 -2.T 239,2 38.7 221.6 -2.9 239.2 38.7 6.23E-06 -31.9 -169.6 1.22E-03 2300 O.333 PMN 13.000 218.3 -f9.7 244.4 63.7 218.3 -19.7 244.4 63.7 3.60E-06 -41.O ~172.1 3.14E-03 400C O.33i PMN 13.000 213.8 -34.3 222.3 iO. 4 213.8 -34.3 222.3 10.4 4.10E-06 -49.3 -176.3 8.13E-06 3500 O.236 PMN 13.000 233.3 -31.7 183 1 -26.8 233.3 -31.7 '. P3. 1 -26.8 4.BHE-06 -23 7 133. 6 4.33E-06 7000 O.132 PMN 13.000 193.4 -13.3 322.6 -16.6 193.4 -13.3 322.6 -I 6. 6 4.SOE-06 -48.1 -138.4 4.77E-06 850C O.139 PMN 13.000 173.3 -40.I 232.9 47.6 173.3 -40.1 232.9 47.6 2.SIE-06 -63.6 -108.2 4.38E-06 10000 0.133 l SIERRA GEOPHYSICS.lNC. REDNOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

e r r-m r r-r- c ~ r-r- .r-c- 1 O N UP l ~ t i 1 ( oNRM l 3_ 270-- + --90 1 A c~ / unn "\\ E 1 H N i i i H0Z '\\ n 2-i O C-cE cc RM 11 DO 1 a l l 1 0 /)w a p , A, s 4 /'jy/q / n o m r NRM 50G 100G 150G 250G 400G 550G 700G 850G 1000G i Ratio plot is n orsne l l g e d : Intensity. Coordinates of vector diagram: Geog. Coordinates of egual-area plot: Geog. L o c a l '. t y : MARENCO Stto ist 8 long= 47.00 -119.20 for this sample. 10Dema!= steps Interva 0.300 Strate & dig NRNof bedding =

0. 0
0. 0 0.244 A Koenigsberger fatto =

SN4 Dec 0 Inc 0 Diff vect Dec S Inc 9 Diff vect JDiff V lat V lone Intensitu demag JH/JO Chi C/CO PMN 21.000 78.2 42.9 O. O O. O 78.2 42.9 O. O O. O O.OCE-Ot

23. B

-37.9 3.70E-OS NRM 1.000 3.03E-04 1.000 PMN 21.000 106.I 41.3 64.9 41.2 106.8 41.3 64.9

41. 2 2.36E-03
7. 0

-33.8 1.26E-03 SOG O.341 1 PMN 28.000 137.0 -64.3 348.9 69.1 137.0 -64.3 348.9 69.1 1.OOE-04 -74.2 -23.2 9.44E-05 1000 2.331 l PMN 21.000 172.4 -7.2 134.3 -67.2 172.4 -7.2 134.3 -67.2 9.15E-03 -46.1 -107.2 3.82E-06 ISOC O.137 l PNN 21.000 163.7 -36.1 170.2 38.2 163.7 -36.1 170.2 30.2 4.44E-06 -74.1 -63.0 4.tBE-06 230G 0.113 i PMN 21.000 172.3 -13.6 22.3 -73.3 172.3 -13.6 22.3 -73.3 2.73E-06 -30.4 -106.2 3.02E-06 400G O.002 PMN 21.000 288.O -21.1 136.2 -7.4 201.O -21.I 136.2 -7.4 3.30E-06 -0. 6 136.4 1.03E-06 330G O. O.'C PMN 21.000 330.8 -66.O 193.O 69.O 330.B -66.O 193.O 69.O 3.1OE-06 -0. 6 01.O 3.SDE-06 7000 0 097 PNN 21.000 34.0 -13.3 277.7 -33.3 34.0 -13.3 277.7 -33.3 3.30E-06 17.3

4. 6
1. 73F.~O6 030G O.047 PMN 21.000 320.3 -68.O B2. O 43.O 320.3 -68.O B2. O 43.O 2.71E-06 -13.8 06 2 2.49E-06 IOOOC O.067

) 1 SIERRA GEOPHYSICS INC. REDMOND. WASHINGTON PALEDMAGtEIICS LABORATORY

i R R R R R R R R R R R R f-l R TR R f T T' T f O t-N UP NRM [ .nnn ~ l -90 270-- + l

1. 5 -

1 E I H k,-....... ...w HDZ. 1.01 o .1 p ~ G C

0. 5 -

~ S DOWN 2 160 /,/ / y' q 0 NRM T150 T225 T300 T360 T420 T480 T540 T600 T660 Actio plot is normalised: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Locality: MARENGO site lat & long= 47.00 -118.20 10 Demas steps for this sample. IntervaI= 0 000 Strike & dip of bedding =

0. 0
0. 0 SMS Dec 0 Inc 0 Diff vect Dec S Inc S Diff vect JDiff V tat V lona Intensitu demag JH/JO Chi C/CO Koenigsberger ratio =

0.339 AT NRM PMN 22.000 27.2 27.1 O. O O. O 27.2 27.1

0. O O. O O.OCE-01 50.3 17.9 2.01E-OS NRM 1.000 1.12E-04 1.000 PMN 22.000 45.1 -27.3 18.3 43.3 43.1 -27.3 18.3 45.3 1.73E-05 16.3

." 6. 1 6.90E-06 TISO O.343 PMN 22.000 53.3 -24.6 3.3 -32.4 33.3 -24.6 S.3 -32.4 1.39E-06 13.3

8. 3 5.81E-06 T22S O.289 PMN 22.000 50.9 -41.8 55.9
1. 4 SO.9 -41.8 53.9
1. 4 2.52E-06 S. 4 16.4 3.72E-06 T3OO O.183 PMN 22.000 37.7

-0.3 273.4 -77.1 57.7 -0.3 273.4 -77.1 2.53E-06 21.3 -3.3 3.21E-06 T360 O.160 PMN 22.000 94.5 -50.S 43.3 26.1 94.5 -30.3 43.5 26.1 2.76E-06 -23.1 -B. 6 1.59E-06 1420 0.079 PMN 22.000 193.6 -21.3 53.3 -27.6 193.6 -21.3 53.3 -27.6 1.76E-OS -52.3 -140.3 1.12E-06 T4DO O.056 PMN 22.000 278.8 -24.3 149.1 O. 7 278.8 -24.3 149.1 O. 7 1.3SE-06 -3.4 136.7 1.04E-06 T340 O.032 PMN 22.000 44.7 -33.1 267.0 -11.9 44.7 -33.1 267.0 -11.9 1.17E-06 13.3 18.3 3.43E-07 T600 0.017 PMN 22.000 354.9 -22,3 167.3 19.8 334.9 -22,3 169.3 19.8 2.41E-06 31.2 67.7 2.64E-06 T660 0.131

  • " " " N m W LR*E N

%iE0 MAGNETICS LABORATORY

r rm r r r rm rm rm rm m rm rm rm . rm rm rm c~ r r 0 N UP \\ l s 1 l X unn 270-3- ,A --90 NRM

i. 5 -

W E HRH 1 ,L v P HDZ. N 1.01 H02. <I ~

0. 5 -

_ i 7 f l / NRM 50G 150G 250G 400G 550G 700G 850G 1000G / l 0 Ratio plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Leca11tg: MARENCO Site let 8 long= 47.00 -118.20 9 Demas steps for this sample. Interval = 1.000 Strike & dip of bedding =

0. 0
0. 0 I

demag JH/JO Chi C/CO Kscnigsberger retto = 0.513 AT NRM lat V lon5 ntensitu7.54E-Os unn i.OOO 2.94E-04 i. OOO SM# Dec 0 Inc 0 Diff vect Dec S Inc S Diff vect JDiff V - 16. PNM 31.000 89.2 -30.6

0. 0
0. 0 89.2 -30.6
0. 0
0. 0 0.OOE-01 -11.4 PNN 31.000 147.6 -58.7 44.8 34.O 147.6 -30.7 44.8 34.O 6.84E-05 -65.4

-34.1 8.97E-05 SOG 1.190 PNN 31.000 171.6 -61.3 80.1

6. I 171.6 -61.3 80.1
6. 1 1.91E-05 -82.4

-63.O 8.97E-05 1500 1.190 PMN 31.000 173.8 -61.0 163.7 -62.1 173.8 -61.0 163.7 -62.1 2.02E-05 -83.4 -74.0 6.96E-05 250G O.923 PNN 31.000 178.3 -64.5 164.4 -49.2 178.3 -64.5 164.4 -49.2 1.69E-05 -88.7 -38.6 3 33E-05 4000 0.707 PMN 31.000 181.4 -60.4 147.8 -78.5 181.4 -60.4 147.0 -78.5 1.13E-05 -84.2 -128.7 4.26E-05 5500 0.365 PNN 31.000 183.6 -33.4 164.7 -78.2 183.6 -53.4 164.7 -70.2 1.22E-05 -76.6 -131.3 3.13E-05 7000 0.415 PMN 31.000 184.5 -57.4 182.4 -46.4 184.5 -57.4 182.4 -46.4 1.14E-05 -80.4 --137.7 2.OOE-OS BSOC O.265 PNN 31.000 168.5 -49.6 214.8 -62.9 168.5 -47.6 214.8 -62.9 9.01E-06 -71.2 -86.O 1.16E-05 1000Q O.154 SIERRA GEOPHYSICS,1NC. REDMOND WASHINGTON PALE 0 MAGNETICS LABORATORY

1_ _r, rm r _r, r r r r r _r r r - r r r r r r, c-0 N UP m 4+ X s / 1 / / I ^/ / 270-- + p-90

1. 5 -

W E I p-1 x t

1. o '

H0Z. H0Z. o ~ a S DOWN

0. 5 -

i [;,f% 26o N -? ? + NflM T150 T225 T300 T360 T420 T480 T540 T600 T660 f Rstio not is normalised: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Leca11 y: MARENCO Site let 8 long= 47.00 -118.20 10 Demas steps for this sample. Int::rval= 0.000 Strite 4r dip of bedding =

0. 0
0. 0 i

SMe Dec C Inc C Diff vect Dec S Inc S Diff vect JDiff V lat V lone Intensitu demag JH/JO Chi C/CO Ms:nigsberger retto = 0.386 AT NRM PMN 32.000 45.O 29.3 O. O O. O 45.8 29.3

0. O O. O O.OOE-01 40.9

-4.3 3 36E-OS NRM 1.000 1.74E-04 1.000 PMM 32.000 69.2 -27.7 24.3 56.O 69.2 -27.7 24.3 56.O 2.95E-05

2. 8

-3. 1 1.72E-05 T150 O. 512 PNM 32.000 69.4 -28.0 68.5 -26.7 69.4 -28.0 68.5 -26.7 4.COE-06

2. 5

-3 1 1.32E-05 T225 0.393 PMN 32.000 68.0 -33.5 71.7 -17.7 68.0 -33.5 71.7 -17.7 4.66E-06

0. 7
0. 1 8.66E-06 T3OO O.258 PMN 32.000 66.7 -10.7 71.7 -63.6 66.7 -10.7 71.7 -63.6 4.21E-06 11.5

- 7. 1 5.45E-06 T360 O.162 PMN 32.000 87.O ~49.5 46.4 39.3 87.O -49.5 46.4 39.3 3.69E-06 -19.3 -4,6 4.40E-06 T420 0.131 PNM 32.000 90.3 22.8 85.8 -60.O 90.3

22. B 83.8 -60.O 4.23E-06
8. 5

-36.5 8.12E-07 T400 O.024 PMN 32.000 317.5 -71.5 112.9 61.O 317.5 -71.5 112,9

61. O 2.72E-06 -19.1 85.2 2.18E-06 T540 O.065 PMN 32.000 183.8

-9.9 351.2 -37.5 103.8 -9.9 351.2 -37.5 2.09E-06 -47,8 -123.9 1.79E-06 T600 O.053 Pf1M 32.000 131.6 -54.5 198.8 14.3 131.6 -54.5 198.8 14.3 1.56E-06 -52,2 -28.8 8.51E-07 7660 0.025 NESo INC. REDMOND, WASHINGTON pal.E0 MAGNETICS LABORATURY

r r o _ r r o r r o o r _f, r ro.- r r - - r, r, r 0 \\ l L N UP X NR 270-- + --90

1. s -

~ RM NRN Q E 1.01%,H m 2.N. a \\ _o W H0Z. l E H0Z. /

0. 5 -

S D o / NRM 50G 100G 150G 250G 400G 550G 700G 850G 1000G Ratio plot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Lacolity: MARENCO Site let & long= 47.00 -118.20 10 Demas steps for this sample. Intarvala 0.000 Str16e an dip of bedding =

0. O O. O Mc nigsberger retto =

0.482 AT NRM Sft# Dec Q Inc Q Diff vect Dec S Inc S Diff vect JDiff V let V lona Intensit demag JtUJO Chi C/CO PNff 33.000 78.2 -15,1 O. O O. O 70.2 -15.1 O. O O. O O.OOE-01

2. 3

-14.3 5.40E-O NRM 1.000 2.24E-04 1.000 PMN 33.000 123.9 -31.4 42.0 33.5 123.9 -31.4 42.0 33.5 4.52E-05 -45.3 -26.8 4.99E-05 SOC O.924 PNM 33.000 148.1 -62.1 76.I 26.S 148.1 -62.1 76.1 26.O 1,50E-05 -67.4 -25.6 5 18E-OS 1000 O.959 PMN 33.000 134.9 -64.O 90.3 13.8 154.9 -64.O 90.3

13. B 3.27E-06 -72.7

-23.1 5.18E-05 ISOC O.959 PMN 33.000 160.2 -63.7 132.O -63.O 160.2 -63.7 132.O -63.O 9.79E-06 -76.2 -20.O 4.22E-05 2500 0.701 PNN 33.000 159.9 -37.9 163.2 -81.O 159.9 -57.9 163.2 -81.O 1.09E-05 -73.O -50,8 3.20E-05 4000 O.593 PNM 33.000 172.2 -57.6 127.4 -52.4 172.2 -57.6 127.4 -52.4 8.43E-06 -79.5 -82.3 2.42E-05 550C O.448 PMN 33.000 153.7 -63.3 193.1 -42,6 153.7 -63.3 193 1 -42.6 8.01E-06 -71.6 -25.4 1.62E-05 7000 O.300 PNN 33.000 155.'3 -49.O 354,1 -83.4 155.3 -49.O 354.1 -83.4 5.45E-06 -64.4 -61.2 1,20E-05 850G O.222 PMN 33.000 170.3 -58.1 139.9 -31.2 170.5 -38.I 139.9 -31.2 4,74E-06 -79.3 -74.6 7.78E-06 1000G O.144 SIERRA GEOPHYSICS.INC. REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

y rm on m . rm rm rm m m m m m m m r-- a c-- a ca r, ca r ' O N UP N s i NRM ~ Y

1. 5 -

NAM s-i i e i i i i 1.01 1 Z. H0Z. / 2 1 w f cE cc

0. 5 -

j s l i j, i e i / 0 NRM T150 T225 T300 T360 T420 T480 T540 T600 T660 Rst10 elot is normalized: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Lecality: MARENCO Dite 1st & long= 47.00 -110.20 10 Deman steps for this sample. Int 6rval= 0.000 Strike & dip of bedding =

0. 0
0. 0 SNe Dec 0 Inc C Diff vect Dec 8 Inc 9 Diff vect JDiff V lat V lona Intensit demag JH/JO Chi C/CO Kscnigsberger retto =

0.528 AT NRM PNN 34.000 88.1 -39.8

0. 0
0. 0 88.1 -39.8
0. 0
0. 0 0.OOE-01 -15.1

-11.1 6.49E-O NRM 1.000 2.46E-04 1.000 PMN 34.000 134.5 -61.4 38.4 38.2 134.5 -61.4 38.4 38.2 4.62E-05 -37.8 -19.2 7.99E-03 T150

1. 231 PNN 34.000 140.7 -60.7 108.9 -61.2 140.7 -60.7 108.9 -61.2 1.63E-05 -61.7

-24.5 6.41E-05 T225 0.988 PMN 34.000 147.8 -61.3 122.2 -37.0 147.8 -61.3 122.2 -37.0 1.65E-05 -66.9 -27.7 4.80E-05 T3OO O.740 PMN 34.000 147.5 -59.0 148.3 -64.6 147.5 -59.0 148.3 -64.6 1.97E-05 -65.5 -33.4 2.84E-05 T360 0.438 l PMN 34.000 152.7 -63.0 133.1 -37.7 152.7 -63.0 133.1 -37.7 4.99E-06 -70.8 -25.8 2.39E-05 T420 0.368 PMN 34.000 145.2 -62.O 177.8 -63.3 145.2 -62.O 177.8 -63.3 5.05E-06 -65.4 -24.I 1.82E-05 T480 O.200 PMN 34.000 159.4 -61.1 118.7 -59.6 159.4 -61.1 118. 7 -59.6 6.35E-06 -74.6 -38.8 1.21E-05 T540 0.186 PNM 34.000 155.2 -57.O 163.6 -64.3 155.2 -57.O 163,6 -64.3 6.74E-06 -69.5 -46.6 5.39E-06 T600 O.083 PMN 34.000 129.8 -37.I 202.7 -37.7 129.8 -37.1 202.7 -37.7 1.67E-06 -32.4 -23.7 4.17E-06 T660 O.064 ) NN m&mrdRJY"C (RSi%llND, WASHlNG MN PALE 0 MAGNETICS LABORATORY

rm rn rm ' m rm m m m m rm . rm m m u m rm rm r- .n 0 s N c9 N UP X 1 / - 90 N7/Q_, 4 /

1. 5 -

~ ,/ n cn E H AN. 1.01 H0Z. HDZ. o C 2 Tx

0. 5 -

S ' 00 N 0 / HRH SOG 100G 150G 2500 400G 550G 7000 850G 1000G Cstio plot is norma 11:ed-Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Coog. Lscelity: MARENCO Site let & tong = 47.00 -118.20 10 Demas steps for this sample. Interval = 0.000 Strike & dip of bodding=

0. O O. O SMG Dec 0 Inc 9 Diff vect Dec S Inc g n(pf vect JDiff V let V lone Intensitu demag JH/JO Chi C/CO Kasnigsberger ratto =

0.346 AT NRM PMN 35.000 68.7 -11.9 O. O O. O 68.7 -11,9 O. s' O. O O.OOE-O!

9. 8

-0. 3 3.60E-OS NRM 1.000 2.OGE-04 1.000 l PNM 33.000 124.4 -36.1 32.3 39.1 124.4 -36.1 32.3 39.1 3.75E-03 -48.2 -21.8 3.75E-OS SOC 1.042 I PNM 33.000 150.7 -62.1 48.9 40.0 150.7 -62.1 48.9 40.0 1.24E-03 -69.2 -27.4 4.42E-05 1000 1.228 I PNM 33.000 138.4 -60.4 43.5 -13.2 158.4 -60.4 43.5 -13.2 3.14E-06 -73.6 -40.4 4.41E-05 1400 1.223 PMN 35.000 136.5 -64.2 162.8 -43.9 136.3 -64.2 162.8 -45.9 9.39E-06 -73.9 -23.2 3.31E-05 20.9G O.975 PNM 33.000 136.4 -62.9 137.O -69.6 156.4 -62.9 157.O -69.6 6.84E-06 -73.4 -28.8 2.83E-03 4000 O.786 PNM 35.000 159.4 -33.8 74.4 -83.9 159.4 -33.8 74.4 -83.9 6.37E-06 -71.4 -55,7 2.20E-03 3500 O.633 PMN 35.000 179'9 -40,4 125.8 -64.I 179.9 -40.4 123.8 -64.I 1,27E-05 -66.O -117.9 1.15E-05 7000 O.319 PMN 33.000 142.4 -71.O 197.O 14.6 142.4 -71.O 197.O 14.6 6.76E-06 -63.3

5. 9 9.69E-06 050G O.269 PNM 35.000 154.2 -39.9 348.6 -59.9 154,2 -39.9 348.6 -59.9 5.10E-06 -58.1

-68.9 7.3OE-06 10000 O.203 MEERSGEOPHYSICS3INC. REDMOND, WASHINGTON PALEONAGNETICS LABORAIDRY

1 m rm m n m m m m m m m m m m m rm m cn r' O N UP NW \\ N s\\ k z HDZ. HDZ. dew 1 270-- + -90

1. 5 -

~ T

1. o 5 o

~ 5 ~ u; ~ ,/

o. 5 -

S DOWN NRM A A -* 1 0- / 2 -g n f _ q o NRM 50G 100G 150G 250G 400G 550G 700G 850G 1000G / Ratio plot is normalised: Intensity. Coordinates of vector diagram. Geog. Coordinates of equal-area plot! Geog. 1.m c a 11 t y : MARENGO Site lat & long= 47.00 -118.20 10 Demog steps for this sample. Interval = 1.000 Strike & dip of bedding =

0. 0
0. 0 SMG Dec Q inc 0 Diff vect Dec S Inc S Diff vect JDiff V let V lona Intensit demag JH/JO Chi C/CO Kssnigsberger ratio =

0.323 AT NRM PMN 41.000 350.3 70.9 O. O O. O 350.3 70.9 O. O O. O O.OOE-01 79.8 -151.O 2.42E-O NRM 1.000 1.49E-04 1.000 PMN 41.000 20.2 80.3 342.5 62.9 20.2 80.3 342.5 62.9 1.42E-05 64.0 -103.4 1.04E-05 SOC O.430 PMN 41.000 146.4 78.4

2. 1 67.0 146.4 78.4 2.1 67.0 6.2OE-06 27.4 -104.5 4.64E-06 100G O.192 PMN 41.000 225.2 72.7 103.8 63.7 225.2 72.7 103.8 63.7 2.42E-06 21.5 -142.O 2.49E-06 ISOC O.103 PMN 41.000 190.O -18.7 356.5 60.2 190.O -18.7 356,5 60.2 3.67E-06 -St.7 -134.3 2.51E-06 250G O.104 PMN 41.000 107.9 5.O 231.2 -19.O 107.9 5.O 231.2 -19.O 2.90E-06 -10.2

-43.2 1.08E-06 400G O.078 PMN 41.000 221.1 -32.8 68.9 25.9 221.1 -32.9 68.9 25.9 4.11E-06 -45.5 178.5 3.01E-06 550G O.124 . 75.6 -6.'7 253.6 -38.4 2.35E-06 -46.3 -111,8 1.40E-06 700G O.050 PMM 41.000 175.6 -6. 9 253.6 -38.4 PMN 41.000 195.4 49.2 87.8 -75.1 195.4 49.2 87.8 -75.1 1.92E-06 -11.7 -131.8 2.23E-06 050G O.092 PMr1 41.000 266.5 27.O 138.T 27.5 266.5 27.O 138.9

27. 5 1.96E-06
8. O 164.2 1.72E-06 1000G O.071 E DMOND _ WASHINGTON PALE 0 MAGNETICS LABORATORY NED (WOM2D@h DR1 t

1 rm m rn n rm u rm n o ro no F7 r-T F-- T nT ra r T r O N UP T h f H E l i r f,.*, I

H0Z, H02.

o + - -90 270-- /

1. 5 -

W-l l l 1.01 1 a m / a* S DOHN

o. 5 -

Ib0 A " A w ,,/gi q 0 NRH T150 T225 T300 T360 T420 T480 T540 T600 T660 Retto plot is normalized: Intensity. Coordinates of vector diagram: Coog. Coordinates of equal-area plot: Coog. Lwcality: MARENCO Site 1st & long= 47.00 -118.20 Interva = 0.000 Strike & dip of bedding =

0. 0
0. 0

( 10 Dema steps for this sample. SMS Dec C Inc O Diff vect Dec 9 Inc S Diff vect JDiff V lat V tono Intentit demag JH/JO Chi C/CO Kscntgeberger tatto = 0.388 AT NRM PMN 42.000 342 2 76.1 O. O O. O 342.2 76.1 O. O O. O O.OOE-01 70.7 -142.5 2.54E-O NRM 1.000 1.31E-04 1.000 PMN 42.000 21.9 69.2 309.7 75.3 21.9 69.2 309.7 75.3 1.61E-05 74.8 -38.7 9.70E-06 T150 O.382 PMN 42.000

9. 2 68.0 74.0 62.9
9. 2 68.0 74.0 62.9 1.83E-06 82.7

-65.8 8.02E-06 T225 0.316 PMN 42.000 325.2 67.7 57.7 42.9 325.2 67.7 57.7 42 9 2.85E-06 67.0 173.7 5.94E-06 T3OO O.234 PMN 42.000 274.0 75.2 14.2 -30.3 274.8 75.2 14.2 -30.3 2.04E-06 42.3 -157.2 6.75E-06 T360 0.266 PMN 42.000 253.5 66.9 340.8 77.5 253. 5 66.9 340.8 77.5 2.90E-06 25.5 -161.7 4.02E-06 T420 O.IS8 PMN 42 000 240.7 73.9 262.7 55.7 240.7 73.9 262.7 55.7 1.66E-06 27.8 -147.7 2.42E-06 T480 0.095 PMN 42.000 231. 5 49.2 48.0 -15.3 233. 5 49.2 48.0 -15.3 1.83E-06 -0. 1 -160.9 3.71E-06 T540 0.146 PMN 42.000 323.6 11, 2 197.5 39.6 323.6 11.2 197.5 39.6 3.89E-06 38.2 110.5 1.71E-06 T600 0.067 Pf1M 42.000 19.9 37.2 277.3 -23.I 19.9 37.2 277.3 -23.1 1.36E-06 59.2 23.4 1.56E-06 1660 O.061 SIEMMYSES, INC. REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY _1

r r~, e m c r-r, r rm r r __r-r- c ~ c-r- m . m l 0 b N n l l _n l 4 \\ W p E l 6 1 l e" HDZ. l l -90 270-- -t-

1. 5 -
1. o s t

i n ) c

0. 5 -

~ 1 S DOWN o HRH 50G 100G 150G 250G 400G 550G 700G 850G 1000G /' Rstlo plot is normalised: Intensity. Coordinates of vector diagram: Geog. Cocedinates of equal-area plot: Geog. Lecality: NARENCO Site let & long= 47.00 -118.20 .I 10 Deman steps for this sample. Interval = 1.000 Strate

8. dip of bedding =
0. 0
0. 0 SNe Dec O Inc Q Diff vect Dec S Inc S Diff vect JDiff V lat V long Intensitu demag JH/JO Chi C/CO Knnigsberger ratto =

1.177 AT NRM PMN 51.000 340.0 68.4

0. 0
0. 0 340.0 68.4
0. 0
0. 0 0.OOE-01 80.9 -172.0 9.59E-05 NRM 1.000 1.63E-04 1.000 PNN St.000
5. 4 63.3 254,2 31,1
5. 4 63.3 254.2 31.I 1.80E-05 85.7

-0. B 8.41E-05 500 O.877 PMN 31.000

3. 2 62.4 24.3 68.2
3. 2 62.4 24.3 68.2 1.09E-05 86.1 26.4 7.34E-05 1000 0.765 PMN 31.000
3. 1 63.O
3. 7 58.8
3. 1 63.O
3. 7 58.8 1.03E-05 86.7 20.O 6.29E-05 1500 O.656 PMN 31.000
3. 3 63.4
2. 5 61.8
3. 3 63.4
2. 5 61.8 1.59E-05 86.9 12.7 4.70E-05 2500 O.490 PNM 51.000
3. 6 63.2
2. 7 63.8
3. 6 63.2
2. 7 63.8 1.52E-05 86.6 12.4 3.1DE-05 400C 0.332 PNM 51.000 356.8 61.7 24.1 65.3 356.8 61.7 24.1 65.3 8.85E-06 85.3 92.1 2.31E-05 550C O.241 PMN 31.000 14.I 62.6 324.O 31.9 14.1 62.6 324.O 31.9 6.07E-06 79.7

-16.2 1.68E-05 7000 O.175 PNN St.000 14.1 58.O 14.I 84.I 14.1 SS. O 14.1 84.1 3.06E-06 76.7

5. 5 1.40E-05 850G O.146 PMN
31. 000 359.8 62.2 44.9 33.3 359. 8 62.2 44.9 33.3
3. TOE-06 86.4 63.9 1.15E-05 1000G O.120 L1TED3 FRMML ENC.

REDMUND, WASHINGTON PALE 0tiAGNETICS LABORATURY

1l)ll'lIlll1(1( j 7 1 r 0 9 0 O0 C0 /. r C1 g 4 o 0 e N' G iE h3 n N 1 C4 N to l p O0208570246 J0593797031 U0543211000 a r e J100O0OO0O0 ra l g 05O00O000 a aM52O62B406 u mR123344566 r q eNTTTT7TTT1 e d + 1 f uS 5 5 5 5 5 5 6 6 7 0 4* o tO000000000 i-s sEEEEEEEEEE e nO143582125 t eO390610907 Y r R a t.......... n n6322111429 O T i I A d r g6966677914 R O o n.......... o o7926232137 B n C l2436679324 AL 1-1 V-S t6331012881 C I 0 a.......... i6. l8197221481 T 6 g 7877878667 EN r o V T G e G 1566666666 A i 0000000000 t f-u 0 : fEEEEEEEEEE E 0 m iO676254750 L a DO771999412 A r k 6 0 r J.......... P T O239341531 g 7 a 2 i d tO704891812 o 0 c........., 4 r eO602347756 N o v 766753672 O 5 T t G T f ce fO304596691 N I v O i.......... o . D0252736892 H 0 f0 O 251559372 S 8 o2 33 3 3 AW 1 4 S8969056033 s8 T e1 O c2679820885 D t1 a-0 n7666677647 N o O n I M 0 i0 2 d0 S55426965O2 D E r. 4 o7 = c6257036850 R T o4 g e511112 314 C n D3 3 o 1 1 0 d tO704891812 = e c.......... ,6 g b eO602347756 C 3 Mv 766753672 N .n T I yo fR 2 tl oNf fO304596691 S i 0 s& pTi.......... C r E ' H N 0 n iADO252736892 I W 0 et d 251559372 S O ,3 ta. 9 33 3 3 Y nle&3 H P T 8Q8969056033 F D n I l e pe........... n tmb0c2679020885 F ~ iai n7666677647 C 5 :Ssr I J A 2 d t ,2 e sS 053426965O2 R N Z R s i 0 T =c6257036850 F i h I t0 e511112 314 l H ' H a 0oD3 3 R r M m r0t 0 rOo.t R 5 oCf 0 a 0000000000 nN r 0000000000 ,1 Es 0000000000 T sR p r.......... v iAe e 2222222222 Mt g 5553333335 r t s r o; =e8 H l y slbM pt a a s S lf imvg 1 N o 5 0 5 0 oleri iaDen tc te MNNNNNMNNN 1 1 0 aoono MMMMMMMMMM RLtIK PPPPPPPPPP O ax 1 ,ll)'Il[l 111lI ll 1l

W W'M W W W W W W W m m m m m m M N UP x l W j E e " HDZ. I ~ 270-- + --90

1. 5 -

1.01 ~ o m W E ~ W

0. 5 -

S DOHN ,. m 0 NRM 50G 100G 150G 250G 400G 550G 700G 850G 1000G / A Ratio plot is normalised: Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. Lace 11ty: MARENGO Site lat & long= 47.00 -118.20 10 Demas steps for this sample. Interval = 0.000 Strate & dip of bedding =

0. O O. O nocnigsberger ratio =

1.377 AT NRN SNG Dec 0 Inc C Diff vect Dec S Inc S Diff vect JDiff V lat V lone Intensit demag.JH/JO Chi C/CO PMN S3.000 349.O 69.3

0. O O. O 349.O 69.3 O. O O. O O.OOE-01 80.8 -164.3 1.57E-O NRN 1.000 2.20E-04 1.000 PMN S3.000 11.1 62.9 242.9 28.I 11.1 62.9 242.9 28.1 3.02E-03 81.8

-13.2 1.49E-04 500 O.949 PMN 33.000 11.8 62.4

4. 8 66.6 11.8 62.4
4. 8 66.6 1.71E-05
81. 1

-11.1 1.32E-04 100G O 841 PMN 33.000

9. 9 62.O 23.8 64.3
9. 9 62.O 25.8 64.3 1,71E-05 82.1

-34 1.15E-04 1500 O.732 PMN 33.000 11.2 61.6

6. O 63.I 11.2
61. 6
6. O 63.1 2.98E-05 81.O

-4.3 8.32E-OS 2500 O.543 PMN 53.000

6. 7 61.7
21. 7 60.8
6. 7 61.7
21. 7 60.8 2.32E-OS 83.7 10.6 6.01E-OS 400G O.383 PMN S3.000 359.9 63.4 18.8 57.1 339.9 63.4 18.O S7. I 1.92E-05 87.9 64.O 4.12E-OS 3500 O.262 PMN S3.000 16 1 61.2 309.7 37,2 16.1 61.2 309.7 57.2 1.04E-OS 77.6

-11.6 3.21E-OS 7000 0.204 PMN 33.000

2. 4 66.1 39.2 40,8
2. 4 66.1 39.2 4 0. B 8.07E-06 87.9

-69.9 2.30E-03 8500 O.159 PNPt 33.000 18.8 37,4 287.O 69.2 18.8 37.4 287.O 69.2 8.03E-06 73.6 -2. O 1.82E-03 1000C O.116 SIERRA GEOPHYSICS.INC. REDMOND WASHINGT0f(_ PALE 0 MAGNETICS LABORAIDRY

r em r e e r, r r r r e r-r r r r r .e r-- O N N H4 I E d 59 r HDZ. l 270-- 4- --90 1 l

1. 5 -

l ~ 1.01 o / M / y cr [ CC

0. 5 -

~ ,j S DOWN 150 / jfhj,5 / '~-~ l,., q i 2 r c 0 HilM T150 T225 T300 T360 T420 T480 T540 T600 T660 R ', t i o lot is norme11:ed-Intensity. Coordinates of vector dlagram: Geog. Coordinates of equal-area plot: Geog. 1.a c a l l v: MARENCO Site let & long= 47.00 -118.20 to Demas steps for this sample. Interva1= 0.000 Strlke & dip of bedding =

0. O O. O SN4 Dec 0 Inc 0 D1ff vest Dec S Inc S D1ff vect JDiff v lat v tong Intensity demag JH/JO Chi C/CO Kscnigsberger ratio =

1.288 AT NRM PMN 34.000 342,9 63.7

0. O O. O 342.9 63.7
0. O O. O O.00E-01 78.1 150..

1.32E-04 NRM 1.000 2.03E-04 1.000 PNN 34.000

6. 8 63.8 314,7 33.4
6. 8 63.8 314.7 S3. 4 3.03E-03 83.3

-43.6 8.35E-03 T130 O.648 PNN 34.000

4. 3 68.O 14.4 34.1
4. 3 68.O 14.4 34.1 1.40E-03 83.O

-83.7 7.19E-OS T225 O. 343 PMN 34.000 O. I 65.8 17,3 72.2 O. I 63.8 17.3 72.2 2.27E-05 D8. 9 -115.1 4.94E-OS T3OO O.374 PNf1 S4.000

8. 2 63.7 339.2 64.O
8. 2 63 7 339.2 64.O 1.34E-03 84.4

-40.7 3.62E-03 T360 O.274 PNN 34.000

4. 3 68.4 16.6 53.9
4. 3 68.4 16.6 33.9 8.10E-06 84.3

-87.6 2.82E-OS T420 0.214 PMN 34.000

2. 1 63.8 32.3 82.6
2. 1 63.8 32.3 82.6 6.72E-06 87.9 17.4 2.1DE-03 T480 0.163 PNN 34.000 10.6 63.3 332.8 63.6 10.6 63.3 332.8 63 6 1.03E-03 82.4

-17.3 1.14E-03 1540 0.086 PNN 34.000 17.6 33.8

6. 1 67.4 17.6 S3. 8
6. 1 67.4 8.11E-06 71.6
9. 2 3.37E-06 T600 0 026 PMN 54.000 340.8 48.8 82.4 27.O 340.8 40.8 82.4 27.O 1.37E-06 67.2 109.3 2.79E-06 1660 O.021 MTn MMi@K4 fC.

REDMOND, WASHl_NGT0 LfPALE0 MAGNETICS LABORAIDHY

c-r r-r- c-r- r, c-, r r r c r r r-Oi N UP NRM N l H E ~ X H0Z. 270-- + --90 3, 3 _ l l.01r o { ~ n l l T ~ /

0. 5 -

n ~ S DONN / / "/ O NRM 50G 100G 150G 250G 400G 550G 700G 850G 1000G Ratio plot is nor mali s e d: Intensity.. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Crog. Lecality: NARENCO Site let & long= 47.00 -119.20 10 Demas steps for this sample. Interval = 1.000 Strike & dip of hedding=

0. 0
0. 0 Mscnigsberger ratio =

0.93S AT NRM SMS Dec 0 Inc O Diff vect Dec S Inc S Diff vect JDiff V lat V lone Intentit demag JH/JO Chi C/CO PMN 61.000 22.4 64.1 O. O O. O 22.4 64.1 O. O O. O O.OOE-01 74.6 -32,2 1.87E-O NRN 1.000 4.OOE-04 1.000 PMN 61.000 42.8 66.5 323.9

9. 7 42.8 66.5 323.9
9. 7 2.94E-05 61.7

-48.2 1.78E-04 DOC O.952 PMN 61.000 41.2 64.4 56.1 75.9 41.2 64.4 56.I 75.9 3.16E-05 62.O

41. 9 1.47E-04 1000 O.706 PMM 61.000 48.9 62.9 336.1 64.3 48.9 62.9 336.1 64.3 2.46E-05 36.3

-42.1 1.24E-04 1500 0.663 PMN 61.000 30.7 63.4 45.1 61.7 30.7 63.4 45.1 61.7 3.83E-03 53.3 -43.9 8.57E-05 2500 0 458 PMN 61.000 50.1 63.2 169.3 25.9

30. 1 63.2 169.3 25.9 5.12E-07 55.6

-43.2 H.56E-05 400G O 458 PMN 61.000 43.I 64.6 55.4

61. 8 43.1 64.6 55.4 61.8 4.66E-05 60.9

-43.2 3.91E-05 5300 0.209 PMN 61.000 39.2 54.5 88.1 83.5 39.2 54.5 89.1 83.5 1.33E-05 38.5 -20.1 2.71E-05 700G O.145 PMN 61.000 38.1 41.5 213.6 51,3 38.1 41.5 213.6 31.3 6.11E-06 31.9 -4.3 2.61E-05 850C O.140 PMN 61.000 16.O

71. 3 42.5 24.O 16.O 71.3 42.5 24.O 1.80E-05 76.7

-75.9 1.03E-05 10000 0.056 SIERRA GEOPHYSICS,INC. REDMOND, WASHINGTON PALE 0 MAGNETICS LABORATORY

r rm rm rm r rm rm rm r rm r rm r rm r m r rm r-0 N UPgn i I g E t H0Z. ~ I

1. s -

270-- + --90 t 1.01 O ~ C a-CC "~ g' / / /r- ' M, ,/ o i 4 HRH T150 T225 T300 T360 T420 T480 T540 T600 T660 /' Octio plot is normalised-Intensity. Coordinates of vector diagram: Geog. Coordinates of equal-area plot: Geog. L*cality: MARENGO Site let & long= 47.00 -118.20 to Demas steps for this sample. Interval = 0.000 Strike & dip of bedding =

0. 0
0. 0 Koenigsberger ratio =

0.560 AT NRM SMe Dec 9 Inc 0 Diff vect Dec S Inc S Diff vect JDiff V lat V lono Intensitu demag JH/JO Chi C/CO PMN 62.000 18.6 65.O O. O O. O 18.6 65.O O. O O. O O.OOE-01 77.3 -34.9 1.37E-04 NHM 1.000 4.P9E-04 1.000 PMN 62.000 24.7 61.O

6. 9 69.9 24.7 61.O
6. 9 69.9 3.83E-05 71.8

-21.6 7.92E-OS T130 O.378 PMN 62.000 22.2 60.3 39.5 63.8 22.2 60.3 39.S 63.8 1,27E-05 73.1 -16.2 6.66E-OS T223 O.486 PMN 62.000 15.9 St. O 93.O 78.6 13.9

31. O 93.O 78.6 1.87E-05 70.4 17.6 3.08E-03 T3OO O. 371 PMP1 62.000
3. 7 46.6

'57, 6 54,3

3. 7 46.6 37.6 S4. 3 1.43E-OS 70.7 31.9 3.03E-OS T360 0.200 PMP1 62.000
8. 1 47.9 356.6 44.O
8. 1 47.9 336.6 44.O 1.40E-03

'O.9 39.7 2.44E-03 T420 O.178 PMN 62.000 352.3 53.7 28.7 33.1 352.3 53.7 28.7 33.I 8.95E-06 76.O 89.O 1.64E-05 T400 O.120 PMM 62.000 343.2 44.5

3. 1 62.2 345.2 44.3
3. 1 62.2 8.30E-06 66.1 96.2 8.29E-06 T540 O.061 PMN 62.000 358. 4 49.9 341,7 42.6 358.4 49.9 341.7 42,6 6.40E-06 73.6 66.7 1.93E-06 7600 O.014 PMM 62.000 347.9
34. 4 162.6 -36.1 347.9 34.4 162.6 -36.1 4.37E-06 74.9 103.O 6.27E-06 T660 O 046 SIERRA GEOPHYSICS,INC.

REDMOND, WASHINGT0tl PALE 0 MAGNETICS LABORATORY . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _}}